國立臺灣大學獸醫專業學院分子暨比較病理生物學研究所

碩士論文

Graduate Institute of Molecular and Comparative Pathobiology School of Veterinary Medicine National Taiwan University Master Thesis

豬鐵士古病毒地方性感染之血清型分子鑑定

Molecular Serotyping of the Porcine Teschoviruses in Endemically Infected Pigs

郭依婧

Yi-Ching Kuo

指導教授:王汎熒 博士

Advisor: Fun-In Wang, D.V.M., PhD

中華民國 104 年7月

July 2015

國立臺灣大學碩士學位論文 口試委員會審定書

豬鐵士古病毒地方性感染之血清型分子鑑定

Molecular Serotyping of the porcine teschoviruses in

Endemically Infected Pigs

本論文係 郭依婧君(r02644004)在國立臺灣大學獸醫 專業學院分子暨比較病理生物學研究所、所完成之碩士學位 論文,於民國 104 年 07 月 15 日承下列考試委員審查通過及 口試及格,特此證明

口試委員: + VA-(簽名) (指導教授) 李谲 F. M.ZZ 注言 爱美极

系主任·所長 」 / / / / / (簽名)

致謝

雨年了,日子過得又快又慢。在比病所打滾的日子裡最最要感謝的是指導教授 王汎熒老師,在病理、實驗以及生活、待人處事方面都從老師身上學到很多,進 來 209 真的很開心!感謝老師這段時間費心的照顧,沒有放棄我唏哩呼嚕的實驗, 尤其是畢業前夕對我的包容。

能順利穿上碩士服開心拍照留念,要謝謝的人太多。首先感謝伊嘉學姊推薦我 進來 209,以及在生活、課業上大大小小的照顧,對我來說妳不只是學姊也是我很 好的朋友;謝謝建均和威翔學長,把我當妹妹一樣關心;謝謝佳玲學姊在實驗上 的協助;謝謝之涵學妹,沒想過二年級還能認識交心知已;謝謝芷華學姊把我當 自己家的學妹,也謝謝大寶狗的各種陪伴;謝謝待在台北的老朋友品君、柔穎、 立軒、宋名傑,你們替台北增添了許多溫度;謝謝大學同學及國小同學,在生活 中各種改變裡留了位置給我,待在我伸手就能講著的範圍裡;謝謝兩位好室友莎 姐和滋頤,會想念在 618 背對背的日子。最後要感謝重要的雅媚學姊,妳是在台 北教導及幫助我最多的人,能認識妳是一件非常幸運的事。

謝謝龐飛老師、劉振軒老師、鄭謙仁老師、張本恆老師及張惠雯老師兩年來病 理輪值的指導。謝謝口試委員張本恆老師、家宜學姊和李璠學長論文方面給予的 協助。謝謝同屆的三個好夥伴:啟霏、志勤和阿森,很榮幸和你們肩並肩上了四 個學期的 AFIP。感謝比病所學長姐及學弟妹給予我大大小小的幫助。

最後要感謝親愛的爸爸、媽媽、姐姐,謝謝你們讓我選擇做自己想做的事,能 無後顧之憂的待在台北。對你們無法講出太肉麻的話,你們的支持對我來說一直 是最重要的。

依婧 謹誌於台灣大學分子暨比較病理生物學研究所

2015年8月

ii

中文摘要

豬鐵士古病毒(Porcine Teschovirus, PTV)為 Picornaviridae 科 Teschovirus 屬,直 徑約為 25-30nm、球型、正向單股 RNA 病毒。目前 PTV 有 13 種血清型,各年齡 猪隻皆有感受性,臨床症狀以引起神經症狀之腦脊髓灰質炎及下痢為主。台灣在 2000 年及 2004 年爆發兩次疫情,現今在豬場呈現普遍的地方性感染。先前檢測出 台灣存有五種血清型,分別為 PTV-1、-4、-6、-7、-11,最常見的為 PTV-7 及 PTV-6。 本研究目的為利用增幅病毒 VP1 核酸序列進行鑑定台灣目前 PTV 是否有更多血清 型的存在。實驗樣材來自於七個豬場,每場採集3隻淘汰病弱豬及1隻臨床症狀 健康豬隻;每頭豬隻收集糞便、迴腸、扁桃、鼠蹊淋巴結、血漿、脾臟、腎臟、 膀胱、尿液以及鼻腔拭鏡共10個樣材。首先以增幅5'NTR高度保留區域檢測PTV 感染,所有28頭豬隻皆為PTV陽性(100%,28/28),其中又以糞便的陽性率最高(96%, 27/28),其次為迴腸、扁桃、鼻腔試鏡(93%,26/28),血漿(86%,24/28),鼠蹊淋巴 結及尿液(79%, 22/28),膀胱(64%, 18/28),脾臟(57%, 16/28)及腎臟(10%, 10/28)。 接著利用本研究新設計之引子增幅病毒 VP1 序列,在 217 個 PTV 陽性樣本中有 63 個成功完成增幅且區分血清型。28 頭豬隻皆至少有一種血清型存在,總共檢測出 五種 PTV 血清型,分別為 PTV-2、-4、-5、-6、-10,其中又以 PTV-10 (57%, 36/63) 最為常見,其次為 PTV-2 (14/63,22%)。其中有 14 頭豬隻有兩種以上血清型存於不 同臟器 (14/28, 50%)。本研究再度印證了台灣 PTV 普遍感染的現象,加上先前的 結果,證實台灣目前至少存在8種血清型,分別為PTV-1、-2、-4、-5、-6、-7、-10、 -11。值得注意的是在分別來自三個豬場的三頭豬隻尿液亦可檢測出 PTV-10,顯示 PTV 可經尿液排出體外,糞尿混合下加速了病毒傳播速度,證實之前的推論。

關鍵字:豬鐵士古病毒、血清型、反轉錄聚合酶連鎖反應

iii

ABSTRACT

Porcine teschoviruses (PTVs) is a non-enveloped, spherical, positive-sense, single-stranded RNA virus, which belong to genus Teschovirus within the family Picornaviridae. Up to date, PTVs are reclassified into 13 serotypes that are associated with a variety of clinical signs and prominent with polioencephalomyelitis and diarrhea. Two epidemic outbreaks of PTV-1 occurred in Taiwan, one in 2000 and a second in 2004, causing severe economic loss. The enzootic status is now confirmed in swine herds in Taiwan. Previous study has demonstrated at least 5 different serotypes of PTV (PTV-1, -4, -6, -7, -11) existing in Taiwan, and PTV-7 and -6 are the most common serotypes. The aim of this study was to investigate the wider variety of serotypes of PTV by introducing a set of newly designed primer, based on the sequence of VP1 outer capsid gene presented in the feces, plasma, urine, nasal swab, and solid samples in naturally infected piglets. Samples were collected from 7 clinically healthy and 21 culled piglets of 7 different herds. The PTV infections were screened by the published primers to amplify highly conserved 5'NTR region using RT-PCR followed by nested PCR. The PTV detection rate was 100% (28/28) by heads. Out of 217/280 PTV-positive samples the most common detected sample was feces (96%, 27/28), and followed by in decreasing order ileum, tonsil, and nasal swab (93%, 26/28), plasma (86%, 24/28), inguinal LN and urine (both were 79%, 22/28), bladder (64%, 18/28), spleen (57%, 16/28), and kidney (10%, 10/28). VP1 region was successfully amplified, by the newly designed primers, out of 63/217 (29%) pan-PTV nested PCR-positive samples, sequenced, and phylogenetic tree constructed. All 28 piglets had at least one serotype existed, and a total of 5 serotypes of PTV-2, PTV-4, PTV-5, PTV-6, and PTV-10, were identified from 28 piglets. The most common serotype was PTV-10 (36/63, 57%) and the 2nd one was PTV-2 (14/63, 22%). In 14/28 (50%) heads had at least two serotypes identified in the same animals but in different samples. In 2/7 herds, four PTV serotype co-circulated. In conclusion, this study confirms the enzootic and contaminated status of swine herds, combined with previous study at least 8 serotypes of PTV, namely PTV- $1 \cdot -2 \cdot -4 \cdot -5 \cdot -6 \cdot -7 \cdot -10 \cdot -11$ are identified. In particular PTV-10 is found shed in the urine of 3 piglets from 3 separate herds, consistent with the multiple models of PTV pathogenesis. Urine makes solid feces into semisolid slurry thus enhancing the exposure of piglets to PTV.

Key words: Teschovirus, serotyping, RT-PCR

CONTENTS

口試委員審定	書i
致謝	ii
中文摘要	iii
ABSTRACT	iv
CONTENTS	V
LIST OF FIGU	RESix
LIST OF TABI	LESx
LIST OF APPE	ENDICESxi
Chapter 1 In	troduction1
Chapter 2 Li	iterature Review3
2.1 Porci	ine teschovirus
2.1.1	Taxonomy and classification
2.1.2	Morphology, genome and capsid porteins
2.2 Epide	emiology4
2.2.1	Epidemiology in Taiwan4
2.3 Clini	cal signs5
2.3.1	Polioencephalomyelitis5
2.3.2	Reproductive diseases
2.3.3	Diarrhea6
2.3.4	Pneumonia, pericarditis, and myocarditis6
2.4 Patho	ological changes6
2.5 Patho	ogenesis7

			10101	010100
2.6	Detec	ction of PTVs by Reverse transcription polymerase c	hain	reaction
	(RT	P-PCR) and Nested PCR		
2.7	Serot	yping and Molecular serotyping (Genotyping) of PTVs		8
	2.7.1	Serotyping of PTVs		
	2.7.2	Molecular serotyping (Genotyping) of PTVs		8
	2.7.3	Whole P1 region		9
	2.7.4	VP1 region		10
	2.7.5	VP2 region		10
Chapter	·3 M	aterials and Methods	•••••	11
3.1	Samp	ble preparations		11
	3.1.1	Animals		11
	3.1.2	Sampling for RT-PCR		11
3.2	Sourc	ces and cell culture of prototype virus		11
3.3	RNA	extraction		12
	3.3.1	RNA extraction from solid tissues		12
	3.3.2	RNA extraction from fluid samples (diluted feces, urine	e, plas	ma, and
		nasal swab)		13
3.4	Prime	er selection		14
	3.4.1	Porcine teschoviruses		14
	3.4.2	Primers for PTVs molecular serotyping on VP1		14
3.5	Reve	rse transcription polymerase chain reaction (RT-PCR) for	5'NTR
	(par	n-PTV) and VP1		18
3.6	Neste	ed PCR for PTV 5'NTR and VP1		18
3.7	Gel e	lectrophresis		19
	3.7.1	Gene sequencing and data analysis for VP1		19

Chapter 4 Results
4.1 Sample collection
4.2 Screening for PTVs infection in endemic infected pigs
4.2.1 PTVs detection by RT-PCR followed by nested PCR
4.3 Molecular serotyping of PTVs based on VP1 sequence
4.3.1 VP1 amplification of reference strains
4.3.2 Genotyping of VP1 region in samples
Chapter 5 Discussion
REFERENCES
FIGURES
TABLES
APPENDICES

LIST OF FIGURES

LIST OF FIGURES
Figure 3.1 Alignment of nucleotide sequences of 13 serotypes of PTV strains for VP1
RT-PCR primer design
Figure 3.2 Alignment of nucleotide sequences of 13 serotypes PTV strains for VP1
nested PCR primer design17
Figure 4.1A Amplification of pan-PTV 5'NTR specific products by RT-PCR from field
samples
Figure 4.1B Amplification of pan-PTV 5'NTR specific products by nested PCR from
field samples
Figure 4.2A Amplification of VP1 region for genotyping by RT-PCR from reference
strains
Figure 4.2B Amplification of VP1 region for genotyping by nested PCR from reference
strains
Figure 4.3A Amplification of VP1 region for genotyping by nested PCR from field
samples
Figure 4.3B Amplification of VP1 region for genotyping by nested PCR from field
samples
Figure 4.4 Phylogenetic tree of partial VP1 nucleotide sequences, constructed by the
neighbor-joining method

