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中文 要

設圖 G是一由 n個點及 m條邊組成的有限簡單圖，圖 G的一個標

號指的是在圖 G的每一個邊標上一個 {1, 2, · · · , m}內的整數，且不同
邊有不同標號。給定圖 G一個標號，定義每個頂點的頂點和是這個點

所有連出去的邊的標號總和，若圖 G所有頂點的頂點和都不一樣，則

稱此標號為反魔方標號；設 f 是圖 G的一個反魔方標號，且對於任兩

個度數不同的頂點 u, v, deg(u) < deg(v)，若 u的頂點和嚴格小於 v 的

頂點和，則稱 f 是圖 G的一個強反魔方標號。另外，若圖 G存在一個

(強)反魔方標號，我們稱 G是 (強)反魔方的。
反魔方標號一詞最早是由 Hartsfield和 Ringel提出，在他們的著作

裡不只證明幾個簡單的例子 (圈、路徑、輪子、完全圖等)有反魔方標
號，也同時提出所有不是 K2 的連通圖都是反魔方的猜想。幾十年來，

陸陸續續有人證明滿足某些條件的圖有反魔方標號，但距離此猜想完

全解決仍有很大的空間。

在本篇論文中，我們將範圍限縮到蜘蛛圖 (有一個核心和至少三隻
腳，每隻腳由數條邊組成)。由於這種圖已被證實具有反魔方標號，因
此我們在這裡將證明一個更強的結果：所有的蜘蛛圖都有強反魔方標

號。文章最後也會討論一些蜘蛛圖的變形是反魔方的。

關鍵詞：反魔方、強反魔方、標號、蜘蛛圖。
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Abstract

Let G be a simple finite graph with n vertices and m edges. A labeling

of G is a bijection from the set of edges to the set {1, 2, · · · , m} of integers.

Given a labeling of G, for each vertex, its vertex sum is defined to be the sum

of labels of all edges incident to it. If all vertices have distinct vertex sums,

we call this labeling antimagic. Suppose f is an antimagic labeling of G, and

for any two vertices u, v with deg(u) < deg(v), if vertex sum of u is strictly

less than vertex sum of v, then we say f is a strongly antimagic labeling of G.

Furthermore, a graph G is said to be (strongly) antimagic if it has (a strongly)

an antimagic labeling.

The concept of antimagic labeling was first introduced by Hartsfield and

Ringel. In their book, they not only proved that some graphs such as cycles,

paths, wheels, complete graphs etc are antimagic, but also conjectured that all

connected graphs other than K2 are antimagic. In the past years, graphs with

some restriction were gradually poven to be antimagic, but this conjecture is

still widely open.

In this thesis, we restrict our graphs to spiders, which is a graph with a

core and at least three legs, each leg contains some edges. Since all spiders

have already been proven to be antimagic, wewill prove a stronger result here,

that is, all spiders are strongly antimagic. In the last chapter, we will discuss

whether some variation of spiders are antimagic or not.

Keywords: antimagic, strongly antimagic, labeling, spider.
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Chapter 1

Introduction

All graphs in this thesis are finite, undirected, and simple. A labeling of a graph G

is a bijection f from E(G) to the set {1, 2, ..., |E(G)|}. Given a graph G, the vertex sum

of a vertex v ∈ V (G) is the sum of all labels of edges incident to v. An antimagic labeling

of G is a labeling f such that for any two distinct x, y ∈ V (G), vertex sums of x and y are

different. i.e.

∑
e∈E(x)

f(e) ̸=
∑

e∈E(y)
f(e)

for any x ̸= y in V (G), where E(x) := {e ∈ E(G)| e is incident to x}. Hartsfield and

Ringel [7] first introduced the concept of antimagic labeling of graphs in 1990. They

proved that some special families of graphs, such as paths, cycles, complete graphs, are

antimagic, and put forth the following conjecture:

Conjecture 1.1. Every connected graph other than K2 is antimagic.

This conjecture received a lot of attention but is still widely open. The most significant

progress is a result by Alon et al. [2]. They proved that a graph G with minimum degree

δ(G) ≥ C log V (G) (for an absolute constant C) or with maximum degree ∆(G) ≥

|V (G)| − 2 is antimagic. In the same paper, they also proved that complete partite graph

other than K2 is antimagic. In 1999, Alon [1] introduced an algebraic theorem to prove

some combinatorial problems. The so called“Combinatorial Nullstellensatz” was used

in [8, 9] to study antimagic labeling of graphs. Hefetz et al. [9] used this algebraic tool
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to prove that a graph which has pk, p is an odd prime, vertices and admits a Cp-factor

is antimagic. The problem seems to be a little easier if we reduce the case to bipartite

graphs. In 2009, Cranston [4] proved that regular bipartite graphs are antimagic. Few

years later, he put forth the result to general regular graphs of odd degree, it is a joint work

with Liang and Zhu [5]. In Liang’s doctoral dissertation [11], he introduced a concept

to prove that regular graphs of even degree are antimagic. However, there are still some

problems unsolved. But fortunately, his team completed the whole proof this year [3].

