
國國國立立立臺臺臺灣灣灣大大大學學學理理理學學學院院院數數數學學學系系系

碩碩碩士士士論論論文文文

Department of Mathematics

College of Science

National Taiwan University

Master Thesis

逆平均曲率流之研究

A Study of the Inverse Mean Curvature Flow

陳邦彥

Pang-Yen Chen

指導教授：崔茂培 副教授

Advisor : Associate Professor Mao-Pei Tsui

中華民國104年7月

July,2015



致謝

本論文之所以能順利完成，受到了崔茂培副教授的指導，對於研究的方向與資料

的提供給予相當大的幫助，於此獻上最深的敬意與謝意。論文口試期間，承蒙口試

委員們的鼓勵與指正，使得本論文更加完整。在此也需要感謝李瑩英主任的介紹，

我才有機會認識崔茂培副教授。另外還要感謝學弟士房跟晉翰提供我寶貴的意見。

陳邦彥

2015.11.24

i



中文摘要

這篇文章中，我們討論超曲面在對曲率做合理假設下的旋轉對稱空間中沿著逆平

均曲率流之行為。我們針對逆平均曲率流的初始曲面為封閉、星形且mean-convex之

情形的長時間存在性以及近似行為做細部分析。另外我們利用逆平均曲率流來證明

歐氏空間中定義域為星形且mean-convex之quermassintegrals的isoperimetric不等式。
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Abstract

In this thesis, we study the behavior of the motion of hypersurfaces by their inverse

mean curvature flow (abbreviated as IMCF) in the rotational symmetric space with

reasonable condition on its curvatures. In particular, we give a detailed analysis about

the long time existence and the asymptotic behavior of the IMCF when the initial

surface is closed star-shaped and mean-convex. We also present an application of the

IMCF to the proof of the isoperimetric inequality for quermassintegrals of mean-convex

star-shaped domains in Euclidean space.
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1. Introduction

A classical solution of the IMCF in an (n + 1)-dimensional Riemannian manifold

(Nn+1, g) is a smooth family X : Mn× [0, T )→ Nn+1 of closed hypersurfaces satisfying

∂

∂t
X(p, t) =

1

H
ν(p, t), p ∈Mn, 0 ≤ t < T, (1.1)

where H(p, t) is the mean curvature and ν(p, t) is the outward unit normal vector of

the surface X(·, t)(Mn) at the point X(p, t).

The IMCF was first proposed by Geroch [4] and Jang and Wald [9] in the seventies as

an approach to the proof of the positive mass theorem. It was first studied rigourously

by Gerhardt [3] and Urbas [12] independently in Euclidean space. Gerhardt proved [3]

(also [12]) that for a smooth, closed, star-shaped initial hypersurface of positive mean

curvature, the IMCF has a unique smooth solution for all times, moreover the rescaled

surfaces

X̂(t) := e−
t
n ·X(t)

converge exponentially fast to a sphere.

In 2001 Huisken and Ilmanen [7] used a level-set approach and developed the notion

of weak solutions for the IMCF to prove the Penrose inequality for asymptotically flat

3-manifolds with non-negative scalar curvature. Huisken and Ilmanen also proved [8]

higher regularity properties of the IMCF in Euclidean space.

In [2], Ding has studied the IMCF when the ambient space is a rotationally symmetric

space with non-positive sectional curvature and Euclidean volume growth.

Let Nn+1 be a rotationally symmetric space, whose metric is

g = dr2 + λ2(r)σijdx
idxj (1.2)
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under the geodesic polar coordinates, where σ := σijdx
idxj is the canonical metric of

Sn, λ ∈ C∞, λ(0) = 0, λ′(0) = 1 and λ(r) > 0 for any r > 0. The manifolds has

non-positive sectional curvature if λ′′ ≥ 0. Furthermore, if the manifold N also has

Euclidean volume growth, which means that λ′ is uniformly bounded, Ding proved the

following theorem.

Theorem 1.1. [2] Let Nn+1 be a rotationally symmetric space with non-positive sec-

tional curvature, Mn
0 be closed, mean-convex, star-shaped hypersurface of Nn+1, which

is given as an embedding

X0 : Sn → Nn+1.

The IMCF has a unique smooth solution for all times. If λ′ is uniformly bounded, then

the rescaled surfaces

X̂(t) := e−
t
n
X(t)

converges to a uniquely determined sphere of radius 1
λ′(∞)

(Area(M0)
|Sn| )

1
n , where λ′(∞) :=

lim
r→∞

λ′(r), Area(M0) is the area of M0 in Nn+1, and |Sn| is Lebesgue measure of n-sphere

in Euclidean space.

In [11], Li and Wei has studied the IMCF in Schwarzschild space. The Schwarzschild

space is an (n+1)−dimensional manifold Nn+1 = [s0,∞)×Sn equipped with the metric

g =
1

1− 2ms1−nds
2 + s2σijdx

idxj

where m > 0 is a constant, s0 is the unique positive solution of 1 − 2ms1−n
0 = 0.

This metric is asymptotically flat in the sense that the sectional curvatrue of (Nn+1, g)
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approaches to zero near infinity. By change of variable, this metric can be written as

the following warped metric

g = dr2 + λ2(r)σijdx
idxj

where λ : [0,∞) → [s0,∞) satisfies λ′(r) =
√

1− 2mλ1−n(r). Li and Wei proved the

following result.

Theorem 1.2. The IMCF starting from a closed, mean-convex, star-shaped hypersur-

face Mn
0 in the Schwarzschild space (Nn+1, g) will exist for all time. The flow hyper-

surface Mn
t converges to infinity while preserving mean-convexity and star-shpaedness.

Moreover, there exists positive constants λ and β′ such that the induced metric on Mn
t

satisfies

e−
2t
n gij → λσij

exponentially fast and the second fundamental form hji satisfies

| λ
λ′
hji − δ

j
i | = O(e−β

′t)

as t → ∞, where σij denotes the compnents of the round metric. In other words, the

flows Mn
t converges to a large coordinate sphere as t→∞.

We can prove a similar result with some reasonable decay on λ′′ and allow the sectional

curvatures to be positive in some directions.

Theorem 1.3. Let Nn+1 be a rotationally symmetric space with the metric

g = dr2 + λ2(r)σijdx
idxj
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where λ′′ ≥ 0, λ > 0, λ1+ελ′′ ≤ C, where ε > 0, and lim
r→∞

λ′(r) = 1 and the covariant

derivative of the curvature of Nn+1 have the decay |∇R| ≤ C
λ3 . Suppose Mn

0 is a closed,

mean-convex, star-shaped hypersurface of Nn+1, which is given as an embedding

X0 : Sn → Nn+1.

The IMCF has a unique smooth solution for all times and the rescaled surfaces

X̂(t) := e−
t
nX(t)

converges to a uniquely determined sphere of radius (
Area(Mn

0 )

|Sn| )
1
n , where Area(Mn

0 ) is

the area of Mn
0 in Nn+1, where |Sn| is Lebesgue measure of n-sphere in Euclidean space.

The condition of λ which we assume implies that the curvature of Nn+1 has the

quadratic decay and the covariant derivative of the curvature of Nn+1 have cubic decay.

Also, our condition λ′′ ≥ 0, and lim
r→∞

λ′(r) = 1 implies that the support function grows

exponentially and the star-shapedness is preserved by the inverse curvature flow. Also,

the condition λ′′λ1+ε ≤ C is used to show that Ric(ν, ν) ≤ C
λ3 which is used to prove the

decay estimate of the mean curvature. In the case of an asymptotically flat manifolds,

the curvature tensor is required to fall off as O( 1
r3 ). So our assumption of the curvature

decay is more reasonable than Ding’s assumption.

In [5], Guan and Li used the IMCF to prove the following isoperimetric inequality

for quermassintegrals of closed, mean-convex, star-shaped hypersurfaces in Euclidean

space.
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Theorem 1.4. Suppose Σ is a closed, mean-convex, star-shaped hypersurface in Rn+1,

then inequality ∫
Σ

Hdµg

(

∫
Σ

dµg)
(n−1)
n

≥

∫
Sn
Hdµg

(

∫
Sn
dµg)

(n−1)
n

is true. The equality holds if and only if Σ is a round sphere. Here H is the mean

curvature of the hypersurface.

In this thesis, we will give a detailed proof of Theorem 1.3 and Theorem 1.4. The

organization of this thesis is as follows: In section 2, we include the basic results about

the Riemannian geometry, the geometry of submanifolds and the maximum principle

for parabolic equation. In section 3, we compute the Riemannian curvatures, Ricci

curvature and the scalar curvature of the rotationally symmetric space. We also derive

the second fundamental forms and various geometric quantities of a star-shaped hyper-

surface in terms of its radial function. In section 4, we prove that the mean-convexity

and star-shapedness is preserved by the IMCF and derive the estimate of λ, the decay

estimates of the radial function, mean curvature, the second fundamental form that

will be used to prove the convergence of the rescaled flow later. In section 5, we prove

Theorem 1.3. In section 6, we prove Theorem 1.4.