LIST OF TABLES

LIST OF TABLES
Table 3.1 References strains used 12
Table 3.2 Primers used for RT-PCR and nested PCR for 5'NTR and VP1
Table 4.1 The PTV detection rates (by heads) for 5'NTR in different samples
Table 4.2 Successful VP1 amplification rates and the serotypes identification in
different samples40
Table 4.3 Different serotypes co-existed in the same animals but in different samples.41
Table 4.4 Comparison of real-time RT-PCR, pan-PTV 5'NTR nested PCR, and Nested
PCR on VP143

LIST OF APPENDICES

Appendix	1 The detection results of the pan-PTV 5'NTR RT-PCR and nested PCR in
	different samples44
Appendix	2 The comparison of results on real-time RT-PCR, pan-PTV 5'NTR nested
	PCR, and nested PCR for VP1 serotyping46
Appendix	3 Alignment of PTV-10 reference strain and all PTV-10 sequences in this
	study49

Chapter 1 Introduction

Porcine teschoviruses (PTVs) is a non-enveloped, spherical, positive-sense, single-stranded RNA virus, which belong to genus *Teschovirus* within the family *Picornaviridae*. On the basis of (i) cytopathic effect (CPE), (ii) replication properties in various host cell lines, (iii) serological assays, and (iv) sequence data, the original genus *Enterovirus* was divided into three groups: *Teschovirus* (CPE group I, PEV types 1-7 and 11-13), *Sapelovirus* (Porcine Enterovirus A, CPE group II, PEV-8), and Porcine Enterovirus B (CPE group III, PEV-9 and PEV-10) (Kaku et al., 2001; Zell et al., 2001). Up to date, PTVs are reclassified into 13 serotypes that are associated with a variety of clinical signs, including polioencephalomyelitis, enteric disease, female reproductive disorders, and pneumonia (Alexandersen et al., 2012; Boros et al., 2012; Cano-Gomez et al., 2011b).

The virulent PTV-1 strains were associated with polioencephalomyelitis of pigs (Teschen disease), which caused huge losses to the pig breeding industry in Europe during 1930-1950s (Horstmann, 1952). Nowadays, the highly virulent Teschen strains have been replaced by Talfan strains, which include less virulent PTV-1 strains and stains belonging to other serotypes associated with mild encephalomyelitis (Alexandersen et al., 2012, La Rosa et al., 2006).

In the past, two epidemic outbreaks of PTV-1 occurred in Taiwan, one in 2000 and a second in 2004, causing severely economic loss. The isolation rates of PTVs from porcine herds have been increasing since 2004, ranging from 20.59% to 33% by herd, and was the first and second commonly isolated virus from culled pigs (Huang et al., 2009), indicative of the enzootic status. In addition, co-infection with other common swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), and classical swine fever virus (CSFV) are found frequently, revealing the multi-infection status in the field (Chiu et al., 2012).

Previous study has demonstrated at least 5 different serotypes of PTV-1, -4, -6, -7, -11 existing in Taiwan, and PTV-7 is the most common serotypes (Chiu et al., 2012). Moreover, co-existence of two different serotypes in the same animal and co-circulation of several serotypes in a geographic area are common (Chiu et al., 2014, Cano-Gomez et al., 2011b). The aim of this study was to investigate the wider variety of serotypes of PTV by introducing a newly designed primer for molecular serotyping, based on the sequence of VP1 outer capsid gene presented in the feces, plasma, urine, nasal swab, and solid samples in naturally infected piglets.

Chapter 2 Literature Review

2.1 **Porcine teschovirus**

2.1.1 Taxonomy and Classification

Porcine teschoviruses (PTVs) belong to genus *Teschovirus* within the family *Picornaviridae*. In the past, PTVs was classified as porcine enteroviruses (PEVs). On the basis of (i) cytopathic effect (CPE), (ii) replication properties in various host cell lines, (iii) serological assays, and (iv) sequence data (Knowles et al., 1979), Porcine Teschovirus (CPE group 1, PEV types 1-7 and 11-13) was reclassified as a single species in a new genus, *Teschovirus* (Alexandersen et al., 2012; Kaku et al., 2001; Zell et al., 2001). Recently a PTV-12 was identified in domestic pigs (Cano-Gomez et al., 2011b) and a PTV-13 in wild boars (Boros et al., 2012). Consequently, at least 13 serotypes (PTV-1 to PTV-13) have been identified to date.

2.1.2 Morphology, Genome and Capsid proteins

Porcine teschoviruses (PTVs) is a non-enveloped, spherical RNA virus with a diameter of 25-30 nm. It comprises a single positive-sense RNA with 7.1 kb in length surrounded by an icosahedral capsid. A small, virus-encoded protein VPg is linked to the 5' terminus. The RNA genome is composed of a long 5' nontranslated region (NTR) including an internal ribosome entry site (IRES), a single open reading frame (ORF), followed by a shorter 3' NTR and poly (A) tail. The ORF is translated into a polyprotein which is later processed by virus-encoded proteinases. The polyprotein encoding region consists of P1, P2, and P3 region. The P1 region contains structural polypeptides (VP1, VP2, VP3, and VP4). The P2 and P3 region encode nonstructural polypeptides (Alexandersen et al., 2012).

The virion capsid comprises VP1, VP2, VP3, and VP4. The VP4 is internal and interacts with the RNA molecule protected by the capsid shell (Cano-Gomez et al., 2011b). The VP1, VP2, and VP3 are exposed at the virion surface and would be useful for molecular serotyping (La Rosa et al., 2006).

2.2 Epidemiology

The first report of Teschen disease, a swine polioencephalomyelitis caused by virulent PTV-1 strains, was recognized in Czechoslovakia in 1929, and thousands of outbreaks with large economic losses occurred in Europe during 1930-1950s (Horstmann, 1952). Subsequently, mild forms of the disease were identified as Talfan disease in Wales and in Denmark (Harding et al., 1957). Up to date, teschovirus encephalomyelitis was found in Japan, Latvia, Madagascar, Moldavia, Romania, Russia, Uganda, Ukraine (Anonymous, 2008), USA (Bangari et al., 2010), Canada (Salles et al., 2011), Spain (Cano-Gomez et al., 2013), Brazil (Donin et al., 2014), Haiti (Deng et al., 2012), China (Qiu et al., 2013; Wang et al., 2010) and Taiwan (Chiu et al., 2012). Nowadays, the less virulent Talfan strains have replaced the high virulent Teschen strains.

2.2.1 Epidemiology in Taiwan

The first PTV epidemic resulted in both neurological signs and severe diarrhea was reported in 1975 in Taiwan, and the virus strain identified was PTV-6 by neutralization test (呂榮修 et al., 1981). After 25 years of silence, two epidemic outbreaks of PTV-1 occurred in 2000 and 2004, causing severely economic losses. Neurological signs and diarrhea were the most prominent clinical signs of the infected piglets. The isolation

rates of PTVs from porcine herds have been increasing since 2004, ranging from 20.59% to 33% (Huang et al., 2009), which confirms the enzootic status in Taiwan. In addition, PTVs are found to be frequently co-infected with other common swine pathogens such as porcine PRRSV, PCV2, and CSFV (Chiu et al., 2012). Previous study has demonstrated at least 5 different serotypes of PTV (PTV-1, -4, -6, -7, -11) existing in Taiwan, and PTV-7 is the most common serotype (Chiu et al., 2012).

2.3 Clinical signs

Although PTV infections are most frequently subclinical, various clinical syndromes including polioencephalomyelitis, reproductive disorders, diarrhea, pneumonia, pericarditis, and myocarditis have been associated with certain strains (Alexandersen et al., 2012).

2.3.1 Polioencephalomyelitis

The severe form of polioencephalomyelitis of high morbidity and high mortality is produced by highly virulent PTV-1 strains that caused Taschen disease. It affects all ages of swine and has been considered of socioeconomic importance. The early signs of the disease include fever, anorexia, listlessness, and locomotors ataxia. Neurological symptoms such as nystagmus and paralysis may be observed in severe cases (Alexandersen et al., 2012).

A milder form of polioencephalomyelitis (Talfan disease, benign enzootic paresis) with relatively low morbidity and low mortality is caused by less virulent PTV-1 strain, PTV-2, -3, -4, -5, -6, -9 and -10 (Alexandersen et al., 2012; Anonymous, 2008; Kaku et al., 2007). It affects mainly young pigs and rarely progress to complete paralysis.

2.3.2 Reproductive diseases

PTVs had been isolated from pigs with reproductive disorders, such as stillbirth, mummified fetus, embryonic death, and infertility. Abortion in association with PTV infection had been confirmed by experimental and field data. However, parvoviruses would also lead to similar diseases and had been substantiated more frequently of early and midgestation disorders (Alexandersen et al., 2012).

臺

2.3.3 Diarrhea

Diarrhea can be produced experimentally by PTVs in piglets that are free of other pathogens. In the field situation, PTVs have frequently been isolated form feces of both normal and diarrheal piglets, and since a variety of other viral and bacterial agents would cause diarrhea, their presence may be coincidental (Alexandersen et al., 2012).

2.3.4 Pneumonia, pericarditis, and myocarditis

Experimentally, PTV-1, -2, and -3 had been shown capable of causing pneumonia, while the role of PTVs as respiratory pathogens is still uncertain. Pericarditis and myocarditis are observed involving with PTV-2 and PTV-3 infection (Alexandersen et al., 2012).

2.4 Pathological changes

No gross lesions can be observed in polioencephalomyelitis with PTV infection. The histopathological changes include neuronal chromatolysis, focal gliosis and lymphocytic cuffing, which are widely distributed in the CNS but are especially present in the ventral columns of spinal cord, the cerebellar cortex, and the brain stem (Alexandersen et al., 2012; Yamada et al., 2009).

Mild focal gliosis and perivascular cuffing are occasionally found in the brain stem of stillborn or neonatal piglets. No specific gross and histopathological lesions have been associated with intestinal PTV infections (Alexandersen et al., 2012).

2.5 Pathogenesis

Natural infection of Porcine teschoviruses occurs primarily by ingestion of the virus, with primary replication in the tonsil and intestinal tract, especially in large intestine and ileum, and followed by a transient viremia (Alexandersen et al., 2012). Viremia follows by infection with virulent PTV-1 strains, but less with the less virulent strain (Holman et al., 1966). Viral entry into CNS is via hematogeneous route, breaching the blood-brain-barrier (BBB) by infecting endothelial cells and/or retrograde axonal transport (Chiu et al., 2014). Viremia is the major route of direct CNS invasion of PTVs (Yamada et al., 2009). The spinal ganglion and dorsal root are the earliest locations infected by PTVs may be associated with the absence of BBB (Yamada et al., 2009). The capillary endothelial cells and glial cells are not only transient stores but also important locations of viral replication within the CNS (Alexandersen et al., 2012; Holman et al., 1966; Racaniello, 2006). PTVs are shed through feces since the virus can infect enterocytes of duodenum and goblet cells in intestines (Chiu et al., 2014), which causes the high prevalence of PTVs in herds and contamination of water (Jimenez-Clavero et al., 2003). Previous studies also demonstrate that PTVs can infect the glomeruli and epithelium of renal tubules, lead to the speculation that PTV may shed in urine (Chiu et al., 2014) but this speculation remains to be confirmed with numerical data.

2.6 Detection of PTVs by Reverse transcription polymerase chain reaction (RT-PCR) and Nested PCR

Several diagnostic techniques have been established for diagnosing PTVs infection: virus isolation in cell cultures followed by virus neutralization (VN), complement fixation (CF), or indirect fluorescent antibody (IFA) test (Anonymous, 2008). With the availability of genomic sequence data of all PTVs, now it is possible to use RT-PCR and nested PCR to rapidly detect and differentiate the specific gene regions of porcine teschovirus (Alexandersen et al., 2012), and is less laborious than virus isolation in tissue culture. The primer sets for diagnosing PTVs infection were designed to bind to highly conserved 5'NTR region (Zell et al., 2000).

