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Abstract 
    We review some ideas of scattering amplitudes. The review 

consists of two parts. In Part I, we review the definition of 

scattering amplitudes and spinor helicity. We use the technology 

of spinor helicity to represent scattering amplitudes in 

Yang-Mills theory. In part II, we review supersymmetry. The 

review will be on a basic level to introduce superamplitudes. We 

then introduce supergravity amplitudes. After introducing 

amplitudes, we search for natural building blocks for 

supergravity amplitudes in part III. We want to show a 

systematic way to find the building blocks which are 

term-by-term bonus !!! large momentum scaling just like 

amplitudes. For a given choice of deformation legs, we present 

such an expansion in the form of the Britto, Cachazo, Feng and 

Witten recursion relation in N=7 supergravity based on a special 

shift. We will show that this improved scaling behavior, with 

respect to the fully N=8 representation, is due to its automatic 

incorporation of the so called bonus relations. 

 

Keywords: Scattering amplitudes, Spinor helicity, Recursion 

relations, Supersymmetry, Supergravity 
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1 Introduction

Scattering amplitudes are the main physical observables in high energy physics. Recently,
there have been many great successes in studying this region. One of the result is finding
recursion relations. This powerful result can help us to compute Yang-Mills theory, N=4
Super-Yang-Mills theory and N=8 supergravity scattering amplitudes easily.

In amplitudes language we only use physical observables to construct amplitudes and
the reason why we focus on using this language is that there are no gauge redundancy.
We will construct amplitudes by using momentum, helicity· · · of outgoing particles and
amazing result is that using Lorentz symmetry and above informations are enough for us
to determine three point tree level amplitudes. And how about higher points tree level
amplitudes? There is a systematic method to construct higher points on-shell amplitudes
called BCFW recursion relation. As we know three point amplitudes and recursion re-
lations, we can construct n point tree level amplitudes. We will briefly introduce the
starting point of recursion relations here.

In field theory, we try to write down the Lagrangian for our theory and quantize them
using path integral or canonical quantization. Feynman tell us we can use Feynman rules
to simplify our calculation.

Feynman rules greatly help us to compute scattering processes but they become very
complicated when we consider higher points amplitudes and loop amplitudes. Fortu-
nately, Feynman rules give us a very good experience in studying scattering amplitudes.
We can see tree level scattering amplitudes have singular points when their propagators
go on-shell. This means we know where the poles are and the residue on each pole. We
will naturally want to use complex analysis to study scattering amplitudes and this is
what recursion relations do. We introduce a complex number z into our amplitudes by
shifting the real momentum to complex. The key point in recursion relation is knowing
the singularities and discontinuities of the functional form of the shifting amplitudes on
z-plane. In four dimension spacetime, we achieve recursion relations by shifting two legs
of outgoing particles. This is so called BCFW recursion relations. It is convenience to
use [iji to denote which legs we shift. [iji means we shift particle i and particle j as

|i] ! |i] + z|ji, |ji ! |ji � z|ii. (1.1)

Shifting as [i+j+i, [i�j+i and [i�j�i are called good shifts and shifting as [i+j�i are called
bad shifts. Plus sign and minus sign are used to denote positive helicity and negative
helicity of the particles. The reason why we call good shifts and bad shifts is that we can
use good shifts to shift the amplitudes and get better large z behavior than bad shifts.
More concrete process of this powerful tool will be introduced in Part I of this thesis.

Recursion relation can be generalized to constructing superamplitudes by just mod-
ifying the shifting. The process of constructing on-shell superamplitudes is called super
BCFW. We can use super BCFW to construct higher point superamplitudes.

To ensure recursion relations work, we can use eq.(1.1) to test the amplitudes behav-
ior in high energy limits. To do this we shift our amplitudes by using eq.(1.1) and set
z ! 1. The shifting results are: (1). N=8 supergravity amplitudes have high energy
behavior 1/z2 under shifting. We will not use plus sign and minus sign to denote the
shifting [iji in N=8 theory, because all of the superfields i, j · · · in N=8 contain positive
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helicity graviton and negative helicity graviton simultaneously. (2). N=7· · · 0 supergrav-
ity amplitudes behavior are depended on shifted legs. If we are using good shift, then
N=7· · · 0 supergravity amplitudes behavior are 1/z2. If we are using bad shift, then
N=7· · · 0 supergravity amplitudes behavior are z8�N/z2.

Validity of recursion relations relies on vanishing of boundary contribution, which
means we can not use bad shift recursion relations in N=6· · · 0 supergravity theory. Bad
shift recursion relations only work in N=7 supergravity theory. Validity of N=7 bad
shift relies on using 1/z2 fall o↵ of the full amplitude. We can see this from reducing
supersymmetry from N=8 to N=7. In N=8 theory amplitudes have 1/z2 fall o↵. If we
choose the shifting superfields [iji in N=8 and reduce to N=7 by choosing i to be a plus
superfield which has positive helicity graviton and j to be negative one which has negative
helicity graviton. Then we will get an extra z factor. So the N=7 amplitude in bad shifts
will look like z/z2, which vanishes in high energy by appearance of z2 on denominator.
More details are in the Section.5.1. Although N=8 supergravity amplitudes also vanishes
in high energy limits under [iji shift, they don’t have extra z factor as N=7. In other
words, N=8 theory blind to the improved fall o↵ 1/z2. So that we believe there are
something interesting in constructing N=7 amplitudes by using bad shift.

As we know that N=8 amplitudes AN=8 have 1/z2 behavior under high energy limits.
We can multiply a linear function of z which we call f(z) on our amplitudes and claim
that f(z)AN=8 vanishes while z ! 1. We can compute f(z)AN=8 by using recursion
relation and we will find its building blocks are all contained in the building block for
constructing AN=8. So they will give us new relations between the building blocks. We
call these relations bonus relations. We will give a concrete example in MHV amplitudes
in Section 5.4.

In part III of this thesis, we will present a proof that the building blocks of bad shift
BCFW in N=7 term by term manifest 1/z2 behavior under special shifting leg. Note
that the generic BCFW building blocks can behave as 1/z individually and only behave
as 1/z2 in sum. We call it bonus scaling if each building block manifests 1/z2 behavior.
We will show that this bonus scaling comes from the bonus relation in N=8 theory in
MHV amplitudes.

The reason why we are interested in each building block manifesting 1/z2 in high
energy limits is that gravity theories don’t have Yangian invariance which arises in the
building block of N=4 super Yang-Mills theory and N=6 super Chern-Simons matter
theory. We will naturally want to ask, if there are natural building blocks for gravity
amplitudes, what would be a desirable property similar to Yangian invariance. One
special property is the asymptotic behaviour.

In the end of part III, we will apply bad shift BCFW in superstring amplitudes. We
show bad shift BCFW building blocks have better large z fall of than the whole string
amplitudes under special kinematics region. In superstring gluon amplitudes, large z
scaling under [iji shift is improved by z�↵0sij where ↵0 is string tension and sij is the
Mandestam variables. Combing this improvement with bonus scaling results in Section
5.2, bad shift building blocks have better large z fall of than the whole amplitudes in the
region 3�N < Re[↵0sij] < 4�N in superstring gluon amplitudes where N is the number
supersymmetry. We will use superstring four point gluon amplitudes for example to
show this fact. Similar results can be found in the closed superstring. The improvement
is z�2↵0sij in superstring graviton amplitudes and the special region that building block
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have better behavior than whole amplitudes is 6�N < Re[2↵0sij] < 7�N .
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Part I

2 Spinor Formalism

In this chapter, we are going to introduce spinor helicity formalism. We will briefly
review the representation of the Lorentz group and we will study some algebra of spinor
fields. At the end of this section, we will use the technology of spinor helicity to represent
scattering amplitudes in Yang-Mills theory.

2.1 Representation of Lorentz group

Lorentz symmetry is a spacetime symmetry which describes di↵erence reference frames
observation. A Lorentz transformation is a linear, homogeneous change of coordinates

x0µ = ⇤µ
⌫x

⌫ . (2.1)

It will preserve the interval x2 and so that we know that the matrix ⇤µ
⌫ obey

gµ⌫ = ⇤⇢
µ⇤

�
⌫g⇢�, (2.2)

where gµ⌫ is the metric of Minkowski space

gµ⌫ =

0

BB@

�1
1

1
1

1

CCA . (2.3)

In quantum theory, symmetries are represented by unitary operators on Hilbert space.
So we use U(⇤) to represent Lorentz transformation on Hilbert space. The definition of
group tells us these operators U(⇤) must obey the composition rule

U(⇤0⇤) = U(⇤)U(⇤0). (2.4)

For an infinitesimal Lorentz transformation, we can expand ⇤µ
⌫ like

⇤µ
⌫ = �µ⌫ + �!µ

⌫ . (2.5)

And expand U(⇤) to first order

U(1 + �!) = I +
i

2~�!µ⌫M
µ⌫ +O{�!2} (2.6)

We can define Mµ⌫ as an antisymmetry matrix so that we can use Mµ⌫ to represent the
generators of Lorentz group. We will use composition rule and eq.(2.5), eq.(2.6) to show
the commutation relations of generator Mµ⌫ later. Now we should define what scalar,
vector and tensor are by using Lorentz transformation.
The definition of scalar, vector and tensor transformation:
Scalar transformation

U(⇤)�1CU(⇤) = C. (2.7)
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Vector transformation
U(⇤)�1V µU(⇤) = ⇤µ

⇢V
⇢. (2.8)

Two rank tensor transformation

U(⇤)�1T µ⌫U(⇤) = ⇤µ
⇢⇤

⌫
�T

⇢�. (2.9)

This is a general result: any operator carrying space-time indices will transform similarly.
So that we can easily define n-rank tensor transformation

U(⇤)�1T µ⌫···⌘U(⇤) = ⇤µ
⇢⇤

⌫
� · · ·⇤⌘

⇠T
⇢�···⇠ (2.10)

There is another way to find two rank anti-symmetry tensor transformation. Starting
from U(⇤�1⇤0⇤) = U(⇤�1)U(⇤0)U(⇤) we expand ⇤0 to first order by using eq.(2.5) and
expand U(⇤0) to first order by using eq.(2.6). The result is

U(⇤�1(�µ⌫ + �!0µ
⌫)⇤) = U(⇤�1)(I +

i

2~�!µ⌫M
µ⌫)U(⇤). (2.11)

As we know ⇤�1 = ⇤T , the first order term of �!0µ
⌫ give us

U(⇤)�1Mµ⌫U(⇤) = ⇤µ
⇢⇤

⌫
�M

⇢� (2.12)

which is exactly two ranks tensor transformation.
Now we can show the commutation relations of Mµ⌫ . We expand ⇤ and U(⇤) in

eq.(2.12) to first order of �!µ
⌫ , we get

[Mµ⌫ ,M⇢�] = i~{(gµ⇢M ⌫� � g⌫⇢Mµ�)� (gµ�M ⌫⇢ � g⌫�Mµ⇢)} (2.13)

The commutation relation specify the Lie algebra of the Lorentz group. We can identify
the components of angular momentum operator ~J as

Ji =
1

2
"ijkM

jk (2.14)

and components of boost operator ~K as

Ki = M i0. (2.15)

We find eq.(2.13) can be rewritten as

[Ji, Jj] = +"ijkJk (2.16)

[Ji, Kj] = �"ijkKk (2.17)

[Ki, KJ ] = �"ijkJk (2.18)

Here we start to describe how scalar field, vector field and tensor field transformation
in Lorentz group. In quantum mechanics, the Heisenberg picture which describes time
dependent operator �Heisnberg(t) as

eiHt�Schrodingere
�iHt = �Heisnberg(t)
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where �Schrodinger is time independent operator. Eq.(2.1) gives us a hint that field theory
should transform like this formula.
So that we define scalar field transformation

U(⇤)�1�(x)U(⇤) = �(⇤�1x), (2.19)

vector fields transformation

U(⇤)�1V ⇢U(⇤) = ⇤µ
⇢V

⇢(⇤�1x) (2.20)

and tensor field transformation

U(⇤)�1Bµ⌫U(⇤) = ⇤µ
⇢⇤

⌫
�B

⇢�(⇤�1x). (2.21)

In general, we can consider a field which carries a generic Lorentz index,  A (Index A is
µ⌫⇢� · · · .) which transform as

