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摘要 

 

    在今日的異質性網路中包含了許多的大、小型基站，然而目前這些基站的配置

無法滿足未來的使用者需求，實際上在對來的預測當中，至少在 2020 年的時候需

要比今日還要增加 100 倍的網路容量，才有辦法應付各方面的需求，因此網路的

供應商和營運商們，仔細思考著他們手邊所能夠使用的方法，來提升網路的容量。

在這場即將到來的戰役之中，有三個面向是值得來思考的：增加網路的密度、使用

更多的頻譜和增加頻譜使用效率的各種技術。在本論文當中，我們針對在增加網路

密度所遭遇到的各種可能情況來研究，增加網路的密度會採用大量的小型基站，像

是家用基站、微型基站和轉傳節點。本論文主要分為兩個部份來探討：首先是關於

在合作式通訊當中，轉傳節點選擇的問題，第二個主題是在異質性網路當中干擾管

理的問題，關於第一個主題，我們提出了一個完全分散式的演算法稱為「分散式學

習為基礎的轉傳選擇」，解決在合作式通訊中的轉傳選擇問題，另一方面在第二個

主題當中，我們提出一個稱為「多調子訊框」方案，來減輕在異質性網路當中的干

擾問題。 

 

關鍵詞 ──異質性網路、合作式通訊、轉傳選擇、干擾管理、近乎空白子訊框、

原對偶內點法。 

 

 



Abstract

Today’s heterogeneous networks comprised of mostly macrocells and

small cells will not be able to meet the upcoming traffic demands.

Indeed, it is forecasted that at least a 100× network capacity increase

will be required to meet the traffic demands in 2020. As a result,

vendors and operators are now looking at using every tool at hand

to improve network capacity. In this epic campaign, three paradigms

are noteworthy, i.e., network densification, the use of of higher fre-

quency bands, and spectral efficiency enhancement technique. In this

dissertation, we focus on the issue on network densification, which

contains many small cells in the network such as femtocells, pico-

cells and relay nodes. The dissertation can be divided into two parts:

the first one is about relay node selection in cooperative communi-

cation, and the other is about interference management in heteroge-

neous networks. We proposed an fully decentralized algorithm call

”Decentralized Learning based Relay Assignment” algorithm to solve

the relay assignment problem in cooperative communication. On the

other hand, in the topic about interference management, we propose

an approach called ”Multi-Tone Subframes” to mitigate the interfer-

ence in heterogeneous networks.

Keywords: Heterogeneous Network, Cooperative Communication,



Relay Selection, Interference Management, Almost Blank Subframe,

Primal-Dual Interior Point Method
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Chapter 1

Introduction

1.1 Technology Trends and Motivations of the

Dissertation

The phenomenal growth in mobile broadband has created a massive challenge for

the industry to satisfy the thirsty for data. The rapid and continuing growth of

mobile data has the industry gearing up to meet a new challenge. In view of such

significant future traffic demands, the mobile industry has set its targets high,

and has decided to improve the capacity of today’s networks by a factor of 100×

or more over the next 20 years - 1000× the most ambitious [1].

In order to achieve this goal, venders and operators are currently looking at

using every tool they have at hand, where the existing tools can be classified

within the following three paradigms as illustrated in Fig. 1.1:

• Enhance spatial reuse through network densification, i.e., Heterogeneous

Networks (HetNets) and small cells [2–5].

• Use of larger bandwidths, exploiting higher carrier frequencies, both in li-

censed and unlicensed spectrum [6–8].

1



1. INTRODUCTION

• Enhance spectral efficiency through multi-antenna transmissions [9], coop-

erative communications [10], dynamic TDD techniques [11, 12], etc.

Figure 1.1: Existing paradigms to improve network capacity: Spectrum (more

spectrum), Technology (more spectral efficiency) and Topology (more spatial effi-

ciency).

Given the different approaches to enhance network capacity, it may be worth

understanding how network capacity has been improved in the past and which

have been the lessons learnt to make sure the best choices are taken. To this end,

according to [13], the different methods used to enhance network capacity from

1950 to 2000, and the wireless capacity has increased around a 1 million fold in

2
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1.1 Technology Trends and Motivations of the Dissertation

50 years. The breaking down of these gains is as follows: 15× improvement was

achieved from a wider spectrum, 5× improvement from better Medium Access

Control (MAC) and modulation schemes, 5× improvement by designing better

coding techniques, and an astounding 2700× gain through network densification

and reduced cell sizes. According to this data, it seems obvious that if we are

looking for a 1000× improvement in network performance, network densification

through ultra-dense small cell deployments is the most appealing approach, and

today’s networks have already started going down this path.

In order to meet the exponentially increasing traffic demands [14], mobile

operators are already evolving their network form traditional macrocellular-only

networks to HetNets [15, 16], in which small cells reuse the spectrum locally and

prvide most of the capacity while macrocells provide a blanket coverage for mobile

UEs. Currently, small cells are deployed in large numbers. Indeed, according to

recent surveys, in 2012, the number of small BSs was already larger than that

of macro BSs [17]. These small cell deployments are mainly in the form of home

small cells, known as femtocells [3, 4, 18], but many operators have also already

started to deploy outdoor small cell solutions to complement their macrocellular

coverage [19].

Since there many technology to improve the network capacity, we focus on

the topics in the HetNets, which are considered as the main technology to meet

the increasing data traffic demands. HetNets include traditional macrocells and

low-power smallcells. Smallcells, such as femtocells, picocells and relay nodes, are

sharing the same spectrum resource as macrocells. Therefore, the interference is

the main factor affecting the performance of smallcells. Besides, relay nodes are

also used to increase the cell edge capacity in HetNets. We would address this

3



1. INTRODUCTION

two topic in this thesis.

1.2 Topic to Be Addressed

In this dissertation, we consider two different types of small cells: relay nodes

and pico base stations. In the first, we take relay nodes into consideration. Relay

assignment problem in cooperative communication will be addressed. Second, we

consider a heterogeneous network which consists of macro BS and pico BSs. We

study a topic about interference management among these cells.

1.2.1 Cooperative Communication

Spatial diversity, in the form of employing multiple transceiver antennas, is shown

to be very effective in coping fading in wireless channel. However, equipping a

wireless node with multiple antennas may not be practical, as the footprint of

multiple antennas may not fit on a wireless node. To achieve spatial diversity

without requiring multiple transceiver antennas on the same node, the so-called

cooperative communications has been introduced. Under cooperative communi-

cations, each node is equipped with only a single transceiver, and spatial diversity

is achieved by exploiting the antenna on another node the network.

In this dissertation, we study the relay node assignment problem in coop-

erative communication system, which includes ad hoc network and LTE relay

networks. We propose an algorithm which is fully decentralized called ”Decen-

tralized Learning based Relay Assignment” (DLRA). We evaluate DLRA from

many aspects: mathematical analysis, performance manipulation and computer

simulation.

4



1.3 Dissertation Organization

1.2.2 Interference Management

HetNet is a two-tier network scenario, and co-channel cross-tier interference is

a major factor affecting network performance. To handle this problem, a frame

work called Enhanced Inter-Cell Interference Coordination (eICIC) is proposed

by 3GPP. Almost blank subframes (ABSs) are the major part of eICIC, and the

concept is to blank some subframes of the interferer tier, where only pilot and

system signals are transmitted [20]. Because FBSs and PBSs are deployed overlaid

on coverage range of MBSs, the interference from MBSs is severe. Therefore,

adopting ABSs can lead these small BSs to have better performance during ABSs.

In this work, we address some weak points of ABS scenarios and propose

our approach to improve them. First, the latency of real-time traffic, such as

voice, would get longer if the proportion of ABSs is getting higher. Because user

information can not be delivered by MBSs in ABS periods, some real-time infor-

mation can not be transmitted in time while MBSs under heavy load. The more

proportion of ABSs is adopted, the longer latency is got in MBSs. Second, ABS

scenarios sacrifice some subframes to protect PBSs, and the behavior decrease

the spectrum utilization. It leads to capacity loss in MBSs, and the performance

of users served by MBSs is degraded.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we review some

related literature about this work. The topic about relay assignment is in Chapter

3 and the proposed ”Decentralized Learning based Relay Assignment” (DLRA)

algorithm is shown in the same chapter. We show the proposed interference

5



1. INTRODUCTION

management technique in Chapter 4, and the proposed ”Multi-Tone Subframes”

(MTS) is evaluated in the same chapter. In the last, we conclude this work in

Chapter 5

6



Chapter 2

Related Work

In this chapter, some works related to the thesis are introduced, and some liter-

ature is also reviewed.

2.1 Cooperative Communication

The concept of cooperative communication was pioneered by a paper by van der

Meulen [21] and Cover and EL Gamal [22]. This section focuses on related works

on the relay node selection problem. Zhao et al. [23] show that it is sufficient

to choose the best relay node for transmission rather than having multiple relay

nodes participate. This work thus considers a scheme in which each source node

chooses at most one relay node for transmission.

The problem is studied in many works, and from several different aspects.

The basic structure of a cooperative communication system is also discussed in

this section. For example, Yang et al. [24] introduce TDD/FDD system frame

structures in LTE-advanced and WiMax systems. To implement cooperative

communication systems in the real world, the degeree of complexity must be lim-

ited. Jing et al. [25] therefore propose a relay selection scheme with polynomial

7



2. RELATED WORK

time complexity to achieve an optimal SNR. In addition, Yang et al. [26] prove

that an optimal relay node selection problem solution can be obtained in poly-

nomial time. Furthermore, many works have adopted network coding schemes

in cooperative communication systems [27–29]. In these schemes, network ca-

pacity can be significantly increased, but it is fairly challenging to implement

network coding schemes in real-world systems [30,31]. Instead of using a central-

ized mechanism, Cai et al. [32] propose a semi-distributed algorithm with a greedy

algorithm methodology. There is therefore no performance guarantee in this algo-

rithm [33]. Other works consider relay selection with a power allocation problem

in the system [34–39]. These approaches achieve the goal of energy-saving in re-

lay networks. [40] and [41] combine relay selection problems and rate adaptation

to achieve higher system performance. Abouelseoud et al. [42] combine many

different protocols in relay networks in order to enhance system performance.

The last part of this section introduces the works to be compared with DLRA

in this dissertation. The first is that proposed by Sharma et al., called ”Optimal

Relay Assignment” (ORA); the goal is to maximize the minimal performance in

the system. [43]. A linear marking algorithm is proposed in ORA; the idea is to

mark the node with the worst performance. ORA tries to increase its performance

without decreasing the worst performance in the system. A relay node can only be

shared by one source node in ORA. The second is proposed by Yang et al., called

”OPtimal Relay Assignment” (OPRA), and the goal is to maximize the total

system performance [44]. OPRA discusses the possibility of allowing a relay node

to be shared by multiple source nodes to achieve its objective, and formulates the

problem as a maximum weighted bipartite matching problem; it then solves it

with the corresponding algorithm. The third work is proposed by Cai et al., and
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2.2 enhanced Inter-Cell Interference Management (eICIC)

is a semi-distributed approach [32]. Cai’s algorithm is to consecutively have each

source node randomly select a relay node, a process based on a greedy approach.

2.2 enhanced Inter-Cell InterferenceManagement

(eICIC)

2.2.1 Range Expansion and Inter-cell Interference Coor-

dination

Cell association is usually performed according to the RSRP [45]. Due to the

large difference of transmission power between an MBS and a PBS, a pseudo

bias is added to RSRP from PBS. The so called CRE is proposed by 3GPP

to allow load balancing among macrocells and picocells. 3GPP has studied the

concept of CRE throughput handover biasing and resource partitioning among

nodes with different levels of transmission powers [46,47]. The larger value of the

bias is, the more UEs can be associated to picocells. CRE approach is simply to

add an offset on RSRP of picocells to increase the converage range, however, the

downlink signal quality of those users, which we call CRE users in this work, in the

expanded range is significant reduced. Fig. 2.1 illustrate the users are offloaded

from macrocells to picocells. CRE users do not associate to the cells which provide

the best downlink signal quality, and they may suffer severe interference while

CRE is adopted.

In 3GPP LTE Release 8-9, ICIC schemes have not consider HetNet environ-

ment yet. To handle the cross-tier interference, 3GPP proposes ABS to enhance

ICIC, which is referred to eICIC, in order to mitigate the cross-tier interfer-

ence. According to [48], the ICIC techniques in 3GPP Release 10-12 can be

9
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Figure 2.1: The concept of Cell Range Expansion (CRE).

grouped into four categories: time-domain, frequency-domain, power based and

antenna/spatial-based techniques [46,49]. ABS belongs to the time-domain ICIC

techniques. The idea of ABS is to mute some subframes of MBS in order to pro-

tect PUEs. In these muted subframes, no data is transmitted to MUEs, therefore,

CRE users do not suffer the severe interference from MBSs anymore. The illus-

tration of ABS scheme is shown in Fig. 2.2(a).

The drawback of ABS can be seen significantly: it wastes much spectrum

resource of MBSs. Although the performance of picocells is increased, the per-

formance of MBSs is sacrificed. According to [46], instead of muting the MBS

completely during ABS, transmitting at reduced power to serve only its nearby

UEs would considerable improve the HetNet performance in terms of the trade-

off between cell-edge and average throughputs. Latter on, reduced power sub-

frame (RPS) transmission have also been standardized under LTE Release 11 of

10
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2.2 enhanced Inter-Cell Interference Management (eICIC)

3GPP, and commonly referred therein as further-enhanced ICIC (FeICIC) [50].

In another study [51], simulation results show that FeICIC is less sensitive to

the duty-cycle of ABS than the eICIC. The illustration of RPS is shown in Fig.

2.2(b).

RPS is to transmit reduced power during the original ABS, however, the

purpose to blanking these frames is to protect CRE users. The reduced power

transmission would interfere CRE users, although the interference is lighten com-

pared to full power transmission. The performance of CRE users are sacrificed

compared to ABS scenario. So, an approach called dynamic RPS (DRPS) is pro-

posed, and the illustration of DRPS is shown in Fig. 2.2(c). Compared to RPS,

DRPS gives more flexible transmission power on the original ABS.