2.7 Serotyping and Molecular serotyping (Genotyping) of PTVs

2.7.1 Serotyping of PTVs

Serotyping of PTVs has been performed to distinguish virulent PTV-1 strains and other serotypes, to analyze the relationship between serotypes and clinical symptoms, and to prevent outbreaks by identifying new serotypes or variants (Kaku et al., 2007). Differentiation of serotypes was traditionally established by virus isolation in cell culture followed by virus neutralization (VN), complement fixation (CF), or indirect fluorescent antibody (IFA) test (Anonymous, 2008; La Rosa et al., 2006).

2.7.2 Molecular serotyping (Genotyping) of PTVs

Compared to the labor- and time-intensive traditional tests of serotyping, RT-PCR and nested RT-PCR assays followed by sequence analysis for genotyping achieve a more rapid and sensitive detection (Kaku et al., 2001). Several primer pairs were designed for genotyping by amplifying different regions of genome, including the whole P1 region (Zell et al., 2000), VP1 (Cano-Gomez et al., 2011b; La Rosa et al., 2006), VP2 (N terminus and EF loop) (Kaku et al., 2001; Kaku et al., 2007), VP4 (La Rosa et al., 2006), RdRp (RNA-dependent RNA polymerase, 3D region) (Kaku et al., 2001), and 3'NTR regions (Kaku et al., 2001).

For molecular serotyping of PTVs, it would be essential to analyze the exposed areas at the outer capsid proteins including VP1, VP2, and VP3 (Smith & Baker, 1999). VP4 lies internally in close association with the RNA core, and is free from the pressure of neutralizing antibodies (La Rosa et al., 2006). In addition, close to VP4, the N terminus of VP2 is located in the interior of the mature virion, also has seemed to evolve independently of the neutralizing type (Kaku et al., 2001). Very little genetic diversity was found in the highly conserved RdRP region among samples. Due to the lacks of correlation of genotypes and serotypes, the VP2 (N terminus), VP4, RdRp, and 3'NTR are not suitable for PTV typing (La Rosa et al., 2006).

2.7.3 Whole P1 region

The whole P1 region encodes for the capsid proteins, which are the most divergent proteins among the PTV serotypes, and are shown to correlate with serotypes in phylogenetic analyses. However, due to the large size (approximately 2600 nucleotides) of the entire region, it is difficult for rapid serotyping of diagnosis but more suitable in the study of the evolution of PTVs (Kaku et al., 2007; Zell et al., 2000).

2.7.4 VP1 region

The VP1 region, the major surface-accessible protein of the virion, is where the most genetic variability concentrated and encodes the most important serotype specific neutralization epitopes. Good correlation between genotypes and serotypes of this region makes it the best choice for molecular serotyping. Methods for molecular serotyping based on partial sequence of VP1 have been published (La Rosa et al., 2006; Cano-Gomez et al., 2011b).

2.7.5 VP2 region

Previous study has suggested that the puff in the EF loop of VP2 is an immunodominant site through epitope mapping using neutralizing monoclonal antibodies followed by 3-dimensional modeling, and consequently designed a primer pair covering this region. The phylogenetic analysis of the puff sequence has good correlation between molecular and antigenic serotyping of PTVs, enabling a rapid serotyping method or diagnosis (Kaku et al., 2007).

Chapter 3 Materials and Methods

3.1 Sample preparations

3.1.1 Animals

Twenty-eight post-weaning piglets, aged from 4-8 weeks, were collected from 7 herds at 7 different locations in Taiwan. One clinically healthy piglet and three culled piglets were sampled from each herd.

3.1.2 Sampling for RT-PCR

The samples were obtained from piglets immediately after electrical euthanasia. Nasal swab (each immerged in 1 ml DEPC-treated PBS), EDTA-anticoagulated blood (1.5 mg/ml blood), urine (collected by urinary bladder centesis), feces (taken directly from rectum), urinary bladder, kidney, spleen, tonsil, ileum, and inguinal lymph node were obtained during necropsy. The 10 ml blood was obtained from each pig by cardiac puncture, using18G needle. The skin of the puncture site, located between Rt. 4-6th ribs, was sterilized with 70% ethanol before puncture to prevent contamination. During necropsy, the puncture site was confirmed to locate at the lower half of the right ventricle. All of these samples were shipped on ice and stored at -80°C until RNA extraction.

3.2 Sources and cell culture of prototype virus

The serotypes and names of reference strains of Porcine teschovirus are listed in Table 3.1. Porcine teschovirus 1-7 were purchased from the National Veterinary Service Laboratory (NVSL), USA (Chiu et al., 2012). Porcine teschovirus 10 strain was gifted by Dr. Malte Dauber of Federal Research Institute for Animal Health, Germany (Chiu et al., 2014) (Table 3. 1). The virus was grown in porcine kidney (PK-15) cells maintained in Dulbecco modified Eagle medium and supplemented with 5% fetal bovine serum. The time of harvesting was dependent on the extent of CPE and rounding and floating of cells. The supernatants were harvested in between 2 to 4 days when 80-90% CPE was present.

PTV serotypes	Strain names	GenBank
		accession nos.
PTV-1	PS34	AF296105
PTV-2	O 3b	Not available
PTV-3	O 2b	AF296088
PTV-4	PS 36	AF296089
PTV-5	F 26	AF296090
PTV-6	PS 37	AF296091
PTV-7	WR2	GQ293237
PTV-10	Vir 460/88	AF296095

Table 3.1 References strains used

3.3 RNA extraction

3.3.1 RNA extraction from solid tissues

Frozen solid tissues weighed approximately 30 mg for urinary bladder, 25 mg for kidney, spleen, tonsil, ileum, and inguinal lymph node were micro-dissected. The tissue was mixed with 600 μ l of RTL buffer (Qiagen, Germany) and homogenized by Tissue ruptor® (Qiagen, Germany) with a 7 mm disposable probe in a 2 ml microcentrifuge

tube. Total RNA was extracted using RNeasy® mini kit (Qiagen, Germany) according to the manufacturer's manual. The concentration of RNA was determined by measuring the absorbance at 260 nm and 280 nm in Picodrop[™] spectromter (Picodrop P200, Picodrop Limited, Saffron Walden, UK). The A260/A280 ratio of RNA solution ranged from 1.8 to 2.0. The extracted RNA was stored at -80°C until used.

3.3.2 RNA extraction from fluid samples (diluted feces, urine, plasma, and nasal swab)

The feces were weighed approximately 100 mg, and mixed with 900 μ l of diethylpyrocarbonate (DEPC)-treated PBS, followed by centrifugation at 7000 rpm for 10 min at 4°C. The supernatant was filtered through 0.22- μ m filter, and used for RNA extraction. The plasma was obtained from the anticoagulated whole blood after centrifugation at 5000 rpm at 4°C for 15 min.

For reference strains, 150 µl supernatant was used to extract RNA using Viogene kit (see below)

Two hundred fifty microliter (250 μ l) of the fecal supernatant, urine, plasma, and nasal swab was mixed with 750 μ l of TRIzol® LS reagent (Invitrogen, USA) or RNA extraction kit (Viogene, Taipei, Taiwan) for RNA extraction. The total RNA was extracted as manufacturer's protocol with 20 μ g of glycogen added during RNA precipitation, and diluted in 50 μ l of RNase-free water.

The concentration of RNA was determined by measuring the absorbance at 260 nm and 280 nm in PicodropTM spectromter (Picodrop P200, Picodrop Limited, Saffron Walden, UK) to ensure that the A260/A280 ratio is ranged from 1.8 to 2.0. The extracted RNA was stored at -80°C until used.

The RNA extracted from field samples used in this study were already processed

by real-time RT-PCR in a previously study (Kuo, 2014), confirming the quality and efficiency of the RNA extraction using internal control G3PDH.

3.4 Primer selection

3.4.1 Porcine teschoviruses

The primer pairs of PTV 1F/1R and PTV 1nF/1nR were designed to amplify the highly conserved 5'NTR region of PTVs (Zell et al., 2000), with expected products sizes of 321 bp and 158 bp for all PTVs.

3.4.2 Primers for PTVs molecular serotyping on VP1

For VP1 amplifications, two novel degenerate primer pairs (PTV-SF/SR and PTV-nSF/nSR) (Table 3.2) were designed by DNA star software (Lasergene), based on 28 available PTVs nucleotide sequences representing all PTV serotypes (PTV1-13) in GenBank (accession nos: NC_003985, af231768-69, af296087-89, af296090-94, af296096, af296100, af296102, af296104, af296107-09, af296111-13, af296115, af296117-19, JN859128, JF724001, JQ429405) (Fig. 3. 1, 3. 2). Primer pair PTV-SF/SR was used in a first RT-PCR step and PTV-nSF/nSR was used in the nested PCR step, with the expected product sizes of 571 bp and 348 bp respectively.

Table 3.2 Primers used for RT-PCR and nested PCR for 5'NTR and VP1					
Primer	Sense	Sequence (5'-3')	Product	Location*	
			(bp)	(Target)	
Pan-PTV 5	'NTR (F	PTV1-11) (Zell et al., 2000)			
PTV-1F	F	AGTTTTGGATTATCTTGTGCCC	321	79-396	
PTV-1R	R	CCAGCCGCGACCCTGTCAGGCAGCAC		(5'NTR)	
PTV-1nF	F	TGAAAGACCTGCTCTGGCGCGAG	158	178-335	
PTV-1nR	R	GCTGGTGGGCCCCAGAGAAATCTC		(5'NTR)	
PTV VP1 r	egion (th	nis study)			
PTV-SF	F	CCTGCTGAGACAGGCTGTGA	571	3070-2500	
PTV-SR	R	CCTGCTGAGACAGGCTGTGA		(VP1)	
PTV-nSF	F	TTCTTCTGGGACAGGTATTTCCA	348	2945-2598	
PTV-nSR	R	GGTGTTTGNKTNGGYTTCCA		(VP1)	

*Nucleotide numbering according to F65 strain (GenBank acc. nos NC_003985) *All primers were purchased from Tri-I Biotech, Taipei, Taiwan.