2. Preliminary

In this section, we include the basic results about the Riemannian geometry and the

geometry of submanifolds and the maximum principle for parabolic equation.

Let (Nn+1, ḡ) be a smooth complete Riemannian manifold without boundary. We

denote by a bar for all quantities on Nn+1, for example by ḡ = {ḡαβ}, 0 ≤ α, β ≤ n,

the metric, by ȳ = {ȳα} coordinates, by Γ̄ = {Γ̄γαβ} the Levi-Civita connection, by
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∇̄ the covariant derivative and by Riem = {Riemαβγδ} the Riemannian curvature

tensor. Components are sometimes taken with respect to the tangent vector fields

{ ∂
∂ȳα
}, 0 ≤ α ≤ n associated with a local coordinate chart ȳ = {ȳα} and sometimes

with respect to a moving orthonormal frame {eα}, 0 ≤ α ≤ n, where ḡ(eα, eβ) = δαβ.

We write ḡ−1 = {ḡαβ} for the inverse of the metric and use the Einstein summation

convention for the sum of repeated indices. The Ricci curvature R̄ic = R̄αβ and scalar

curvature R̄ of (Nn+1, ḡ) are then given by

R̄αβ = ḡγδR̄αγβδ, R̄ = ḡαβRαβ

and the sectional curvatures (in an orthonormal frame) are given by Secαβ = R̄αβαβ.

Now let X : Mn → Nn+1 be a smooth hypersurface immersion. For simplicity we

restrict our attention to closed surfaces, i.e., compact without boundary. The induced

metric on Mn will be denoted by g, in local coordinates we have

gij(p) = 〈∂X
∂xi

(p),
∂X

∂xj
(p)〉M

= ḡαβ(X(p))
∂Xα

∂xi
(p)

∂Xβ

∂xj
(p), p ∈Mn.

(2.1)

Furthermore, {Γijk}, ∇ and Riem = {Rijkl} with Latin indices i, j, k, l ranging from

1 to n describe the intrinsic geometry of the induced metric g on the hypersurface. If ν

is a local choice of unit normal for X(Mn), we often work in an adapted orthonormal

frame e0(= ν), e1, · · ·, en in a neighbourhood of X(Mn) such that e1(p), · · ·, en(p) ∈

TpM
n ⊂ TpM

n+1 and g(p)(ei(p), ej(p)) = δij for p ∈ Mn, 1 ≤ i, j ≤ n. The second

fundamental form A = {hij} as a bilinear form A(p) : TpM
n × TpM

n → R and the

Weingarten map W = {hij} = {gikhkj} as an operator W : TpM
n → TpM

n are then
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given by

hij = 〈∇̄eiν, ej〉 = −〈ν, ∇̄eiej〉.

In local coordinates xi, 1 ≤ i ≤ n, near p ∈ Mn and {ȳα}, 0 ≤ α ≤ n, near X(p) ∈

Mn+1 these relations are equivalent to the Weingarten equations:

∂2Xα

∂xi∂xj
− Γkij

∂Xα

∂xk
+ Γ̄αβδ

∂Xβ

∂xi
∂Xδ

∂xj
= −hijνα; (2.2)

∂να

∂xi
+ Γ̄αβδ

∂Xβ

∂xi
νδ = hijg

jl∂X
α

∂xl
(2.3)

Recall that A(p) is symmetric, i.e., W is self-adjoint, and the eigenvalues κ1(p), ..., κn(p)

are called the principal curvatures of X(M) at X(p). Also note that at a given point

p ∈Mn by choosing normal coordinates and then possibly rotating them we can always

arrange that at this point

gij = δij, (∇̄eiej)
T = 0, hij = hij = diag(κ1, · · ·, κn).

Here (∇̄eiej)
T means the projection of the vector ∇̄eiej from TM(p) to TM(p).

The mean curvature and the norm of the second fundamental form are given by

H := tr(W ) = hii = κ1 + · · ·+ κn

and

|A|2 := κ2
1 + · · ·+ κ2

n.

The commutator of second derivatives of a vector field V and a one-form ω on Mn

are given by

∇i∇jV
k −∇j∇iV

k = Rijlpg
klV p

and

∇i∇jωk −∇j∇iωk = Rijklg
lpωp.

7



More generally, the commutator of second derivatives for an arbitrary tensor involves

one curvature term as above for each of the indices of the tensor. The corresponding

laws of course also hold for the metric ḡ.

The curvature of the hypersurface and ambient manifold are related by the equations

of Gauss:

Rijkl = Rijkl + hikhjl − hilhjk, 1 ≤ i, j, k, l ≤ n, (2.4)

the equations of Codazzi-Mainardi:

∇ihjk −∇khij = R̄0jki. (2.5)

the second derivatives of the second fundamental form satisfies the identities:

∇k∇lhij = ∇i∇jhkl + hklhimhmj − hkmhmjhil + hkjhimhml − hkmhmlhij

+ R̄kilmhmj + R̄kijlmhml + R̄mjilhkm + R̄0i0jhkl − R̄0k0lhij + R̄mljkhim

+ ∇̄kR0jil + ∇̄iR0ljk.

Here we state and prove the scalar Maximum Principle for parabolic equation that

will be used later for our various estimate for inverse curvature flow.

Theorem 2.1. Suppose that g(t) is a family of metrics on a closed manifold M and

u : M × [0, T )→ R satisfies

∂

∂t
u ≤ Lu+ 〈X(t), ∇u〉+ F (u), (2.6)

where X(t) is a time-dependent vector field and F is a Lipschitz Function. If u ≤ c at

t = 0 for some c ∈ R, then u(x, t) ≤ U(t) for all x ∈ Mn and t ≥ 0, where U(t) is the
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solution to the ODE

dU

dt
= F (U)

with U(0)=c.

Proof. By (2.6), we have

∂

∂t
(u− U) ≤ L(u− U) + 〈X(t),∇(u− U)〉+ F (u)− F (U),

then according to the Lipschitz property of F ,we have:

∂

∂t
(u− U) ≤ L(u− U) + 〈X(t),∇(u− U)〉+ C|u− U |

This implies that v =: e−Ct(u− U) satisfies

∂

∂t
v ≤ L(u− U) + 〈X(t),∇v〉+ C(|v| − v)

Hence vε =: v − ε(1 + t) satisfies vε(0) ≤ −ε and

∂

∂t
vε ≤ Lvε + 〈X(t),∇vε〉+ C(|v| − v)− ε.

We claim vε < 0 for all t ≥ 0. If not, then there exists a first time t0 at which there

is a point x0 such that vε(x0, t0) = 0. Then v = |v| = ε(1 + t0) at (x0, t0) and

0 ≤ ∂

∂t
vε ≤ Lvε + 〈X(t),∇vε〉+ C(|v| − v)− ε ≤ −ε.

at (x0, t0), which is a contradiction. Hence vε < 0 for all t ≥ 0 and ε > 0. The result

follows from taking ε→ 0. �
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3. The Geometry of Star-Shaped Hypersurfaces in a Rotationally

Symmetric Space

In this section, we compute the Riemannian curvatures, Ricci curvature and the scalar

curvature of the rotationally symmetric space. We also derive the second fundamental

forms and various geometric quantities of a star-shaped hypersurface in terms of its

radial function.

Let Nn+1 be a rotationally symmetric space, whose metric is

g = dr2 + λ2(r)σijdx
idxj

under the geodesic polar coordinates, where σ := σijdx
idxj is the canonical metric of

Sn, λ ∈ C∞, λ′′ ≥ 0, λ > 0, λ1+ελ′′ ≤ C, where ε > 0, and lim
r→∞

λ′(r) = 1 and the

covariant derivative of the curvature of Nn+1 have the decay |∇R| ≤ C
λ3

We calculate the Riemannian curvature tensors in the next lemma. Let x = {xi}ni=1

be a local coordinate system on Sn and let ∂
∂xi

be the corresponding coordinate vector

fields in Nn+1. Let D,∇ and ∇ be the Levi-Civita connections of Sn, Mn and Nn+1,

respectively. Γ̃kij denote the Christoffel symbols of Sn with respect to the tangent basis

{ ∂
∂xi
}ni=1, and Γ

k

ij denote the Christoffel symbols of Nn+1 with respect to the tangent

basis { ∂
∂r
} ∪ { ∂

∂xi
}ni=1 ( ∂

∂r
is indexed by i = 0). We write gij := g( ∂

∂xi
, ∂
∂xj

) = λ2(r)σij.