2.2.2 Literature Review

there is a sizeable body of literature on the use of CRE for traffic load balancing

in HetNets; see e.g. [19, 52–60]. Lopez-Perez et al. [19] calculate CRE bias val-

ues for different range expressions strategies, e.g., equal downlink RSS boundary

and equal path-loss boundary, and closed-form expression are derived. Guvenc et

al. [52] propose cell selection procedure based on subframes blanking to improve

downlink capacity and UE’s fairness. Shirakabe et al. [57] provide the perfor-

mance of different CRE values and different ration of protected subframes, which

is based on system level simulations. Using tools from stochastic geometry, ana-

lytical models accounting for BS and UE locations have been studied to analyze

spectral efficiencies in range expanded picocell networks in [56], which has later

been extended to ICIC scenarios in [58, 59].

For the purpose of interference management, frequency domain interference

11
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(a) ABS

(b) RPS

(c) DRPS

Figure 2.2: The transmission power on each subframe of approaches: ABS, RPS

and DRPS.
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2.2 enhanced Inter-Cell Interference Management (eICIC)

coordination techniques have also been studied in literature. The simplest strat-

egy is called universal reuse or reuse of factor 1. It allows each cell access the

whole bandwidth without any restriction. Simonsson [61] shows the fact that

the universal reuse performs best for wideband services. Decentralized inter-

cell interference coordination is proposed by Ellenbeck et al. [62]. Many carrier

aggregation based ICIC techniques have also been proposed in literature; see

e.g. [63–66].

For the aspect of time-domain ICIC, Wang et al. [67] consider time and power

domain interference management in HetNets. However, the authors apply ABSs

and power reduction on small BSs, it may reduce the performance of small BSs.

The purpose of eICIC is to protect the transmissions of small BSs. Cherny et

al. [68] study the work that the number of necessary ABSs is needed in HetNets.

The problem is addressed by the authors by tools from stochastic geometry, and

they show moderate performance gain for victim users in HetNets. Deb et al. [69]

formulate the same problem as an optimization problem, and find it is NP-hard.

So, the authors propose a distributed approach to obtain the suboptimal solution

of the problem. The problem of ABS duty cycles is addressed in [70, 71]. Ding

et al. [12] evaluate dynamic time-duplex TDD transmission by CRE and ABS in

co-channel HetNets.

To enhance ABS, many researches are provided to increase the performance

of ABS. Soret et al. [72] propose a scheme named low-power ABS. Through this

scheme, MBSs reduced their transmission power in particular subframes instead

of blanking them. Merwaday et al. [59, 60] provide the performance of HetNets

with reduced power subframes. The authors show the impact of interference

coordination in HetNets by using stochastic geometry techniques. Soret et al. [73]
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propose ABS fast muting adaptation algorithms to handle bursty traffic.
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Chapter 3

Decentralized Learning-Based

Relay Assignment for

Cooperative Communications

3.1 Background Information

Cooperative communication [74] is considered a promising approach to achieving

spatial diversity and addressing the increasing demand for data throughput in

wireless networks. Network systems achieve spatial diversity by exploiting the

broadcast nature and antennas of other nodes, i.e. relay nodes. Such systems

therefore do not require multiple antennas on individual nodes. In addition, the

deployment of relay nodes is also able to address increasing mobile user demands.

Only an appropriate relay node can lead to better performance; an inappropriate

relay assignment may negatively affect network performance [75].

To date, many approaches to solving the relay selection problem have been

proposed. The two leading approaches are: maximizing the aggregate perfor-

mance [44], and maximizing the minimal performance [43]. Many studies have

developed centralized algorithms to handle the problem [23,76–82], for example,

15
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formulating relay selection problems as optimization problems. The centralized

approaches always require link metrics, such as signal-to-noise-ratio (SNR), dis-

tance between nodes or channel state information, to make the relay assignment

decisions. When the numbers of source nodes and relay nodes increase, optimiza-

tion problems become increasingly complicated. In order to address this problem,

some distributed algorithms have been proposed [32, 83, 84]. Some of these dis-

tributed approaches are based on opportunistic cooperation, which still causes

system overhead.

This study proposes a fully distributed algorithm called ”Decentralized Learning-

based Relay Assignment” (DLRA), which is based on stochastic learning au-

tomata (SLA), to solve the relay selection problem in cooperative communica-

tions. SLA are used in many areas, such as, pattern recognition [85] and robot

systems [86]. The idea of SLA is attempting to solve a problem without having

any information regarding the solutions. An action is selected according to a

probability vector, the feedback is observed from the environment, the proba-

bility vector is updated according the feedbacks, and the procedure is repeated.

Finally, the most suitable solution will be found in the end.

DLRA is a self-organizing algorithm; it can give each source node self-optimizing

and self-learning abilities. Each source node is therefore able to select an appro-

priate relay node for itself without exchanging information with all of the other

source nodes. Thus, it is unnecessary for DLRA to maintain a central control

unit to handle the whole system. In addition, the complexity of DLRA does not

increase with the number of source nodes.

DLRA performance is evaluated by mathematical analysis and computer ex-

periments. The convergency and optimality of DLRA is demonstrated in the
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mathematical analysis. In the computer experiments, two different cooperative

network systems are constructed: one is a cooperative ad hoc network, and the

other is an LTE-advanced relay network. This study demonstrates the effective-

ness of DLRA in the first network system, where all simulation topologies and

parameters follow [43]. DLRA performance is then compared with that of other

algorithms in the second network system to show its superiority.

The main contributions of this study are summarized as follows:

• A fully distributed and self-optimizing algorithm based on SLA is proposed.

The need for information exchange among all source nodes is eliminated

since each source node is able to individually and autonomously find the

most appropriate relay node for transmission.

• The selection mechanism is based on existing environmental feedback, which

enables source nodes to adjust the preferred transmission method, and no

additional overhead is produced in the system; it balances the load of the

relay nodes in turn.

• Through mathematical analysis, the proposed algorithm converges into one

state; it is shown that the convergent state exhibits the best performance.

The optimality of the proposed algorithm is also shown in the mathematical

analysis.

• The experiments are not performed in a specified network system. Different

network systems are used to apply the proposed algorithm, and the experi-

mental results show that the proposed algorithm exhibits good performance

in different network systems. The proposed algorithm can therefore be ap-

plied to various cooperative communication systems.
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3.2 System Model

3.2.1 Cooperative Communication Modes

Two modes of cooperation communication are considered in this section: amplify-

and-forward (AF) and decode-and-forward (DF) [75]. The expressions for capac-

ity in cooperation communications are also given in this section.

Amplify-and-Forward (AF)

In AF mode, relay nodes simply amplify the received signal from the source

nodes and transmit it to the destination nodes. It is a simple method, and makes

for low-cost implementation. However, it also amplifies noise at relay nodes with

the desired signal component, thus decreasing the received SNR and reducing the

enhanced gain. According to [75], the capacity of AF can be expressed as:

CAF (s, r, d) =
W

2
log2(1 + SNRsd +

SNRsrSNRrd

1 + SNRsr + SNRrd

)

= WIAF (SNRsd, SNRsr, SNRrd)

(3.1)

,where W is the transmitted bandwidth, s, r and d denote the source node, re-

lay node and destination node respectively. SNRsd is the signal-to-noise-ratio at

destination nodes while the signal is from source nodes, and SNRsr and SNRrd

are similar.

Decoded-and-Forward (DF)
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In DF mode, relay nodes demodulate and decode the received signal at relay

nodes, and modulate and encode it again before transmitting it to destination

nodes. DF offers better performance gain compared to AF. However, DF causes

a delay associated with the modulation/demodulation and encoding/decoding

processes. The capacity of DF can be expressed as:

CDF (s, r, d) =
W

2
log2(min{1 + SNRsr, 1 + SNRsd + SNRrd})

= WIDF (SNRsd, SNRsr, SNRrd)

(3.2)

Direct Transmissions

When a source node communicates with a destination node without using relay

nodes, it is a direct transmission. The capacity of direct transmission is expressed

as:

CD(s, d) = W log2(1 + SNRsd) (3.3)

3.2.2 Network Model

This work assumes that a network system has N nodes, with each node being

either a source node, a destination node, or a relay node. Denote X = {x1, ..., xNx
}

as the set of source nodes, Y = {y1, ..., yNy
} as the set of destination nodes, and

R = {r1, ..., rNr
} as the set of relays. The destination node of source node i,

namely xi is denoted by Y (xi), and the relay node used by xi is R(xi). Note that

if xi doesn’t get a relay node, then R(xi) = φ. This may be caused by the fact

that direct transmission is better than transmission via relay nodes.
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Suppose that all nodes are equipped with a single antenna, and work in half-

duplex mode. So, the structure of on transmission is that one frame is divided

into two time slots, where one is used for the source node to the relay node, and

the other is the relay node to the destination node. They are therefore unable

to simultaneously transmit and receive. For both AF and DF, the capacity of Si

while R(Si) 6= φ can be written as:

WIR(SNRxi,Y (xi), SNRxi,R(xi), SNRR(xi),Y (xi)) (3.4)

where IR(·) = IAF (·) for AF and IR(·) = IDF (�) for DF.

If xi does not use a relay, the capacity is calculated as the direct transmission,

namely

W log2(1 + SNRxi,Y (xi)) (3.5)

Denote A(ri) as the number of source nodes which use the relay node ri. When

multiple source nodes choose the same relay node, it is assumed that the source

nodes share radio resources equally. In this work, the proposed algorithm is a

decentralized approach. There is no information exchanged among source nodes.

The number of source nodes served by a relay node is only known by that relay

node. From the viewpoint of relay nodes, the capacity of xi while using relay

node R(xi) is denoted as C(xi, R(xi)), and can be shown as follows:

C(xi, R(xi), Y (xi)) =















W
A(R(xi))

IR(SNRxi,Y (xi), SNRxi,R(xi), SNRR(xi),Y (xi)),

if R(xi) 6= φ
W log2(1 + SNRxi,Y (xi)),

if R(xi) = φ
(3.6)
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3.3 Decentralized Learning based Relay Assignment algorithm

Source nodes only send and receive information to and from relay nodes,

allowing them to obtain the capacity among them. In this work, the proposed

algorithm is evaluated in two different network systems. Detailed information on

both systems is shown in Section 3.5.

3.3 Decentralized Learning based Relay Assign-

ment algorithm

Environment

P(t+1) = T(D(t))

Learning

Automata

S(t) = Q(P(t))

D(t) = {D1, D2, …, Dr}

S(t) ∈  {S1, S2, …, Sr}

Figure 3.1: A Stochastic learning automata.

3.3.1 SLA: Stochastic Learning Automata

Stochastic learning automatas are self-optimizing, reinforcement learning tech-

niques in machine learning [87]. An SLA is a finite state machine which interacts
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with an unknown environment and attempts to learn the best action offered by

that environment via a learning process [88]. SLAs learn by means of the feedback

from their environments, which can tell an SLA whether or not its selection is

good. The learning process is iteratively performed until the SLA reaches a stable

condition. There is no predetermined relationship between actions and responses,

and SLAs are therefore suitable for use in unknown network environments, for

example, cooperative networks where UEs do not know which relays are the best

for them. So, SLAs are an attractive mechanism in such environments, and many

studies have been conducted to apply them to network systems. In [89], a rate

adaptation mechanism of 802.11 networks is proposed based on SLA. In [90], an

algorithm to perform opportunistic spectrum access is based on SLA. In [66],

SLA is used to conduct an energy-saving algorithm in LTE-advanced networks.

An illustration of SLA is given in Figure 3.1, and SLA is defined by the

5-tuples.

• S = {S1, ..., Sn} is the set of n states in the system. The selected state at

time t is symbolized as : S(t) = Si ∈ S

• D = {D1, ..., Dn} is the set of environmental responses corresponding to

each state.

• P is the probability distribution over the set of states, and P (t) = {P1(t), ..., Pn(t)}

where Pi(t) is the probability of state Si ∈ S at time t.

• T is the learning algorithm that modifies the probability vector P (t+1) at

the next iteration according to D(t).

• Q is the output function from P (t) to S(t).
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In SLA, each agent has many available states, denoted by set S, and must

choose a state, S(t), according to the probability vector P (t) of the states and

output function Q. After an agent selects a state, the selected state triggers

the environment by responding with a performance estimation D(t). After time

period T , an agent updates the probability vector P (t+1) in the next time instant

based on D(t).

3.3.2 Proposed Algorithm

In this section, the proposed algorithm is described: DLRA (Decentralized Learning-

based Relay Assignment), which is based on SLA and is an online and totally

distributed algorithm. The goal of DLRA is to choose an appropriate relay for

transmission, so that each relay selection stands for different states. Then, a

probability distribution is covers these states, and DLRA chooses a relay node

according to this probability. Once a state, namely a relay node, is chosen, the

system will give feedback information, which is a performance measure in DLRA,

about of this relay node. DLRA updates the probability distribution according

to the performance over every period T. So, the five tuples defined in the previous

section are described as follows:

• S = {1, ..., Nr+1} is the set of relay nodes, and each relay nodes represents

a state. The state Nr + 1 means the direct transmission, and state i (i 6=

Nr + 1) is using relay node i for the transmission.

• Di
t = {dit(1), ..., dit(Nr+1)} is the performance vector of source node i at time

t. When a relay node is chosen, a environmental response is obtained; it

represents the performance measure of the chosen relay node. The capacity
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of source nodes is used as the performance measure. So, dit(r) means the

capacity of source node i at time t when choosing relay node r.

• Pi

t
= {pit(1), ..., pit(Nr + 1)} is a probability vector. DLRA chooses a relay

node according to this vector. For example, P i
t (r) is the probability of

source node i choosing relay node r at time t.

• T is the period after which DLRA updates the probability vector.

• Qi
t is the output function from P i

t to S. Qi
t(P

i
t ) = r means that source node

i picks up state r at time t according to P i
t .

In DLRA, source node i picks out a state from set S according to its proba-

bility vector P i
t at time t. After selecting a state, e.g., state r is chosen, DLRA

will obtain feedback from the system and denote it by dit(r), which is the ca-

pacity of source node i when choosing state r at time t in cooperative com-

munication. DLRA then has a performance vector for source node i, namely

Di
t = {dit(1), ..., dit(Nr + 1)}. DLRA updates the probability of the source node i

according to the performance vector Di
t.