			大福堂を	
- Consensus	TCAACCTGCTGAGACAGGCTGTGATAAG		GATACCACAGGATTTTGGATTTGGAATG	
28 Sequences	<u>2510 2520 2530</u>	28 Sequences	3060 3070 3080	
PTV1-F65.seq	TCAG <mark>CCAGCTGAGACGGGATGTGA</mark> CAAG	PTV1-F65.seq	AATCCCTCAGGACTTTGGATTTGGCATG	
PTV-1 AF231768	TCAACCAGCTGAAACAGGATGTGATAAG	PTV-1 AF231768	AATTCCCCAAGATTTTGGCTTTGGCATG	
PTV-1 AF231769	CCAGCCGGCTGAGACGGGATGTGATAAG	PTV-1 AF231769	GATCCCCCAAGACTTTGGATTTGGCATG	
PTV-1 AF296100	CCAACCAGCTGAAACAGGATGTGATAAG	PTV-1 AF296100	AATCCCCCAAGATTTCGGTTTTGGCATG	
PTV-1 AF296102	TCAACCGGATGAGACGGGATGTGATAAG	PTV-1 AF296102	AATTCCTCAGGATTTTGGATTTGGCATG	
PTV-1 AF296104	CCAACCAGCTGAAACAGGTTGTGATAAG	PTV-1 AF296104	AATTCCCCAAGACTTCGGTTTTGGTATG	
PTV-2 AF296107	TCAGCCCGCTGAAACAGGTTGTGACAAG	PTV-2 AF296107	AATACCACAGGACTTTGGATTTGGATTG	
PTV-2 AF296108	TCAGCCTGCTGAGACAGGCTGTGATAAG	PTV-2 AF296108	GATACCACAAGATTTTGGATTTGGATTG	
PTV-2 AF296109	TCAGCCTGCCGAGACAGGCTGTGATAAG	PTV-2 AF296109	GATACCACAAGATTTTGGATTTGGAATG	
PTV-2 AF296087	TCAGCCTGCTGAGACTGGTTGTGACAAG	PTV-2 AF296087	AATACCACAGGATTTTGGATTTGGAATG	
PTV-3 AF296088	TCAGCCAGCTGAGACAGGGTGTGACAAG	PTV-3 AF296088	GATCCCTCAGGATTTTGGGTTTGGCATG	
PTV-4 AF296089	ACAGCCTGCGGAAACGGGCTGTGACAAG	PTV-4 AF296089	GATACCACAGGATTTTGGATTTGGATTG	
PTV-4 AF296111	TCAACCTGCTGAGACAGGCTGTGACAAA	PTV-4 AF296111	GATACCACAGGACTTTGGATTTGGATTG	
PTV-4 AF296112	CCAACCTGCTGAGACAGGTTGTGACAAA	PTV-4 AF296112	GATACCACAGGACTTTGGATTTGGATTG	
PTV-4 AF296113	TCAGCCTGCTGAGACAGGTTGTGACAAA	PTV-4 AF296113	GATACCACAGGACTTTGGATTTGGACTG	
PTV-5 AF296090	TCAACCTGCCGAGACAGGCTGTGATAAA	PTV-5 AF296090	GATTCCACAGGATTTTGGATTTGGAATG	
PTV-6 AF296091	CCAACCTGCAGAAACAGGCTGTGATAAA	PTV-6 AF296091	AATTCCACAGGACTTTGGATTTGG <mark>GC</mark> TG	
PTV-6 AF296115	TCAACCTGCAGAAACAGGCTGTGATAAA	PTV-6 AF296115	GATTCCGCAAGACTTTGGATTTGGACTG	
PTV-6 AF296117	TCAACCTGCGGAAACAGGCTGTGACAAG	PTV-6 AF296117	GATCCCACAGGATTTTGGATTTGGATTG	
PTV-7 AF296092	GCAGCCAGCTGAGACAGGCTGTGATAAG	PTV-7 AF296092	AATACCCCAGGATTTTGGGTTTGGCATG	
PTV-8 AF296093	CCAACCTGCAGAAACAGGATGTGATAAA	PTV-8 AF296093	GATTCCACAGGATTTTGGTTTTGGGATG	
PTV-8 AF296118	CCAACCTGCAGAAACAGGATGTGACAAG	PTV-8 AF296118	GAT <mark>T</mark> CC <mark>G</mark> CAGGATTTCGG <mark>T</mark> TTTGG <mark>G</mark> ATG	
PTV-9 AF296094	CCAACCAGCTGAAACAGGTTGTGACAGG	PTV-9 AF296094	GATCCCACAAGATTTTGGATTTGGCATG	
PTV-10 AF29611	TCAACCAGCAGAGACAGGCTGTGATAGG	PTV-10 AF29611	AATTCCGCAAGATTTTGGATTTGGCATG	
PTV-11 AF29609	TCAGCCGGCTGAGACAGGATGTGACAAA	PTV-11 AF29609	GATTCCCCAAGACTTTGGGTTTGGCATG	
PTV-12 JN85912	TCAA <mark>T</mark> CTGC <mark>A</mark> GAAACAGG <mark>G</mark> TG <mark>C</mark> GATAAA	PTV-12 JN85912	AATACCACAAGACTTTGGATTTGGATTG	
PTV-12 VP1 JF7	TCAA <mark>T</mark> CTGC <mark>A</mark> GAAACAGG <mark>G</mark> TG <mark>C</mark> GATAAA	PTV-12 VP1 JF7	AATACCACAAGACTTTGGATTTGGATTG	
PTV-13 JQ42940	TCAA <mark>T</mark> CTGCTGAGACAGG <mark>A</mark> TGTGA <mark>C</mark> AAG	PTV-13 JQ42940	AATCCCCCAGGATTTTGGTCACGGCCTG	
(A) Forward p	(A) Forward primer (PTV-SF) (B) Reverse primer (PTV-SR)			

Fig. 3.1 Alignment of nucleotide sequences of 13 serotypes PTV strains for VP1 RT-PCR primer design.

						01010101010	
- Consensus	CONTRACTOR		+ T 🖾 Consensus	ΤΛΟΛΤΟ		CONNENCE	YCTCT
28 Sequences	2610	2620 2630	28 Sequences	10	2940	2950	70
PTV1-F65.seq		GACAGGTATTTCCACAT	C PTV1-F65.seq	Сасато	GGAAACCAGO	GCAAACTCC	AGTAT 🔪
PTV-1 AF231768	TTCGTTCTTCTGG	GA <mark>T</mark> AGGTATTTCCA <mark>C</mark> AT	T PTV-1 AF231768	TACATO	GGAAACC <mark>GGC</mark>	ACAAACACC	AGTGT
PTV-1 AF231769	TTCGTTCTTCTGG	GACAGGTATTTCCATG	T PTV-1 AF231769	CACATO	GGAAGCC <mark>AGC</mark>	ACAAACGCC	AGTGT
PTV-1 AF296100	CTCATTTTTCTGG	GA <mark>T</mark> AG <mark>A</mark> TATTT <mark>T</mark> CA <mark>C</mark> AT	C PTV-1 AF296100	TACATO	GGAAACC <mark>GGC</mark>	ACAAACACC	AGTGT
PTV-1 AF296102	TTCATTCTTTTGG	GACAGGTATTTCCATAT	C PTV-1 AF296102	TACATO	GGAAACC <mark>AGC</mark>	ACAAACTCC	AGTGT
PTV-1 AF296104	CTCGTTTTTCTGG	GACAGGTATTTCCA <mark>C</mark> AT	C PTV-1 AF296104	CACATO	GGAAGCC <mark>GGC</mark>	ACAAAC <mark>G</mark> CC	AGTGT
PTV-2 AF296107	GGACTTTTTCTGG	GACAGGTA <mark>CTTT</mark> CATAT	T PTV-2 AF296107	CACCTO	GGAA <mark>G</mark> CCCAA	CCA <mark>G</mark> AC <mark>G</mark> CC	GTGT
PTV-2 AF296108	GGATTTCTTTTGG	GA <mark>T</mark> AGGTATTT <mark>T</mark> CATGT	T PTV-2 AF296108	CACATO	GGAAACCCAA	TCA <mark>G</mark> ACACC	GTGT
PTV-2 AF296109	GGATTTCTTTTGG	GACAGGTA <mark>CTTT</mark> CATGT	T PTV-2 AF296109	TACATO	GGAAACCTAA	CCAAACACC	GTTT
PTV-2 AF296087	GGATTTCTTTTGG	GACAGGTATTTCCATG	T PTV-2 AF296087	TAC <mark>G</mark> TO	GGAAGCCTAA	TCAAACACC	GTGT
PTV-3 AF296088	ATCATTCTTCTGG	GA <mark>T</mark> AGGTA <mark>C</mark> TTCCATAT	T PTV-3 AF296088	TACTTO	G <mark>CAAGCC<mark>AG</mark>C</mark>	G CAAACTCC	GGTTT
PTV-4 AF296089	AGAGTTTTTCTGG	AATAGGTATTTCCATG	T PTV-4 AF296089	TGTGT(GGAA <mark>G</mark> CCCAA	CCA <mark>G</mark> ACACC	GGT <mark>C</mark> T
PTV-4 AF296111	AGAGTTCTTCTGG	AACAGGTATTTCCACA1	T PTV-4 AF296111	TACATO	GGAA <mark>G</mark> CCCAA	TCAAACACC	GGTTT
PTV-4 AF296112	GGAGTTTTTCTGG	AACAGGTA <mark>C</mark> TTCCATG	T PTV-4 AF296112	TACATO	GGAA <mark>G</mark> CCCAA	TCAAACACC	GGTTT
PTV-4 AF296113	GGAGTTCTTTGG	ACAGGTATTTCCATAT	T PTV-4 AF296113	TAC <mark>G</mark> T(GGAA <mark>G</mark> CCCAA	CCAAACACC	GGTTT
PTV-5 AF296090	TCCTTTTTTCTGG	AACAGGTATTTCCATG	T PTV-5 AF296090	CACATO	GGAAGCCTAA	CCAGACACC	GTGT
PTV-6 AF296091	GGATTTCTTCTGG	AATAGATACTTCCATG	T PTV-6 AF296091	TACCTO	GGAA <mark>G</mark> CCTAA	TCA <mark>G</mark> AC <mark>G</mark> CC	GTT
PTV-6 AF296115	AGACTTCTTTTGG	G <mark>G</mark> CAG <mark>A</mark> TATTT <mark>T</mark> CATGT	T PTV-6 AF296115	CACTTO	GGAAACC <mark>A</mark> AA	CCA <mark>G</mark> ACACC	GTT
PTV-6 AF296117	GGATTTCTTTTGG	G <mark>G</mark> CAG <mark>ATACTTT</mark> CATGT	T PTV-6 AF296117	CACCTO	GGAAACC <mark>A</mark> AA	TCAGACACC	I GT <mark>C</mark> T
PTV-7 AF296092	TTCATTCTTTGG	AATAG <mark>ATACTTT</mark> CATG	A PTV-7 AF296092	TAC <mark>G</mark> TO	GGAA <mark>G</mark> CCCAA	CCAAAC <mark>C</mark> CC	AGT <mark>C</mark> T
PTV-8 AF296093	AGATTTCTTTTGG	GACAG <mark>A</mark> TATTTCCA <mark>C</mark> AT	T PTV-8 AF296093	TACATO	GGAAACCCA <mark>(</mark>	CCAAACACC	AGTCT
PTV-8 AF296118	GGATTTCTTTTGG	GACAGGTATTTCCA <mark>C</mark> AT	T PTV-8 AF296118	TACTTO	GGAAACCTA <mark>C</mark>	CCAAACACC	AGTCT
PTV-9 AF296094	GTCATTTTTCTGG	AACAG <mark>ATAC</mark> TTCCA <mark>C</mark> GT	A PTV-9 AF296094	TACTTO	GGAAACCCA <mark>(</mark>	CCA <mark>G</mark> ACACC	GTGT
PTV-10 AF29611	AGCATTTTTCTGG	GACAGGTATTT <mark>T</mark> CA <mark>C</mark> AT	C PTV-10 AF29611	TACATO	GGAAGCC <mark>AGC</mark>	ACAGACGCC	AGT <mark>C</mark> T
PTV-11 AF29609	CTCATTTTTCTGG	GACAGGTA <mark>C</mark> TTCCA <mark>C</mark> AT	T PTV-11 AF29609	CACATO	GGAAACC <mark>AGC</mark>	GCAGACACC	GGTTT
PTV-12 JN85912	TGACTTCTTTTGG	AATAGATATTTCCATG	T PTV-12 JN85912	CACTTO	GGAAACCTAA	CCAAACACC	I GT <mark>A</mark> T
PTV-12 VP1 JF7	TGACTTCTTTTGG	AATAGATATTTCCATG	T PTV-12 VP1 JF7	CACTTO	GGAAACC <mark>T</mark> AA	CCAAACACC	TGT <mark>A</mark> T
PTV-13 JQ42940	GAAATTTTTTTGG/	AACAG <mark>A</mark> TATTTCCA <mark>C</mark> AT	A PTV-13 JQ42940	TACATO	GGAAGCCTAC	CCAAACACC	AGTGT
(A) Forward p	primer (PTV-	nSF)	(B) Reverse p	rimer ((PTV-nS	R)	

Fig. 3.2 Alignment of nucleotide sequences of 13 serotypes PTV strains for VP1 nested PCR primer design.