Lemma 3.1. Let Rαβγµ denote the Riemannian curvature tensor of the rotationally

symmetric metric g = dr2 + λ2(r)σijdx
idxj. Then

g
(
R(

∂

∂xi
,
∂

∂r
)
∂

∂xj
,
∂

∂r

)
= −λ

′′

λ
gij
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g
(
R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂r

)
= 0

g
(
R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂xl
)

=
1− (λ′)2

λ2
(gikgjl − gjkgil)

Ric = −nλ
′′

λ
dr2 +

[
(n− 1)

1− λ′2

λ2
− λ′′

λ

]
ḡ (3.1)

R = −2n
λ′′

λ
+ n(n− 1)

1− λ′2

λ2

Proof. We first compute some components of the Christoffel symbols of Nn+1 with

respect to the tangent basis { ∂
∂r
}∪{ ∂

∂xi
}ni=1. Using the fact that gi0 = 0, g00 = 1, g00 =

1,
∂gjl
∂r

= 0 and ∂
∂xi
gjl = λ2 ∂

∂xi
σjl, we have

Γ
k

ij =
1

2
gkl(

∂gjl
∂xi

+
∂gil
∂xj
−
∂gij
∂xl

) =
1

2

1

λ2
σkl(λ2∂σjl

∂xi
+ λ2∂σil

∂xj
− λ2∂σij

∂xl
) = Γ̃kij

and

Γ
0

ij =
1

2
g0l(

∂gjl
∂xi

+
∂gil
∂xj
−
∂gij
∂xl

) =
1

2
g00(

∂gj0
∂xi

+
∂gi0
∂xj
−
∂gij
∂r

)

=
1

2
(−∂(λ2σij)

∂r
) = −λλ′σij.

This implies that

∇ ∂

∂xi

∂

∂xj
= −λλ′σij

∂

∂r
+ Γ̃kij

∂

∂xk
(3.2)

where Γ̃kij is the Christoffel symbols of the standard metric on the sphere.

This implies that

g(∇ ∂

∂xi

∂

∂xj
,
∂

∂r
) = −λλ′σij. (3.3)

Since g( ∂
∂r
, ∂
∂r

) = 1, we have g(∇ ∂

∂xi

∂
∂r
, ∂
∂r

) = 0. Using g( ∂
∂r
, ∂
∂xj

) = 0, we have

g(∇ ∂

∂xi

∂
∂r
, ∂
∂xj

) = −g( ∂
∂r
,∇ ∂

∂xi

∂
∂xj

) = λλ′σij. This implies that

∇ ∂

∂xi

∂

∂r
= λ′λσijg

jk ∂

∂xk
=
λ′

λ

∂

∂xi
.
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Now we also have

g(∇ ∂
∂r

∂

∂r
,
∂

∂xi
) = −g(

∂

∂r
,∇ ∂

∂r

∂

∂xi
) = −g(

∂

∂r
,∇ ∂

∂xi

∂

∂r
) = 0.

Thus

∇ ∂
∂r

∂

∂r
= 0.

Each level set of the function r is a round sphere with induced metric λ(r)2σ and

the second fundamental form hij = −g(∇ ∂

∂xi

∂
∂xj
, ∂
∂r

) = λλ′σij from (3.3). From Gauss

equation (2.4), we have

Rijkl = Rijkl − hikhjl + hilhjk

=λ2(σikσjl − σilσjk)− λ2λ′2(σikσjl − σilσjk)

=λ(r)2 (1− λ′(r)2) (σikσjl − σilσjk)

=
1− (λ′)2

λ2
(gikgjl − gjkgil)

Since each level set of r is umbilical with second fundamental form hij = λλ′σij ,

from the Codazzi equation (2.5), we derive

R(
∂

∂r
,
∂

∂xj
,
∂

∂xk
,
∂

∂xi
) = ∇ihjk −∇khij = ∇i(λλ

′σjk)−∇k(λλ
′σij) = 0

The remaining components of the curvature tensors are

R(
∂

∂xi
,
∂

∂r
,
∂

∂xj
,
∂

∂r
)

= −R(
∂

∂xi
,
∂

∂r
,
∂

∂r
,
∂

∂xj
)

= g
(
(∇ ∂

∂xi
∇ ∂

∂r
−∇ ∂

∂r
∇ ∂

∂xi
)
∂

∂r
,
∂

∂xj
)

= −g
(
∇ ∂

∂r
∇ ∂

∂xi

∂

∂r
,
∂

∂xj
)

(use ∇ ∂
∂r

∂

∂r
= 0)
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= −g
(
∇ ∂

∂r
(
λ′

λ

∂

∂xi
),

∂

∂xj
)

(use∇ ∂
∂r
∇ ∂

∂xi
=
λ′

λ

∂

∂xi
)

= −(
λ′′

λ
− λ′2

λ2
)λ2σij −

λ′

λ
g(∇ ∂

∂r

∂

∂xi
,
∂

∂xj
)

= (−λ′′λ+ λ′2)σij −
λ′

λ
g(∇ ∂

∂xi

∂

∂r
,
∂

∂xj
)

= (−λ′′λ+ λ′2)σij −
λ′

λ
· λ
′

λ
· λ2σij

= −λλ′′ σij = −λ
′′

λ
gij.

Now we can use the curvature formulae to compute the Ricci curvature

Ric(
∂

∂xi
,
∂

∂xk
)

=g
(
R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂xl
)
gjl + g

(
R(

∂

∂xi
,
∂

∂r
)
∂

∂xk
,
∂

∂r

)
=

1− (λ′)2

λ2
(gikgjl − gjkgil)gjl −

λ′′

λ
gik

=
[
(n− 1)

1− (λ′)2

λ2
− λ′′

λ

]
gik

and

Ric(
∂

∂r
,
∂

∂r
)

=g
(
R(

∂

∂r
,
∂

∂xj
)
∂

∂r
,
∂

∂xl
)
gjl

=− λ′′

λ
gjlg

jl

=− nλ′′

λ
.

�

Corollary 3.2. Under our assumption λ > 0, λ′′ ≥ 0 and lim
r→∞

λ′(r) = 1, we have

λ′(r) ≤ 1 , Sec( ∂
∂xi
∧ ∂

∂r
) ≤ 0 and Sec( ∂

∂xi
∧ ∂

∂xj
) ≥ 0. Moreover, |Rm| ≤ C

λ2 if λλ′′ ≤ C

for some positive constant C > 0.
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A star-shaped hypersurface Mn ⊂ Nn+1 can be parameterized by

Mn = {(r(x), x) : x ∈ Sn}

for a smooth function r on Sn. Considering this embedding

X : Sn →Mn := X(Sn) ↪→ Nn+1.

We assume that X := (r(x), x1, · · · , xn) in the coordinate system (r, x1, · · · , xn).

We next define a new function. For the convenience, we define function

ϕ(r) :=

∫ r

c

1

λ(s)
ds

on Sn. To make the integral been meaningful, c is supposed be an arbitrary fixed

positive constant. Then we have

Diϕ =
1

λ
·Dir

Dr = Dirσ
ij ∂

∂xj
= λ ·Diϕσ

ij ∂

∂xj
= λDϕ

ϕi,j = DjDiϕ = Dj(
1

λ
·Dir) =

1

λ
ri,j −

λ′

λ2
DjrDir, (3.4)

where ϕi,j and ri,j denote the second covariant derivative of ϕ and r with respect to

the round metric σ := σijdx
idxj, respectively. Moreover, let

v :=
√

1 + |Dϕ|2Sn . (3.5)

In the next proposition, we express the exterior unit normal vector, metric and second

fundamental form of M in terms of covariant derivatives of ϕ as in [2]:

14



Proposition 3.3. Let ν be the exterior unit normal vector, gij be the induced metric on

M and hij be the second fundamental form in term of the basis { ∂X
∂xi

= Dir
∂
∂r

+ ∂
∂xi
}ni=1.

Then

gij = λ2 (σij +DiϕDjϕ) (3.6)

gij =
1

λ2
(σij − DiϕDjϕ

v2
) =

1

λ2
σ̃ij (3.7)

ν =
1

v
(
∂

∂r
− Dϕ

λ
)

hij =
λ

v

(
λ′ (σij +DiϕDjϕ)− ϕi,j

)
hij =

1

vλ
(λ′δij − σ̃ikϕk,j)

and

H =
1

vλ
(nλ′ − σ̃ijϕi,j)

where σ̃ij = σij − DiϕDjϕ
v2 and Diϕ = σikDkϕ.

Proof. The local coordinate vector fields of M can be expressed as

ei :=
∂X

∂xi
= Dir

∂

∂r
+

∂

∂xi
, 1 ≤ i ≤ n.

The induced metric of M is

gij = ḡ(ei, ej) = ḡ(Dir
∂

∂r
+

∂

∂xi
, Djr

∂

∂r
+

∂

∂xj
) = DirDjr+ λ2σij = λ2 (σij +DiϕDjϕ).