Hence antimagicness of regular graphs is wholly completed.

The following conjecture is just the restriction of Conjecture 1.1 to trees.

Conjecture 1.2. Every tree other than K2 is antimagic.

The most significant progress of Conjecture 1.2 was obtained by Kaplan, Lev and

Roditty [10]. They proved that a tree with at most one vertex of deg 2 is antimagic. Their

method is zero-sum partitions, which is a partition of integers into pairwise disjoint subsets

such that elements in the same subset sum up to zero modulo n, for some natural number

n. However, their proof contains an error. In 2014, Liang et al. [12] corrected this error

and used a similar technique to find out that some classes of trees are antimagic.

In the study of antimagic labeling of graphs, Hefetz [8] also introduced the concept

of (ω, k)-antimagic labeling of graphs, where ω is a weight function and k is a non-

negative integer. A weight function ω : V (G) 7→ N is a function from V (G) to a set

of natural numbers. A (ω, k)-antimagic labeling is an injection from E(G) to the set

{1, 2, 3, ..., |E(G)| + k} such that all vertex sums are pairwise distinct, where vertex sum

is the sum of labels of all edges incident to that vertex and its initial weight assigned by ω.

For any given ω, Wong and Zhu [14] proved that a graph which has a vertex adjacent to all

the other ones is (ω, 2)-antimagic, the tool they used is the Combinatorial Nullstellensatz,

which was also used to prove that a connected graph on n ≥ 3 vertices is (ω, ⌈3n
2 ⌉ − 2)-

antimagic for any weight function ω.

For more concept of graph labeling and open problems, see the survey by Gallian [6].

In this thesis, we want to prove a special family of graphs being antimagic. A spider

is formed from the disjoint union of some paths by identifying one endpoint of each path,
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called the core of the spider. These paths are called legs of a spider. A spider is said to be

regular if all legs have the same length. Note that a spider with at most 2 legs is a path,

and a regular spider with each leg of length 1 is a star.

In Chapter 2, we will prove that regular spiders and some variations are antimagic

by designing truly antimagic labelings. In Chapter 3, we first introduce the concept of

strongly antimagicness, and use it to rewrite the proof of Shang [13]. In Chapter 4, we

will discuss whether some variations of spiders are antimagic or not.
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Chapter 2

Regular spiders are antimagic

Theorem 2.1. Regular spiders except K2 are antimagic.

Proof. LetS be a spider which has n legs r1, r2, . . . , rn , each has length k. For each ri, i =

1, 2, . . . , n, label the edges from outside to the core by i, n + i, 2n + i, . . . , k(n − 1) + i.

Then vertex sums of this spider are 1, 2, . . . , n, n + 2, n + 4, . . . , 3n, 3n + 2, 3n + 4, . . . ,

(2k − 1)n, (2kn−n+1)n
2 . Since all vertices have different vertex sums, the labeling is an-

timagic. ■

Suppose that G is a graph with m edges, n + 1 vertices, and one of which is adjacent

to all the other vertices, i.e. an universal vertex, then it is straightforward to see that G

is antimagic. Let v be an universal vertex of G, e1, e2, · · · , en be the edges incident to v,

and v1, v2, · · · , vn be other endvertices. First we use 1, 2, · · · , m − n to label the edges of

G which aren’t incident to v, and let f be a mapping from V (G) to N, which denotes the

vertex sums of every vertex at this moment. Without loss of generality, we may assume

that f(vi) ≤ f(vj), for i ≤ j. Then for e1, e2, · · · , en, give ek the label m − n + k,

k = 1, 2, · · · , n. Therefore the vertex sums of G are f(v1) + m − n + 1, f(v2) + m − n +

2, · · · , f(vn)+m, and n(2m−n+1)
2 , since f(vn)+m < (m−n+1)+(m−n+2)+· · ·+m =

n(2m−n+1)
2 , G is antimagic.

By playing a similar trick we can prove the following corollary:

Corollary 2.2. Suppose G is an n-vertices graph without isolated vertices. For each
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vertex v ∈ V (G), if we attach a path of length k to v, then the resulted graph G′ is also

antimagic.

Figure 2.1: Example of G and G′, n = 5, k = 4.

Proof. Suppose G′ is the graph described as in the theorem. Divide G′ into 2 parts: spider

part and core part. Suppose furthermore that the spider part has n legs, each has length k.

We have to labelG′ by {1, 2, . . . , |E(G′)|}. First, label the spider part with {1, 2, . . . , kn},

by the method shown in the proof of Theorem 2.1. Then label the core part with {kn + 1,

kn + 2, . . . , |E(G′)|} arbitrarily, and denote the vertices by v1, v2, . . . , vn satisfying:

For distinct i < j, vertex sum of vi is less or equal to vj .