3.5 Reverse transcription polymerase chain reaction (RT-PCR) for 5'NTR (pan-PTV) and VP1

The RT-PCR reaction was performed using 2720 thermal cycler (Applied Biosystem, Foster City, CA, USA). Reaction tubes contained 2 μ l of template RNA, 1 μ l of 10 μ M forward primer, 1 μ l of 10 μ M reverse primer, 0.5 μ l of 10 mM dNTP mix (Promega, Madison, WI, USA), 0.5 μ l of Pro Taq Plus DNA polymerase (Protech, Taipei, Taiwan), 0.5 μ l of M-MuLV Reverse Transcriptase (Protech), 2 μ l of 10X Taq buffer (Protech), 0.1 μ l of RNAse inhibitor (Protech) and filled with 12.4 μ l of diethylpyrocarbonate (DEPC)-treated double distilled water (DDW) to a total volume of 20 μ l. The reverse transcription and polymerase chain reactions were performed sequentially in one step, consisting of a first reverse transcription at 42°C for 30 min, and 5 min at 95°C to inactivate RTase, followed by PCR cycling according the following conditions:

For 5'NTR (Zell et al., 2000): initial denaturation at 94°C for 5 min, 35 cycles of denaturation at 95°C for 50 sec, annealing at 55°C for 1 min, extension at 72°C for 1 min, and final elongation at 72°C for 5 min.

For VP1 (this study): initial denaturation at 94°C for 5 min, 35 cycles of denaturation at 95°C for 30 sec, annealing at 52°C for 30 sec, extension at 72°C for 30 sec, and final elongation at 72°C for 7 min.

3.6 Nested PCR for PTV 5'NTR and VP1

Nested PCR was preformed in reaction containing 1 μ l RT-PCR product, 1 μ l forward and reverse primers (10 μ M of each), 0.5 μ l of 10 mM dNTP mix (Promega),

0.5 μ l of Pro Taq Plus DNA polymerase (Protech), 2 μ l of 10X Taq buffer (Protech), and 14 μ l DEPC-treated DDW to a total volume of 20 μ l.

For 5'NTR (Zell et al., 2000): The cycling conditions were initial denaturation at 94°C for 5 min, 35 cycles of denaturation at 95°C for 50 sec, annealing at 60°C for 1 min, extension at 72°C for 1 min, and a final elongation at 72°C for 5 min.

For VP1 (this study): The cycling conditions were initial denaturation at 94°C for 5 min, 35 cycles of denaturation at 95°C for 50 sec, annealing at 55°C for 1 min, extension at 72°C for 1 min, and a final elongation at 72°C for 5 min.

3.7 Gel electrophoresis

The resulting amplified DNAs were electrophoresed in 2% AGAROSE ITM agarose gel (AMRESCO, Solon, Ohio, USA) stained with O' SAFE Red 6X Loading Dye (the Ethidium Bromide replacement) (Omics Bio, Taipei, Taiwan), before visualized under UV light and photographed. A marker of known molecular weight (100 bp DNA ladder; Omics bio) and negative control (DEPC-treated DDW) were run on the same electrophoresis gel to confirm the validity of the results.

3.7.1 Gene sequencing and data analysis for VP1

Amplified DNA products of correct size were purified from the gel using Gel AdvancedTM DNA extraction kit (Viogene, Taipei, Taiwan), and then sequenced in ABI Prism model 3730 (Applied Biosystem at Tri-I Biotech, Taipei, Taiwan), using the same forward primer (PTV-nSF) of the nested PCR.

The obtained VP1 nucleotide sequences were assembled by SeqMan program (DNASTAR), and consensus sequences compared with nucleotide sequences in the

database using BLAST algorithm and assigned serotype having the highest identity score with the sequences inquired. Multiple alignments of the sequences obtained in this study and those from the Genbank were conducted by CLUSTAL W program, and subsequent phylogenetic analyses were performed by neighbor-joining method based on the matrix of the distances. The phylogenetic tree was drawn with MEGA 6 software package.

Chapter 4 Results

4.1 Sample collection

Twenty-eight post-weaned pigs, 7 clinically healthy (per owner) and 21 culled, were collected from 7 herds. Ages of the pigs ranged from 5 to 8 weeks old, and their average body weight was 6.1 ± 1.6 kg. These 7 herds were located in Linkou (林口), Guanmiao (關廟), Minsyong (民雄), Sikou (溪口), Taian (泰安), Mailiao (麥寮, 2 herds). The culled piglets showed weakness, respiratory symptoms, emaciation, or poor feed conversion. This set of samples was the same as those in Kuo (2014).

4.2 Screening for PTVs infection in endemic infected pigs

A set of 10 samples of each pig were selected for PTVs detection and arranged according to the fecal-oral pathogenesis model, including feces, ileum, tonsil, inguinal lymph node (abbr. Ig LN), plasma, spleen, kidney, bladder, urine, nasal swab (abbr. nasal).

4.2.1 PTVs detection by RT-PCR followed by nested PCR

The PTVs infection of field samples was detected by using two pairs of primers (PTV 1F/1R and PTV 1nF/1nR) with expected product sizes of 321 bp (PTV 1F/1R) in RT-PCR and 158 bp (PTV 1nF/1nR) in nested PCR. The results of PTVs detection are listed in Appendix 1, summarized in Table 4.1, and in Fig. 4.1.

By RT-PCR, the PTV detection rate by heads was 4% (1/28) and by nested PCR 100% (28/28). Only one fecal sample (CY27) was positive in RT-PCR stage. In nested PCR, the most common detected sample was feces (96%, 27/28), and followed in

decreasing order ileum, tonsil, and nasal swab (93%, 26/28), plasma (86%, 24/28), inguinal LN and urine (both were 79%, 22/28), bladder (64%, 18/28), spleen (57%, 16/28), and kidney (36%, 10/28).

4.3 Molecular serotyping of PTVs based on VP1 sequence

4.3.1 VP1 amplification of reference strains

To demonstrate the feasibility of the primers designed in this study (PTV SF/SR and PTV nSF/nSR), reference strains of 8 different serotypes (PTV-1-7, -10) were assayed (Tables 3.1-3.2). The two pairs of primers had successfully amplified the reference strains of 7 serotypes: PTV-1, -2, -3, -4, -5, -6 and -10 with the expected product size as 571 bp and 347 bp in RT-PCR and nested PCR (Fig. 4.2). The validity of the results was confirmed by the gene sequencing followed by BLAST analysis of the products.

4.3.2 Genotyping of VP1 region in samples

All the samples (n = 280) were subjected to amplification with VP1 specific primer set PTV SF/SR and PTV nSF/nSR, and out of 217 pan-PTV nested PCR-positive samples (Table 4.2). In 83 samples revealed a band of expected size amplified (Fig. 4.3, Table 4.2a), in which only 63 (63/217, 29%) of them were successfully sequenced, serotyped, and phylogenetic tree constructed (Fig. 4.4). The phylogenetic tree is constructed with field samples, reference strains, and the 27 strain sequences obtained from GenBank (Fig. 4.4). In the phylogenetic tree, the strains of the same serotype cluster together, indicating this targeted partial VP1 region is monophyletic with respect to the serotype. No field samples was detected positive by RT-PCR, and all were detected positive until the nested PCR was performed, and none of the pan-PTV nested PCR-negative samples had positive results on VP1 amplification (Appendix 2). All 28 piglets had at least one serotype identified. A total of five different serotypes (PTV- 2, -4, -5, -6, -10) were identified from the field samples (Table. 4.2, Appendix 2), and the most common serotype was PTV-10 (36 samples, 36/63, 57%), the 2nd common serotype is PTV-2 (14 samples, 14/63, 22%), followed by PTV-6 (8 samples, 8/63, 13%), PTV-4 (4 samples, 4/63, 6%), and PTV-5 (1 sample, 1/63, 2%) is the least common one.

In 14 heads (14/28, 50%) had at least two serotypes identified in different samples of the same animals (Table 4.3): TY2: PTV-10 in feces and PTV-6 in nasal; TY5: PTV-6 in feces and PTV-10 in nasal; TY6: PTV-6 in feces and ileum, PTV-10 in bladder; KM1: PTV-10 in feces and ileum, PTV-4 in tonsil; KM2: PTV-2 in ileum, PTV-4 in tonsil, PTV-10 in Ig LN and nasal; KM6: PTV-10 in feces, Ig LN, and urine, PTV-2 in ileum and tonsil, PTV-6 in bladder; CY1: PTV-10 in ileum and plasma and nasal, PTV-2 in Ig LN; CY2: PTV-6 in feces, PTV-10 in tonsil; CY9: PTV-6 in ileum and PTV-2 in Ig LN; CY14: PTV- 10 in feces and plasma, PTV-2 in spleen, PTV-10 in nasal; CY15: PTV-2 in ileum and Ig LN, PTV-10 in nasal; CY21: PTV-10 in feces and plasma and urine, PTV-2 in Ig LN; CY23: PTV-5 in feces, PTV-10 in ileum; CY29: PTV-6 in feces, PTV-10 in ileum (Table 4.3).

Fecal sample had the highest VP1 amplification rate (17/27, 63%), followed by ileum (14/26, 54%), Ig LN (8/22, 36%), and tonsil (7/26, 27%). In particular, 3 urinary samples (KM6, CY13, and CY21) (Table 4.3, Appendix 2) were successfully typed as PTV-10.

Chapter 5 Discussion

Instead of using traditional tests such as virus neutralization assay for serotyping of PTVs, molecular methods including RT-PCR and nested PCR now provide an alternative to more rapid serotyping. Previous study had demonstrated the existence of at least 5 different serotypes of PTV-1, PTV-4, PTV-6, PTV-7, and PTV-11 in Taiwan (Chiu et al., 2012). The aim of this study was to investigate the possibility of a wider variety of PTV serotypes in Taiwan by introducing two newly designed primers for molecular serotyping, based on the partial sequence of VP1 outer capsid gene, where the most genetic variability is concentrated and contains important neutralization sites.

The pan-PTV primer pairs, PTV-1F/1R and PTV-1nF/1nR, previously designed for amplifying a 158 bp fragment of 5'NTR region (Zell et al., 2000) were used to screen for PTV infection by RT-PCR followed by nested PCR. The detection rate was 4% in RT-PCR (by heads) and rose to 100% (by heads) in nested PCR, confirming the ubiquity of PTVs, which were found most frequently in feces, ileum, tonsil, nasal swab, plasma, Ig LN, and urine (> 79%), and relatively less common (< 65%) in the visceral organs including urinary bladder, spleen, and kidney (Table. 4.1, Appendix 1). The highest detection rates of fecal samples and intestine indicate the highly contaminated environment of PTVs.

For screening PTVs infection using pan-PTV 5'NTR, only 1/280 sample (feces of CY27) was positive in the RT-PCR stage (Table 4.1; Figure not shown). All solid samples, including ileum, Ig LN, tonsil, urine bladder, and kidney, revealed multiple faint bands of incorrect sizes (Fig. 4.1A, lanes 5 and 7), in which correct sequences constituted a minor portion of the whole products, suggesting the primers may have cross reacted with other genomes present in the field samples causing false-negative results.

For molecular serotyping two published primers (La Rosa et al., 2006 in Chiu et al., 2012) were initially used to amplify partial VP1 region and serotyping with success rate of 19.3% as compared to nested PCR (Zell et al., 2000 in Chiu et al., 2012). Multiple bands were also detected with one band of expected size (data not shown), however, sequencing results revealed a 86% similarity with wild boar mitochondrion genome, suggesting the primers may have a higher affinity for swine DNA and thus causing false negative results. Therefore, in this study, two new primer pairs PTV-SF/SR and PTV-nSF/nSR, targeted on partial VP1 region, were designed (Table. 3.2). The inner primer pair PTV-nSF/nSR used in nested PCR was expected to solve detection problems of field samples containing low copy numbers of targets against a high background of tissue DNA and inhibitors of DNA polymerase (Sachse, 2003). This set of primer had increased the VP1 amplification rate to 29% (Tables 4.2-4.3) and can detect at least 7 serotypes of PTV-1, 2, 3, 4, 5, 6, and -10 from reference strains (Table 3.1), for which the results were validated by VP1 amplification, sequencing and phylogenetically consistent with their respective serotypes. Although not clear from Fig. 4.2, this new set of primer may have preferentially amplified VP1 of PTV-10 (Tables 4.2-4.3) over other PTV serotypes, because similar preferential amplification on certain PTV serotypes was observed in qRT-PCR targeting 5'NTR (Chiu et al., 2014). Although there was a band of expected size amplified from PTV-7 reference strain (Table 3.1), the sequencing result revealed it to be PTV-6 for unknown reason (data not shown). Apparently the new primer designed in this study cannot differentiate PTV-7 from PTV-6. On the other hand the LaRosa primer (2006, in Chiu et al., 2012) has the ability to distinguish them from each other.