To find the inverse of gij, we use the fact that: A is an n×n invertible matrix and w is

an n×1 matrix, then (A+wwT )−1 = A−1− 1
1+wTA−1w

A−1wwTA−1. Now take A = (σij)

and w = (Diϕ), then

(σij +DiϕDjϕ)−1 = (A+ wwT )−1 = A−1 − 1

1 + wTA−1w
A−1wwTA−1

15



= σij − 1

1 +DpϕσqpDqϕ
σikDkϕDkϕσ

kj

= σij − DiϕDjϕ

1 + |Dϕ|2Sn
= σij − DiϕDjϕ

v2
.

where Diϕ = σijDjϕ. Therefore,

gij =
1

λ2
(σij − DiϕDjϕ

v2
) =

1

λ2
σ̃ij

where σ̃ij = σij − DiϕDjϕ
v2 . Since (gij) is the inverse of (gij), (gij) is positive definite and

so is σ̃ij.

Next we find the outward unit normal vector ν of M as below. Let ~a be a normal

vector of the form ~a = ∂
∂r

+ Bj ∂
∂xj

. Since ~a is normal, we have g(~a, ei) = 0, for

i = 1, 2, ...n. This implies that

g(~a, ei) = g(
∂

∂r
+Bj ∂

∂xj
, Dir

∂

∂r
+

∂

∂xi
) = Dir+B

j ḡji = Dir+B
j ḡij = Dir+B

jλ2σij = 0.

To solve Bj, multiply on the both side of the last equation by σik, the inverse matrix

of σik, and sum over i, then

Dirσ
ik +Bjλ2σijσ

ik = Dirσ
ik +Bjλ2δkj = Dirσ

ik +Bkλ2 = 0

So Bk = −Dir
λ2 σik. Hence ~a = ∂

∂r
− Dir

λ2 σ
ij ∂
∂xj

= ∂
∂r
− Dϕ

λ
and g(~a,~a) = 1 + |Dϕ|2Sn =: v2.

We have the exterior unit normal vector

ν =
~a

|~a|
=

1

v
(
∂

∂r
− Dϕ

λ
) (3.8)

Next we compute the second fundamental form of Mn in Nn+1. To compute hij :=

−g(ν,∇ejei), we first compute ∇ejei = ∇( ∂r
∂xj

∂
∂r

+ ∂

∂xj
)(

∂r
∂xi

∂
∂r

+ ∂
∂xi

). Since ∂r
∂xi

is a funtion

16



of x only and ∇ ∂
∂r

∂
∂r

= 0, we have

∇( ∂r
∂xj

∂
∂r

)(
∂r

∂xi
∂

∂r
) =

∂r

∂xj

( ∂
∂r

(
∂r

∂xi
) +

∂r

∂xi
∇ ∂

∂r

∂

∂r

)
= 0

Using ∇ ∂
∂r

( ∂
∂xi

) = ∇ ∂

∂xi
( ∂
∂r

) = λ′

λ
∂
∂xi

, we have

∇( ∂r
∂xj

∂
∂r

)(
∂

∂xi
) =

∂r

∂xj

(
∇ ∂

∂xi

∂

∂r

)
=

∂r

∂xj
λ′

λ

∂

∂xi
= λ′

∂ϕ

∂xj
∂

∂xi

Using (3.2) and (3.3), we can get

∇ ∂

∂xj
(
∂r

∂xi
∂

∂r
+

∂

∂xi
) =

∂2r

∂xi∂xj
∂

∂r
+ λ′

∂ϕ

∂xi
∂

∂xj
− λλ′σij

∂

∂r
+ Γ̃kij

∂

∂xk
.

Combining previous three equations, we have

∇ejei = (
∂2r

∂xi∂xj
− λλ′σij)

∂

∂r
+ λ′

∂ϕ

∂xj
∂

∂xi
+ λ′

∂ϕ

∂xi
∂

∂xj
+ Γ̃kij

∂

∂xk

Thus, the second fundamental form is given by

hij = −g
(
(
∂2r

∂xi∂xj
− λλ′σij)

∂

∂r
+ λ′

∂ϕ

∂xj
∂

∂xi
+ λ′

∂ϕ

∂xi
∂

∂xj
+ Γ̃kij

∂

∂xk
,

1

v
(
∂

∂r
− 1

λ
σlm

∂ϕ

∂xl
∂

∂xm
)
)

=
1

v
(λλ′ σij + 2λ′λ

∂ϕ

∂xi
∂ϕ

∂xj
− ∂2r

∂xi∂xj
+ Γ̃kij

∂r

∂xk
)

=
λ

v

[
λ′ (σij +DiϕDjϕ)− ϕij

]
,

hij = gikhjk = λ−2(σik − DiϕDkϕ

v2
) · λ
v

[
λ′(σjk +DjϕDkϕ)− ϕj,k

]
=

1

vλ
[λ′(σik − DiϕDkϕ

v2
)(σjk +DjϕDkϕ)− (σik − DiϕDkϕ

v2
)ϕj,k]. (3.9)

Because of (3.6) and (3.7), the first term

(σik−D
iϕDkϕ

v2
)(σjk +DjϕDkϕ) = δij.
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Thus,

hij =
1

vλ
(λ′δij − σ̃ikϕk,j),

and the mean curvature is

H = hii =
1

vλ
(nλ′ − σ̃ijϕj,i) (3.10)

�

Next we compute two more quantities Ric(ν, ∂
∂r

) and Ric(ν, ν) that will be used later.

Lemma 3.4.

Ric(ν,
∂

∂r
) = −nλ

′′

vλ
(3.11)

and

Ric(ν, ν) = −nλ
′′

λ
− |Dϕ|2Sn ·

n− 1

v2
· (λ′)2 − 1− λλ′′

λ2
(3.12)

Proof. Recall (3.1), we have

Ric = −nλ
′′

λ
dr2 +

[
(n− 1)

1− λ′2

λ2
− λ′′

λ

]
g.

Thus

Ric(ν,
∂

∂r
) = Ric

(1

v
(
∂

∂r
− Djr

λ2

∂

∂xj
),
∂

∂r

)
= −nλ

′′

vλ

and

Ric(ν, ν)

=Ric
(1

v
(
∂

∂r
− Diϕ

λ

∂

∂xi
),

1

v
(
∂

∂r
− Djϕ

λ

∂

∂xj
)
)

=
1

v2

[
Ric(

∂

∂r
,
∂

∂r
) +

DiϕDjϕ

λ2
Ric(

∂

∂xj
,
∂

∂xj
)
]

=
1

v2

{
− nλ

′′

λ
+ |Dϕ|2Sn

[
(n− 1)

1− λ′2

λ2
− λ′′

λ

]}
18



=− nλ
′′

λ
− |Dϕ|2Sn ·

n− 1

v2
· (λ′)2 − 1− λλ′′

λ2
.

In the last step, we use the fact that v2 = 1 + |Dϕ|2Sn . �

We summary the notations as below

object Sn X−−→ M ⊆ Nn+1

coordinate
(x1, · · · , xn)

(r(x1, · · · , xn)
(r, x1, · · · , xn)

system , x1, · · · , xn)

basis of {
∂
∂x1 , · · · , ∂

∂xn

} {
ei = Dir

∂
∂r + ∂

∂xi

}n
i=1

{
∂
∂r

}
∪
{

∂
∂xi

}n
i=1

tangent bundle

metric σ = σijdx
idxj g

g = dr2

+λ2σijdx
idxj

Levi-Civita
D ∇ ∇

connection

Christoffel
Γ̃kij Γ

k
ij

symbols

curvature
R̃ R R

tensor

Ricci
R̃ic Ric Ric

tensor

4. The Inverse Mean Curvature Flow

In this section, we prove that the mean-convexity and star-shapedness is preserved by

the IMCF and derive the estimate of λ, the decay estimates of the radial function, mean

curvature, the second fundamental form that will be used to prove the convergence of

the rescaled flow later.
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Let Mn
0 be a mean-convex star-shaped hypersurface in Nn+1 which is given by an

embedding

X0 : Sn → Nn+1

Let Xt := X(·, t) : Sn → Nn+1, t ∈ [0, T ), be the solution of the IMCF with initial data

given by X0. In other words,

∂Xt

∂t
=

1

H
ν, (4.1)

where ν is the unit outer normal vector and H is the mean curvature. We shall call

(4.1) the parametric form of the IMCF.

Let ei = Xt∗(
∂
∂xi

) = ∂Xt
∂xi

, i = 1, 2, · · · , n be coordinate vector fields on Xt(Sn) := Mn
t .

Denote by gij and hij the components of the first and second fundamental form, by

H = gijhij the mean curvature and |A|2 = hikhljg
ilgjk the squared norm of the second

fundamental form, by φ = g(λ(r) ∂
∂r
, ν) = λ

v
the support function, by ψ = 1

Hφ
and by dµt

the area element on Mn
t . We first collect the evolution equations for various geometric

quantities under the IMCF.

