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Abstract

In this thesis, we present a O(n)-time exact algorithm to find
a broadcast strategy such that broadcasting can be completed
within the time constraint and the number of centers is mini-
mal. The given graph is a tree and broadcasting is under the

heterogeneous postal model.

Keywords: broadcast center problem, time constraint, hetero-

geneous postal model, trees, greedy method.
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Chapter 1

Introduction

Broadcasting is an important problem in our life; the main objective is
finding efficient strategies to deliver the messages. In many distributed
or point-to-point systems, like people and mobile devices in a crowded
place, every node can only contact with nodes nearby. Broadcasting

makes every node in the system reveived the message.

1.1 Broadcast Problem and Models

Broadcasting is an information dissemination problem. In a graph net-
work G(V, E), there are at least one broadcast center, which has the
message before broadcasting starts. During broadcasting, nodes have
the message can set up calls, which copy the message to their neigh-
bors. A call from u to v i1s made up of two phases. The first one is setup
phase; 1t takes o time. During setting up, v cannot do other things. The
other one is transmission phase; it takes w(u, v) time. Node u can set
up a connection to another node, while transmitting messages to node
v. Under these conditions, the time and the distances may affect our
broadcasting strategies.

The broadcast centers with time constraints problem is defined as

below. Given Given a graph G(V, E) and a time constraint ¢, the broad-
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cast centers with time constraints problem is to determine OPT(G, ),
the minimal number of centers required.

There are several models in broadcasting problem. The uniform tele-
phone model is the first introduced model; it is also the most widely-
studied model. Under the nonuniform telephone model, the setup time,
«, from u to v, is the length of the edge (u,v). Under the heteroge-
neous postal model, the setup time, «, is a non-negative number, and the
transmission time, w(u, v), is the length of the edge (u, v). This compar-
ison tells us both the uniform telephone model and the postal model are
special cases of the heterogeneous postal model. In other words, once
problems under the heterogeneous postal model are solved, the same
problems under the uniform telephone model is also solved. Table 1.1

lists several models.

Table 1.1: Models

Model o w(u,v)
Heterogeneous Postal [1] fixed not fixed
Postal [2], [3] fixed 1
Telephone, nonuniform [4] not fixed 0
Telephone, uniform [5] 1 0

1.2 Main Results and Thesis Organization

We propose an O(n)-time deterministic algorithm to solve the broad-
cast centers with time constraints problem on trees under heterogeneous
postal model.

Chapter 2 presents many notations and definitions we will use. Chap-
ter 3 presents the algorithm and its time complexity. Chapter 4 shows
the correctness of the algorithm. Chapter 5 presents execution of the

algorithm with two examples.



Chapter 2

Preliminaries

We use a graph to represent a network. Before introducing the algorithm,

we introduce several notations, definitions, and related problems.

2.1 Notations and Definitions

A graph is made up of nodes and edges. We use G(V, ) to represent a
graph, where V' is the set of nodes and £ is the set of edges. An edge
is a curve connects two endpoints. We use (u, v) to represent an edge
where u and v are its two endpoints; we denote w(u,v) as its length.
An another graph G'(V', E’) is said a subgraph of G iff V/ C V and
E' = {(u,v) € Elu,v € V'}. A node u is a neighbor of v iff there is
an edge (u,v) in G. We use N (v) to represent the set of neighbors of v.
The degree of a node v is the number of edges where v is an endpoint.
In this thesis, without mentioned particularly, every graph is undirected
and simple. Simple means there are no (v,v), edges such that its two
endpoints are identical and there is at most one edge for every node pair.
A sequence of edges is a walk if this sequence has the form
((uo,u1), (ug,u2), -+, (ug_1,up)). If ug,uy,--- ,uy are distinct, it is a
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path; if they are distinct except ug = wy, it is a cycle. A graph is con-
nected if for every couple of nodes u and v, there is a path from u to v.
A tree is a connected graph without cycles. A tree 7' is a spanning tree
of a graph G if T' can be obtained by removing edges from G.

After the basic knowledges are introduced, we introduce several terms
we will use in this thesis. Let (u,v) be an edge in 7. Removing (u, v)
from T leads to two trees, T'(u,v) and T'(v,u) where T'(u,v) contains
u and T'(v,u) contains v. The predecessor of v, pred(v), is a neighbor
of v such that v receives the message from pred(v) when broadcasting.
We use pred(v) = () to represent v has no predecessor. The successors
of v, SUCC(V), is an ordered subset of the neighbors of v. A vertex
u € SUCC(v) if u receives the message from v when broadcasting.

The broadcast time of v, b_time(v, .S), is the time required to broad-
cast a message from v to all nodes in |, ¢ T'(x,v). The default value

of S'is SUCC(v); that is, b_time(v) = b_time(v, SUCC(v)).

7

0. if SUCC(v) = 0;
b_time(v) = < mazx{io + w(v,u;) + t(u;)|1 <i < k},

it SUCC(v) = (ug,ug, -~ ,ug).

The successor candidates of v, SUCC*(v), is a subset of previously
processed neighbors of v. A vertex v € SUCC*(v), if pred(u) = 0
and o + w(v,u) + b_time(u) < t. The predecessor candidates of v,
PRED*(v), is a subset of previously processed neighbors of v. A vertex
u € PRED*(v),ifu ¢ SUCC(v) and spare(u) + a + w(v,u) < t.

4



The arrive time of v, arrive(v), is the earliest time v knows the mes-
sage. The earliest spare time of v, spare(v), is the earliest time that v
can set up a connection with a receiver v ¢ SUCC(v) under the con-
straint that the broadcasting from v to the subtrees rooted by nodes on
SUCC(v) can still be completed in ¢. The unused edges of 7', E—(7T),
is a subset of E(7T). An edge (u,v) € E~(T) iff u # pred(v) and
v # pred(u). Weuse E~ = E—(T) where T is the input tree. We use
E~(v) = E~(N|[v]).

2.2 Related Works

The broadcasting problem has been studied for several decades. It was
firstly introduced by Slater et al. [5]; they proved that both finding the
optimal broadcast center and finding the minimum broadcast time on
general graphs are NP-complete. They also proposed a linear-time al-
gorithm for finding the optimal broadcast center and minimum broadcast

time on trees under the uniformed telephone model.

There are approximation algorithms proposed for finding the mini-

log*(n)
loglog(n)

sented in [6], where n is the number of vertices. An O(y/n)-additive-

mum broadcast time. An O(

)-approximate algorithm was pre-

approximate algorithm was presented in [7]. Also, there are approxima-

tion algorithms for finding the minimum multicast time from a vertex

to a subset of k vertices. An O(lol;l% g?;ﬁ))—approximate algorithm was
log(k)

))-approximate algorithm was presented

presented in [1]; an O(W

in [8]. Besides, there are some heuristic algorithms [9]—[11] proposed
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for finding the minimum broadcast time.

There are also polynomial-time exact algorithms for finding the min-
imum broadcast time on some special graphs, like unicyclic graphs [12],
necklace graphs [13], fully connected trees [ 14], hypercube of trees [ 15],
and others [16]. They all are under the uniformed telephone model. On
the other hand, Su et al. [17] improved [5] by suggesting a linear-time
exact algorithm for finding the optimal broadcast center on trees under
the heterogeneous postal model.

There are also different variants [18]-[22] to the broadcasting prob-
lem. In [18], the concept of minimal broadcast graph was introduced
and several instances of minimal broadcast graphs were shown. In [19],
an efficient routing method was presented to transmit multiple messages
from a specific node to the other nodes of a complete graph. In [20], a
linear-time algorithm was presented for finding the minimal number of
centers on trees under the uniformed telephone model with time con-
straint. In [21], assuming that the maximal vertex degree is 3 (and 4,
respectively), the problem of how to augment edges so that the broad-
cast can be completed in logarithmic time was investigated. In [22], the
problem of finding the optimal broadcast 1-median on general graphs
was proved NP-complete and a linear-time algorithm was proposed for
finding the optimal broadcast 1-median on trees under the heterogeneous
postal model. Interested readers can refer to survey articles [23]-[26] for

more detailed description.



Chapter 3

A Linear-Time Algorithm

In this chapter, we introduce the algorithm to find the broadcast centers
in atree 7' = (V, E') with time constraint ¢ is provided, then we give an
O(n)-time algorithm where n is the number of vertices in 7". The basic
idea of the algorithm 1s using a greedy approach. We firstly describe the
main structure of the algorithm, and then the implement details, and we

will show that the algorithm runs in O(n) time at the end of this chapter.

3.1 Algorithm Description

Like many algorithms on trees, the algorithm processes from leaves to
the root. The algorithm is flexible; it does not require strictly process
along the level of vertices. A vertex can be processed as long as it has
at most one unprocessed neighbor. We will give two examples in Chap-
ter 5; two different processing sequences will be illustrated in each ex-
ample.