All 28 piglets had at least one serotype existed, and a total of five serotypes PTV-2, PTV-4, PTV-5, PTV-6, and PTV-10, were identified (Table. 4.2, Appendix 2). The most

frequently detected serotype was PTV-10 (57%) and PTV-2 (22%). Fourteen out of 28 (14/28, 50%) piglets had more than one serotype co-existed in different samples of the same animals (two serotypes co-existed in 12 pigs and three serotypes in 2 pigs) (Table 4.3), further strengthening the multiple models of PTV pathogenesis (Chiu et al., 2014) in which different PTVs were not mutually exclusive. All 7 herds had at least two different serotypes identified, and in 2/7 herds had four serotypes co-circulated. Visual inspection revealed no correlation between the serotypes and geographical locations of the sampled herds. Further the number of serotyped samples was insufficient for statistical analysis.

In particular, PTV-10 was detected in urine of 3 piglets from 3 separate herds. Although it was suspected that this nested PCR for VP1 may preferentially amplify that of PTV-10, the results were likely authentic. First, pipette carryover was avoided by using filtered tip and additional measures such as decontaminating the pipettes and desktop with DNA-ExitusPlusTM (AppliChem, Germany). Second, reference strain PTV-10 was used only in the optimization of primer designed stage, whereas in VP1 amplification from field samples only negative control was employed thus ruling out reagent contamination. Note that positive control in Fig. 4.3 was later incorporated for comparison in gel electrophoresis. Third, during experiment executions the sequential order of pipetting was consistent by which tracing carryover from upstream to downstream sample was possible. Fourth, in 1/295 nucleotide (0.0034%) at position 2688 of CY13 was different from that of PTV-10 reference strain Vir 460/88. This PTV-10 Vir 460/88 had a 0.0017% (12/7009 nucleotide) background difference from the PTV-10 GenBank accession number AF296119 (Zell et al., 2001). The 0.0034% difference was above the background of 0.0017%. In this specific 295 nucleotide region, there was difference in 1 nucleotide (0.0034%) at position 2673. Fifth, alignment of all

PTV-10 sequences in this study, in sequential order of experiment execution, does not implicate any carryover between samples (Appendix 3).

The finding of PTV-10 and PTV-6 in nasal swab of 6 piglets (Table 4.3) is also likely authentic. Nasal swabs would be most likely contaminated by the feces due to the digging behavior of pigs. In additional to cleaning up the nose before swabbing, all 5 piglets with serotypes identified in the nasal and feces were different (Table 4.3), ruling out that those PTVs in nasal were not contaminated from the feces. However, the significance of finding PTV in nasal is not clear regarding the pathogenesis, it could be either in entry or in exit, but it does substantiate the role of intranasal infection in the multiple models (Chiu et al., 2014).

In the previous study, 5 serotypes PTV-1, PTV-4, PTV-6, PTV-7, and PTV-11 were identified in Taiwan and the most prevalent serotypes were PTV-7 and PTV-6 (Chiu et al., 2012). This study identified the existence of 3 additional serotypes: PTV-2, PTV-5, and PTV-10, indicating the high diversity existing among PTVs in swine herds. Three previously detected serotypes PTV-1, PTV-7, and PTV-11, were not identified in this study, likely because the use of different set of samples and primers (Chiu et al., 2012). Due to the limited detection ability of the primers designed in this study on only 7 reference strains (Table 3.1), the presence of a wider variety of serotypes is highly possible.

Despite the use of newly designed primers in this study, the 29% VP1 amplification rates was still unsatisfactory and may be due to (1) the limitation of the primers used in this study (only seven serotypes have been tested, Table 3.1); (2) high genetic variation in VP1 region, interfering the efficiency of primer annealing; (3) the existing of co-purified PCR-inhibitory substance in field samples, such as bile salts and complex polysaccharides in feces, heme in blood, and urea in urine, would reduce or

block the amplification capacity of PCR (Radstrom et al., 2003); (4) the viral load is too low to be detected (compared with the isolations from cell culture).

As expected from the fecal-oral model of pathogenesis, higher success rates were detected in fecal samples, ileum, Ig LN, and tonsil, which were also the samples having higher viral loads processed in qRT-PCR (Kuo, 2014). This finding is consistent with the results of a previous study (Chiu et al., 2012) and others using isolates from fecal samples (Buitrago et al., 2010, La Rosa et al., 2006, Sozzi et al., 2010). In addition, feces is also the sample containing the most diverse serotypes: four serotypes PTV- 2, 5, 6, 10 were identified (Table 4.2).

The same set of samples was also processed by real-time RT-PCR (qRT-PCR) to determine the viral loads (Kuo, 2014). Both targeting on the 5'NTR, qRT-PCR (Kuo, 2014) is more sensitive than nested PCR (Table. 4.4, Appendix 2). However, there were instances in which 10 positive samples by nested PCR but negative by qRT-PCR, and three of them (KM2 tonsil, CY9 Ig LN, and CY14 spleen) were successfully typed as PTV-4, PTV-2, and PTV-2 respectively (Appendix 2).

The detection rate of PTV in urine by nested PCR (79%, by heads, Table 4.1) was not as high as in qRT-PCR (100%, by heads, Kuo, 2014, Appendix 2). These detection rates by 5'NTR, together with the identification of PTV-10 in 3 piglets of 3 separate herds (Table 4.3), further substantiate the urinary shedding of PTV in the naturally infected setting. It is likely that liquid urine making solid feces into semisolid slurry and thus enhancing the exposure of piglets to PTVs.

In conclusion, this study further confirmed the enzootic and highly contaminated status of PTVs in swine herds, and revealed 3 additional serotypes PTV-2, -5, and -10 that were not identified before. In all herds, at least two serotypes co-existed and in 2/7 herds had four serotypes co-circulated. In particular, the presence of PTV-10 in urine

of 3 piglets of 3 separate herds demonstrated a possibility of enhanced exposure to PTV by contacting semisolid slurry instead of solid feces. The significance of presence of PTVs in nasal swabs is still unclear with regard to pathogenesis.

REFERENCES

- 呂榮修, 蔡義雄, 鍾明華, 劉培柏, 李永林, 楊喜吟, 王金和, 王吉德, 1981. 台灣 豬腸道病毒分離與抗體調查. 台灣省畜衛試研報 17,83-90.
- Alexandersen, S., Knowles, N.J., Dekker, A., Belsham, G.J., Zhang, Z., Koenen, F. 2012. Piconavirus, In: Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W. (Eds.) Diseases of Swine. Wiley-Blackwell, pp. 587-620.
- Anonymous. 2008. Teschovirus Encephalomyelitis (Previously Enterovirus Encephalomyelitis or Teschen/Talfan Disease), In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. World Organisation for Animal Health, Paris, pp. 1146-1152.
- Bangari, D.S., Pogranichniy, R.M., Gillespie, T., Stevenson, G.W., 2010. Genotyping of porcine teschovirus from nervous tissue of pigs with and without polioencephalomyelitis in Indiana. J. Vet. Diagn. Invest. 22, 594-597.
- Boros, A., Nemes, C., Pankovics, P., Kapusinszky, B., Delwart, E., Reuter, G., 2012. Porcine teschovirus in wild boars in Hungary. Arch. Virol. 157, 1573-1578.
- Buitrago, D., Cano-Gomex, C., Aguero, M., Fernandez-Pacheco, P., Gomez-Tejedor, C., Jimenez-Clavero, M.A., 2010. A survey of porcine picornaviruses and adenoviruses in fecal samples in Spain. J. Vet. Diag. Invest. 22, 763-766.
- Cano-Gomez, C., Garcia-Casado, M.A., Soriguer, R., Palero, F., Jimenez-Clavero, M.A.,
 2013. Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain.
 Vet. Microbiol. 165, 115-122.
- Cano-Gomez, C., Palero, F., Buitrago, M.D., Garcia-Casado, M.A., Fernandez-Pinero,J., Fernandez-Pacheco, P., Aguero, M., Gomez-Tejedor, C., Jimenez-Clavero,M.A., 2011b. Analyzing the genetic diversity of teschoviruses in Spanish pig

populations using complete VP1 sequences. Infect. Genet. Evol. 11, 2144-2150.

- Chiu, S.C., Hu, S.C., Chang, C.C., Chang, C.Y., Huang, C.C., Pang, V.F., Wang, F.I., 2012. The role of porcine teschovirus in causing diseases in endemically infected pigs. Vet. Microbiol. 161, 88-95.
- Chiu, S.C., Yang, C.L., Chen, Y.M., Hu, S.C., Chiu, K.C., Lin, Y.C., Chang, C.Y., Wang, F.I., 2014. Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet. Microbiol. 168, 69-77.
- Deng, M.Y., Millien, M., Jacques-Simon, R., Flanagan, J.K., Bracht, A.J., Carrillo, C., Barrette, R.W., Fabian, A., Mohamed, F., Moran, K., Rowland, J., Swenson, S.L., Jenkins-Moore, M., Koster, L., Thomsen, B.V., Mayr, G., Pyburn, D., Morales, P., Shaw, J., Burrage, T., White, W., McIntosh, M.T., Metwally, S., 2012. Diagnosis of porcine teschovirus encephalomyelitis in the Republic of Haiti. J. Vet. Diagn. Invest. 24, 671-678.
- Donin, D.G., de Arruda Leme, R., Alfieri, A.F., Alberton, G.C., Alfieri, A.A., 2014. First report of Porcine teschovirus (PTV), Porcine sapelovirus (PSV) and Enterovirus G (EV-G) in pig herds of Brazil. Tropical Anim. Hlth. Produc. 46, 523-528.
- Harding, J.D.J., Done, J.T., Kershaw, G.F., 1957. A transmissible polioencephalomyelitis of pigs (Talfan disease). Vet. Rec. 69, 824-832.
- Holman, J.E., Koestner, A., Kasza, L., 1966. Histopathogenesis of porcine polioencephalomyelitis in the germ free pig. Pathol. Vet. 3, 633-651.
- Horstmann, D.M., 1952. Experiments with Teschen disease (virus encephalomyelitis of swine). J. Immunol. 69, 379-394.
- Huang, T.S., Wang, C., Deng, M.C., Jeng, J.J., Lee, S.H., Pan, C.S., Lee, M.C., Jong, M.H., 2009. The results of virus isolation in swine tissue samples submitted by LDCC and tested by viral isolation and PCR and/or RT-PCR in 2008. Exp Rep.

AHRI (Animal Health Reserch Institute) 44, 35-46.

Jimenez-Clavero, M.A., Fernandez, C., Ortiz, J.A., Pro, J., Carbonell, G., Tarazona, J.V., Roblas, N., Ley, V., 2003. Teschoviruses as indicators of porcine fecal contamination of surface water. Appl. Environ. Microbiol. 69, 6311-6315.

