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中文摘要  

背景  

糞便潛血濃度(f-Hb) 已證實對於大腸直腸癌的發生率以及死亡率具有極佳的

預測力。因此對於在族群篩檢而言，f-Hb 在篩檢時之重複測量數值以及其動態變

化對於族群的風險而言亦具有其重要的角色。然而，在運用族群篩檢資料發展描

述 f-Hb 變化的模型時，由於其序位型資料特性以及資料中所包含的相關性、設限

以及截切等特性，使得模型的建構極為困難。本研究利用有吸收性境界 (absorbing 

barrier) 之隨機漫步模型(random walk model) 將上述特性納入考量建構描述族群

f-HB 動態變化之模式。 

  

目的  

本篇論文第一個目的為利用存活分析的模式評估在不同篩檢組別(正常、大腸

腺瘤、大腸直腸癌症) f-Hb 的差異表現，並分別估計並得到族群發生大腸腺瘤以

及大腸直腸癌症的糞便潛血濃度數值中位數(f-Hb50)，以及其不同的臨界值。本片

論文第二個主要的目的為應用隨機漫步模型來量化 f-Hb 濃度的動態變化，並加以

考慮在族群發生大腸腺瘤以及大腸直腸癌症時的最大上界值(即觸及吸收境界)的

情況。 

  

方法 

我們首先利用傳統的單因子變異數分析以及存活分析針對 f-Hb 在不同篩檢組

別(正常、大腸腺瘤、大腸直腸癌症)平均數或是中位數的差異進行檢定。接著運用

寇斯等比例風險模型(Cox proportional hazards regression model)控制可能的影響變

項，並且將資料中的相關特性納入考慮，以序位方式對 f-Hb 數值進行排序，估計

各組別(正常、大腸腺瘤、大腸直腸癌症)之對比風險值。配合無母數排序的方法，

吾人可以在上述三個組別中計算其糞便潛血濃度數值中位數(f-Hb50)，並且分別估
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計得到族群發生大腸腺瘤以及大腸直腸癌症的 f-Hb 之臨界值。 

在建構動態隨機模型方面，藉由運用隨機漫步模型，並發展基於該模型的漸

進分佈(asymptotic distribution) 和多項分佈(multi-nominal distribution) 來描述 f-Hb

重複測量資料變化的進程，並估計 f-Hb 在三種不同的疾病狀態下的數值升高機率

(p) 以及降低(q)。進一步可以利用估計得到的機率估計值，計算各組別(大腸直腸

癌症或大腸線瘤病患)相對應的賭徒破產機率(即觸及吸收境界之機率)。 

 

結果 

利用經過自然對數轉換後的 f-Hb 所作的變異數分析結果中，顯示出三個組別

的糞便潛血濃度平均數值達到顯著性的差異 (F=104324, p<0.001, R
2
=0.142)，無母

數方法檢定的結果顯示同樣顯著差異 (p<0.001)。 

利用寇斯比例風險模型分析在將其他解釋變相納入調整後(性別、年齡、家族

病史以及篩檢工具廠牌)，以篩檢無疾病的人當作比較組，其結果顯示癌症組的風

險比是 0.181 (0.178, 0.184)，大腸腺瘤組的風險比為 0.204 (0.202, 0.205)。此估計結

果顯示大腸直腸癌個案以及大腸腺瘤個案具有較高的 f-Hb 數值，表示在大腸直腸

癌篩檢計畫中，檢測出的糞便潛血濃度越高的人，其後續發展成為大腸腺瘤或大

腸直腸癌之風險亦較高。 

利用隨機漫步模型結合邏輯斯迴歸所估計得到的結果得到 f-Hb 淨上升機率

(drift rate, p-q) 在癌症病患中最高，大腸腺瘤病患次之，最低為無大腸相關疾病的

篩檢族群。已僅考慮前進與後退機率的隨機漫步邏輯斯迴歸中為例，在由模型估

計的前進機率(p)與後退機率(q)在癌症組中分別為 0.733 及 0.267，在大腸腺瘤組算

得的前進與後退機率分別為 0.575 和 0.425，在篩檢後沒有被診斷為大腸疾病的病

患的前進機率為 0.358，後退機率為 0.642；因此 f-Hb 上升機率在癌症及線瘤組別

中皆為大於 0 的正值，而在正常人則為負值。此外，若與正常族群相較，利用模

型與估計結果可以計算癌症族群的在 f-Hb 之上升勝算比為正常族群的 4.92 倍；而
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在大腸腺瘤的族群中，此一勝算比是正常人的 2.43 倍。利用模型估計結果計算賭

徒破產機率時，若對於癌症設定 f-Hb 值 400 g/g 為吸收狀態；而大腸腺瘤則以

300 g/g 為吸收狀態；正常篩檢族群的吸收狀態則訂在 20 g/g。計算出來的結果

在癌症族群中達到吸收狀態機率為 0.867，高於大腸腺瘤組的 0.455，而正常組別

則是最低的，其吸收機率幾乎為 0。當假定每個人的起始濃度(x) 為 1 時，平均而

言，癌症人期望走 740 步到達 400 g/g，大腸腺瘤組則須走 893 步到達 300 g/g。

對正常族群而言，達到 f-Hb 濃度 0 g/g 之吸收狀態的期望步數則為 7.05 步。 

 

結論 

本研究運用了寇斯風險比例模式以及建立了隨機漫步迴歸模型以分析具有極

端值以及右偏特性的序位資料，模型中亦將由於 f-Hb 值極低而造成的不可量測(左

設限)資料，以及遺失值皆納入模型建構之考量。此外，本研究所建構之模型亦包

含了多階段疾病特性。 

本研究運用所建構的模型於全國大腸直腸癌症篩檢資料，估計了相較於正常

族群下，大腸直腸癌族群以及大腸腺瘤族群之高 f-Hb 濃度的風險對比值，同時利

用族群 f-Hb 中位數定義各族群之 f-Hb 臨界值。運用隨機漫步模型架構，本研究藉

由對於各族群之 f-Hb 上升與下降之估計值結合其淨上升機率以及到達吸收狀態

所需步數之計算釐清 f-Hb 隨著時間升高或是降低時有多少破產機率(即有多少達

到吸收狀態的機率)，並且估算走到吸收狀態需要的期望步數。本文中的研究結果

所建立的新指標，將有助於發展大腸直腸癌族群篩檢計畫決策以及監測規劃。 

 

 

關鍵字；隨機漫步、賭徒破產、大腸直腸癌症篩檢、糞便潛血、化學免疫法。 
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ABSTRACT    

Background As fecal hemoglobin concentration (f-Hb) is a good predictor for 

colorectal cancer (CRC) incidence and mortality, the dynamics of f-Hb is therefore of 

great interest in the face of large population-based screening data on periodical 

examination of f-Hb. Modeling the evolution of f-Hb is intractable as it is an ordinal 

property and often involves with correlated, censoring, truncating, and dynamic 

movement with absorbing barriers in the province of the random walk model.  

Aims This thesis was first to assess the values of f-Hb across three groups (normal, 

adenoma, and CRC), estimate the effective median f-Hb concentration (f-Hb50) and its 

threshold when the adenoma and CRC were detected. The second aim was to apply the 

random walk model to quantify the dynamic change of f-Hb considering the upper limit 

because of occurrence of adenoma and CRC. 

Methods Conventional survival analysis was employed to test the difference in the 

mean (or median) value of f-Hb across three groups. The Cox proportional hazards (PH) 

regression model, making allowance for correlated property, was applied to estimating 

the hazard ratio (HR) of reaching the ranking of f-Hb across three groups after 

controlling for relevant covariates. The non-parametric method was used to estimate 

effective median value of f-Hb (f-Hb50) and the threshold value of f-Hb to hit colorectal 

adenoma and CRC.  
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To consider the dynamic (stochastic) property, a random walk model with 

asymptotic distribution and multi-nominal distribution was further developed to 

elucidate the evolution (repeated measurement) of f-Hb data to estimate the forward 

probability (p) and backward probability (q) by three types of diseases status. These 

parameters were also exploited for calculating the gambler’s ruin probabilities of hitting 

adenoma and CRC.   

Results The result of ANOVA shows that the differences in the mean value of f-Hb 

across three groups were statistically significant. The result of Cox PH regression after 

adjusting for other covariates (gender, age, family history and brand), compared to the 

normal group, the HR of the CRC group was 0.181 (0.178, 0.184) and the adenoma 

group was 0.204 (0.202, 0.205), which suggest that screenee who had higher f-Hb may 

have higher probability to be diagnosed with disease. The estimated results on the 

random walk logistic regression model is that the drift rate (p-q) was the highest in the 

CRC patients followed by adenoma, and the lowest in subjects free of colorectal 

neoplasia. With the random walk logistics regression model merely considering forward 

(p) and backward probability, the calculation probabilities gave 0.733 and 0.267 for 

patents diagnosed as CRC, 0.575 and 0.425 of p and q for patients diagnosed as 

adenoma, and 0.358 and 0.642 of p and q for the normal subjects. Compared with the 

normal group, the odds ratio of moving forward was 4.923 for CRC and 2.426 for 
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adenoma. If we set 400 g/g for CRC, 300 g/g for adenoma and 20 g/g for normal as 

the absorbing barrier the gambler’s ruin probability of reaching the barrier was 0.867, 

which was higher than 0.455 of adenoma whereas the ruin probability for the normal 

subject was very low. If the initial value (x) was set 1 it takes, on average, 740 steps for 

CRC, 893 steps for adenoma, and 7.05 steps for normal to reach absorbing barrier.  

Conclusions The thesis has applied the Cox PH regression model and developed a 

random walk regression model to accommodate the ordinal data with long tail 

distribution at extremely high value, undetectable circumstance at extremely low value, 

and missing values and also in relation to multi-state outcome. These proposed models 

have been applied to nationwide population-based screening for CRC with FIT to 

estimate the hazard ratio for CRC and adenoma as opposed to the normal subjects, also 

to estimate the f-Hb50 and threshold of developing CRC and adenoma, and get a better 

understanding of how f-Hb moves forward and backward with time, providing what is 

the chance of having gambler’s ruin (reaching to the barriers of f-Hb) and how many 

steps are expected to be taken before ruining. These findings provide a new insight into 

policy-making for colorectal cancer screening and also the surveillance of 

early-detected colorectal cancer.  

Keywords：Random walks, gambler’s ruin, colorectal cancer, screening, fecal 

hemoglobin, FIT. 
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I. Introduction 

Modelling ordinal data on quantitative biomarker such as fecal hemoglobin 

concentration (f-Hb) is very intractable partly because of correlated measurements and 

partly because of incomplete information (censoring and truncation) problem. In 

addition, absorption barrier (the upper limit value) also adds to the complexity of such a 

kind of data. 

Very few studies have been conducted before to deal with these statistical issues. 

One of studies using a random walk model has been conducted to assess the dynamics 

of score after the administration of endoscopy (Hopper & Young, 1988). However, this 

study has not evaluated the questions with a formal assessment of such a dynamic 

ordinal data using the theory of random walk model to report the drift of outcome with 

unrestricted barrier and the ruin probability with gambler’s algorithm (Cox & Miller, 

1965). 

