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摘要

本論文提出一 O(n)時間複雜度的演算法來解決樹狀結構

上的廣播中心點問題，使廣播中心點的數量最少。廣播

按照異質郵寄模型的規則進行，需在時間限制內完成。

關鍵字: 廣播中心點問題，時間限制，異質郵寄模型，

樹狀結構，貪進法。
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Abstract

In this thesis, we present a O(n)-time exact algorithm to find

a broadcast strategy such that broadcasting can be completed

within the time constraint and the number of centers is mini-

mal. The given graph is a tree and broadcasting is under the

heterogeneous postal model.

Keywords: broadcast center problem, time constraint, hetero-

geneous postal model, trees, greedy method.
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Chapter 1

Introduction

Broadcasting is an important problem in our life; the main objective is

finding efficient strategies to deliver the messages. In many distributed

or point-to-point systems, like people and mobile devices in a crowded

place, every node can only contact with nodes nearby. Broadcasting

makes every node in the system reveived the message.

1.1 Broadcast Problem and Models

Broadcasting is an information dissemination problem. In a graph net-

work G(V,E), there are at least one broadcast center, which has the

message before broadcasting starts. During broadcasting, nodes have

the message can set up calls, which copy the message to their neigh-

bors. A call from u to v is made up of two phases. The first one is setup

phase; it takes α time. During setting up, u cannot do other things. The

other one is transmission phase; it takes w(u, v) time. Node u can set

up a connection to another node, while transmitting messages to node

v. Under these conditions, the time and the distances may affect our

broadcasting strategies.

The broadcast centers with time constraints problem is defined as

below. Given Given a graph G(V,E) and a time constraint t, the broad-
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cast centers with time constraints problem is to determine OPT (G, t),

the minimal number of centers required.

There are several models in broadcasting problem. The uniform tele-

phone model is the first introduced model; it is also the most widely-

studied model. Under the nonuniform telephone model, the setup time,

α, from u to v, is the length of the edge (u, v). Under the heteroge-

neous postal model, the setup time, α, is a non-negative number, and the

transmission time, w(u, v), is the length of the edge (u, v). This compar-

ison tells us both the uniform telephone model and the postal model are

special cases of the heterogeneous postal model. In other words, once

problems under the heterogeneous postal model are solved, the same

problems under the uniform telephone model is also solved. Table 1.1

lists several models.

Table 1.1: Models
Model α w(u, v)
Heterogeneous Postal [1] fixed not fixed
Postal [2], [3] fixed 1
Telephone, nonuniform [4] not fixed 0
Telephone, uniform [5] 1 0

1.2 Main Results and Thesis Organization

We propose an O(n)-time deterministic algorithm to solve the broad-

cast centers with time constraints problem on trees under heterogeneous

postal model.

Chapter 2 presents many notations and definitions we will use. Chap-

ter 3 presents the algorithm and its time complexity. Chapter 4 shows

the correctness of the algorithm. Chapter 5 presents execution of the

algorithm with two examples.
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Chapter 2

Preliminaries

Weuse a graph to represent a network. Before introducing the algorithm,

we introduce several notations, definitions, and related problems.

2.1 Notations and Definitions

A graph is made up of nodes and edges. We use G(V,E) to represent a

graph, where V is the set of nodes and E is the set of edges. An edge

is a curve connects two endpoints. We use (u, v) to represent an edge

where u and v are its two endpoints; we denote w(u, v) as its length.

An another graph G′(V ′, E′) is said a subgraph of G iff V ′ ⊆ V and

E′ = {(u, v) ∈ E|u, v ∈ V ′}. A node u is a neighbor of v iff there is

an edge (u, v) in G. We use N(v) to represent the set of neighbors of v.

The degree of a node v is the number of edges where v is an endpoint.

In this thesis, without mentioned particularly, every graph is undirected

and simple. Simple means there are no (v, v), edges such that its two

endpoints are identical and there is at most one edge for every node pair.

A sequence of edges is a walk if this sequence has the form

((u0, u1), (u1, u2), · · · , (uk−1, uk)). If u0, u1, · · · , uk are distinct, it is a
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path; if they are distinct except u0 = uk, it is a cycle. A graph is con-

nected if for every couple of nodes u and v, there is a path from u to v.

A tree is a connected graph without cycles. A tree T is a spanning tree

of a graph G if T can be obtained by removing edges from G.

After the basic knowledges are introduced, we introduce several terms

we will use in this thesis. Let (u, v) be an edge in T . Removing (u, v)

from T leads to two trees, T (u, v) and T (v, u) where T (u, v) contains

u and T (v, u) contains v. The predecessor of v, pred(v), is a neighbor

of v such that v receives the message from pred(v) when broadcasting.

We use pred(v) = ∅ to represent v has no predecessor. The successors

of v, SUCC(V ), is an ordered subset of the neighbors of v. A vertex

u ∈ SUCC(v) if u receives the message from v when broadcasting.

The broadcast time of v, b_time(v, S), is the time required to broad-

cast a message from v to all nodes in
∪

x∈S T (x, v). The default value

of S is SUCC(v); that is, b_time(v) = b_time(v, SUCC(v)).

b_time(v) =


0, if SUCC(v) = ∅;

max{iα+ w(v, ui) + t(ui)|1 ≤ i ≤ k},

if SUCC(v) = (u1, u2, · · · , uk).

The successor candidates of v, SUCC∗(v), is a subset of previously

processed neighbors of v. A vertex u ∈ SUCC∗(v), if pred(u) = ∅

and α + w(v, u) + b_time(u) ≤ t. The predecessor candidates of v,

PRED∗(v), is a subset of previously processed neighbors of v. A vertex

u ∈ PRED∗(v), if u /∈ SUCC(v) and spare(u) + α + w(v, u) ≤ t.
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The arrive time of v, arrive(v), is the earliest time v knows the mes-

sage. The earliest spare time of v, spare(v), is the earliest time that v

can set up a connection with a receiver u /∈ SUCC(v) under the con-

straint that the broadcasting from v to the subtrees rooted by nodes on

SUCC(v) can still be completed in t. The unused edges of T , E−(T ),

is a subset of E(T ). An edge (u, v) ∈ E−(T ) iff u ̸= pred(v) and

v ̸= pred(u). We use E− = E−(T ) where T is the input tree. We use

E−(v) = E−(N [v]).

2.2 Related Works

The broadcasting problem has been studied for several decades. It was

firstly introduced by Slater et al. [5]; they proved that both finding the

optimal broadcast center and finding the minimum broadcast time on

general graphs are NP-complete. They also proposed a linear-time al-

gorithm for finding the optimal broadcast center andminimumbroadcast

time on trees under the uniformed telephone model.

There are approximation algorithms proposed for finding the mini-

mum broadcast time. An O(
log2(n)
loglog(n)

)-approximate algorithm was pre-

sented in [6], where n is the number of vertices. An O(
√
n)-additive-

approximate algorithm was presented in [7]. Also, there are approxima-

tion algorithms for finding the minimum multicast time from a vertex

to a subset of k vertices. An O(
log(n)

loglog(k)
)-approximate algorithm was

presented in [1]; an O(
log(k)

loglog(k)
)-approximate algorithm was presented

in [8]. Besides, there are some heuristic algorithms [9]–[11] proposed
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for finding the minimum broadcast time.

There are also polynomial-time exact algorithms for finding the min-

imum broadcast time on some special graphs, like unicyclic graphs [12],

necklace graphs [13], fully connected trees [14], hypercube of trees [15],

and others [16]. They all are under the uniformed telephone model. On

the other hand, Su et al. [17] improved [5] by suggesting a linear-time

exact algorithm for finding the optimal broadcast center on trees under

the heterogeneous postal model.

There are also different variants [18]–[22] to the broadcasting prob-

lem. In [18], the concept of minimal broadcast graph was introduced

and several instances of minimal broadcast graphs were shown. In [19],

an efficient routing method was presented to transmit multiple messages

from a specific node to the other nodes of a complete graph. In [20], a

linear-time algorithm was presented for finding the minimal number of

centers on trees under the uniformed telephone model with time con-

straint. In [21], assuming that the maximal vertex degree is 3 (and 4,

respectively), the problem of how to augment edges so that the broad-

cast can be completed in logarithmic time was investigated. In [22], the

problem of finding the optimal broadcast 1-median on general graphs

was proved NP-complete and a linear-time algorithm was proposed for

finding the optimal broadcast 1-median on trees under the heterogeneous

postal model. Interested readers can refer to survey articles [23]–[26] for

more detailed description.
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Chapter 3

A Linear-Time Algorithm

In this chapter, we introduce the algorithm to find the broadcast centers

in a tree T = (V,E) with time constraint t is provided, then we give an

O(n)-time algorithm where n is the number of vertices in T . The basic

idea of the algorithm is using a greedy approach. We firstly describe the

main structure of the algorithm, and then the implement details, and we

will show that the algorithm runs in O(n) time at the end of this chapter.

3.1 Algorithm Description

Like many algorithms on trees, the algorithm processes from leaves to

the root. The algorithm is flexible; it does not require strictly process

along the level of vertices. A vertex can be processed as long as it has

at most one unprocessed neighbor. We will give two examples in Chap-

ter 5; two different processing sequences will be illustrated in each ex-

ample.