Before updating the probability vector, DLRA needs to find the best state for

the source node. The best state for source node i is the state with the highest

capacity among all states, and is denoted by bit at time t, so:

bit = argmin
j

dit(j) (3.7)

After the best state is obtained, the next step is to update the probability

vector. DLRA applies the discrete pursuit reward inaction (DPRI) algorithm for

updating probability vectors [91], which is able to obtain the best reward. The
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DPRI algorithm has been shown to exhibit good convergent properties, where

the probability of the best state is increased and the probabilities of the other

states are decreased. Thus, the minimum probability for all states is zero. The

probabilities are updated according to the following equation:

P i
t+1(j) =

{

max{pit(j)−∆, 0} , if j 6= bit
1−

∑

j 6=bit

pit+1(j) , if j = bit (3.8)

where ∆ = 1
n(Nr+1)

is the smallest step size, and n ∈ [1,∞) is a resolution

parameter used to determine the size of ∆. The pseudo code of DLRA is shown

in Table 1 where T is the training period, and end means DLRA converges to

one state.

3.3.3 Complexity

There are five loops in the pseudo-code, where the first loop contains a variable

j from 1 to Nr + 1. The complexity the first loop is O(Nr). The second loop

contains the first loop and a variable from from 1 to T . The complexity of the

second loop is O(TNr). The third loop contains a variable l from 1 to Nr + 1, so

the complexity of the third loop is O(Nr). The fourth loop contains a variable j

from 1 to Nr + 1,so the complexity of the fourth loop is O(Nr).

The fifth loop contains the second, third, fourth loop and a variable t from

1 to end. We use E to represent end which signifies the iterations that a source

node needs for DLRA to converge. The complexity of the fifth loop is O(E(TNr+

Nr +Nr)) = O(ETNr). T and E are two constants for a node, so the complexity

of DLRA is O(Nr). It is the first degree polynomial in Nr. In contrast, the

complexity of ORA and OPRA includes O(NsN
2
r ) and O(N2

sNr), respectively.
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Algorithm 1 DLRA: Decentralized Learning based Relay Assignment algorithm

Initialization:
p0(k) =

1
S
, trial(k) = 0,D(k) = 0,∀k ∈ {1, ..., Nr + 1}

i = 1, j = 1, l = 1, t = 0, state = 0, Best = 1
repeat

repeat

temp = rand()
repeat

if temp < pt(j) then
state← j
trial(j)← trial(j) + 1
break

else

temp← temp− pt(j)
continue

end if

j ← j + 1
until j = Nr + 1
Calculate the capacity of the state according to (3.4).
D(state)← D(state) + capacity
j ← 1
i← i+ 1

until i = T
i← 1
repeat

D(l) = D(l)/trial(l)
if D(Best) > D(l) then

Best← l
end if

until l = Nr + 1
trail(k) = 0 ∀k
D(k) = 0 ∀k
pt+1(Best)← 1
repeat

if j 6= Best then
if pt(j) > ∆ then

pt+1(j)← pt(j) −∆
else

pt+1(j)← 0
end if

end if

pt+1(Best)← pt+1(Best)− pt(j)
j ← j + 1

until j = Nr + 1
t← t+ 1

until t = end
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Although all three algorithms have polynomial complexity, it is obvious that the

complexity of DLRA is much lower than the others.

3.4 Mathematical Analysis

3.4.1 Convergency

In this study, DLRA converges if a probability of one state achieves its maximum

value, namely 1. DLRA then converges to this state. This section shows the

convergency of DLRA. Suppose that the update policy as in (3.8) will increase

the probability of the actual best state, pt(b) (the superscript i is dropped for

brevity), with probability ξt(b) and will decrease with probability 1 − ξt(b) at

time t. Thus:

pt+1(b) =















1− ∑

j 6=b

max{pt(j) −∆, 0}, w.p. ξt(b)

max{pt(b)−∆, 0}, w.p. 1− ξt(b)
(3.9)

where w.p. stands for ”with probability.” The algorithm is converged when

pt(b) = 1 − NrΨ. Suppose that the algorithm has not converged to state b

yet; there then exists a state j with probability pt(j) (j 6= b) which satisfies the

following:

pt(j) > max{pt(j)−∆, 0} (3.10)

According to the second axiom of probability:

pt(b) = 1−
∑

j 6=b

pt(j) (3.11)
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and, thus

1−
∑

j 6=b

max{pt(j)−∆, 0} > pt(b) (3.12)

As long as there is at least one pt(j) which is larger than 0, pt(b) can be

increased by decreasing pt(j), and the increasing amount is at least min{pt(j),∆}.

Therefore, (3.9) is re-written as:

pt+1(b) =

{

pt(b) + at∆, w.p. ξt(b)
pt(b)−∆, w.p. 1− ξt(b)

(3.13)

where at ∈ (0, Nr].

For a given source node, the current system state which includes the algorithm

state of the other source nodes is denoted as θt, and the probability vector of the

source node is Pt. So, the expected value of pt(b) conditioned on θt and Pt can

be calculated, and can be written as

E[pt(b)|θt, Pt] = ξt(b){pt(b) + at∆} + (1− ξt(b)){pt(b)−∆} (3.14)

In (3.14), pt(b) does not achieve its maximum value 1. In the next step,

the condition for pt(b) is derived to be a submartingale which means that the

condition pt(b) is increased by achieving its maximum value 1. The definition of

submartingale is shown as follows:

Definition 1. Submartingale : A discrete-time submartingale is a sequence

X1, X2, ..., Xn, ... of integrable random variables satisfying E[Xn+1|X1, ..., Xn] ≥
Xn
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Since the maximum value of pt(b) is 1, then:

sup
t≥0

E[pt(b)|θt, Pt] <∞ (3.15)

and (3.14) can be rewritten as

E[pt(b)− pt−1(b)|θt, Pt] = [ξt(b)(at + 1)− 1]∆ (3.16)

The right-hand-side of (3.16) ≥ 0 if and only if

ξt(b)(at + 1)− 1 ≥ 0

⇒ ξt(b) ≥ 1/(at + 1)

(3.17)

It is therefore a submartingle when (3.17) holds. Suppose that the algorithm

satisfies the condition at time t0, and the condition holds for all t > t0. So,

according to the submartingle convergent theorem [92], the sequence {pt(b)}t>t0

converge, such that

E[pt+1(b)− pt(b)|θt, Pt]→ 0 w.p. 1 (3.18)

and the maximum value of pt(b), namely 1, is achieved as t→∞.

3.4.2 Asymptotic Theorems

Asymptotic theory is often used in mathematical sciences to provide limiting ap-

proximations of the probability distribution of sample statics. In this section,

three asymptotic theorems of DLRA based on the technique presented by Oom-

men et al. [93] are established. In Theorem 1, it is shown that DLRA can reach

the required number of trials in a finite time. Theorem 2 shows that if each state
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is chosen more than the required times, the best rate chosen actually has the best

performance. Theorem 3 shows the optimality of DLRA.

Theorem 1. For each state si, suppose p0(i) 6= 0. Then, for any constant δ > 0

and M <∞, there exists t0 <∞ and n0 <∞ such that under DLRA algorithm,

∀t > t0, ∀n > n0 :

Pr {each state chosen more than M times at time t} ≥ 1− δ

Proof. Denote a random variable Zt
i as the number of times that state si was

chosen up to time t. Next, for any iteration of DLRA algorithm

Pr{si is chosen} ≤ 1 (3.19)

Likewise, the magnitude by which the probability of any state can decrease in any

single iteration is bounded by ∆. Therefore, during any of the first t iterations

of DLRA:

Pr{si is not chosen} ≤ 1−max{p0(i)− t∆, 0} (3.20)

According to (3.19) and (3.20), the probability that state si is chosen at most M

times among t choices satisfies the following:

Pr{Zt
i ≤ M} ≤

M
∑

j=0

(

t

j

)

(1)j(1−max{p0(i)− t∆, 0})t−j

=

M
∑

j=0

(

t

j

)

(1)jϕt−j

(3.21)

It must now be shown that (3.21) is less than or equivalent to δ. To show the

mth term in (3.21) is less than or equivalent to δ/(M + 1), and is sufficient to

make a sum of (M + 1) terms in (3.21) less than δ. Therefore, it must be proved

that:

(

t

m

)

(1)mϕt−m ≤ δ/(M + 1)

⇒ (M + 1)
(

t

m

)

ϕt−m ≤ δ

(3.22)
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It is observed
(

t

m

)

≤ tm, thus:

(M + 1)tmϕt−m ≤ δ (3.23)

In order to make the L.H.S. of (3.23) less than δ as t increases, ϕ must be strictly

less than unity. Therefore, the value of ∆ = 1/n(Nr + 1) is bounded to achieve

this goal with respect to t by ϕ < 1. Thus:

1− [p0(i)− t/n(Nr + 1)] < 1

⇒ n > t
p0(t)(Nr+1)

(3.24)

So, the value of n is set to 2t
p0(t)(Nr+1)

to achieve the requirement. Then, according

to (3.21), (3.22) and (3.23):

Pr{Zt
i ≤M} ≤ (M + 1)tmϕt−m (3.25)

The R.H.S. of (3.25) is considered when t approaches infinity:

lim
t→∞

(M + 1)tmϕt−m = (M + 1) lim
t→∞

tm
1

(1/ϕ)t−m (3.26)

By using L’Hopital’s rule m times, the following is obtained:

(M + 1) lim
t→∞

m!

(ln( 1
ϕ
)m)( 1

ϕ
)t−m

= 0 (3.27)

Thus, since the limit exists, for every state si, there is a t(i) such that Pr{Zt
i ≤

M} ≤ δ for all t > t(i). In addition, for any t > t(i), since Z
t(i)
i ≥ M implies

Zt
i ≥M . So, by the law of probability:

Pr{Zt
i ≤M} > Pr{Zt(i)

i ≤ M} (3.28)

Therefore, for any state si, Pr{Zt
i ≤M} ≤ δ whenever t > t(i). Define

t0 = max
1≤i≤Nr+1

{t(i)} (3.29)

In this way, it is true, for all t > t0, Pr{Zt
i ≤M} ≤ δ for all i, and it implies

Pr{Zt
i ≥M} ≥ 1− δ (3.30)
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Next, the second theorem shows that if all the states are chosen enough times,

the best state chosen by DLRA actually has the best performance among all of

the states.

Theorem 2. There exists an integer, denoted by M , for every δ ∈ (0, 1) such

that if every state si is selected at least M times by time t:

Pr {the best state chosen by DLRA actually has the best performance among all

states}> 1− δ ⇒ Pr{b̂t = argmax
j

d(j)}> 1− δ

Proof. Denote h as the difference between the two largest performances in the

network system. By this assumption, the best performance for the best state,

d(b), is unique, therefore, h > 0 and d(b) − h ≥ d(i) ∀i 6= b. Let Zt
i be the

number of times si is chosen up to time instant t. Suppose d̂t(i) is the estimator

of the performance of state si at time t, Then, according to the weak law of large

numbers, for a given δ > 0, there exists an Mi <∞ , such that, if si is chosen at

least Mi times:

Pr{|d̂t(i)− d(i)| < h/2} > 1− δ (3.31)

Let M = max
1≤i≤Nr+1

{Mi}, and if min
1≤i≤Nr+1

{Zt
i} > M , then:

Pr{|d̂t(b)− d(j)| < h/2} < 1− δ, ∀j 6= b ∀t (3.32)

From Theorem 1, a t0 can be found such that

Pr{ min
1≤i≤Nr+1

{Zt
i} > M} > 1− δ, ∀t > t0 (3.33)

Therefore, it is known that each d̂(i) will be in an h/2 neighborhood of d(i) if all

states are chosen at least M times. So:

d̂t(b) ≥ d(b)− h/2 > d(i)− h/2

⇒ d̂t(b) ≥ d̂(i) (3.34)

Based on the two previous theorems, the last theorem can be obtained. The

last theorem shows the optimality of DLRA which means that the probability of

the best state achieves its maximal value.
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Theorem 3. In every stationary network system, the DLRA algorithm is ǫ-

optimal. More explicitly, given any ǫ > 0 and δ > 0, there exists n0 < ∞
and t <∞ such that:

Pr{|pb(t)− 1] < ǫ|} > 1− δ

Proof. According to Theorem 2, M is a constant for each network system, and

by Theorem 1, there exists t0 <∞ and n0 <∞, such that, under DLRA:

Pr{Zt
i > M} > 1− δ (3.35)

Then, define U and V as the two events shown as follows:

{

U ≡ |pb(t)− 1| < ǫ

V ≡ max
1≤i≤Nr+1

{d̂t(i)− d(i)} < h/2
(3.36)

So
Pr{U |V } = Pr{|pb(t)− 1]| < ǫ| max

1≤i≤Nr+1
{d̂t(i)− d(i)} < h/2} (3.37)

According to the previous discussion:

lim
t→∞

Pr{U |V } → 1 (3.38)

By Theorem 2 and (3.35):

lim
t→∞

Pr{V } → 1− δ (3.39)

By the low of total probability and probability is a continuous function, then:

lim
t→∞

Pr{U} ≥ lim
t→∞

Pr{U |V } lim
t→∞

Pr{V } (3.40)

From (3.38), (3.39), and (3.40):

lim
t→∞

Pr{|pb(t)− [1−NrΨ]| < ǫ} ≥ 1− δ (3.41)

Proposition 1. DLRA converges under any initialization of P0.

Proof. Assume that P0 = {P0(1), P0(2), ..., P0(Nr + 1)}, and we discuss in three

cases:
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(1) If P0(i) > 0 ∀i:

The discussion was mentioned before in this section. When (3.17) holds, the

sequence pb(t) is a submartingle, therefore, DLRA converges to the best state.

According to theorem 2, there always exists an integer M ; thus, (3.17) always

holds true. DLRA converges to the best state under this case.

(2) If P0(i) = 0 and i 6= b

When DLRA converges to the best state, the value of P0(i) ∀i is zero. There-
fore, we can say that the sequence pt(i) converged in this initial condition. There-

fore, DLRA would converge to the best state, namely Pb(t) = 1, eventually.

(3) If P0(b) = 0

Since the probability of the best state is zero in the initial condition, DLRA

cannot converge to the best state b. Suppose b̂, the best state, excludes the

original best state b among all states. Therefore, denote ξ(b̂) as the probability

that the update policy would actually increase the value of pt(b̂). We can consider

this condition as signifying that the best state b no longer exists in the system.