For each process on a vertex, the algorithm finds its successors, broad-
cast time and predecessor by its successor candidates and predecessor
candidates. Then, the algorithm determines if this vertex can be a suc-
cessor canditate of its unprocessed neighbor. If not, the algorithm eval-

uates its earliest spare time and then determines if this vertex can be a
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predecessor candidate of its unprocessed neighbor. The algorithm re-
turns one plus the number of unused edges as the answer, the minimal

number of centers needed. The algorithm is described as below.

Algorithm 1 Broadcast
Input:

A weighted tree graph T = (V. F).

The time constraint ¢ and the connection time .
Output:

The minimal number of centers needed.

1: for eachv € V(T') do

2: set SUCC*(v), SUCC(v), PRED*(v), pred(v) to empty;
3: end for

4: TV« T, /* the set of unhandled vertices */

5: E- <+ (; /* the set of unused edges */

6: repeat

7: arbitrarily find a leaf v in T”;

8: Compute SUCC(v), b_time(v) and pred(v);

9: E~ +— E-U{(w,v)|lw e N(v)—{u,pred(v)} — SUCC(v)};
10: if |V(T")| > 2 then
11: Let u be the neighbor of v in T”;
12: if pred(v) = 0 and o + w(u,v) + b_time(v) < t then
13: add v to SUCC*(u);
14: else if spare(v) + a + w(v,u) <t then
15: add v to PRED*(u);
16: end if
17: end if
18: remove v from 77;

19: until |V (7")| is empty;
20: return 1 + |E~|.

Implement details of the algorithm is introduced in the following sec-
tions. The details include finding SUCC(v), b_time(v), and spare(v).
Finding pred(v) is easy. Let p be a vertex in PRFE D*(v) such that the
value spare(p) + w(p,v) is minimized. If spare(p) + a + w(p,v) +
b_time(v) < t, then p is the predecessor of v; otherwise, v has no pre-

decessor.



3.2 Finding SUCC(v) and b_time(v)

The algorithm reorders SUCC*(v) first, which is described in Section 3.4.
Then, the algorithm choose successor from the rear of SUC'C*(v) to the
front of SUCC*(v). The algorithm observes the change of the broadcast
time (b_time’) after a vertex joins SUCC(v). If the broadcast time does
not exceed the time constraint, this vertex can be a successor of v; other-
wize, the number of successors of v reaches its maximum. We will show
the correctness of the algorithm in Section 4.1. The algorithm below de-

termines SUCC(v) and b_time(v) with the given successor candidates

SUCC*(v).

Algorithm 2 Finding SUCC(v) and b_time(v)
Input:
The successor candidates SUCC*(v).
Output:
The successors SUCC'(v) and the broadcasting time b_time(v).

SUCC*(v) < reorder(SUCC*(v));
/* Suppose SUCC*(v) is (uy, ug, - - - ,uy) now. */
b_time(v) « 0;
SUCC(v) + 0;
for:=Fktoldo
b_time' < mazx({a + b_time(v), « + w(v,u;) + b_time(u;)});
if b_time’ <t then
add u; to the front of SUCC(v);
b time(v) < b_time’;
end if
: end for
: return SUCC(v) and b_time(v).

b A A i oy

—_— = =

Here is an example the algorithm determines SUCC(v) and b_time(v).
We use the tree 739535, which is shown in 3.1. Let o« = 2 and ¢t = 17.
The successor candidates of v are (u1, us, us, ug, us), which are already

reordered.



Figure 3.1: Tree ng535.

Initially b_time(v) = 0. The algorithm determines if u5 is a successor
of v. Because v + b_time(v) =24+ 0=2<17=tand a + w(v,us) +
b time(us) =2+ 1+5 =8 < 17 = t, the algorithm tells us us is a
successor of v and b_time(v) becomes 8. Now the algorithm determines
if uy 1s a successor of v. Because a+b_time(v) =2+8=10<17=1¢
and o +w(v, uq) +b_time(uy) =2+4+3 =9 < 17 = t, the algorithm
tells us w4 is a successor of v and b_time(v) becomes 10.

Now the algorithm determines if ug is a successor of v. Because
a+b time(v) =2+4+10=12 < 17 =tand a+w(v,u3)+b_time(us) =
24+ 7+5 =14 < 17 = t, the algorithm tells us u3 is a successor of
v and b_time(v) becomes 14. Now the algorithm determines if uy is a
successor of v. Because o« + b_time(v) = 2+ 14 = 16 < 17 = t and
a+w(v,uz)+b_time(uz) = 2+4+49 = 15 < 17 = ¢, the algorithm tells
us uy is a successor of v and b_time(v) becomes 16. Now the algorithm
determines if u; is a successor of v. Because a + b _time(v) =2+ 16 =
18 > 17 = t, the algorithm tells us u; cannot be a successor of v.

The algorithm concludes that
SUCC(v) = (ua,us,us,us) and b_time(v) = 16.
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3.3 Evaluatng spare(v)

We have evaluated SUCC(v), but u, the unprocessed neighbor of v, may
be also a possible successor of v. How early v can set up a connection
to u depends on how many accepted successor of v can delay « time.
The term “can delay « time” is defined as below. Let u; be the i-th
successor of pred(u;). A successor u; is said can delay « time iff (i +
Da + w(ui, v) + b_time(u;) < t.

The algorithm checks which successors of v can delay o time from
the rear of SUCC'(v) to the front of SUCC'(v). The earliest spare time
of v 1s equal to the earliest time v knows the message + time number
of successors which cannot delay « time xa. We will show the correct-
ness of this algorithm in Section 4.2. The algorithm below evaluates

spare(v) when SUCC(v) is given.

Algorithm 3 Finding spare(v)
Input:

The successors SUCC(v) = (uy, ug, - -+, ug).
Output:

The spare time spare(v).

1: h« k+1;
2: fori=~ktoldo
3 if arrive(v) + (1 + 1)a + w(v, u;) + b_time(u;) <t then

4: h + 1;
5: else

6 break;
7 end if

8: end for

9: return arrive(v) + (h — 1)a.

11



We continue from the example on Tgg535 to demostrate the algorithm
for finding spare(v). Initially spare(v) = arrive(v) + |[SUCC(v)|a =
0+ 4 %2 = 8. Because (4 + 1)a + w(v,us) + b_time(us) = 10+ 1 +
5 =16 < 17 = t, the algorithm tells us u5 can delay o time. Because
(3+1)a4w(v, us)+b_time(us) = 8+4+3 = 15 < 17 = ¢, the algorithm
tells us uy4 can delay « time. Because (2+1)a+w(v, uz) +b_time(us) =
6+7+5 =18 > 17 = t, the algorithm tells us uz cannot delay «
time. There are two successors, us and us, cannot delay « time, so the

algorithm concludes that spare(v) = arrive(v) + 2a =0+ 2 % 2 = 4.
3.4 A Non-Sorting Method

The order of successors is important, so the algorithm reorders the suc-
cessor candidates. The comparison key is w(v, u;) + b_time(u;), where
u; 18 a successor of v. For convenience, we use the length of u;” to
represent w(v, u;) +b_time(u;) in this section. Since sorting & elements
by comparion runs in Q(klogk) time, we need an O(k)-time alternative
to keep Algorithm Broadcast can be done in O(n) time. This method
was introduced in [17].

Before introducing this non-sorting method, we explain why the com-
parison key is w(v, u;) +b_time(u;) first. We start from a simple exam-

ple, the tree T3¢g, which is shown in Figure 3.2.

12



W
3,41 \8

@ ® ©

Figure 3.2: Tree T3¢s.

Leta =2, SUCC(v) = {a,b,c}, w(v,a) = 3, w(v,b) =6, w(v,c) =
8 and SUCC(a) = SUCC(b) = SUCC(c) = 0 (so b_time(a) =
b _time(b) = b_time(c) = 0). There are 6 possible permutation of

SUCC(v). The value of b_time(v) is shown in Table 3.1.

Table 3.1: Different broadcast sequences may lead to different broadcast time
SUCC(v) b time(v)

(a,b,c) mazx({a + 3,2a + 6, 3a + 8}) = max ({5, 10, 14}) =14
(a,c,b) mazx({a+ 3,2a + 8,3a + 6}) = max({5,12,12}) =12
(b, a,c) mazx({a+ 6,2a + 3,3a + 8}) = maz({8,7,14}) =14
(b, c,a) max({a + 6,2a + 8,3a + 3}) = maz({8,12,9}) =12
(c,a,b) maz({a+ 8,2a + 3,3 + 6}) = maxz({10,7,12}) =12
(¢,b,a) mazx({a + 8,2a + 6,3 + 3}) = max({10,10,9}) =10

Observe that the minimal value of b_time(v), 10, occurs when the
successors of v are sorted by w(v, u;) + b_time(u;) descendly. The fol-
lowing lemma shows that we can obtain the minimum broadcast time if

we sort SUCC(v) by w(v, u;) + b_time(u;) descendly.