We are motivated by the recent research on fecal immunological test (FIT) that is 

widely used in population-based screening for early detection of colorectal cancer and 

effective in reducing mortality. The application of FIT has extended from qualitative test 

to quantitative test based on faecal hemoglobin (f-Hb) concentration. The former is to 

set a cutoff to classify the participants into positive and negative ones. The latter is to 

make use of quantitative f-Hb from 0 to upper limit of f-Hb concentration. The recent 
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researches have also demonstrated the quantitative use of baseline faecal hemoglobin 

(f-Hb) concentration for predicting incident colorectal neoplasia (Chen, Yen, Chiu, Liao, 

& Chen, 2011; Chen et al., 2013) and also colorectal cancer mortality (Chen et al., 

2013).    

These findings have raised the interest of using quantitative faecal hemoglobin as 

an ordinal outcome to compare three groups of the underlying population, consisting of 

free of CRC neoplasia, colorectal adenoma, and colorectal cancer. However, modelling 

ordinal data such as f-Hb is not straightforward as the distribution is by no means 

normal distribution and fraught with considerable heterogeneity, including the extreme 

right values of f-Hb, the outliers of the distribution, and the extreme left undetectable 

f-Hb that can be treated as left-censored value. To tackle these issues, we treat the order 

of f-Hb as the outcome of time to event with ranking statistics and apply a Cox 

proportional hazards regression model to model the difference of f-Hb across three 

groups (free of CRC neoplasia, colorectal adenoma, and colorectal cancer) with 

adjustment for other possible covariates.  

  The first aim of this thesis was to first assess the value of f-Hb across three 

groups classified by the status of colorectal neoplasia, normal, colorectal adenoma, and 

colorectal cancer based on a Cox proportional hazards regression model making 

allowance for left censoring of undetectable f-Hb and interval censoring of f-Hb of 
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interval cancer. The second major aim of this thesis was to apply the random walk 

model to quantify the dynamic change of f-Hb considering the absorbing barriers 

because of occurrence of colorectal adenoma and colorectal cancer.    
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II. Literature Review  

2.1  Theory of Random Walk Model 

The random walk is a stochastic process in discrete time. Define a simple random 

walk as fallow: each jump is +1 with probability p, -1 with probability q, and 0 (no 

jump) with the probability 1-p-q .  

That is,  

𝑝𝑖𝑗 = {

𝑝               
𝑞                
1 − 𝑝 − 𝑞 

 𝑖𝑓 𝑗 = 𝑖 + 1 
 𝑖𝑓 𝑗 = 𝑖 − 1 
 𝑖𝑓 𝑗 = 𝑖 

                              (2.1.1) 

 , with 𝑝𝑖𝑗 = 𝑃𝑟 {𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑖}. Where Xn is the position immediately after n 

jumps, i.e. at time n, Xn = X0 + Z1 + Z2 +⋯+ Zn, Zi is the moves of in 𝑖th jump 

and {𝑍𝑖} is a sequence of independently and identically distributed random variables. 

There are several types of random walk model that are described as follows.  

  

(1) Unrestricted 

We suppose the particle starts at the origin. Also, we assume at time n, the particle 

reaches the point k. Thus, it has to make 𝑟1 positive jumps, 𝑟2 negative jumps, and 𝑟3 

zero jumps. Hence, we have  

𝑃𝑟{𝑋𝑛 = 𝑘} = ∑
𝑛!

𝑟1!𝑟2!𝑟3!
𝑝𝑟1(1 − 𝑝 − 𝑞)𝑟3𝑞𝑟2                      (2.1.2), 

over the value of 𝑟1, 𝑟2 and 𝑟3 satisfying 𝑟1 − 𝑟2 = 𝑘 and n = 𝑟1 + 𝑟2 + 𝑟3.  

By the central limit theorem, i.e. if 𝑛 is large, 𝑋𝑛 will be approximately normally 
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distributed with mean 𝑛𝜇  and variance 𝑛𝜎2 , with μ = p − q  and 𝜎2 = 𝑝 + 𝑞 −

(𝑝 − 𝑞)2. Thus, we can have an approximation equation 

P(j ≤ 𝑋𝑛 ≤ k) ≅ Φ (
𝑘+𝑐−𝑛𝜇

𝜎√𝑛
) − Φ (

𝑗−𝑐−𝑛𝜇

𝜎√𝑛
)                         (2.1.3), 

c=1/2 or c=1 according to the following condition: p + q < 1 or p + q = 1. 

 

(2) Two Absorbing Barriers 

Suppose the particle ceases when it reaches either – 𝑏 or 𝑎 (𝑎, 𝑏 > 0). We say 

that absorption occurs at state 𝑎 (or state – 𝑏). Define 𝑓𝑗𝑎
(𝑛)

 as the probability that the 

particle is absorbed at a at exactly time n. 𝑓𝑗𝑎
(𝑛)

 is also the probability that an 

unrestricted particles, that is,  

𝑓𝑗𝑎
(𝑛) = 𝑃(−𝑏 < 𝑋1 < 𝑎,… ,−𝑏 < 𝑋𝑛−1 < 𝑎, 𝑋𝑛 = 𝑎|𝑋0 = 𝑗) , 

                     n = 1,2, …     (2.1.4),  

with the initial value condition 𝑋0 = 𝑗 when n=0. 

Next, we can use the generating function  

                𝐹𝑗𝑎(𝑠) = ∑ 𝑓𝑗𝑎
(𝑛)
𝑠𝑛∞

𝑛=0 = 𝐹𝑗(𝑠)               (2.1.5), 

 after the substitution of a trial solution, 𝐹𝑗(𝑠) = 𝜆𝑗, the two solutions are 

   𝜆1(𝑠), 𝜆1(𝑠) =
1−𝑠(1−𝑝−𝑞)±[{1−𝑠(1−𝑝−𝑞)}2−4𝑝𝑞𝑠2]

1
2⁄

2𝑝𝑠
      (2.1.6), 

and  

 𝜆1 =
𝑞

𝑝
> 𝜆2 = 1      (𝑝 < 𝑞),     
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       𝜆1 = 1 > 𝜆2 =
𝑞

𝑝
       (𝑝 > 𝑞),       (2.1.7) 

𝜆1 = 1 = 𝜆2              (p = q).    

 

Ruining probability then can be calculated by  

      𝐹𝑗𝑎(𝑠) =
{𝜆1(𝑠)}

𝑗+𝑏−{𝜆2(𝑠)}
𝑗+𝑏

{𝜆1(𝑠)}𝑎+𝑏−{𝜆2(𝑠)}𝑎+𝑏
        (2.1.8), 

set s=1 and let the particle starts at origin then  

       P(absorption occurs at a) = 𝐹0𝑎(1) =
1−(

𝑞

𝑝
)
𝑏

1−(
𝑞

𝑝
)
𝑎+𝑏      (2.1.9)  

and P(absorption occurs at − b) = 𝐹0,−𝑏(1) = 1 − 𝐹0𝑎(1). From the formula derived 

in the Cox and Miller (1965), denote N as the time to absorption, we have the 

probability distribution of N  

           P(N = n) = 𝑓0𝑎
(𝑛)
+ 𝑓0,−𝑏

(𝑛)
           (2.1.10), and 

its generating function  

           E(𝑠𝑁) = 𝐹0𝑎(𝑠) + 𝐹0,−𝑏(𝑠)        (2.1.11). 

 

From the Wald’s identity, the expected number of steps to absorption is  

       E(N) = {

(𝑎+𝑏)−𝑎𝑒𝜃0𝑏−𝑏𝑒𝜃0𝑎

𝑒−𝜃0𝑎−𝑒𝜃0𝑏
    (𝜇 ≠ 0)

𝑎𝑏

𝜇𝜎2
             (𝜇 = 0)

         (2.1.12), 

𝜃0 =
2𝜇

𝜎2
⁄  if the steps follow normal distribution. 
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(3) Two Reflecting Barriers 

Suppose the particle starts in the state j and that the state 0 and state a (a>0) are 

reflecting barriers. Suppose we have 𝑋0 = 𝑗, and  

         𝑋𝑛 = {
𝑋𝑛−1 + 𝑍𝑛

𝑎
0

           (2.1.13). 

Let 𝑝𝑗𝑘
(𝑛)

 be the probability that the particle occupies the state k at time n having 

started in the state j. Assume there is a limiting equilibrium distribution of the state 

occupation probabilities the we have as n → ∞, 𝑝𝑗𝑘
(𝑛)

→ 𝜋𝑘  (k=0,1,…,a). Hence we 

obtain the truncated geometric distribution  

        𝜋𝑘 =
1−
𝑝
𝑞⁄

1−
𝑝
𝑞⁄
𝑎+1 (

𝑝

𝑞
)
𝑘

   (k = 0,… , a)     (2.1.14). 
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2.2  Re-analysis of Hopper et al study    

As mentioned earlier, one of important papers that applies a random walk model 

for evaluating clinical trials involving serial observations. In a clinical trial, when the 

status of patients during and after treatment is recorded, analysis of such information 

will be more convincing. Applications of semi-Markov models have been restricted to 

diseases with no reverse transitions. The methods of non-parametric inference for these 

compartmental processes were based on the martingale theory through counting 

processes.  

The alternative is to use the simple random walk that is a stochastic process in 

discrete time and can be used to deal with the cases where the multistate aspect of 

disease status may be summarized by an ordinal measure on which patients may 

improve or regress throughout the clinical trial. With a numerical maximization routine, 

this method can provide a suitable statistical inference about the efficacy of different 

treatment regimes. The random walk model was applied to re-analyze the data on two 

examples.  
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(1) Example 1: Symptom and endoscopy measures of treatments for peptic 

oesophagitis 

A double-blind trial was conducted on 59 patients with peptic oesophagitis, the 

goal is to study the efficacy of two treatments (30 controls, 29 Pyrogastone). Scores 

were recorded on a six-point scale, and recorded at the same epochs (endoscopy scores: 

4 weeks for 3 times; symptomatic scores: 2 weeks for 5 times). Table 2.1  

gives the estimate of two scores. 

The authors used the two logistic models to estimate the change of these two 

scores, and chosen the most fitted one with log-likelihood. 

In the endoscopy scores case, they estimated r=0 in control group. 

Here the re-estimation using the unrestricted normal approximation gives the 

following estimates: μ = −0.249 and 𝜎2 = 0.227  for case group in symptomatic 

scores, and μ = −0.162 and 𝜎2 = 0.176 for the control group. 

We also calculated the probability P(𝑋6 < 0) = Φ (
0+0.5−6×(−0.249)

0.227×√6
) =

Φ(3.59) = 0.9998, P(𝑋6 < −0.5) = Φ (
−0.5+0.5−6×(−0.249)

0.227×√6
) = Φ(2.69) = 0.9964. 

Table 2.2 shows the results of the probability P(𝑋𝑛 < −0.5).  