U(⇤)�1 AU(⇤) = L B
A (⇤) B(⇤

�1x) (2.22)

where ⇤ B
A (⇤) = ⇤ ⌘

µ ⇤
⇠
⌫ · · · . For an infinitesimal transformation, we expand L B

A (⇤) as

L B
A (1 + �!) = � B

A +
i

2
�!µ⌫(S

µ⌫) B
A . (2.23)

Now we use eq.(2.6) and eq.(2.23) to expand eq.(2.22) to first order

[ A(x),M
µ⌫ ] = �i(xµ@⌫ � x⌫@µ) A(x) + (Sµ⌫) B

A  B(x). (2.24)

We want to find the irreducible representations of Lorentz group. We start from the
algebra of Lorentz group generator Ji and Ki. Studying commutation relations more
carefully, we can rewrite the relations as follows

[Ni, Nj] = i"ijkNk, (2.25)

[N †
i , N

†
j ] = i"ijkN

†
k , (2.26)

[Ni, N
†
j ] = 0. (2.27)

Ni and N †
i are defined as

Ni ⌘ 1

2
(Ji � iKi), (2.28)

N †
i ⌘ 1

2
(Ji + iKi). (2.29)

From the results of studying SO(3) group, the commutations relation of angular mo-
mentum are [Ji, Jj] = i~"ijkJk which just like eq.(2.25) and eq.(2.26). So that we can
construct the spectrum of the Lorentz group as we have done in quantization of angular
momentum. The spectrum of SO(3) can be denoted by two quantum numbers (j,m)
where j and m are quantum number of J2 and Jz respectively. Quantum number j is
integer or half integer and quantum number m run from -j, -j+1, · · · , j-1, j+1. In Lorentz
group, we have two set of commutation relations eq.(2.25) and eq.(2.26) which means we
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can use SU(2)⌦SU(2) to represent SO(1,3). As we know the spectrum of Ni constitute
all of the inequivalent, irreducible representations of SU(2) and so does N †

i , we can con-
struct the irreducible representations of the Lorentz group. We use two numbers (m,n)
to denote the representations where m is the number of states which transform under
Ni and n is the number of states which transform under N †

i . Some representations have
special names:

(1, 1) = scalar,

(2, 1) = left� handed spinor,

(1, 2) = right� handed spinor,

(2, 2) = vector.

Left-handed spinor field is also named left-handed Weyl field and right-handed spinor
field is also named right-handed Weyl field.

In this section we briefly review Lorentz group and demonstrate irreducible repre-
sentations from Lorentz algebra. Then spinor representation was naturally found. In
next section we will start from studying free electron Lagrangian and solving Dirac equa-
tion. The solutions of Dirac equation which are called Dirac spinor will naturally split
to two parts in Weyl representation. One part is left-handed Weyl spinor and the other
is right-handed Weyl spinor.

2.2 Spinor Fields

The Lagrangian for a free electron  is

L = i ̄�µ@µ �m ̄ . (2.30)

where  ̄ is the Dirac conjugate of  

 ̄ =  †
✓

0 �ȧ
ḃ

� b
a 0

◆
. (2.31)

And the equation of motion for  ̄ give us the Dirac equation

(�i/@ +m) = 0 (2.32)

We can multiply the Dirac equation by (i/@ +m) and get the Klein-Gordon equation

(i/@ +m)(�i/@ +m) = (�@2 +m2) = 0 (2.33)

It is easy to find the solution to the Klein-Gordon equation. We expand field  (x) in
momentum space

 (x) ⇠ u(p)eipx + v(p)e�ipx. (2.34)

And Klein-Gordon equation only give us one constraint p2 = pµpµ = �m2. If we want to
find the solution to the Dirac equation, then we will find another constraints

(/p+m)u(p) =0, (2.35)

(�/p+m)v(p) =0. (2.36)
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There are two independent solution for u(p) and v(p) respectively which we use ± to
denote. For massive particles, we can choose our basis to be in the rest-frame of the
particle. Then u± and v± are eigenstates of the z- components of the spin matrix. So
that ”+” denotes spin up and ”-” denotes spin down. For massless fermions, ± denotes
helicity, which is the projection of the spin along the momentum of the particle. We
rewrite the solution as

 (x) =
X

s=±

Z
d3p

(2⇡)32Ep

[bs(p)us(p)e
ipx + d†s(p)vs(p)e

�ipx]. (2.37)

Write down /p in matrix formalism

/p =

✓
0 paḃ
pȧb 0

◆
, (2.38)

where

paḃ ⌘ pµ(�
µ)aḃ =

✓�p0 + p3 p1 � ip2

p1 + ip2 �p0 � p3

◆
(2.39)

and

pȧb ⌘ pµ(�̄µ)ȧb =

✓�p0 � p3 �p1 + ip2

�p1 � ip2 �p0 + p3

◆
. (2.40)

The determinant of paḃ and pȧb are Lorentz-invariant,

det p = �pµpµ = m2. (2.41)

Because we are studying high-energy scattering amplitudes, neglecting the mass term
would be a good approximation. When m = 0, the Dirac equation becomes

/pu(p) =0, (2.42)

�/pv(p) =0. (2.43)

But actually we are more interested in the solution of v±(p) and ū±(p) which come from
 and  ̄ respectively. The reason is that v±(p) and ū±(p) is associated with an outgoing
anti-fermion and fermion respectively. Don’t worry about u±(p) and v̄±(p)! We have
crossing symmetry which relate u± = v⌥ and v̄± = ū⌥. We write down the solution of

/pv±(p) = 0 and ū±(p)/p = 0

v+(p) =

✓|p]a
0

◆
, v�(p) =

✓
0

|piȧ
◆
, (2.44)

ū�(p) =
�
0 hp|ȧ

�
, ū+(p) =

✓
[p|a
0

◆
. (2.45)

We define |p]a and hp|ḃ using invariant symbol ✏ab and ✏ȧḃ

|p]a = ✏ab[p|b, hp|ȧ = ✏ȧḃ|piḃ. (2.46)

From the spinor completeness relations with m = 0, we have

paḃ = �|p]ahp|ḃ, (2.47)

pȧb = �|piȧ[p|b. (2.48)
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We can do a Dirac conjugate to  (x), it seems that [p|a is related to |piȧ

[p|a = (|piȧ)?. (2.49)

So do hp|ȧ and |p]a
hp|ȧ = (|p]a)?. (2.50)

But this relation rely on that the momentum pµ is real valued. And here we are using
momentum which is complex, so that [p|a, |piȧ, [p|a and |piȧ are all independent.

In this section, we know how to use |pi and |p] to represent Weyl spinor. We can
start to use the spinor formalism to express amplitudes which are calculated by Feynman
rule. In the next section, we will try to express amplitudes of Yang-Mills theory in spinor
formalism. As we claim before, spinor formalism is directly related to physical observables
so that we can simplify amplitudes by using spinor formalism.

2.3 Yang-Mills Theory

The Yang-Mills Lagrangian is

L = �1

4
Tr(Fµ⌫F

µ⌫), (2.51)

where Fµ⌫ is field strength defined as

Fµ⌫ = @µA⌫ � @⌫Aµ � igp
2
[Aµ, A⌫ ]. (2.52)

Aµ is defined as Aµ = Aa
µT

a. We consider general cases Yang-Mills theory whose gauge
group is SU(N). This means we consider that gluon have N colors. For convenience, we
choose the Gervais-Neveu gauge and normalize the generators T a as

Tr(T aT b) =�ab, (2.53)

[T a, T b] =i
p
2fabcT c. (2.54)

In the Gervais-Neveu gauge, we rewrite our Lagrangian

L = Tr(�1

2
@µA⌫@

µA⌫ �
p
2g@µA⌫A⌫Aµ +

g2

4
AµA⌫A⌫Aµ). (2.55)

Using Feynman rules, we can construct our amplitude. For example, we consider 4 point
gluon tree amplitude. The color factors which depend on structure constants are cs, ct
and cu.

cs ⌘ 2fa1a2bf ba3a4 , (2.56)

ct ⌘ 2fa1a3bf ba4a2 , (2.57)

cs ⌘ 2fa1a4bf ba2a3 . (2.58)

We use the relation
i
p
2fabc = Tr(T aT bT c)� Tr(T bT aT c), (2.59)
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and the completeness relation

(T a) j
i (T

a) l
k = � l

i �
j

k � 1

N
� j
i �

l
k (2.60)

to rewrite fa1a2bf ba3a4

fa1a2bf ba3a4 / Tr(T a1T a2T a3T a4)� Tr(T a1T a2T a4T a3)

+ Tr(T a1T a4T a3T a2)� Tr(T a1T a3T a4T a2) (2.61)

Using eq.(2.61), we can write the 4 points gluon amplitude as

A4 = g2(A4[1234]Tr(T
a1T a2T a3T a4) + A4[1243]Tr(T

a1T a2T a4T a3)

A4[1342]Tr(T
a1T a3T a4T a2) + A4[1432]Tr(T

a1T a4T a3T a2) (2.62)

where A4[1234], A4[1243], A4[1342] and A4[1432] are called color-order amplitudes.
Now, we try to use spinor formalism to express color-order amplitudes. The simplest

example is the 3 point gluon amplitude

A3[123] = �
p
2[(✏1✏2)(✏3p1) + (✏2✏3)(✏1p2) + (✏3✏1)(✏2p3). (2.63)

We choose gluon 1 and gluon 2 to have negative helicity while gluon 3 has positive helicity.
Using Fierz identity:

h1|�µ|2]h3|�µ|4] = 2h13i[24] (2.64)

and 3-particle kinematics, we will get

A3[1
�2�3+] =

h12i4
h12ih23ih31i . (2.65)

Another choice is that gluon 1 and gluon 2 have positive helicity while gluon 3 has negative
helicity. The result is

A3[1
+2+3�] =

[12]4

[12][23][31]
. (2.66)

We can use recursion relations to construct higher points amplitudes and the famous
result is the Parke-Taylor n gluon tree amplitude

An[1
+, · · · , i�, · · · , j�, · · · , n+] =

hiji4
h12ih23i · · · hn1i (2.67)

where only gluon i and j carry negative helicity and other gluons have positive helicity.

2.4 Little Group

Little group is a special case of the Lorentz group. This special transformation will
leave the momentum of an particle invariant. To see the little group more concretely, we
describe the one particle case as an example. For a massive particle, we can choose the
rest frame where the particle momentum pµ = (E, 0, 0, 0). When we rotate x-y plane,
y-z plane and x-z plane of the frame, pµ is invariant, so the little group is SO(3). For
a massless particle, we can choose the reference frame where the particle momentum
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pµ = (E, 0, 0, E). When we rotate x-y plane of the frame, pµ is invariant, so the little
group is SO(2).

Little group scaling is a transformation which leave the momentum of on-shell particles
invariant. As we know, for a massless particle momentum paḃ = �|p]ahp|ḃ (eq.(2.47)).
This relation is invariant under the scaling

|pi ! t|pi, |p] ! t�1|p]. (2.68)

Equation(2.68) is just U(1) transformation. U(1) and SO(2) are isomorphic groups which
means what little group scaling do is exactly rotate pµ = (E, 0, 0, E) on x-y plane.

A crucial result for little group scaling: For an amplitude of massless particles, scaling
the particle of this amplitude will transform the amplitude homogeneously like

An( 1, 2, · · · , i(ti|pii, t�1
i |pi], hi), · · · , n) = t�2hi

i An( 1, 2, · · · , i(|pii, |pi], hi), · · · , n).
(2.69)

hi is the helicity of particle i. We can see eq.(2.69) from Feynman rules: (1). For scalar
field theories, there are constant factor 1 on each fields and scalar field has zero helicity.
Eq.(2.69) is obviously true. (2). For spinor fields, there are one angle spinor for an
left-handed Weyl field and one square spinor for an right-handed Weyl field. Left-handed
and right-handed Weyl field have helicity �1

2
and +1

2
respectively. Eq.(2.69) works again!