For each process on a vertex, the algorithm finds its successors, broad-

cast time and predecessor by its successor candidates and predecessor

candidates. Then, the algorithm determines if this vertex can be a suc-

cessor canditate of its unprocessed neighbor. If not, the algorithm eval-

uates its earliest spare time and then determines if this vertex can be a
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predecessor candidate of its unprocessed neighbor. The algorithm re-

turns one plus the number of unused edges as the answer, the minimal

number of centers needed. The algorithm is described as below.

Algorithm 1 Broadcast
Input:

A weighted tree graph T = (V,E).
The time constraint t and the connection time α.

Output:
The minimal number of centers needed.

1: for each v ∈ V (T ) do
2: set SUCC∗(v), SUCC(v), PRED∗(v), pred(v) to empty;
3: end for
4: T ′ ← T ; /* the set of unhandled vertices */
5: E− ← ∅; /* the set of unused edges */
6: repeat
7: arbitrarily find a leaf v in T ′;
8: Compute SUCC(v), b_time(v) and pred(v);
9: E− ← E− ∪ {(w, v)|w ∈ N(v)− {u, pred(v)} − SUCC(v)};
10: if |V (T ′)| ≥ 2 then
11: Let u be the neighbor of v in T ′;
12: if pred(v) = ∅ and α + w(u, v) + b_time(v) ≤ t then
13: add v to SUCC∗(u);
14: else if spare(v) + α + w(v, u) ≤ t then
15: add v to PRED∗(u);
16: end if
17: end if
18: remove v from T ′;
19: until |V (T ′)| is empty;
20: return 1 + |E−|.

Implement details of the algorithm is introduced in the following sec-

tions. The details include finding SUCC(v), b_time(v), and spare(v).

Finding pred(v) is easy. Let p be a vertex in PRED∗(v) such that the

value spare(p) + w(p, v) is minimized. If spare(p) + α + w(p, v) +

b_time(v) ≤ t, then p is the predecessor of v; otherwise, v has no pre-

decessor.
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3.2 Finding SUCC(v) and b_time(v)

The algorithm reordersSUCC∗(v) first, which is described in Section 3.4.

Then, the algorithm choose successor from the rear of SUCC∗(v) to the

front of SUCC∗(v). The algorithm observes the change of the broadcast

time (b_time′) after a vertex joins SUCC(v). If the broadcast time does

not exceed the time constraint, this vertex can be a successor of v; other-

wize, the number of successors of v reaches its maximum. Wewill show

the correctness of the algorithm in Section 4.1. The algorithm below de-

termines SUCC(v) and b_time(v) with the given successor candidates

SUCC∗(v).

Algorithm 2 Finding SUCC(v) and b_time(v)

Input:
The successor candidates SUCC∗(v).

Output:
The successors SUCC(v) and the broadcasting time b_time(v).

1: SUCC∗(v)← reorder(SUCC∗(v));
2: /* Suppose SUCC∗(v) is (u1, u2, · · · , uk) now. */
3: b_time(v)← 0;
4: SUCC(v)← ∅;
5: for i = k to 1 do
6: b_time′ ← max({α + b_time(v), α + w(v, ui) + b_time(ui)});
7: if b_time′ ≤ t then
8: add ui to the front of SUCC(v);
9: b_time(v)← b_time′;
10: end if
11: end for
12: return SUCC(v) and b_time(v).

Here is an example the algorithm determinesSUCC(v) and b_time(v).

We use the tree T89535, which is shown in 3.1. Let α = 2 and t = 17.

The successor candidates of v are (u1, u2, u3, u4, u5), which are already

reordered.

9



98 35 5
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7 1

u1 u2 u3 u4 u5

v

Figure 3.1: Tree T89535.

Initially b_time(v) = 0. The algorithm determines if u5 is a successor

of v. Because α + b_time(v) = 2 + 0 = 2 ≤ 17 = t and α + w(v, u5) +

b_time(u5) = 2 + 1 + 5 = 8 ≤ 17 = t, the algorithm tells us u5 is a

successor of v and b_time(v) becomes 8. Now the algorithm determines

if u4 is a successor of v. Because α+ b_time(v) = 2+ 8 = 10 ≤ 17 = t

and α+w(v, u4) + b_time(u4) = 2+ 4+ 3 = 9 ≤ 17 = t, the algorithm

tells us u4 is a successor of v and b_time(v) becomes 10.

Now the algorithm determines if u3 is a successor of v. Because

α+ b_time(v) = 2+10 = 12 ≤ 17 = t and α+w(v, u3)+ b_time(u3) =

2 + 7 + 5 = 14 ≤ 17 = t, the algorithm tells us u3 is a successor of

v and b_time(v) becomes 14. Now the algorithm determines if u2 is a

successor of v. Because α + b_time(v) = 2 + 14 = 16 ≤ 17 = t and

α+w(v, u2)+b_time(u2) = 2+4+9 = 15 ≤ 17 = t, the algorithm tells

us u2 is a successor of v and b_time(v) becomes 16. Now the algorithm

determines if u1 is a successor of v. Because α+ b_time(v) = 2+ 16 =

18 > 17 = t, the algorithm tells us u1 cannot be a successor of v.

The algorithm concludes that

SUCC(v) = (u2, u3, u4, u5) and b_time(v) = 16.
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3.3 Evaluatng spare(v)

We have evaluated SUCC(v), but u, the unprocessed neighbor of v, may

be also a possible successor of v. How early v can set up a connection

to u depends on how many accepted successor of v can delay α time.

The term ”can delay α time” is defined as below. Let ui be the i-th

successor of pred(ui). A successor ui is said can delay α time iff (i +

1)α+ w(ui, v) + b_time(ui) ≤ t.

The algorithm checks which successors of v can delay α time from

the rear of SUCC(v) to the front of SUCC(v). The earliest spare time

of v is equal to the earliest time v knows the message + time number

of successors which cannot delay α time ∗α. We will show the correct-

ness of this algorithm in Section 4.2. The algorithm below evaluates

spare(v) when SUCC(v) is given.

Algorithm 3 Finding spare(v)
Input:

The successors SUCC(v) = (u1, u2, · · · , uk).
Output:

The spare time spare(v).

1: h← k + 1;
2: for i = k to 1 do
3: if arrive(v) + (i+ 1)α + w(v, ui) + b_time(ui) ≤ t then
4: h← i;
5: else
6: break;
7: end if
8: end for
9: return arrive(v) + (h− 1)α.
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We continue from the example on T89535 to demostrate the algorithm

for finding spare(v). Initially spare(v) = arrive(v) + |SUCC(v)|α =

0 + 4 ∗ 2 = 8. Because (4 + 1)α + w(v, u5) + b_time(u5) = 10 + 1 +

5 = 16 ≤ 17 = t, the algorithm tells us u5 can delay α time. Because

(3+1)α+w(v, u4)+b_time(u4) = 8+4+3 = 15 ≤ 17 = t, the algorithm

tells us u4 can delay α time. Because (2+1)α+w(v, u3)+b_time(u3) =

6 + 7 + 5 = 18 > 17 = t, the algorithm tells us u3 cannot delay α

time. There are two successors, u2 and u3, cannot delay α time, so the

algorithm concludes that spare(v) = arrive(v) + 2α = 0 + 2 ∗ 2 = 4.

3.4 A Non-Sorting Method

The order of successors is important, so the algorithm reorders the suc-

cessor candidates. The comparison key is w(v, ui) + b_time(ui), where

ui is a successor of v. For convenience, we use ”the length of ui” to

represent w(v, ui)+ b_time(ui) in this section. Since sorting k elements

by comparion runs in Ω(klogk) time, we need an O(k)-time alternative

to keep Algorithm Broadcast can be done in O(n) time. This method

was introduced in [17].

Before introducing this non-sortingmethod, we explainwhy the com-

parison key is w(v, ui)+ b_time(ui) first. We start from a simple exam-

ple, the tree T368, which is shown in Figure 3.2.
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v

a b c

3 8
6

Figure 3.2: Tree T368.

Let α = 2, SUCC(v) = {a, b, c}, w(v, a) = 3, w(v, b) = 6, w(v, c) =

8 and SUCC(a) = SUCC(b) = SUCC(c) = ∅ (so b_time(a) =

b_time(b) = b_time(c) = 0). There are 6 possible permutation of

SUCC(v). The value of b_time(v) is shown in Table 3.1.

Table 3.1: Different broadcast sequences may lead to different broadcast time
SUCC(v) b_time(v)
(a, b, c) max({α + 3, 2α + 6, 3α + 8}) = max({5, 10, 14}) = 14
(a, c, b) max({α + 3, 2α + 8, 3α + 6}) = max({5, 12, 12}) = 12
(b, a, c) max({α + 6, 2α + 3, 3α + 8}) = max({8, 7, 14}) = 14
(b, c, a) max({α + 6, 2α + 8, 3α + 3}) = max({8, 12, 9}) = 12
(c, a, b) max({α + 8, 2α + 3, 3α + 6}) = max({10, 7, 12}) = 12
(c, b, a) max({α + 8, 2α + 6, 3α + 3}) = max({10, 10, 9}) = 10

Observe that the minimal value of b_time(v), 10, occurs when the

successors of v are sorted by w(v, ui) + b_time(ui) descendly. The fol-

lowing lemma shows that we can obtain the minimum broadcast time if

we sort SUCC(v) by w(v, ui) + b_time(ui) descendly.