Now attach vi to the leg with the last edge labeled by (k − 1)n + i. Then the vertex sums

of v1, v2, . . . , vn form a strictly increasing sequence. Since there’s no isolated vertex in

the core part, degree of v1, v2, . . . , vn are all greater than 2, vertex sums of v1, v2, . . . , vn

are greater than those of vertices of the spider part. By Theorem 2.1, the spider part with

that labeling is antimagic. Therefore, G′ is antimagic. ■

Let G be a graph with no isolated vertex and S be any spider. Construct a new graph

G′ by attaching the core of S to each vertex of G. By a similar trick played in the proof

of Corollary 2.2, we can find an antimagic labeling of G′.

Theorem 2.3. If G, G′, S are defined as above, then G′ is antimagic.

Proof. Suppose G has n vertices and m deges, and S has k legs with lengths r1, r2, · · · ,

rk, in increasing order. Divide G′ into two parts: G and spider part, where the spider
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Figure 2.2: G and G′.

part contains n spiders, denoted by S1, S2, · · · , Sn. First we label the spider part with

{1, 2, · · · , n|E(S)|}, and for each spider, label first the r1-outermost edges of all legs

with {1, 2, · · · , r1nk}. For Si, label the outermost edges of all legs from the shortest to

the longest by (i − 1)k + 1, (i − 1)k + 2, · · · , ik, then the next edges by nk + (i − 1)k +

1, nk + (i − 1)k + 2, · · · , nk + 2ik, and so on. After the r1-outermost edges are finished,

ignore them and see all spiders as all their legs are cutted by r1 edges. (i.e. Spiders with

k − 1 legs, and lengths are r2 − r1, r3 − r1, · · · , rk − r1.) Repeat the same thing on the

(r2 − r1) - outermost edges with {r1nk + 1, r1nk + 2, · · · , r1nk + n(r2 − r1)(k − 1)}.

Repeat the process until all legs are labeled.

Next label G with {n|E(S)| + 1, n|E(S)| + 2, · · · , |E(G)|} arbitrarily, and without

loss of generality, we may assume that vertices of G are named by v1, v2, · · · , vn, where

vi has the i-th smallest vertex sum among all vertices of G. Then attach the core of Si to

vi, a labeling of G′ is constructed. We still have to check that this labeling is antimagic.

For all vertices of V (G′) − V (G), observe that by the above construction all vertices

could be ordered so that their vertex sums are strictly monotone increasing, and have

strictly smaller vertex sums than any vertex of V (G), since each v ∈ V (G) is incident to

an edgewhich is labeled with one of the largest numbers. Finally , sinceSi is attached to vi,

the all cores ofS1, S2, · · · , Sn havemutually distinct vertex sums, henceG′ is antimagic.■
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Figure 2.3: An example for theorem 2.3.
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Chapter 3

General spiders are antimagic

In this chapter, we want to prove our main result, that is, all spiders except K2 are

antimagic. Actually, Shang [13] has already proven this result. Her technique is simple

and direct. For a specific spider other than K2, she assigns it a labeling, and adjusts some

edge labels if necessary to make it antimagic. The labeling looks similar to the one we

used for regular spiders.

Our approach is quite different. We first introduce the concept of strongly antimagic

labeling, which is also an antimaigc labeling and for any two distinct vertices u, v with

deg(u) < deg(v), vertex sum of u is strictly less than vertex sum of v. Then we use

induction hypothesis to prove that all spiders except K2 are strongly antimagic, and hence

antimagic.

With the concept of strongly antimagicness, we first rewrite the proof of theorem 2.1

as follows:

Theorem 3.1. Regular spiders except K2 are strongly antimagic.

Proof. We prove the theorem by induction on the length of legs. Suppose that S is a

regular spider with k legs. When all legs have length 1, the spider is a star, and it is clearly

strongly antimagic. Suppose that a regular spider whose legs are all of length n has a

strongly antimagic labeling. Now, for a spider G with all its legs of length n + 1, we may

first delete the outermost edges of each legs, the remaining graph is a spider which legs

are all of length n. So by the induction hypothesis, it has a strongly antimagic labeling f .
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Then construct a new labeling f ′ by adding k to the labels of each edge. By the definition

of strongly antimagicness, since degrees of the outest vertices are the smallest, the vertex

sums are still the smallest after adding n to all edges. Finally, since we have to recover

G to a spider with length of legs n + 1 by sticking one more edge to each legs at the

outermost, we label the outermost edges by {1, 2, . . . , k} by the method satisfying: for

i = 1, 2, . . . , k, label the edge i when this edge is adjacent to a vertex whose vertex sum

is the ith smallest under the labeling f ′. Then the new labeling is still strongly antimagic.

Hence all regular spiders are strongly antimagic. ■

Theorem 3.2. A spider with at least two edges is strongly antimagic.

Proof. We will prove the theorem by induction on |E(G)|. For all spiders except K2, we

divide all spiders into three different cases according to the number of legs with length at

least 2. Case 1 consists of spiders with exactly one leg of length at least 2, Case 2 contains

spiders with exactly two legs of length at least 2, and Case 3 are spiders with at least 3

legs of length greater than 2.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.1: Classify all spiders due to the number of their legs of length at least 2.