It is the case (1) where the best state becomes b̂. So, DLRA will converge to the

state b̂, namely pb̂(t) = 1.

According to the discussion on the three cases, we conclude that DLRA con-

verges under any initialization of P0.

Proposition 2. DLRA converges under any channel fading model.

Proof. The impact of channel fading model is included in the variable θt. Ac-

cording to Theorem 2, there always exists an M for variable ξt(b) to meet (3.17).

The different channel fading models have different value of M . Since M always

exists, DLRA converges in any channel model.
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t=0 t=1 t=2 t=3

Figure 3.2: State transition diagram of DLRA.

3.4.3 Performance

In this section, we provide a comprehensive performance analysis based on math-

ematical manipulation. Assume that each source node assigns equal probability

of each choice in the beginning, namely each choice has probability 1/N of being

chosen. Fig. 3.2 shows the state transition diagram of one node in DLRA; the

different states stand for the different evolutions of probability vector. In Fig.

3.2, N is the number of choice, ξi(j) is the probability that the probability of

choosing choice j is increased at time i, and Si stands for the state i. In this

section, different choices refer to different relay selections, and each state stands

for a probability vector of relay selections. Suppose the performance of choice i

is denoted by Ci. Therefore, the expected performance of initial state, namely
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state 0 in Fig. 3.2, is:

E[S0] =

N
∑

i=1

Pi × Ci =

N
∑

i=1

1

N
× Ci =

N
∑

i=1

Ci

N
(3.42)

In Fig. 3.2, state i (i ∈ {1, ..., N}) stands for the probability of choosing

choice i is increased, and decreased for the others; assume the step size is ∆.

Therefore, the expected performance of state i is:

E[Si] =

N
∑

j=1,j 6=i

(
1

N
)Cj + [

1

N
+ (N − 1)∆]Ci

= (
1

N
−∆)

N
∑

j=1,j 6=i

Cj +
Cj

N
+∆(N − 1)Cj

=

N
∑

i=1

Ci

N
+∆

N
∑

j=1

(Ci − Cj)

(3.43)

In this state diagram, there are 1 and N states when t = 0 and t = 1,

respectively. The number of states is N2 when t = 2, and the value is increased

to NT when t = T . It is an unaccepted number of states and too complicated to

solve, via this diagram, when t is getting larger.

We combine the states which are not the best choice into one state, and assume

that these states have the same performance which is denoted by Ca, and less

than the best one denoted by Cb. Besides, we assume that ξb(t) is the same for

all t. According to the asymptotic theorem, this hypothesis is reasonable, and

p = ξb(t) is assumed for simplicity. Therefore, the new diagram is modeled as a

Markov chain and is shown as Fig. 3.3.
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Figure 3.3: Markov chain model of DLRA.

In Fig. 3.3, the initial state is (0, 0), and the two absorbing states are (T, 0)

and (0, T ). The absorbing states mean that the probability of choosing the best

choice is equal to either 1 or 0, and T = ceil(1/∆N). State (i, j) transits to state

(i + 1, j) with probability p; it means that the probability of choosing the best

choice is increased by (N − 1)∆ with probability p. Similarly, state (i, j) transits

to state (i, j +1) with probability 1− p; it means the probability of choosing the

best choice is decreased by ∆. On the other hands, the probability of the best

choice is equal to 1 and 0 in the states (T, 0) and (0, T ), respectively. According

to the asymptotic theorem, the probability to absorb in state (0, T ) approaches

to zero.

State (i, j) can be considered as that the probability of choosing the best

choice is increased by i times and decreased by j times from the initial state.
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Therefore, the probability can be calculated as follows:

pijb =
1

N
+ [(N − 1)i− j]∆ (3.44)

Then, we have the expected performance of state (i, j):

E[Sij ] = (1− pijb )Ca + pijb Cb (3.45)

Now, we show the expected performance after t transitions from the initial

state. If there are i transitions to increase the probability of choosing the best

choice, and j transitions to decrease this value, the state after this (i+1) transi-

tions will be: (min{i−floor( j

N−1
), T}, j%(N−1)). Therefore, suppose that there

are i transitions to increase the probability of choosing the best choice among all

t transitions. The state will be (f(i), g(i)) with probability pi(1− p)j, where f(i)

and g(i) are shown as follows:

{

f(i) = min{i− floor( t−i
N−i

, T )}
g(i) = (t− i)%(N − 1)

(3.46)

So, the expected performance after t transitions is:

E[performace at t] =
t

∑

i=0

(

t

i

)

pi(1− p)t−iE[Sf(i),g(i)] (3.47)

Next, we calculate how many transitions DLRA will take from the initial

state to the absorbing state (T, 0). Assume Y is the number of transitions DLRA

will take from the initial state to state (T, 0). The least value of Y is T and

Pr{Y = T} = pT . It occurs while the probability of choosing the best choice

is always increased from the initial state. If the decrement happens only once

before transiting to the state (T, 0), the value of Y is T +2 and Pr{Y = T +2} =
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(

T+2
1

)

P T+1(1− p). Generally, it takes T +N steps from the initial state to state

(T, 0) with probability
(

T+N

N−1

)

pT+1(1−p)N−1. So, the probability density function

of Y is shown as follows:

Pr{Y = T +j+ij} =







pT , i = j = 0
(

T+j+ij

T+j

)

pT [p(1− p)i]j , i ∈ N, j = 1, ..., N − 1

0 , i = 0, j 6= 0

(3.48)

Thus, we have the expected number of transitions of DLRA would take; it

can be shown as follows:

E[Y ] = pTT +

∞
∑

j=1

N−1
∑

i=1

(

T + j + ij

T + j

)

pT [p(1− p)i]j(T + i+ ij) (3.49)
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Figure 3.4: The number of transitions DLRA would take vs. the probability ξ(b)

According to (3.49), we have Fig. 3.4 where we suppose N = 11 and ∆ =

0.005. It is obvious that the number of transitions increased with the decreased

value of p. It takes about 250 transitions to converge when the probability is

equal to 0.7.
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3.5 performance evaluation

In this section, experimental results are presented for the evaluation of the perfor-

mance of the DLRA algorithm. The experiments are performed in two different

network systems: one is a cooperative ad hoc network, and the other is a coop-

erative communication system in an LTE-advanced network.

3.5.1 Cooperative Ad Hoc Network

In this section, the goal is to show that DLRA, which is a decentralized approach,

is efficient as centralized approaches. The centralized approach compared is ORA,

proposed by Sharma et al. [43], because it is possible to obtain the whole detailed

network topology according to the work. A cooperative ad hoc network topology

is constructed, in which each source node is associated with a specific destination

node. The number of source nodes and destination nodes is therefore the same.

It is assumed that the capacity of each source node is obtained from the feedback

information of the relay nodes. The simulation topologies and parameters are the

same as in [43]. These simulation settings are first used to evaluate the perfor-

mance of ORA. The performance of DLRA is then compared with that of ORA

with these settings to show DLRA’s effectiveness in cooperative communications.

3.5.1.1 Simulation Settings

Two cases are considered in this experiment: one is that the number of source

nodes is larger than the number of relay nodes, and the other is that there are
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fewer source nodes than relay nodes. In the first case, there are 30 source-

destination pairs, and 40 relay nodes, namely: Nx = Ny = 30 and Nr = 40;

in the second case, there are 40 source-destination pairs, and 20 relay nodes,

namely: Nx = Ny = 40 and Nr = 20. The location of each node is given in [43].

AssumeW = 10 MHz bandwidth for each channel, and the transmission power

of each node is set to 1 watt. The AF mode is employed on each relay node, and

the channel gain only considers the path-loss component between two nodes with

path-loss index 4. The AWGN channel is assumed to have a variance of noise of

10−10 watts at all nodes.
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Figure 3.5: The CDF of the capacity of all source nodes for the two algorithms

in the environment while Ns < Nr.

3.5.1.2 Comparisons
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Figure 3.6: The CDF of the capacity of all source nodes for the two algorithms

in the environment while Ns > Nr.

Figs. 3.5 and 3.6 represent the cumulative distribution function (CDF) of

ORA and DLRA in two different cases respectively, and the simulation topologies

are shown in [43]. The goal of the experiments is to show the effectiveness of

DLRA in a cooperative communication system; the performance of DLRA is

compared with that of ORA to achieve this.

Because ORA maximizes the minimal capacity, the performance of the 95th

percentile user in ORA is better in DLRA. On the other hand, DLRA exhibits

better performance than ORA in both mean and median, as shown in Fig. 3.7.

In Fig. 3.6, the number of source nodes is larger than the number of relay nodes,

so many source nodes exhibit the best performance with direct transmission.

Therefore, the CDF of ORA and DLRA overlap on about the top 20% of users.

The experimental environments are designed to first evaluate the performance

of ORA. In this experiment, for the edge users, ORA is better than DLRA; for

average performance and median users, DLRA is better than ORA. So, it is
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Figure 3.7: The 5%-outage, median and mean capacity of DLRA and ORA in

both cases.

hard to say which one is better. According to the results, DLRA, which is a

decentralized approach, and ORA, which is a centralized approach, are both

effective in cooperative ad hoc networks.

3.5.2 LTE-Advanced Network

The second network system is a relay network in an LTE-Advanced environment.

In this experiment, many user devices transmit to the macro base station (BS)

with the help of relay nodes.

3.5.2.1 Simulation Settings
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Figure 3.8: The network topology of the simulation and the corresponding relay

selection result for each source node.

A relay network topology, as shown in Fig. 4.6, is assumed, in which all source

nodes have the same destination. In this topology, there are 20 source nodes, 10

relay nodes and 1 destination node at position (1000,1000). Since relay nodes are

used to expand the coverage range of the macro BS in LTE-advanced networks,

all source nodes, namely UEs, transmit data to the destination, namely the macro

BS. So, Nx = 20, Nr = 10, and Ny = 1 which means that Y (x1) = ... = YXNx
,

and the experimental parameters follow the simulation methodologies of 3GPP

specifications [94]. Both large and small scale fading is adopted in the simulations:

the shadowing model is two-way ground fading and the fading model is a Rayleigh

fading model. The maximum transmission power of UEs and relay nodes are set

to 23 dBm and 30 dBm, respectively. The total bandwidth of the system is 100

MHz and the noise power density of the system is -174 dBm/Hz.

When a source node chooses a relay node for transmission, it receives a physi-

cal downlink control channel (PDCCH) which contains information detailing the
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radio resources available to the source node. The source node reports the chan-

nel information to the relay node by channel quality index (CQI), and the source

node knows the modulation and coding scheme (MCS) that it uses. Therefore,

the source nodes understand the capacity according to the information received.
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Figure 3.9: The variation of aggregate performance of average results with dif-

ferent values of ∆.

3.5.2.2 Convergency

This section shows the performance of DLRA with different parameters and

the convergent process. The ∆ parameter influences the learning rate and final

results; the convergency of DLRA over ∆ is examined first. Fig. 3.9 shows

the variation of aggregate performance over ∆, where experiments are run 1000

times to obtain each point in the fixed topology, as shown in Fig. 4.6. A smaller

∆ implies that a stable state is more precisely found, but takes more time to
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Figure 3.10: The average convergent time with different values of ∆.

converge. DLRA with ∆ = 0.005 effects about a 1% variation of aggregate

performance for average results. Because of the distributed nature of DLRA,

the convergent time of each UE is not the same. The average convergent time

of DLRA over ∆ is shown in Fig. 3.10. DLRA converges in 75 iterations with

∆ = 0.0018 and in about 225 iterations with ∆ = 0.005–the larger ∆ makes the

convergent time shorter.

Fig. 4.6 also shows the DLRA relay node selection result, which is represented

by the solid red lines. It is observed that most UEs are served by relay nodes,

besides s1 and s2. Both know that transmitting using shared relay nodes is

pointless from the environmental feedbacks since they are close to the macro BS.

On the other hand, DLRA also performs load balancing for relay nodes within

the network; for example, s7 chooses a lighter loaded r7 rather than the nearest,

but heavily loaded r3. In this scenario, r3 is actually more necessary for other

users like s12 and s19, and r3 therefore responds to s7 with feedback that is less
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Figure 3.11: The state evolution of source node 5.

unsatisfied than the feedback r7.

Next, s5 is chosen to show the convergency of DLRA. Figs. 3.11 and 3.12

show the state and performance evolution for s5, respectively. In the beginning

of the experiment, they oscillate dramatically because the probability of each

state is the same. As time passes, it is observed that the selected states of s5

oscillate between r1, r4 and r9 in Fig. 3.11. The selected probabilities of other

inappropriate states (the farther relay nodes) are decreased to zero. Finally, s5

converges to r4 and its performance converges to about 7 Mbps.

The evolution of the probability distribution over time for s5 is plotted in Fig.

3.13. The probability of each state is the same in the beginning, and then the

probabilities of r1, r4 and r9 increase while those of others decrease. Finally, s5

converges to r4 in about 275 iterations. In these results, the small scale fading

is not adopted in the simulation. Next, we show the impact of different fading

models on DLRA. Figs. 3.13 and 3.14 show the evolution of the probability
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Figure 3.12: The performance evolution for source node 5.

distribution over time for s5 without and with Rayleigh fading, respectively. The

results follow our intuition that DLRA takes more time to converge under a

dramatically varying channel. Fig. 3.14 shows that DLRA takes about 550

iterations to converge with Rayleigh fading.

Lastly, we show the convergency under different initialization of P0. We pick

s3 for this simulation, and r7 is the best choice for s3 according to Fig. 4.6. The

simulation is run in three cases of P0:(1) uniform distribution, (2) non-uniform

distribution where the probability of the best state is not equal to 0, and (3)

the probability of the best state is equal to 0. In the second case, we set the

probability of the best state much lower than r10,which is the second best state.

According to Proportion 2, DLRA converges under initialization of P0. Figs.

3.15(a) and 3.15(b) shows that DLRA eventually converges to the best state;

even the probability of the best state is much lower than the others. Fig. 3.15(c)

shows DLRA converges to r10, and the convergent speed is fast because that r7
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Figure 3.13: The probability vector evolution for source node 5 without small

scale fading.

and r10 compete in the first and the second case, but the competition disappears

when the probability of r7 is equal to 0. Therefore, DLRA converges to r10 fast.