Lemma 4.1 (Evolution equations). Under the IMCF (1.1), we have

∂

∂t
gij =

2

H
hij,

∂

∂t
µt = dµt, (4.2)

∂

∂t
ν =

1

H2
∇H,

∂

∂t
hji =

∆hji
H2

+
|A|2

H2
hji −

2

H
hki h

j
k −

2

H3
∇iH∇jH − 2

H
R̄νiνkg

kj

+
2

H2
gljgkshmk R̄misl +

1

H2
gljgkshmi R̄mksl +

1

H2
gljgkshml R̄mksi

+
1

H2
Ric(ν, ν)hji +

1

H2
gljgks

(
∇̄kR̄νisl + ∇̄lR̄νksi

)
20



∂

∂t
H =

∆H

H2
− 2
|∇H|2

H3
− |A|

2

H
− Ric(ν, ν)

H

∂

∂t
φ =

1

H2
(4φ+ |A|2φ) +

1

H2
(φRic(ν, ν)− λRic(ν, ∂

∂r
) (4.3)

∂

∂t
ψ = φ2ψ24 ψ + 2φψ∇φ · ∇ψ − nφ2ψ3λ

′′

λ
(4.4)

where ∇ and ∆ are gradient and Laplacian operator with respect to the induced metric

on the flow hypersurface Σt.

We could use the evolution equation (4.3) of the support function to show that under

the IMCF, the evolved hypersurface Mn
t remains star-shaped and mean-convex.

Lemma 4.2. Under the IMCF (1.1), the evolved hypersurface Mn
t remains star-shaped

and mean-convex if M0 is star-shaped and mean-convex. Moreover, φ ≥ e
t
n minM0 φ >

0.

Proof. From the expression (3.4) of Ricci curvature and φ, we have

φRic(ν, ν)− λRic(ν, ∂
∂r

) (4.5)

=
λ

v

[
− nλ

′′

λ
− |Dϕ|2Sn ·

n− 1

v2
· (λ′)2 − 1− λλ′′

λ2

]
− λ(−nλ

′′

vλ
) (4.6)

=− |Dϕ|2Sn ·
n− 1

v3
· (λ′)2 − 1− λλ′′

λ
≥ 0 (4.7)

under our assumption λ′′ ≥ 0 and λ′ ≤ 1.

Thus we have

∂φ

∂t
≥ 1

H2
(4φ+ |A|2φ)

from the evolution equation (4.3) of the support function.
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Since φ > 0 on the initial hypersurface Mn
0 , in view of the inequality |A|2 ≥ H2

n
and

using the parabolic maximum principle, we conclude that

φ ≥ e
t
n min
Mn

0

φ > 0

which implies the star-shapedness of Mn
t is preserved. Using the evolution equation of

ψ = 1
Hφ

in (4.4) and the maximum principle, we have ψ ≤ sup
Mn

0

ψ. Thus 0 < min
Mn

0

Hφ ≤

Hφ and the mean-convexity is preserved by the IMCF. �

We can write the initial hypersurface Mn
0 as the graph of a function r0 defined on

the unit sphere if Mn
0 is star-shaped:

Mn
0 = {(r0(x), x) : x ∈ Sn}.

If each Mn
t is star-shaped, it can be parameterized them as the graph

Xt : Sn →Mn
t := Xt(Sn) ↪→ Nn+1,∀t ∈ [0, T ).

In this case, the IMCF can be written as a parabolic PDE for r. As long as the

solution of (4.1) exists and remains star-shaped, it is equivalent to

∂r

∂t
=

v

H
, (4.8)

where v =
√

1 + |Dϕ|2Sn .

The equation (4.8) will be referred as the non-parametric form of the IMCF.

We assume thatXt := (r(x(t), t), x1(t), · · · , xn(t)) in the coordinate system (r, x1, · · · , xn).

We can compute ∂X
∂t

= dr
dt

∂
∂r

+ dxi

dt
∂
∂xi

. From (4.1) and (3.8), we have

dr

dt

∂

∂r
+
dxi

dt

∂

∂xi
=

1

vH
(
∂

∂r
− Diϕ

λ

∂

∂xi
).
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Comparing the components of the vector, we get

dr

dt
=

1

vH
and

dxi

dt
= −D

iϕ

λvH
. (4.9)

Then r = r(x(t), t), dr
dt

= ∂r
∂xi

dxi

dt
+ ∂r

∂t
= Dir

dxi

dt
+ ∂r

∂t

∂r

∂t
=
dr

dt
−Dir

dxi

dt
=

1

vH
+Dir

Dir

λ2vH
=
λ2 + |Dr|2

λ2vH
=
λ2 + λ2(v2 − 1)

λ2vH
=

v

H
(4.10)

Recall that

hij =
1

vλ
(λ′δij − σ̃ikϕk,j),

and the mean curvature is

H = hii =
1

vλ
(nλ′ − σ̃ijϕj,i) (4.11)

Evolution equation (4.9) becomes

dr

dt
=

1

vH
=

λ

nλ′ − σ̃ijϕi,j
, (4.12)

and (4.10) can also be rewritten as λ∂ϕ
∂t

= ∂r
∂t

= v
H

= v2λ
nλ′−σ̃ijϕi,j , hence

∂ϕ

∂t
=

v2

nλ′ − σ̃ijϕi,j
. (4.13)

Next we prove a sharp estimates on λ.

Proposition 4.3. Let r1, r2 be constants such that

r1 ≤ r(x, 0) ≤ r2

holds on the initial hypersurface Mn
0 . Then on Mn

t we have the estimate

λ(r1)e
t
n ≤ λ(r(x, t)) ≤ λ(r2)e

t
n , ∀ t ∈ [0, T ).
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Moreover, there exists a constant C such that the support function has the estimate

1
C
e
t
n ≤ φ ≤ Ce

t
n

Proof. Let xt be the maximizer that r(xt, t) = max
x∈Sn

r(x, t) which is dependent on t.

Substitute xt for x in (3.4) and get ϕi,j = 1
λ
ri,j which is a negative-definite matrix

since r occurs a maximum at xt. Because of that σ̃ij is positive-definite, σ̃ijϕi,j ≤ 0.

Substitute xt for x in (4.12) and get

dr

dt
(xt, t) =

λ

nλ′ − σ̃ijϕi,j
≤ λ

nλ′

or

nλ′(r)
dr

dt
(xt, t)− λ(r) ≤ 0.

Multiply on both side by e−
t
n then get

d

dt

(
e−

t
nλ(r(xt, t))

)
≤ 0.

Integrate and we have

e−
t
nλ(r(xt, t))− λ(r(x0, 0)) ≤ 0.

Since λ is increasing w.r.t. r,

λ(r(x, t)) ≤ λ(r(xt, t)) ≤ e
t
nλ(r(x0, 0)) = e

t
nλ(max

x∈Sn
r(x, 0)).

A similar argument can show that

e
t
nλ(min

x∈Sn
r(x, 0)) ≤ λ(r(x, t)) ≤ e

t
nλ(max

x∈Sn
r(x, 0)).

Since φ = λ
v

and v ≥ 1, we have φ ≤ λ ≤ Ce
t
n . The lower estimate of the support

function follows from Lemma 4.2. �
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With this estimate on λ, we can estimate the mean curvature.

Lemma 4.4. There is a constant C1 > 0 such that He
t
n ≤ C1 and Hλ ≤ C1 if we also

assume λ′′λ1+ε ≤ C, where ε > 0.

Proof. From the evolution equation of H, we have

∂

∂t
H2 =

∆H2

H2
− 4
|∇H|2

H2
− 2|A|2 − 2Ric(ν, ν).

Since λ′′ ≥ 0 and λ′2 ≤ 1, we have Ric(ν, ν) = −nλ′′
λ
− |Dϕ|2 · n−1

v2 · (λ′)2−1−λλ′′
λ2 ≥

−nλ′′
λ
. From λ′′λ1+ε ≤ C and c1e

t
n ≤ λ ≤ c2e

t
n , we have −2Ric(ν, ν) ≤ O(λ−2−ε) =

O(e−
(2+ε)t
n ). Using −2Ric(ν, ν) ≤ O(e−

(2+ε)t
n ) and the inequality |A|2 ≥ 1

n
H2, we obtain

that

d

dt
H2

max ≤−
2

n
H2

max +O(e−
(2+ε)t
n ).

From this, we get He
t
n ≤ C1. Using Proposition 4.3, we have Hλ ≤ C2. �

Let F :=
nλ′−σ̃ijϕi,j

v2 . Then we can rewrite (4.13) as

∂ϕ

∂t
=

1

F
(4.14)

and the mean curvature can be rewritten as

H =
vF

λ
. (4.15)

Since v2 = 1 + |Dϕ|2Sn and σ̃ij = σij − DiϕDjϕ
v2 , we can regard F as a function of

r,Diϕ, ϕi,j. Let ai := ∂F
∂(Diϕ)

and aij := − ∂F
∂ϕi,j

= σ̃ij

v2 .

Moreover, (3.7) becomes

λ2gij = σij − DiϕDjϕ

v2
= σ̃ij = v2aij.
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So (aij) is positive definite.