(3). For spin-1 boson, the polarization vectors ✏µ�(p; q) = � hp|�µ|q]p
2[pq]

and ✏µ+(p; q) = � hq|�µ|p]p
2hqpi

have helicity -1 and +1 respectively. Polarization vectors ✏± scale as t±2.
This powerful result fix the massless three particles amplitude. For example, we

consider the color order amplitude A3(1�2�3+) which is scattering of three gluons. From
LSZ reduction, we know the tree point scattering amplitudes in Yang-Mills theory has
mass dimension 1. Three particle special kinematics show a non-vanishing on-shell 3-
particle amplitude can only depend on either angle brackets or square brackets. We
choose the angle brackets to represent the amplitude, so that

A3(1
�2�3+) / |1ia|2ib|3ic.

The power a,b and c are fixed by little group

A3(1
�2�3+) / |1i2|2i2|3i�2.

Non-vanishing A3(1�2�3+) which has correct mass-dimension must be

A3(1
�2�3+) =

h12i4
h12ih23ih31i

which we have shown in eq.(2.65).

3 BCFW Recursion Relation

Recursion relations are a method for building higher point amplitudes from lower point
amplitudes. Considering an on-shell amplitude, the key idea is to use complex analysis.
The most famous on-shell recursion relation is Britto, Cachazo, Feng andWitten (BCFW)
recursion relation. We describe the general BCFW recursion relation in Section 3.1 and
Section 3.2 shows how to do BCFW when we have boundary contribution in the complex
plane.
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3.1 BCFW

An n-point on shell amplitude An is a function of momenta. In general, we can write
it as An(p1, p2, · · · , pn). Here we focus on massless particles so p2i = 0 for i=1, 2, ...,
n. However we can consider a more general functional form of amplitudes that An is a
function not only of momenta but also a complex number z. To do this, we introduce n
complex vectors vµi which have the property that

nX

i=1

vµi = 0

vµi · vjµ = 0

pµi · viµ = 0.

The last condition just contracts the index µ. ( Index i no sum. ) We introduce complex
number z by shifting momenta like

p̂µi ⌘ pµi + zvµi .

Instead all of momenta of An to the shifted momenta. Now our amplitude depends
on momenta pi and a complex number z. Obviously the amplitude An(p1, p2, · · · , pn, z)
is equal to the unshifted amplitude when z is zero. So that we integrate the shifted
amplitude I

0

Ân(z)

z
(3.1)

around z=0. Using Cauchy’s theorem we find

Ân(z = 0) = �
X

zi

Resz=zi

Ân(z)

z
+ B. (3.2)

B is the residue of the pole at z = 1. When we are doing good shift of momenta, we can
drop the boundary term B out and find the contribution on finite z-plane. The problem
is where are the poles of the amplitudes? How can we systematically find out all of the
finite poles in the complex plane? To answer these questions, we need to use properties
of vectors vi and pi. We note that the shifted momenta preserve momentum conservation
nP

i=1

p̂µi = 0 and the shifted momenta are also on-shell.

p̂2i = (pµi + zvµi )
2

= pµi piµ + 2zpµi viµ + z2rµi riµ = 0.

The Feynman diagram tell us that amplitudes diverge while propagator approaches to
zero. If we can find out all kind of shifted propagators, then we have already found all
the poles on the complex plane. Here we focus on the discussion on tree amplitudes, so
that we only need to consider single pole contributions.

By using momentum conservation, the generic shifted propagator looks like

1

P̂ 2
I

14



where P̂ µ
I =

P
i2I

pµi . To find P̂ 2
I = 0, we can expand out P̂ 2

I

P̂ 2
I = (

X

i2I
pµi )

2 = P 2
I + 2zPI · VI

with VI =
P
i2I

vi. We can rewrite

P̂ 2
I = �P 2

I

zI
(z � zI) with zI = � P 2

I

2PI ·RI

. (3.3)

Insert the result of eq.(3.3) into eq.(3.2). Because of the propagator go on-shell, the
shifted amplitude factorize into two on-shell amplitudes which we call ÂL and ÂR.

�
X

zi

Resz=zi

Ân(z)

z
= ÂL(zi)

1

P 2
i

ÂR(zi).

ÂL and ÂR are lower point amplitude than Ân(z). This is so called recursion relations.
In D=4 spacetime, we choose two particles and shift their momenta. Using spinor

representation to demonstrate the shifted momentum:

Particle i:

|̂i] =|i] + z|j], (3.4)

|̂ii =|ii. (3.5)

Particle j:

|ĵ] =|j], (3.6)

|ĵi =|ji � z|ii. (3.7)

We call this [i, ji-shift, and this is BCFW recursion relation. Note that ĥiĵi = hiji and
[̂iĵ] = [ij] remain unshifted because hiii and [jj] equal to zero.

Although we can use this powerful method to construct higher points tree amplitudes
e�ciently, but we may want to ask a question when does this method work? Can we use
BCFW recursion relation on any theory we know? To answer this question, we should
step back and study the Lagrangian more carefully. Then we would find the recursion
relation workability rely on symmetry preservation on the Lagrangian. We will try to
explain what this mean more concretely by using scalar-QED Lagrangian and �4 theory
Lagrangian as examples. But before we investigate Lagrangians, we can answer this
workability question in a simple way.

From the above derivation, BCFW recursion relation relies on vanish of boundary
contribution after we do contour integration. This statement is discussed on eq.(3.2)
before but we can show good shift and bad shift more concretely here. In pure Yang-
Mills theory, [10] show the color-ordered gluon tree amplitudes under BCFW shift will
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have large z behavior like

[��i : lim
z!1

ˆA(z) ⇠ 1

z
,

[�+i : lim
z!1

ˆA(z) ⇠ 1

z
,

[++i : lim
z!1

ˆA(z) ⇠ 1

z
,

[+�i : lim
z!1

ˆA(z) ⇠ z3. (3.8)

Minus and plus sign means -1 helicity gluon and +1 helicity gluon respectively. Here we
choose two adjacent particles to shift. If we choose two shifted particles non-adjacent
then we will get extra power 1/z in each case. Shifting like [��i, [�+i and [++i are
called good shift and shifting like [+�i which would have boundary contribution is called
bad shift. So a condition for BCFW recursion relation works is that the theory must have
good shift. But this condition is so strong that we can only use BCFW recursion relation
on some theories. This problem push us to extend recursion relation to theories which
don’t have good shift. A systematic method called Multi-step BCFW [20] is one way to
use recursion relation when we have boundary contribution. We will briefly introduce
Multi-step BCFW in the next section.

Now we try to study the scalar-QED Lagrangian

LQED = �1

4
F2

µ⌫ + (Dµ�)
⇤(Dµ�)� 1

4
�|�|4 (3.9)

where Dµ = @µ + ieAµ is the covariance derivative. The interaction between scalar field
� and photon Aµ is encoded in (Dµ�)⇤(Dµ�). We can expand out this term

(Dµ�)
⇤(Dµ�) = |@�|2 + ieAµ[(@µ�)

⇤ � �⇤@µ�]� e2AµAµ�
⇤�. (3.10)

We find that �e2AµAµ�
⇤� which will give us four-point vertex is not gauge invariant. But

as we know four-point on-shell scattering amplitudes is a physical quantity which must
be invariant under gauge transformation. We have same results on three-point vertex
and three points on-shell scattering amplitudes. If we want to preserve gauge symmetry
in Lagrangian, then we will have explicit relation between three points and four points
amplitude. Actually when we write down the covariant derivative like eq.(3.10) the
formulation between three-point vertex and four-point vertex are fixed. In this sense, we
expect recursion relation work in scalar-QED. But we shouldn’t forget whether boundary
contribution exist or not. We compute 4-point scalar amplitude for example. Using
BCFW recursion relation, we will find

ABCFW (��⇤��⇤) = ẽ2
h13i2h24i2

h12ih23ih34ih41i . (3.11)

We can compare this result with 4-point amplitude which we compute using Feynman
rule

AFeynman(��
⇤��⇤) = ��+ ẽ2 + ẽ2

h13i2h24i2
h12ih23ih34ih41i . (3.12)

16



We meet a problem! First two terms on RHS (�� and ẽ2) are the boundary terms
when we are doing BCFW. As we claim BCFW recursion relation works when there are
no boundary contributions, if �� + ẽ2 = 0 then ABCFW should be the answer. This
statement agrees with eq.(3.11) and eq.(3.12).

Now we try to study �4 theory Lagrangian

L =
1

2
(@µ�)

2 � 1

2
m2�2 � �

4!
�4. (3.13)

We may think all of the information of n points amplitude(n > 4) as encoded in �4. So
that we can use recursion relation construct higher points amplitude. From the above
experience, we must be careful about the boundary contribution. On 6 points amplitudes
we find that there is no way to shift the amplitude without boundary term. This means
we can not use recursion relations.

Above two examples show when we can use BCFW recursion relation. We can do the
same analysis to Yang-Mills theory color-ordered amplitudes, and this time we will find
BCFW work in some good shifts.

3.2 Multi-step BCFW

From eq.(3.2), we know recursion relations rely on boundary contributions to be missing.
When we are doing good shifts, the boundary term will always vanish, so there is no
problem to calculate the amplitude using good shifts. But for a general theory we do
not know whether or not a good shift exists, and in fact we do know that there are a
lot of theories where there is no good shift. So we need to ask a question how to use
recursion relations with bad shifts. When we are doing bad shifts, the boundary term
arises and recursion relations can not work as before. In this section we will introduce the
systematic algorithm called multi-step BCFW to determine the boundary contribution.

Our purpose is that we want to construct amplitudes, and the amplitude should cover
all physical poles which have correct residues. Obviously we are not sure the residual
of some poles when we are doing BCFW by choosing arbitrary leg [i1i2i. But complex
analysis tell us recursion relation can give us the correct amplitude. If we still believe
complex analysis, then we can start from eq.(3.2) to find the physical amplitude. From
complex analysis, we can expand the function A(z0) into single pole parts and polynomial
parts

Â0
n(z0) = �

X

zi,0

ÂL(zi,0)
1

P 2
i

ÂR(zi,0) + C0
0 +

X
C0

i z
i
0. (3.14)

For convenience, we use underline zero to denote the step in which we use BCFW to
construct amplitude. Later we will use underline number(1, 2, · · · ) to denote which step
we are doing. We call the first part of eq(3.14) the recursive part

R0(z0) = �
X

zi,0

ÂL(zi,0)
1

P 2
i

ÂR(zi,0),

which means we can factorize the amplitude into two parts. The other part is called the
boundary part

B0(z0) = C0
0 +

X
C0

i z
i
0.
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Boundary contributions only come from C0
0 term if the coe�cients C0

0 and C0
i are all

independent of z0.
We believe that the tree amplitude diverges when propagators go on-shell. So we

claim that if we don’t have boundary contribution, then the recursive part is our physical
amplitude. Now if the boundary part doesn’t vanish, then we will intuitively say there
are some physical pole on boundary. And tracing these physical poles is what multi-step
BCFW is doing.

When we are doing BCFW recursion relation, we find that some physical poles de-
pended on shifted parameter z and others do not. Physical poles which depend on z are
called detectable propagators. The reason why is that we can find these poles on finite
z plane. Physical poles that do not depend on z are undetectable poles. In addition
to physical poles, there are some spurious poles. Actually, when we study complex z
plane we will find that infinite poles (boundary parts) are undetectable propagators and
spurious poles. Recursive parts are combined with detectable propagators and spurious
poles. Multi-step BCFW is trying to pull back the undetectable poles by using another
shift which can detect those physical poles. For convenience, we use D0 to denote the set
of detectable propagators, U0 denote the set of undetectable propagators and S0 denote
the set of spurious poles.
The systematic method construct amplitudes:
(1). Choosing one kind of shifting [iji
(2). Finding the recursive parts R0 of [iji shifting
(3). Choosing another shifting [kli which contain physical pole that [iji do not detect
(4). Finding the recursive parts R1 of [kli shifting
(5). Shift R0 by [kli and expand it as a series of z1.
(6). Factorize R0 into recursive part RR01 and boundary part RB01.
(7). Construct the recursive part R01 which include all detectable physical pole in [iji
and [kli

R01 = R0 +R1 �RR01 (3.15)

(8). Repeat steps 1 through 7 until the recursive part include all physical poles and no
spurious pole.
Intuitively our detectable propagators after union will larger than before and undetectable
propagators will smaller than before. But we should note that spurious poles sometimes
may be larger than before. After finite step shifting, we can construct the amplitude.
And we expect the boundary part will become vanish under n step BCFW. In fact this
is the condition for multi-step BCFW workability.