3.5.2.3 Capacity and Fairness

In this section, the performance of DLRA is compared with those of other al-

gorithms, namely OPRA, ORA, Greedy and direct transmission, from the view-

points of capacity and fairness. Fig. 3.16 shows the CDF capacity of all algo-

rithms. Because the objective of OPRA is to maximize the aggregate capacity,

it assigns relay nodes to UEs with good channel conditions in order to achieve

this goal. This objective results in a gap between cell-edge UEs and superior

UEs. Assigning relay nodes to UEs with good channel conditions infringes on the

essential goal of relay nodes. By contrast, ORA aims to maximize the minimum

capacity among all UEs, and therefore attempts to assign relay nodes to cell-edge
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Figure 3.14: The probability vector evolution for source node 5 with Rayleigh

fading.

UEs. ORA assumes that each relay node only serves one UE. Therefore, when

the number of relay nodes is less than the number of UEs, the benefits of ORA

are limited. DLRA performs better than ORA since it helps more inferior UEs

that determine their own preferred states according to environmental feedback.

Fig. 3.17 shows the aggregate capacity of all algorithms. As expected, OPRA

performs best in this objective regardless of the original intention of relay nodes.

DLRA is the second among them, and it shows that by having each UE choose its

preferred method for transmission, good performance can be achieved. Although

DLRA is not optimal in terms of aggregate capacity, its performance is close to

that of OPRA. To quantify the effect of enhancement after relay nodes help, the

improvement factor is defined as:

Improvement Factor =
CF inal − CDirect

CDirect

(3.50)

where CF inal is the final performance of each UE after relay assignment, and
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CDirect is the performance with direct transmission. Fig. 3.18 shows the average

improvement for all algorithms. The average improvement of OPRA is less than

that of ORA because the ratio of enhancement to direct transmission is relatively

small for superior UEs. DLRA decreases the enhancement of performance for

originally benefited UEs, particular superior UEs, in order to improve the capacity

of other UEs. So, the number of UEs which get help and the average improvement

are both increased. DLRA, being a fully-distributed algorithm, is thus better than

centralized algorithms in terms of this aspect.

Finally, the fairness among all algorithms is compared. Jain’s fairness index

(JFI) [95] is used as the criterion of comparison among all algorithms, and JFI

is:

JFI =

(
n
∑

i=1

Ci)
2

n
n
∑

i=1

Ci
2

(3.51)

Compared with other algorithms, UEs collect environmental information and

determine the best relay nodes for themselves in DLRA. Therefore, the difference

of the final capacity among UEs is not large. The JFI of DLRA is the best among

these algorithms. ORA has the second highest JFI since it assigns relay nodes

to cell-edge UEs, but ORA is limited; in that each relay node can serve only one

UE. Therefore, the JFI of ORA slightly less than that of DLRA.
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Figure 3.15: Different initialization of P0: (a) Uniform distribution, (b) Non-

uniform distribution and the probability of the best state is not equal to 0, and (c)

the probability of the best state is equal to 0.
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Figure 3.16: The CDF of capacity for all algorithms.
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Figure 3.17: The aggregate capacity for all algorithms.
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Figure 3.18: The average improvement for all algorithms.
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Figure 3.19: The fairness index for all algorithms.
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3.6 Concluding Remarks

Cooperative communication increases the data rate in wireless networks by ex-

ploiting spatial diversity via relay node antennas. Therefore, the relay node

selection problem significantly affects system performance. It is a difficult to

assign relay nodes to source nodes when the number of source nodes increases.

The complexity involved in adopting a centralized approach to handle this task

is very high. This paper enables source nodes to select relay nodes for them-

selves. A fully-distributed approach based on reinforcement-learning technique

called ”Decentralized Learning-based Relay Assignment” algorithm is proposed

in this work. It is assumed that one relay node is able to serve multiple source-

destination pairs, whereas many other works assume that one relay node is only

able to serve one pair. This study also gives source nodes self-optimizing and

self-learning abilities.

Both mathematical analysis and experimental results are given to show the

performance of DLRA. The convergency and the optimality of DLRA are shown

in the mathematical analysis. Two different cooperative communication systems,

a cooperative ad hoc network and a relay network in an LTE-Advanced system,

are considered in the experiments. The effectiveness of DLRA in cooperative

ad hoc networks, defined by previous work, is demonstrated. The experimental

results obtained in both systems show that DLRA is effective, and exhibits good

performance compared with other existing algorithms.
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Chapter 4

Multi-Tone Subframes for

Enhanced Inter-Cell Interference

Coordination in LTE HetNets

4.1 Background Information

In recent years, wireless data traffic has seen significant growth due to data-

oriented devices such as mobile phones. According to [96], the global mobile

traffic is estimated to increase thirteen-fold; therefore, cellular operators will in-

evitable experience a boom in mobile traffic growth. To address this rapid growth,

we must to exploit the available radio spectrum as efficiently as possible. Small

cells have been identified as the most promising solution for coping with these in-

creasing demands. Heterogeneous networks (HetNets) are mixed with traditional

cellular networks, which are known as macrocells, and small cells. In Long-Term-

Evolution (LTE) HetNets, small cells are usually called femtocells and picocells.

Femtocells are typically for indoor use with a coverage radius of few tens of meters

and its use is restricted to a handful of users in closed subscriber group. Pico-

cells have a coverage of a couple of hundreds of meters and are open subscriber
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group cells with access permission to all subscribers of the operator. Picos are

typically deployed near malls, offices, business localities with dense mobile usage,

etc. Picos are mostly deployed outdoors, but there could be indoor deployments

in large establishments.

A HetNet is a two-tier network architecture; for example, picocells are over-

laid on the coverage range of macrocells. Compared to a macro base station

(MBS) in a macrocell, a pico base station (PBS) in a picocell has much lower

transmission power. There are two factors that could handicap the net capacity

of a pico access node in the downlink. First, the downlink pico transmissions to

its associated user equipments (UEs) could be severely interfered by high-power

macro transmission [97]. For example, in Fig. 4.1(a), downlink transmissions to

UEs associated with PBS 1 could easily be interfered by downlink tranmissions

of MBS 1. Second, UEs, who are close to PBS and could benefit from associat-

ing with the macro access node due to higher received signal strength from the

high-power MBS.For example, UEs not too close to PBS 3 but still within the

coverage area of PBS 3 could end up associating with MBS 2. Indeed, this could

leave the pico underutilized, thus defeating the purpose of deploying that PBS.

Due to the large difference in downlink transmit powers between PBSs (≈30

dBm) and MBSs (≈46 dBm) [16], the coverage range of picocells becomes very

small. According to [?], coverage range of picocells is only 4.43 meters when

distance between a PBS and an MBS is 50 meters, and the range increases to

42.08 meters, which is still a short range, when the distance increases to 450

meters. UEs which are more close to PBSs may end up associating with MBSs.

Cell range expansion (CRE) [15] is proposed to cope with this situation. The

idea is to add a bias on reference signal receiving power (RSRP) to PBSs, there-
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(a) Maximum Transmission Power (non-ABS subframes)

(b) Zero Transmission Power (ABS subframes)

(c) Reduced Transmission Power (RPS subframes)

Figure 4.1: Illustration of coverage area in different transmission.
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fore, the coverage range of PBSs is expanded. Although we expand the coverage

range of picocells with CRE, essentially, the large difference of transmit power

between MBSs and PBSs is still existing. UEs which associate with PBSs by

CRE would receive interference from MBSs, of which the power is larger than the

received signal power. Thus, the performance of these UES is worse due to large

interference. To handle this problem, a framework called ”Enhanced Inter-Cell

Interference Coordination” (eICIC) is proposed by 3rd Generation Partnership

Project (3GPP). Almost Blank Subframe (ABS) is the major part of eICIC, and

the concept is to blank some subframes of MBSs, where only pilot and system

signals are transmitted [20].

With the help of ABSs, the UEs can transmit their data in these muted

subframes, therefore, they experience no interference from MBSs and get better

performance during these subframes. However, the mechanism of the ABS forces

MBSs to stop using some subframes, and it degrades the performance of macro-

UEs. As shown in Fig. 4.1(b), MBSs can not do anything during ABS. The

spectrum utilization decreases at the same time, and the goal to exploit the

available radio spectrum as efficiently as possible is disobeyed. In addition, Fig.

4.2 shows that there are two subframes and that the ”Original” case in (a) displays

the same behaviour as ABS: full power on subframe 1 and muted on subframe 2.

In the other case, we use only 1/3 of the maximum power on two subframes, and

(b) shows the Shannon capacity of the two cases, where the x-axis is the signal-to-

interference-plus-noise-ratio (SINR) under maximum power. The ”After” case is

clearly better than the ”Original” case and also involves less power consumption.

Lower power consumption leads to a higher capacity because the spectrum is

used more efficiently. This phenomenon inspires this study. Therefore, as shown
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in Fig. 4.1(c), MBSs are degenerated to PBSs instead of being blanked. MBSs

do not interfere PBSs under this circumstance, and the spectrum utilization is

increased.

The MBSs transmit at reduced power instead of muting subframes only to

serve the nearby UEs. The so-called reduced-power subframes (RPSs) have been

standardized under 3GPP release 11 and are commonly referred to as further-

enhanced ICIC (FeICIC) [59]. The use of RPSs increases the throughput of

MUEs and the spectrum utilisation of MBSs. However, the performance of PBSs

is reduced because the interference is greater than with the original muting sub-

frames. The use of RPSs is considered to be a trade-off between the cell-edge and

average throughput.

In this thesis, we address the weak points of RPSs and propose the multitone

subframe (MTS) to make up for their insufficiencies. We also compare the perfor-

mance of MTS with dynamic RPS (DRPS), which is introduced in the following

section. As we know, RPS and ABS involve a trade-off between the average sys-

tem capacity and the capacity of edge UEs. The use of the MTS can improve the

performance of the whole system, including the system capacity and edge UEs.

The proposed algorithm is based on the interior point method and consists of two

steps. Detailed information on the proposed algorithm is introduced in Section

??. In addition, we provide various simulation results to evaluate the perfor-

mance of the proposed algorithm; the results show the success of the proposed

algorithm.
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(a) Illustration of the original case and the after case

(b) Capacity of the two cases

Figure 4.2: The comparison of the capacity: the original case means the maximum

transmission power on one subframe and the after case means use 1/3 maximum

transmission power on each subframes.
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4.2 System Model and Problem Formulation

4.2.1 System Model

We define a HetNet that contains macrocells and picocells in an LTE-Advanced

system. A macrocell, in an LTE-advanced HetNet, has a base station, referred

to in this study as an MBS, with a transmission power of around 20 to 40 W.

The coverage range is typically around 0.5 to 2 km. In contrast, a picocell has a

base station, referred to in this study as a PBS, with lower transmission power

(around 2 to 5 W). Picocells are underlayed on the coverage range of macrocells

to make up for insufficiencies in their deployment, such as coverage holes and

indoor environments.

Denote M and P as MBSs and PBSs, respectively. We also use m and p to

represent a typical MBS and PBS, respectively. The set of UEs is denoted as

U, and a typical UE is denoted as u. Denoting by Up and Um UEs that are

associated with PBS p and MBS m, respectively. Denote I(p) as the set of MBSs

that interfere with the PBS p. MTSs used by MBSs have L different power

levels, and L and l are denoted as the set of power levels and a typical power

level, respectively.

Denote N l
m as the number of subframes with power level l used by MBS m.

For ABS scenarios, denote NA
m as the number of ABS subframes used by MBS

m. Denote Al
p as the number of subframes that PBS p can use and that have

interference with power level l. A UE associated with a PBS suffers from two

types of interference, one from other PBSs and the other from the interfered MBS.

Denote these two types of interference as P pico
int (u) and Pmacro

int (u) for an UE u.
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The SINR of UE u ∈ Up can be modeled as:

SINR(u) =
PR(u)

P pico
int (u) + Pmacro

int (u) +N0

(4.1)

where PR(u) is the received signal power of UE u.

User Capacity: In our scenario, we have a set of UEs denoted by U, and we

assume that we know which MBS or PBS associated with each UE. Denote rmacro
ul

as the data rate for UE u that associates with the MBS when the power level of

the MBS is l. A UE can associate with either an MBS or a PBS; therefore, rlu

for UE u that associates with an MBS stands for the data rate achieved when

the MBS uses subframes with power level l. On the other hand, rlu for UE u

that associates with a PBS stands for the data rate achieved when the MBS that

interferes with the PBS uses subframes with power level l. For ABS scenarios,

we denote rAu and rnAu as the capacity of UE u on ABS and non-ABS subframes,

respectively. The SINR of each UE u can be obtained via above the discussion,

so the average PHY data rate of each UE u can be obtained by: (1) mapping the

SINR to the data rate by looking up the table in LTE or (2) simply using the

modified Shannon capacity.

4.2.2 Problem Formulation

In this study, our goal is to improve the performance of the entire system by

means of the proposed MTS approach. Before formulating the problem, we de-

fine a variable Al
p. Al

p is the number of subframes that PBS p can use and have

interference with the power level l. The MBSs that interfere with the PBS p

are in the set I(p). For simplicity, in each subframe, we only consider the great-

est transmission power level in I(p) for each PBS p. Therefore, we obtain the
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Table 4.1: Definitions of Notations

Notations Definitions

U, u,U Set of UEs, index for a typical

(u ∈ U) UE, number of UEs, respectively

M, m,M Set of macros, index for a typical

(m ∈M) macro, number of macros, respectively

P, p,P Set of picos, index for a typical

(p ∈ P) pico, number of picos, respectively

L, l,L Set of power levels, index for a typical

(l ∈ L) power level, number of power levels, respectively

mu The macro that is best for UE u

pu The pico that is best for UE u

rml
u Data rate achieved by UE u from mu

with power level l

rplu Data rate achieved by UE u from pu in a

subframe with the interference power level l

Imacro
p Set of macro eNBs that interfere with pico p

Um Set of UEs for which macro m is the best

macro eNB

Up Set of UEs for which pico p is the best

pico eNB

N l
m Variable for subframes with power level l

used by macro m

Al
p Variable for subframes interfered by power

level l used by pico p

xl
u Variable denoting UE u’s air-time from macro

over subframe with power level l

Variable denoting UE u’s air-time from pico when

ylu the most transmission power used by the macros

is l.
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following equations:

Almax
p = max

m
{N lmax

m }, m ∈ I(p)

Almax−1
p = max

m
{N lmax

m +N lmax−1
m } − Almax

p , m ∈ I(p)

...