Regarding the application to absorbing barriers on symptomatic scores example, 

we can obtain the ruin probability of different start position j, from 0 to 6 as absorbing 

state. The ruin probabilities are given in Table 2.3.  
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For the application on reflecting barriers (state 0 and state 6) on symptomatic 

scores example, we can obtain the limiting equilibrium distribution 𝜋𝑘 given in Table 

2.4.  

 

(2) Example 2: Stool frequency as a measure of treatment for colitis 

A randomized double-blind trial compared the effect of two drug treatments, 

bacitracin or vancomycin. Stool frequencies were recorded on eight successive days for 

18 patients in each treatment group, and were categorized into 10 levels (level 1 as an 

absorbing barrier). 

From day 0 to day 7, the mean improvement in bacitracin was 2.73±5 0.56 levels, 

compared to 3.61 ± 0.38 on vancomycin, (P > 0.20). 

Table 2.5 shows the estimates of random walk model parameters (with standard 

errors), and log-likelihood, for bacitracin and vancomycin treatment groups using stool 

frequency level data. 

The results of analysis with the random walk suggested that patients in the 

bacitracin group show only 58 percent (comparison of E-values) of the improvement in 

resolution of diarrhoea. The fit of the four models could have different suggestion, while 

the changes in log-likelihood were not significant. Thus the inference of this example 

should be carefully. 
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It should be noted that very few literatures proposed the random walk model to 

elucidate the dynamics of such an ordinal data like quality of life. Even the paper 

proposed the random walk model for dealing with the drift of probabilities. There is 

lacking of formal assessment of computing the ruin probability for reaching the 

absorbing barrier and the expected steps (time) taken for reach the boundary of the best 

improved and the worst unimproved states, which will be my major goal of my thesis.    
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III. Materials  

Data on Colorectal Cancer Screening Data   

 Data we used here are derived from the Taiwanese Nationwide Colorectal Cancer 

Screening Program using fecal immunochemical test (FIT) as a tool. Details on the 

planning and implementation of the screening program were reported elsewhere (Chiu 

et al., 2015). Briefly, the nationwide screening program launched in 2004 was provided 

to residences of Taiwan aged between 50 to 69 years with a two-year screening interval. 

The target population consisted of a residency of 5417699 subjects with a staggered 

entry with the goal of 20% coverage rate set for the initial 5 years. During the study 

period between January 1, 2004 and December 31, 2009, there were 1160895 attendees 

with a coverage rate of 21.4% and a repeat screening rate of 28.3%. The fecal 

hemoglobin concentration of attended were detected by the OC Sensor method by using 

two brands of commercial kits. A positive test was defined for the given test and those 

with positive result were referred for confirmatory diagnosis using colonoscopy as a 

major method. Individual information such as sex, age, family history, and the outcomes 

of colorectal neoplasm derived from the report confirmatory diagnosis and cancer 

registry including non-advance adenoma, advanced adenoma (defied as large than 

10mm or with villous component) and colorectal cancer were also collected.   

Attendees with missing or unidentifiable FIT values or those using unspecified 
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method for the measurement of fecal hemoglobin were excluded from analysis. The 

basic characteristics of demographic distribution are listed in Table 3.1 and Table 

3.2.The dataset consist of 1031314 screenees and 1265305 repeated measures used for 

the following analysis.  
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IV. Methodology   

In the thesis, we present analysis of fecal hemoglobin (f-Hb) concentration from the 

application of conventional statistical approach to the development of new random walk 

model to demonstrate how f-Hb concentration was heterogeneous with three categories 

of colorectal neoplasia including normal, adenoma (including non-advanced adenoma 

and advanced adenoma) and colorectal cancer.   

 

4.1. One-way analysis of variance  

Instead of treating the disease status of colorectal neoplasia as the outcome, we 

treat f-Hb as the outcome of interest and the disease status as the independent 

variable and test the difference in f-Hb across three categories of disease status with 

the traditional statistical method, one-way analysis of variance. The null hypothesis 

is set by  

H0: 0 = 1 =2    

where 0, 1, 2 represent the mean value of normal, colorectal adenoma, and colorectal 

cancer. The drawback of using one-way ANOVA is that the result is easily affected by 

the tail distribution of extreme value.    
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4.2. Survival Analysis for fecal hemoglobin concentration 

It is very interesting in the thesis to consider f-Hb concentration as the ranking 

data that permits us to consider the use of survival analysis to assess the difference 

of f-Hb across three or four disease groups with the adjustment for other covariates.   

 

4.2.1 Kaplan-Meyer Method  

We therefore first applied the conventional nonparametric method, the 

Kaplan-Meyer method, to evaluate whether there are differences between 

colorectal neoplasms, followed by deriving the cumulative distribution curve of 

f-Hb among different states.  

 

4.2.2 Cox Proportional Hazards Regression Model   

Second, we treated the f-Hb of each screenee as the time to event and the 

disease status as a covariate in Cox proportional hazards regression model. In 

contrast to survival time, the smaller the f-Hb, the higher the hazard ratio and the 

lower the risk for developing colorectal neoplasm. By using the method of ties 

proposed by Breslow (1974), we can deal with the problem of left censoring data 

with ties resulting from the undetectable f-Hb level.  



 

16 

The reason here that we were not using the exact method for handling the ties 

was because the population screens cohort contents millions participants, and the 

sample size was too large for using the exact method. By asymptotic property, the 

method of ties proposed by Breslow would be expected to be the same as the exact 

method. 

The maximum likelihood estimator of hazard λ0 in terms of β is given at the 

same f-Hb concentration (denote fi) by  

                 λî =
mi

((fi − fi−1)∑ exp(β′Zi)i∈Ri
)⁄               (4.2.1) , 

where mi is the number of screenees at fi while Ri is the set of screenees who were 

not withdrawn between (0, fi ), i.e. whose fi higher then fi-1. Zi here denoted the 

covariates we used. The underlying cumulative distribution is estimated by   

                           F̂(fi) = ∏ (1 −mi ∙ ln∑ exp(β′Z𝑙)𝑖∈Ri
)𝑙

i=1                  (4.2.2). 

Hence the log-likelihood function would be   

                         ln(L(β)) = ∑ (β′si −mi ∙ ln∑ exp(β′Zi)i∈Ri
)k

i=1        (4.2.3) , 

where si is the sum of Zi over the number at fi . 

Besides, in order to take into account the correlation as a result of repeated 

screen in population-based screening, we used the method proposed by Lin and 

Wei (1989), and requested the robust sandwich estimate for the covariance matrix.  
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4.2.3 Interval Cancers censored at f-Hb 

Because interval cancer patients did not have information on f-Hb when 

diagnosed, which is defined as the censored data, we computed the faecal 

hemoglobin concentration of interval cancer cases from random samples of the 

prevalence screen-detected cancer cases and subsequent screen-detected cancer 

cases by the stratum of gender and age using the cold-deck method, one of 

conventional methods for dealing with missing data (Rubin, 1987). 
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4.3. Random Walk Model   

It should be noted that although the equation (2.2.1) can be thought to delineate 

the random process of the dynamic change of f-Hb, the empirical data as indicated 

in the section of material do not permit us to directly apply this equation to get the 

estimate of random sum. Most of repeated screens only included two rounds of 

screen. Based on Markov property, we assume the change of f-Hb from f-Hb at  

baseline (measured at first screen, i.e. initial location) after n step for each one 

screenee is equivalent to n jumps based on any of the change of f-Hb between the 

value of two successive screens (including first screen and second screen) within the 

same individual or across individual. By using this assumption, define three 

possibilities of the change among n jumps denoted by the random variable X where 

X=1, -1, and 0 represent forward movement, backward movement, and no 

movement to depict the change of f-Hb between (j-1) th and j th screen. The forward 

(p), backward probability (q), and no movement (r=1-p-q) of drift are defined by by    

                      {

p      , if fHbj − fHbj−1 > 0 (move forward)   

q      , if fHbj − fHbj−1 < 0(𝑚𝑜𝑣𝑒 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑)   

r      , fHbj − fHbj−1 = 0 (no movement)
                                                   (4.2.4) 

. 

The random variable X among n jumps follows a multinomial distribution 

denoted as: X~Multinomial(n, p, q). 
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4.3.1 Unrestricted Random Walk Model   

Supposed that sample size (n) is large enough, with the asymptotic property, we 

proposed to use the normal distribution as the limiting distribution of Xn when 

estimating the forward and backward probability. 

                           Xn
 a 
→Normal(nμ, nσ2)                                                        (4.2.5) ,  

with μ = p − q and σ2 = 𝑝 + 𝑞 − (𝑝 − 𝑞)2. 

Again, we assumed the steps have identical and independent distribution, hence 

the step of jth jump ( Xj ) follows normal distribution with mean μ, variance σ
2
. 

The likelihood function is  

       L =∏
1

√2πσ2
exp(−

(Xj − μ)
2

2σ2
)

n

j=1

            (4.2.6) , 

 and the log-likelihood function is  

                            ln(L) =∑−
1

2
ln(2πσ2) −

(Xj − μ)
2

2σ2
j

                          (4.2.7) , 

where n is the number of jumps.   

When analysis, we classified the screenees into three groups by their disease 

statuses: cancer, adenoma and normal. 
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4.3.2 Random Walk Logistic Regression Model  

The ith jump between jth and (j+1)th screen is denoted by the random variable  

Xj,   

Xj = {

1     , if fHbj − fHbj−1 > 0

0     , if fHbj − fHbj−1 = 0

−1   , if fHbj − fHbj−1 < 0

                                       (4.2.8)  

Again,  X~Multinomial(n, p, q)   

To model the effect of disease status on the probabilities of movement, we 

proposed the generalized logistic regression model for estimating the forward, 

backward, and no movement. We treated the disease status as a covariate that is 

incorporated into the generalized logistic regression model, through which we can 

model the moving probabilities among different states in the same time. 

Generalized logistic regression model：  

logit(𝑝𝑖) = 𝑙𝑜𝑔 (
𝑝𝑖
1 − 𝑝𝑖
⁄ )

= 𝛼0 + 𝛼1 ∙ 𝑆𝐷𝐶𝑖 + 𝛼2 ∙ 𝐴𝑑𝑣𝑎𝑑𝑒𝑛𝑜𝑚𝑎𝑖 + 𝛼3 ∙ 𝑁𝑜𝑛𝑎𝑑𝑣𝑑𝑒𝑛𝑜𝑚𝑎𝑖 + 𝛼4

∙ 𝐼𝐶                                                                                           (4.2.9),  

logit(𝑞𝑖) = 𝑙𝑜𝑔 (
𝑞𝑖
1 − 𝑞𝑖
⁄ )

= 𝛽0 + 𝛽1 ∙ 𝑆𝐷𝐶𝑖 + 𝛽2 ∙ 𝐴𝑑𝑣𝑎𝑑𝑒𝑛𝑜𝑚𝑎𝑖 + 𝛽3 ∙ 𝑁𝑜𝑛𝑎𝑑𝑣𝑑𝑒𝑛𝑜𝑚𝑎𝑖 + 𝛽4

∙ 𝐼𝐶                                                                                         (4.2.10),  

To simplify the generalized logistic regression model, we proposed six 

scenarios listed as follows.  
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(i) Combine adenoma group and also the cancer group, that is, let α2 = α3, 

and α1 = α4.  