Lemma 1 Under the constraint SUCC (v) = {s1, 82, ,Si}, b_time(v)
is minimal if SUCC(v) = (s1, s2,- -+, 5;) and w(v, s1) + b_time(s1) >
w(v, s5) + b_time(s;)Vi < j.

13



Proof.

—(w(v, 5;) + b_time(s;) > w(v, s;) + b_time(s;)Vi < j)

Ji < j such that w(v, s;) + b_time(s;) < w(v,s;) +b_time(s;)
mazx(io + w(v, s;) + b_time(s;), jo +w(v, s;) + b_time(s;))
= ja+w(v,s;j) +b_time(s;)
> ja+w(v,s;) + b time(s;)
ja+w(v,s;j) + b_time(s;)
> da+w(v,s;) + b_time(s;)
. omax(ic + w(v, s;) + b_time(s;), jo + w(v, s5) + b_time(s;))
maz(joa + w(v, s;) + b_time(s;), ia + w(v, s5) + b_time(sj))
= swapping s; and s; in SUCC(v) improves b_time(v)
For any initial sequence of SUCC(v), we can repeat swapping s; and
s; until #i < j such that w(v, s;) + b_time(s;) < w(v, s;) + b_time(s;)
to improve b_time(v). This means b_time(v) is minimal if SUCC(v) =
(51,52, -+ ,sE)and w(v, s;) +b_time(s;) > w(v, s;)+b_time(s;)Vi < j.
[]
After explaining why the comparison key is w(v,u;) + b_time(u;),
we introduce the non-sorting method. The algorithm calssifies £ vertices
(S) to k + 1 lists. The algorithm firstly finds the longest one (u;) and
remembers its length. Then, for every vertex u;, the algorithm computes
the difference between the length of w; and length of u;. The algorithm
computes the quotient this difference divided by « (y). If j < k, it means
the length of w; is short enough and the algorithm puts u; into the last
list (list}.).
Otherwize, the algorithm puts u; into list;. For each nonempty list,

the algorithm moves the element with the shortest length to the end of

14



the list. Finally, the algorithm concats these £+ 1 lists by the Isit number.
We will show this non-sorting method does not break the optimalness
of the algorithm in the next chapter. The algorithm below describes this

non-sorting method.

Algorithm 4 reorder
Input:

A vertices set S = {uy, ug, -+, ur}.
Output:

A permutation of {uy, ug, -+, ug}.

1: Let u; be the vertex in S such that
w(v,uy) +b_time(uy) = maz({w(v,u) + b_time(u)|u € S}) ;
: Create k + 1 linked lists, listg, listy, - - - , listy; list; contains vertices u; such that
Jja < (w(v,uy) +b_time(uy)) — (w(v,u;) + b_time(w;)) < (j + D iff 0 <
7 < k,and
ka < (w(v,ur) + b _time(uy)) — (w(v, u;) + b_time(uw,;)) iff j = k;
: Let u] be a vertex in list; such that
w(v,uj) + b_time(u}) = min({w(u, v) + b_time(u)|u € list;}) ;
6: Move u; to the end of list;;

W N

Al

Figure 3.3 shows an example of reordering. In this case, £ = 10, the

length values are 23, 60, 44, 21, 43, 7, 24, 8,41, 9 and o = 5.

23 60 44 21 43 7 24 8 41 9

¥ a=5

0 3 7 10
44 43
41

60 44 43 41 23 24 21 8 9 7

Figure 3.3: An Example of Reordering.
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According to the algorithm, we have u1 = 60, listy = {60} with uj =
60, listy = {44,43,41} with uf = 41, list; = {23, 21, 24} with u¥ = 21,
listiop = {7,8,9} with uj, = 7 and listy, lista, listy, lists, liste, listg,
listg are empty. The reordred sequence is (60, 44, 43,41, 23,24,21,8,9, 7).

To make our proof easier, we keep u; the first place in the buck-
eted sequence. Also, we define several terms related to this non-sorting
method. A sequence (ui,us,--- ,u) is bucketed iff it is a possible
output of reorder({uy,uz,--- ,ux}, false). A sequence is deheadedly
bucketed iff it is a subsequence (u;, uit1, - - - , uy) of abucketed sequence
and u; ¢ listi. A sequence is reversed bucketed iff it can be obtained

from reversing a bucketed sequence.

3.5 Time Complexity

In this section, we discuss the complexity of the algorithm. We analyze
the detailed ones before the mainly ones. Complicated analysis is not

required.

Lemma 2 Algorithm 4 runs in O(k) time.

Proof. Line 1 takes O(k) time. Line 2 takes O(k) time. The determina-
tion from Line 3 to Line 4 takes constant time for each u; and O(k) time
for all vertices in S. Line 5 and Line 6 takes O(|list;|) time for list; and

O(k) time for {listg, listy,- - - , list;}. [

Lemma 3 Algorithm 2 runs in O(k) time.

16



Proof. Line 1 takes O(k) time. Line 6 to line 10 takes constant time,
so Line 5 to line 11 takes O(k) time. Other statements takes constant

time. N
Lemma 4 Algorithm 3 runs in O(k) time.

Proof. Line 3 to line 7 takes constant time, so Line 2 to line 8§ takes O (k)

time. Other statements takes constant time. ]
Theorem 5 Algorithm Broadcast runs in O(n) time.

Proof. Line 2 takes constant time, so the for loop from line 1 to line 3
takes O(n) time. Line 4 takes O(n) time and line 5 takes constant time.
Finding pred(v), SUCC(v),b_time(v) and spare(v) takes O(| N (v)|) time
and other statements from line 7 to line 17 takes constant time, so the

repeat-until loop from line 6 to line 19 takes

O(X sev(r) IN()]) = O(n) time. O
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Chapter 4

Correctness

The goal of this chapter is showing that the proposed algorithm indeed
determines the minimal number of centers needed. The optimalness to
the algorithm is based on the mutual trust between nodes. That is, every
node believes its processed neighbors perform their best, and it can also
perform the best to its unprocessed neighbor. The performance of a node

v 1s defined as below:

per f(v, SUCC (v), pred(v)) = (|E~(v)|,b_time(v), spare(v)).
Wesay (|E~(v)|,b_time(v), spare(v)) < (|[E~'(v)],b_time'(v), spare (v))
iff
(D [E7(v)] < |[E7'(v)], or
2) |E-(v)| = |E~'(v)|, b_time(v) < b_time(v) and
a4 w(u,v) +b_time(v) < t, or
Q) |E~- ()| = |E7(v)], @ + w(u,v) + b_time(v) > t,
a+ w(u,v) +b_time' (v) > t,
spare(v) < spare'(v) and
spare(v) + a + w(v,u) < t, or
4) |E~(v)| = |[E~' ()], @ + w(u, v) + b_time(v) > t,
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a4 w(u,v) +b_time'(v) > t,

spare(v) + o+ w(v,u) >t and

spare’ (v) + o + w(v,u) > t.
Smaller is better.

The performance of a node is made up of three parts. The first one
1s unused edges; it depends on the number of successors and whether
the node has a predecessor. The second one is its broadcast time; it may
affect whether this node can be a successor of its unprocessed neighbor.
The third one is its earliest spare time; it may affect whether this node can
be the predecessor of its unprocessed neighbor. In this chapter, we will
show the minimalness of |E~(v)|, b_time(v) and spare(v) respectively

and then combining them for the correctness of the algorithm.
4.1 Minimum Unused Edges and Broadcast Time

The number of unused edges of v, |E~(v)|, depends on SUCC'(v) and
pred(v). In this section, we show the algorithm can determine the max-

imum of |[SUCC(v)| and then discuss the difference between finding
pred(v) before and after finding SUCC'(v).

Lemma 6 Let SUCC*(v) = {uy,u2,- - ,u} and
w(v,ur) +b_time(u1) < w(v,u2) +b_time(uz) < --- < w(v,ug) +

b_time(ug). If we want to choose f nodes from SUCC*(v) to be the

successors, then choosing (uyg,us_1,--- ,u1) is b_time(v)-optimal.
Proof. Suppose we choose (u ’f ’f u}). By Lemma 1, we may
assume w (v, u'y) + b_time(u’y) > w(v, v 1) +b_time(uy_y) > - >
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w(v,uy) + b_time(u}).