Almax−i
p = max

m
{

i
∑

j=0

N lmax−j
m } −

i−1
∑

j=0

Almax−j
p , m ∈ I(p)

(4.2)

According to (4.2), we find that the value of Al
p is determined by the variable

N l
m. The problem to be solved in this study is to find N l

m, namely, the variable for

subframes with power level l used by macro m; xl
u, namely, the variable denoting

UE u’s air-time from macro over subframe with power level l; and ylu, namely,

the variable denoting UE u’s air-time from pico when the greatest transmission

power used by the macros is l, to maximise the performance of the entire system.

The problem formulation is shown in the following:

Problem 1 (MTS Assignment Problem). Maximise the aggregate log-capacity of

UEs in the system, i.e.,

max
N,x,y

∑

u∈U

ln(Ru)

1. Association Constraints:

(

lmax
∑

l=1

xl
u)(

lmax
∑

l=1

ylu) = 0, xl
u ≥ 0, ylu ≥ 0, ∀u ∈ U, l ∈ L

2. MTS Integer Constraints:

N l
m ∈ Z

+, ∀m ∈M, ∀l ∈ L
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3. Macro and Pico Subframes Constrains:

∑

l∈L

NL
m = ND, ∀m ∈M

Al
p = max

m
{
lmax
∑

i=l

N i
m} −

lmax
∑

j=l+1

Aj
p

4. Macro Air-time Constraints:

∑

u∈Um

xl
u ≤ N l

m, ∀l ∈ L, m ∈M

5. Pico Air-time Constraints:

∑

u∈Up

ylu ≤ Al
p, ∀l ∈ L, p ∈ P

where the first constraint is that each UE can associate with either an MBS

or a PBS at a particular moment. The second constraint is that the number of

MTSs is a non-negative integer. The third constraint is that the total number of

MTSs is equal to the length of a duty cycle. The fourth constraint is that the

total air-time allocated to the UEs from an MBS is less than the total usable

subframes. The last constraint is that the total air-time allocated to the UEs

from a PBS is less than the total usable subframes.

4.3 Interior Point MTS Optimization Algorithm

In this section, we first present the system model which includes interference

model and capacity calculation. The notations are also briefly introduced. Sec-

ond, we formulate the MTS assignment problem, find that it is an mixed integer

nonlinear programming problem, which is NP-hard in the literature. Therefore,

in the next chapter, we will relaxed some constraints in the original to form a
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solvable problem which can be solve in a reasonable time. Fig 4.3, we show an

illustration of coverage area of a MBS with different power levels. Unlike ABS

and RPS, where ABS has only maximum and zero power and RPS has maximum

and static reduced power, MTS has different power levels and the benefits will

be introduced briefly in the following chapters.

4.3.1 Basic Idea of the Interior Point Methods

Consider an inequality constrained problem,

Problem 2.

minimize f(p)

subject to hi(p) ≤ 0, i = 1, ..., m (4.3)

where p is the solution vector of dimension n, and m is the number of constraints.

This problem could be approximately formulated as an unconstrained prob-

lem. First, make the inequality constraints implicit in the objective. The inequal-

ity constraints are eliminated by placing in the indicator function,

Problem 3.

minimize f(p) +
m
∑

i=1

I−(fi(p)) (4.4)

where I− : R→ R is the indicator function for the nonpositive reals,

I−(u) =

{

0, u ≤ 0

∞, u > 0
(4.5)

The Problem 3 has no inequality constraints, but its objective function is not

differential, so Newton’s method cannot be applied. Therefore, the logarithmic

barrier is introduced to handle this situation. The basic idea of the barrier method

is to approximate the indicator function I− by the function

Î−(u) = −(1/t)log(−u), dom Î− = −R++ (4.6)
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(a) Coverage Area with P7 (b) Coverage Area with P6

(c) Coverage Area with P5 (d) Coverage Area with P4

(e) Coverage Area with P3 (f) Coverage Area with P2

(g) Coverage Area with P1

Figure 4.3: Example of coverage area of MBS for 7 power levels.
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where t > 0 is a parameter that sets the accuracy of the approximation. Like

I−, the function Î− is convex and nondecreasing, and takes on the value ∞ for

u > 0. Unlike Î−, however, Î− is differentiable and closed: the approximation Î−,

for several values of t. As t increases, the approximation becomes more accurate.

Substituting Î− for I− in the Problem 3 gives the approximation,

Problem 4.

minimize f(p) +
m
∑

i=1

−(1/t)log(−fi(p)) (4.7)

The objective here is convex, since −(1/t)log(−u) is convex and increasing

in u, and differentiable. Assuming an appropriate closedness condition holds,

Newton’s method can be used to solve it.

One advantage of choosing the logarithmic penalty is that the approximation

becomes more accurate as t increases. When t → ∞, the optimal solution of

Problem 4 converges to the optimal solution of the original Problem 2. Figure

4.4 shows the approximation accuracy as t increases. Solving Problem 2 is thus

equal to solving a series of Problem 4 with increasing t.

Although the basic idea of the interior point methods is simple, it still requires

careful considerations to design an suitable mechanism to solve the subproblems

at hand. Design interior point methods is still an active research topic.

4.3.2 Detailed Description of Interior Point MTS Opti-

mization Algorithm

Although the interior point methods were already proposed for several tens of

years, the detailed design and implementation of the interior point methods are

still active research areas. It is hard to provide reliable design guidelines that

are suitable for all types of problems. Therefore, it is important to customize
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Figure 4.4: Effect of t on approximation accuracy. As t increase, the approxima-

tion becomes more accurate.

the solution to reflect the suitability for the problem at hand. In this section,

we present the detailed description of the customized interior point algorithm to

solve the MTS problem. First, we relax some constraints of the Problem ?? to

get the relaxed problem, therefore, the interior point can be used on the MTS

optimization. Second, the integer rounding algorithm is proposed to mapping the

solution of the relaxed problem into the original problem.

4.3.2.1 The Relaxed Problem

Before solving Problem ??, the first step is to relax some constraints to make

the problem solvable within a reasonable amount of time. The second step is to

convert the solution obtained in the first step into a feasible solution for Problem

??.

Problem ?? is a mixed-integer nonlinear programming (NLP) problem and is

considered to be an NP-hard problem in the literature. Therefore, we consider
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an NLP problem by ignoring the association constraints and relaxing the integer

constraints in Problem 1. The new NLP problem is shown in the following:

Problem 5 (Relaxed MTS Assignment Problem). Maximise the aggregate log-

capacity of UEs in the system, i.e.,

max
N,x,y

∑

u∈U

ln(Ru)

1. MTS Constraints:

N l
m ≥ 0, ∀m ∈M, ∀l ∈ L

2. Macro and Pico Subframes Constraints:

∑

l∈L

N l
m = ND, ∀m ∈M

Al
p = max

m
{
lmax
∑

i=l

N i
m} −

lmax
∑

j=l+1

Aj
p

3. Macro Air-time Constraints:

∑

u∈Um

xl
u ≤ N l

m, m ∈M, ∀l ∈ L

4. Pico Air-time Constraints:

∑

u∈Up

ylu ≤ Al
p, p ∈ P, ∀l ∈ L

Because the association constraints are ignored, each UE can associate with

both MBS and PBS at the same time. The second constraints in Problem 1 are no

longer integer constraints, so we can take non-integer values into consideration.

The relaxed problem is therefore an NLP problem.
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4.3.2.2 Algorithm for The Relaxed MTS Assignment Problem

Since the constraints of Problem ?? are all linear, the feasible region is a con-

vex set, With the concave objective function and the convex feasible region, the

relaxed MTS problem sould be a convex optimization problem.

We solve this problem by a primal-dual interior-point algorithm [98]. First, we

show the Lagrangian of the relaxed MTS Assignment Problem in the following:

L(N, x, y, λ, ν, α, β) =
∑

u∈U

ln(Ru)−
∑

m∈M
l∈L

λmlN
l
m

−
∑

m∈M

νm(
∑

l∈L

N l
m −ND)

−
∑

m∈M
l∈L

αml(
∑

u∈Um

xl
u −N l

m)

−
∑

p∈P
l∈L

βpl(
∑

u∈Up

ylu − Al
p)

(4.8)

where the variables λ, ν, α and β’s are dual variables and also called Lagrange

multipliers. For notation simplicity, we use p to denotes the vector of all Lagrange

multipliers, i.e., p = (λ, ν, α, β). In the similar way, we use z to denotes the vector

of all primal variables, i.e., z = (N, x, y). Therefore, we can rewrite the problem

in the following expression:

minimize f(z)

subject to hi(z) ≤ 0, i = 1, ..., c (4.9)

where c is the number of all constraints in Problem ??, and the function f(z)
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is equal to the objective function of Problem ?? multiply −1. The Lagrangian is

expressed as follows:

L(z, p) = f(z) +

c
∑

i=1

pihi(z). (4.10)

where pi is the ith element in vector p, i = 1, ..., c, are the Lagrange multipliers.

There exist primal optimal z∗ and dual optimal p∗ which satisfy the Karush-Kuhn-

Tucker (KKT) conditions.

hi(z
∗) ≤ 0, i = 1, ..., c

p∗ � 0

∆f(z∗) +

c
∑

i=1

p∗i∆hi(z
∗) = 0

(4.11)

We denote the value of the objective function with the optimal solution z∗ as

f ∗. Combining (4.10) and (4.11), it is found that

L(z∗, p∗) = f(z∗) +

c
∑

i=1

p∗ihi(z
∗)

≤ f ∗

(4.12)

Define a function

φ(z) = −
m
∑

i=1

ln(−hi(z)) (4.13)

which is the logarithmic penalty function for the problem (4.9). The gradient

and Hessian of the logarithmic penalty function φ are given by
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∆φ(z) =
m
∑

i=1

−1
hi(z)

∆hi(z)

∆2φ(z) =

m
∑

i=1

1

hi(z)2
∆hi(z)∆hi(z)

T +

2
∑

i=1

hi(z)

(4.14)

We rewrite (4.7) as

minimize f(z) + (1/t)φ(z) (4.15)

which has the same minimizer as (4.7) does. We denote the solution of (4.15) as

z∗(t). The first order necessary condition for (4.15) is

0 = ∆f(z∗(t)) + (1/t)∆φ(z∗(t))

= ∆f(z∗(t)) + (1/t)
m
∑

i=1

−1
hi(z∗(t))

∆hi(z
∗(t))

(4.16)

where the second equality comes from (4.14). From (4.11) and (4.16), the

dual feasible solution is defined as

p∗i (t) =
−1/t

hi(z∗(t))
, i = 1, ..., c. (4.17)

Since t > 0 and hi(z
∗) < 0, i = 1, ..., c, it is guaranteed that p∗i ≻ 0, which

meets the requirements shown in (4.11).

Applying (4.17) to (4.10),
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L(z∗(t), p∗(t)) = f(z∗(t)) +
c

∑

i=1

p∗i (t)hi(z
∗(t))

= f(z∗(t))− c/t

≤ f ∗ (4.18)

where the last inequality comes from (4.12). Therefore,

f(z∗(t))− f ∗ ≤ c/t (4.19)

(4.19) means that the primal feasible solution z∗(t) is no more than c/t-

suboptimal. The term c/t is called the duality gap. When t→∞, z∗(t) converges

to the optimal solution of the original problem (4.9).

With (4.17), the Karush-Kuhn-Tucker (KKT) conditions shown in (4.11) can

be written as rt(z, p) = 0, where the residual rt(z, p) is defined as

rt(z, p) =

[

∇f(z) +Dh(z)
T p

−diag(p)h(p)− (1/t)1

]

(4.20)

for t > 0. Here h(z) is the constrain matrix and its derivative matrix Dh(z)

are defined as

h(z) =







h1(z)
...

hc(z)






, (4.21)

and

Dh(z) =







∇h1(z)
T

...
∇hc(z)

T






. (4.22)
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If (z, p) satisfies rt(z, p) = 0, then z = z∗(t) and p = p∗(t) are the primal

feasible and dual feasible solutions, respectively, and it lead to m/t-suboptimal

solution. Next, we apply the Newton method in the following steps to solve

the nonlinear equations rt(z, p) = 0, for fixed t, at a point (z, p) which satisfies

h(z) ≺ 0, p ≻ 0. The Newton step ∆x = (∆z,∆p) is ∆x = −Drt(x)
−1rt(x). In

terms of z and p, we have

[

∇2f(z) +
∑c

i=1 pi∇2hi(z) Dh(z)
T

−diag(p)Dh(z) −diag(h(z))

] [

∆z
∆p

]

= −1 ×
[

∇h(z) +Dh(x)
Tp

−diag(p)h(z)− (1/t)1

]

(4.23)

Therefore, we have the primal-dual search direction (∆z,∆p), and we find a

suitable step length s by performing a backtracking line search method [99]. We

update the next primal-dual point as x = (z+s∆z, p+s∆p). When a pre-defined

precision is met, the iteration stops. Boyd and Vandenberghe propose a surrogate

duality gap [98], which is defined as

η̂(z, p) = −h(z)Tλ (4.24)

The surrogate duality gap is adopted to the algorithm to choose the approx-

imation parameter t and to decide the termination condition. The overview of

the first step algorithm is shown in Algorithm 2.

4.3.2.3 Integer Rounding for Relaxed MTS Assignment

In the second step of the proposed algorithm, the goal is to convert the solution

obtained in the first step into a feasible solution for the MTS assignment problem.

In the relaxed problem, each UE can associate with both an MBS and a PBS;
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Algorithm 2 Interior point relaxed MTS optimization algorithm.

Input:initial primal point z, p ≻ 0, µ > 1, α, β, ǫfeasible > 0, ǫ > 0

Output:optimal solution ẑ for the relaxed problem

repeat

1. Determine t.

t = µc/η̂

2. Compute the primal-dual search direction ∆x = (∆z,∆p).

[

∇2f (z) +
∑c

i=1 pi∇2hi (z) Dh(z)
T

−diag (p)Dh (z) −diag (h (z))

]

×
[

∆z

∆p

]

= −1 ×
[

∇f (p) +Dh(p)
Tp

−diag (p) h (p)− (1/t)1

]

.