臺

- Kaku, Y., Murakami, Y., Sarai, A., Wang, Y., Ohashi, S., Sakamoto, K., 2007. Antigenic properties of porcine teschovirus 1 (PTV-1) Talfan strain and molecular strategy for serotyping of PTVs. Arch. Virol. 152, 929-940.
- Kaku, Y., Sarai, A., Murakani, Y., 2001. Genetic reclassification of porcine enteroviruses. J. Gen. Virol. 82, 417-424.
- Knowles, N.J., Buckley, L.S., Pereira, H.G., 1979. Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: Description of 3 new serotypes. Arch.Virol. 62, 201-208.
- Kuo, CC., 2014. Urinary shedding of porcine teschovirus in endemically infected field situation. National Taiwan University Master degree thesis.
- La Rosa, G., Muscillo, M., Di Grazia, A., Fontana, S., Iaconelli, M., Tollis, M., 2006. Validation of rt-PCR assays for molecular characterization of porcine teschovirus and enteroviruses. J. Vet. Med. B Infect. Dis. Vet. Public Health 53, 257-265.
- Qiu, Z., Wang, Z., Zhang, B., Zhang, J., Cui, S., 2013. The prevalence of porcine teschovirus in the pig population in northeast of China. J. Virol. Methods 193, 209-214.
- Racaniello, V.R., 2006. One hundred years of poliovirus pathogenesis. Virology 344, 9-16.
- Radstrom, P., Knutsson, R., Wolffs, P., Dahlenborg, M., Löfström, C. 2003. Pre-PCR processing of samples. In Sachse, K. and Frey, J. (Eds.) PCR detection of

microbial pathogens, pp. 31-50.

- Sachse, K. 2003. Specificity and performance of diagnostic PCR assays. In Sachse, K. and Frey, J. (Eds.) PCR detection of microbial pathogens, pp. 3-29.
- Salles, M.W., Scholes, S.F., Dauber, M., Strebelow, G., Wojnarowicz, C., Hassard, L., Acton, A.C., Bollinger, T.K., 2011. Porcine teschovirus polioencephalomyelitis in western Canada. J. Vet. Diagn. Invest. 23, 367-373.
- Smith, T.J., Baker, T., 1999. Picornaviruses: epitopes, canyons, and pockets. Adv. Virus Rec. 52, 1-23.
- Sozzi. E., Barbieri, I., Lavazza, A., Lelli, D., Moreno, A., Canelli, E., Bugnetti, M., Cordioli, P., 2010. Molecular characterization and phylogenetic analysis of VP1 of porcine enteric picornaviruses isolates in Italy. Transbound. Emerg. Dis. 57, 434-442.
- Wang, B., Tian, Z.J., Gong, D.Q., Li, D.Y., Wang, Y., Chen, J.Z., An, T.Q., Peng, J.M., Tong, G.Z., 2010. Isolation of serotype 2 porcine teschovirus in China: evidence of natural recombination. Vet. Microbiol. 146, 138-143.
- Yamada, M., Kozakura, R., Nakamura, K., Yamamoto, Y., Yoshii, M., Kaku, Y., Miyazaki, A., Tsunemitsu, H., Narita, M., 2009. Pathological changes in pigs experimentally infected with porcine teschovirus. J. Comp. Pathol. 141, 223-228.
- Zell, R., Dauber, M., Krumbholz, A., Henke, A., Birch-Hirschfeld, E., Stelzner, A., Prager, D., Wurm, R., 2001. Porcine teschoviruses comprise at least eleven distinct serotypes: molecular and evolutionary aspects. J.Virol. 75, 1620-1631.
- Zell, R., Krumbholz, A., Henke, A., Birch-Hirschfeld, E., Stelzner, A., Doherty, M., Hoey, E., Dauber, M., Prager, D., Wurm, R., 2000. Detection of porcine enteroviruses by nRT-PCR: differentiation of CPE groups I-III with specific

primer sets. J. Virol. Methods 88, 205-218.

FIGURES

Figure 4.1A Amplification of pan-PTV 5'NTR specific products by RT-PCR from field samples. The expected product size is 321 bp, which constitutes a minor portion against a high background of undesirable products likely from tissue RNA (lanes 5 and 7).

Figure 4.1B Amplification of pan-PTV 5'NTR specific products by nested PCR from field samples. The expected product size is 158 bp, and the specific product now constitutes a major portion of the products.

Lane 1: KM2 Feces	Lane 6: CY21 Feces
Lane 2: KM5 Feces	Lane 7: CY23 Feces
Lane 3: CY15 Feces	Lane 8: CY24 Feces
Lane 4: CY17 Feces	P: Positive control PTV-10
Lane 5: CY19 Feces	N: Negative control

Figure 4.2B Amplification of VP1 region for genotyping by nested PCR from reference strains (Table 3.1). The specific product size is 347 bp. Judgeing from the band intensity in lane 7, this primer did not seem to preferentially amplify PTV-10.

Lane 1: PTV-1	Lane 5: PTV-5
Lane 2: PTV-2	Lane 6: PTV-6
Lane 3: PTV-3	Lane 7: PTV-10
Lane 4: PTV-4	N: Negative control

Figure 4.3A Amplification of VP1 region for genotyping by nested PCR from field samples. The specific product size is 571 bp. Note that positive control (P) PTV-10 was not included in the nested PCR for VP1 amplification for field sample, and was incorporated for comparison in gel electrophoresis.

Figure 4.3B Amplification of VP1 region for genotyping by nested PCR from field samples. The specific product size is 347 bp.

Lane 1: KM2 Feces	Lane 6: CY21 Feces
Lane 2: KM5 Feces	Lane 7: CY23 Feces
Lane 3: CY15 Feces	Lane 8: CY24 Feces
Lane 4: CY17 Feces	P: Positive control PTV-10
Lane 5: CY19 Feces	N: Negative control

Fig. 4.4 Phylogenetric tree of partial VP1 nucleotide sequences constructed by the neighbor-joining method. The PTVs from field samples of this study cluster in PTV-2, PTV-4, PTV-5, PTV-6, and PTV-10.

TABLES

Table 4.1 The PTV detection rates (by heads) for 5'NTR in different samples.

	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
RT-PCR	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	(1/28)	(0/28)	(0/28)	(0/28)	(0/28)	(0/28)	(0/28)	(0/28)	(0/28)	(0/28)
Nested-PCR	96%	93%	93%	79%	86%	57%	36%	64%	79%	93%
	(27/28)	(26/28)	(26/28)	(22/28)	(24/28)	(16/28)	(10/28)	(18/28)	(22/28)	(26/28)

Note: refer also to Appendix 1.

Table 4.2 St	accessful VP	1 amplificati	on rates and	the serotype	es identification	on rates in d	ifferent samj	ples	at .	X
	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
Percentage	63% (17/27)	54% (14/26)	27% (7/26)	36% (8/22)	17% (4/24)	6% (1/16)	20% (2/10)	11% (2/18)	14% (3/22)	19% (5/26)
Serotype	PTV-2, PTV-5, PTV-6, PTV-10	PTV-2, PTV-6, PTV-10	PTV-2, PTV-4, PTV-10	PTV-2, PTV-4, PTV-10	PTV-10	PTV-2	PTV-2, PTV-10	PTV-6, PTV-10	PTV-10	PTV-6, PTV-10

 Table 4.2 Successful VP1 amplification rates and the serotypes identification rates in different samples

Note: refer also to Appendix 2

Table 4.3 D) ifferent sero	otypes co-exis	sted in the sa	me animals	but in differe	nt samples.				1 護査」
Piglet ID	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08Bladder	09 Urine	10 Nasal
TY5	PTV-6								7	PTV-10
TY6	PTV-6	PTV-6						PTV-10		· 学 · 学 · · · · · · · · · · · · · · · ·
TY2	PTV-10									PTV-6
KM2		PTV-2	PTV-4	PTV-10						PTV-10
KM6	PTV-10	PTV-2	PTV-2	PTV-10				PTV-6	PTV-10	
KM1	PTV-10	PTV-10	PTV-4							
CY2	PTV-6		PTV-10							
CY1		PTV-10		PTV-2	PTV-10					PTV-10
CY9		PTV-6		PTV-2						
CY14	PTV-10				PTV-10	PTV-2				
CY15		PTV-2		PTV-2						PTV-10
CY21	PTV-10			PTV-2	PTV-10				PTV-10	
CY23	PTV-5	PTV-10								

CY29	PTV-6	PTV-10	A CONTRACT	E
Note: refer a	also to Appen	dix 2. All 28 piglets had at least one serotype identified, and 14/28 pigs had more than one serotype co	-existed in	•

different samples of the same animal.

Note: This experiment was executed in sequential order (appendix 2)(by samples, feces, pig $1 \rightarrow 28$; then ileum pig $1 \rightarrow 28$ ). This RNA was

3rd time thawed from RNA extracted for qRT-PCR).

Table 4.4 Comparison of real-tim	e RT-PCR, pan-P1	TV 5'NTR nested PCR	and Nested PCR on VP1
	Head	Positive Samples	Note
Real-time RT-PCR (5' NTR) (Kuo, 2014)	100% (28/28)	80% (224/280)	17/224 samples were negative in pan-PTC nested PCR (row 2)
Pan-PTV nested PCR (5' NTR) (Zell et al., 2000)	100% (28/28)	77.5% (217/280)	10/217 samples were negative in real-time RT-PCR (row 1)
Nested PCR (VP1) (This study)	100% (28/28)	22.5% (63/280) 29% (63/217)	All 63 samples were pan-PTV nested PCR positive (row 2). 3 real-time RT-PCR negative sample (row 1) was successfully VP1 amplified and serotype identified.

Table 4.4 Comparison of real time DT DCD, non DTV 5'NTD nested DCD, and Nested DCD on VD1

Note: refer to Appendix 2 for raw data.

APPENDICES

											443	
Herds	Healthy	Pig No.	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
1	С	TY3	-/+	-/+	-/+	-/-	-/+	-/-	-/+	-/+	-/+	-/+
1	С	TY5	-/+	-/+	-/+	-/+	-/+	-/+	-/-	-/+	-/+	-/+
1	С	TY6	-/+	-/+	_/_	_/_	-/+	_/_	-/-	-/+	-/+	-/+
1	Н	TY2	-/+	-/+	-/+	-/+	-/-	-/+	-/-	-/-	-/+	-/+
2	С	KM2	-/+	-/+	-/+	-/+	-/+	_/_	-/-	-/+	-/+	-/+
2	С	KM5	-/+	-/+	-/+	-/+	-/+	_/_	-/-	-/-	_/_	-/+
2	С	KM6	-/+	-/+	-/+	-/+	_/_	_/_	-/-	-/+	-/+	-/+
2	Н	KM1	-/+	-/+	-/+	-/+	_/_	-/+	-/-	_/_	-/+	-/-
3	С	CY2	-/+	-/-	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+
3	С	CY4	-/+	-/+	-/+	-/+	-/+	-/+	-/-	_/_	_/_	-/+
3	С	CY5	-/+	-/+	-/+	-/+	-/+	-/+	-/-	-/+	-/+	-/+
3	Н	CY1	-/+	-/+	-/+	-/+	-/+	-/+	-/-	-/-	-/+	-/+
4	С	CY9	-/+	-/+	_/_	-/+	-/+	-/+	-/-	-/-	-/+	-/+
4	С	CY10	-/+	-/+	-/+	-/+	-/+	_/_	-/+	-/+	-/+	-/+
4	С	CY11	-/+	-/+	-/+	-/+	_/_	_/_	-/+	-/+	_/_	-/+
4	Н	CY7	-/+	-/+	-/+	_/_	-/+	_/_	-/-	-/-	_/_	-/+
5	С	CY14	-/+	-/+	-/+	_/_	-/+	-/+	-/-	-/-	_/_	-/+
5	С	CY15	-/+	-/+	-/+	-/+	-/+	-/+	-/-	-/+	_/_	-/+
5	С	CY17	-/+	-/+	-/+	_/_	-/+	_/_	-/+	-/+	-/+	-/-
5	Н	CY13	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/-	-/+	-/+

Appendix 1 The detection results of the pan-PTV 5'NTR RT-PCR and nested PCR in different samples

Herds	Healthy	Pig No.	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
											A A Com	2.00
6	C	CY21	-/+	-/+	-/+	-/+	-/+	-/-	-/+	-/+	-/+	-/+
6	С	CY23	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-77
6	С	CY24	-/+	-/+	-/+	-/+	-/+	-/+	_/_	-/+	-/+	<u>_</u> +/+ ₽
6	Н	CY19	-/+	_/_	-/+	_/_	-/+	-/+	_/_	-/+	-/+	-/+
7	С	CY27	+/-	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+
7	С	CY29	-/+	-/+	-/+	-/+	-/+	_/_	_/_	_/_	-/+	-/+
7	С	CY30	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+
7	Н	CY28	-/+	-/+	-/+	-/+	-/+	_/_	_/_	-/+	-/+	-/+
	Detection	n number	27	26	26	22	24	16	10	18	22	26
	Positive	rate	96%	93%	93%	79%	86%	57%	36%	64%	79%	93%

1661610161616

Note 1: "C" indicates culled piglets, "H" indicates healthy piglets.