Since w(v,ug) + b_time(us) > w(v, u}) + b_tz'me(u’f),

w(v, up—1) +b_time(up_1) > w(v,uy ;) +b_time(uy ),
w(v,u1) + b_time(ur) > w(v,u)) + b_time(u}),

we have b_time(v, (ug,up_1,--- ,u1)) > b_time(v, (u’f, uff_l, e ud)).

Lemma 7 Using the method in Lemma 6, we can obtain the maximal

number of |SUCC(v)|.

Proof. We can simply choose f such that b_time(v, (ug,up_q,--- ,u1))
is maximized under the constraint b_time(v, (ug,up_1,--- ,u1)) < t. O
Lemma 8 Let (u1,uz, - - - ,uy) be a bucketed sequence and (u), us, - - -, u},)

be its sorted permutation; that is, w(v,u}) + b_time(u}) > w(v,uy) +
b_time(uy) > -+ > w(v,u}) + b_time(uy,).

Then, b_time(v, (u1,u2,--- ,uy)) = b_time(v, (u], uy, - -+, u})).

Proof. For each u, € listy, we have arrive(u,) = arrive(v) + xa +
w(v,uy)+b_time(uy) < arrive(v)+za+w(v,u))+b_time(u)) —ka <
arrive(v) +w(v,u1) + b_time(u1) = arrive(u1). Let uy = u} for some
j €4{0,1,--- k= 1} and u; € list; — {uj}. We have arrive(uy) =
arrive(v) + ya +w(v, uy) +b_time(uy) = arrive(v) + yo+w(v, u,) +
b_time(u,)—ea > arrive(v)+za+w(v, u,)+b_time(u,) = arrive(u;)

for some e such that 0 < e < 1. This means only ug, uj, -+ ,u;_,

/

may dominate b_time(v). Since u, = w,

and the sorted permutation
(u},uy,- -+ ,up) is also a bucketed sequence, we have arrive(uy) =
arrive(uy) and therefore this lemma holds. []
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Lemma 9 Let SUCC*(v) = {uy,ug, -+ ,ug}.
If (uy,us, - - ,uy) is reversed bucketed sequence,
then b_time(v) = b_time(v, (ug,up_1, - ,u1))

where f is obtained from Lemma 7.

Proof. If [ist; dominates b _time(v), since we can run Procedure 4 on
list;, to make list; bucketed without breaking O(n)-time, by Lemma 8§,
b_time(v) is optimal. If [ist;. does not dominate b_time(v), by the same
argument in Lemma 8, a vertex in {ug, uj, - -+ ,up_}0{up,up_y,--- ,ui}

dominates b_time(v), so this lemma holds. []

Lemma 10 [fwe find pred(v) before finding SUCC (v), the performance

of v cannot be better.

Proof. If assigning a predecessor causes |SUCC(v)| decreased by two
or more, |~ (v)| is increased by at least one. If the | SUCC(v)| does not
change, then there are no differences between finding pred(v) before
and after finding SUCC'(v). If |[SUCC(v)| is decreased by one, |E~ (v)]
does not change; however, it becomes impossible that v € SUCC(u),
and spare(v) is increased by at least « due to pred(v) and decreased by

at most « thanks to the removed successor of v. ]
Lemma 11 [fv € SUCC*(u), then v ¢ PRED*(u).

Proof. If v ¢ SUCC(u), then t — b_time(u) < «, so a + w(v,u) +
b _time(u) >t + w(v,u) > t, v cannot be a predecessor candidate of w.
Ifv e SUCC(u), since Lemma 10 tells us the performance of v cannot
be better if pred(u) = v, we do not need to include v to PRED*(u). U
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4.2 Earliest Spare Time

We show that the earliest spare time is minimal with a sorting method
first, and then we can also obtain the minimum with the non-sorting

method. We use notations in Procedure 4.
Lemma 12 u; € list; = u; can delay « time.

Proof. u; € listy, = w(u;,v)+b_time(u;) < w(ui,v)+b_time(uy)—ka,
so (1+ 1)a+w(ui, v)+b_time(u;) < (i+1)a+w(ur, v)+b_time(ur)—

ka < a+w(up,v) +b_time(uy) <t [

Lemma 13 Let u; € list; — {u}} for some j € {0,1,--- ,k —1}. We

*

have u ;

can delay o time = u; can delay o time.

Proof. Letu} = u;. Wehave (i+1)a+w(u;, v) +b_time(u;) < (i' —1+

Da+w(ui,v) +b_time(w;) < (i +1)a+w(uy,v) +b_time(uy) < t.0

Lemma 14 Let SUCC(v) = (uy,ug, -+ ,ug). Ifw(v,u;)+b_time(uy) >
w(v,ug) + b_time(ug) > --- > w(v,uy) + b_time(uy), our algorithm

can determine the earliest spare time spare(v).

Proof. If spare(v) = arrive(v) + (i — 1)a, we need to choose k — i suc-
cessors of v, denoted by SUCC’(v), such that b_time(v, SUCC'(v)) <
t —arrive(v) — (i — 1)a. By Lemma 6, choosing w1, ujt2,- - ,u can

obtain minimal b_time(v, SUCC’(v)) under |[SUCC’(v)| is fixed by i.

Since b_time(v, (u;, wit1, - ,ux)) > b_time(v, (uji1, Uire, -+ ,ug)) +
a, we have t — arrive(v) — (i — 1)a — b_time(v, (ujt1, Uira, -+ ,up)) <
t — arrive(v) — iae — b_time(v, (uj, wiy1, -+ ,ux)). This implies If €
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{1,2,--+ k+1} such thatb_time(v, SUCC'(v)) < t —arrive(v) — (i —
Daifi > fandb_time(v, SUCC' (v)) > t—arrive(v)—(i—1)aifi < f
and our algorithm determines f and the earliest spare time spare(v) is

exactly arrive(v) + (f — 1)a. ]

Lemma 15 Continued from the previous lemma. If SUCC(v) is de-
headedly bucketed, our algorithm can still determine the earliest spare

time spare(v).

Proof. Lemma 13 implies the number of successors which can delay
a time 1s equal for any two different deheadedly bucketed sequence of
SUCC(v). Since the sorted sequence is also deheadedly bucketed, this
number is equal to £ — f + 1 where f is introduced in the proof of the

previous lemma. [
4.3 Correctness of the Algorithm

Combining Lemma 7, Lemma 9, Lemma 10 and Lemma 15, we have

the result:

Lemma 16 Given SUCC*(v) includingb_time(x)Vx € SUCC*(v) and
PERD*(v) including spare(p)Vp € PRED*(v), the algorithm deter-
mines SUCC(v) and pred(v) such that per f(v, SUCC(v),pred(v)) is

the best.
Before showing the correctness of the algorithm, we still need a lemma:

Lemma 17 Let SUCC*(v) = {uy, ua, - - - ,up},
SUCC*(v') = {uf,uby, -+ ,ul}, w(v,uj) = w(UIaU})W e {1,2,---,k}
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and arrive(v) = arrive(v'). If3li € {1,2,--- |k} such thatb time(u}) <
b_time(u;) and b_time(u;) = b_time(u})Vj € {1,2,- - k} — {i}, then
ISUCC()| < |SUCC(v)] + 1.

Proof. Without loss of generality,

we may assume w(v, ug) + b_time(ug) < w(v,up) + b_time(uy)Va < b.
Let f = [SUCC(v)|. If |[SUCC(v")| > f + 2, by Lemma 6,

b_time(v', SUCC(v')) > b_time(v', {uy o, 0y y, -+ ui}) =

b_time(v, {uygq1,uy,--- ,u1}), whichmeans broadcasting cannot be done

within the time constraint. Thus, [SUCC(v")| > f + 2 is impossible. [J

Theorem 18 Algorithm Broadcast indeed determines the minimal num-

ber of centers needed.

Proof. We prove by induction. We want to proof every time a vertex is
processed, |[E~| = OPT(T — T',t) — 1; under this condition, for each
node v satisfying v has an unprocessed neighbor,
per f(v, SUCC (v), pred(v)) is minimized.

Let v be a leaf of T'. Observe that v; has no choices; that 1s,
SUCC*(vy) = and PRED*(vy) =)
= SUCC(v1) = 0 and pred(vy) = nil
= E (v1)=0=1—-1=0PT({un},t)— 1L
o SUCC(v1) =0, .. b_time(v) = 0 and spare(v) = 0.
Therefore, per f (v, 0, nil) = (0,0,0) is obviously minimal.

Suppose before line 2, |E~| = OPT(T —T' — {v},t) — 1; under this
condition, for each node v satisfying v has an unprocessed neighbor,
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per f(v, SUCC (v),pred(v)) is minimized. We prove |E~| = OPT(T —
T',t) — 1; under this condition, for each node v satisfying v has an un-

processed neighbor,

per f(v, SUCC(v),pred(v)) is minimized.

