
國立臺灣大學電機資訊學院電機工程學系

碩士論文
Department of Electronic Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

手持裝置應用程式的排名方法和系統實作

Methods and Systems for Ranking Mobile Application

劉浚宇

Chun-Yu Liu

指導教授：雷欽隆博士

Advisor: Chin-Laung Lei, Ph.D.

中華民國 104年 7月
July, 2015

誌謝

我要感謝所有幫助過我的人。謝謝栽培我的爸爸媽媽,謝謝指導我

的雷欽隆教授,謝謝網路安全實驗室的大家,謝謝過往繼續支持我的大

學同學們,謝謝大家。…

ii

摘要

在現在的社會中，手機應用程式已經成為人們不可或缺的一項功

能，其中一項很重要的因素是軟體市集的崛起，它使得應用程式的下

載變得很方便。然而，這世界上已經存在著不少軟體市集，雖然大多

數的人只知道 Google商店和 Apple的 app store。手機應用程式可以透

過不少方式做行銷，但就我們所知，最有效的行銷手法就是成為軟體

市集的推薦。這是很顯然的，因為每個使用者想要下載手機應用程式

都必須開啟軟體市集，而每開啟一次就是直接接受了推薦的應用程式

作為廣告。另一方面，由於軟體市集是安裝應用程式的入口，因此想

要找尋應用程式也會透過此。

在這篇論文中我們提出了一套方法來計算應用程式的熱門程度。

我們認為每個應用程式都有它的衰退期，無論它曾是多熱門。因此排

序應用程式的熱門程度不單只是其下載量，還要考慮它的衰退情形。

這麼做是為了避免有些應用程式曾經風靡一時，卻因為其一時的下

載量而歷久不衰，而其實它現在已經不是使用者所喜歡的了。我們對

Google Play商店的應用程式做統計，觀察下載量的變化，發現大多應

用程式都有相似的成長量衰退情形，在不同分類的應用程式又有著不

同的衰退速率，這對於手機應用程式的開發商是個很重要的數據分析，

可以根據其應用程式種類隨著時間來達成預期的下載量。

iii

Abstract

In this decade, the popularity of the mobile Internet and the smart phones

continue significant growth trend, because the immediacy, connectivity and

convenience of the smartphones that are making many changes for the mo-

bile internet user’s behavior, such easily installing/uninstalling the mobile

applications (Apps) from the apps stores. Thus apps installing smartphones

have already become necessities in daily life. There are many popular apps

stores in the world, for example, Google Marketplace and Apple AppStore

are the most well-known apps markets. The convenience of smartphone also

brings a great change in the apps ecosystem[16], the downloading ratio of

apps, the number of apps users and apps developers are significant increasing

in recent years. How to market apps is becoming a critical and large part of

mobile internet business. In order to market effectively, to become top-rated

marketing apps is the best and the effective approach for the most apps devel-

opers [12]. However, apps marketing is hard, the apps ranking and searching

strategies are controlled and manipulated by the apps markets. There are few

article examining the app ranking system, however the mobile app monetiza-

tion strategy is dominating the entire mobile internet, for example, the revenue

of apps reaches more than $38 billion in 2015.

In this paper, we propose a method to calculate the popularity of mobile

applications. We think that no matter how popular they used to be, they own

their recession. Therefore, it should not rank apps only by amount of down-

loads but consider the decays. It can avoid some situation that some applica-

iv

tions used to be popular and earned lots of downloads, but actually not users’

favor now. We collect the app data in Google Play store to make statistics,

observe the change of downloads. In the experiment, we found most appli-

cations exist decay situation in volume growth. And different category of

applications have their own decay velocities. This is a great analysis to de-

veloper of mobile applications, they can use to predict the downloads. App

store can also calculate the real popularity.