This classification is based on the induction hypothesis, during which we delete each

leg one edge. After deleting each leg one edge, the degrees of the core are 1, 2 ,and at

least 3 respectively in the above three cases.

Now, given a spider S with k legs of length r1, r2, . . . , rk, k ≥ 2. For convenience

assume r1 ≤ r2 ≤ · · · ≤ rk.

Construct a new spider S ′ by deleting each leg 1 edge, then S ′ has k legs with length

r′
1, r′

2, . . . , r′
k, where r′

i = ri − 1 , i = 1, 2, . . . , n, note that some r′
is may be zero. There

are 3 possible cases for S ′ as we discussed above.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.2: Spiders whose outermost edges are cut.

Actually, Cases 1 and 2 are primitive cases of all spiders, so they should be discussed

seperately. Hence we prove Case 3 at first. By the induction hypothesis, there is a strongly

antimagic LabelingL′ of S ′ using labels 1, 2, 3, . . . , |E(S ′)| = |E(S)|−k. For each leg of

S ′, denote the outermost edge e′
1, e′

2, . . . , e′
h. Let i1, i2, . . . , ih ∈ {1, 2, . . . , h} be indices

such thatL′(e′
i1) < L′(e′

i2) < · · · < L′(e′
ih

). Now come back toS, let ej , j ∈ {1, 2, . . . , h}

be the edges adjacent to e′
ij
, j ∈ {1, 2, . . . , h}, and eh+1, eh+2, . . . , ek be legs of S with

exactly one edge. For convenience, denote the endpoints of ei by ui, vi with deg(ui) = 1,

deg vi ≥ 2 and vertex sums of ui, vi by Ui, Vi. Let L be a labeling of S defined as:

L(e) :=


L′(e) + k, if e ∈ E(S ′).

i, if e = ei , i = 1, 2, . . . , k.

To check that L is a strongly antimagic labeling, note that the vertex sum of the core

is still the largest. For ui, i = 1, 2, . . . , k, 1 = U1 < U2 < · · · < Uk = k; for vi,

i = 1, 2, . . . , k, k+1 < V1 < V2 < · · · < Vk. For the remaining vertices, their vertex sums

are also different because all vertex sums are only shifted up by 2k from S ′. Therefore

L is a strongly antimagic labeling of S. To complete the proof, we have to find strongly

antimagic labelings for graphs of Cases 1 and 2.

For the Cases 1 and 2, the graphs look like a path after each leg being cutted by one

edge. Although a path is obviously strongly antimagic, but we can’t be sure whether the

core has the largest vertex sum or not. So the above argument may fail sometimes, but we

can still give them strongly antimagic labelings directly.

For Case 1, suppose the spider has k legs of length 1 and a leg of lengthm, m ≥ 2. We
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divide m into 2 cases according to the pairity. If m = 2n, n ∈ N, first label the longest

leg from the core by 2n + k, n, 2n + k − 1, n − 1, . . . , n + k + 2, 2, n + k + 1, 1, and

then label the remaining legs by n + k, n + k − 1, . . . , n + 1. To check that the labeling is

strongly antimagic, we compute vertex sums of all vertices and make the following table:

Degree of vertices Corresponding vertex sums
1 1, n + 1, n + 2, . . . , n + k
2 n + k + 2, n + k + 3, . . . , 3n + k

k + 1 2n + k + k
2 (2n + k + 1)

Table 3.1: Vertex sums of Case 1 when the longest leg is of even length.

Figure 3.3: Edge-labeling of Case 1 when the lnogest leg has even length.

Observe that the labeling is antimagic and vertex with larger degree has larger vertex

sums, hence it is strongly antimagic. Next if m = 2n + 1, n ∈ N, we label the spider in

a similar way with just a little difference. The legs of length 1 are labeled by the same

numbers , but the longest leg is labeled from the core by 2n + k + 1, n, 2n + k, n −

1, . . . , n + k + 3, 2, n + k + 2, 1, n + k + 1. One can easily see that the labeling is also

strongly antimagic.

Degree of vertices Corresponding vertex sums
1 n + 1, n + 2, . . . , n + k + 1
2 n + k + 2, n + k + 3, . . . , 3n + k + 1

k + 1 2n + k + 1 + k
2 (2n + k + 1)

Table 3.2: Vertex sums of Case 1 when the longest leg is of odd length.

For Case 2, suppose that a spider has k legs of length 1, and the 2 legs of length p, q,

where p, q ≥ 2.Divide p, q into 3 cases due to their pairities: both p and q are even; or

they are both odd; or one of them is even and the other is odd.
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Figure 3.4: Edge-labeling of Case 1 when the lnogest leg has odd length.