Part II

4 Supersymmetry

In this section, we will briefly introduce supersymmetry. Starting from N=1 supersym-
metry, we then introduce supersymmetry Ward identity and superspace. Lastly we will
cover N=4 super Yang-Mills theory and super-BCFW recursion relations.
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4.1 N=1 Supersymmetry

Considering the free Lagrangian for a scalar field � and Weyl fermion field  

L0 = i †�̄µ@µ � @µ�̄@
µ�. (4.1)

Obviously the Lagrangian has Poincare symmetry, and you may notice that the La-
grangian is invariant (up to a total derivative) under

�✏� = ✏ , �✏�̄ = ✏† †

�✏ a = i�µ

aḃ
✏†ḃ@µ�, �✏ 

†
ȧ = i@µ�̄✏

b�µ
bȧ, (4.2)

where ✏ and ✏† are anti-commuting constant spinors. The ✏ and ✏† † mean ✏a a and
✏†ȧ 

†ȧ. This is supersymmetry transformation. We act the operator [�✏1 , �✏1 ] on the fields
and the result is shifting the fields on the spacetime. This means combination of two
supersymmetry transformation is a spacetime translation

{Qa, Q̄ȧ} = paȧ (4.3)

Now we start to study supersymmetry algebra by choosing a reference frame. For conve-
nience, we choose a frame so that the momentum of the massless particle is like

pµ =

0

BB@

1
0
0
1

1

CCA . (4.4)

The momentum paȧ in eq.(4.3) is

{Qa, Q̄ȧ} =

✓
p0 + p3 p1 � ip2
p1 + ip2 p0 � p3

◆
=

✓
1 0
0 0

◆
. (4.5)

We have the anti-commutations relation for supersymmetry generator

{Q1, Q̄1̇} = 1, {Q1, Q̄2̇} = 0,

{Q2, Q̄1̇} = 0, {Q2, Q̄2̇} = 0.

The non-zero term just look like the creation and annihilation operator in quantum
mechanics. They have similar algebra means we can construct the supermultiplet just
as the harmonic oscillator. Because there is only one set of creation and annihilation
operator, we use N=1 to label this theory. We can define a state |0i which satisfy

Q1|0i = 0. (4.6)

We are using Q1 to represent annihilate operator and Q̄1̇ represent creation operator.
Note that operator Q and Q† are fermion operators which means Q2 = Q†2 = 0. So that
we have two di↵erence states

0 state : |0i
1

2
state : |1

2
i = Q̄|0i.
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From the CPT symmetry, we must have another state with �1
2
helicity

�1

2
state : |� 1

2
i

0 state : |0i = Q̄|� 1

2
i.

This is the spectrum of massless N=1 theory.
If we consider a massive particle, then we can choose a reference frame where pµ looks

like

pµ =

0

BB@

1
0
0
0

1

CCA . (4.7)

Again, we insert pµ to eq.(4.3)

{Qa, Q̄ȧ} =

✓
1 0
0 1

◆
. (4.8)

This time we have di↵erent commutation relations

{Q1, Q̄1̇} = 1, {Q1, Q̄2̇} = 0,

{Q2, Q̄1̇} = 0, {Q2, Q̄2̇} = 1.

There are two sets of creation and annihilation operators which means the massive spec-
trum are double that of massless spectrum.

Because of we are focusing on spinor representation, we will try to use spinors to
represent supersymmetry operator here. We start from rewriting the spinor field  a

using Majorana field

 M =

✓
 a

 †ȧ

◆
. (4.9)

Define the projection operators PL and PR as

PL =
1� �5

2
(4.10)

PR =
1 + �5

2
. (4.11)

We have the relation
 a = PL M . (4.12)

Expand �(x) and  (x) as

�(x) =

Z
d3p

(2⇡)32Ep

[a�(p)eipx + a†+(p)e
�ipx], (4.13)

 a(x) =
X

s=±

Z
d3p

(2⇡)32Ep

[bs(p)PLus(p)e
ipx + b†s(p)PLvs(p)e

�ipx]. (4.14)
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We use s = ± to describe fermions with helicity ±1
2
, but the meaning of ± in scalar

field is di↵erent. In scalar field, ± just label two di↵erent solution without meaning
of helicity. Upon canonical quantization, they satisfy the algebra of bosonic/fermionic
creation-annihilation operators:

[a±(p), a
†
±(p

0)] =(2⇡)32Ep�
3(~p� ~p0), (4.15)

[b±(p), b
†
±(p

0)] =(2⇡)32Ep�
3(~p� ~p0). (4.16)

Using eq.(4.13) and eq.(4.14) to expand eq.(4.2), we get the results

�✏a�(p) =[✏p]b�(p),

�✏a+(p) =h✏pib+(p),
�✏b�(p) =h✏pia�(p),
�✏b+(p) =[✏p]a+(p). (4.17)

The generator QM =
⇣

Qa

Q†ȧ

⌘
can be found from �✏ = [�̄MQM ,O] = [[✏Q] + h✏Qi,O]. O

are the creation/annihilation operators. We find that

|Q]a =

Z
d3p

(2⇡)32Ep

|p]a(a+(p)b†+(p)� b�(p)a
†
�(p)), (4.18)

|Q†iȧ =
Z

d3p

(2⇡)32Ep

|piȧ(a�(p)b†�(p)� b+(p)a
†
+(p)), (4.19)

reproduce eq.(4.17). Rewriting eq.(4.17) using operator Q and Q†

[Q, a�(p)] = |p]b�(p), {Q†, b�(p)} = |pia�(p)
{Q, b�(p)} = 0, [Q†, a�(p)] = 0

{Q, b+(p)} = |p]a+(p), [Q†, a+(p)] = |pib+(p)
[Q, a+(p)] = 0, {Q†, b+(p)} = 0. (4.20)

You may notice that the above descriptions are only for free particle on spacetime.
But we are calculating scattering amplitudes, we need some interactions! In chiral model,
we introduce a superpotential interaction of the form

LI =
1

2
g�  +

1

2
g⇤�̄ † † � 1

4
|g|2|�|4. (4.21)

This Lagrangian(L0 + LI) is invariant under transformation like

�✏� = ✏ , �✏�̄ = ✏† †

�✏ a = i�µ

aḃ
✏†ḃ@µ�+

1

2
g⇤�̄2✏a, �✏ 

†
ȧ = i@µ�̄✏

b�µ
bȧ +

1

2
g�2✏†ȧ. (4.22)

We find that eq.(4.22) is just doing a small modification of eq.(4.2). We can construct
operators Q and Q† by using same method we just discussed.

Extending supersymmetry to N > 1, there are 2N states in the massless supermulti-
plets. For example, for N = 2 one supermultiplet consists of a helicity -1 photon, two
photinos with h = �1

2
and a scalar h = 0.
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4.2 Supersymmetry Ward Identities

From studying of previous section, we have a Lagrangian which contain both bosonic
field and fermionic field

L =L0 + LI

=i †�̄µ@µ � @µ�̄@
µ�+

1

2
g�  +

1

2
g⇤�̄ † † � 1

4
|g|2|�|4. (4.23)

This Lagrangian is invariant under supersymmetry transformation between scalar field
and fermion field. In this section we will study the e↵ect of supersymmetry on the
scattering amplitudes.

In Yang-Mills theory, we can use Feynman rules to compute scattering amplitudes
under di↵erent scattering processes. But you may find there are some relations between
di↵erent scattering processes. For example, the 4-point tree amplitudes are presented as
below

A4(���̄�̄) =� |g|2,
A4(�f

�f+�̄) =� |g|2 h24ih34i ,

A4(f
�f�f+f+) =|g|2 h12ih34i . (4.24)

These three amplitudes have linear relations as

A4(�f
�f+�̄) =

h24i
h34iA4(���̄�̄), (4.25)

A4(f
�f�f+f+) =� h12i

h24iA4(�f
�f+�̄). (4.26)

These relations seems arbitrary in Yang-Mills theory but actually they come from super-
symmetry prescription. Note that we are using 4-point tree amplitudes for example here
but these relations hold not only for the tree-level amplitudes. Supersymmetry will ensure
these relations hold at all orders in perturbation expansion. We will explain these linear
relations starting from the supersymmetry algebra. Suppose we have a supersymmetry
vacuum |0i which is defined as

Q|0i = Q†|0i = 0. (4.27)

Obviously, we have relations

h0|[Q†,O1(p1)O2(p2) · · · On(pn)]|0i = 0, (4.28)

where Oi(pi) is the creation or annihilation operator of bosonic field or fermionic field.
We can change the order of operator Q† and Oi on LHS. When two operators are all
fermionic we use anti-commutation relation. For one fermionic operator and one bosonic
operator we use commutation relation. This statement can be easily understood by using
an example. We consider the relation

h0|[Q†, a+(p1)b�(p2)b�(p3)]|0i = 0
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We can rewrite this equation as

h0|[Q†, a+(p1)b�(p2)b�(p3)]|0i
=h0|[Q†, a+(p1)]b�(p2)b�(p3)� a+(p1){Q†, b�(p2)}b�(p3) + a+(p1)b

�(p2){Q†, b�(p3)}|0i
=|p1ih0|b+(p1)b�(p2)b�(p3)|0i � |p2ih0|a+(p1)a�(p2)b�(p3)|0i+ |p3ih0|a+(p1)b�(p2)a�(p3)|0i
where a is bosonic operator, b is fermionic operator and Q is obviously fermionic oper-
ator. The last line we used supersymmetry algebra to rewrite commutation and anti-
commutation relations. There is misleading in the notation |·i here. |0i is the vacuum
state and |pi is the angle-spinor.

We can generalize the above example and find the general formulation as

nX

i=1

(�1)
P

j<i|Oi|h0|O1(p1) · · · [Q†,Oi(pi)] · · · On(pn)]|0i, (4.29)

where |Oi| is 0 when the operator Q† pass through the bosonic operator and 1 if it pass
through fermionic operator. Taking supersymmetry algebra eq.(4.20) into eq.(4.29), we
will get the linear relation of n point scattering amplitudes. Such relations are called
supersymmetry Ward identities. From above example, considering four point amplitudes

h0|[Q†, a�(p1)b�(p2)a+(p3)a+(p4)]|0i = 0. (4.30)

Supersymmetry algebra tell us

|2iA4(���̄�̄)� |3iA4(�f
�f+�̄)� |4iA4(�f

��̄f+) = 0. (4.31)

This relation is a spinor relation which means it contains two linear independent relations
in one equation. We can contract this relation with h4|

h42iA4(���̄�̄)� h43iA4(�f
�f+�̄) = 0, (4.32)

which is precisely one of the relation in eq.(4.24) that we found to be true at tree-level.
Other relations can be found by contracting with h2| and supersymmetry Ward identities
for operator Q

nX

i=1

(�1)
P

j<i|Oi|h0|O1(p1), · · · , [Q,Oi(pi)], · · · ,On(pn)]|0i = 0. (4.33)

All of the relations in eq.(4.24) can be found by supersymmetry Ward identity.

4.3 N=4 Super Yang-Mills Theory

In this section we will generalize N=1 supersymmetry theory to N=4 super Yang-Mills
theory. We write down N=4 super Yang-Mills action and discuss it’s spectrum.

S =

Z
dx4Tr(�1

4
Fµ⌫F

µ⌫ � 1

2
(D�I)

2 � i

2
 ̄ /D +

g

2
 ̄�I [�I , ] +

g2

4
[�I ,�J ]

2) (4.34)

where �I are scalar fields and I run from 1, · · · , 6. This means we have six kinds of
scalar fields.  is ten-dimension Majorana-Weyl fields and �I are ten dimension gamma
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matrices. D is covariant derivative. All fields are in the adjoint of the gauge group
SU(N). The supersymmetry algebra contains global SO(6) R-symmetry. We can also use
the isomorphic group SU(4) to represent.