3. Determine s by line search.

smax = min {1,min {−λi/∆λ|∆λi < 0}}

s = 0.99smax

if ‖rt (z+, p+)‖2 ≥ (1− αs) ‖rt (z, p)‖2 then

s = β × s

end if

4. Update the primal-dual point.

z+ = z + s∆z.

p+ = p+ s∆p.

z = z+.

p = p+.

until
∥

∥

∥
∇f (z) +Dh(z)

Tp
∥

∥

∥

2

≤ ǫfeasible, ‖−diag (p)h (p)− (1/t) 1‖2 ≤ ǫfeasible,

and η̂ ≤ ǫ.

return ẑ = z
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however, it can associate with only one of them in the original problem. We must

therefore determine the association of each UE to either an MBS or a PBS.

We compute the throughput of each UE from MBS and PBS according to the

solution obtained from the first step. The calculation is shown as follows:

Rmacro
u =

lmax
∑

l=1

rml
u x̂l

u

Rpico
u =

lmax
∑

l=1

rplu ŷ
l
u

(4.25)

If Rmacro
u ≥ Rpico

u , UE u would associate with MBS, otherwise, it associates

with PBS. Denote U⋆
m and U⋆

p are the set of UEs which associate MBS m and

PBS p after the procedure, respectively.

Next, we need to convert N l
m solved in the first step into an integer. The goal

of ABS is to protect PUEs, and we leave this property in the proposed algorithm.

Therefore, we convert N l
m into the greatest integer lower than N l

m. The integer

rounding procedure for N l
m is shown as follows:

N⋆l
m =







⌊N̂ l
m⌋ , ∀m ∈M, ∀l ∈ L, l 6= 1

N̂ l
m = N̂D −

lmax
∑

l=2

N̂ l
m , ∀m ∈M, l = 1

(4.26)

The value of A⋆l
p is dependent on N⋆l

m , and the calculation is according to (4.2).

The last step is to find the final value of x⋆l
u and y⋆lu . For each MBS m, for all

u ∈ U⋆
m, the x⋆l

u is

x⋆l
u =

x̂l
uN

⋆l
m

X l
m

(4.27)
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where X l
m =

∑

m∈U⋆
m

x̂l
m

Similarly, for each PBS p, for all u ∈ U⋆
p, the y⋆lu is

y⋆lu =
ŷluA

⋆l
p

Y l
p

(4.28)

where Y l
p =

∑

m∈U⋆
p

ŷlp. The overview of the second step of the algorithm is shown

in Algorithm 3.

4.3.2.4 Proof of Optimality

Theorem 4. A limit point of the sequence {z∗(t)(k)} generated by the interior

point relaxed MTS optimisation algorithm is a global minimum of the original

optimisation problem (4.9).

Proof. (By contradiction) Let z̄∗ be a limit point of the sequence {z∗(t(k))}. If

z̄∗ is not a global minimum, a feasible z̄ exists such that f(p̄) < f(p̄∗). By the

definition of z∗(t(k)),

f(z∗(t(k)))− 1

t(k)

c
∑

i=1

ln(−hi(z
∗(t(k)))) ≤ f(z̃)− 1

t(k)

c
∑

i=1

ln(−hi(z̃)). (4.29)

for all k. By taking the limit k →∞,

f(z̄∗)− lim
k→∞

1

t(k)

c
∑

i=1

ln(−hi(zk)) ≤ f(z̃) < f(z̄∗). (4.30)

Hence lim
k→∞

1
t(k)

c
∑

i=1

ln(−hi(zk)) > 0. Because 1/t(k) decreases to zero as k →∞, a

contradiction occurs. Therefore, it is proved that p̄∗ is a global minimum of the

original optimisation problem.

4.3.2.5 Complexity Analysis

The primal-dual interior point method requires a total of O(
√
n) iterations [100],

where n is the size of the problem. In the relaxed MTS optimisation problem, n

is equal to (M × P × L×N). While considering the number of computations in
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Algorithm 3 Round Relaxed MTS Algorithm: Algorithm for Integer Rounding

of Output of Algorithm 2

1. UE Association: For all u ∈ U, perform the following steps:

a) Compute the throughput it get From MBS and PBS according to solu-

tion obtained from the step 1 as follows:

Rmacro
u =

lmax
∑

l=1

rml
u x̂l

u

Rpico
u =

lmax
∑

l=1

rplu ŷ
l
u

where x̂l
u and ŷlu are the output of Algorithm 2

b) If Rmacro
u > Rpico

u , UE u associate with the MBS, else it with PBS.

Define U∗
m and U∗

p are the set of UEs which associate MBS m and PBS p

after the procedure, respectively.

2. MTS Rounding: Compute integral N∗l
m as follows:

N⋆l
m =







⌊N l
m⌋ , ∀m ∈M, ∀l ∈ L, l 6= 1

N l
m = ND −

lmax
∑

l=2

N l
m , ∀m ∈M, l = 1

where N̂ l
m is the output of Algorithm 2.

3. Airtime Computation: For each MBS m, for all u ∈ U∗
m, the final value of

x∗
u is

x∗l
u =

x̂l∗
uN

∗l
m

X l
m

where X l
m =

∑

u∈U∗

m

x̂l
m. Similarly, for each PBS p, for all u ∈ U∗

p, the final

value of y∗lu is

y∗lu =
ŷ∗lu A

∗l
p

Y l
p

where Y l
p =

∑

u∈U∗

p

ylp
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exact arithmetic, solving the Newton step requires at most O(n3) computations,

although typically the number of computations would be O(n) or O(n2) in a

problem in which the Hessian matrix is sparse [101].

4.3.2.6 Summary

In this chapter, we describe the algorithm to solve the MTS assignment problem,

and the algorithm is divided into two steps: Relaxed MTS assignment algorithm

and integer rounding for relaxed MTS algorithm. The first step is based on inte-

rior point method, and we introduce the basic idea of the interior point method.

We provide the detailed description of the relaxed MTS assignment algorithm.

The algorithm solves the problem iteratively toward to the desired approximation

accuracy. Each subproblem is solved by Newton’s method which in known to be

efficient. In the second step, we round the solution obtained from the step one to

integers, because the solution of MTS assignment problem is discrete. Besides,

we provide the proof of optimality and convexity of the first step algorithm. The

optimality proof shows that the algorithm would coverage to the optimal solution

and we show that the algorithm has linear convexity. Therefore, the algorithm is

shown to be effective and efficient in the desired problem.

4.4 Numeric Example

In this section, we give a simple example to show the relationship among ABS,

RPS, and MTS. The purpose is to present the effectiveness of the proposed MTS

approach.
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4.4.1 Correlation Among The Approaches

In the first of this chapter, we give a simple illustration of the relation among

some related approaches. Suppose that the power levels used in 2-MTS is P1 and

P2, where P1 is equal to the transmission power of reduce transmission power

in RPS and P2 is less than the maximum transmission power. The maximum

transmission power is added in 3-MTS. Then, zero transmission power, namely

mutes subframes, is added in 4-MTS. Another arbitrary transmission power is

added in 5-MTS. Therefore, Fig. 4.5 is the sketch map of the performance among

ABS, RPS and MTS with different levels. As shown in the figure, MTS can

provide better performance than ABS in most conditions even there are only two

power levels. With the number of power levels of MTS increased, the performance

of MTS is better than ABS and RPS. In the following section, we give a detailed

numeric example to explain this result.

Figure 4.5: The sketch map of the performance relation among ABS, RPS and

MTS with different levels.
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4.4.2 Example

Through a simple analysis, an intuitive explanation of the idea of MTS is pro-

vided. In this example, our goal is to increase the performance of macrocells

without harming that of picocells. We know that RPS and ABS involves a trade-

off between the performance of macrocells and picocells. We only compare the

performance of MTS and ABS, because RPSs always produce more interference

to picocells than ABS does. We consider a HetNet with an MBS, a PBS and a

pico UE; an illustration of the network topology is shown in Fig. 4.6. The MBS

has two power levels, which are denoted by Pm
1 and Pm

2 (Pm
1 < Pm

2 ), respectively.

The path loss model is according to [102]..

For the viewpoint of the MBS, more transmission power leads to better perfor-

mance. Therefore, the MBS tends to use as great a proportion of Pm
2 as possible

in this example. Therefore, we first determine a combination of Pm
1 and Pm

2 that

produces equal or less interference to pico UEs given a number of ABS frames,

which is denoted by NA. When subframes are not muted in ABS scenarios, the

maximum transmission power is used, which is denoted by Pm
3 . Gmu, Gpu and

Gmp are the channel gains amongst the MBS, the PBS and the pico UE, and

the transmission power of the PBS is P p. The SINR of the pico UE is shown as

follows:

SINRi =
P p ×Gpu

Pm
i ×Gmu +N0

, i = 0, 1, 2, 3 (4.31)

where P0 = 0, and we have four different SINR values in this example. SINR0

and SINR3 are used in ABS scenario, and SINR1 and SINR2 are used in MTS

with two power levels. We use LTE table lookup for calculating capacities, which
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Figure 4.6: The topology used in the simple numeric analysis.

is the function of SINRi and denote it as U(SINRi). Denote ND and N1 as the

ABS period and the number of subframes with power level P1, respectively. We

need to find a combination of P1 and P2 to produce less or equal interference to

the pico UE. So, we have the following equation:

N1
∑

i=1

U(SINR1) +

ND−N1
∑

i=1

U(SINR2) ≥
NA
∑

i=1

U(SINR0) +

ND−NA
∑

i=1

U(SINR3)

(4.32)

where the left-hand-side (LHS) is the capacity of MTS and right-hand-side

(RHS) is the capacity of ABS scenario. To produce less or equal interference is

equal to have higher or equal capacity. So, the greater or equal operation is held

in (4.32). After some derivations, we have:

N1 ≥ NA × [U(SINR0)− U(SINR3)] +ND × [U(SINR3)− U(SINR2)]

U(SINR1)− U(SINR2)

(4.33)

Besides, N1 is the number of subframes with power level P 1, therefore, 0 ≤ N1 ≤
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ND.

Fig. ?? shows some examples in which the distances between the MBS and

the PBS are 800, 500 and 300 m. The red points in the figures are the locations

of the PBS, and the MBSs are on the origin. The transmission power of the PBS

is set to 30 dBm, and maximum power of the MBS is 46 dBm, namely, Pm
3 = 46

dBm. We set Pm
1 and Pm

2 to 26 dBm and 43 dBm, respectively. The red and blue

lines indicate the boundaries of the CRE bias (15 and 10 dB). The boundary of

the CRE bias is an ellipse according to [?]. In eICIC, the CRE bias is usually set

to around 10 dB; thus, the UEs outside the blue ellipse do not associate with the

PBS in most conditions.

Each point in the figures represents the position of the pico UE. The grayscale

stands for the minimum proportion of Pm
1 needed to produce less or equal inter-

ference to the pico UE. A darker gray means that the MBS can use a lower

proportion of Pm
1 , and thus a higher proportion of Pm

2 , to produce equal interfer-

ence to the pico UE. We provide examples with different ABS proportion α, where

NA = αND. In our intuition, the larger α leads to less interference experienced

by the pico UE. A larger proportion of Pm
1 is therefore needed. Accordingly, the

figures with larger α values may seem brighter. Positions with white colour mean

that we cannot use Pm
1 and Pm

2 to produce less or equal interference to the pico

UE.

From Fig. ??, the MBS can use a larger proportion of Pm
2 when the distance

between the MBS and the PBS is 800 m. Even if the ABS proportion is increased

to 40%, the MBS can still use Pm
2 in some subframes no matter where the pico

UE is located with 10-dB bias. When the distance between them is decreased

to 300 m, some locations of the pico UE with 10-dB bias make it impossible for
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(a) 800m,10%

(b) 800m,20%

(c) 800m,30%

(d) 800m,40%

Figure 4.7: The distance between the MBS and the PBS is 800 meters, and

different ABS proportions are evaluated.
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(a) 500m,10%

(b) 500m,20%

(c) 500m,30%

(d) 500m,40%

Figure 4.8: The distance between the MBS and the PBS is 500 meters, and

different ABS proportions are evaluated.
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(a) 300m,10%

(b) 300m,20%

(c) 300m,30%

(d) 300m,40%

Figure 4.9: The distance between the MBS and the PBS is 500 meters, and

different ABS proportions are evaluated.
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the MPS to produce less or equal interference to the pico UE with Pm
1 and Pm

2 .

However, if we decrease the value of the CRE bias, the MBS can still create less

or equal interference to the pico UE regardless of whether the pico UE is located

with the decreased bias. For example, in Fig. 4.9(d), if we decrease the bias value

to 3 dB, we find that the locations of the pico UE can make the MBS produce

less or equal interference to the pico UE. According to this finding, we have the

following proposition:

From this simple analysis, MTS has better performance than ABS even though

there are only two power levels.

Theorem 5. Through the proposed approach, the user further from the MBS

would be assigned no less power than the users close to the MBS.

Proof. According to Theorem 1, we know that a user further from the MBS would

be assigned more transmission power. In the proposed approach, the transmission

power is quantified into L levels instead of continuous assignment. Therefore,

users with power level Ln would be further from the MBS than those with power

level Ln−1. In a similar way, users with power level Ln would be nearer the

MBS than those with power level Ln+1 The group of users with power level Ln is

between the group of users with power level Ln−1 and those with Ln+1. Therefore,

the group of users with power level Ln is an annulus. We conclude that the users

would be clustered into L groups, and these groups from annuluses.

U1(P +∆P )− U1(P ) < U2(P +∆P )− U2(P )

⇒ U1(P +∆P ) + U2(P ) < U1(P ) + U2(P +∆P )

(4.34)

According to (4.34), we conclude that assigning more power to the user who is

further from the MBS creates more utility in the system.

Proposition 3. The macro users scheduled by the proposed algorithm would be

clustered into L groups, and these groups form annuluses.
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Proof. According to Theorem 1, we know that a user further to the macro BS

would be assigned more transmission power. In the proposed approach, the trans-

mission power is quantified into L levels instead of continuous assignment. There-

fore, users with power level Ln would be further to the macro BS than those with

power level Ln−1. In the similar way, users with power level Ln would be nearer

to the macro BS than those with power level Ln+1 The group of users with power

level Ln is between the group of users with power level Ln−1 and Ln+1. So, the

group of users with power level Ln is an annulus. We conclude that the users

would be clustered into L groups, and these groups from annuluses.