By Lemma 16, it is impossible to find a strategy to make
per f(v, SUCC(v),pred(v)) smaller without modifying SUCC(x) for
some r € T — T'. To make perf(v, SUCC(v),pred(v)) smaller, we
have only two choices. The first choice is 9s € N(v) — {u} such that
b_time(s) is decreased, and the other choice is Ip € N (v) — SUCC*(v)

such that spare(p) is decreased.

For each time the challenger makes a node 3s € N(v) — {u} such
that b_time(s) is decreased, by the induction hypothesis, |F~(s)| must
be decreased by at least one. After b_time(s) is decreased, we observe
the change of SUCC'(v). Lemma 17 tells us v can accept only one more

SUCCCSSOr.

If there is a node s’ joining SUCC(v), since b_time(v, SUCC(v) U
{s'}) > b time(v, SUCC(v) U {s'} — {s}) > b_time(v, SUCC(v))
and spare(v, SUCC(v) U {s'}) > spare(v, SUCC(v) U{s'} — {s}) >
spare(v, SUCC(v)), the challenger fails to make
per f(v, SUCC(v),pred(v)) smaller.

If SUCC(v) is not increased by 1, it is possible v can have a pre-
decessor. From pred(v) = nil to pred(v) # nil, spare(v) is increased
by at least a. However, making b time(s) decreased can only make
spare(v) decreased by at most «. The challenger still cannot make
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per f(v, SUCC (v),pred(v)) smaller.

It is impossible both a node s’ joins SUCC(v) and from pred(v) = nil
to pred(v) # nil happen because Vs* € SUCC(v) U {s'},
b_time(v, SUCC(v) U {s'} — {s*}) > b_time(v, SUCC(v)),
so t —arrive(v) —b_time(v, SUCC(v)U{s'} — {s*}) < t—arrive(v) —
b_time(v, SUCC(v)), which means v cannot become have ability to
have a predecessor after this change by the challenger.

If 3p € N(v) — SUCC*(v) such that spare(p) is decreased, by the
induction hypothesis, | E~(p)| is decreased by at least one; it can be only
made up if pred(v) = nil is changed to pred(v) = p, which makes
spare(v) increased by at least «, so per f(v, SUCC(v), pred(v)) cannot

be improved. ]
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Chapter 5
Two Illustrative Examples
In this chapter, we illustrate the algorithm with two arbitrary trees. Both

trees are spanning trees of G, which is shown in Figure 5.1. Also, we

suppose o = 2 and ¢ = 17 in both examples.

Figure 5.1: Graph Gj.

5.1 The First Example

The tree 77 1s shown in Figure 5.2. We demostrate the algorithm twice
with two processing sequence,
(a,b,c,d,e, f,g,v,w,z,u) and (g, f,z,e,d, w,u,b,c,v,a).

We show the case (a, b, c,d, e, f,g,v,w, x,u) first.
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Figure 5.2: Tree T}.

The 1% processed node is a. Its unprocessed neighbor is v. Because
SUCC*(a) = 0 and PRED*(a) = 0, it is obviously SUCC(a) = 0,
b_time(a) = 0, pred(a) = () and spare(a) = 0. Because pred(a) = )
and a + w(v,a) + b_time(a) =2+ 3+ 0 =5 < 17 = ¢, the algorithm
adds a to SUCC*(v).

The 2™ processed node is b. Its unprocessed neighbor is v. Because
SUCC*(b) = () and PRED*(b) = 0, it is obviously SUCC(b) = 0,
b _time(b) = 0, pred(b) = () and spare(b) = 0. Because pred(b) = () and
a—+w(v,b) +b time(b) =246+ 0 =8 < 17 = ¢, the algorithm adds b
to SUCC*(v).

The 3" processed node is c. Its unprocessed neighbor is v. Because
SUCC*(c¢) = () and PRED*(¢) = 0, it is obviously SUCC(c) = 0,
b_time(c) =0, pred(c) = () and spare(c) = 0. Because pred(c) = () and
a+w(v,c)+b time(c) =248+ 0 =10 < 17 = ¢, the algorithm adds
cto SUCC*(v).

The 4™ processed node is d. Its unprocessed neighbor is w. Because
SUCC*(d) = § and PRED*(d) = 0, it is obviously SUCC(d) = 0,
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b _time(d) = 0, pred(d) = () and spare(d) = 0. Because pred(d) = ()
and a + w(w,d) + b_time(d) =245+ 0 =7 < 17 = t, the algorithm
adds d to SUCC*(w).

The 5™ processed node is e. Its unprocessed neighbor is w. Because
SUCC*(e) = ) and PRED*(e) = (), it is obviously SUCC(e) = 0,
b time(e) = 0, pred(e) = () and spare(e) = 0. Because pred(e) = ()
and o + w(w,e) + b _time(e) =2+ 2+ 0 =4 < 17 = ¢, the algorithm
adds e to SUCC*(w).

The 6'" processed node is f. Its unprocessed neighbor is . Because
SUCC*(f) = 0 and PRED*(f) = 0, it is obviously SUCC(f) = 0,
b time(f) = 0, pred(f) = 0 and spare(f) = 0. Because pred(f) = ()
and o + w(z, f) + b_time(f) =24+ 4+ 0 =6 < 17 = ¢, the algorithm
adds f to SUCC*(x).

The 7™ processed node is g. Its unprocessed neighbor is z. Because
SUCC*(g) = 0 and PRED*(g) = 0, it is obviously SUCC(g) = 0,
b time(g) = 0, pred(g) = () and spare(g) = 0. Because pred(g) = 0
and a + w(z, g) + b_time(g) =2+ 7+ 0 = 9 < 17 = ¢, the algorithm
adds g to SUCC* ().

The 8" processed node is v. Its unprocessed neighbor is u. The algo-
rithm reorders SUCC*(v) = {a, b, ¢} first. Because w(v,a)+b_time(a) =
340=3=8—-25q, w(v,b) +b time(b) =6+ 0=6 =8 — 1.0 and
w(v,c)+b_time(c) = 8+0 = 8§, the algorithm gives u; = ¢, listy = {c},
listy = {b}, listy = {a}, lists = (). Therefore, the reordered sequence
of SUCC*(v) is (¢, b, a).
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Now the algorithm starts determining SUCC'(v). Because
a+b time(v) =2+0=2<17=tand a + w(v,a) +b_time(a) =
2+3+40 =15 < 17 = t, the algorithm adds a to SUCC(v) and b_time(v)
is 5 now. Because a+0b_time(v) =2+5 =7 < 17 =tand a+w(v,b) +
b time(b) =2+ 6+ 0 =8 < 17 = t, the algorithm adds b to SUCC(v)

and b_time(v) is 8 now.

Because o + b_time(v) =2+ 8 = 10 < 17 = t and a + w(v,¢) +
b time(c) =2+8+0 =10 < 17 = ¢, the algorithm adds ¢ to SUCC(v)
and b_time(v) is 10 now. All successor candidates of v are successors
of v. Because PRED*(v) = ), it is obviously pred(v) = (). Because
pred(v) = 0 and o + w(u,v) + b_time(v) =2+ 5+ 10 =17 < 17 =,
the algorithm adds v to SUCC*(u).

The 9™ processed node is w. Its unprocessed neighbor is u. The algo-
rithm reorders SUCC*(w) = {d, e} first. Because w(w, d)+b_time(d) =
54+ 0 =5and w(w,e) + b time(e) = 2+ 0 =2 =5 — 1.5a, the algo-
rithm gives u; = d, listg = {d}, list; = {e}, lista = (). Therefore, the

reordered sequence of SUCC*(v) is (d, e).

Now the algorithm starts determining SUCC'(w). Because
a+b time(w) =2+0=2<17=tand a +w(w,e) + b _time(e) =
24240 =4 < 17 = t, the algorithm adds e to SUCC(w) and b_time(w)
is4 now. Because a+b_time(w) = 242 =4 < 17 = tand a+w(w, d)+
b time(d) =2+5+0=7 < 17 = ¢, the algorithm adds d to SUCC(w)
and b_time(w) is 7 now. All successor candidates of w are successors
of w. Because PRED*(w) = (), it is obviously pred(w) = (). Because
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pred(w) = 0 and o + w(u, w) +b_time(w) =2+24+7=11 < 17 =1,
the algorithm adds w to SUCC*(u).