v

Contents

誌謝 ii

摘要 iii

Abstract iv

1 Introduction 1

2 Background 3

2.1 Movies . 3

2.2 Books . 4

2.3 Websites . 5

2.4 Mobile Apps . 5

3 Approach 7

3.1 System Structure . 7

3.1.1 Network . 7

3.1.2 Database . 8

3.1.3 Search Engine for Searching Apps 10

3.2 Half-Life Method . 11

4 Experiments 18

4.1 Materials . 18

4.2 Crawler . 18

4.3 Experiments . 19

vi

4.3.1 Experiment I . 20

4.3.2 Experiment II & III . 23

5 Conclusion 28

Bibliography 29

vii

List of Figures

1.1 Time spending between mobile web and apps 2

1.2 2014 App Store Growth Graph . 2

3.1 A conceptual diagram illustrating a network according to an embodiment

of the present invention . 8

3.2 A diagram illustrating a network according to an embodiment of the present

invention . 9

3.3 data structures according to an embodiment of the present invention . . . 10

3.4 System of searching application data according to embodiments of the

present invention . 12

3.5 A block diagram of the ranking algorithm for ranking software applica-

tions according to an embodiment of the present invention 13

3.6 Flowcharts illustrating methods of ranking software applications accord-

ing to an embodiment of the present invention 15

3.7 Flowcharts illustrating methods of ranking software applications accord-

ing to an embodiment of the present invention 16

3.8 Flowcharts illustrating methods of ranking software applications accord-

ing to an embodiment of the present invention 17

4.1 Flow chart of the distributed app crawler 19

4.2 Half-lift decay function prediction on ShotZombie 20

4.3 Experiment I - Applications . 21

4.4 Experiment I - Games . 22

4.5 Experiment II - Applications . 24

viii

4.6 Experiment II - Games . 25

4.7 Experiment III - Applications . 26

4.8 Experiment III - Games . 27

ix

Chapter 1

Introduction

Flurry [10] is a mobile analytics, monetization, and advertising company. Based their

statistics result in 2013, when people using a smart phone. It took 80% of time to use

mobile app, 20% of time to use mobile web browser. It means people spent most of their

time on mobile app. Also, based on another statistics, the amount of smart phone is larger

than tablet. If we browse websites via our smart phone, it will take a lot of time, there

are many redundant resources to load, and many extra DOM to show, and more animation

need to execute. Mobile app improve this kind of situation, it is much faster, and the smart

phone already have some optimization for the UI rendering, that’s why people spend more

time on mobile app.

In 2014, Flurry reported another statistics [11], when people using a smart phone. It

took 86% of time to use mobile app, and it’s even more the 80% in 2013. More and more

companies developed their new mobile apps. Based on the change during 2013 and 2014,

we can say that mobile apps will conduct the user behavior for using smart phone. Further

more, based on the statistics result from Google Play, Amazon Appstore, and Apple App

Store. In 2014, Google Play increased more than 200% apps, it means they had double

the amount of total apps in their app store. For Amazon Appstore, they increased more

than 180% apps. For Apple App Store, they increased more than 150% apps. Based on

the increasing rate, after three years, it would have more the 10M mobile apps in Google

Play.

Although the number of Apps several times into the original, but innovative services

1

Figure 1.1: Time spending between mobile web and apps

but it is a minority, so most are similar apps. With the increase of similar apps, it is difficult

to find a right app in app store. App ranking becomes very important, it will affect the use

how to deal with these massive app data.

Today, app stores have their own ranking, usually with popularity rankings, and the

“popularity”is depended upon downloads and user comments. Although the popularity is

close to the real situation, but there are some problems. For instance, in Google Play store,

we can see the high number of downloads, but already unpopular apps in the“Popular”

category. These apps ranked higher because they have very high downloads, is simply a

momentary trend. Even with a long time, the apps are not popular as before, but the apps

still have higher ranks because the high downloads in early. The ranking system is not

match the popularity in the real world.

Figure 1.2: 2014 App Store Growth Graph

2

Chapter 2

Background

Today there are so many ranking systems, according to different categories and different

rankings, but have one thing in common, to close to the real user preference, popularity.

The accuracy of the ranking system can win the user’s trust, better user experience, and

less search cost. The following is a survey conducted for several popular ranking system.

2.1 Movies

IMDb[5] is the most popular and authoritative source for movie ranking system. It col-

lects the richness of movie content including cast, production crew, fictional characters,

biographies, plot summaries, trivia and reviews. It also is an online database of detail

information related to films including bloopers, versions, aspect ratio and sound tracks

in the films. Moreover, the authoritative ranking system of IMDb really catches people’s

eyes, it is the most authoritative movie ranking system in the world. It offers a rating scale

that allows users to rate films, so that the movie ratings of IMDb are reflections of crowd

psychology.