First suppose p = 2n, q = 2m, label the leg of length 2m from the core by 2n + 2m +

k, n + m, 2n + 2m + k − 1, n + m − 1, . . . , 2n + m + k + 1, n + 1, the leg of length 2n

by 2n + m + k, n, 2n + m + k − 1, n − 1, . . . , n + m + k + 1, 1, and the legs of length 1

by n + m + k, n + m + k − 1, . . . , n + m + 1. Then the corresponding vertex sums are

shown in the following table:

Degree of vertices Corresponding vertex sums
1 1, n + 1, n + m + 1, n + m + 2, . . . , n + m + k
2 n + m + k + 2, n + m + k + 3, . . . , 3n + m + k, 3n + m +

k + 2, 3n + m + k + 3, . . . , 3n + 3m + k − 1, 3n + 3m + k

k + 2 3n + 4m + 2k + 2 + k
2 (2n + 2m + k + 1)

Table 3.3: Vertex sums of Case 2 when the two longest legs are both of even length.

Figure 3.5: Edge-labeling of Case 2 when the two longest legs are both of even length.

Next suppose p = 2n, q = 2m + 1, label in a similar way but start with the leg of even

length. Give it label from the core by 2n + 2m + k + 1, n + m, 2n + 2m + k, n + m −

1, . . . , n + 2m + k + 2, m + 1. For the leg with odd length larger than 2, label it from the

core by n+2m+k +1, m, n+2m+k, m−−1, . . . , n+m+k +2, 1, n+m+k +1. The

ramaing legs are all of length 1 and we assign them n+m+k, n+m+k−1, . . . , n+m+1.

It is straightforward to see that the labeling is strongly antimagic.
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Degree of vertices Corresponding vertex sums
1 m + 1, n + m + 1, n + m + 2, . . . , n + m + k + 1
2 n+m+k +2, n+m+k +3, . . . , n+3m+k +1, n+3m+

k + 3, n + 3m + k + 4, . . . , 3n + 3m + k, 3n + 3m + k + 1
k + 2 4n + 3m + 2k + k

2 (2n + 2m + k + 1)

Table 3.4: Vertex sums of Case 2 when the two longest legs have lengths of different
pairities.

Figure 3.6: Edge-labeling of Case 2 when the two longest legs have lengths of different
pairities.

Finally, suppose p = 2n + 1, q = 2m + 1, label first the leg of length 2n + 1. We

label the edges of this leg from the core by 2n + 2m + k + 2, 2n + 2m + k, n + m, 2n +

2, +k − 1, n + m − 1, . . . , n + 2m + k + 1, m + 1. For another leg, label it from the core

by 2n + 2m + k + 1, n + 2m + k, m, n + 2m + k − 1, m − 1, . . . , n + m + k + 1, 1. The

remaining edges are still labeled by n + m + k, n + m + k − 1, . . . , n + m + 1. Compute

all vertex sums and one can find that the labeling is strongly antimagic, too. ■

Degree of vertices Corresponding vertex sums
1 1, m + 1, n + m + 1, n + m + 2, . . . , n + m + k
2 n + m + k + 2, n + m + k + 3, . . . , n + 3m + k, n + 3m +

k + 2, n + 3m + k + 3, . . . , 3n + 3m + k, 3n + 4m + 2k +
1, 4n + 4m + 2k + 2

k + 2 4n + 4m + 2k + 3 + k
2 (2n + 2m + k + 1)

Table 3.5: Vertex sums of Case 2 when the two longest legs are both of odd length.
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Figure 3.7: Edge-labeling of Case 2 when the two longest legs are both of odd length.

Figure 3.8: An example of strongly antimagic labeling.
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Chapter 4

Some variation of spiders

In this chapter, we want to find antimagic labeling of some graphs which are

similar to general spiders. The first example is a kind of graph constructed by attaching

two stars to the endvertices of a path. Denote a graph by SPS(m, n, k), which means this

graph consists of two stars K1,n, K1,m and a path Pk+1 of k edges.

Example 4.1. SPS(m, n, 1), m ≥ n, is antimagic.

The proof is straightforward. First label the smaller stars (which has less edges than

another) with the smallest n numbers. Then label the other star with the next m numbers,

and leave the largest number to the edge that connects two stars. It is easy to see that

this labeling is antimagic, because the two cores have the biggest vertex sums, and by our

labeling, the cores of the two spiders also have different vertex sums.

Figure 4.1: An antimagic labeling of SPS(m, n, 1) ,with m ≥ n.

Theorem 4.2. Any SPS(m, n, k), m ≥ n ≥ 1 and k ≥ 1, is antimagic.
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Proof. For convenience, denote the vertices of the path, cores of the two stars by v0, v1, · · · , vk,

with deg v0 ≤ deg vk. First label the two stars as we did in Example 4.1 by using numbers

from {1, 2, · · · , m + n}. Next use the remaning k numbers to label the path. For the edge

vi−1vi, i = 1, 2, · · · , k, label it with m + n + i. The vertex sums of this labeling are:

1, 2, · · · , n + m, 2n + 2m + 3, 2n + 2m + 5, · · · , 2n + 2m + 2k − 1, n(n+1)
2 + n + m +

1, m(m+1)
2 + nm + n + m + k. If all vertex sums are distinct, then we are done. The

problem may occur only if any of the two cores has the same vertex sum as some vertex

of the path. Therefore we divide all situations into the following three cases: there exists

x, y with 1 < x ̸= y < k − 1 such that either vertex sum of vy = vertex sum of vk or

vertex sum of vx = vertex sum of v0; either vertex sum of vk−1 = vertex sum of vk or

vertex sum of v1 = vertex sum of v0; vertex sum of v0 =vertex sum of v1, when the path

is P3.