(ii) Combine cancer group, let α1 = α4.  

(iii) Combine adenoma group, let α2 = α3.  

(iv) Combine adenoma group and also the cancer group, that is, let α2 = α3, 

and α1 = α4 , and estimates parameters by the two logistic regression 

models.  

(v) Combine the cancer group, let α1 = α4 , and estimates parameters by 

the two logistic regression models.  

(vi) Combine the adenoma group, let α2 = α3 , and estimates parameters by 

the two logistic regression model.  

 

In the model (i), (ii), and (iii), we combined q and r into q and did estimation 

based only on the first logistic regression model (4.2.9). In the model (iv), (v), and 

(vi) we used both regression models (4.2.9) and (4.2.10) and then estimated p, q, 

and r by different states. 

 



 

22 

In addition to the analysis of data on screenees who had participated more 

than one time, we also considered including data on prevalent screenees (who 

participated in screening once only).   

In the prevalence case, we assume who diagnosed as cancer or adenoma 

would move forward, and those who had screening results as normal cases would 

either stay on or move backward. Thus we can define the steps of prevalence cases,  

    Xi0 = {
1    , if the ith prevalence case was cancer or adenoma

0    , if the ith prevalence case was normal                       
            (4.2.11) . 

 

Noted in the prevalent screen, there are absence of interval cancers. As the 

results show no movement probability (r) for cancer and adenoma group is relative 

low, we only used the same logistic regression model (4.2.9) , and set q=1-p in the 

following analysis 

We have three scenarios when including prevalent cases.  

(i) Combine adenoma group and the cancer group, that is, let α2 = α3, 

and α1 = α4.   

(ii) Combine cancer group, let α1 = α4.   

(iii) Combine adenoma group, let α1 = α4,  

After setting up the logistic model for prevalent cases, we can define the 

probabilities for each state from the coefficients in the regression model. 
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As regards the estimates based on only the regression model (4.2.9), we have  

(SDC)       p1 =
exp(𝛼0 + 𝛼1)

1 + exp(𝛼0 + 𝛼1)
                        (4.2.12), 

(Adv adenoma)    p2 =
exp(𝛼0 + 𝛼2)

1 + exp(𝛼0 + 𝛼2)
                            (4.2.13) , 

(Non Adv adenoma)     p3 =
exp (𝛼0 + 𝛼3)

1 + exp (𝛼0 + 𝛼3)
           (4.2.14), 

(IC)     p4 =
exp (𝛼0 + 𝛼4)

1 + exp (𝛼0 + 𝛼4)
                   (4.2.15), 

(Normal)        p5 =
exp (𝛼0)

1 + exp (𝛼0)
                  (4.2.16), 

and    qi = 1 − pi  ,   i = 1,2,3,4,5             (4.2.17). 

 

Regarding the estimates based on both regression models (4.2.9) and (4.2.10), we 

have  

(SDC)       p1 =
exp(𝛼0 + 𝛼1)

1 + exp(𝛼0 + 𝛼1) + exp(𝛽0 + 𝛽1)
   , 

    q1 =
exp (𝛽0 + 𝛽1)

1 + exp (𝛼0 + 𝛼1) + exp (𝛽0 + 𝛽1)
         (4.2.18), 

(Adv adenoma)    p2 =
exp(𝛼0 + 𝛼2)

1 + exp(𝛼0 + 𝛼2) + exp(𝛽0 + 𝛽2)
  , 

       q2 =
exp (𝛽0 + 𝛽2)

1 + exp (𝛼0 + 𝛼2) + exp (𝛽0 + 𝛽2)
      (4.2.19) 

(NonAdv adenoma) p3 =
exp(𝛼0 + 𝛼3)

1 + exp(𝛼0 + 𝛼3) + exp(𝛽0 + 𝛽3)
  , 

        q3 =
exp (𝛽0 + 𝛽3)

1 + exp (𝛼0 + 𝛼3) + exp (𝛽0 + 𝛽3)
      (4.2.20), 

(IC)     p4 =
exp(𝛼0 + 𝛼4)

1 + exp(𝛼0 + 𝛼4) + exp(𝛽0 + 𝛽4)
   , 

   q4 =
exp (𝛽0 + 𝛽4)

1 + exp (𝛼0 + 𝛼4) + exp (𝛽0 + 𝛽4)
         (4.2.21), 

(Normal)        p5 =
exp(𝛼0)

1 + exp(𝛼0) + exp(𝛽0)
  , 
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      q5 =
exp (𝛽0)

1 + exp (𝛼0) + exp (𝛽0)
                              (4.2.22), 

and ri = 1 − pi − qi  ,   i = 1,2,3,4,5                   (4.2.23). 

Then we can have the likelihood function given k screenee:  

for analyses based only on (4.2.9) and also based on (4.2.9) and (4.2.10). Assuming 

the probabilities applied to first screen are the same as the change of f-Hb at successive 

screens as indicated in the equation (4.2.4). The likelihood function based on the data on 

first screen is given as follows.      

      L =∑∑𝑝∑𝑥1𝑖 ∙ 𝑞∑𝑥2𝑖+∑𝑥3𝑖

n

j=1

k

𝑖=1

           (4.2.24), 

 

for analyses based on (4.2.9) and (4.2.10),  

       L =∑∑𝑝∑𝑥1𝑖𝑗 ∙ 𝑞∑𝑥2𝑖𝑗 ∙ 𝑟∑𝑥3𝑖𝑗

ni

j=0

k

i=1

          (4.2.25), 

Where   

𝑥1𝑖 = {
1 , 𝑖𝑓 𝑋𝑖 = 1
0   , 𝑜. 𝑤.        

 

           𝑥2𝑖 = {
1 , 𝑖𝑓 𝑋𝑖 = −1
0   ,   𝑜. 𝑤.          

       (4.2.26), 

𝑥3𝑖 = {
1 , 𝑖𝑓 𝑋𝑖 = 0

0   , 𝑜. 𝑤.       
 

The likelihood function for the n jumps of subsequent screens as indicated above 

was also derived in a similar manner.   
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With the random walks model and the regression equations we set up, we can 

estimated the coefficients of variables and calculated the probabilities movement in 

random walk model. 

 

4.3.3 Gambler’s ruin and expected number of game   

After the estimation of the probabilities of movement, we can further apply the 

gambler’s ruin theorem. The gambler’s ruin problem is the random walks with 

absorbing barriers 0 and N. A gambler starts out with x f-hb, and he wins 1 unit with 

probability p and lose 1 unit with probability q=1-p. The gambler stops when he has 

a state of 0 or N . 

Following the formal derivation of processes for the two absorbing barriers by 

Cox and Miller (1965), here we use alternative way of deriving the ruin probability. 

We are interesting in the computation of probability Vx that the player will be 

ruined after commencing with x. At the end of the first game (first step analysis), he 

will has (x+1) if he wins the game with p (Vx+1), or he will has (x-1) if he loses the 

game with q (Vx-1). Thus, we have   

                                Vx = qVx−1 + pVx+1   ,    0 < 𝑥 < 𝑁                           (4.2.27) 

   p(Vx+1 − Vx) = q(Vx + Vx−1) ,  

  Vx+1 − Vx =
q
p⁄ (Vx + Vx−1) .  
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By recursive method, we have   

    Vx+1 − Vx = (
q
p⁄ )

x
(V1 − 1)  ,    0 < 𝑥 < 𝑁     (4.2.28), 

Let  

Vx − 1 = Vx − V0 = (Vx − Vx−1) + (Vx−1 − Vx−2) + ⋯+ (V1 − 1)

= {

1 − (
q
p⁄ )

x

1 − (
q
p⁄ )

(V1 − 1)            p ≠ q

          x(V1 − 1)                      p = q

         (4.2.29) . 

The absorbing barrier leading to 𝑉𝑁 , 

                                     Vx =

{
 
 

 
 
1 −

1 − (
q
p⁄ )

x

1 − (
q
p⁄ )

N              p ≠ q

           1 −
x

N
                    p = q

                      (4.2.30) . 

Furthermore, let Dx denote the expected time until a gambler who starts with x, 

say 1 (f-hb) is ruined.   

  The boundary conditions are D0=0, DN=0. By first-step analysis,  

             Dx = q(Dx−1 + 1) + p(Dx+1 + 1) = 1 + qDx−1 + pDx+1               (4.2.31) 

 p(Dx+1 − Dx) = q(Dx − Dx−1) − 1 

Let Mx = Dx − Dx−1  

       pMx+1 = qMx−1                          (4.2.32) 

Again by the recursive method, we have  

         Mx = (
q

p
)
x−1

M1 −
1

p
∑(

q

p
)
j

x−2

j=0

                 (4.2.33) 

Also we have the initial condition M1 = D1 − D0 = D1 
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   Dk = ∑ Mj
k
j=1 = ∑ [(

q

p
)
j

D1 −
1

p
∑ (

q

p
)
j

j−2
i=0 ]k

j=1  

       =

{

1−(
q
p⁄ )
k

1−(
q
p⁄ )
[D1 −

1

p−q
] −

k

p−q
          (p ≠ q)

            k(D1 − (k − 1))               (p = q)

             (4.2.34)  

 With DN = 0, 

                      D1 =

{
 

 N

p
(

1

1 − (
q
p⁄ )

N)−
1

p − q
      (p ≠ q)

                N − 1                (p = q) 

                     (4.2.35) 

Thus we can calculate the expected number of game (Dx) until the gambler 

that starts at $x is ruined.   

         Dx = {

1 − (
q
p⁄ )

x

1 − (
q
p⁄ )

[D1 −
1

p − q
] −

x

p − q
          (p ≠ q)

                     x(N − x)                                (p = q)

                  (4.2.36) 
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V. Results 

5.1 One-way analysis of variance  

Table 3.1 shows the descriptive results of f-Hb by disease status and other 

characteristics such as gender, age, family history, and brand type. The similar findings 

are shown when interval cancer is added (Table 3.2). Table 5.1.1 shows the frequencies 

of all repeated screens. Figure 5.1.1-5.1.6 shows the distribution of original f-Hb and 

also the corresponding ones with log transformation. These figures also show the results 

with and without considering undetectable f-Hb (including 0) in the normal group. The 

undetectable problem is considered by left censoring with the Breslow tie method in the 

Cox proportional hazards regression model. It can be seen that the log transformation 

renders the positive skewed distribution go toward a normal shape.  

The analysis of variance for the log transformation of f-Hb (adding 0.5 unit to the 

right) shows that the difference in the mean value of f-Hb across three groups were 

statistically significant. (Table 5.1.2, p<0.001, R
2
=0.142). The similar findings were 

noted when the non-parametric analysis was performed (Table 5.1.3).  
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5.2  Cox Proportional Hazards Regression Model 

The results of univariable analysis are listed in Table 5.2.1 showing 

significant differences in the f-Hb concentration between categories of colorectal 

neoplasm, with disease-free case (normal group) as the reference group, the hazard 

ratio (HR) of the colorectal cancer group was 0.197 (0.194, 0.20), and the HR of the 

adenoma group was 0.213 (0.212, 0.215).  