Rotten Tomatoes[7] is another widely known film review aggregator. The ranking

system is based on the editors and reviewers of Rotten Tomatoes. The reviewing steps

are as follows. First, Rotten Tomatoes staff first collect online reviews from writers who

are certified members of various writing guilds or film critic associations. Then the staff

determine for each review whether it is positive or negative. Note that staff assessment is

3

needed as some reviews are qualitative rather than numeric in ranking. The website keeps

track of all of the reviews counted for each film and the percentage of positive reviews is

calculated. (Major, recently released films can attract up to 250 reviews.) If the positive

reviews make up 60% or more, the film is considered f̈resh,̈ in that a supermajority of

the reviewers approve of the film. If the positive reviews are less than 60%, the film is

considered r̈otten.̈

Metacritic[6] is an online ranking system that aggregates reviews of music albums,

games, movies, TV shows, DVDs, and formerly, books. The ranking mechanism is named

Metascores that is weighted average approach. In the ranking system, for each product,

a numerical score from each review is obtained and the total is averaged. Metacritic’s

method of scoring converts each review into a percentage that the site decides for itself,

before taking a weighted average based on the critic’s fame or stature, and listing different

numbers of reviews. Three color codes of Green, Yellow and Red summarize the critic’s

recommendation, giving an idea of the general appeal of the product among reviewers

and, to a lesser extent, the public.

There are many research papers about improving the movie searching and ranking

system[14].

2.2 Books

Sale volume is defined as the quantity of services, such as box office, the download number

of app, in a specified period. It can easily reflect the most popular hot services. Therefore,

the most of book stores show their book sales ranking for attracting the follow the crowd.

Social recommendations ranking system is based on the social networking. This trend

is accompanied by a significant behavioral change: members rely more on the opinion of

their peers for the purchase of products or membership to a brand. With social networking

designed for content sharing and its versatility which makes it easy to expand its network

of friends, amplifies the use of recommendations within the members of your community.

4

2.3 Websites

Page view (i.e., a request to load a single web page) statistics is a fairest indicator for each

web site. However, this statistics data can be manipulated by site owners. Therefore, an

authoritative web statistics module is adopted by most website owners. The authoritative

web statistics module can avoid the cheating of the dupulicated page views by the same

user, and can obtain the real user statistics data all over the world. Moreover, the page

view is also an important indicator for venture capitals to evaluate the value of an Internet

company.

Search engine optimization[13] (i.e., SEO) is the process of affecting the visibility of

a website or a web page in unpaid results of a search engine (e.g., Google, the largest

search engine in the world). Therefore, the importance of SEO and how to improve it is

described by many books and blogs. The higher SEO ranking a website owns, the more

popular a website is.

Return rate means the rate of returning visitors who visit a website before and come

back to visit the same website again. The return rate indicator is more important than the

page view statistics because the page view statistics includes advertiseing, the visits from

the the search result, any incautious visits, etc. However, returning visitors in the return

rate are the visitors who ever visited a website and may intend to visit the same website

again for obtaining the information. Therefore, the return rate is a curical ranking indicator

for a website.

2.4 Mobile Apps

We often see the app ranking results provided by some data statistics companies, e.g.,

Google Analytics [3], Flurry [10], App Annie [2], etc. These companies provide their

statistics modules and software development kits (SDKs) to developers, so that the devel-

opers can install the SDK to easily obtain users’statistics data, e.g., the user operation

flow in an app, the number of clicks of each button, etc. Besides, these companies collect

a lot of statistics data from all developers who use their SDK. Thus, these companies can

5

provide an authoritative ranking system. The statistics data of the apps is very useful,

including the average usage time, the rate of app uninstallations, and so on.

The owners of app stores own some data including the apps’downloads, user eval-

uations, and user feedbacks. They also establish their ranking systems, but the ranking

algorithm is not public. As mentioned before, there are some issues in the ranking mecha-

nism of the app stores. And we address these issues in this thesis. Besides, some authori-

tative technology media websites, e.g., TechCrunch [8], and TechOrange [9], also provide

their app statistics reports. Their reports are not only very influential but also advertising

oriented, However, they determine the popularity of the apps accoring to data from some

statistics companies and the surveys from the community websites.

6

Chapter 3

Approach

3.1 System Structure

Reference will now be made in detail to examples of the invention, which are illustrated

in the accompanying drawings. Wherever possible, the same reference numbers will be

used throughout the drawings to refer to the same or like parts. The example below is

directed to search results comprising mobile applications. However, as persons in the art

can appreciate, the present invention can be applied to various other search results such as

websites, software applications, online games, etc.