Scalar potential V in this action is [�I ,�j]2. If the scalar potential V 6= 0 then
supersymmetry is spontaneous broken. Other words if our theory has supersymmetry
then scalar potential must be equal to zero. We can demonstrate why in a example. As
we know {Q↵, Q

†
�̇
} = 2(�µ)↵�̇Pµ, we can see the vacuum expectation value

h0|{Q↵, Q
†
�̇
}|0i = 2(�µ)↵�̇h0|Pµ|0i. (4.35)

If the theory has supersymmetry, then h0|{Q↵, Q
†
�̇
}|0i = 0. But as we know V � 0, the

RHS of eq.(4.35) is greater than or equal to zero, we must break supersymmetry algebra
when V 6= 0. If we want to preserve supersymmetry in our theory, we need to find out
the solutions of V = 0. There is a moduli space of N=4 supersymmetric vacua with
[�I ,�j]2 = 0. At the origin of moduli space, all of the scalar vevs vanish which means all
states are massless.
The spectrum of N=4 SYM:

1 gluon g+

4 gluinos �A

6 scalars SAB

4 gluinos �ABC

1 gluon g�.

A, B and C run from 1, 2, 3, 4 are the SU(4) R-symmetry index. We can use on-shell
superspace to keep track the states which means either bosonic state or fermionic state
are living on superspace. The di↵erence between spuperspace and usual Minkowski space
are the Grassmann parameter ⌘A. We can easily think of superspace as our usual bosonic
coordinates xµ plus fermionic coordinate ⌘A. For convenience, we can use on-shell chiral
superfield which group 16 states above in a compact formulation

⌦ = g+ + ⌘A � 1

2!
⌘A⌘BS

AB � 1

3!
⌘A⌘B⌘C�

ABC + ⌘1⌘2⌘3⌘4g
� (4.36)

to denote and studying supersymmetry Ward identities will give us the relation between
components amplitudes in superamplitude An(⌦1,⌦2, · · · ,⌦n). To see supersymmetry
Ward identities, we start from the invariance of superamplitudes under supersymmetry

QAA = 0 and Q̃AA = 0 (4.37)

where Q̃A ⌘ Q† are supercharges. Using ⌘ to classify and their coe�cients are supersym-
metry Ward identities.

Although we have not construct recursion relation in N=4 super Yang-Mills theory,
but we know that as a starting point of recursion relation 3 point superamplitudes must
be known. These three points superamplitudes can easily fix down the formula by using
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eq.(4.37), little group weighting and mass dimension analysis.
Three point MHV superamplitude:

AMHV
3 [1, 2, 3] =

�8(Q̃)

h12ih23ih31i . (4.38)

Three points anti-MHV superamplitude:

AMHV
3 [1, 2, 3] =

�4([12]⌘3 + [23]⌘1 + [31]⌘2)

[12][23][31]
. (4.39)

We can use derivative of Grassmann variables or setting Grassmann variable to zero
to pick up the desired external states. For example, we can try to pick up three gluon
scattering amplitudes A(g�1 , g

�
2 , g

+
3 ) by

(
4Y

A=1

@

@⌘P̂A

)(
4Y

B=1

@

@⌘P̂B

)
�8(Q̃)

h12ih23ih31i

�����
⌘p̂1,⌘p̂2,⌘p̂3,⌘p̂4=0

=
h12i4

h12ih23ih31i . (4.40)

In the next section, we will introduce super BCFW which help us construct higher points
superamplitudes. Then we can write down n points tree amplitudes in N=4 super Yang-
Mills theory.

4.4 Super BCFW

According to Section 3.1, we should not expect constructing �4 theory higher points
amplitudes by using recursion relation. But we expect recursion relation work in N=4
super Yang-Mills theory which contains pure scalar scattering process. The reason why
is that N=4 super Yang-Mills Lagrangian should preserve not only Poincare symmetry
but also supersymmetry. Preserving supersymmetry will fix the relation between lower
point vertex and higher point vertex. In this section, we will introduce recursion relation
in the supersymmetry theory.

We want to construct higher points superamplitudes by using lower points superampli-
tudes. In Section 3.1, we shift the particle momenta and preserve the on-shell conditions

p2i = 0 and momentum conservation
nP

i=1

pi = 0. However this shifting doesn’t preserve

supermomentum conservation
nP

i=1

|ii⌘iA = 0 that means we will break supersymmetry. So

that we modify BCFW shift as:

Field i:

|̂i] =|i] + z|j], (4.41)

|̂ii =|ii, (4.42)

⌘̂1A =⌘iA + z⌘jA. (4.43)

Field j:

|ĵ] =|j], (4.44)

|ĵi =|ji � z|ii. (4.45)
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This is [i, ji-supershift which preserve supermomentum conservation as well. We can
construct higher points superamplitudes by using super BCFW not only in super Yang-
Mills theory but also super gravity theory. In part III, we will discuss searching natural
block while we are using super BCFW in N=7 supergravity theory.

4.5 N=8 Supergravity Amplitudes

In this section we will try to expand our discussion from N=4 super Yang-Mills theory
to N=8 supergravity which has SU(8) R-symmetry. First we write down the spectrum of
N=8 supergravity theory as

1 graviton h+, 1 graviton h�,

8 gravitinos  A, 8 gravitinos  ABCDEFG,

28 gravi� photons ⌫AB, 28 gravi� photons ⌫ABCDEF ,

56 gravi� photinos �ABC , 56 gravi� photinos �ABCDE,

70 scalar SABCD.

where A,B, · · · , H = 1, 2, · · · , 8 are the SU(8) R-symmetry indices. The number in the
spectrum is easily to compute. We can start from graviton h� and using Q̃A raise the
helicity by +1

2
step by step. Acting Q̃A once, there are eight gravitnos with helicity

�3
2
. Acting Q̃A twice, we should note that Grassmann nature make R-symmetry indices

totally anti-symmetric so that there are twenty-eight gravi-photons.
As N=4 SYM, we glue the component fields into a superfield

�i = h+ + ⌘iA 
A � 1

2
⌘iA⌘iB⌫

AB + · · ·+ ⌘iA⌘iB⌘iC⌘iD⌘iE⌘iF⌘iG⌘iHh
� (4.46)

and we will compute superamplitudes in N=8 supergravity. We start from studying pure
graviton amplitudes. The Einstein-Hilbert action

SEH =
1

22

Z
dDx

p�gR + Smatter (4.47)

and we consider pure gravity which means we set Smatter = 0 here. We can compute
graviton amplitudes just like what we done in quantum field theory. In D=4 dimensions,
the three point graviton amplitudes are

M3(1
�, 2�, 3+) =

h12i8
h12i2h23i2h31i2 , (4.48)

M3(1
+, 2+, 3�) =

[12]8

[12]2[23]2[31]2
. (4.49)

The on-shell three point supergravity amplitudes are just square of Yang-Mills amplitudes

M3(1
�, 2�, 3+) =A3(1

�, 2�, 3+)2,

M3(1
+, 2+, 3�) =A3(1

+, 2+, 3�)2

where A means the amplitudes forms in Yang-Mills theory.
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The general results of n points gravity amplitudes can be constructed by using BCFW
but an important di↵erence is that gravity amplitudes are not color-ordered. The famous
results for the n points MHV amplitudes are presented by Berends, Giele and Kuijf (BGK)

M tree
n (1�, 2�, 3+, · · · , n+) =

X

P (3,4,··· ,n�1)

h12i8
n�1Q
l=3

hn|2 + 3 + · · ·+ (l � 1)|l]

(
n�2Q
i=1

hi, i+ 1i)h1, n� 1ih1ni2h2ni2(
n�1Q
l=3

hlni)
.

(4.50)
P (3, 4, · · · , n�1) means permute the label (3, 4, · · · , n�1). And the relationships between
gravity and Yang-Mills theory in MHV is

M tree
n (1�, 2�, 3+, · · · , n+) =

X

P (i3,i4,··· ,in)
S1in(

n�1Y

k=4

�k)An(1
�, 2�, i+3 , · · · , i+n )2 (4.51)

where n � 4 and

�k = �hik, ik+1i
h2, ik+1i h2|i3 + i4 + · · ·+ ik�1|ik]. (4.52)

There are more general results beyond MHV amplitudes. Kawai, Lewellen, and Tye
(KLT) derived KLT relation in string theory. Under string tension limits ↵0 ! 0, gravity
amplitudes M tree

n and color-order amplitudes Atree
n have KLT relations:

M tree
4 (1, 2, 3, 4) =� s12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3), (4.53)

M tree
5 (1, 2, 3, 4, 5) =� s23s45A

tree
5 (1, 2, 3, 4, 5)Atree

5 (1, 3, 2, 5, 4) + (3 $ 4), (4.54)

M tree
6 (1, 2, 3, 4, 5, 6) =� s12s45A

tree
6 (1, 2, 3, 4, 5, 6)[s35A

tree
6 (1, 5, 3, 4, 6, 2) (4.55)

+ (s34 + s35)A
tree
6 (1, 5, 4, 3, 6, 2)] + P (2, 3, 4).

The last line P (2, 3, 4) means permutation of legs (2, 3, 4). We can use graviton amplitudes
to construct other components amplitudes in superamplitudes by using supersymmetry
Ward identity. For example, the MHV amplitudes of graviton and gravitino are restricted

Mn(1
�, �, +, 4+, · · · , n+) =

h13i
h12iMn(1

�, 2�, 3+, 4+, · · · , n+). (4.56)

As we know graviton amplitudes, we can start to construct superamplitudes. Super-
amplitudes preserve momentum conservation and supermomentum conservation which
means superamplitudes must contain two delta functions

Mn = �4(
X

p)�16(Q̃)F (4.57)

where F is a kinematics invariant factor. As we know n point MHV amplitudes, Mn must
project to pure graviton MHV amplitudes correctly. So that the only way is

MMHV
n = �4(

X
p)�16(Q̃)

M graviton
n (1�, 2�, 3+, · · · , n+)

h12i8 . (4.58)
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It is easily to derive 3 point MHV superamplitudes using same arguments, and the
formula just like MHV amplitudes

MMHV
3 = �4(

X
p)�8([12]⌘3 + [23]⌘1 + [31]⌘2)

1

[12]2[23]2[31]2
. (4.59)

Having 3 point superamplitudes, we can use super BCFW to construct all kinds n points
superamplitude in tree level. In the next section, we will start to search the natural build-
ing block when we try to use BCFW recursion relations. They will rely on understanding
of superamplitudes formula in this section.

Part III

5 Bonus scaling and BCFW in N = 7 supergravity

One of the fascinating themes in the study of planar N = 4 SYM, is that the amplitude is
often a solution to a geometric question. The now famous example is the realization that
the building blocks for the n-pointN = 4 SYM amplitude with k- negative helicity gluons,
constructed via the Britto, Cachazo, Feng and Witten (BCFW) recursion relation [1], are
associated with positive cells of a Grassmannian G(k, n) [2, 3], the moduli space of k-
planes in n-dimensional space.

A natural question is whether such structure exists outside of N = 4 SYM. Certain
progress has been made forN = 6 super-Chern-Simons matter theory (CSM) [4, 5], in the
context of an orthogonal Grassmannian [6, 7, 8]. The common property between N = 4
SYM and N = 6 CSM theory is that both allow for color decomposition such that color
ordered amplitudes can be defined, and the theories enjoy an infinite dimensional Yangian
symmetry [9]. In fact the building blocks that arise from the recursion are individually
Yangian invariant.

Both of the above properties are absent in gravity, and thus it may be unclear how
to proceed. However we may ask, if there are natural building blocks for gravity ampli-
tudes, what would be a desirable property similar to Yangian invariance for the gauge
theories. One special property of gravity amplitudes is the asymptotic behavior in the
large momentum limit. Indeed it was known that in the BCFW recursion, if one shifts
|ii and |j], where i and j are a positive and negative helicity graviton respectively, as the
deformation parameter z is taken to infinity, the amplitude behaves as 1/z2 [10].1 This
is to be compared with 1/z of Yang-Mills.