The 10" processed node is z. Its unprocessed neighbor is u. The al-
gorithm reorders SUCC*(x) = {f, g} first. Because w(x, f)+b_time(f)
440=4=7-15cand w(z,g) + b_time(e) = 7+ 0 = 7, the algo-
rithm gives u; = g, listg = {g}, list; = {f}, listo = (. Therefore, the
reordered sequence of SUCC*(v) is (g, f). Now the algorithm starts de-
termining SUCC(z). Because a+b_time(r) =2+0=2 < 17 =tand
at+w(z, f)+b time(f) =24+4+0=6 < 17 = t, the algorithm adds f
to SUCC(x) and b_time(x) is 6 now. Because a+0b_time(xr) = 2+6 =
8<17=tand a+w(x,g) +b time(g) =2+ 7+0=9 < 17 =, the
algorithm adds g to SUCC(z) and b_time(x) is 9 now. All successor
candidates of x are successors of . Because PRED*(z) = (), it is obvi-
ously pred(x) = (). Because pred(xz) = () and a+w(u, z) +b_time(x) =
24+ 6+9 =17 < 17 = t, the algorithm adds = to SUCC*(u).

The last processed node is u. The algorithm reorders SUCC*(u) =
{v,w,x} first. Because w(u,v) + b _time(v) = 5+ 10 = 15 = 8§,
w(u, w)+b_time(w) = 2+7 =9 = 15—3.0a and w(u, x)+b_time(x) =
6 + 9 = 15, the algorithm gives u1 = v, listg = {v,z}, list; = 0,
listas = (), list3 = {w}. Therefore, the reordered sequence of SUCC*(u)

is (v, z,w).

Now the algorithm starts determining SUCC'(u). Because
a+b time(u) =24+0=2<17=tand a + w(u,w) + b_time(w) =
24247 =11 < 17 = t, the algorithm adds w to SUCC(u) and
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b_time(u) is 11 now. Because a + b _time(u) =2+ 11 =13 < 17 =t
and o + w(u, x) +b_time(x) =246+ 9 = 17 < 17 = ¢, the algorithm
adds x to SUCC(u) and b_time(u) is 17 now. Because a+b_time(u) =
2417 =19 > 17 = t, the algorithm gives v cannot be a successor of
u. Because PRED*(u) = 0, it is obviously pred(u) = (). The result is
there are two broadcast centers, v and u and there is one unused edge,
(v, u).

Now we run the algorithm again, but with an another processing se-
quence, (g, f,z,e,d,w,u,b, c,v,a). The 1% processed node is g. Its un-
processed neighbor is 2. Because SUCC*(g) = () and PRED*(g) =
0, it is obviously SUCC(g) = 0, b_time(g) = 0, pred(g) = () and
spare(g) = 0. Because pred(g) = () and o + w(z, g) + b_time(g) =
24+ 74+0=9 <17 =t, the algorithm adds g to SUCC*(z).

The 2" processed node is f. Its unprocessed neighbor is z. Because
SUCC*(f) = 0 and PRED*(f) = 0, it is obviously SUCC(f) = 0,
b time(f) = 0, pred(f) = 0 and spare(f) = 0. Because pred(f) = ()
and o + w(z, f) + b_time(f) =2+ 4+ 0 =6 < 17 = ¢, the algorithm
adds f to SUCC*(z).

The 3™ processed node is . Its unprocessed neighbor is u. The algo-
rithm reorders SUCC*(x) = {f, g} first. Because w(z, f)+b_time(f) =
440=4=7-15aand w(z,g) + b_time(e) = 7+ 0 = 7, the algo-
rithm gives u; = g, listy = {g}, list; = {f}, listy = (). Therefore, the
reordered sequence of SUCC*(v) is (g, f).

Now the algorithm starts determining SUCC(x). Because
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a+b time(r) =24+0=2<17=tand a+ w(z, f) + b time(f) =
24440 =6 < 17 = t, the algorithm adds f to SUCC(z) and b_time(z)
is 6 now. Because a+b_time(x) =246 =8 < 17 = tand a+w(z, g)+
b time(g) =2+74+0=9 < 17 = t, the algorithm adds g to SUCC(z)
and b_time(x) is 9 now. All successor candidates of x are successors
of x. Because PRED*(x) = (), it is obviously pred(x) = (). Because
pred(z) = 0 and o + w(u,z) + b _time(x) =2+ 6+9 =17 < 17 = t,
the algorithm adds z to SUCC*(u).

The 4" processed node is e. Its unprocessed neighbor is w. Because
SUCC*(e) = ® and PRED*(e) = 0, it is obviously SUCC(e) = 0,
b time(e) = 0, pred(e) = () and spare(e) = 0. Because pred(e) = ()
and a + w(w, e) + b_time(e) = 2+ 2+ 0 =4 < 17 = ¢, the algorithm
adds e to SUCC*(w).

The 5™ processed node is d. Its unprocessed neighbor is w. Because
SUCC*(d) = 0 and PRED*(d) = 0, it is obviously SUCC(d) = 0,
b_time(d) = 0, pred(d) = () and spare(d) = 0. Because pred(d) = ()
and o + w(w,d) + b_time(d) =245+ 0 =7 < 17 = t, the algorithm
adds d to SUCC*(w).

The 6 processed node is w. Its unprocessed neighbor is u. The algo-
rithm reorders SUCC*(w) = {d, e} first. Because w(w, d)+b_time(d) =
540 =>5and w(w,e) + b _time(e) =2+ 0 =2 =5 — 1.5, the algo-
rithm gives w1 = d, listg = {d}, list; = {e}, lista = (). Therefore, the
reordered sequence of SUCC*(v) is (d, e).

Now the algorithm starts determining SUCC(w). Because
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a+b time(w) =2+0=2<17 =tand a + w(w,e) + b_time(e) =
24240 = 4 < 17 = t, the algorithm adds e to SUCC(w) and b_time(w)
is 4 now. Because a+0b_time(w) = 2+2 =4 < 17 = tand a+w(w, d)+
b _time(d) =2+5+0 =7 < 17 = t, the algorithm adds d to SUC'C(w)
and b_time(w) is 7 now. All successor candidates of w are successors
of w. Because PRED*(w) = (), it is obviously pred(w) = (). Because
pred(w) = 0 and o + w(u, w) +b_time(w) =2+24+7=11 < 17 =1,
the algorithm adds w to SUCC*(u).

The 7™ processed node is u. Its unprocessed neighbor is v. The algo-
rithm reorders SUCC*(u) = {x, w} first. Because w(u, x)+b_time(x) =
6+ 9 = 15 and w(u,w) + b_time(w) =2+ 7 =9 = 15 — 3.0a, the al-
gorithm gives u; = z, listg = {x}, list; =
emptyset, lista = {w}. Therefore, the reordered sequence of SUCC*(u)

is (z,w).

Now the algorithm starts determining SUCC'(u). Because
a+b time(u) =2+0=2<17=tand a + w(u,w) + b_time(w) =
24247 =11 < 17 = t, the algorithm adds w to SUCC(u) and
b_time(u)is 11 now. Because a+b_time(u) = 2+11 = 13 < 17 =t and
a+w(u,x)+b time(r) =24+6+9 = 17 < 17 = t, the algorithm adds =
to SUCC(u) and b_time(u) is 17 now. All successor candidates of u are
successors of u. Because PRED*(u) = (), it is obviously pred(u) = 0.
Because pred(u) = 0 and a + w(v,u) +b_time(u) =2+5+17 =24 >

17 = t, the algorithm gives u cannot be a successor candidate of v.

Now the algorithm determines spare(u). Because arrive(u) + (2 +
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Da+w(u, w)+b_time(w) = 0+6+2+7 = 15 < 17 = ¢, the algorithm
gives w can delay « time. Because arrive(u) + (1 + 1) + w(u, x) +
b time(z) = 0+4+6+9 = 19 > 17 = ¢, the algorithm gives z
cannot delay « time. The first one successor of v cannot delay « time,
the algorithm tells us spare(u) = arrive(u) + la = 0+ 2 = 2. Because
spare(u) + a +w(u,v) =24+ 245 =9 < 17 = ¢, the algorithm adds u
to PRED*(v).

The 8™ processed node is c. Its unprocessed neighbor is v. Because
SUCC*(c) = 0 and PRED*(c) = 0, it is obviously SUCC(c) = 0,
b_time(c) = 0, pred(c) = () and spare(c) = 0. Because pred(c) = () and
a+w(v,c)+b_time(c) =248+ 0 =10 < 17 = ¢, the algorithm adds
cto SUCC*(v).

The 9" processed node is b. Its unprocessed neighbor is v. Because
SUCC*(b) = () and PRED*(b) = 0, it is obviously SUCC(b) = 0,
b_time(b) = 0, pred(b) = 0 and spare(b) = 0. Because pred(b) = () and
a—+w(v,b) +b time(b) =246+ 0 =8 < 17 = ¢, the algorithm adds b
to SUCC*(v).