Lemma 1 Under the constraintSUCC(v) = {s1, s2, · · · , sk}, b_time(v)

is minimal if SUCC(v) = (s1, s2, · · · , sk) and w(v, s1) + b_time(s1) ≥

w(v, sj) + b_time(sj)∀i < j.
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Proof.

¬(w(v, si) + b_time(si) ≥ w(v, sj) + b_time(sj)∀i < j)

≡ ∃i < j such that w(v, si) + b_time(si) < w(v, sj) + b_time(sj)

max(iα+ w(v, si) + b_time(si), jα + w(v, sj) + b_time(sj))

= jα + w(v, sj) + b_time(sj)

> jα + w(v, si) + b_time(si)

jα + w(v, sj) + b_time(sj)

> iα + w(v, sj) + b_time(sj)

∴ max(iα+ w(v, si) + b_time(si), jα + w(v, sj) + b_time(sj))

max(jα + w(v, si) + b_time(si), iα + w(v, sj) + b_time(sj))

⇒ swapping si and sj in SUCC(v) improves b_time(v)

For any initial sequence of SUCC(v), we can repeat swapping si and

sj until ∄i < j such that w(v, si) + b_time(si) < w(v, sj) + b_time(sj)

to improve b_time(v). This means b_time(v) is minimal if SUCC(v) =

(s1, s2, · · · , sk) andw(v, si)+b_time(si) ≥ w(v, sj)+b_time(sj)∀i < j.

□

After explaining why the comparison key is w(v, ui) + b_time(ui),

we introduce the non-sortingmethod. The algorithm calssifies k vertices

(S) to k + 1 lists. The algorithm firstly finds the longest one (u1) and

remembers its length. Then, for every vertex ui, the algorithm computes

the difference between the length of ui and length of u1. The algorithm

computes the quotient this difference divided by α (j). If j ≤ k, it means

the length of ui is short enough and the algorithm puts ui into the last

list (listk).

Otherwize, the algorithm puts ui into listj. For each nonempty list,

the algorithm moves the element with the shortest length to the end of
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the list. Finally, the algorithm concats these k+1 lists by the lsit number.

We will show this non-sorting method does not break the optimalness

of the algorithm in the next chapter. The algorithm below describes this

non-sorting method.

Algorithm 4 reorder
Input:

A vertices set S = {u1, u2, · · · , uk}.
Output:

A permutation of {u1, u2, · · · , uk}.

1: Let u1 be the vertex in S such that
w(v, u1) + b_time(u1) = max({w(v, u) + b_time(u)|u ∈ S}) ;

2: Create k + 1 linked lists, list0, list1, · · · , listk; listj contains vertices ui such that
3: jα ≤ (w(v, u1) + b_time(u1)) − (w(v, ui) + b_time(ui)) < (j + 1)α iff 0 ≤

j < k, and
4: kα ≤ (w(v, u1) + b_time(u1))− (w(v, ui) + b_time(ui)) iff j = k;
5: Let u∗

j be a vertex in listj such that
w(v, u∗

j) + b_time(u∗
j) = min({w(u, v) + b_time(u)|u ∈ listj}) ;

6: Move u∗
j to the end of listj;

Figure 3.3 shows an example of reordering. In this case, k = 10, the

length values are 23, 60, 44, 21, 43, 7, 24, 8, 41, 9 and α = 5.

60 44¡ 43

41

7¡ 8

9

23¡ 21

24

60¡ 44¡ 43¡ 41¡ 23¡ 24¡ 21¡ 8¡ 9¡ 7

0 73 10

5=

23¡ 60¡ 44¡ 21¡ 43¡ 7¡ 24¡ 8¡ 41¡ 9

Figure 3.3: An Example of Reordering.
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According to the algorithm, we have u1 = 60, list0 = {60}with u∗0 =

60, list3 = {44, 43, 41} with u∗3 = 41, list7 = {23, 21, 24} with u∗7 = 21,

list10 = {7, 8, 9} with u∗10 = 7 and list1, list2, list4, list5, list6, list8,

list9 are empty. The reordred sequence is (60, 44, 43, 41, 23, 24, 21, 8, 9, 7).

To make our proof easier, we keep u1 the first place in the buck-

eted sequence. Also, we define several terms related to this non-sorting

method. A sequence (u1, u2, · · · , uk) is bucketed iff it is a possible

output of reorder({u1, u2, · · · , uk}, false). A sequence is deheadedly

bucketed iff it is a subsequence (ui, ui+1, · · · , uk) of a bucketed sequence

and ui /∈ listk. A sequence is reversed bucketed iff it can be obtained

from reversing a bucketed sequence.

3.5 Time Complexity

In this section, we discuss the complexity of the algorithm. We analyze

the detailed ones before the mainly ones. Complicated analysis is not

required.

Lemma 2 Algorithm 4 runs in O(k) time.

Proof. Line 1 takes O(k) time. Line 2 takes O(k) time. The determina-

tion from Line 3 to Line 4 takes constant time for each ui and O(k) time

for all vertices in S. Line 5 and Line 6 takes O(|listj|) time for listj and

O(k) time for {list0, list1, · · · , listk}. □

Lemma 3 Algorithm 2 runs in O(k) time.
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Proof. Line 1 takes O(k) time. Line 6 to line 10 takes constant time,

so Line 5 to line 11 takes O(k) time. Other statements takes constant

time. □

Lemma 4 Algorithm 3 runs in O(k) time.

Proof. Line 3 to line 7 takes constant time, so Line 2 to line 8 takesO(k)

time. Other statements takes constant time. □

Theorem 5 Algorithm Broadcast runs in O(n) time.

Proof. Line 2 takes constant time, so the for loop from line 1 to line 3

takes O(n) time. Line 4 takes O(n) time and line 5 takes constant time.

Finding pred(v), SUCC(v), b_time(v) and spare(v) takesO(|N(v)|) time

and other statements from line 7 to line 17 takes constant time, so the

repeat-until loop from line 6 to line 19 takes

O(
∑

v∈V (T ) |N(v)|) = O(n) time. □
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Chapter 4

Correctness

The goal of this chapter is showing that the proposed algorithm indeed

determines the minimal number of centers needed. The optimalness to

the algorithm is based on the mutual trust between nodes. That is, every

node believes its processed neighbors perform their best, and it can also

perform the best to its unprocessed neighbor. The performance of a node

v is defined as below:

perf(v, SUCC(v), pred(v)) = (|E−(v)|, b_time(v), spare(v)).

We say (|E−(v)|, b_time(v), spare(v)) ≤ (|E−′(v)|, b_time′(v), spare′(v))

iff

(1) |E−(v)| < |E−′(v)|, or

(2) |E−(v)| = |E−′(v)|, b_time(v) ≤ b_time′(v) and

α+ w(u, v) + b_time(v) ≤ t, or

(3) |E−(v)| = |E−′(v)|, α + w(u, v) + b_time(v) > t,

α+ w(u, v) + b_time′(v) > t,

spare(v) ≤ spare′(v) and

spare(v) + α + w(v, u) ≤ t, or

(4) |E−(v)| = |E−′(v)|, α + w(u, v) + b_time(v) > t,
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α+ w(u, v) + b_time′(v) > t,

spare(v) + α + w(v, u) > t and

spare′(v) + α+ w(v, u) > t.

Smaller is better.

The performance of a node is made up of three parts. The first one

is unused edges; it depends on the number of successors and whether

the node has a predecessor. The second one is its broadcast time; it may

affect whether this node can be a successor of its unprocessed neighbor.

The third one is its earliest spare time; it may affect whether this node can

be the predecessor of its unprocessed neighbor. In this chapter, we will

show the minimalness of |E−(v)|, b_time(v) and spare(v) respectively

and then combining them for the correctness of the algorithm.

4.1 Minimum Unused Edges and Broadcast Time

The number of unused edges of v, |E−(v)|, depends on SUCC(v) and

pred(v). In this section, we show the algorithm can determine the max-

imum of |SUCC(v)| and then discuss the difference between finding

pred(v) before and after finding SUCC(v).

Lemma 6 Let SUCC∗(v) = {u1, u2, · · · , uk} and

w(v, u1) + b_time(u1) ≤ w(v, u2) + b_time(u2) ≤ · · · ≤ w(v, uk) +

b_time(uk). If we want to choose f nodes from SUCC∗(v) to be the

successors, then choosing (uf , uf−1, · · · , u1) is b_time(v)-optimal.

Proof. Suppose we choose (u′f , u
′
f−1, · · · , u

′
1). By Lemma 1, we may

assume w(v, u′f ) + b_time(u′f ) ≥ w(v, u′f−1) + b_time(u′f−1) ≥ · · · ≥
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w(v, u′1) + b_time(u′1).

Since w(v, uf ) + b_time(uf ) ≥ w(v, u′f ) + b_time(u′f ),

w(v, uf−1) + b_time(uf−1) ≥ w(v, u′f−1) + b_time(u′f−1), · · · ,

w(v, u1) + b_time(u1) ≥ w(v, u′1) + b_time(u′1),

we have b_time(v, (uf , uf−1, · · · , u1)) ≥ b_time(v, (u′f , u
′
f−1, · · · , u

′
1)).

□

Lemma 7 Using the method in Lemma 6, we can obtain the maximal

number of |SUCC(v)|.

Proof. We can simply choose f such that b_time(v, (uf , uf−1, · · · , u1))

is maximized under the constraint b_time(v, (uf , uf−1, · · · , u1)) ≤ t. □

Lemma 8 Let (u1, u2, · · · , uk) be a bucketed sequence and (u′1, u′2, · · · , u′k)

be its sorted permutation; that is, w(v, u′1) + b_time(u′1) ≥ w(v, u′2) +

b_time(u′2) ≥ · · · ≥ w(v, u′k) + b_time(u′k).