4.4.3 Summary

In this section, we introduce the correlation among all approaches in the first.

Then, we give a detailed numeric results to show the performance of the UE

served the PBS in different locations. We give some propositions and theorems

in the end of this chapter.

4.5 Simulation Results

4.5.1 Simulation Settings

In line with the system mode outlined in Chapter II, the network topology con-

sists of a standard hexagonal grid of MBS complemented with a set of outdoor

PBSs. Macrocells and picocells share the same 5 MHz of bandwidth at a carrier

frequency of 2 GHz. The distance between the macrocells is 500 m, and the min-

imum distance amongst the small cells is 40 m. The propagation model consists

of a deterministic distance-dependent component and an independent stochas-

tic component for shadow fading, which we adopt as two-way ground fading.

The simulation parameters are set according to HetNet simulations suggested by
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Table 4.2: Simulation Settings

Parameter Value

Cellular layout 7 Hexagonal Grid

Carrier frequency 2 GHz

System bandwidty 5 MHz

Subframe duration 1 ms

Number of macrocells 1

Number of PBSs per macrocell 4

Max. macro BS transmit power 46 dBm

Max. pico BS transmit power 30 dBm

Number of UEs per Macrocell NUE 120

Number of hotspot UEs Nhotspot [2/3 ·NUE]

Thermal noise density -174 dBm

Macro path loss model 128.1 + 37.6log10(km)dB

Pico path loss model 140.7 + 36.7log10(km)dB

Traffic model Full buffer

Shadowing Model Two-way Ground Fading

Fading Model Raleigh Fading

3GPP [94,102]. The summary of the simulation settings are shown in Table 4.2.

We apply a full buffer traffic model with infinite data packets in the queue for

each BSs while evaluating the system capacity. The assignment of power levels

are: P1 = 0, P2 = Ps, PL = Pm, and Pi = Pm + (Pm − Ps)/(L − 2). The power

levels used in the simulation are shown in Table 4.3.

4.5.2 Compare with Optimal Solution

The proposed algorithm consists of two algorithms: the interior point relaxed

MTS optimization algorithm and the round relaxed MTS algorithm. As men-

tioned before, the solutions for the MTS optimization problem are discrete and
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Table 4.3: Transmission Power Level

4 Levels 0,30,38,46 (dBm)

5 Levels 0,30,35,41,46 (dBm)

6 Levels 0,30,34,38,42,46 (dBm)

7 Levels 0,30,33,36,39,42,46 (dBm)
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Figure 4.10: The performance loss rate with different power levels compared to

the optimal solution obtained from the interior point relaxed MTS optimization

algorithm.
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the purpose of the second algorithm is to transform the solution obtained from the

first algorithm, which is continuous, into a discrete solution. Because we prove

that the solution obtained from the first algorithm is optimal, the round procedure

in the second algorithm would produce some loss of performance. Therefore, we

compare the number of power levels with the performance loss rate in this section.

Fig. 4.10 shows the result. The rate of performance loss is more than 40%

with two power levels, and the rate of loss is lower than 20% if the number of

power levels is increased to 4. When the number of power levels is increased to

7, the rate of performance loss is lower than 10%. The rate of performance loss

will achieve 0 if we increases the number of power levels to infinity. We consider

a loss of lower than 10% to be acceptable, so we use seven power levels in our

algorithm in the following simulations.

4.5.3 User Clustering

Figure 4.11: The user association in the center cell.

As mentioned in Proposition 2, macro-UEs may be clustered into several
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Table 4.4: Number of UEs in the Groups

Power Level Number of UEs

Power Level 2 4

Power Level 3 4

Power Level 4 8

Power Level 5 9

Power Level 6 9

Power Level 7 6

groups, depending on the number of power levels. In this section, we show the

user-clustering phenomenon of the proposed algorithm. Because the simulation

is conducted in seven macrocells, we choose the one in the centre for observation.

Fig. 4.11 shows the corresponding macrocell, which includes the UEs, the MBS

and the PBSs. The user association is also shown in the figure, where the blue

and green lines represent associations with the MBS and the PBSs, respectively.

The number of power levels used in the simulation is 7, therefore, the number

of groups the macro UEs be clustered would be 6. Because the power level P0

stands for muting subframes, no UEs can be served in these subframes. Fig.

4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig. 4.16 and Fig. 4.17 show groups of UEs

served by different power levels. We find that only 6 UEs needs to be served by

the maximum transmission power. More than half of UEs can be served by the

power levels P3, P4 and P5. The number of UEs in the groups is shown in Table

4.4. We will show that this behavior would save much power in the following

section.
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−500 0 500 1000 1500

Figure 4.12: The group of UEs served by the power level P2.

Figure 4.13: The group of UEs served by the power level P3.

96

./figure/Clustering_1.eps
./figure/Clustering_2.eps


4.5 Simulation Results

Figure 4.14: The group of UEs served by the power level P4.

Figure 4.15: The group of UEs served by the power level P5.
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Figure 4.16: The group of UEs served by the power level P6.

Figure 4.17: The group of UEs served by the power level P7.
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Figure 4.18: Comparison of the capacity of the MBS and the PBS in the original

ABS scheme and the proposed MTS approach.

4.5.4 System Capacity

To evaluate the system capacity, a simple environment with one MBS and one

PBS separated by 300 m is conducted first. It is straightforward that the ca-

pacity of the MBS is reduced when ABS proportion increases because the MBS

sacrifices more subframes to protect the performance of the PBS. Therefore, the

performance of the PBS gets better and better. In contrast, in the proposed

scheme, the MBS does not use the maximum transmission power. Instead, P6

and P5 may be suitable for most conditions; therefore, the interference that the

PBS surfs is lightened. In this way, the MBS can retain its performance and the

PBS can have better performance in the original non-ABS frames.

In contrast, the MBS transmits with little power instead of blanking the sub-

frames in the original ABS. In this way, the MBS is degenerated into a PBS;

therefore, the cell centre UEs can still be served. The increased interference to

the PBS can almost be ignored. Therefore, as seen in Fig. 4.18, the capacities
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of the MBS and the PBS are greater than those of the ABS scheme regardless of

the ABS proportion. We increase the performance of the MBS without harming

that of the PBS.
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Figure 4.19: The average throughput of cells in different approaches.

Next, we compare the average cell throughput amongst all of the approaches.

As mentioned before, RPS involves a trade-off between the performance of macro-

cells and picocells. Therefore, from Fig. 4.19, we see that the performance of RPS

and ABS are almost the same; the performance of the macrocells is greater than

that of the PBS in RPS; however, on the contrary, it is worse in ABS. DRPS

improves the shortcut of RPS, and the performance of DRPS is shown in the Fig-

ure. However, it is still lower than the proposed MTS scheme because both RPS

and DRPS use the maximum transmission power during non-ABS subframes.

MTS can adjust the most suitable power level on each subframe; therefore, the

performance of the macrocells and that of the picocells both increase. We also

find that better performance would be obtained with more power levels.

In the last part of this section, we show the cumulative density function (CDF)
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Figure 4.20: The CDF of UEs’ capacity in three approaches: RPS, DRPS and

MTS.

of yhr UEs’ capacity amongst RPS, DRPS and MTS in Fig. 4.20. RPS and

ABS involve a trade-off between the performance of the macrocells and picocells;

therefore, the CDF of ABS is not plotted in the Figure. From Fig. 4.20, it is

obvious that the performance of MTS is better than that of the others regardless

of the cell edge UEs, the median UE and the average performance amongst the

cells.
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4.5.5 Power Consumption
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Figure 4.21: The distribution of transmission power levels in the system.

In this section, we compare power consumption amongst all of the approaches.

First, we show the power level distribution in the proposed algorithm amongst

all cells; as shown in Fig. 4.21, the maximum power, that is, power level 7,

is only about 7%. This behaviour tells us that maximum power is not used

for transmission in most conditions because it would be wasted; it is enough to

use P3, P4 and P5. In addition, the proportion of blank subframes is very low,

about 5%, because using P1 or P2 instead of blanking subframes can increase the

spectrum utilisation of MBSs without harming the performance of the picocells.

Therefore, the performance of the whole system is increased.
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Figure 4.22: The power consumption of all approaches.

Fig. 4.22 shows the average power consumption amongst all of the approaches.

It is obvious that the proposed approach has the lowest power consumption, only

about 30% of that of the other approaches, due to the very low proportion of

maximum power transmission of MTS. From the aspect of green communication,

the proposed approach saves a great deal of power.
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4.5.6 VoLTE Latency
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Figure 4.23: The over-the-air delay of the ABS scheme and the proposed ap-

proaches.

In this section, we study VoLTE traffic latency of ABS and MTS. The sim-

ulation settings are according to the work in [103], and the load of macrocells is

about 275 VoLTE users based on the same work. We set the number of VoLTE

users to 250 in a macrocell, and assume that there is no limit on the number of

physical downlink control channel (PDCCH) available. We study the over-the-air

transmission delay, and it is unacceptable while the delay is more than 50 ms.

Fig. 4.23 shows the delay time versus proportion of ABSs. We find that delay

time increased dramatically while ABS proportion gets higher. This is because

that the higher ABS proportion, the less subframes MBSs can use. It leads to

that UEs need to wait a lot of subframes to transmit a packet, therefore, the

delay for UEs is increased. By contrast, Multi-tone ABS increases the spectrum

utilization of MBSs, therefore, MBSs do their best to use each subframe. Under

this condition, subframes with lower power can be used by cell-center users, and
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subframes with higher power can be used by cell-edge users. So, each user can be

scheduled in appropriate subframes. The over-the-air transmission delay doesn’t

get higher in Multi-tone ABS.

4.5.7 Summary

In this section, we provide various simulation results to show the performance

of the proposed approach. First, we show the performance loss compared to the

optimal solution obtained from the first algorithm, namely interior point relaxed

MTS optimization algorithm. We show that using seven power levels has lower

than 10% performance loss. Second, a example of UE clustering is provided.

Third, we compare the proposed algorithm with other approaches from the view

point of system capacity to show the outstanding of the proposed algorithm.

Forth, the power consumption of all algorithms is also conducted, and the result

shows that the proposed algorithm save much. In the last, we show the over-

the-air delay of the proposed algorithm and ABS scheme. The result shows the

proposed algorithm also has outstanding in this aspect.

4.6 Concluding Remarks

Ultra-dense small cell deployment is the most appealing approach with which

to meet the requirements of the dramatically increasing demand for data traffic.

Therefore, heterogeneous networks (HetNets) that contain macrocells and small

cells have recently become a popular research topic. The most important issue

regarding HetNets is intercell interference; therefore, an almost-blank subframe is

proposed to deal with the interference between macrocells and small cells. How-

ever, the macrocells will waste spectrum resources while using an almost-blank
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subframe. Reduced-power subframes have been proposed as a key technique for

further enhancement of intercell interference coordination in the Third Genera-

tion Partnership Project to compensate for the insufficiencies of the almost-blank

subframe. However, according to the literature, these two approaches involve a

trade-off between the performance of the system as a whole and the performance

of the outage users. In this work, we propose a scheme called multitone sub-

frames to handle this situation by increasing the system capacity without harm-

ing the performance of the outage users. We formulate the multitoned subframe

assignment problem as an optimisation problem and solve it with the interior

method. We provide mathematical analysis of the optimality and complexity of

the proposed algorithm and evaluate its performance via computer simulation.

According to the simulation results, the proposed scheme has (1) improved sys-

tem capacity without a reduction in the performance of outage users and (2)

lower power consumption and better performance than other approaches. The

contributions are summarized as follows:

1. We address the insufficiencies of RPS and propose an algorithm to improve

the system performance. RPS and ABS involve a trade-off between the av-

erage capacity and the capacity of the edge UEs. The proposed algorithm

improves both capacities at the same time. The goal of the proposed al-

gorithm is to increase the capacity of macrocells without harming that of

picocells.

2. The proposed algorithm is based on the interior point method. It is difficult

to provide reliable design guidelines to make the method suitable for all

types of problems. In this study, we customise the interior point method to
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provide a powerful algorithm and provide the optimality and convexity of

the proposed algorithm.

3. From the simulation results, we find many advantages via the proposed ap-

proaches. First, the spectrum utilisation is greater with MTS than with the

ABS scheme. Second, we increase the capacity of MBSs without harming

the performance of PBSs. Third, from the viewpoint of green communica-

tion, we save a great deal of power compared to other approaches. Finally,

we reduce the latency of real-time traffic in MBSs compared to ABS scheme.
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Chapter 5

Conclusion

It is forecasted that at least a 100× network capacity increase will be required

to meet the traffic demands in 2020. As a result, vendors and operators are

now looking at using every tool at hand to improve network capacity. Increasing

the network densification is considered at the most workable solution to meet

the requirements. Therefore, the so called heterogeneous networks which contain

traditional macrocells and small cells is used to increase the network densification

efficiently. Small cells, such as femtocell, picocell and relay nodes, are used to

increase the network capacity and make up the insufficiency of macrocells. This

dissertation focuses on the issue on relay node and picocells. For the relay node,

we propose a relay node assignment algorithm called ”Decentralized Learning

based Relay Assignment” (DLRA) to performance relay node selection in cooper-

ative communication. There are several advantages in DLRA: (1) DLRA is a fully

decentralized approach; (2) the selection procedure in only based on existing envi-

ronmental feedback; (3) Comprehensive mathematical analysis and performance

manipulation are provided. On the other hand, we mitigate the interference

between macrocells and picocells, and propose an approach called ”Multi-Tone
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Subframes” (MTS) scheme to achieve this goal. The proposed scheme make up

insufficiency of ABS and RPS: it increases the capacity of macrocells without

harming the performance of the picocells since ABS and RPS are trade-off be-

tween them. We give an simple example to show the efficient of the proposed

approach. Besides, the optimality and the complexity of the proposed approach

are also provide in the dissertation. For both relay assignment and interference

mitigation problem, we give simulation results to show the both approaches out-

perform other approaches.
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