The 10" processed node is v. Its unprocessed neighbor is . The algo-
rithm reorders SUCC*(v) = {¢, b} first. Because w(v, c) +b_time(c) =
840 = 8and w(v,b)+b_time(b) = 640 = 6 = 8 — 1.0a, the algorithm
gives uy = ¢, listyg = {c}, listy = {b}, listo = 0, lists = (). Therefore,
the reordered sequence of SUCC*(v) is (¢, b).

Now the algorithm starts determining SUCC'(v). Because
a+0b time(v) =2+0=2<17=tand a + w(v,b) + b _time(b) =
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24+6+0 =28 < 17 = t, the algorithm adds b to SUCC(v) and b_time(v)
is 8 now. Because a+b_time(v) = 24+8 = 10 < 17 = tand a+w(v, ¢)+
b_time(c) =2+8+0 =10 < 17 = t, the algorithm adds ¢ to SUCC'(v)
and b_time(v) is 10 now. All successor candidates of v are successors
of v.

Now the algorithm starts determining pred(v). There is only one pre-
decessor candidate of v, u. Because spare(u)+a+w(u, v)+b_time(v) =
24+2+54+10 =19 > 17 = t, the algorithm gives pred(v) = (). Because
pred(v) =0 and o + w(a,v) + b_time(v) =2+34+10=15 < 17 =,
the algorithm adds v to SUCC*(a).

The last processed node is a. Now the algorithm starts determining
ifv e SUCC(a). Because v + b_time(a) =2+0 =2 < 17 =t and
a+w(a,v)+b_time(v) =24+3+10 = 15 < 17 = ¢, the algorithm adds
vto SUCC(a) and b_time(a) is 15 now. Because PRED*(a) = 0, it is
obviously pred(a) = (). The result is there are two broadcast centers, u
and a and there is one unused edge, (u, v). Both results tell us we need
at least two broadcast centers on 77, but the location of centers is not

necessary unique.
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5.2 The Second Example

The tree T» 1s shown in Figure 5.3. Note that the edges in 75 are shorter
edges in Gg. We demostrate the algorithm twice with two processing

sequence, (v, a,c,d,e, f,x,g,b,u,w) and (f,z,d, e, g,b,u,w, c,a,v).

Figure 5.3: Tree 5.

We show the case (v, a,c,d, e, f,z,g,b,u,w) first. The 1% processed
node is v. Its unprocessed neighbor is a. Because SUCC*(v) = ()
and PRED*(v) = (), it is obviously SUCC(v) = 0, b_time(v) = 0,
pred(v) = () and spare(v) = 0. Because pred(v) = 0 and o + w(a, v) +
b_time(v) = 24340 =5 < 17 = t, the algorithm adds v to SUCC*(a).

The 2" processed node is a. Its unprocessed neighbor is ¢. Now the
algorithm starts determining if v € SUCC(a). Because a+b_time(a) =
240=2<17=tand a+w(a,v)+b _time(v) =24+3+0=5 < 17 =1,
the algorithm adds v to SUCC(a) and b_time(a) is 5 now. Because
PRED*(a) = 0, it is obviously pred(a) = (). Because pred(a) = () and
a+w(c,a)+b time(a) =2+ 2+ 5 =9 < 17 = t, the algorithm adds
ato SUCC*(c).
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The 3™ processed node is c. Its unprocessed neighbor is w. Now the
algorithm starts determining if « € SUCC(c). Because a+b_time(c) =
2+0=2<17=tand atw(c,a)+b_time(a) = 2+24+5 =9 <17 =t,
the algorithm adds a to SUCC(c) and b_time(c) is 9 now. Because
PRED*(c) = ), it is obviously pred(c) = (). Because pred(c) = () and
a+w(w,a)+b_time(a) =2+4+449 = 15 < 17 = t, the algorithm adds
ato SUCC*(w).

The 4" processed node is d. Its unprocessed neighbor is e. Because
SUCC*(d) = 0 and PRED*(d) = (), it is obviously SUCC(d) = 0,
b_time(d) = 0, pred(d) = () and spare(d) = 0. Because pred(d) = ()
and a + w(e,d) + b_time(d) =2+ 5+ 0 =7 < 17 = ¢, the algorithm
adds d to SUCC*(e).

The 5" processed node is e. Its unprocessed neighbor is w. Now the
algorithm starts determining if d € SUCC(e). Because a+b_time(e) =
240=2<17=tand atw(e,d)+b _time(d) =24+5+0=7 <17 =1,
the algorithm adds d to SUCC'(e) and b_time(e) is 7 now. Because
PRED*(e) = (), it is obviously pred(e) = (. Because pred(e) = () and
a+w(w,e)+b time(e) =242+ 7= 11 < 17 = t, the algorithm adds
eto SUCC* (w).

The 6™ processed node is f. Its unprocessed neighbor is z. Because
SUCC*(f) = 0 and PRED*(f) = 0, it is obviously SUCC(f) = 0,
b time(f) = 0, pred(f) = 0 and spare(f) = 0. Because pred(f) = ()
and o + w(x, f) + b _time(f) =2+4+0 =6 < 17 = ¢, the algorithm
adds f to SUCC*(x).
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The 7" processed node is z. Its unprocessed neighbor is w. Now the
algorithm starts determining if d € SUCC'(z). Because a+0b_time(xr) =
240 =2 <17 =tand atw(x, f)+b_time(f) =2+4+0 =6 < 17 =,
the algorithm adds f to SUCC(z) and b_time(x) is 6 now. Because
PRED*(x) = 0, it is obviously pred(x) = (). Because pred(z) = () and
a+w(w,x)+b_time(r) =2+3+6 =11 < 17 = ¢, the algorithm adds
x to SUCC*(w).

The 8™ processed node is ¢. Its unprocessed neighbor is b. Because
SUCC*(g) = 0 and PRED*(g) = 0, it is obviously SUCC(g) = 0,
b_time(g) = 0, pred(g) = () and spare(g) = 0. Because pred(g) = ()
and a +w(b,g) + b_time(g) =2+ 3+ 0 =5 < 17 = ¢, the algorithm
adds g to SUCC*(b).

The 9" processed node is b. Its unprocessed neighbor is u. Now the
algorithm starts determining if v € SUC'C(b). Because a+b_time(b) =
24+0=2<17=tand a+w(a,v)+b time(g) =24+3+0=5 <17 =14,
the algorithm adds g to SUCC(b) and b_time(b) is 5 now. Because
PRED*(b) = 0, it is obviously pred(b) = 0. Because pred(b) = ()
and o + w(u,b) +b_time(b) =244+ 5 = 11 < 17 = ¢, the algorithm
adds b to SUCC*(u).

The 10" processed node is u. Its unprocessed neighbor is w. Now the
algorithm starts determining ifa € SUCC(u). Because a+b_time(u) =
240 =2 <17 =tand a+w(c,a)+b_time(b) = 24+4+5 =11 < 17 =1,
the algorithm adds b to SUCC(u) and b_time(u) is 9 now. Because
PRED*(u) = 0, it is obviously pred(u) = (). Because pred(u) = () and
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a + w(w,u) + b _time(b) = 2+ 2+ 11 = 15 < 17 = t, the algorithm
adds b to SUCC*(w).

The last processed node is w. The algorithm reorders SUCC*(w) =
{c, e, x,u} first. Because w(w,c) + b_time(c) =4+ 9 = 13, w(w, e) +
b time(e) =2+7=9 =13 — 2.0, w(w,x) + b _time(x) =3 +6 =
9 — 2.0 and w(w, u) + b_time(u) = 2 4+ 11 = 13, the algorithm gives
up = ¢, listg = {c,u}, listy = 0, listy = {e,x}, lists = 0, listy = 0.

Therefore, the reordered sequence of SUCC*(v) is (¢, u, e, ).

Now the algorithm starts determining SUCC'(w). Because
a+b time(w) =2+0=2<17=tand a + w(w,z) + b_time(x) =
24+3+4+6 =11 < 17 = t, the algorithm adds = to SUCC(w) and
b_time(w) is 11 now. Because a + b_time(w) =2+ 11 =13 < 17 =1t
and o + w(w, e) +b_time(e) =2+ 247 =11 < 17 = ¢, the algorithm
adds eto SUCC(w) and b_time(w) is 13 now. Because a+b_time(w) =
24+13=15<17=tand a + w(w,u) + b_time(u) =2+ 2+ 11 =
15 < 17 = t, the algorithm adds v to SUCC(w) and b_time(w) is 15
now. Because a+b_time(c) =2+15=17 < 17 =t and a +w(w, c) +
b _time(c) =24+4+9 =15 < 17 = ¢, the algorithm adds ¢ to SUCC(w)
and b_time(w) is 17 now. All successor candidates of w are successors
of w. Because PRED*(w) = (), it is obviously pred(w) = (). The result
1s that one broadcast center is enough. The location of the center given

by the algorithm is w.