The results of multivariable analysis also show that men generally had higher 

f-Hb concentration than women (HR=0.948, (0.944, 0.951)), the old age group also 

had higher f-Hb concentration than the young age group. The effect of family 

history was significant in univariable analysis (HR=1.051, (1.036, 1.067)) but not 

significant in multivariable analysis (HR=1.012, (0.997, 1.027)). After adjusting for 

other covariates (gender, age, family history and brand), compared to the normal 

group, the HR of the cancer group was 0.181 (0.178, 0.184) and the adenoma group 

was 0.204 (0.202, 0.205). This model clearly clarifies that those who had been 

diagnosed with colorectal cancer tended to have higher f-Hb level in screening, as 

the adenoma group does. This indicates that screenee who had higher f-Hb may 

have higher probability to be diagnosed with disease. Table 5.2.2 shows the similar 

findings estimated by the accelerated failure time model.  

     Figures 5.2.1 and 5.2.2 show the cumulative figure with the non-parametric 
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method for f-Hb. We found the computation of f-Hb for interval cancer with the 

cold-deck method got the curve corrected (Figure 5.2.1 and Figure 5.2.2). Based on 

the nonparametric method we can also assess the f-Hb50 of CRC was 142 g Hb/g, 

f-Hb50 of adenoma was 66 g Hb/g, and f-Hb50 of normal near 0 g Hb/g. The 

threshold value was 600 g Hb/g for CRC and 400 g Hb/g for adenoma. (Figure 

5.2.2). Figures 5.2.3-5.2.5 show the corresponding curves by gender and age groups 

for cancer. The conspicuous difference was noted in the Figure of adenoma by 

gender (Figure 5.2.6).  

 

5.3  The Random Walk Model 

We used the faecal hemoglobin concentration of screenees as the repeated 

measures, the f-Hb change from last time over than 0 with probability p, less than 0 

with probability q, and the staying probability is r. Tables 5.3.1 and 5.3.2 display 

the basic distribution of the steps about fecal hemoglobin concentration among all 

the states.  

  By assuming the normal distribution of each step and applying the central 

limit theorem, the unrestricted estimates for three groups are listed in Table 5.3.3. It 

can be clearly seen that the highest forward probability was noted for the colorectal 

cancer group, followed by the colorectal adenoma group, and the least for the 
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normal group.  

Following the random walk model, we can model the probabilities of 

movement among different states in the same time.  

    Table 5.3.4 shows the estimated the corresponding regression coefficients of 

the logistic regression model of the forward probability (p). The results suggest 

patients diagnosed as CRC were more likely to move forward than those diagnosed 

as adenoma (1 (=1.592 (95% CI: 1.407~1.776)) > 2 (=0.886 (95% CI: 

0.836~0.937))) but the normal subjects were more likely move backward as the 

regression coefficient was negative (0=-0.583 (95% CI: -0.592~-0.574)).  

Table 5.3.5 shows the calculation of forward (p) and backward (q) probability 

given the estimated regression coefficients gave 0.733 (95% CI: 0.697~0.768) and 

0.267 (95% CI: 0.232~0.303) of p and q for patents diagnosed as CRC, 0.575 (95% 

CI:0.563~0.587) and 0.425 (95% CI:0.413~0.437) of p and q for patients 

diagnosed as adenoma, and 0.358 (95% CI:0.356~0.360) and 0.642 (95% 

CI:0.640~0.644) of p and q for the normal subjects. The drift (p-q) was positive for 

CRC and adenoma and negative for normal subjects. Compared with the normal 

group, the odds of moving forward was 4.923 for CRC and 2.426 adenoma. If we 

set 400 g/g f-Hb for CRC, 300 g/g f-Hb for adenoma and 20 g/g for normal as 

the absorbing barrier the gambler’s ruin probability of reaching the barrier was 
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0.867, which was higher than 0.455 of adenoma according to the equation of ruin 

probability whereas the ruin probability for the normal subject was very low. If the 

initial value (x) was set 1 it takes, on average, 740 steps for CRC, 893 steps for 

adenoma, and 7.05 steps for normal to reach absorbing barrier. This means it spent 

around 2.03 years for CRC to evolve from 1 to 400 and 2.44 years for adenoma 

from 1 to 300 and only 7 days from 1 to 0 for the normal subjects.  

Table 5.3.6 shows the corresponding results when the adenoma was further 

classified as non-advanced adenoma and advanced adenoma. Again, all cases 

including CRC, advanced adenoma, and non-advanced adenoma show positive 

drift and only the normal group show negative drift. It is very interesting to note 

that the positive drift in the advanced adenoma group was even remarkable than 

the CRC group. Table 5.3.7 shows the corresponding ruin probability was up to 

98.1% for advanced adenoma, 86.7% for CRC, and 17.4% for non-advanced 

adenoma. Again the ruin probability for the normal group was still very low. The 

expected number of steps taken to reach the absorbing barrier were 740.67 for 

CRC, 386 for advanced adenoma, and 1051.33 for non-advanced adenoma.  

Tables 5.3.8 and 5.3.9 shows the similar findings when colorectal cancers 

were classified by two detection modes, screen-detected cases and interval cancers.  
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Table 5.3.10 gives the estimated regression coefficients based on the random 

walk model with the two logistic regression models for estimating the probabilities 

of forward, backward, and no movement. The sizes of regression coefficients with 

forward drift (αs) were larger than those of backward drift (s) whereas the 

opposite was noted for the normal group. Table 5.3.11 shows the similar findings 

for the probabilities of forward, backward, and no movement, which are similar to 

those shown in Table 5.3.4.  

Tables 5.3.12 and 5.3.13 show the corresponding results when the adenoma 

was further classified as non-advanced adenoma and advanced adenoma. Again, all 

cases including CRC, advanced adenoma, and non-advanced adenoma show 

positive drift and only the normal group show negative drift or no movement. 

Tables 5.3.14 and 5.3.15 shows the similar findings for the random walk model 

with the two logistic regression models when colorectal cancers were classified by 

two detection modes, screen-detected cases and interval cancers.  

Tables 5.3.16-5.3.21 give the estimated results of coefficients, the 

probabilities of movement, ruin probability, and the expected number of steps 

taken to reach absorbing barrier including prevalent screen-detected cases. The 

distribution of f-Hb among prevalent screen-detected cases may be representative 
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of the long-run equilibrium distribution. The results with the consideration of 

prevalent cases show a remarkable contrast across three groups.  

Tables 5.3.22-5.3.23 show the corresponding estimated results as above by 

considering gender as the covariate. Males had higher forward probability than 

females without considering prevalent screen data whereas the opposite was noted 

when prevalent screen was included but there was not much difference.     
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VI. Discussion 

Novelties of empirical findings and methodology  

The innovation of this current thesis can be specified from the two perspectives, 

methodological, and practical aspects. The development of good methodology provides 

an unbiased evaluation of the association between the disease status and the outcome of 

ordinal data. The application of the developed methodology to f-Hb concentration 

obtained from FIT in population-based screening also offers useful information that aid 

health decision-makers in designing an even delicate screening policy for personalized 

preventive strategies. Both are discussed as follows.   

 

Advance in methodological development   

As far as the former is concerned, the first is pertaining to the evaluation of the 

dynamics of the ordinal property of biomarker such f-Hb that is measured from fecal 

immunological test (FIT) and widely used for population-based colorectal cancer 

screening. Such an evaluation even in the well-known blood pressure has been very rare. 

The most intractable argument is that, in addition to the skewed property of such an 

ordinal data, undetectable f-Hb that corresponds to left-censored characteristics in the 

language of survival, the dynamic of f-Hb during the repeated FIT test, multi-state 

outcome of colorectal neoplasia, and the relationships of the upper and lower limit (two 
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absorbing barriers) to the status of colorectal neoplasia render the elucidation of the 

dynamics of f-Hb very intractable.       

We began with a simplified statistical approach with the Cox proportional 

hazards regression model that regard the f-Hb concentration as the dependent variable 

of time to event and the disease status (including normal, adenoma, and CRC) as the 

main independent variable of interest making allowance for age, gender, family history, 

and brand of FIT. To further get a better understanding of dynamics of f-Hb making use 

of a large population-based screening data, we proposed a random walk regression 

model to estimate the forward (p) and backward (q) probability or no movement (r) in 

order to calculate ruin probability and the expected steps to reach the absorbing barrier 

given disease status including colorectal adenoma and cancer.  

 

New empirical findings on f-Hb used for screening and surveillance policy of 

colorectal cancer screening program   

      Instead of regarding f-Hb concentration as the covariates and three or four 

multi-state colorectal neoplasia as dependent variables, we applied the Cox proportional 

hazards regression model and simple random walk regression model to relate the 

disease status to the dynamics of f-Hb. Modelling the dynamics of f-Hb in this manner 

may not only elucidate the disease progression of colorectal neoplasia but also provide a 
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new insight into how the median and threshold of f-Hb when colorectal adenoma and 

colorectal cancer were reached. In addition, the introduction of disease status and 

personal attributes (such as age and gender) into the two logistic regression models 

corresponding to the forward probability and the backward probability enables one to 

calculate the ruin probability and the expected number of steps to reach the upper limit 

of f-Hb for colorectal adenoma and colorectal cancer.  

Several novel findings were noted in the current thesis  

(1) The statistically significant differences in f-Hb concentration across three groups, 

normal, colorectal adenoma, and colorectal cancer are demonstrated to indicate the 

quantitative value of the administration of FIT after controlling for demographic 

features and family history.  

(2) The effective median f-Hb concentration (f-Hb50) was 142 g Hb/g for CRC and  

66 g Hb/g for adenoma.  

(3) The threshold f-Hb concentration was 600 g Hb/g for CRC and 400 g Hb/g for 

adenoma.  

(4) The odds ratio of raising f-Hb (forward) as opposed to depreciating f-Hb (backward) 

derived from the simple random walk regression model was five times for CRC and 

two-and-half times for colorectal adenoma compared with the normal group.     

(5) The probability of reaching 400 g Hb/g after long-run transition was 86.7% for 



 

38 

CRC and reaching 300 g Hb/g after long-run transition was 45.5% for adenoma 

but very low for the normal subjects to reach 20 g Hb/g (Table 5.3.5).  

(6) The expected steps taken to reach 400 g Hb/g were estimated as 544 steps for the 

patients diagnosed as CRC and 515 steps for those diagnosed as colorectal adenoma 

to reach 300 g Hb/g (Table 5.3.5).  