3.1.1 Network

Figure 3.1 is a conceptual diagram illustrating a system according to an example of the

present invention. The system can include a server cluster 100 (or a cloud), application

servers 200, and a first user 10, each of which can communicate with each other through

network 30, which can be but not limited to the Internet, cellular network or any kind

of software define network(s). In this example, the server cluster can include a plurality

of servers (e.g., servers 100a-100d shown in figure 3.1), each of which is configured to

perform at least a part of the tasks, processes or steps of the present invention, either

separately, sequentially, in parallel or a combination thereof to improve the efficiency of

the system. A server in the server cluster 100 can include but not limit to a processor, a

7

memory, a communication port and a storage device such as a database. An example of

the server cluster can be described with reference to figure 3.2. Here, a personal computer

(PC) can also be used as a server in the server cluster 100.

Figure 3.1: A conceptual diagram illustrating a network according to an embodiment of
the present invention

3.1.2 Database

Figure 3.3(a) and 3.3(b) illustrate data structures of application data that can be provided by

an application search engine according to an example of the present invention. Referring to

FIGS. 3A and 3B, application data can be stored in a data repository (or database). In this

example, the data repository (or the database) can be a relational database (and other file(s)

relating to the software application can also be stored in storage with path(s) recorded in

the repository/database or a file system). Referring to figure 3.3(a), the data structure (or

the data schema) can include a first field 300-1 to store the name of an app (e.g.,“Joseph’

s App”), a second field 300-2 to store the application ID used to identify the app (e.g.,

an application number assigned by the application search engine server 100b to identify

data stored in the datebase, which is “00000168”in this example), a third field 300-3

to store the file name of an application package of the app (e.g.,“example0000168.apk”

), a fourth field 300-4 to store the location of the app (e.g., a fixed or changing location

8

Figure 3.2: A diagram illustrating a network according to an embodiment of the present
invention

where the app is set, such as a coordinate like“37°48′30″N 122°24′56″W”), a fifth field

300-5 to store the content list ID (i.e., an ID assigned to identify the list of content of the

app referred in figure 3.3(b)), a sixth field 300-6 to store the download count for the app,

a seventh field 300-7 to store the number of likes for the app (e.g., the number of times a

“like”button is pressed by users to approve the content of the app), and an eighth field

300-8 to store the number of check-in for the app (e.g., users executing the app to check-in

to specific locations). Figure 3.3(b) represents one of the data structures for content list

ID stored in 300-5 referred in figure 3.3(a). The structure includes a first field 310-1 to

identify content list IDs, a second field 310-2 to store all the content IDs corresponding to

310-1, a third field 310-3 to identify content achors, a fourth field 310-4 to store file paths,

and a fifth field 310-5 to identify content location. Those skilled in the art understand that

9

Figure 3.3: data structures according to an embodiment of the present invention

some fields shown in figure 3.3(a) and 3.3(b) are only examples of the present invention

and at least some of the fields can be optional. Moreover, the data structure in the data

repository/database is not required to include the exact same fields as shown in figure

3.3(a) or 3.3(b). Moreover, the logical table 3000 or other data structure/schema (e.g.,

HFS or those used in big data schemes) can also be used to implement the database of the

present system.

3.1.3 Search Engine for Searching Apps

Figure 3.4 is a diagram illustrating a system of searching application data generate by apps

(i.e., “In-App”). Referring to figure 3.4, the In-App search framework can include a

scheduler, an app robot (or a plurality of app robots, hereinafter the“app robot”or the

“app robots”) and a data harvest framework. The app robot(s) can be configured to con-

trol and operate apps. The scheduler can be configured to schedule the time to activate

a corresponding app robot to run an app. The data harvest framework can be configured

10

to gather and extract the application data generated by apps and their corresponding ap-

plication server(s), and store the collected application data in the data repository (or the

database). The main purpose of the scheduler is to activate the app robot(s) based on

specific scheduling policy and logic from the data repository. Other factors can be pro-

grammed such as the execution frequency of the apps, the running pool of the apps, the

running states of the apps and etc. The scheduling policy and logic can also be developed

by an artificial intelligence approach. The data harvest framework can be configured to

gather and extract application data from an app’s corresponding applicaiton server(s), and

store the application data in the data repository (or the database). At least two approaches

can be used to harvest the application data in the system framework of the present inven-

tion: the system hooking approach or the network analyzer approach (we can apply either

one of them or both). There are two types of the system hooking approach: the user-level

hook and the kernel-level hook. Both can be used to intercept and trace native API calls.