Now we run the algorithm again, but with an another processing se-
quence, (f,x,d, e, g,b,u,w,c,a,v). The 1% processed node is f. Its un-
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processed neighbor is x. Because SUCC*(f) = () and PRED*(f) =
0, it is obviously SUCC(f) = 0, b_time(f) = 0, pred(f) = ( and
spare(f) = 0. Because pred(f) = 0 and o + w(z, f) + b_time(f) =
24+4+0=06 <17 =t, the algorithm adds f to SUCC*(z).

The 2™ processed node is z. Its unprocessed neighbor is w. Now the
algorithm starts determining if d € SUCC/(x). Because a+b_time(z) =
240=2<17=tand atw(x, f)+b_time(f) =2+44+0=6 < 17 =1,
the algorithm adds f to SUCC(z) and b_time(x) is 6 now. Because
PRED*(x) = 0, it is obviously pred(x) = 0. Because pred(z) = 0 and
a+w(w,x)+b _time(r) =24+3+6 =11 < 17 = ¢, the algorithm adds
xrto SUCC*(w).

The 3" processed node is d. Its unprocessed neighbor is e. Because
SUCC*(d) = @ and PRED*(d) = 0, it is obviously SUCC(d) = 0,
b_time(d) = 0, pred(d) = () and spare(d) = 0. Because pred(d) = ()
and a + w(e,d) + b_time(d) = 2+ 5+ 0 =7 < 17 = ¢, the algorithm
adds d to SUCC*(e).

The 4™ processed node is e. Its unprocessed neighbor is w. Now the
algorithm starts determining if d € SUCC'(e). Because a+b_time(e) =
2+0=2<17=tand atw(e,d)+b_time(d) =2+5+0=7 < 17 =1,
the algorithm adds d to SUCC'(e) and b_time(e) is 7 now. Because
PRED*(e) = (), it is obviously pred(e) = ). Because pred(e) = () and
a+w(w,e)+b time(e) =2+2+7 =11 < 17 = t, the algorithm adds
eto SUCC*(w).

The 5% processed node is ¢. Its unprocessed neighbor is b. Because
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SUCC*(g) = 0 and PRED*(g) = 0, it is obviously SUCC(g) = 0,
b time(g) = 0, pred(g) = () and spare(g) = 0. Because pred(g) = ()
and o + w(b, g) +b_time(g) =2+ 3+ 0 =5 < 17 = ¢, the algorithm
adds g to SUCC*(b).

The 6 processed node is b. Its unprocessed neighbor is u. Now the
algorithm starts determining if v € SUCC'(b). Because a+b_time(b) =
240=2<17=tand at+w(a,v)+b_time(g) = 2+34+0=5 < 17 =,
the algorithm adds g to SUCC(b) and b_time(b) is 5 now. Because
PRED*(b) = 0, it is obviously pred(b) = 0. Because pred(b) = ()
and o + w(u,b) +b_time(b) =2+ 4+ 5 = 11 < 17 = ¢, the algorithm
adds b to SUCC*(u).

The 7" processed node is u. Its unprocessed neighbor is w. Now the
algorithm starts determining ifa € SUCC(u). Because a+b_time(u) =
240 =2 <17 =tand a+w(c,a)+b_time(b) = 2+4+5 =11 < 17 =1,
the algorithm adds b to SUCC(u) and b_time(u) is 9 now. Because
PRED*(u) = 0, it is obviously pred(u) = (). Because pred(u) = () and
a+w(w,u) +b time(b) =2+ 2+ 11 = 15 < 17 = ¢, the algorithm
adds b to SUCC*(w).

The 8™ processed node is w. Its unprocessed neighbor is c¢. The
algorithm reorders SUCC*(w) = {x,e,u} first. Because w(w,x) +
b time(z) =346 =9 — 2.0, w(w,e) + b time(e) =2+7 =9 =
13 — 2.0 and w(w, u) + b_time(u) = 2 + 11 = 13, the algorithm gives
uyp = u, listg = {u}, listy = 0, listy = {x, e}, list3 = (). Therefore, the
reordered sequence of SUCC*(v) is (u, z, €).
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Now the algorithm starts determining SUCC'(w). Because
a+b time(w) =2+0=2<17 =tand o + w(w, e) + b_time(e) =
24+2+7 =11 < 17 = t, the algorithm adds e to SUCC(w) and
b_time(w) is 11 now. Because a + b _time(w) =2+ 11 =13 <17=t¢
and o + w(w, x) + b_time(x) =2+ 346 = 11 < 17 = ¢, the algorithm
adds zto SUCC(w) and b_time(w) is 13 now. Because a+b_time(w) =
24+13=15<17=tand a + w(w,u) + b_time(u) =2+ 2+ 11 =
15 < 17 = t, the algorithm adds v to SUCC(w) and b_time(w) is 15

now. All successor candidates of w are successors of w.

Because PRED*(w) = (), it is obviously pred(w) = (). Because
a+w(c,w)+b_time(w) = 24+4+15 = 21 > 17 = ¢, the algorithm gives
w cannot be a successor candidate of c. Now the algorithm determines
spare(w). Because arrive(w) + (3 4+ 1)a+ w(w, e) + b_time(e) = 0 +
8+2+7 =15 < 17 = t, the algorithm gives e can delay « time. Because
arrive(w)+(2+1)a+w(w, z)+b_time(x) = 0464346 = 13 < 17 =1,
the algorithm gives z can delay « time. Because arrive(w)+ (14 1)a+
w(w,u)+b_time(u) = 0+4+2+411 = 17 < 17 = ¢, the algorithm gives
u can delay « time. All successors of w can delay « time, the algorithm
tells us spare(v) = 0. Because spare(w) + a + w(w,c¢) =0+ 2+ 4 =
6 < 17 = t, the algorithm adds w to PRED*(c).

The 9" processed node is c. Its unprocessed neighbor is a. Because
SUCC*(c) = 0, it is obviously SUCC(c) = (0 and b_time(c) = 0.
There is only one predecessor candidate of ¢, w. Because spare(w) +
o+ w(w,c) +b_time(c) = 0+2+5+0 =7 < 17 = ¢, the algorithm
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gives pred(c) = w, spare(c) = arrive(c) = 6 and that ¢ cannot apply
for being a successor candidate of a. Because spare(c) + a + w(e, a) =
6+ 2+ 2 =10 < 17 = t, the algorithm adds ¢ to PRED*(a).

The 10" processed node is a. Its unprocessed neighbor is v. Because
SUCC*(a) = 0, it is obviously SUCC(a) = 0 and b_time(a) = 0.
There is only one predecessor candidate of a, c. Because spare(c) + a+
w(c,a) + b _time(a) = 6 4+2+24+0 = 10 < 17 = ¢, the algorithm
gives pred(a) = ¢, spare(a) = arrive(a) = 10 and that a cannot apply
for being a successor candidate of v. Because spare(a) + a4+ w(a,v) =
10 + 2+ 3 =15 < 17 = t, the algorithm adds a to PRED*(v).

The last processed node is v. Because SUCC*(v) = (), it is obviously
SUCC(v) =0andb_time(v) = 0. There is only one predecessor candi-
date of v, a. Because spare(a)+a+w(a,v)+b_time(v) = 10+2+3+0 =
15 < 17 = t, the algorithm gives pred(v) = a.

The results with the processing sequence (f,z,d, e, g, b, u, w, c,a,v)
and (f,z,d, e, g,b,u, w, c,a,v)are the same. Both of them say one broad-

cast center is enough and the location of the center is w.
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Chapter 6

Conclusion

We made an improvement for finding the location of broadcast centers
and the broadcast sequences on any tree 1", OPT(T t), such that broad-
casting can be done within the time constraint ¢, which 1s introduced
in [20]. We extended this problem from uniform telephone model to
heterogeneous postal model and improved the time complexity to O(n).

Although broadcast problem has several decades of history, There are
still many open problems; many of them are shown in Table 6.1, where

”?” means open problems and ”’x” means not defined.

Table 6.1: Broadcast problems in uniform telephone model and heterogeneous postal
model

Uniform Telephone Heterogeneous Postal
1-center O(n) [5] O(n) [17]
1-median O(n) O(n) [22]
p-center ? ?
p-median ? ?
k-broadcasting O(n) [27] ?
uncertainty X O(nlog(n)loglog(n)) [28]
Centers with Time Constraints O(n) O(n)
approximation ratio : O( lolgolgo ;”(ZL)) ?
time : O(|V||E|) [8]
heuristic O(|E|) [10] ?

How to extend the results from uniform telephone model to hetero-
geneous postal model or more complicated environment, from trees to

more general structures, and so on, are researchable topics.
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