      

The statistical issues of f-Hb recorded in FIT 

    There are several statistical concerns over f-Hb of FIT. First, although f-Hb is 

regarded as a quantitative measure for detecting possible colorectal cancer and adenoma 

its statistical property shows a skewed distribution. Therefore, using the continuous data 

with mean value as an indicator for the severity of biomarker seems inadequate. The 

ranking statistics may be better than the mean one. This prompts us to apply the Cox 

proportional hazards regression model to treat f-Hb concentration as an order statistics 

with the partial likelihood function for the ranking of a successive f-Hb concentration in 

order to assess the effect of disease status on the ranking of f-Hb. The second statistical 

issue of f-Hb is pertaining to the undetectable f-Hb at very extreme low value that is 

often recorded as 0. In the language of survival, these undetectable cases were treated as 

censored cases with ties based on the Breslow tie method. This method is rather robust 

and asymptotic to large samples given too many ties. The other reason of failing to use 
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the exact method is because too many ties render computationally intensive and 

intractable. Another solution to the undetectable f-Hb we had not done here is the E-M 

algorithm. We can construct a regression model for those screenees with actual f-Hb and 

their personal characteristics so that we can estimate the f-Hb for the undetectable one 

by using the E-M algorithm. 

The second concern over the values of f-Hb is relevant to interval cancers. Because 

it is not possible to know the exact value of f-Hb for interval cancer when some cases 

missed at screen but surfaced to clinical phase the direct use of f-Hb measured at 

previous screen for interval cancers is not correct. The cold deck method was used for 

filling the missing values of f-Hb for these interval cancers. Figure 5.2.1 and 5.2.2 show 

the remarkable contrast between the uncorrected curves and the corrected ones for CRC. 

This again underscores the complexity of the statistical property of f-Hb.  

Third, as the transition time regarding the evolution of f-Hb at prevalent screen 

was different from that at subsequent screen. The length bias would be more likely to 

happen at first screen because those with the long sojourn time lingering from the low 

f-Hb to high f-Hb were more likely to be detected at first screen than subsequent screens. 

The combined use of both detection modes using the Cox proportional hazards 

regression model seems inadequate. This can be clearly seen in the random walk 

regression model. The forward and back probabilities using data on subsequent screen 
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and interval cancer was substantially different from those including prevalent screen 

cases. It stands to reason that prevalent screen-detected cases have experienced long 

travelling from low f-Hb to high f-Hb compared with subsequent screen-detected cases. 

The forward and backward probabilities have almost reached the equilibrium 

distribution at first screen whereas the subsequent screen-detected may not have 

sufficient follow-up time to reach the equilibrium distribution as seen at first screen. 

This may account for why the forward and backward probabilities after including 

prevalent screen-detected cases were more distinct than those only including subsequent 

screen-detected and interval cancers.  

     

Implications for population-based screening for CRC  

    The empirical findings here provide a new insight into policy-making for CRC 

screening and surveillance of early CRC detected with FIT.  

 For example, the median f-Hb50 and the threshold of f-Hb can be used for 

identifying high risk of directly receiving colonoscopy. The ruin probability also can be 

used for assessing how much time the subject would be taken to reach then boundary of 

high f-Hb in order to assess the baseline risk of underlying population. The fewer the 

steps taken, the higher the risk for CRC.    
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Limitations  

There are several concerns over the methodology and applications of the 

proposed methods. Although the proposed Cox proportional hazards regression model 

and the random walk regression model can accommodate the unique characteristics of 

ordinal data presented here, it still needs the assumption of modelling such an ordinal 

data. For example, a simple random walk model used here has the same assumption of 

incremental independence used in the Weiner process (simple Brown motion) and the 

variance proportional to duration. The relaxation of such an assumption using O-U 

process can be considered in the future. The alternative may consider the development 

of Markov ordinal regression model as done by the Mandel, Gauthier, Guttmann, 

Weiner, and Rebecca (2007) study. The second concern over the empirical data is that as 

the repeated screens rate only cover around one-third of subjects participating in the 

first screen whether the non-participants in the subsequent screen may affect the results 

is not known.   
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In conclusion, we have applied the Cox proportional hazards regression model and 

developed a random walk regression model to accommodate the ordinal data with long 

tail distribution at extremely high value, undetectable (left-censored) circumstance at 

extremely low value, and missing values and also in relation to multi-state outcome. 

The proposed models have been applied to nationwide population-based screening for 

CRC with FIT to estimate the hazard ratio for colorectal cancer and adenoma as 

opposed to the normal subjects, also to estimate the effective median f-Hb and threshold 

of developing CRC and adenoma, and get a better understanding of how f-Hb moves 

forward and backward with time and what is the chance of having gambler’s ruin 

(reaching to the barriers of f-Hb) and how many steps are expected to be taken before 

ruining. These findings provide a new insight into policy-making for colorectal cancer 

screening and also surveillance of early-detected colorectal cancer.   
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APPENDIX  

i. Figure  

 

 

 

Figure 5.1.1 Histogram of original f-Hb by three disease statuses (normal, adenoma, and colorectal 

cancer)  
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Figure 5.1.2 Histogram of original f-Hb by four disease statuses (normal, non-advanced adenoma, 

and advanced adenoma, and colorectal cancer)  
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Figure 5.1.3 Histogram of ln(f-Hb) (adding 0.5 unit to the right) by disease status before IC 

interpolation  
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Figure 5.1.4 Histogram of ln(f-Hb) (excluding undetected cases) by disease status before IC 

interpolation  
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Figure 5.1.5 Histogram of ln(f-Hb) (adding 0.5 unit to the right) by disease status after IC 

interpolation  
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Figure 5.1.6 Histogram of ln(f-Hb) (excluding undetected cases) by disease status after IC 

interpolation  

  



 

51 

 

 

Figure 5.2.1 Cumulative distribution of f-Hb by different states before IC interpolation  
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Figure 5.2.2 Cumulative distribution curve of f-Hb by different states after IC interpolation  
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Figure 5.2.3 Cumulative distribution curve of f-Hb among age groups of cancer patients  
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Figure 5.2.4 Cumulative distribution curve of f-Hb among age groups in adenoma patients  
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Figure 5.2.5 Cumulative distribution curve of f-Hb among gender groups of cancer patients  
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Figure 5.2.6 Cumulative distribution curve of f-Hb among gender groups of adenoma patients  

 

  



 

57 

ii. Table  

 

Table 2.1 Estimated results of re-analysis of symptom and endoscopy measures of treatments for 

peptic oesophagitis  

 symptomatic scores endoscopy scores 

estimate Case  Control Case  Control 

P 0.02(0.007) 0.02(0.007) 0 0.449(0.026) 

Q 0.269(0.026) 0.182(0.021) 0.109(0.015) 0.551 

E -0.25(0.025) -0.16(0.022)   

Test result Z=2.7, p<0.02 chisq=13.3 (df=2), p<0.001 

 

Table 2.2 The results of the probability of symptom score after the movement of n step  

 symptomatic scores 

Step n Case  Control 

2 0.9396 0.9038 

4 0.9859 0.9674 

6 0.9964 0.9880 

8 0.9990 0.9954 

10 0.9997 0.9982 
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Table 2.3 The results of ruin probabilities with different absorbing states  

 Case group Control group 

Start at j Absorbed at 0  Absorbed at 6 Absorbed at 0 Absorbed at 6 

1 1 0 1 0 

2 1 0 0.9999 0.0001 

3 0.9996 0.0004 0.9987 0.0013 

4 0.9945 0.0055 0.9879 0.0121 

5 0.9257 0.0743 0.8901 0.1099 

 

Table 2.4 Estimated results of limiting equilibrium distribution (𝜋𝑘) with reflecting barriers (state 0 

and state 6) on symptomatic scores example  

 symptomatic scores 

k Case  Control 

0 0.9257 0.8901 

1 0.0688 0.0978 

2 0.0005 0.0107 

3 0.0004 0.0012 

4 0 0.0001 
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Table 2.5 The results on the estimates of random walk model parameters (with standard errors), and 

log-likelihood for bacitracin and vancomycin treatment groups  

Model Bacitracin Vancomycin Log-likelihood 

 p Q p q  

1 0.235(0.031) 0.386(0.032) same as bacitracin -349.867 

2 0.236(0.031) 0.365(0.038) same as 

bacitracin 

0.415(0.046) -349.415 

3 0.268(0.038) 0.383(0.03) 0.185(0.038) same as 

bacitracin 

-348.438 

4 0.269(0.041) 0.384(0.041) 0.184(0.041) 0.381(0.045) -348.437 
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Table 3.1 The descriptive results of f-Hb by disease status and other characteristics of visits (screens) for each individual  

Variable  N (%) Median of fHb Mean of fHb STD of fHb 
Interquartile 

Range 

   State CRC 4574 (0.361) 
39  

(74.1)
* 

327.299  

(386.838)
*
 

3735.94  

(4058.8)
*
 

217.9  

(264.6)
*
 

 Adenoma 15604 (1.233) 
66.4  

(68)
*
 

233.59  

(237.362)
*
 

2017.64  

(2033.64)
*
 

140.4  

(142.5)
*
 

 Normal 1245127 (98.405) 
0.04  

(2.4) 

8.123  

(16.208) 

400.085  

(565.02) 

2.4  

(4.8) 

   Gender Male 471412 (37.257) 0.2  16.07  646.702  2.8  

 Female 793893 (62.743) 0  9.676  405.782  2.4  

   Age group 50~54 396274 (31.318) 0  8.796  178.184  2.2  

 55~59 360334 (28.478) 0  11.678  550.729  2.4  

 60~64 250973 (19.835) 0.2  13.049  449.627  2.8  

 65~69 257724 (20.369) 0.25  16.639  776.188  3.2  

   Family history Yes 17055 (1.348) 0  11.652  147.805  2.0  

 No 1248250 (98.652) 0.2  12.063  512.231  2.5  

   Brand Brand 1 970461 (76.698) 0  6.136  88.762  1.6  

 Brand 2 294844 (23.302) 2  31.549  1041.95  5.0  

Overall  1265305  0.2  12.058  509.056  2.5  

*excluded undetected cases 
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Table 3.2 Basic characteristics table of f-Hb after adding the value of f-Hb interval cancer with interpolation  

Variable  N (%) Median of fHb Mean of fHb STD of fHb 
Interquartile 

Range 

   State CRC 4574 (0.361) 
142.7  

(158.7) 

399.327  

(423.984) 

1321.430  

(1357.78) 

318.2  

(321.8) 

 Adenoma 15604 (1.233) 
66.4  

(68) 

233.59  

(237.362) 

2017.640  

(2033.64) 

140.4  

(142.5) 

 Normal 1245127 (98.405) 
0.04  

(2.4) 

8.123  

(16.208) 

400.085  

(565.017) 

2.4  

(4.8) 

   Gender Male 471412 (37.257) 0.2  16.624  647.830  2.8  

 Female 793893 (62.743) 0  9.761  306.174  2.4  

   Age group 50~54 396274 (31.318) 0  9.031  179.615  2.2  

 55~59 360334 (28.478) 0  11.987  551.632  2.4  

 60~64 250973 (19.835) 0.2  13.584  456.984  2.8  

 65~69 257724 (20.369) 0.25  16.601  614.835  3.2  

   Family history Yes 17055 (1.348) 0  12.458  153.343  2.0  

 No 1248250 (98.652) 0.2  12.316  466.698  2.5  

   Brand Brand 1 970461 (76.698) 0  6.634  102.348  1.6  

 Brand 2 294844 (23.302) 2  31.027  942.622  5.0  

Overall  1265305 0.2 12.318 463.884 2.5 

*excluded undetected cases 
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Table 5.1.1 Interval cancer frequency in all repeated measures  