A hook system usually comprises two parts: a hook server and a driver. A hook server is

responsible for injecting the driver into targeted application processes. The difference be-

tween a user-level hook and a kernel level hook is that user-level hook may suffer library

dependency problems when library updates (for example, such as moving from Android

4.3 to 4.4). A network analyzer approach monitors the network traffic and extracts the

application data from end-to-end data flows. For example, a data gathering proxy can be

set up between the app and its application server. In this example, any data transmission

of the app can be intercepted and cached in the data gathering proxy. The cached data

may be restored in data repository later.

3.2 Half-Life Method

There are various half-life mathematical models[17] that can be used in the current inven-

tion such as but not limited to exponential or geometric decay. We use the exponential

half-life mathematical model to illustrate the current invention. Assume that N(t) is the

activating count for an app, and t is the time (e.g., in days). Consider the exponential de-

cay model N(t) = N0e
−λt, that is, N(0) = N0 when t = 0 (when the number of the app

11

Figure 3.4: System of searching application data according to embodiments of the present
invention

peaks and will start to decay exponentially). Different apps can have different half-lifes

depending on their popularity over time, and the ranking of the apps are determined by

their half-lifes. In addition, ranking using half-life can be done in combination with pop-

ularity and/or other half life-related characteristics of the search result such as quantity

of popularity peak, the point of its popularity lifespan the search result occupies at time

of ranking, etc... Further, ranking can also be done in combination with other ranking

methods such as the number of search query keyword matches, etc…Figure 3.5 illustrates

an embodiment of the present invention. The system for ranking apps can include an app

popularity monitor 502, a multiplexer 504, a half-life calculator 506 and a ranking calcu-

lator 508. The app popularity monitor 502 can determine the popularity of an app based

on its download count, user count, activating count or combination thereof. Based on a

number of predetermined reference rates (for examples growth/decay rate of number of

users, execution rate and/or other rates), the app popularity monitor 502 can also generate

triggers. For example, when the growth rate of number of users and the execution rate for

12

an app fall below certain predetermined reference rate, the app popularity monitor 502,

through its multiplexer 504, will trigger the half-life calculator to start calculating the half-

life of the app. In another embodiment, the half-life calculator 506 can directly monitor

the popularity of an app during a predetermined period of time, for example, monitoring

an app’s daily download count for a period of at least one month. Once the daily down-

load count decays to approximately half of its regular value or the value when the half-life

calculator 506 is triggered, the half-life of the app is determined.

Figure 3.5: A block diagram of the ranking algorithm for ranking software applications
according to an embodiment of the present invention

When an app’s half-life is determined by the half-life calculator 506, such information

is sent to the ranking calculator 508. The ranking calculator 508 can calculate the rank

of the app according to its half-life. Those skilled in the art understand that the ranking

calculator 508 can also rank using popularity and/or other half life-related characteristics

of the search result such as quantity of popularity peak, the point of its popularity lifespan

the search result occupies at time of ranking, etc... Further, ranking can also be done

in combination with other ranking methods such as the number of search query keyword

matches, etc…. In one emodicment, the system of the present invention can further include

at least a memory (not shown in the figures), flash (not shown in the figures), storage (not

13

shown in the figures) or combination thereof configured to provide a script (not shown

in the figures) to be embedded in the webpages where the app can be downloaded. The

script is able to collect information such as the app’s download count, user count or

activating count to be passed to a ranking update module when the app is downloaded

from the webpate where the script is embedded. In another example, the system of the

present invention can further include at least a memory, flash, storage, or combination

thereof configured to provide an sdk (not shown in the figures) to be embedded in an app.

The sdk can collect information when the app is downloaded to a client (not shown in the

figures). The information can include the the app’s download count, user count or the

activating count. Such information is transmitted to the ranking update module on a server

by executing the sdk on the client.