Figure 4.2: An labeling of SPS(m, n, k) ,with m ≥ n.

For Case 1, change the labels of vkvk−1 and vk−1vk−2, then vertex sums of vk−3, vk−2, vk−1, vk

becomes 2m + 2n + 2k − 5, 2m + 2n + 2k − 2, 2m + 2n + 2k − 1, 2m + 2n + 2y. any

other vertices still have the same vertex sums. Since the vertex sum of vk becomes even,

it is different from the one of vy, which is 2m+2n+2y +1, an odd number. Furthermore,

if vertex sum of v0= vx , change the labels of v2v1and v1v0 ,then among all vertices, only

the vertex sums of v0, v1, v2, v3 are changed, and they become 2m + 2n + 2x + 2, 2m +

2n + 3, 2m + 2n + 4, 2m + 2n + 7. Again by the same argument of vk, we find that the

new labeling is also antimagic.

For Case 2, first suppose vertex sums of v0 and v1 are equal (i.e. m + n + 2 = n(n+1)
2 ).

The original labels of v1v2, v2v3, arem+n+2, m+n+3, if we exchange the labels of the

two edges mutually, then vertex sums of v1, v2, v3 become 2m+2n+4, 2m+2n+5, 2m+

2n+6 , and the remaining vertex sums are still the same. Since vertex sum of v0 becomes
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Figure 4.3: Adjustment about Case 1.

2m+2n+3, which has the smallest vertex sum among all vertices of the path. Furthermore,

suppose vertex sums of vk−1 and vk are equal (i.e. m + n + k − 1 = m(m+1)
2 + nm). Then,

similarily, exchange mutually the labels of vk−3vk−2 and vk−2vk−1. The vertex sums of

vk−3, vk−2, vk−1 become 2m + 2n + 2k − 4, 2m + 2n + 2k − 3, 2m + 2n + 2k − 2, since

vk still has the largest vertex sum, so all vertices have distinct vertex sums.

Figure 4.4: Adjustment about Case 2.

For Case 3, denote the vertices of the path by v0, v1, v2, where v0, v2 are also the cores

of the spiders and deg v2 ≥ deg v0. If m ≥ 2, observe that the vertex sum of v2 is

mn + m(m+1)
2 + m + n + 2, which is strictly larger than the one of v0 and 2m + 2n + 3.

If m = n = 1, it is just a path, and by our labeling it is antimagic. Therefore the problem

may occur when v0 and v1 have the same vertex sum, that is, m + n + 2 = m(m+1)
2 We

could just exchange the labes of the two edges of the path, then vertex sums of this path

become n(n+1)
2 +m+n+2 = 2m+2n+4, 2m+2n+3, nm+ m(m+1)

2 +m+n+1, which

are all distinct and the largest of this graph. Hence there exists an antimagic labeling. ■

Figure 4.5: Adjustment about Case 3.
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The next step we want to do is to extend the restriction of Theorem 4.2 to general

spiders. In other words, the two“S” of a SPS can be replaced by general spiders.

So by a SPS(l1, l2, . . . , lk1 , lk1+1, . . . , lk1+k2 ; k), where l1 ≤ l2 ≤ · · · ≤ lk1+k2 , we

define a graph constructed by two spiders S1, S2 and a path Pk+1, where two spiders

are connected by attaching each endpoint of Pk+1 to one core of S1, S2. Furthermore,

l1, l2, . . . , lk1 , lk1+1, . . . , lk1+k2 meansS1 andS2 have k1+k2 legswith length l1, l2, . . . , lk1 , lk1+1, . . . , lk1+k2 .

Without loss of generality, we suppose S2 contains the leg with length lk1+k2 . And for con-

venience, we will follow the notation of Shang [13].

Given a graph G := SPS(l1, l2, . . . , lk1 , lk1+1, . . . , lk1+k2 ; k), we denote the cores

of S1, S2 by a, b. And for a leg of length li, i ∈ {1, 2, . . . , k1 + k2}, let ei,j, vi,j, j ∈

{1, 2, . . . , li} denote the j-th edge and vertex of this leg from the outermost, and for the

path Pk+1, let er, r ∈ {1, 2, . . . , k}, denote the r-th edge from a to b, and v1, v2, . . . , vk−1

denote the vertices of this path from a to b except a, b.