 

Interval Cancer Screen detected cancer All cancer 

  

Prevalence Subsequence All 

 

Numbers 1807 1891 876 2767 4574 

Total 1265305 1265305 1265305 1265305 1265305 

Rate (%) 0.143 0.149 0.069 0.219 3.616 
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Table 5.1.2 The results of ANOVA table 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 343442.748 171721.374 104324 <.0001 

Error 1.27E+06 2082744.965 1.646   

Corrected 

Total 
1.27E+06 2426187.714    

*𝑅2 = 0.141557  

 

 

 

 

 

Table 5.1.3 The non-parametric analysis of f-Hb across three disease status  

Method Chi-Square Statistic DF P-value 

Kruskal-Wallis Test 58206.937 2 <.0001 

Median One-Way 

Analysis 
18792.669 2 <.0001 

Savage One-Way 

Analysis 
206459.438 2 <.0001 
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Table 5.2.1 The estimated hazard ratio of reaching f-Hb using Cox proportional hazards regression 

model：h(𝑓𝐻𝑏) = h0(𝑓𝐻𝑏) × exp (𝜷𝑿)  

  Univariable Multivariable 

  HR aHR 

Variable    

   State CRC 0.197 (0.194,0.20) 0.181 (0.178,0.184) 

 Adenoma 0.213 (0.212,0.215) 0.204 (0.202,0.205) 

 Normal (ref) 1 1 

   Gender Male 0.918 (0.915,0.921) 0.948 (0.944,0.951) 

 Female (ref) 1 1 

   Age group 50~54 (ref) 1 1 

 55~59 0.968 (0.965,0.972) 0.982 (0.978,0.986) 

 60~64 0.910 (0.906,0.914) 0.931 (0.927,0.935) 

 65~69 0.874 (0.870,0.877) 0.896 (0.892,0.900) 

   Family 

history 
Yes 1.051 (1.036,1.067) 1.012 (0.997,1.027) 

 No (ref) 1 1 

   Brand Brand 1 1.558 (1.553,1.564) 1.624 (1.618,1.630) 

 Brand 2 (ref) 1 1 
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Table 5.2.2 The estimated hazard ratio of reaching f-Hb using the Accelerated failure time model：

ln(𝑓𝐻𝑏) = 𝑿𝜷 + σ𝛆 

  Univariable Multivariable 

  coefficients coefficients 

Intercept   1.743 (1.733,1.754) 

State CRC 3.876 (3.822,3.93) 3.884 (3.225,3.282) 

 Adenoma 3.281 (3.252,3.31) 3.254 (3.225,3.282) 

 Normal (ref) 0 0 

Gender Male 0.318 (0.308,0.328) 0.152 (0.143,0.161) 

 Female (ref) 0 0 

Age group 50~54 (ref) 0 0 

 55~59 0.109 (0.097,0.122) 0.046 (0.034,0.057) 

 60~64 0.251 (0.237,0.265) 0.143 (0.131,0.156) 

 65~69 0.364 (0.351,0.378) 0.206 (0.193,0.218) 

Family history Yes 0.169 (0.124,0.214) 0.081 (0.04,0.121) 

 No (ref) 0 0 

Brand Brand 1 -0.294 (-0.303-0.284) -0.417 (-0.426,-0.408) 

 Brand 2 (ref) 0 0 

Scale   1.789 (1.787,1.724) 

Shape   0.559 (0.558,0.56) 

  

http://en.wikipedia.org/wiki/Accelerated_failure_time_model
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Table 5.3.1 Number of jumps distribution among states   

Number of 

jumps 

States 

Non Advanced 

Adenoma 

Advanced 

Adenoma 

Screen 

Detected 

Cancer (SDC) 

Interval 

Cancer (IC) 
Normal 

0 8157 3303 2041 1499 816132 

1 3370 684 291 132 165050 

2 745 82 44 12 26649 

3 96 9 3 2 2982 

4 1 0 0 0 30 

Total 12369 4078 2379 1645 1010843 

 

 

 

Table 5.3.2 Step distribution of f-Hb among state   

 
Forward Backward No movement 

SDC 2363 56 10 

IC 81 81 0 

Adv Adenoma 4071 88 19 

Non adv Adenoma 10856 2199 254 

Normal 81464 83215 62735 
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Table 5.3.3 The estimated parameters on the use of random walk model assuming normal 

approximation  

Group μ σ p q r 

CRC 
0.484 

(0.411,0.556) 

0.865 

(0.814,0.916) 

0.733 

(0.594,0.872) 

0.249 

(0.153,0.345) 

0.018 

(0,0.131) 

Adenoma 
0.196 

(0.172,0.22) 

0.957 

(0.94,0.974) 

0.575 

(0.532,0.619) 

0.379 

(0.341,0.418) 

0.045 

(0.011,0.079) 

Normal 
-0.008 

(-0.011,-0.004) 

0.851 

(0.848,0.853) 

0.358 

(0.353,0.364) 

0.366 

(0.36,0.371) 

0.276 

(0.272,0.28) 
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Table 5.3.4 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

and colorectal cancer  

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -0.583 0.004 -0.592 -0.574 

α1 1.592 0.094 1.407 1.776 

α2 0.886 0.026 0.836 0.937 

*Loglikelihood = -152790.2 

Model: logit(pi) = −0.583 + 1.592CRCi + 0.886Adenomai 

 

 

 

Table 5.3.5 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.4   

*a: go to 0 g/g 

  

State group 
p 

(95% CI) 

q 

(95% CI) 
OR f-Hb (g/g) 

Ruin 

probability 

Expected steps 

D1 DX 

Cancer 
0.733 

(0.697,0.768) 

0.267 

(0.232,0.303) 
4.923 400 0.867 543.76 740.75 

Adenoma 
0.575 

(0.563,0.587) 

0.425 

(0.413,0.437) 
2.426 300 0.455 514.89 893.37 

Normal 
0.358 

(0.356,0.360) 

0.642 

(0.640,0.644) 
1.000 20 1.9x10

-5
 3.53

a 
7.05

a 
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Table 5.3.6 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering four disease statuses, normal, colorectal 

non-advanced adenoma, advanced adenoma, and colorectal cancer  

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -0.583 0.005 -0.592 -0.574 

α1 1.592 0.095 1.406 1.778 

α2 2.553 0.102 2.353 2.754 

α3 0.679 0.029 0.621 0.736 

*Loglikelihood = -152571.4  

Model: logit(p
i
) = −0.583+ 1.592CRCi + 2.553AdvAdenomai + 0.679Adenomai 

 

 

Table 5.3.7 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.6  

State group 
p 

(95% CI) 

q 

(95% CI) 
OR f-Hb (g/g) 

Ruin 

probability 

Expected steps 

D1 DX 

Cancer 
0.733 

(0.696,0.769) 

0.267 

(0.231,0.304) 
4.923 400 0.867 543.73 740.67 

Adv 

Adenoma 

0.878 

(0.769,0.856) 

0.122 

(0.101,0.144) 
12.906 300 0.981 340.50 386.83 

Non adv 

Adenoma 

0.524 

(0.510,0.538) 

0.476 

(0.462,0.490) 
1.974 300 0.174 551.72 1051.31

 

Normal 
0.358 

(0.356,0.360) 

0.642 

(0.640,0.644) 
1 20 1.9x10

-5 
3.53

a 
7.05

a 

*a: go to 0 g/g
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Table 5.3.8 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering four disease statuses, normal, colorectal adenoma,  

screen-detected colorectal cancer (SDC), and interval cancer (IC)  

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -0.583 0.004 -0.591 -0.575 

α1 2.168 0.136 1.901 2.435 

α2 0.887 0.026 0.835 0.938 

α3 0.583 0.160 0.270 0.896 

*Loglikelihood = -152760.2 

Model: logit(p
i
) = −0.583+ .2.168SDCi + 0.887Adenomai + 0.583ICi 

 

 

Table 5.3.9 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.8  

State group 
p 

(95% CI) 

q 

(95% CI) 
OR f-Hb (g/g) 

Ruin 

probability 

Expected steps 

D1 DX 

Cancer 
0.830 

(0.762,0.867) 

0.170 

(0.133,0.208) 
8.756 400 0.958 580.49 577.79 

Adenoma 
0.575 

(0.563,0.587) 

0.425 

(0.413,0.437) 
2.426 300 0.455 514.86 893.27 

IC 
0.500 

(0.422,0.578) 

0.500 

(0.422,0.578) 
1.793 300 0.007 299 596 

Normal 
0.358 

(0.356,0.360) 

0.642 

(0.640,0.644) 
1.000 20 1.9x10

-5 
3.53

a 
7.05

a 

*a: go to 0 g/g
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Table 5.3.10 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

and colorectal cancer with two logistic regression models considering forward 

(p), backward(q), and no movement (r)  

Coefficient Estimate Stderr 
95% CI 

Lower Upper 

α0 0.261 0.005 0.252 0.271 

α1 3.434 0.279 2.886 3.981 

α2 2.280 0.063 2.157 2.404 

β
0
 0.283 0.005 0.273 0.292 

β
1
 2.333 0.282 1.781 2.886 

β
2
 1.843 0.064 1.717 1.969 

*Loglikelihood = -253418.9 

Model: logit(p
i
) = 0.261+ 3.434CRCi + 2.280Adenomai 

    logit(q
i
) = 0.283+ 2.333CRCi + 1.843Adenomai  

 

 

Table 5.3.11 Estimated forward (p), backward (q) probability, staying probability (r) the 

odds ratio of p/q, ruin probability, and the expected steps based on the estimated 

parameters from Table 5.3.10  

State 

group 

p 

(95% CI) 

q 

(95% CI) 

r 

(95% CI) 
OR f-Hb (g/g) 

Ruin 

probability 

Expected steps 

D1 DX 

Cancer 
0.733 

(0.695,0.768) 

0.249 

(0.214,0.285) 

0.018 

(0.009,0.029) 
3.010  400 0.884 533.94 714.10 

Adenoma 
0.575 

(0.563,0.587) 

0.379 

(0.367,0.392) 

0.045 

(0.040,0.051) 
1.551  300 0.565 493.02 816.59 

Normal 
0.358 

(0.356,0.360) 

0.366 

(0.364,0.368) 

0.276 

(0.274,0.278) 
1.000  20 0.082 17.78

a 
33.92

 

*a: go to 0 g/g
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Table 5.3.12 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering four disease statuses, normal, colorectal 

non-advanced adenoma, colorectal advanced adenoma, and colorectal cancer 

two logistic regression models considering forward (p), backward(q), and no 

movement (r)  

State group Coefficient SE 
95% CI 

Lower Upper 

α0 0.261 0.005 0.251 0.272 

α1 3.433 0.304 2.838 4.028 

α2 3.438 0.216 3.015 3.861 

α3 2.102 0.062 1.981 2.223 

β
0
 0.282 0.005 0.272 0.293 

β
1
 2.332 0.315 1.715 2.950 

β
2
 1.251 0.232 0.796 1.705 

β
3
 1.876 0.063 1.753 1.999 

*Loglikelihood = -253197.5 

Model: logit(p
i
) = 0.261+ 3.433CRCi + 3.438AdvAdenomai + 2.102Adenomai 

    logit(q
i
) = 0.282+ 2.332CRCi + 1.251AdvAdenomai + 1.876Adenomai  

 