Figure 3.6, 3.7 and 3.8 illustrate methods of ranking apps according to an embodiment

of the present invention. Referring to figure 3.6, the method for ranking apps can include

steps 602-610. In step 602, the app popularity monitor determines an app’s popularity

based on its download count, user count, activating count or combination thereof. In step

604, based on a number of predetermined referenced rates, the app popularity monitor can

decide if an app’s popularity has peaked. If yes, proceed to step 606. If not, proceed to

step 610. In step 606, the half-life calculator 506 can calculate an app’s half-life after the

app’s popularity peaks. In step 608, the rank of an app is calculated based on its half-

life. In step 610, the rank of an app is further calculated based on the popularity and/or

other half life-related characteristics of the search result such as quantity of popularity

peak, the point of its popularity lifespan the search result occupies at time of ranking,

etc... Further, ranking can also be done in combination with other ranking methods such

as the number of search query keyword matches, etc….. Referring to figure 3.7, the

method can further include providing a script to be embedded in the webpages where

app can be downloaded in step 702, and transmissing information about the app to the

ranking update module by executing the script in step 704, wherein the information can

include the app’s download counnt, user count or activating count. Once the popularity

of the app peaks, it will generate an exponential decay trigger to the half-life calculator

14

506 in step 708. The method described and illustrated in 3.8 is similar to those described

and illustrated with reference to figure 3.7, except that, for example, it includes a step

of providing an sdk to be embedded in the app in order to collect information of the app

on a client, as shown in step 710. It will be appreciated by those skilled in the art that

changes could be made to the examples described above without departing from the broad

inventive concept thereof. It is understood, therefore, that this invention is not limited

to the particular examples disclosed, but it is intended to cover modifications within the

spirit and scope of the present invention as defined by the appended claims. Further, in

describing representative examples of the present invention, the specification may have

presented the method and/or process of the present invention as a particular sequence of

steps. However, to the extent that the method or process does not rely on the particular

order of steps set forth herein, the method or process should not be limited to the particular

sequence of steps described. As one of ordinary skill in the art would appreciate, other

sequences of steps may be possible. Therefore, the particular order of the steps set forth

in the specification should not be construed as limitations on the claims.

Figure 3.6: Flowcharts illustrating methods of ranking software applications according to
an embodiment of the present invention

15

Figure 3.7: Flowcharts illustrating methods of ranking software applications according to
an embodiment of the present invention

16

Figure 3.8: Flowcharts illustrating methods of ranking software applications according to
an embodiment of the present invention

17

Chapter 4

Experiments

4.1 Materials

To verify the half-life calculator, we design a distributed crawler to retrieve the app data

from Google Play. According to the app information, we can know the amount of change

in apps. We use the half-life calculator to predict some values in the next section, and

comparing to the actual values we retrieve. In the first experiment, we select downloads

as popularity basis. In the second, we choose user ranks.

4.2 Crawler

Aweb crawler[15] is an internet robot which systematically browses theWorldWideWeb.

When the crawler come to visits a website, it collects contents inside and spreads by the

outlinks in this website. To do so, the crawler can retrieve all the websites which connect

to the World Wide Web by links. Google search engine is a good example for this. Their

crawlers crawl every day so that they can keep the data almost synchronize with original

website. The app crawler is similar to the web crawler. An app detail page has outlinks

such as“similar apps”and“developer apps”and can link to other app detail page. As web

crawler, we start from the portal (Google Play homepage [4]), visit all the apps recursively.

Otherwise, there are over 1 million applications in Google Play store so we have to collect

those data efficiently. Distributed crawler is our solution. An app crawler first gets an app

18

detail link and retrieve the app data, save to database if it has modified or updated. Then

inserts all the outlinks to database so that other crawlers can work simultaneously. Figure

4.1 shows the app crawler’s flow chart.

Figure 4.1: Flow chart of the distributed app crawler

4.3 Experiments

We do those experiments on Amazon Web Server [1], 10 machines are used to collect app

data distributedly. We use the last two values we retrieve to calculate the half-lifes decay

function to predict the next value. Then compare the predicted value to the actual value.

Figure 4.2 shows an app “ShotZombie”, which calculates the every week download

changes prediction and compares to the actual values. Then we get two lines, compute the

correlation coefficient of two.

19

Figure 4.2: Half-lift decay function prediction on ShotZombie

4.3.1 Experiment I

First experiment targets the popularity in downloads. Downloads are the most objective

factor about popularity. It directly reflects the users’decision. So we collect downloads

of applications(Which present the apps eccept games) and games and classify into cate-

gories. And another side, we compare all apps to over 500k downloads apps. As demon-

strated in Figure 4.3 and 4.4, we got average correlation coefficient on different categories.