Proposition 4.5. There is a constant C > 0 such that He
t

n−1 ≥ C and ∂ϕ
∂t
≤

sup
x∈Sn

∂ϕ
∂t

(x, 0) is uniformly bounded.

Proof. If we differentiate (4.14) with respect to t and use the notations above, we have

∂

∂t

∂ϕ

∂t
=

∂

∂t

1

F
= − 1

F 2

[∂F
∂r

∂r

∂t
+

∂F

∂(Diϕ)

∂

∂t
Diϕ+

∂F

∂ϕi,j

∂ϕi,j
∂t

]
= − 1

F 2

[nλ′′
v2

∂r

∂t
+ aiDi

∂ϕ

∂t
− aij(∂ϕ

∂t
)i,j
]

=
1

F 2
(aijDij(

∂ϕ

∂t
)− aiDi

∂ϕ

∂t
)− 1

F 3

nλλ′′

v2

≤ 1

F 2
(aijDij(

∂ϕ

∂t
)− aiDi

∂ϕ

∂t
).

where we have used the fact that (aij) > 0, F = H
vλ

> 0, λ > 0 and λ′′ > 0. By

maximum principle, we have ∂ϕ
∂t

(x, t) ≤ sup
x∈Sn

∂ϕ
∂t

(x, 0). Noting that ∂
∂t
ϕ = v

λH
and v ≥ 1,

we obtain that λH ≥ C > 0. The assertion follows from the above inequality and by

using Proposition 4.3.

�

Now we have a good decay estimate on mean curvature.

Proposition 4.6. The mean curvature H(x, t) of Mn
t satisfies

C1 ≤ H(x, t)e
t
n ≤ C2

and

C1 ≤ H(x, t)λ ≤ C2

, where C1 and C2 are positive constants.
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Proof. This follows from Proposition 4.3, Lemma 4.4 and previous Proposition. �

Next we derive the evolution equation of ω = 1
2
|Dϕ|2Sn .

Lemma 4.7.

∂

∂t
ω − aijωi,j − aiDiω

F 2
+

1

F 2
(
2nλ′′ω

v2
λ+ aijσij|Dϕ|2Sn − aijDiϕDjϕ) = −a

ij

F 2
σklϕi,kϕj,l.

(4.16)

Proof. Note that

∂

∂t
ω =

∂

∂t
(
1

2
σijDiϕDjϕ) = σijDi

∂ϕ

∂t
Djϕ = DiϕDi(

1

F
).

Since F = F (r,Diϕ, ϕi,j) where i, j = 1, 2...n, by chain rule, then

∂

∂t
ω = −D

kϕ

F 2
(
∂F

∂r
Dkr +

∂F

∂(Diϕ)
DkDiϕ+

∂F

∂ϕi,j
Dkϕi,j)

= −D
kϕ

F 2
(
nλ′′

v2
Dkr + aiDiDkϕ−

σ̃ij

v2
Dkϕi,j)

= − 1

F 2
(
nDkϕλ′′

v2
λDkϕ+ aiDkϕϕi,j −DkϕaijDkϕi,j)

= − 1

F 2
(
nλ′′|Dϕ|2Sn

v2
λ+

1

2
aiDi|Dϕ|2Sn − aijDkϕDkϕi,j)

= − 1

F 2
(
nλ′′|Dϕ|2Sn

v2
λ+ aiDiω − aijDkϕDkϕi,j).

We have

∂

∂t
ω +

1

F 2
(
2nλ′′ω

v2
λ+ aiDiω − aijDkϕDkϕi,j) = 0. (4.17)

On the other hand,

Diω = Di(
1

2
σklDkϕDlϕ) =

1

2
σkl
[
(DiDkϕ)Dlϕ+Dkϕ(DiDlϕ)

]
DjDiω =

1

2
σkl
[
(DjDiDkϕ)Dlϕ+ (DiDkϕ)(DjDlϕ)

+ (DjDkϕ)(DiDlϕ) +Dkϕ(DjDiDlϕ)
]
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= σkl
[
(DjDiDkϕ)Dlϕ+ (DiDkϕ)(DjDlϕ)

]
= σkl

[
(R̃jkibσ

baDaϕ+DkDjDiϕ)Dlϕ+ (DiDkϕ)(DjDlϕ)
]

by Ricci identity DjDiDkϕ−DkDjDiϕ = R̃jkibσ
baDbϕ

= σkl
[
(σjiσkb − σjbσki)σbaDaϕDlϕ+ (DkDjDiϕ)Dlϕ+ (DiDkϕ)(DjDlϕ)

]
since R̃jkib = σjiσkb − σjbσki

= σklσjiσkbσ
baDaϕDlϕ− σklσjbσkiσbaDaϕDlϕ

+ σkl(DkDjDiϕ)Dlϕ+ σkl(DiDkϕ)(DjDlϕ)

= σji|Dϕ|2Sn −DiϕDjϕ+Dkϕ(DkDjDiϕ) + σkl(DiDkϕ)(DjDlϕ).

Then (4.17) becomes

∂

∂t
ω +

1

F 2

(2nλ′′ω

v2
λ+ aiDiω − aijωi,j + aijσij|Dϕ|2 − aijDiϕDjϕ

)
= −a

ij

F 2
σklϕi,kϕj,l.

�

We need the following Lemma to prove the decay estimate of ω.

Lemma 4.8. We have

1

v4
(σij)n×n ≤ (aij)n×n ≤

1

v2
(σij)n×n

and

aijσij|Dϕ|2Sn − aijDiϕDjϕ ≥
n− 1

v4
|Dϕ|2Sn .

28



Proof. Let w = wi ∂
∂xi

be a tangent vector on Sn, then

aijwiwj = (
σij

v2
− DiϕDjϕ

v4
)wiwj =

|w|2Sn
v2
− (σikDkϕ wi)

2

v4

≥ v2|w|2Sn
v4

− |Dϕ|
2
Sn|w|2Sn
v4

by Cauchy inequality

=
1

v4
[(1 + |Dϕ|2Sn)|w|2Sn − |Dϕ|2Sn|w|2Sn ] =

|w|2Sn
v4

=
σijwiwj
v4

.

Also,

|w|2Sn
v2
− (σikDkϕ wi)

2

v4
≤ |w|

2
Sn

v2
=
σij

v2
wiwj.

Recall that aijDiϕDjϕ = (σ
ij

v2 − DiϕDjϕ
v4 )DiϕDjϕ =

|Dϕ|2Sn
v2 − |Dϕ|

4
Sn

v4 =
|Dϕ|2Sn
v4 . Note that

we have used v2 = 1 + |Dϕ|2Sn .

Using aij ≥ σij

v4 , we have aijσij|Dϕ|2Sn ≥ σij

v4 σij|Dϕ|2Sn =
n|Dϕ|2Sn

v4 . Thus we have

aijσij|Dϕ|2Sn − aijDiϕDjϕ ≥ n−1
v4 |Dϕ|2Sn .

�

For the first order space derivatives of ϕ, we have the following estimate.

Lemma 4.9. There are constants θ > 0 and C > 0 such that |Dϕ|2Sn ≤ Ce−θt.

Proof. Applying Lemma 4.8 to the RHS of (4.16), we have

−a
ij

F 2
σklϕi,kϕj,l ≤ −

1

v4F 2
σijσklϕi,kϕj,l ≤ 0

and

0 ≥ ∂

∂t
ω +

1

F 2

(
aiDiω − aijωi,j + aijσij|Dϕ|2Sn +

2nλλ′′

v2
ω − aijDiϕDjϕ

)
From Lemma 4.8, we have aijσij|Dϕ|2Sn − aijDiϕDjϕ ≥ n−1

v4 |Dϕ|2Sn and obtain

0 ≥ ∂

∂t
ω +

1

F 2

(
aiDiω − aijωi,j +

2nλλ′′

v2
ω +

n− 1

v4
|Dϕ|2Sn

)
.
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Using λ > 0, λ′′ > 0, ω ≥ 0 and F = Hλ
v

, we get

∂

∂t
ω +

1

F 2

(
aiDiω − aijωi,j

)
≤ −2(n− 1)ω

H2λ2v2
.

Thus ω = 1
2
|Dϕ|2Sn is uniformly bounded and so v = 1 + |Dϕ|2Sn is uniformly bounded.

From Proposition 4.6, we know that H2λ2 bounded from above. Thus we can find a

positive constant θ > 0 such that

∂

∂t
ω +

1

F 2

(
aiDiω − aijωi,j

)
≤ −θω

and ω ≤ ω0e
−θt where ω0 = sup

x∈Sn
ω(x, 0).

�

Corollary 4.10. There exists C such that Cσij ≤ σ̃ij ≤ σij is uniformly bounded.

Proof. Due to Lemma 4.8, 1
v2 (σij)n×n ≤ v2(aij)n×n = (σ̃ij)n×n ≤ (σij)n×n. Since v is

uniformly bounded, we have the desire result. �

Next we can estimate the second fundamental form.