Then, b_time(v, (u1, u2, · · · , uk)) = b_time(v, (u′1, u
′
2, · · · , u′k)).

Proof. For each ux ∈ listk, we have arrive(ux) = arrive(v) + xα +

w(v, ux)+b_time(ux) ≤ arrive(v)+xα+w(v, u′1)+b_time(u′1)−kα ≤

arrive(v) +w(v, u1) + b_time(u1) = arrive(u1). Let uy = u∗j for some

j ∈ {0, 1, · · · , k − 1} and uz ∈ listj − {u∗j}. We have arrive(uy) =

arrive(v) + yα+w(v, uy) + b_time(uy) = arrive(v) + yα+w(v, uz) +

b_time(uz)−ϵα ≥ arrive(v)+zα+w(v, uz)+b_time(uz) = arrive(uz)

for some ϵ such that 0 ≤ ϵ < 1. This means only u∗0, u
∗
1, · · · , u∗k−1

may dominate b_time(v). Since uy = u′y and the sorted permutation

(u′1, u
′
2, · · · , u′k) is also a bucketed sequence, we have arrive(uy) =

arrive(u′y) and therefore this lemma holds. □
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Lemma 9 Let SUCC∗(v) = {u1, u2, · · · , uk}.

If (u1, u2, · · · , uk) is reversed bucketed sequence,

then b_time(v) = b_time(v, (uf , uf−1, · · · , u1))

where f is obtained from Lemma 7.

Proof. If listk dominates b_time(v), since we can run Procedure 4 on

listk to make listk bucketed without breaking O(n)-time, by Lemma 8,

b_time(v) is optimal. If listk does not dominate b_time(v), by the same

argument in Lemma 8, a vertex in {u∗0, u∗1, · · · , u∗k−1}∩{uf , uf−1, · · · , u1}

dominates b_time(v), so this lemma holds. □

Lemma 10 If we find pred(v) before findingSUCC(v), the performance

of v cannot be better.

Proof. If assigning a predecessor causes |SUCC(v)| decreased by two

or more, |E−(v)| is increased by at least one. If the |SUCC(v)| does not

change, then there are no differences between finding pred(v) before

and after finding SUCC(v). If |SUCC(v)| is decreased by one, |E−(v)|

does not change; however, it becomes impossible that v ∈ SUCC(u),

and spare(v) is increased by at least α due to pred(v) and decreased by

at most α thanks to the removed successor of v. □

Lemma 11 If v ∈ SUCC∗(u), then v /∈ PRED∗(u).

Proof. If v /∈ SUCC(u), then t − b_time(u) < α, so α + w(v, u) +

b_time(u) > t + w(v, u) ≥ t, v cannot be a predecessor candidate of u.

If v ∈ SUCC(u), since Lemma 10 tells us the performance of v cannot

be better if pred(u) = v, we do not need to include v to PRED∗(u). □
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4.2 Earliest Spare Time

We show that the earliest spare time is minimal with a sorting method

first, and then we can also obtain the minimum with the non-sorting

method. We use notations in Procedure 4.

Lemma 12 ui ∈ listk ⇒ ui can delay α time.

Proof. ui ∈ listk ⇒ w(ui, v)+b_time(ui) ≤ w(u1, v)+b_time(u1)−kα,

so (i+1)α+w(ui, v)+b_time(ui) ≤ (i+1)α+w(u1, v)+b_time(u1)−

kα ≤ α + w(u1, v) + b_time(u1) ≤ t. □

Lemma 13 Let ui ∈ listj − {u∗j} for some j ∈ {0, 1, · · · , k − 1}. We

have u∗j can delay α time⇒ ui can delay α time.

Proof. Let u∗j = ui′. We have (i+1)α+w(ui, v)+b_time(ui) ≤ (i′−1+

1)α+w(ui, v)+ b_time(ui) < (i′+1)α+w(ui′, v)+ b_time(ui′) ≤ t.□

Lemma 14 LetSUCC(v) = (u1, u2, · · · , uk). Ifw(v, u1)+b_time(u1) ≥

w(v, u2) + b_time(u2) ≥ · · · ≥ w(v, uk) + b_time(uk), our algorithm

can determine the earliest spare time spare(v).

Proof. If spare(v) = arrive(v)+ (i− 1)α, we need to choose k− i suc-

cessors of v, denoted by SUCC ′(v), such that b_time(v, SUCC ′(v)) ≤

t− arrive(v)− (i− 1)α. By Lemma 6, choosing ui+1, ui+2, · · · , uk can

obtain minimal b_time(v, SUCC ′(v)) under |SUCC ′(v)| is fixed by i.

Since b_time(v, (ui, ui+1, · · · , uk)) ≥ b_time(v, (ui+1, ui+2, · · · , uk)) +

α, we have t−arrive(v)− (i− 1)α− b_time(v, (ui+1, ui+2, · · · , uk)) ≤

t − arrive(v) − iα − b_time(v, (ui, ui+1, · · · , uk)). This implies ∃f ∈
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{1, 2, · · · , k+1} such that b_time(v, SUCC ′(v)) ≤ t−arrive(v)− (i−

1)α if i ≥ f and b_time(v, SUCC ′(v)) > t−arrive(v)−(i−1)α if i < f

and our algorithm determines f and the earliest spare time spare(v) is

exactly arrive(v) + (f − 1)α. □

Lemma 15 Continued from the previous lemma. If SUCC(v) is de-

headedly bucketed, our algorithm can still determine the earliest spare

time spare(v).

Proof. Lemma 13 implies the number of successors which can delay

α time is equal for any two different deheadedly bucketed sequence of

SUCC(v). Since the sorted sequence is also deheadedly bucketed, this

number is equal to k − f + 1 where f is introduced in the proof of the

previous lemma. □

4.3 Correctness of the Algorithm

Combining Lemma 7, Lemma 9, Lemma 10 and Lemma 15, we have

the result:

Lemma 16 GivenSUCC∗(v) including b_time(x)∀x ∈ SUCC∗(v) and

PERD∗(v) including spare(p)∀p ∈ PRED∗(v), the algorithm deter-

mines SUCC(v) and pred(v) such that perf(v, SUCC(v), pred(v)) is

the best.

Before showing the correctness of the algorithm, we still need a lemma:

Lemma 17 Let SUCC∗(v) = {u1, u2, · · · , uk},

SUCC∗(v′) = {u′1, u′2, · · · , u′k}, w(v, uj) = w(v′, u′j)∀j ∈ {1, 2, · · · , k}
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and arrive(v) = arrive(v′). If ∃!i ∈ {1, 2, · · · , k} such that b_time(u′i) <

b_time(ui) and b_time(uj) = b_time(u′j)∀j ∈ {1, 2, · · · , k} − {i}, then

|SUCC(v′)| ≤ |SUCC(v)|+ 1.

Proof. Without loss of generality,

we may assume w(v, ua) + b_time(ua) ≤ w(v, ub) + b_time(ub)∀a < b.

Let f = |SUCC(v)|. If |SUCC(v′)| ≥ f + 2, by Lemma 6,

b_time(v′, SUCC(v′)) ≥ b_time(v′, {u′f+2, u
′
f+1, · · · , u

′
1}) ≥

b_time(v, {uf+1, uf , · · · , u1}), whichmeans broadcasting cannot be done

within the time constraint. Thus, |SUCC(v′)| ≥ f + 2 is impossible. □

Theorem 18 Algorithm Broadcast indeed determines the minimal num-

ber of centers needed.

Proof. We prove by induction. We want to proof every time a vertex is

processed, |E−| = OPT (T − T ′, t) − 1; under this condition, for each

node v satisfying v has an unprocessed neighbor,

perf(v, SUCC(v), pred(v)) is minimized.

Let v1 be a leaf of T . Observe that v1 has no choices; that is,

SUCC∗(v1) = ∅ and PRED∗(v1) = ∅

⇒ SUCC(v1) = ∅ and pred(v1) = nil

⇒ E−(v1) = 0 = 1− 1 = OPT ({v1}, t)− 1.

∵ SUCC(v1) = ∅, ∴ b_time(v) = 0 and spare(v) = 0.

Therefore, perf(v1, ∅, nil) = (0, 0, 0) is obviously minimal.

Suppose before line 2, |E−| = OPT (T − T ′−{v}, t)− 1; under this

condition, for each node v satisfying v has an unprocessed neighbor,
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perf(v, SUCC(v), pred(v)) is minimized. We prove |E−| = OPT (T −

T ′, t) − 1; under this condition, for each node v satisfying v has an un-

processed neighbor,

perf(v, SUCC(v), pred(v)) is minimized.

By Lemma 16, it is impossible to find a strategy to make

perf(v, SUCC(v), pred(v)) smaller without modifying SUCC(x) for

some x ∈ T − T ′. To make perf(v, SUCC(v), pred(v)) smaller, we

have only two choices. The first choice is ∃s ∈ N(v) − {u} such that

b_time(s) is decreased, and the other choice is ∃p ∈ N(v)−SUCC∗(v)

such that spare(p) is decreased.