Suppose G has m edges, we now design a partial labeling of G as follows. For the

edges of S1, S2, define an order among them as follows. We say ei,j ≺ ei′,j′ if and only if

j < j′, or j = j′ and i < i′. It is easy to see that ≺ is a linear order among these edges. In

fact, e1,1 ≺ e2,1 ≺ · · · ≺ ek1+k2,1 ≺ e1,2 ≺ e2,2 ≺ · · · ≺ ek1+k2,lk1+k2
. Then label ei,j with

n if ei,j is at the n-th position under this linear order. With this partial labeling, we have

the following observation:

Observation 4.3. Except the vertices of the path Pk+1, vertex sums of V (G) form a strictly

monotone increasing sequence, and the difference between any two consecutive vertex

sums of degree-2 vertices is at least 2.

With this observation, we can start to prove the main result of this chapter. Here we

define a new verb. Given a graph G and a labeling of it, for u, v ∈ V (G), we say u

conflicts with v if their vertex sums are identical. The following theorem is true when the

path is K2. And when the path is K3 or longer, the following argument only assures that

the graph is 2-antimagic.

Theorem 4.4. SPS(l1, l2, . . . , lk1+k2 ; 1), k1, k2 ≥ 2, li ≥ 1, i ∈ {1, 2, . . . , k1 + k2}, is

antimagic.
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Proof. First label the edge of the path by m. And let the vertex sums of a, b denoted by

A, B. According to the relation of A, B, we have the following 3 cases: A > B, A =

B, A < B.

A > B: Since b is incident to two edges with the largest labels, vertex sum of b is

larger than all the other vertices with degree less than or equal to 2 in V (G). Furthermore,

since a has vertex sum larger than that of b, the labeling is antimagic.

A = B: Exchange the labels of e1 and ek1+k2,lk1+k2
, then vertex sums of a, b become

A − 1, B. For any other vertex, its vertex sum is at most 2m − 2, which is less than A − 1

because A − 1 = B − 1 ≥ 2m − 1. Therefore, the labeling is antimagic.

A < B: At this time, b has the largest vertex sums. If vertex sum of a conflicts with

some other vertex, then exchange the labels of e1 and ek1+k2,lk1+k2
. It is easy to check the

new labeling is antimagic. ■

Theorem 4.5. SPS(l1, l2, . . . , lk1+k2 ; 2), k1, k2 ≥ 2, li ≥ 1, i ∈ {1, 2, . . . , k1 + k2}, is

1-antimagic.

Proof. First label e1, e2 with m − 2, m and replace the label of ek1+k2,lk1+k2
by m − 1.

Now let A, B denote the vertex sum of a, b. As above, divide all situations into 3 cases

according to the relation of A, B.

A > B : Note that the largest vertex sum of degree-2 vertex are 2m − 2. Since A >

B ≥ 2m, the vertex sum of b is larger than any other vertex of degree 2. So by observation

4.3, the labeling is antimagic.

A = B : Replace the labels of e1, e2, ek1+k2,lk1+k2
by m − 1, m + 1, m. Then vertex

sums of a, b become A + 1, B + 2. Since B + 2 > A + 1 > 2m, and the largest vertex

sum of all the other vertices is 2m. Hence by observation 4.3, the labling is antimagic.

A < B : If A = 2m − 1, then it is straightforward to see that the labeling is antimagic.

Furthermore, suppose A ̸= 2m − 1 and A conflicts with vertex sum of some vertex, then

replace the labels of e1, e2, ek1+k2,lk1+k2
by m − 1, m + 1, m. The vertex sum of a become

A + 1, since A + 1 ̸= 2m, a can’t conflict with v1. If A + 1 = 2m − 3 (i.e. a conflicts

with vk1+k2,lk1+k2
), then exchange the labels of e2 and ek1+k2,lk1+k2

. The vertex sums of

a, v1, vk1+k2,lk1+k2
become 2m − 3, 2m − 1, 2m − 2, since b has vertex sum larger than
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2m + 2, hence by observation 4.3 the labeling is 1-antimagic. If a still conflicts with any

other vertices other than v1, vk1+k2,lk1+k2
, this means that there exist two vertices of degree

2 which have consecutive vertex sums, but it contradicts to the observation 4.3. Thus, this

graph is 1-antimagic. ■

Finally, wewant to discuss the casewhen the path isK3 or longer. LetG:=SPS(l1, l2, . . . , lk1+k2 ; k),

k1, k2 ≥ 2, k ≥ 3, li ≥ 1, i ∈ {1, 2, . . . , k1 + k2}. For the two spiders of G, assign them

a labeling as the previous paragraph. And for the path of G, label e1, e2, . . . , ek with

m−k, m−k +1, . . . , m−1, and replace the label of ek1+k2,lk1+k2
bym. For convenience,

denote the vertex sums of a, b, vk1+k2,lk1+k2
by A, B and V .

Theorem 4.6. Let G, A, B be defined as above, according to the relation of A, B, we have

the following results:

(a) if A > B, G is antimagic.

(b) if A = B, G is 1-antimagic.

(c) if A < B, G is 2-antimagic.

Proof of (a). Note that vk−1 and vk1+k2,lk1+k2
can’t conflict. So the only problem may

occur if vk1+k2,lk1+k2
conflicts with some vertex on the path. When the conflict happens,

exchange the labels of ek and ek1+k2,lk1+k2
. Then similar to the last 2 theorems, it is straight-

forward to check that the labeling is antimagic.