Lemma 4.11. There is a constant C such that |A| ≤ Ce−
t
n if |R| ≤ C

λ2 = O(e−
2t
n ) and

|∇R| ≤ C
λ3 = O(e−

3t
n ).

Proof. Recall that the evolution equation of hji is

∂hji
∂t

=
∆hji
H2
− 2
∇iH∇jH

H3
+
|A|2

H2
hji − 2

hki h
j
k

H

+
2

H2
gkl gsj Rmiks h

m
l −

1

H2
gkl gsj Rmksl h

m
i −

1

H2
gklRmkil h

mj

+
1

H2
Ric(ν, ν)hji −

2

H
gmj Rνiνm

− 1

H2
gkl gmj∇mRνkil −

1

H2
gkl gmj∇kRνiml.
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Since |R| ≤ C
λ2 = O(e−

2t
n ) and |∇R| ≤ C

λ3 = O(e−
3t
n ), we have

| 2

H2
gkl gsj Rmiks h

m
l −

1

H2
gkl gsj Rmksl h

m
i −

1

H2
gklRmkil h

mj| ≤ |A|
H2

O(e−
2t
n ),

| 2
H
gmj Rνiνm| ≤

1

H
O(e−

2t
n ) ≤ |A|

H2
O(e−

2t
n )

and

| 1

H2
gkl gmj∇mRνkil −

1

H2
gkl gmj∇kRνiml| ≤

1

H2
O(e−

3t
n ).

We obtain

∂hji
∂t

=
∆hji
H2
− 2
∇iH∇jH

H3
+
|A|2

H2
hji − 2

hki h
j
k

H
+

1

H2
Ric(ν, ν)hji

+
|A|
H2

O(e−
2
n
t) +

1

H2
O(e−

3t
n ). (4.18)

Recall that the evolution of the mean curvature is given by

∂H

∂t
=

∆H

H2
− 2
|∇H|2

H3
− |A|

2

H
− Ric(ν, ν)

H
. (4.19)

Combining (4.19) and (4.18), we obtain the following evolution equation for the tensor

M j
i = H hji :

∂M j
i

∂t
=

∆M j
i

H2
− 2
∇kH∇kM

j
i

H3
− 2
∇iH∇jH

H2
− 2

Mk
i M

j
k

H2

+
|M |
H2

O(e−
2
n
t) +

1

H
O(e−

3t
n ).

Let µ denote the largest eigenvalue of the tensor M j
i , and let µmax(t) denote the max-

imum of µ at a given time t. Since the trace of M is positive, we have |M | ≤ Cµ for

some constant C. Since c1e
− 2
n
t ≤ H2 ≤ c2e

− 2
n
t , we obtain

d

dt
µmax ≤ −

1

C
e

2
n
tµ2

max + C µmax + Ce−
2
n
t
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for some uniform constant C. Thus

e
2
n
t d

dt
µmax ≤ −

1

C
e

4
n
tµ2

max + C e
2
n
tµmax + C (4.20)

Let w = e
2
n
tµmax. Then w′ = e

2
n
tµ′max + 2

n
e

2
n
tµmax, e

2
n
tµ′max = w′ − 2

n
w and

w′ ≤ − 1

C
w2 + (C +

2

n
)w + C.

Thus w is uniform bounded and µmax ≤ Ce−
2t
n . Thus H|A| ≤ Ce−

2t
n and |A| ≤

Ce−
t
n . �

Using the decay estimate of the second fundamental form, we can obtain the C2

estimate of ϕ.

Lemma 4.12. |D2ϕ|Sn is uniformly bounded.

Proof. Since hij = 1
vλ

(λ′δij − σ̃ikϕk,j), we get σ̃ikϕk,j = λ′δij − vλhij. Using |A| ≤ Ce−
t
n ,

v ≤ C, λ ≤ Ce
−t
n , λ′ ≤ C and Cσij ≤ σ̃ij ≤ σij, we have |D2ϕ|Sn is uniformly bounded.

�

Using the following result of Evans-Krylov [10], we can obtain C2,α estimate of ϕ.

This is from Theorem 6 of Ben Andrews’s paper [1].

Theorem 4.13. Let u ∈ C4(Ω× (0, T ]) satisfy

∂u

∂t
= G(D2u,Du, u, x, t)

where G is C2, λI ≤ [Ġij] ≤ ΛI for some 0 < λ ≤ Λ, and λI ≤ [Ġij] ≤ ΛI for some

Λ ≥ λ > 0, and G̈ij,klMijMkl ≤ 0 for all matrices [Mij] for which ĠijMij = 0. Then
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for any τ > 0 and Ω′ ⊂⊂ Ω,

sup
s,t∈[τ,T ],p,q∈Ω′

(
|D2u(p, t)−D2u(q, t)|
|p− q|α + |s− t|α2

+
|∂tu(p, t)− ∂tu(q, t)|
|p− q|α + |s− t|α2

)

+ sup
p∈Ω′,τ≤s,t≤T

|Du(p, t)−Du(p, s)|
|s− t|

(1+α)
2

≤ C

where α depends on n, λ and Λ, and C depends n, λ, Λ, supΩ×(0,T ] |D2u|, supΩ×(0,T ] |∂tu|,

d(Ω′, ∂Ω), τ and bounds for the first and second derivatives of G(other than the second

derivative in the first argument).

Lemma 4.14. |Dkϕ|Sn ≤ Ck for any k ≥ 3

Proof. Recall that ∂
∂t
ϕ = 1

F
and F =

nλ′−σ̃ijϕi,j
v2 . We have ∂

∂ϕi,j
( 1
F

) = σ̃ij

v2F 2 and ¨( 1
F

)
ij,kl

=

∂2

∂ϕk,l∂ϕi,j
( 1
F

) = 2σ̃ij σ̃kl

v4F 3 . Hence C1σ
ij ≤ [ ˙( 1

F
)ij] ≤ C2σ

ij from Corollary 4.10. Moreover,

¨( 1
F

)
ij,kl

MijMkl =
2σ̃ij σ̃klMijMkl

v4F 3 = 0 for all matrices [Mij] for which ˙( 1
F

)
ij
Mij =

σ̃ijMij

v2F 2 = 0.

Since | ∂
∂t
ϕ|Sn , |Dϕ|Sn and |D2ϕ|Sn are uniformly bounded, we can apply Theorem 4.13

to get |ϕ|C2,α ≤ C. The standard Schauder estimates for uniformly parabolic equation

imply that |Dkϕ|Sn ≤ Ck for k ≥ 3. �

Here we recall a result by Hamilton ([6], Corollary 12.6) which be used to prove decay

estimate of |D2ϕ|Sn later.

Theorem 4.15. If T is any tensor and if 1 ≤ i ≤ m− 1 where m is any integer then

with a constant C = C(n,m) which is independent of the metric and connection we

have the estimate

∫
|∂iT |

2m
i dµ ≤ C max

N
|T |2(m

i
−1)

∫
|∂mT |2dµ.

Proposition 4.16. |D2ϕ|Sn ≤ Ce−θt for some positive constants C and θ.
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Proof. Choose T = Dϕ and i = 1 ≤ m = n. From Theorem 4.15, |Dϕ|Sn ≤ Ce−θt and

|Dnϕ|Sn ≤ Cn, we have

∫
Sn
|D2ϕ|2nSndσ ≤ C max

Sn
|Dϕ|2(n−1)

Sn

∫
Sn
|Dnϕ|2Sndσ ≤ C1e

−θ1t

for some θ1 > 0. Similarly, when T = Dϕ and i = 2 ≤ m = 2n, then we have

∫
Sn
|D3ϕ|2nSndσ ≤ C max

Sn
|Dϕ|2(n−1)

Sn

∫
Sn
|D2n+1ϕ|2Sndσ ≤ C2e

−θ2t.

for some θ2 > 0. Sobolev’s inequality states that if p > n, then

max
Sn
|f |p ≤ C

∫
Sn

(|f |p + |Df |p)dσ.

Take f = D2ϕ and p = 2n, then

|D2ϕ|2nSn ≤ max
Sn
|D2ϕ|2nSn ≤ C

∫
Sn

(|D2ϕ|pSn + |D3ϕ|pSn)dσ ≤ C3e
−θ3t.

That is,

|D2ϕ|Sn ≤ C4e
−θ4t.

�

Lemma 4.17. |σ̃ijϕi,j|Sn ≤ Ce−θt for some positive constant C and θ.

Proof. By Corollary 4.10 and Proposition 4.16, |σ̃ijϕi,j|Sn ≤ |σijϕi,j|Sn ≤ C|D2ϕ|Sn ≤

Ce−θt.

�
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5. Proof of Theorem 1.3

Since the second fundamental form is bounded, the solution of (1.1) has long time

existence. We consider the rescaled surfaces

X̂(x, t) := X(x, t)e−
t
n , ∀x ∈ Sn, t ∈ [0,∞).