Those present games and applications, over 500k downloads and all. In the results, we get

accurate prediction on more than 500k downloads apps in either applications or games.

Otherwise, games are more accurate than applications.

20

Figure 4.3: Experiment I - Applications

21

Figure 4.4: Experiment I - Games

22

4.3.2 Experiment II & III

Second experiment targets the popularity in user ranks. The user rank in Google Play store

is a short comment which user can give a score from 1 to 5 to an app. As we observe for

a while, the second and third stars are seldom. Which means that people usually give the

best or worst rank to apps. Another guess is people don’t give rank if they have no idea

about this app. What we concern here is popularity, the negative comment are not the

factor. So in second experiment, we test at least 4 and at least 5. Other factors is just like

the previous experiment. Figure 4.5 and 4.6 shows the result about user rank at least 4, 5

in Figure 4.7 and 4.8. Likewise, we get more accurate predictions on more than 10k ranks

apps both in games and applications. And user rank at least 5 is bether than at least 4.

23

Figure 4.5: Experiment II - Applications

24

Figure 4.6: Experiment II - Games

25

Figure 4.7: Experiment III - Applications

26

Figure 4.8: Experiment III - Games

27

Chapter 5

Conclusion

According to the experiments, half-life decay function can use to predict an app’s lifecycle

of popularity. An interesting point is that the popularity may influence accuracy degree.

There are better results if just tests the popular apps. So accuracy is relative to popular-

ity(either in high downloads or user ranks). Another point is the games or applications

with high adhesive capasity get great accuracy. It implies the adhesive capasity is highly

relative to keeping popularity. In this paper, we just individually consider the two factors:

downloads and user ranks. But there are many factors about apps may influence the pop-

ularity. I think conbining some factors may get better prediction. Here we present this

model and in the future we may find a better way or factors to increase the accurate rate

of ranking update module.

28

Bibliography

[1] Amazon web services (aws), a collection of remote computing services, also called

web services, make up a cloud-computing platform offered by amazon.com. http:

//aws.amazon.com/.

[2] App annie, the app analytics and app data industry. https://www.appannie.com/

cn/.

[3] Google analytics. http://www.google.com/analytics/.

[4] Google play, originally the android market, is a digital distribution platform operated

by google. https://play.google.com/store.

[5] Imdb. http://www.imdb.com/.

[6] Metacritic. http://www.metacritic.com/.

[7] Rotten tomatoes. http://www.rottentomatoes.com/.

[8] Techcrunch, an online publisher of technology industry news. http://techcrunch.

com/.

[9] Techorange. http://buzzorange.com/techorange/.

[10] Flurry, a mobile analytics, monetization, and advertising company. http://www.

flurry.com/, 2005.

[11] Apps solidify leadership six years into the mobile revolu-

tion. http://flurrymobile.tumblr.com/post/115191864580/

apps-solidify-leadership-six-years-into-the-mobile, 2014.

29

[12] Carare O. The impact of bestseller rank on demand: Evidence from the app market.

INTERNATIONAL ECONOMIC REVIEW, 53(3):717–742, Jul 2012.

[13] Meng Cui, Songyun Hu. Search engine optimization research for website promotion.

Information Technology, Computer Engineering and Management Sciences (ICM),

2011 International Conference, 4(2):100–103, Sep 2011.

[14] Seung-Taek Park , David M. Pennock. Applying collaborative filtering techniques

to movie search for better ranking and browsing. KDD ’07 Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery and data mining,

7:550–559, Aug 2007.

[15] Shkapenyuk, V. , Suel, Torsten. Design and implementation of a high-performance

distributed web crawler. Data Engineering, 2002. Proceedings. 18th International

Conference, 18:357–368, Mar 2002.

[16] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, T. Karagiannis.

Rise of the planet of the apps: a systematic study of the mobile app ecosystem.

IMC ’13 Proceedings of the 2013 conference on Internet measurement conference,

13(13):277–290, Oct 2013.

[17] Tsuchiya K, Sugita M. A mathematical model for deriving the biological half-life of

a chemical. Nordisk hygienisk tidskrift, 52(2):105–10, 1971.

30