Thus we propose that a criteria for a “good” building block is good large-z scaling un-
der any pair of shifted momenta. Note that in a generic BCFW representation, individual
terms can behave as 1/z and only cancel in the sum. To begin, we will relax our crite-
ria and ask: if one chooses two particular legs to deform, is there a representation such
that individual terms scale as 1/z2 under large deformation? We will show that indeed
such a representation exists, in the form of a BCFW recursion in N = 7 supergravity,
constructed out of a “bad-shift”. N = 7 supergravity has the same on-shell degrees of
freedom as with N = 8 supergravity, only with a reduced set of supersymmetry being

1
Recently, it has been shown that this asymptotic behavior can be attributed to the permutation

invariance of gravity amplitudes [11].
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manifest. However the reduced symmetry allows us to exploit the 1/z2 fall o↵ of the full
N = 8 amplitude. More precisely we claim that if one constructs the N = 7 amplitude
under the following [j+, i�i bad shift:

|j+] ! |j+] + w |i�], |i�i ! |i�i � w |j+i, ⌘j+ ! ⌘j+ + w ⌘i� . (5.1)

Then the individual terms in the BCFW expansion scale at large z as 1/z2 under the
following [i�, j+i shift of the same primary shifted legs:

|i�] ! |i�] + z |j+], |j+i ! |j+i � z |i�i, ⌘i� ! ⌘i� + z ⌘j+ . (5.2)

Note that the bad-shift in N -supergravity behaves as z8�N/z2 = z6�N , and thus it has
su�cient fall o↵ for a valid recursion relation for N = 7, 8. As we will argue, the reason
why N = 7 bad-shift recursion allows for term by term 1/z2 fall o↵ is because it secretly
uses the 1/z2 fall o↵ of the full amplitude. For a valid BCFW representation, all one needs
is that the amplitude vanish as z ! 1, thus even though gravity amplitudes behave as
1/z2, the usual BCFW recursion is blind to such improved fall o↵. On the other hand,
for the N = 7 bad-shift, the large-z fall o↵ behaves as 1/z precisely because of the 1/z2

of the full N = 8 amplitude. Thus, the 1/z fall o↵ is crucial for the validity of the N = 7
bad shift. The presence of 1/z2 fall o↵ implies extra “bonus relations” for individual
BCFW terms [12]. As we will show, for MHV amplitudes, it is precisely due to these
bonus relations that the N = 7 bad shift exhibit improved fall o↵ relative to N = 8.

Note that representations with term by term 1/z2 fall o↵ are already known for MHV
amplitudes [13]. However, no known expression with such properties exist beyond the
MHV sector. The N = 7 bad shift allows for such a representation beyond MHV level.
This special property of the N = 7 bad-shift has already been noted at the six-point level
in Hodges work [14]. In this chapter we present a proof extending to general tree-level
amplitudes.

This chapter is organized as follows: first we introduce BCFW recursion in the for-
malism of N = 7 supergravity, and examine its validity under di↵erent scenarios, leading
us to investigate the large z behavior of the [+,�i “bad shift” representation. We then
present a proof for term-by-term O (z�2) scaling of the “bad shift” representation under
a correspondingly chosen test shift. Furthermore, we discover the improved scaling in
N = 7 is related to bonus relations in N = 8.

5.1 N = 7 superamplitudes

Here we review the derivation of N = 7 supergravity amplitudes from its N = 8 coun-
terpart, as well as its large z behavior. This discussion follows [15].

5.1.1 From N = 8 to N = 7

We formulate N = 8 supergravity using an on-shell superspace by introducing eight
Grassmann variables ⌘A, labeled by the SU(8) index A = 1...8. This allows us to associate
the states of various helicities in the N = 8 theory with components of di↵erent orders
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of ⌘ in an on-shell chiral superfield, which we write as

⌦ = h+ +  A⌘
A +

1

2!
vAB⌘

A⌘B +
1

3!
�ABC⌘

A⌘B⌘C +
1

4!
SABCD⌘

A⌘B⌘C⌘D

+
1

3!
�ABC⌘5ABC +

1

2!
vAB⌘6AB +  A⌘7A + h�⌘8, (5.3)

where ⌘5ABC ⌘ 1
5!
✏ABCDEFGH⌘

D⌘E⌘F⌘G⌘H , and other ⌘ polynomials are similarly defined.
When we reduce the manifest supersymmetry from N = 8 to N = 7, the on-shell

states separate into two superfields, which are obtained respectively from two di↵erent
ways of reducing supersymmetry: setting ⌘8 to zero or integrating away ⌘8.

�+ ⌘ ⌦|⌘8!0 =

Z
d⌘8 ⌘8⌦ , (5.4a)

�� ⌘
Z

d⌘8 ⌦ . (5.4b)

The explicit forms of the superfields are:

�+ = h+ +  A⌘
A +

1

2!
vAB⌘

A⌘B +
1

3!
�ABC⌘

A⌘B⌘C +
1

3!
S8ABC⌘4ABC

+
1

2!
�8AB⌘5AB + v8A⌘6A +  8⌘7, (5.5a)

�� =  8 + v8A⌘
A +

1

2!
�8AB⌘

A⌘B +
1

3!
S8ABC⌘

A⌘B⌘C +
1

3!
�ABC⌘4ABC

+
1

2!
vAB⌘5AB +  A⌘6A + h�⌘7. (5.5b)

The indices are now summed from 1 to 7, and ⌘4ABC ⌘ 1
4!
✏ABCDEFG⌘

D⌘E⌘F⌘G. Note
that setting ⌘8 to zero can be represented by an integration over ⌘8 after multiplying
by ⌘8. The �+ multiplet has helicity +2, and contains the positive helicity graviton h+,
while �� has helicity +3/2, and contains the negative helicity graviton h�. We will use
a + sign to mark quantities associated with the �+ multiplet, while quantities associated
with the �� multiplet will be marked with a � sign.

Using the same operations, N = 7 amplitudes can be derived from the correspond-
ing N = 8 amplitudes. As an example, the N = 7 MHV 3-point graviton scattering
amplitude is obtained from the N = 8 MHV 3-point amplitude as follows:

M3(1
�2�3+) =

Z
d⌘81d⌘

8
2d⌘

8
3 ⌘

8
3 MMHV

3 (123). (5.6)

Here the first subscript of ⌘ refers to the associated particle number, while the superscript
refers to the SU(8) index.

For a general NkMHV amplitude, there will be k+2 external legs in the �� multiplet,
which we denote by the set {x}, and n� k � 2 external legs in the �+ multiplet, which
we denote by the set {y}. Then we have the following map between N = 7 and N = 8
amplitudes:

MN=7({x}, {y}) =
Z "

nY

a=1

d⌘8a

#2

4
Y

b2{y}
⌘8b

3

5MN=8. (5.7)
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Or more explicitly,

MN=7
n (1�, · · · , (k + 2)�, (k + 3)+, · · · , n+) =

Z
d⌘81 · · · d⌘8n ⌘8k+3 · · · ⌘8n MN=8

n (1, · · · , n).
(5.8)

5.1.2 BCFW in the N = 7 formalism

Validity of a BCFW representation requires the amplitude vanish as the deformation
parameter z goes to infinity:

|̂i] = |i] + z|j], |ĵi = |ji+ z|ii, ⌘̂i = ⌘i + z ⌘j,

M(z) �! 0 as z �! 1 . (5.9)

N = 8 amplitudes scale as O (z�2) for large z. In the case of N = 7, we can deduce
the large z behavior by relating the N = 7 amplitude to the parent N = 8 using (5.7).
Unlike in the case of N = 8, amplitudes in N = 7 specialize into di↵erent supermultiplet
configurations for lines i, j which may show di↵erent large z behavior.

Note that in order to deduce the large z behavior of N = 7 from N = 8 using (5.7),
we need to take into the subtlety that for N = 8, we shift ⌘̂Ai for A = 1...8, while for
N = 7, we only shift for A = 1...7. Thus we need to somehow unshift ⌘̂8i . This can easily
be done by a change of variables. We define

⌘8i = ⌘8i � z⌘8j , ⌘8a = ⌘8a for a 6= i. (5.10)

The Jacobian is simply 1. Now we can promote (5.7) into a relation for the shifted
variables:

MN=7(z) =

Z "
nY

a=1

d⌘8a

#2

4
Y

b2{y}
⌘8b (⌘

8
c)

3

5MN=8(z) , (5.11)

where ⌘8b is a function of ⌘8c , as defined by (5.10).

We can now analyze di↵erent scenarios for which multiplet the lines i, j in our [i, ji
shift sits in:

• For [i�, j+i and [i�, j�i: Since i is not in the �+ multiplet, ⌘8b does not contain
any z dependence, and hence the N = 7 amplitude behaves as O (z�2) at large z
exactly like N = 8.

• For [i+, j+i: Now i belongs to the �+ multiplet, so naively applying a change of
variable, one would pick up a z factor. However the z will be proportional to ⌘j
which is already present in ⌘8b and thus this term drops out, i.e. (⌘i�z⌘j)⌘j = ⌘i⌘j.
Thus we see for this shift, the N = 7 amplitude again behaves as O (z�2) at large
z exactly like N = 8.

• For [i+, j�i: Now i belongs to the �+ multiplet, while j does not, so ⌘8b obtains
an overall factor of z. Thus the large z behavior for N = 7 amplitude behaves as
O (z)⇥O (z�2) = O (z�1).

31



From the above we conclude that for the “good” shifts [i�, j+i, [i�, j�i, [i+, j+i, the
N = 7 amplitude behaves as 1/z2 just as the N = 8 parent. The BCFW built for N = 7
from the good shifts will be using the same 1/z pole as the N = 8 parent. Thus the
BCFW built from the [+,�i ”bad” shift in N = 7 is secretly using information of the
1/z2 behavior of the N = 8 amplitude. In the following section, we will demonstrate
that the N = 7 BCFW expansion built from the [j+, i�i “bad shift” indeed has bonus
behavior in the form of term-by-term O (z�2) large-z scaling under the [i�, j+i test shift.

5.2 Bonus z scaling of N = 7 “bad shift” BCFW terms

5.2.1 A particular [�,+i test shift: NkMHV amplitudes

We would like to prove that the N = 7 [j+, i�i “bad shift” BCFW terms have O (z�2)
large z fall o↵ under the secondary [i�, j+i test shift. Note our analysis can be easily
applied to other helicity configurations as well, where the O (z�2) fall o↵ is no longer
present. Therefore, we start without fixing which superfields particles i and j belong to
and construct the [j, ii BCFW representation of the amplitude (see Fig. 1):

Mn(1, · · · , i, · · · , j, · · · , n) =
XZ

d7⌘P̂ ML(�P̂ , ĵ, · · · ) 1

P 2
MR(P̂ , î, · · · ) |P̂ 2=0 ,

(5.12)
|ĵ] = |j] + w|i], |̂ii = |ii � w|ji, ⌘̂j = ⌘j + w ⌘i . (5.13)

îĵ

P̂ML MR

Figure 1: Diagram of a BCFW term.

For the on-shell condition P̂ 2 = (P +w |i]hj|)2 = 0, we can solve for w and P̂ in terms
of i, j and P . Leaving details of derivation to Appendix A, the result is2

w = � P 2

hj|P |i] , (5.14)

P̂ =
P |ji[i|P
hj|P |i] . (5.15)

Let us now deform (5.12) by an [i, ji test shift:
|i](z) = |i] + z|j], |ji(z) = |ji � z|ii, ⌘i(z) = ⌘i + z ⌘j. (5.16)

2
We adopt the “mostly minus” metric convention, such that pk = |k]hk| and sij = (pi+pj)2 = [ij]hjii

for massless particles.
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Under the test shift, the amplitude is deformed into

Mn(z) =
XZ

d7⌘P̂ ML(�P̂ (z), ĵ(z), · · · ) 1

P 2(z)
MR(P̂ (z), î(z), · · · ) (5.17)

Now |i], |ji, ⌘i, P 2, |ĵ], |̂ii, ⌘̂j, |P̂ ], |P̂ i have become functions of z. Since the BCFW terms
must have zero little group weight in P̂ , the z dependence of the BCFW terms only comes
from |i], |ji, ⌘i, P 2, |ĵ], |̂ii, ⌘̂j, P̂ . By analyzing their large z behavior individually, we can
deduce the large z behavior of the BCFW term as a whole. We thus proceed to do so.