For each time the challenger makes a node ∃s ∈ N(v) − {u} such

that b_time(s) is decreased, by the induction hypothesis, |E−(s)| must

be decreased by at least one. After b_time(s) is decreased, we observe

the change of SUCC(v). Lemma 17 tells us v can accept only one more

successor.

If there is a node s′ joining SUCC(v), since b_time(v, SUCC(v) ∪

{s′}) ≥ b_time(v, SUCC(v) ∪ {s′} − {s}) ≥ b_time(v, SUCC(v))

and spare(v, SUCC(v) ∪ {s′}) ≥ spare(v, SUCC(v) ∪ {s′} − {s}) ≥

spare(v, SUCC(v)), the challenger fails to make

perf(v, SUCC(v), pred(v)) smaller.

If SUCC(v) is not increased by 1, it is possible v can have a pre-

decessor. From pred(v) = nil to pred(v) ̸= nil, spare(v) is increased

by at least α. However, making b_time(s) decreased can only make

spare(v) decreased by at most α. The challenger still cannot make

26



perf(v, SUCC(v), pred(v)) smaller.

It is impossible both a node s′ joinsSUCC(v) and from pred(v) = nil

to pred(v) ̸= nil happen because ∀s∗ ∈ SUCC(v) ∪ {s′},

b_time(v, SUCC(v) ∪ {s′} − {s∗}) ≥ b_time(v, SUCC(v)),

so t−arrive(v)− b_time(v, SUCC(v)∪{s′}−{s∗}) ≤ t−arrive(v)−

b_time(v, SUCC(v)), which means v cannot become have ability to

have a predecessor after this change by the challenger.

If ∃p ∈ N(v) − SUCC∗(v) such that spare(p) is decreased, by the

induction hypothesis, |E−(p)| is decreased by at least one; it can be only

made up if pred(v) = nil is changed to pred(v) = p, which makes

spare(v) increased by at least α, so perf(v, SUCC(v), pred(v)) cannot

be improved. □
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Chapter 5

Two Illustrative Examples

In this chapter, we illustrate the algorithm with two arbitrary trees. Both

trees are spanning trees of G0, which is shown in Figure 5.1. Also, we

suppose α = 2 and t = 17 in both examples.
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Figure 5.1: Graph G0.

5.1 The First Example

The tree T1 is shown in Figure 5.2. We demostrate the algorithm twice

with two processing sequence,

(a, b, c, d, e, f, g, v, w, x, u) and (g, f, x, e, d, w, u, b, c, v, a).

We show the case (a, b, c, d, e, f, g, v, w, x, u) first.
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Figure 5.2: Tree T1.

The 1st processed node is a. Its unprocessed neighbor is v. Because

SUCC∗(a) = ∅ and PRED∗(a) = ∅, it is obviously SUCC(a) = ∅,

b_time(a) = 0, pred(a) = ∅ and spare(a) = 0. Because pred(a) = ∅

and α + w(v, a) + b_time(a) = 2 + 3 + 0 = 5 ≤ 17 = t, the algorithm

adds a to SUCC∗(v).

The 2nd processed node is b. Its unprocessed neighbor is v. Because

SUCC∗(b) = ∅ and PRED∗(b) = ∅, it is obviously SUCC(b) = ∅,

b_time(b) = 0, pred(b) = ∅ and spare(b) = 0. Because pred(b) = ∅ and

α+w(v, b) + b_time(b) = 2+ 6+ 0 = 8 ≤ 17 = t, the algorithm adds b

to SUCC∗(v).

The 3rd processed node is c. Its unprocessed neighbor is v. Because

SUCC∗(c) = ∅ and PRED∗(c) = ∅, it is obviously SUCC(c) = ∅,

b_time(c) = 0, pred(c) = ∅ and spare(c) = 0. Because pred(c) = ∅ and

α+w(v, c) + b_time(c) = 2 + 8 + 0 = 10 ≤ 17 = t, the algorithm adds

c to SUCC∗(v).

The 4th processed node is d. Its unprocessed neighbor is w. Because

SUCC∗(d) = ∅ and PRED∗(d) = ∅, it is obviously SUCC(d) = ∅,
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b_time(d) = 0, pred(d) = ∅ and spare(d) = 0. Because pred(d) = ∅

and α + w(w, d) + b_time(d) = 2 + 5 + 0 = 7 ≤ 17 = t, the algorithm

adds d to SUCC∗(w).

The 5th processed node is e. Its unprocessed neighbor is w. Because

SUCC∗(e) = ∅ and PRED∗(e) = ∅, it is obviously SUCC(e) = ∅,

b_time(e) = 0, pred(e) = ∅ and spare(e) = 0. Because pred(e) = ∅

and α + w(w, e) + b_time(e) = 2 + 2 + 0 = 4 ≤ 17 = t, the algorithm

adds e to SUCC∗(w).

The 6th processed node is f . Its unprocessed neighbor is x. Because

SUCC∗(f) = ∅ and PRED∗(f) = ∅, it is obviously SUCC(f) = ∅,

b_time(f) = 0, pred(f) = ∅ and spare(f) = 0. Because pred(f) = ∅

and α + w(x, f) + b_time(f) = 2 + 4 + 0 = 6 ≤ 17 = t, the algorithm

adds f to SUCC∗(x).

The 7th processed node is g. Its unprocessed neighbor is x. Because

SUCC∗(g) = ∅ and PRED∗(g) = ∅, it is obviously SUCC(g) = ∅,

b_time(g) = 0, pred(g) = ∅ and spare(g) = 0. Because pred(g) = ∅

and α + w(x, g) + b_time(g) = 2 + 7 + 0 = 9 ≤ 17 = t, the algorithm

adds g to SUCC∗(x).

The 8th processed node is v. Its unprocessed neighbor is u. The algo-

rithm reordersSUCC∗(v) = {a, b, c} first. Becausew(v, a)+b_time(a) =

3 + 0 = 3 = 8− 2.5α, w(v, b) + b_time(b) = 6 + 0 = 6 = 8− 1.0α and

w(v, c)+b_time(c) = 8+0 = 8, the algorithm gives u1 = c, list0 = {c},

list1 = {b}, list2 = {a}, list3 = ∅. Therefore, the reordered sequence

of SUCC∗(v) is (c, b, a).
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Now the algorithm starts determining SUCC(v). Because

α + b_time(v) = 2 + 0 = 2 ≤ 17 = t and α + w(v, a) + b_time(a) =

2+3+0 = 5 ≤ 17 = t, the algorithm adds a to SUCC(v) and b_time(v)

is 5 now. Because α+b_time(v) = 2+5 = 7 ≤ 17 = t and α+w(v, b)+

b_time(b) = 2 + 6 + 0 = 8 ≤ 17 = t, the algorithm adds b to SUCC(v)

and b_time(v) is 8 now.

Because α + b_time(v) = 2 + 8 = 10 ≤ 17 = t and α + w(v, c) +

b_time(c) = 2+8+0 = 10 ≤ 17 = t, the algorithm adds c to SUCC(v)

and b_time(v) is 10 now. All successor candidates of v are successors

of v. Because PRED∗(v) = ∅, it is obviously pred(v) = ∅. Because

pred(v) = ∅ and α + w(u, v) + b_time(v) = 2 + 5 + 10 = 17 ≤ 17 = t,

the algorithm adds v to SUCC∗(u).

The 9th processed node isw. Its unprocessed neighbor is u. The algo-

rithm reordersSUCC∗(w) = {d, e} first. Becausew(w, d)+b_time(d) =

5 + 0 = 5 and w(w, e) + b_time(e) = 2 + 0 = 2 = 5 − 1.5α, the algo-

rithm gives u1 = d, list0 = {d}, list1 = {e}, list2 = ∅. Therefore, the

reordered sequence of SUCC∗(v) is (d, e).

Now the algorithm starts determining SUCC(w). Because

α + b_time(w) = 2 + 0 = 2 ≤ 17 = t and α + w(w, e) + b_time(e) =

2+2+0 = 4 ≤ 17 = t, the algorithm adds e to SUCC(w) and b_time(w)

is 4 now. Because α+b_time(w) = 2+2 = 4 ≤ 17 = t andα+w(w, d)+

b_time(d) = 2+5+0 = 7 ≤ 17 = t, the algorithm adds d to SUCC(w)

and b_time(w) is 7 now. All successor candidates of w are successors

of w. Because PRED∗(w) = ∅, it is obviously pred(w) = ∅. Because
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pred(w) = ∅ and α+ w(u,w) + b_time(w) = 2 + 2 + 7 = 11 ≤ 17 = t,

the algorithm adds w to SUCC∗(u).

The 10th processed node is x. Its unprocessed neighbor is u. The al-

gorithm reordersSUCC∗(x) = {f, g} first. Becausew(x, f)+b_time(f) =

4 + 0 = 4 = 7 − 1.5α and w(x, g) + b_time(e) = 7 + 0 = 7, the algo-

rithm gives u1 = g, list0 = {g}, list1 = {f}, list2 = ∅. Therefore, the

reordered sequence of SUCC∗(v) is (g, f). Now the algorithm starts de-

termining SUCC(x). Because α+ b_time(x) = 2+0 = 2 ≤ 17 = t and

α+w(x, f)+ b_time(f) = 2+4+0 = 6 ≤ 17 = t, the algorithm adds f

to SUCC(x) and b_time(x) is 6 now. Because α+b_time(x) = 2+6 =

8 ≤ 17 = t and α + w(x, g) + b_time(g) = 2 + 7 + 0 = 9 ≤ 17 = t, the

algorithm adds g to SUCC(x) and b_time(x) is 9 now. All successor

candidates of x are successors of x. Because PRED∗(x) = ∅, it is obvi-

ously pred(x) = ∅. Because pred(x) = ∅ and α+w(u, x)+b_time(x) =

2 + 6 + 9 = 17 ≤ 17 = t, the algorithm adds x to SUCC∗(u).