Let r̂(x, t) := r(x, t)e−
t
n be the radial function of X̂(Sn, t). Denote the first, second

fundamental form by ĝij and ĥij. Also define a function ϕ̂(x, t) in analogous way.

We are going to prove that r̂(x, t) has a common limit κ as t → ∞ for any x ∈ Sn,

ĝij → λ2(κ)σij and ĥij →
λ′(κ)
λ(κ)

δij as t→∞. Fortunately, we can determine the constants

κ.

Lemma 5.1. r̂(x, t) is bounded.

Proof. Combine (4.10), Proposition 4.6 and Lemma 4.9, we have

C2e
t
n ≤ ∂r

∂t
(x, t) =

v

H
≤ C1e

t
n

for some positive constants C1 and C2. Integrate both sides and get

C2(e
t
n − 1) ≤ r(x, t)− r(x, 0) ≤ C1(e

t
n − 1) ≤ Ce

t
n .

Therefore

[
C2(1− e

t
n ) + r(x, 0)

]
e−

t
n ≤ r̂(x, t) = r(x, t)e−

t
n ≤

[
C1e

t
n + r(x, 0)

]
e−

t
n ≤ C1 + sup

x∈Sn
r(x, 0).

�

Notice that the lower bound C2 +
[
r(x, 0)−C2

]
e−

t
n is greater than a positive number

for t large enough. This guarantees the limit is not 0 if it exists.
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Proposition 5.2. For any x ∈ Sn, r̂(x, t) → κ uniformly as t → ∞ where κ is a

positive constant which is independent of x.

Proof. Differentiate r̂ w.r.t. t,

∂r̂

∂t
=
∂r

∂t
e−

t
n − r

n
e−

t
n =

v

H
e−

t
n − r

n
e−

t
n =

( λv2

nλ′ − σ̃ijϕi,j
− r

n

)
e−

t
n .

Define f(x, t) := λv2

nλ′−σ̃ijϕi,j−
λ
nλ′

, it can be seen that |f(x, t)| ≤ Ce( 1
n
−θ)t for a sufficiently

small θ > 0 through Proposition 4.3, Lemma 4.9, Proposition 4.16, and Lemma 4.17.

Hence

∂r̂

∂t
= (f +

λ

nλ′
− r

n
)e−

t
n = fe−

t
n +

λ− rλ′

nλ′
e−

t
n

where

λ− rλ′ = λ(r)− λ(0)− rλ′(r) =

∫ r

0

λ′(s)ds− rλ′(r) =

∫ r

0

[
λ′(s)− λ′(r)

]
ds

=

∫ r

0

[
λ′(s)− λ′(r)

]
ds =

∫ r

0

∫ s

r

λ′′(u)duds = −
∫ r

0

∫ u

0

λ′′(u)dsdu

= −
∫ r

0

uλ′′(u)du.

So

r̂(x, t)− r̂(x, 0) =

∫ t

0

r̂

∂t
(x, s)ds =

∫ t

0

f(x, s)e−
s
nds−

∫ t

0

e−
s
n

nλ′

∫ r

0

uλ′′(u)duds.

Observe that

|
∫ t

0

f(x, s)e−
s
nds| ≤

∫ t

0

|f(x, s)|e−
s
nds ≤

∫ t

0

e−
θs
n ds =

n

θ
(1− e−

θt
n ) ≤ n

θ

is bounded. Also the left hand side is bounded by Lemma 5.1. Therefore
∫ t

0
e−

s
n

nλ′

∫ r
0
uλ′′(u)duds

is bounded and increasing w.r.t t and so the limit exists as t→∞. Then lim
t→∞

r̂(x, t) =

κ(x) exists for all x ∈ Sn. It still need to prove that the limit is independent of x.
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Differentiate r̂ w.r.t. the operator D of Sn and get

Dr̂ = e−
t
nDr = e−

t
nλDϕ.

Combine Proposition 4.3 and Lemma 4.9 and see

|Dr̂| ≤ Ce−θt → 0 as t→∞

uniformly and so Dκ(x) = 0. Hence r̂ converges to a positive constant κ uniformly and

κ which is independent of x. �

Let êi := ∂
∂xi
X̂t = e−

t
nDir

∂
∂r

+ ∂
∂xi

, then ĝij = g(êi, êj) = e−
2t
nDirDjr + λ2(r̂)σij.

Proposition 5.3. ĝij → λ2(κ)σij as t→∞.

Proof. Combine Proposition 4.3 and Lemma 4.9, we have

|e−
2t
nDirDjr| = |λ2e−

2t
nDiϕDjϕ| ≤ Ce−θt → 0

as t→∞ for some positive constants C and θ. This completes the proof. �

Lemma 5.4. ϕ̂i,j → 0 as t→∞.

Proof.

ϕ̂i,j =
1

λ(r̂)
r̂i,j −

λ′(r̂)

λ2(r̂)
r̂ir̂j =

1

λ(r̂)

λ(r)

e
t
n

ri,j
λ(r)

− λ′(r̂)

λ2(r̂)

[λ(r)

e
t
n

]2

ϕiϕj

Because of ϕi,j → 0 and (3.4),
ri,j
λ(r)
→ 0 as t→∞. On the other hand, λ(r)

e
t
n

is bounded

by Proposition 4.3. Apply the Lemma 4.9 and get the result. �

Proposition 5.5. ĥij →
λ′(κ)
λ(κ)

δij as t→∞.
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Proof.

ĥij =
λ′(r̂)

λ(r̂)v̂
δij −

1

λ(r̂)v̂
̂̃σikϕ̂k,j

Since v̂2 =
|Dr̂|2Sn
λ2(r̂)

+ 1→ 1 as t→∞ and ̂̃σi,k = σik − e
−2t
n DiϕDjϕ

v̂2 is bounded. Using the

Lemma above and get the desire result. �

Now we determine this κ. Apply the L’Hopital rule to the limit lim
s→∞

λ(s)
s

= lim
s→∞

λ′(s)
1

=

1, and see that λ(r)

e
t
n

= λ(r̂e
t
n )

r̂e
t
n
r̂ → κ.

By (4.2),

∂

∂t

√
det g =

√
det g

2
gij

∂

∂t
gij

2

H
hij =

√
det g.

So

d

dt
Area(Mt) =

d

dt

∫
Mt

dµt =

∫
Mt

dµt = Area(Mt).

Then we get Area(Mt)=Area(M0) · et. Then

Area(M0) = e−tArea(Mt) = e−t
∫
Sn
λn(r)dσ = κn|Sn|

by taking the limit t → ∞, where |Sn| is Lebesgue measure of n-sphere in Euclidean

space. Therefore we conclude that

κ =

(
Area(M0)

|Sn|

) 1
n

.
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6. Proof of Theorem 1.4

We present the proof of Theorem 1.4, i.e.( ∫
Σ
Hdµ

) 1
n−1

(
|Σ|
) 1
n

≥

( ∫
Sn Hdµ

) 1
n−1

(
|Sn|
) 1
n

Proof. We consider the IMCF of Σ. Let Σt denote the solution of the IMCF at time t.

Recall that ∂
∂t
µ = dµ and

∂tH = div(
∇H
H2

)− |A|
2

H
.

So

d

dt

∫
Σt

Hdµ =

∫
Σt

∂tHdµ+

∫
Σt

H∂t(dµ)

=

∫
Σt

div(
∇H
H2

)− |A|
2

H
+Hdµ

=

∫
Σt

−|A|
2

H
+Hdµ

≤
∫

Σt

(n− 1)H

n
dµ

here we have used the fact that H2 ≤ n|A|2.

Using d
dt
|Σt| = |Σt|, we obtain

d

dt
ln(

∫
Σt

Hdµ) ≤ n− 1

n
=
n− 1

n

d

dt
ln(|Σt|)

and

d

dt
ln

(
∫

Σt
Hdµ)

1
n−1

|Σt|
1
n

≤ 0.

Thus
(
∫
Σt
Hdµ)

1
n−1

|Σt|
1
n

is nonincreasing and

(
∫

Σ
Hdµ)

1
n−1

|Σ| 1n
≥ lim

t→∞

(
∫

Σt
Hdµ)

1
n−1

|Σt|
1
n
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= lim
t→∞

(
∫

exp(−t
n

)Σt
Hdµ)

1
n−1

| exp(−t
n

)Σt|
1
n

=
(
∫
Sn Hdµ)

1
n−1

|Sn| 1n

Here we have used the fact that the expression
(
∫
Σ Hdµ)

1
n−1

|Σ|
1
n

is scale invariant and and

(
∫

Σt
Hdµ)

1
n−1

|Σt|
1
n

=
(
∫

exp(−t
n

)Σt
Hdµ)

1
n−1

| exp(−t
n

)Σt|
1
n

.

The equality holds if |A|2 = nH2 on Σt for all t. This implies that Σt is umbilical, Σt

is a sphere for all time and Σ is a sphere. �
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