From the [i, ji test shift (5.16), deriving the large-z behavior of |i], |ji, ⌘i, P 2 is straight-
forward:

|i](z) �! O (z) , |ji(z) �! O (z) , ⌘i(z) �! O (z) . (5.18)

P 2(z) = P 2 � zhi|P |j] �! O (z) . (5.19)

The primary deformed quantities |ĵ], |̂ii, ⌘̂j, P̂ transform under the test shift as

|ĵ](z) = |j] + w(z)|i](z), |̂ii(z) = |ii � w(z)|ji(z), ⌘̂j(z) = ⌘j + w(z)⌘i(z), (5.20)

P̂ (z) =
�(P � pj)|ii[j|(P + pi)

hi|P |j] +O �
z�1

� �! O �
z0
�
. (5.21)

To determine the large-z behavior of |ĵ], |̂ii, ⌘̂j, we solve for the z-deformed primary shift
parameter w(z), and expand it in powers of z:

w(z) = �1

z
+

�P 2 � hj|P |j] + hi|(P � pj)|i]
hi|P |j]

1

z2
+O �

z�3
�
. (5.22)

We expand to O (z�2) since the leading term gets canceled when we plug in expressions
(5.16) and (5.22) into (5.20). We get:

|ĵ](z) =
✓
�|i] + �P 2 � hj|P |j] + hi|(P � pj)|i]

hi|P |j] |j]
◆

1

z
+O �

z�2
�
,

|̂ii(z) =
✓
|ji+ �P 2 � hj|P |j] + hi|(P � pj)|i]

hi|P |j] |ii
◆

1

z
+O �

z�2
�
,

⌘̂j(z) =

✓
�⌘i + �P 2 � hj|P |j] + hi|(P � pj)|i]

hi|P |j] ⌘j

◆
1

z
+O �

z�2
�
. (5.23)

Now we can read o↵ their large-z behavior. The results are organized below:

|i](z) �! O (z) , |ji(z) �! O (z) , ⌘i(z) �! O (z) ,

|ĵ](z) �! O �
z�1

�
, |̂ii(z) �! O �

z�1
�
, ⌘̂j(z) �! O �

z�1
�
,

P̂ (z) �! O �
z0
�
,

P 2(z) �! O (z) . (5.24)

With the large-z scaling of |i], |ji, ⌘i, P 2, |ĵ], |̂ii, ⌘̂j, P̂ in hand, we can know how the
BCFW term behaves at large z by counting the orders of these contributing components.
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From (5.24) we see that |i], ⌘i, which have helicity 1/2, behave as O (z). On the other
hand, |̂ii, which has helicity �1/2, scales oppositely as O (z�1). We can write a general
Ansatz that if particle i contributes to the amplitude in the form of |i]a⌘bi |̂iic, then it
scales as O �

za+b�c
�
.

In general, determining the orders of the spinors and the Grassmann variable can
be nontrivial. However, in this case little group scaling of external leg i trivializes the
counting by fixing a + b � c = 2hi, where hi and hj are the helicities of the superfield
corresponding to legs i and j. Therefore, particle i contributes O �

z2hi
�
at large z. A

similar analysis shows that particle j contributesO �
z�2hj

�
at large z. Since P̂ approaches

a constant at z ! 1, the large z scaling of each BCFW term is of:

O �
z2(hi�hj)�1

�
. (5.25)

Crucial to this result is the choice of the [j, ii primary shift followed by [i, ji test
shift, which enjoys the cancellation of order z0 terms while obtaining (5.23) and thus
ensures that the square spinors and the Grassmann variable scale oppositely to the angle
spinors. Other choices would not have allowed us to determine the large z scaling from
the helicities alone. For example, if we chose a [j, ii primary shift followed by a [k, ji
test shift, where i 6= k, then |k] and ⌘k would scale as O (z) while |ki scale as O (z0).
If particle k contributes to the amplitude in the form of |k]a⌘bk|kic, then it would scale
as O �

za+b
�
, so a + b � c = 2hk would not be su�cient to determine the large z scaling

contributed by particle k.
Note that up until this point we have not designated the helicities of superfields i

and j. If we choose a [j+, i�i “bad” N supershift for supergravity, hj and hi would be
separated by 8�N

2
, such that the large z scaling of each BCFW term be:

O �
zN�9

�
. (5.26)

We now specialize to theN = 7 [j+, i�i “bad shift” BCFW expansion under the secondary
[i�, j+i test shift. From the expressions for the N = 7 superfields (5.5), superfield i has
helicity +3/2 and therefore contributes O (z3) at large z, while superfield j has helicity
+2 and gives us O (z�4). 1/P 2 gives O (z�1). Collectively, we find that the large z scaling
for the BCFW term is of:

O �
z�2

�
. (5.27)

We are lead to this result only if we specialize to the case where the [j+, i�i bad
shift is the primary shift. Other choices can result in O (z�1) or worse fall o↵. However,
note that our counting is only indicative of the worst behavior, so the terms can actually
have better fall o↵ than shown by the counting. For example, both N = 7 [j+, i+i and
[j�, i�i count to O (z�1), but explicit calculations have shown that some but not all of
their BCFW terms behave as O (z�2).

Finally, note that the place where N = 7 plays a crucial role is the fact that the bad
shift BCFW recursion is not valid for N < 7, while N = 8 does not distinguish between
di↵erent shifts.
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5.2.2 General [�,+i test shifts: the MHV case

The above result fails for general BCFW test shifts other than the [i�, j+i shift, and an
alternative analysis is required. In general, there are many combinations of test shifts
that we can choose from, however we are mainly concerned with the [�,+i test shift,
since it is the most relevant in the high energy limit. In the following, we analyze the
large z scaling under general [�,+i test shifts in the MHV case. (See Fig. 2)

n̂+ 1̂�

P̂ML MR

k+

2�

Figure 2: Diagram of a MHV “bad shift” BCFW term.

Choosing the [n+, 1�i primary shift, the amplitude factorizes into an n�1 point MHV
subamplitude and a 3-point MHV subamplitude. Similar to our previous analysis, first
we solve for w and P̂ :

w =
h1ki
hnki , (5.28)

P̂ = �
✓
|k] + hn1i

hnki |1]
◆
hk|. (5.29)

We now analyze the large z scaling under di↵erent [�,+i test shifts:

• For the [1�, n+i shift: The proof in the previous section applies, and there is O (z�2)
term by term behavior.

• For the [2�, n+i shift: There is O (z�2) term by term behavior. The large z behavior
of the deformed quantities are:

P̂ �! O �
z0
�

|2](z) = |2] + z|n]
|ni(z) = |ni � z|2i
|n̂](z) = |n] + w|1] �! |n]
|1̂i(z) = |1i � w(|ni � z|2i) �! O �

z0
�
. (5.30)

In the large z limit, dependence on z only comes from the n�1 point subamplitude
ML, also we see that |n̂] ! |n]. Therefore, the chosen test shift is precisely a
BCFW shift on the subamplitude ML at large z, so the BCFW term must scale as
O (z�2).
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• For a [2�,m+i shift (where m 6= n): Individual terms scale as O (z�2). The same
argument as above applies if m is not on the 3 point amplitude, so terms scale as
O (1/z2). Moreover, the BCFW expansion is summed over all possible permuta-
tions, but there is only one diagram where m is on the 3 point amplitude, therefore
this term must also scale as O (z�2), since the existence of an O (z�1) part cannot
be canceled by other terms.

• For a [1�,m+i test shift: The above argument fails and there are terms which do
not behave as O (z�2).

Summarizing the results above, we have demonstrated that for the MHV case, the
N = 7 [n+, 1�i bad shift BCFW representation has O (z�2) term by term large z scaling
under [1�, n+i, [2�, n+i and [2�,m+i test shifts.

5.2.3 Comparison to other formulas for supergravity amplitudes

The large z scaling of the “bad shift” BCFW representation can be compared with the
tree formula for MHV amplitudes by Nguyen, Spradlin, Volovich, and Wen [13], which
also manifest O (z�2) large z fall o↵ term-by-term under certain test shifts. The formula
chooses two legs as special, and involves a sum of terms each represented by a tree
diagram. By directly counting the orders of z in the z deformed formula, we see that if at
least one of test shift legs are special, then the term will scale as O (z�2). Otherwise, for
an [i, ji test shift where neither i or j is a special leg, the term scales asO �

zdeg(i)+deg(j)�4
�
.

The degree of a leg refers to the number of propagators that connect to the leg in the tree
diagram. The best fall o↵ occurs when both leg i and j have only one connection, where
the term scales as O (z�2). The tree formula and the N = 7 BCFW is complementary
in the sense that both manifest the O (z�2) scaling term by term, but under di↵erent
conditions of test shift legs.

5.3 N = 8 bonus relations and N = 7 bonus scaling: the MHV case

After demonstrating our proof, we would like to show that N = 7 BCFW terms manifest
the improved scaling because they are using “bonus relations”, which come from the
O (z�2) fall o↵ of N = 8 amplitudes. The bonus scaling of N = 8 amplitudes enables us
to multiply a linear function of z on our amplitude and deform z as in BCFW recursion,
except that we do not have to consider the boundary integral. These extra relations are
called “bonus relations”. Multiplying by the s channel, we have the sum over residues at
z = zk,

s(0)MN=8
n =

X

k

s(zk)

Z
d8⌘P̂ ML

1

P 2
MR. (5.31)

Our purpose is to use the bonus relations to recombine N = 8 terms and cancel out
linear relations between terms, such that the remaining expression corresponds to the
N = 7 representation. The following analysis focuses on the MHV case for simplicity
and parallels Appendix C of [16]. Note that the BCFW representation for the N = 8
n-point MHV amplitude will always have one more diagram than N = 7. We will show
that we can use the bonus relation to express the additional N = 8 term using terms
appearing in N = 7. More explicitly, we write the N = 8 n-point MHV amplitude
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as M(123 · · ·n) or MN=8
n , the N = 7 amplitude as M(1�2�3+ · · ·n+) or MN=7

n , and
construct the BCFW representation using the [n+, 1�i shift:

|n̂] = |n] + w|1], |1̂i = |1i � w|ni, ⌘̂n = ⌘n + w ⌘1. (5.32)

The N = 8 representation has n� 2 diagrams while the N = 7 representation has n� 3
diagrams. The additional term for N = 8 can be written as

Z
d8⌘P̂ ML

1

P 2
MR(1̂P̂2). (5.33)

Intuitively, we want to expand this term into the other n � 3 terms, so we separate the
additional term and multiply S12 on each side

MN=8
n =

Z
d8⌘P̂ ML

1

P 2
MR(1̂P̂2) +

n�1X

k=3

Z
d8⌘P̂ ML

1

P 2
MR(1̂P̂ k), (5.34)

s12(0)MN=8
n =

n�1X

k=3

s12(zk)

Z
d8⌘P̂ ML

1

P 2
MR(1̂P̂ k). (5.35)

After some manipulation, we successfully expand the additional term in N = 8 using
others terms which have correspondence with N = 7.

MN=8
n =

n�1X

k=3

s12(zk)

s12(0)

Z
d8⌘P̂ ML

1

P 2
MR(1̂P̂ k). (5.36)

To compare with N = 7, we need to reduce the N = 8 terms to N = 7. In the
MHV case, legs 1 and 2 are in multiplet ��, which have helicity +3/2, while the other
particles are in multiplet �+, which has helicity +2, so we integrate out ⌘81, ⌘

8
2 and ⌘̂P in

the integral in (5.36) as follows:
Z

d8⌘P̂ ML
1

P 2
MR(1̂P̂ k)

=

Z
d⌘81d⌘

8
2

Z
d⌘̂8P �(|ni⌘̂8n + |P̂ i⌘8

P̂
+ · · · ) �([1k]⌘8

P̂
+ [kP̂ ]⌘81 + [P̂1]⌘8k)

Z
d7⌘P̂

fML
1

P 2
fMR

= (wh2ni[1k] + [kP̂ ]h2P̂ i)
Z

d7⌘P̂
fML

1

P 2
fMR

= h12i[1k]
Z

d7⌘P̂
fML

1

P 2
fMR, (5.37)

where fML and fMR are ML and MR with the supermomentum conservation delta func-
tion stripped o↵. Combining this result with (5.36), we obtain

n�1X

k=3

Z
d7⌘P̂ h1̂2i[1k] fML

1

P 2
fMR, (5.38)

which is exactly the explicit form for the corresponding N = 7 BCFW representation:

n�1X

k=3

Z
d7⌘P̂ MN=7

L

1

P 2
MN=7

R =
n�1X

k=3

Z
d7⌘P̂ h2P̂ i[P̂ k]fML

1

P 2
fMR. (5.39)

37



What we have demonstrated is that we can use a bonus relation to relate N = 8 BCFW
terms to N = 7 BCFW terms. In other words, the reason why N = 7 BCFW terms have
nicer large z behavior in this example is precisely because they are implicitly using bonus
relations to cancel out linear dependent terms which appear in the N = 8 representation.