The last processed node is u. The algorithm reorders SUCC∗(u) =

{v, w, x} first. Because w(u, v) + b_time(v) = 5 + 10 = 15 = 8,

w(u,w)+b_time(w) = 2+7 = 9 = 15−3.0α andw(u, x)+b_time(x) =

6 + 9 = 15, the algorithm gives u1 = v, list0 = {v, x}, list1 = ∅,

list2 = ∅, list3 = {w}. Therefore, the reordered sequence of SUCC∗(u)

is (v, x, w).

Now the algorithm starts determining SUCC(u). Because

α + b_time(u) = 2 + 0 = 2 ≤ 17 = t and α + w(u,w) + b_time(w) =

2 + 2 + 7 = 11 ≤ 17 = t, the algorithm adds w to SUCC(u) and
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b_time(u) is 11 now. Because α + b_time(u) = 2 + 11 = 13 ≤ 17 = t

and α+ w(u, x) + b_time(x) = 2 + 6 + 9 = 17 ≤ 17 = t, the algorithm

adds x to SUCC(u) and b_time(u) is 17 now. Because α+b_time(u) =

2 + 17 = 19 > 17 = t, the algorithm gives v cannot be a successor of

u. Because PRED∗(u) = ∅, it is obviously pred(u) = ∅. The result is

there are two broadcast centers, v and u and there is one unused edge,

(v, u).

Now we run the algorithm again, but with an another processing se-

quence, (g, f, x, e, d, w, u, b, c, v, a). The 1st processed node is g. Its un-

processed neighbor is x. Because SUCC∗(g) = ∅ and PRED∗(g) =

∅, it is obviously SUCC(g) = ∅, b_time(g) = 0, pred(g) = ∅ and

spare(g) = 0. Because pred(g) = ∅ and α + w(x, g) + b_time(g) =

2 + 7 + 0 = 9 ≤ 17 = t, the algorithm adds g to SUCC∗(x).

The 2nd processed node is f . Its unprocessed neighbor is x. Because

SUCC∗(f) = ∅ and PRED∗(f) = ∅, it is obviously SUCC(f) = ∅,

b_time(f) = 0, pred(f) = ∅ and spare(f) = 0. Because pred(f) = ∅

and α + w(x, f) + b_time(f) = 2 + 4 + 0 = 6 ≤ 17 = t, the algorithm

adds f to SUCC∗(x).

The 3rd processed node is x. Its unprocessed neighbor is u. The algo-

rithm reordersSUCC∗(x) = {f, g} first. Becausew(x, f)+b_time(f) =

4 + 0 = 4 = 7 − 1.5α and w(x, g) + b_time(e) = 7 + 0 = 7, the algo-

rithm gives u1 = g, list0 = {g}, list1 = {f}, list2 = ∅. Therefore, the

reordered sequence of SUCC∗(v) is (g, f).

Now the algorithm starts determining SUCC(x). Because
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α + b_time(x) = 2 + 0 = 2 ≤ 17 = t and α + w(x, f) + b_time(f) =

2+4+0 = 6 ≤ 17 = t, the algorithm adds f to SUCC(x) and b_time(x)

is 6 now. Because α+b_time(x) = 2+6 = 8 ≤ 17 = t and α+w(x, g)+

b_time(g) = 2+ 7+ 0 = 9 ≤ 17 = t, the algorithm adds g to SUCC(x)

and b_time(x) is 9 now. All successor candidates of x are successors

of x. Because PRED∗(x) = ∅, it is obviously pred(x) = ∅. Because

pred(x) = ∅ and α + w(u, x) + b_time(x) = 2 + 6 + 9 = 17 ≤ 17 = t,

the algorithm adds x to SUCC∗(u).

The 4th processed node is e. Its unprocessed neighbor is w. Because

SUCC∗(e) = ∅ and PRED∗(e) = ∅, it is obviously SUCC(e) = ∅,

b_time(e) = 0, pred(e) = ∅ and spare(e) = 0. Because pred(e) = ∅

and α + w(w, e) + b_time(e) = 2 + 2 + 0 = 4 ≤ 17 = t, the algorithm

adds e to SUCC∗(w).

The 5th processed node is d. Its unprocessed neighbor is w. Because

SUCC∗(d) = ∅ and PRED∗(d) = ∅, it is obviously SUCC(d) = ∅,

b_time(d) = 0, pred(d) = ∅ and spare(d) = 0. Because pred(d) = ∅

and α + w(w, d) + b_time(d) = 2 + 5 + 0 = 7 ≤ 17 = t, the algorithm

adds d to SUCC∗(w).

The 6th processed node isw. Its unprocessed neighbor is u. The algo-

rithm reordersSUCC∗(w) = {d, e} first. Becausew(w, d)+b_time(d) =

5 + 0 = 5 and w(w, e) + b_time(e) = 2 + 0 = 2 = 5 − 1.5α, the algo-

rithm gives u1 = d, list0 = {d}, list1 = {e}, list2 = ∅. Therefore, the

reordered sequence of SUCC∗(v) is (d, e).

Now the algorithm starts determining SUCC(w). Because
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α + b_time(w) = 2 + 0 = 2 ≤ 17 = t and α + w(w, e) + b_time(e) =

2+2+0 = 4 ≤ 17 = t, the algorithm adds e to SUCC(w) and b_time(w)

is 4 now. Because α+b_time(w) = 2+2 = 4 ≤ 17 = t andα+w(w, d)+

b_time(d) = 2+5+0 = 7 ≤ 17 = t, the algorithm adds d to SUCC(w)

and b_time(w) is 7 now. All successor candidates of w are successors

of w. Because PRED∗(w) = ∅, it is obviously pred(w) = ∅. Because

pred(w) = ∅ and α+ w(u,w) + b_time(w) = 2 + 2 + 7 = 11 ≤ 17 = t,

the algorithm adds w to SUCC∗(u).

The 7th processed node is u. Its unprocessed neighbor is v. The algo-

rithm reordersSUCC∗(u) = {x,w} first. Becausew(u, x)+b_time(x) =

6 + 9 = 15 and w(u,w) + b_time(w) = 2 + 7 = 9 = 15 − 3.0α, the al-

gorithm gives u1 = x, list0 = {x}, list1 =

emptyset, list2 = {w}. Therefore, the reordered sequence ofSUCC∗(u)

is (x,w).

Now the algorithm starts determining SUCC(u). Because

α + b_time(u) = 2 + 0 = 2 ≤ 17 = t and α + w(u,w) + b_time(w) =

2 + 2 + 7 = 11 ≤ 17 = t, the algorithm adds w to SUCC(u) and

b_time(u) is 11 now. Becauseα+b_time(u) = 2+11 = 13 ≤ 17 = t and

α+w(u, x)+b_time(x) = 2+6+9 = 17 ≤ 17 = t, the algorithm adds x

to SUCC(u) and b_time(u) is 17 now. All successor candidates of u are

successors of u. Because PRED∗(u) = ∅, it is obviously pred(u) = ∅.

Because pred(u) = ∅ and α+w(v, u)+ b_time(u) = 2+5+17 = 24 >

17 = t, the algorithm gives u cannot be a successor candidate of v.

Now the algorithm determines spare(u). Because arrive(u) + (2 +
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1)α+w(u,w)+b_time(w) = 0+6+2+7 = 15 ≤ 17 = t, the algorithm

gives w can delay α time. Because arrive(u) + (1 + 1)α + w(u, x) +

b_time(x) = 0 + 4 + 6 + 9 = 19 > 17 = t, the algorithm gives x

cannot delay α time. The first one successor of u cannot delay α time,

the algorithm tells us spare(u) = arrive(u) + 1α = 0+ 2 = 2. Because

spare(u) + α+w(u, v) = 2 + 2 + 5 = 9 ≤ 17 = t, the algorithm adds u

to PRED∗(v).

The 8th processed node is c. Its unprocessed neighbor is v. Because

SUCC∗(c) = ∅ and PRED∗(c) = ∅, it is obviously SUCC(c) = ∅,

b_time(c) = 0, pred(c) = ∅ and spare(c) = 0. Because pred(c) = ∅ and

α+w(v, c) + b_time(c) = 2 + 8 + 0 = 10 ≤ 17 = t, the algorithm adds

c to SUCC∗(v).

The 9th processed node is b. Its unprocessed neighbor is v. Because

SUCC∗(b) = ∅ and PRED∗(b) = ∅, it is obviously SUCC(b) = ∅,

b_time(b) = 0, pred(b) = ∅ and spare(b) = 0. Because pred(b) = ∅ and

α+w(v, b) + b_time(b) = 2+ 6+ 0 = 8 ≤ 17 = t, the algorithm adds b

to SUCC∗(v).

The 10th processed node is v. Its unprocessed neighbor is a. The algo-

rithm reorders SUCC∗(v) = {c, b} first. Because w(v, c)+ b_time(c) =

8+0 = 8 and w(v, b)+ b_time(b) = 6+0 = 6 = 8−1.0α, the algorithm

gives u1 = c, list0 = {c}, list1 = {b}, list2 = ∅, list3 = ∅. Therefore,

the reordered sequence of SUCC∗(v) is (c, b).