 

Table 5.3.13 Estimated forward (p), backward (q) probability, staying probability (r) the 

odds ratio of p/q, ruin probability, and the expected steps based on the estimated 

parameters from Table 5.3.12  

State 

group 

p 

(95% CI) 

q 

(95% CI) 

r 

(95% CI) 
OR 

f-Hb 

(g/g) 

Ruin 

probabili

ty 

Expected steps 

D1 DX 

Cancer 
0.733 

(0.695,0.768) 

0.249 

(0.213,0.286) 

0.018 

(0.008,0.030) 
3.010 400 0.884 533.94 714.08 

Adv 

Adenoma 

0.878 

(0.856,0.898) 

0.101 

(0.082,0.120) 

0.022 

(0.013,0.031) 
8.887 300 0.987 333.12 370.17 

Non adv 

Adenoma 

0.524 

(0.510,0.538) 

0.427 

(0.413,0.440) 

0.049 

(0.013,0.027) 
1.255 300 0.336 534.64 968.43 

Normal 
0.358 

(0.356,0.360) 

0.366 

0.364,0.368) 

0.276 

(0.274,0.278) 
1.000 20 0.082 17.78

a 
33.93

 

*a: go to 0 g/g
 

 



 

73 

Table 5.3.14 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering four disease statuses, normal, colorectal adenoma,  

screen-detected colorectal cancer (SDC), and interval cancer (IC) with two 

logistic regression models considering forward (p), backward(q), and no 

movement (r)  

State group Coefficient SE 
95% CI 

Lower Upper 

α0 0.261 0.006 0.250 0.272 

α1 3.210 0.257 2.706 3.715 

α2 2.282 0.068 2.148 2.415 

α3 9.307 6.789 -3.999 22.614 

β
0
 0.282 0.006 0.272 0.293 

β
1
 1.440 0.265 0.921 1.959 

β
2
 1.844 0.069 1.709 1.980 

β
3
 9.286 6.787 -4.016 22.588 

*Loglikelihood = -253380.4 

Model: logit(p
i
) = 0.261+ 3.21SDCi + 2.282Adenomai + 9.307ICi 

    logit(q
i
) = 0.282+ 1.44SDCi + 1.844Adenomai + 9.286ICi  

 

Table 5.3.15 Estimated forward (p), backward (q) probability, staying probability (r) the 

odds ratio of p/q, ruin probability, and the expected steps based on the estimated 

parameters from Table 5.3.14  

State 

group 

p 

(95% CI) 

q 

(95% CI) 

r 

(95% CI) 
OR 

f-Hb 

(g/g) 

Ruin 

probabili

ty 

Expected steps 

D1 DX 

Cancer 
0.830 

(0.791,0.866) 

0.144 

(0.111,0.180) 

0.026 

(0.014,0.039) 
5.893 400 0.970 468.15 548.39 

Adenoma 
0.575 

(0.563,0.588) 

0.379 

(0.367,0.392) 

0.045 

(0.040,0.051) 
1.551 300 0.565 493.02 816.57 

IC 
0.500 

(0.242,0.688) 

0.500 

(0.243,0.686) 

0.000 

(0,0.057) 
1.022 300 0.007 299 596 

Normal 
0.358 

(0.356,0.360) 

0.366 

(0.364,0.368) 

0.276 

(0.274,0.278) 
1.000 20 0.082 17.78

a 
33.93

 

 *a: go to 0 g/g   
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Table 5.3.16 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

and colorectal cancer based on all detection modes (including prevalent screen)   

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -2.469 0.004 -2.476 -2.462 

α1 5.280 0.085 5.113 5.447 

α2 4.232 0.022 4.189 4.275 

*Loglikelihood =-293795.3  

Model: logit(p
i
) = −2.469+ 5.28CRCi + 4.232Adenomai 

 

 

Table 5.3.17 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.16   

State group 
p 

(95% CI) 

q 

(95% CI) 
OR 

f-Hb 

(g/g) 

Ruin 

probabilit

y 

Expected steps 

D1 DX 

Cancer 
0.943 

(0.934,0.952) 

0.057 

(0.048,0.066) 
195.557 400 0.996 422.93 447.31 

Adenoma 
0.854 

(0.848,0.859) 

0.146 

(0.141,0.152) 
69.142 300 0.971 350.04 408.90 

Normal 
0.078 

(0.078,0.079) 

0.922 

(0.921,0.922) 
1.000 20 2.6x10

-9
 1.19

a 
2.37

a 

 *a: go to 0 g/g
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Table 5.3.18 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering four disease statuses, normal, colorectal 

non-advanced adenoma, advanced adenoma, and colorectal cancer based on all 

detection modes (including prevalent screen)  

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -2.469 0.004 -2.476 -2.462 

α1 5.280 0.084 5.114 5.445 

α2 6.107 0.098 5.916 6.299 

α3 3.956 0.023 3.912 4.001 

*Loglikelihood = -293371.4 

Model: logit(p
i
) = −2.469+ 5.28CRCi + 6.107AdvAdenomai + 3.956Adenomai 

 

 

Table 5.3.19 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.18   

State 

group 

p 

(95% CI) 

q 

(95% CI) 
OR f-Hb (g/g) 

Ruining 

probability 

Expected steps 

D1 DX 

Cancer 
0.943 

(0.934,0.952) 

0.057 

(0.048,0.066) 
196.381  400 0.996 422.93 447.31 

Adv 

adenoma 

0.974 

(0.969,0.979) 

0.026 

(0.021,0.031) 
449.293  300 0.999 306.83 313.87 

Non adv 

adenoma 

0.816 

(0.809,0.822) 

0.184 

(0.178,0.191) 
52.244  300 0.949 366.20 447.72 

Normal 
0.078 

(0.078,0.079) 

0.922 

(0.921,0.922) 
1.000  20 0 1.19

a 
2.37

a 

*a: go to 0 g/g
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Table 5.3.20 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

screen-detected colorectal cancer (SDC), and interval cancer (IC) (including 

prevalent screen)  

Coefficient Estimate SE 
95% CI 

Lower Upper 

α0 -2.469 0.003 -2.476 -2.462 

α1 6.047 0.125 5.803 6.292 

α2 4.232 0.022 4.190 4.275 

α3 2.469 0.157 2.161 2.777 

*Loglikelihood = -293646.2 

Model: logit(p
i
) = −2.469+ 6.047SDCi + 4.232Adenomai + 2.469ICi 

 

 

Table 5.3.21 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from Table 

5.3.20   

State 

group 

p 

(95% CI) 

q 

(95% CI) 
OR f-Hb (g/g) 

Ruining 

probability 

Expected steps 

D1 DX 

SDC 
0.973 

(0.966,0.979) 

0.027 

(0.021,0.034) 
425.976  400 0.999 410.11 420.54 

Adenoma 
0.854 

(0.848,0.859) 

0.146 

(0.141,0.152) 
69.142  300 0.971 350.04 408.90 

IC 
0.500 

(0.423,0.577) 

0.500 

(0.423,0.577) 
11.821  300 0.993 299 596 

Normal 
0.078 

(0.078,0.079) 

0.922 

(0.921,0.922) 
1.000  20 0.007 1.19

a 
2.37

a 

*a: go to 0 g/g
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Table 5.3.22 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

colorectal cancer (CRC), besides that, making allowance for gender (covariate)  

Coefficient Estimate Stderr 
95% CI 

Lower Upper 

α0 -0.597 0.005 -0.608 -0.587 

α1 1.586 0.097 1.396 1.775 

α2 0.878 0.026 0.826 0.930 

α3 0.043 0.010 0.024 0.062 

*Loglikelihood =-152779   

Model: logit(p
i
) = −0.597+ 1.586CRCi + 0.878Adenomai + 0.043Genderi   

 

 

Table 5.3.23 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from 

Table 5.3.22  

*a: go to 0 g/g
 

  

State group Gender 
p 

(95% CI) 

q 

(95% CI) 
OR 

f-Hb 

(g/g) 

Ruining 

probability 

Expected steps 

D1 DX 

Cancer 

Male 
0.737 

(0.7,0.774) 

0.263 

(0.226,0.3) 
4.882 

400 0.873 540.53 731.94 

Female 
0.729 

(0.691,0.766) 

0.271 

(0.234,0.309) 
400 0.861 546.71 748.84 

Adenoma 

Male 
0.580 

(0.568,0.593) 

0.420 

(0.407,0.432) 
2.406 

300 0.476 510.85 878.78 

Female 
0.570 

(0.557,0.582) 

0.430 

(0.418,0.443) 
300 0.430 519.41 909.99 

Normal 

Male 
0.365 

(0.361,0.368) 

0.635 

(0.632,0.639) 
1 

20 3.1 x10
-5

 3.7
a
 7.4

a
 

Female 
0.355 

(0.352,0.357) 

0.645 

(0.643,0.648) 
20 1.5 x10

-5
 3.45

a 
6.89

a 
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Table 5.3.24 Estimated regression coefficients and their 95% Cis with the random walk 

regression model considering three disease statuses, normal, colorectal adenoma, 

colorectal cancer (CRC), besides that, taking gender as covariate (including 

prevalence screen)  

Coefficient Estimate Stderr 
95% CI 

Lower Upper 

α0 -2.410 0.006 -2.423 -2.398 

α1 5.311 0.085 5.144 5.477 

α2 4.268 0.022 4.225 4.311 

α3 -0.164 0.013 -0.189 -0.139 

*Loglikelihood = -293557   

Model: logit(p
i
) = −2.41+ 5.311CRCi + 4.268Adenomai − 0.164Genderi   

 

 

Table 5.3.25 Estimated forward (p) and backward (q) probability, the odds ratio of p/q, 

ruin probability, and the expected steps based on the estimated parameters from Table 

5.3.24   

*a: go to 0 g/g   

 

State group Gender 
p 

(95% CI) 

q 

(95% CI) 
OR 

f-Hb 

(g/g) 

Ruining 

probability 

Expected steps 

D1 DX 

Cancer 

Male 
0.939 

(0.929,0.949) 

0.061 

(0.051,0.071) 
202.495 

400 0.996 424.78 451.24 

Female 
0.948 

(0.939,0.956) 

0.052 

(0.044,0.061) 
400 0.997 420.88 442.97 

Adenoma 

Male 
0.845 

(0.839,0.850) 

0.155 

(0.15,0.161) 
71.356 

300 0.966 353.71 417.57 

Female 
0.865 

(0.86,0.87) 

0.135 

(0.130,0.140) 
300 0.976 345.45 398.20 

Normal 

Male 
0.071 

(0.07,0.072) 

0.929 

(0.928,0.93) 
1 

20 0 1.17
a
 2.33

a
 

Female 
0.082 

(0.081,0.083) 

0.918 

(0.917,0.919) 
20 0 1.2

a 
2.39

a 