The next question we can ask is whether the result applies to the general n-point
NkMHV case. To answer this question, we try the same analysis on the 6-point NMHV
amplitude. Now we have 14 terms in N = 8 compared with 9 terms in N = 7, so we
require 5 bonus relations to reduce the additional 5 terms to the other 9 terms. We cannot
continue, since we only have one bonus relation and it is impossible to solve 5 parameters
with one condition in general. This implies the O (z�2) large z behavior of N = 7
individual terms include not only bonus relations which cancel out linear dependence but
also some unknown property in N = 7.

5.4 Bonus scaling of “bad shift” BCFW for string amplitudes

Applications of BCFW recursion to string amplitudes have demonstrated improved large
z scaling compared to field theory amplitudes in certain kinematic regimes [17] [18].
This not only validates the construction of a “bad shift” recursion formula without the
requirement of N = 7 supersymmetry, but also enables the application of our previous
argument to pursue even better term-by-term large z bonus scaling.

Since we encounter an infinite tower of massive states in string theory, we first demon-
strate the validity of our argument in the case of a massive propagator. The previous
derivation is modified such that the on-shell condition becomes P̂ 2 = (P+w |i]hj|)2 = m2.
The primary shift parameter w and |ĵ], |̂ii, ⌘̂j, P̂ become:

wm =
�P 2 +m2

hj|P |i] (5.40)

|ĵ]m = |j] + wm|i], |̂iim = |ii � wm|ji, ⌘̂jm = ⌘j + wm⌘i, (5.41)

P̂m =
P |ji[i|P �m2|i]hj|

hj|P |i] . (5.42)

In the numerator of wm, the additional m2 term scales as z0 while the original P 2 scales
as z, so the large z scaling of wm and hence |ĵ], |̂ii, ⌘̂j are not a↵ected. The large z scaling
of P̂m is O (z0), which is also unchanged compared to that of the massless P̂ . Hence
making the propagator massive does not a↵ect the large z behavior under the [i, ji test
shift.

It was shown in [18] that the large z scaling under an [i, ji shift of superstring gluon
amplitudes is improved by z�↵0sij compared to the corresponding field theory amplitude.
For a [j+, i�i adjacent bad shift, the superstring amplitude scales as z�↵0sij+3�N since the
corresponding super-Yang-Mills amplitude scales as z3�N , thus by requiring the amplitude
fall o↵ faster than z0, this leads to the kinematic condition Re [3�N � ↵0sij] < 0 for a
valid representation. Following our previous result (5.25), under an [i�, j+i test shift the
N bad shift representation has zN�5 term-by-term scaling, compared to the z�↵0sij�1 large
z fall o↵ of the whole amplitude. Note the curious result that for 3 �N < Re [↵0sij] <
4 � N , the term-by-term scaling is actually better than the whole amplitude. We turn
to a specific amplitude for further investigation.
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As an example, we look at the superstring four-point gluon component amplitude,
which is given by:

A4(1
�, 2�, 3+, 4+) =

h12i4
h12ih23ih34ih41i

�(1 + ↵0s)�(1 + ↵0t)
�(1 + ↵0(s+ t))

(5.43)

Here the s and t are the usual Mandelstam variables, which in our convention read as
s = s12 = (p1 + p2)2, t = s23 = (p2 + p3)2, and u = s13 = (p1 + p3)2. The kinematic
constraint for a valid recursion for this amplitude Re [3� ↵0t] < 0 was first given in [17]
by demonstrating the vanishing of the boundary term. We construct a bad shift repre-
sentation by first deforming the amplitude with a N = 0 [3+, 2�i shift,

A4(w) =
(h12i � wh13i)3
h23ih34ih41i

�(1 + ↵0s+ w↵0[12]h13i)�(1 + ↵0t)
�(1 + ↵0(s+ t) + w↵0[12]h13i) . (5.44)

From the asymptotic expansion of the ratio of gamma functions, which can be obtained
by using Stirling’s series,

�(z + ↵)

�(z + �)
= z↵��


1 +

(↵� �)(↵ + � � 1)

2z
O �

z�2
��

, (5.45)

we can readily see that A4(w) indeed scales as w�↵0t+3.
Using the function A4(w)

z
, we can form the [3+, 2�i representation of the amplitude as

the sum of the residues at w = � k+↵0s
↵0[12]h13i , k 2 N. This representation can be simplified

into

A4(1
�, 2�, 3+, 4+) =

h12i4
h12ih23ih34ih41i

�1

↵03s3

1X

k=1

✓
↵0t
k

◆
(�1)kk4

k + ↵0s
. (5.46)

Through direct summation using Mathematica, we can observe the convergence of the
bad shift representation (5.46) to the closed form of the amplitude (5.43) within the
kinematic regime Re [3� ↵0t] < 0. Another way to look at the convergence of the series
is through the alternating series test. The ratio between terms of the series ak expands
at large k as

r =

����
ak+1

ak

���� = 1 +
3� ↵0t

k
+O �

k�2
�
. (5.47)

We obtain the condition 3� ↵0t < 0 by requiring r < 1 for su�ciently large k such that
the series converges.

Under the [2�, 3+i test shift, the [3+, 2�i bad shift representation deforms into

A4(z) =
h12i4

h12ih23i(h34i+ zh24i)h41i
�1

↵03(s� zh12i[13])3
1X

k=1

✓
↵0t
k

◆
(�1)kk4

k + ↵0(s� zh12i[13]) .
(5.48)

From this form, we can observe directly that individual terms of the series fall o↵ as z�5

as predicted. Also note that for ↵0t = n 2 N, the series terminates after n terms and
A4(z) has finite poles, in contrast to the case for ↵0t at generic values. This property can
also be observed by shifting the closed form formula for A4.

We now turn to the previously mentioned curiosity at 3 < Re[↵0t] < 4. Firstly, it is
tested numerically by Mathematica that the series converges in this kinematic region and
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that under the [2�, 3+i test shift, individual terms scale as z�5 at large z, better than the
z�↵0t�1 scaling of the amplitude in its closed form. We observe that the series converges
slower at larger z, such that the number of terms required to sum to a certain fraction of
the amplitude increases with z. From this, we expect that convergence issues may arise
at the large z limit, allowing the large z fall o↵ for individual terms to be better than the
closed form in this kinematic region.

Similar analysis can be applied to the closed superstring. In our previous reasoning
for supergravity, we noted that our argument for bonus scaling only applies to N = 7
since the amplitude scales as z6�N under the bad shift, and thus only o↵ers a valid
representation for N > 6. For gravitons in the superstring, the condition for a valid
[j+, i�i “bad shift” representation is:

Re [6�N � 2↵0sij] < 0. (5.49)

In this kinematic regime, the [j+, i�i bad shift representation has zN�9 term-by-term
large z scaling under an [i�, j+i test shift according to (5.25), compared to the z�2↵0s2ij�2

scaling of the whole amplitude. Similarly, note that the term-by-term large z fall o↵ is
better than the whole amplitude for 6�N < Re [2↵0sij] < 7�N .
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6 Conclusion and Future directions

In this thesis, we briefly review spinor formalism and use spinor to present amplitudes.
We introduce the powerful recursion relation help us construct higher points amplitudes.
We generalize recursion relation to superamplitudes in part II. The last part we prove
that the “bad shift” BCFW representation of N = 7 supergravity gives building blocks
that exhibit term by term bonus O (z�2) fall o↵. In particular, we prove that using
the [j+, i�i BCFW representation of NkMHV amplitudes, each term vanishes as O (z�2)
under the [i�, j+i deformation. Focusing on the MHV case, we find that the O (z�2)
behavior is also present for a large number of other [�,+i deformations. For example,
in the [n+, 1�i representation, all [2�,m+i deformation exhibits term by term O (z�2)
asymptotic behavior. The reason that the “bad shift” is a valid BCFW shift can be traced
back to the O (z�2) fall o↵ of N = 8 supergravity, which allows for the susy reduction to
still have vanishing asymptotic, i.e. the shift behaves as O (z�2). Thus the “bad shift”
BCFW representation of N = 7 supergravity is the only BCFW recursion that utilizes
the O (z�2) fall o↵ of the amplitude. We demonstrate this claim by showing that for the
MHV case, we can use the bonus relation to recombine building blocks in N = 8 BCFW
into building blocks of the N = 7 bad shift.

Our previous analysis only allows us to relate the BCFW representation of N = 8
supergravity to the N = 7 bad shift representation for the MHV amplitude. This relation
is no longer straightforward for NMHV amplitude and beyond. For example the six-point
NMHV contains 14 diagrams inN = 8 supergravity versus 9 diagrams forN = 7 bad-shift
representation. Since there is only one bonus relation at each multiplicity, it is insu�cient
to convert one representation to the other, unless one incorporates the information of the
bonus relations for the lower point amplitudes. This would require us to further expand
the BCFW representation. Indeed it is known that using all bonus relation, one can
express the supergravity amplitudes in terms of (n � 3)! building blocks [19]. It will be
interesting to see if one can utilize these building blocks to form term by term O (z�2)
fall o↵ for all deformations.

Recent studies [11] have shown how BCFW terms of gravitational amplitudes can
pair into combinations with improved permutation invariance, such that leading O (z�1)
pieces cancel and O (z�2) fall o↵ is exposed. However, it appears that to have O (z�2) fall
o↵ for all shifts, one eventually requires the combination of everything and end up with
the full amplitude, which is similar to the N = 7 bad shift result. Thus it would appear
that the improved fall o↵ obtained by implementing partial permutation invariance can be
similarly achieved without. It might be interesting to perform a general search of rational
functions of spinor products that satisfies the correct helicity weight, mass dimension, at
most simple poles and O (z�2) fall o↵ for all shifts. These are very stringent constraints,
and it is likely that the solution can serve as the true building blocks for the amplitude.

Finally, we note that the “bad shift” BCFW recursion is also valid for string ampli-
tudes under certain kinematic conditions. Unlike the story for the N = 7 theory, whose
validity of the “bad shift” BCFW is attributed to the bonus fall o↵ of N = 8 gravity,
here the validity of the string amplitude representation is tied to its improved high-energy
behavior. Due to the enhanced large z scaling of string amplitudes, the restriction to the
N = 7 representation is lifted and we can further reduce supersymmetry to expose better
term-by-term large z fall o↵ compared to field theory. Furthermore, just as the bonus
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scaling of the N = 7 bad shift representation may be considered as the incorporation
of N = 8 bonus relations, the improved behavior of BCFW terms of string amplitudes
hint at possible relations inviting deeper investigation. It would be interesting to under-
stand further, whether or not new symmetry or new amplitude relations emerge from
this picture.

42



A Derivation of P̂

Consider a [j, ii BCFW representation:

Mn =
XZ

d7⌘P̂ ML
1

P 2
MR |P̂ 2=m2 , (A.1)

|ĵ] = |j] + w|i], |̂ii = |ii � w|ji, ⌘̂j = ⌘j + w ⌘i , (A.2)

P̂ = P + w |i]hj|. (A.3)

We can evaluate w using the on-shell condition P̂ 2 = m2.

P̂ 2 = (P + w |i]hj|)2
= P 2 + 2P · w |i]hj|
= P 2 + w hj|P |i] = m2.

Therefore,

w =
�P 2 +m2

hj|P |i] . (A.4)

Plugging the expression for w into P̂ ,

P̂ = P +
(�P 2 +m2)

hj|P |i] |i]hj|

=
[i|P |jiP � P 2|i]hj|+m2|i]hj|

hj|P |i] .

This can be simplified by invoking the Schouten identity as follows:

hj|P |i]Paḃ = jċP
ċdidPaḃ

= �P d
ċ idP

ċ
a jḃ � Paċj

ċP d
ḃ
id

= PaċP
ċdidjḃ + Paċj

ċPḃdi
d.

Using P a
ċP

ċd = P 2✏ad, we have

hj|P |i]P = P 2� d
a idjḃ + Paċj

ċPḃdi
d

= P 2iajḃ + Paċj
ċPḃdi

d

= P 2|i]hj|+ P |ji[i|P.

We obtain for P̂ :

P̂ =
P |ji[i|P +m2|i]hj|

hj|P |i] . (A.5)
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