Now the algorithm starts determining SUCC(v). Because

α + b_time(v) = 2 + 0 = 2 ≤ 17 = t and α + w(v, b) + b_time(b) =
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2+6+0 = 8 ≤ 17 = t, the algorithm adds b to SUCC(v) and b_time(v)

is 8 now. Because α+b_time(v) = 2+8 = 10 ≤ 17 = t and α+w(v, c)+

b_time(c) = 2+8+0 = 10 ≤ 17 = t, the algorithm adds c to SUCC(v)

and b_time(v) is 10 now. All successor candidates of v are successors

of v.

Now the algorithm starts determining pred(v). There is only one pre-

decessor candidate of v, u. Because spare(u)+α+w(u, v)+b_time(v) =

2+2+5+10 = 19 > 17 = t, the algorithm gives pred(v) = ∅. Because

pred(v) = ∅ and α + w(a, v) + b_time(v) = 2 + 3 + 10 = 15 ≤ 17 = t,

the algorithm adds v to SUCC∗(a).

The last processed node is a. Now the algorithm starts determining

if v ∈ SUCC(a). Because α + b_time(a) = 2 + 0 = 2 ≤ 17 = t and

α+w(a, v)+ b_time(v) = 2+3+10 = 15 ≤ 17 = t, the algorithm adds

v to SUCC(a) and b_time(a) is 15 now. Because PRED∗(a) = ∅, it is

obviously pred(a) = ∅. The result is there are two broadcast centers, u

and a and there is one unused edge, (u, v). Both results tell us we need

at least two broadcast centers on T1, but the location of centers is not

necessary unique.
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5.2 The Second Example

The tree T2 is shown in Figure 5.3. Note that the edges in T2 are shorter

edges in G0. We demostrate the algorithm twice with two processing

sequence, (v, a, c, d, e, f, x, g, b, u, w) and (f, x, d, e, g, b, u, w, c, a, v).

2

2

2

3

3
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4
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d e

Figure 5.3: Tree T2.

We show the case (v, a, c, d, e, f, x, g, b, u, w) first. The 1st processed

node is v. Its unprocessed neighbor is a. Because SUCC∗(v) = ∅

and PRED∗(v) = ∅, it is obviously SUCC(v) = ∅, b_time(v) = 0,

pred(v) = ∅ and spare(v) = 0. Because pred(v) = ∅ and α+ w(a, v) +

b_time(v) = 2+3+0 = 5 ≤ 17 = t, the algorithm adds v to SUCC∗(a).

The 2nd processed node is a. Its unprocessed neighbor is c. Now the

algorithm starts determining if v ∈ SUCC(a). Because α+b_time(a) =

2+0 = 2 ≤ 17 = t and α+w(a, v)+b_time(v) = 2+3+0 = 5 ≤ 17 = t,

the algorithm adds v to SUCC(a) and b_time(a) is 5 now. Because

PRED∗(a) = ∅, it is obviously pred(a) = ∅. Because pred(a) = ∅ and

α + w(c, a) + b_time(a) = 2 + 2 + 5 = 9 ≤ 17 = t, the algorithm adds

a to SUCC∗(c).
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The 3rd processed node is c. Its unprocessed neighbor is w. Now the

algorithm starts determining if a ∈ SUCC(c). Because α+b_time(c) =

2+0 = 2 ≤ 17 = t and α+w(c, a)+b_time(a) = 2+2+5 = 9 ≤ 17 = t,

the algorithm adds a to SUCC(c) and b_time(c) is 9 now. Because

PRED∗(c) = ∅, it is obviously pred(c) = ∅. Because pred(c) = ∅ and

α+w(w, a)+ b_time(a) = 2+4+9 = 15 ≤ 17 = t, the algorithm adds

a to SUCC∗(w).

The 4th processed node is d. Its unprocessed neighbor is e. Because

SUCC∗(d) = ∅ and PRED∗(d) = ∅, it is obviously SUCC(d) = ∅,

b_time(d) = 0, pred(d) = ∅ and spare(d) = 0. Because pred(d) = ∅

and α + w(e, d) + b_time(d) = 2 + 5 + 0 = 7 ≤ 17 = t, the algorithm

adds d to SUCC∗(e).

The 5th processed node is e. Its unprocessed neighbor is w. Now the

algorithm starts determining if d ∈ SUCC(e). Because α+b_time(e) =

2+0 = 2 ≤ 17 = t and α+w(e, d)+b_time(d) = 2+5+0 = 7 ≤ 17 = t,

the algorithm adds d to SUCC(e) and b_time(e) is 7 now. Because

PRED∗(e) = ∅, it is obviously pred(e) = ∅. Because pred(e) = ∅ and

α+w(w, e) + b_time(e) = 2+ 2+ 7 = 11 ≤ 17 = t, the algorithm adds

e to SUCC∗(w).

The 6th processed node is f . Its unprocessed neighbor is x. Because

SUCC∗(f) = ∅ and PRED∗(f) = ∅, it is obviously SUCC(f) = ∅,

b_time(f) = 0, pred(f) = ∅ and spare(f) = 0. Because pred(f) = ∅

and α + w(x, f) + b_time(f) = 2 + 4 + 0 = 6 ≤ 17 = t, the algorithm

adds f to SUCC∗(x).
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The 7th processed node is x. Its unprocessed neighbor is w. Now the

algorithm starts determining if d ∈ SUCC(x). Becauseα+b_time(x) =

2+0 = 2 ≤ 17 = t and α+w(x, f)+b_time(f) = 2+4+0 = 6 ≤ 17 = t,

the algorithm adds f to SUCC(x) and b_time(x) is 6 now. Because

PRED∗(x) = ∅, it is obviously pred(x) = ∅. Because pred(x) = ∅ and

α+w(w, x)+ b_time(x) = 2+3+6 = 11 ≤ 17 = t, the algorithm adds

x to SUCC∗(w).

The 8th processed node is g. Its unprocessed neighbor is b. Because

SUCC∗(g) = ∅ and PRED∗(g) = ∅, it is obviously SUCC(g) = ∅,

b_time(g) = 0, pred(g) = ∅ and spare(g) = 0. Because pred(g) = ∅

and α + w(b, g) + b_time(g) = 2 + 3 + 0 = 5 ≤ 17 = t, the algorithm

adds g to SUCC∗(b).

The 9th processed node is b. Its unprocessed neighbor is u. Now the

algorithm starts determining if v ∈ SUCC(b). Because α+b_time(b) =

2+0 = 2 ≤ 17 = t and α+w(a, v)+b_time(g) = 2+3+0 = 5 ≤ 17 = t,

the algorithm adds g to SUCC(b) and b_time(b) is 5 now. Because

PRED∗(b) = ∅, it is obviously pred(b) = ∅. Because pred(b) = ∅

and α + w(u, b) + b_time(b) = 2 + 4 + 5 = 11 ≤ 17 = t, the algorithm

adds b to SUCC∗(u).

The 10th processed node is u. Its unprocessed neighbor isw. Now the

algorithm starts determining if a ∈ SUCC(u). Becauseα+b_time(u) =

2+0 = 2 ≤ 17 = t andα+w(c, a)+b_time(b) = 2+4+5 = 11 ≤ 17 = t,

the algorithm adds b to SUCC(u) and b_time(u) is 9 now. Because

PRED∗(u) = ∅, it is obviously pred(u) = ∅. Because pred(u) = ∅ and
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α + w(w, u) + b_time(b) = 2 + 2 + 11 = 15 ≤ 17 = t, the algorithm

adds b to SUCC∗(w).

The last processed node is w. The algorithm reorders SUCC∗(w) =

{c, e, x, u} first. Because w(w, c) + b_time(c) = 4 + 9 = 13, w(w, e) +

b_time(e) = 2 + 7 = 9 = 13 − 2.0α, w(w, x) + b_time(x) = 3 + 6 =

9 − 2.0α and w(w, u) + b_time(u) = 2 + 11 = 13, the algorithm gives

u1 = c, list0 = {c, u}, list1 = ∅, list2 = {e, x}, list3 = ∅, list4 = ∅.

Therefore, the reordered sequence of SUCC∗(v) is (c, u, e, x).

Now the algorithm starts determining SUCC(w). Because

α + b_time(w) = 2 + 0 = 2 ≤ 17 = t and α + w(w, x) + b_time(x) =

2 + 3 + 6 = 11 ≤ 17 = t, the algorithm adds x to SUCC(w) and

b_time(w) is 11 now. Because α + b_time(w) = 2 + 11 = 13 ≤ 17 = t

and α+ w(w, e) + b_time(e) = 2 + 2 + 7 = 11 ≤ 17 = t, the algorithm

adds e to SUCC(w) and b_time(w) is 13 now. Becauseα+b_time(w) =

2 + 13 = 15 ≤ 17 = t and α + w(w, u) + b_time(u) = 2 + 2 + 11 =

15 ≤ 17 = t, the algorithm adds u to SUCC(w) and b_time(w) is 15

now. Because α+ b_time(c) = 2+15 = 17 ≤ 17 = t and α+w(w, c)+

b_time(c) = 2+4+9 = 15 ≤ 17 = t, the algorithm adds c to SUCC(w)

and b_time(w) is 17 now. All successor candidates of w are successors

of w. Because PRED∗(w) = ∅, it is obviously pred(w) = ∅. The result

is that one broadcast center is enough. The location of the center given

by the algorithm is w.