Proof of (b). Note that a, b have the largest vertex sums of all vertices. Here we have

two subcases due to the conflict of vk1+k2,lk1+k2
. First, if vk1+k2,lk1+k2

conflicts with some

vertex on the path, then replace the label of ek1+k2,lk1+k2
by m + 1. Observe that then

vk1+k2,lk1+k2
don’t conflict with any vertices on the path anymore, and vertex sums of a, b

become A and B + 1. This shows that the graph is 1-antimagic.

For the case that vk1+k2,lk1+k2
doesn’t conflict with any other vertex in this graph,

change the label of ek into m + 1. It is also straightforward to show that all vertices

have distinct vertex sums. This means that the graph is 1-antimagic.

Proof of (c). Since vk1+k2,lk1+k2
may conflict with other vertex, we divide all situations

into two cases.

(i) First suppose vk1+k2,lk1+k2
conflicts with a vertex on the path. And for convenience
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divide all situations into three subcases according to the relation of V and A.

A > V : If a doesn’t conflict with any other vertex and A ̸= 2m − 2, then exchange

the labels of ek, ek1+k2,lk1+k2
. One can easily find out that the labeling is antimagic. If

a conflicts with some vertex of the graph, then for the edges labeled by m − k, m −

k + 1, . . . , m, replace the labels by adding 1 to each label. Then vertex sums of a and

vk1+k2,lk1+k2
become A + 1 and V + 1. Since vertex sums of vertices on the path are

shifted by 2, and b still remains the largest vertex sum, so a and v will not conflict with

vertices on the path. Therefore, the labeling is 1-antimagic.

A = V : IfA = V = 2m−2k+1, replace the labels of e1, e2, . . . , ek, bym−k+1, m−

k+2, . . . , m−1, m+1. Then the vertex sums of a, v1, v2, . . . , vk−1, b, vk1+k2,lk1+k2
become

2m−2k+2, 2m−2k+3, 2m−2k+5, . . . , 2m−3, 2m, B +2, 2m−2k+1. They are the

largest vertex sums and are all different, so the labeling is 1-antimagic. If A = V = 2m−

2k+2α+1, α ∈ {1, 2, . . . , k−2}, replace the labels of eα+1, eα+2, . . . , ek, ek1+k2,lk1+k2
by

m−k+α+1, m−k+α+2, . . . , m, m+1. Then the vertex sums of a, vα, vα+1, . . . , vk−1, b, vk1+k2,lk1+k2

become 2m−2k +2α+1, 2m−2k +2α, 2m−2k +2α+3, 2m−2k +2α+5, . . . , 2m−

1, B + 2, 2m − 2k + 2α + 2. Again, they are the largest vertex sums and are all different,

so the labeling is 1-antimagic.

A < V : If a doesn’t conflict with any other vertex, then replace the label of ek1+k2,lk1+k2

by m + 1. If a also conflicts with some vertex in this graph, by observation 4.3, we can

avoid conflict by adding 1 to the labels of a and vk1+k2,lk1+k2
. By replacing the labels of

e1, e2, . . . , ek, ek1+k2,lk1+k2
by m − k + 1, m − k + 2, . . . , m + 1, since all vertex sums of

vertices on the path except a are shifted by 2, and b still has the largest vertex sum, a and

vk1+k2,lk1+k2
won’t conflict with any other vertex in this graph anymore. Hence the graph

is 1-antimagic.

(ii) Next we suppose that under this labeling, vk1+k2,lk1+k2
doesn’t conflict with any other

vertex in this graph. Since V is larger than vertex sum of any other vertices except those on

the path, there exist β ∈ {1, 2, . . . , k − 2} such that vertex sums of vβ, vk1+k2,lk1+k2
, vβ+1

are three consecutive integers. As usual, we divide all situations into the following three
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subcases.

A > V : Suppose a conflicts with some vertex of this graph, then replace the labels of

e1, e2, . . . , ek, by m−k +1, m−k +2, . . . , m−1, m+1. Since vertex sum of a is shifted

by 1 but vertex sums of all the other vertices on the path except b are shifted by 2. And b

still has the largest vertex sum of this graph. So by observation 4.3, a doesn’t conflict in

this graph under the new labeling.

A = V : Replace the label of ek1+k2,lk1+k2
by m + 2. It is straightforward to check that

there’s no conflict under this labeling.

A < V : Suppose a conflicts with some other vertex of this graph. Then we can avoid

this conflict by shifting the vertex sum of a by 1. But it may produce new conflict since

V could be A + 1. So, we may replace the labels of e1, e2, . . . , ek, ek1+k2,lk1+k2
by m −

k + 1, m − k + 2, . . . , m − 1, m, m + 2. Since A + 1 < V + 2, a and vk1+k2,lk1+k2
don’t

conflict. By observation 4.3, this new labeling contains no conflict. Since the edge set we

used is {1, 2, . . . , m + 2}, the graph is 2-antimagic. ■
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