Now we run the algorithm again, but with an another processing se-

quence, (f, x, d, e, g, b, u, w, c, a, v). The 1st processed node is f . Its un-
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processed neighbor is x. Because SUCC∗(f) = ∅ and PRED∗(f) =

∅, it is obviously SUCC(f) = ∅, b_time(f) = 0, pred(f) = ∅ and

spare(f) = 0. Because pred(f) = ∅ and α + w(x, f) + b_time(f) =

2 + 4 + 0 = 6 ≤ 17 = t, the algorithm adds f to SUCC∗(x).

The 2nd processed node is x. Its unprocessed neighbor is w. Now the

algorithm starts determining if d ∈ SUCC(x). Becauseα+b_time(x) =

2+0 = 2 ≤ 17 = t and α+w(x, f)+b_time(f) = 2+4+0 = 6 ≤ 17 = t,

the algorithm adds f to SUCC(x) and b_time(x) is 6 now. Because

PRED∗(x) = ∅, it is obviously pred(x) = ∅. Because pred(x) = ∅ and

α+w(w, x)+ b_time(x) = 2+3+6 = 11 ≤ 17 = t, the algorithm adds

x to SUCC∗(w).

The 3rd processed node is d. Its unprocessed neighbor is e. Because

SUCC∗(d) = ∅ and PRED∗(d) = ∅, it is obviously SUCC(d) = ∅,

b_time(d) = 0, pred(d) = ∅ and spare(d) = 0. Because pred(d) = ∅

and α + w(e, d) + b_time(d) = 2 + 5 + 0 = 7 ≤ 17 = t, the algorithm

adds d to SUCC∗(e).

The 4th processed node is e. Its unprocessed neighbor is w. Now the

algorithm starts determining if d ∈ SUCC(e). Because α+b_time(e) =

2+0 = 2 ≤ 17 = t and α+w(e, d)+b_time(d) = 2+5+0 = 7 ≤ 17 = t,

the algorithm adds d to SUCC(e) and b_time(e) is 7 now. Because

PRED∗(e) = ∅, it is obviously pred(e) = ∅. Because pred(e) = ∅ and

α+w(w, e) + b_time(e) = 2+ 2+ 7 = 11 ≤ 17 = t, the algorithm adds

e to SUCC∗(w).

The 5th processed node is g. Its unprocessed neighbor is b. Because
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SUCC∗(g) = ∅ and PRED∗(g) = ∅, it is obviously SUCC(g) = ∅,

b_time(g) = 0, pred(g) = ∅ and spare(g) = 0. Because pred(g) = ∅

and α + w(b, g) + b_time(g) = 2 + 3 + 0 = 5 ≤ 17 = t, the algorithm

adds g to SUCC∗(b).

The 6th processed node is b. Its unprocessed neighbor is u. Now the

algorithm starts determining if v ∈ SUCC(b). Because α+b_time(b) =

2+0 = 2 ≤ 17 = t and α+w(a, v)+b_time(g) = 2+3+0 = 5 ≤ 17 = t,

the algorithm adds g to SUCC(b) and b_time(b) is 5 now. Because

PRED∗(b) = ∅, it is obviously pred(b) = ∅. Because pred(b) = ∅

and α + w(u, b) + b_time(b) = 2 + 4 + 5 = 11 ≤ 17 = t, the algorithm

adds b to SUCC∗(u).

The 7th processed node is u. Its unprocessed neighbor is w. Now the

algorithm starts determining if a ∈ SUCC(u). Becauseα+b_time(u) =

2+0 = 2 ≤ 17 = t andα+w(c, a)+b_time(b) = 2+4+5 = 11 ≤ 17 = t,

the algorithm adds b to SUCC(u) and b_time(u) is 9 now. Because

PRED∗(u) = ∅, it is obviously pred(u) = ∅. Because pred(u) = ∅ and

α + w(w, u) + b_time(b) = 2 + 2 + 11 = 15 ≤ 17 = t, the algorithm

adds b to SUCC∗(w).

The 8th processed node is w. Its unprocessed neighbor is c. The

algorithm reorders SUCC∗(w) = {x, e, u} first. Because w(w, x) +

b_time(x) = 3 + 6 = 9 − 2.0α, w(w, e) + b_time(e) = 2 + 7 = 9 =

13− 2.0α and w(w, u) + b_time(u) = 2 + 11 = 13, the algorithm gives

u1 = u, list0 = {u}, list1 = ∅, list2 = {x, e}, list3 = ∅. Therefore, the

reordered sequence of SUCC∗(v) is (u, x, e).
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Now the algorithm starts determining SUCC(w). Because

α + b_time(w) = 2 + 0 = 2 ≤ 17 = t and α + w(w, e) + b_time(e) =

2 + 2 + 7 = 11 ≤ 17 = t, the algorithm adds e to SUCC(w) and

b_time(w) is 11 now. Because α + b_time(w) = 2 + 11 = 13 ≤ 17 = t

and α+w(w, x) + b_time(x) = 2 + 3+ 6 = 11 ≤ 17 = t, the algorithm

adds x toSUCC(w) and b_time(w) is 13 now. Becauseα+b_time(w) =

2 + 13 = 15 ≤ 17 = t and α + w(w, u) + b_time(u) = 2 + 2 + 11 =

15 ≤ 17 = t, the algorithm adds u to SUCC(w) and b_time(w) is 15

now. All successor candidates of w are successors of w.

Because PRED∗(w) = ∅, it is obviously pred(w) = ∅. Because

α+w(c, w)+b_time(w) = 2+4+15 = 21 > 17 = t, the algorithm gives

w cannot be a successor candidate of c. Now the algorithm determines

spare(w). Because arrive(w) + (3 + 1)α+ w(w, e) + b_time(e) = 0 +

8+2+7 = 15 ≤ 17 = t, the algorithm gives e can delay α time. Because

arrive(w)+(2+1)α+w(w, x)+b_time(x) = 0+6+3+6 = 13 ≤ 17 = t,

the algorithm gives x can delay α time. Because arrive(w)+(1+1)α+

w(w, u)+b_time(u) = 0+4+2+11 = 17 ≤ 17 = t, the algorithm gives

u can delay α time. All successors of w can delay α time, the algorithm

tells us spare(v) = 0. Because spare(w) + α + w(w, c) = 0 + 2 + 4 =

6 ≤ 17 = t, the algorithm adds w to PRED∗(c).

The 9th processed node is c. Its unprocessed neighbor is a. Because

SUCC∗(c) = ∅, it is obviously SUCC(c) = ∅ and b_time(c) = 0.

There is only one predecessor candidate of c, w. Because spare(w) +

α + w(w, c) + b_time(c) = 0 + 2 + 5 + 0 = 7 ≤ 17 = t, the algorithm
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gives pred(c) = w, spare(c) = arrive(c) = 6 and that c cannot apply

for being a successor candidate of a. Because spare(c) + α+w(c, a) =

6 + 2 + 2 = 10 ≤ 17 = t, the algorithm adds c to PRED∗(a).

The 10th processed node is a. Its unprocessed neighbor is v. Because

SUCC∗(a) = ∅, it is obviously SUCC(a) = ∅ and b_time(a) = 0.

There is only one predecessor candidate of a, c. Because spare(c)+α+

w(c, a) + b_time(a) = 6 + 2 + 2 + 0 = 10 ≤ 17 = t, the algorithm

gives pred(a) = c, spare(a) = arrive(a) = 10 and that a cannot apply

for being a successor candidate of v. Because spare(a) +α+w(a, v) =

10 + 2 + 3 = 15 ≤ 17 = t, the algorithm adds a to PRED∗(v).

The last processed node is v. Because SUCC∗(v) = ∅, it is obviously

SUCC(v) = ∅ and b_time(v) = 0. There is only one predecessor candi-

date of v, a. Because spare(a)+α+w(a, v)+b_time(v) = 10+2+3+0 =

15 ≤ 17 = t, the algorithm gives pred(v) = a.

The results with the processing sequence (f, x, d, e, g, b, u, w, c, a, v)

and (f, x, d, e, g, b, u, w, c, a, v) are the same. Both of them say one broad-

cast center is enough and the location of the center is w.
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Chapter 6

Conclusion

We made an improvement for finding the location of broadcast centers

and the broadcast sequences on any tree T , OPT (T, t), such that broad-

casting can be done within the time constraint t, which is introduced

in [20]. We extended this problem from uniform telephone model to

heterogeneous postal model and improved the time complexity toO(n).

Although broadcast problem has several decades of history, There are

still many open problems; many of them are shown in Table 6.1, where

”?” means open problems and ”×” means not defined.

Table 6.1: Broadcast problems in uniform telephone model and heterogeneous postal
model

Uniform Telephone Heterogeneous Postal
1-center O(n) [5] O(n) [17]
1-median O(n) O(n) [22]
p-center ? ?
p-median ? ?

k-broadcasting O(n) [27] ?
uncertainty × O(nlog(n)loglog(n)) [28]

Centers with Time Constraints O(n) O(n)

approximation ratio : O( log(n)
loglog(n)

) ?
time : O(|V ||E|) [8]

heuristic O(|E|) [10] ?

How to extend the results from uniform telephone model to hetero-

geneous postal model or more complicated environment, from trees to

more general structures, and so on, are researchable topics.
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