Note 2: "+" indicates positive detection and "-" indicates negative detection by either PCR reactions. The results are presented as RT/nested

PCR.

Note 3: Detection number and Positive rate are calculated by the result of nested PCR.

Note 4: refer also to Table 4.1.

											A A A	
Herds	Healthy	Pigs	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
											7.00	あ (本)
1	С	TY3	+/+	<u>+/+/-2</u>	+/+	-/-	+/+	-/-	<u>+/+/-2</u>	+/+	+/+	+/+
1	С	TY5	+/+/-6	+/+	+/+	+/+	+/+	+/+	_/_	+/+	+/+	+/+/-10
1	С	TY6	<u>+/+/-6</u>	<u>+/+/-6</u>	-/-	-/-	+/+	-/-	-/-	<u>+/+/-10</u>	+/+	+/+
1	Н	TY2	<u>+/+/-10</u>	+/+	+/+	+/+	+/-	-/+	-/-	_/_	+/+	<u>+/+/-6</u>
2	С	KM2	+/+	<u>+/+/-2</u>	-/+/-4	<u>+/+/-10</u>	+/+	-/-	-/-	-/+	+/+	+/+/-10
2	С	KM5	<u>+/+/-10</u>	+/+	+/+	+/+	+/+	-/-	-/-	-/-	+/-	+/+
2	С	KM6	<u>+/+/-10</u>	+/+/-2	+/+/-2	+/+/-10	+/-	-/-	-/-	+/+/-6	+/+/-10	+/+
2	Н	KM1	<u>+/+/-10</u>	<u>+/+/-10</u>	<u>+/+/-4</u>	+/+	+/-	+/+	-/-	+/-	+/+	+/-
3	С	CY2	+/+/-6	+/-	+/+/-10	+/+	+/+	+/+	+/+	+/+	+/+	+/+
3	С	CY4	+/+/-10	+/+/-10	+/+	+/+	+/+	+/+	-/-	-/-	+/-	+/+
3	С	CY5	+/+	+/+	<u>+/+/-4</u>	<u>+/+/-4</u>	+/+	+/+	-/-	+/+	+/+	+/+
3	Н	CY1	+/+	+/+/-10	+/+	+/+/-2	<u>+/+/-10</u>	+/+	-/-	_/_	+/+	+/+/-10
4	С	CY9	+/+	+/+/-6	-/-	-/+/-2	+/+	-/+	-/-	_/_	+/+	+/+
4	С	CY10	+/+/-10	+/+	+/+	+/+	+/+	-/-	+/+	+/+	+/+	+/+
4	С	CY11	+/+/-10	+/+	+/+	+/+	+/-	+/-	+/+	+/+	+/-	+/+
4	Н	CY7	+/+	+/+/-10	+/+	-/-	+/+	-/-	-/-	_/_	+/-	+/+
5	С	CY14	+/+/-10	+/+	+/+	-/-	<u>+/+/-10</u>	-/+/-2	-/-	_/_	+/-	+/+
5	С	CY15	+/+	+/+/-2	-/+	+/+/-2	+/+	+/+	-/-	+/+	+/-	+/+/-10
5	С	CY17	+/+/-2	+/+	+/+/-2	-/-	+/+	-/-	+/+	+/+	+/+	+/-
5	Н	CY13	+/+	+/+	+/+	+/+	+/+	+/+	+/+/-10	-/-	+/+/-10	+/+
6	С	CY21	+/+/-10	+/+	+/+	+/+/-2	+/+/-10	-/-	+/+	+/+	+/+/-10	+/+
6	С	CY23	+/+/-5	<u>+/+/-10</u>	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+

Appendix 2. The comparison of results on real-time RT-PCR, pan-PTV 5'NTR nested PCR, and nested PCR for VP1 serotyping

Herds	Healthy	Pigs	01 Feces	02 Ileum	03 Tonsil	04 Ig LN	05 Plasma	06 Spleen	07 Kidney	08 Bladder	09 Urine	10 Nasal
												2.6
6	С	CY24	+/+/-10	+/+	+/+	+/+	+/+/-10	+/+	-/-	+/+	+/+	+/+
6	Н	CY19	+/+	-/-	<u>+/+/-10</u>	-/-	+/+	+/+	+/-	+/+	+/+	+/+ US
7	С	CY27	+/-	+/+	+/+	<u>+/+/-2</u>	+/+	-/+	+/+	+/+	+/+	+/+
7	С	CY29	+/+/-6	+/+/-10	-/+	+/+	+/+	-/-	-/-	-/-	+/+	+/+
7	С	CY30	+/+/-10	+/+/-10	+/+	+/+	+/+	-/+	+/+	+/+	+/+	+/+
7	Н	CY28	+/+	<u>+/+/-10</u>	+/+	+/+	+/+	-/-	-/-	+/+	+/+	+/+
	Sero	type	63%	54%	27%	36%	17%	6%	20%	11%	14%	19%
	identifica (number positive /	tion rate of VP1 number	(17/27)	(14/26)	(7/26)	(8/22)	(4/24)	(1/16)	(2/10)	(2/18)	(3/22)	(5/26)
	posit	ive)										

1661610101070

Note 1: Herds with four serotypes co-circulated are boxed. "C" indicates culled piglets, "H" indicates healthy piglets.

Note 2: The results are presented as qRT-PCR for 5'NTR/pan-PTV nested PCR for 5'NTR/identified serotype on VP1. Refer also to Tables 4.2, 4.3, 4.4. Results disagreed between qRT-PCR and pan-PTV nested PCR are masked. Those with identified serotypes are underlined. Those that are negative in qRT-PCR but with positive VP1 amplification and serotype identified are also boxed.

Appendix 3. Alignment of PTV-10 reference strain and all PTV-10 sequences in this study

Appendix 5. Al	ingining		F I V-1	Uleie	Tence	suan	li allu all		v-10 S	equence	es n	n unis	9 X.
study										14	0	0	E
										8.17	G	-9	
Majority							CGCTT4	AXG-X-4		CLAACATCA	ΔΔ		
hajoreej		2400	2500	25	10	25.20	2520		25.40	25.50	<u> </u>		tory.
		2490	2500	25	10	2520	25.30		2540	2550			1 98
PTV-10 Vir460/88.seq	GCTCAT	CTCGAGTA	GCATTTTT	CTGGGACA	GGTATTT	TCACATO	CTCAACAATTA	ACA	AGGAGTGA	CCAACATCA	AA	2554	141 0101
IYZE.seq							A	AC_TT	۵ ۸	·		25	Terr
KM6F.sea							GG	GTACC	G			28	
KM1F.seq							T.GGG.C.	.TA0	CA			29	
Cy4F.seq							CC	G-TA.				28	
Cy10F.seq							CGG	.TCTC-C	G	.A	·	26	
Cv14F sea								.Α(ΤΔ	JAA			29	
Cy21F.seq							GCCTTC1	TA		.A		28	
Cy24F.seq							A.CG.0	стс.	T			25	
Cy30F.seq							CGCC.C-	GTACC	5	• • • • • • • • • •		28	
KM11.seq								. A	 -	.A	G	29	
Cv1I.sea							GGG	-GTAC	3 5			27	
Cy7I.seq							CAGC	AT-TA.	.т			28	
Cy23I.seq								GGTA.	CA	GTGA.T	GCGA	26	
Cy29I.seq							CAGC	G-TTC	C	····	••	29	
Cy301.Seq							u.ui.A.	-A-TT	ΔΑ	ALLIC T -		31 26	
Cy2T.sea							GGGGG	C.AATA0	C	.TG.G	GAC	31	
Cy19T.seq							CT.C.	.TAAC	C			28	
KM2Ig.seq							CT.A.	.TA0				27	
KM6Ig.seq							.A.GGACC	. G	.AA		•••	30	
CV14P sea							C.GT.A	CAGTTA				31	
Cy21P.seq							GCGGT	GTACO	G			30	
Cy24P.seq							CGCC.A.	GTACO	5			29	
Cy13K.seq							GGC	. AG-TAC				26	
LY68.seq							GIGC.	. AIA.				20	
Cv13U.sea							CAG	GTACC	5			29	
Cy21U.seq							CCG	ATACO	G			26	
Ty5N.seq							C.C.AC.	.ATCAT1	r.c	T.CCATG	G	31	
KM2N.seq							CG.C.	. TAC	-A	.TT	·	24	
CV15N sea							CAGI	-GTAC.	 5	···-		28	
cyronioed							cruit					2.1	
Majority	CCTCAG	ACTT	<u>GC-GACTA</u>	AATATTT	AGACATT	TT-GCG	AG-ATCGCATT	TCTAC-C	STCAA-TCO	CTGCATGC	CACC		
	256	0	2570	25	80	2590	2600		2610	2620			
PTV-10 Vir460/88.seq	CCTCAGT	ACTT	GC-GACTA	AATATTT	AGACATT	TT-GCG4	AG-ATCGCATT	TCTAC-C	STCAA-TC	CCTGCATGC	CACC	2626	
Ty2F.seq												97	
KM5F.seq												99	
KMOF.seq KM1F seq	•••••			r								100	
Cy4F.seq												100	
Cy10F.seq				T		A	.AC	AC	TA			97	
Cy11F.seq			A			A						103	
Cy21E sea			••••								• • • •	101	
Cy24F.seq				· · · · · · · · · ·				· · · · · · - ·				97	
Cy30F.seq												100	
KM1I.seq												101	
Cy4I.seq	•••••		•••-••••								• • • •	99	
Cv7I.seq			· · ⁻ · · · · ·				-	· · · · · ⁻ ·	· · · · · · ⁻ · · ·			100	
Cy23I.seq	A.		TGC	G	AC			A				98	
Cy29I.seq												101	
Cy30I.seq	•••••		A									104	
CV2T Sec	тл	ATC	T GAG C		Δ ΔΤ	татт		· · · · · - ·		тс	۸C	98 104	
Cy19T.sea								· · · · · · ⁻ ·				100	
KM2Ig.seq												98	
KM6Ig.seq												102	
Cy1P.seq					G							102	
Cv21P.seg								· · · · · - ·				102	
Cy24P.seq								 				101	
Cy13K.seq												98	
Ty6B.seq												98	
KM6U.seq	•••••								•••••			99 101	
Cy21U.seg			· · - · · · · · ·				-	· · · · · ·				98 101	
Ty5N.seq	CA	T		GT	CA.AC.			A	G	G		104	
KM2N.seq	Α	CT GA	.ACT	T	.A	A0	GAGC	. ATTA.	тс.	.т		102	
Cy1N.seq												100	
CYTON.Sed												33	

								X	12
Majority	ΤΑ-ΓΓΤΓΑΟ	STGTGGGCTGI	гссаттоста	ταδοσταστι	GEEAGEAAGEE	ссоссавто	TTGAGTGTAT	GGACGGATTGA	
Jorecy		2640	2050	2000	26.70	2000	2000	2700	
	2030	2040	2050	2000	2070	2080	2090	2700	
//V-10 Vir460/88.seq	IA-CCIGAGO	r	ILLAIIGLIA	IAAGGGIAAI	GELAGEAAGE	LLGLLAAIG	IIGAGIGIAI	GGALGGAIIGA	176
(M5F.seq									178
(M6F.seq					T				179
(M1F.seq									180
Cy4F.seq					·····				179
viif sen	-	••••••		····A···					182
Cy14F.seq									180
y21F.seq									179
Cy24F.seq		•••••							176
Ly30⊢.seq		• • • • • • • • • • • •						•••••	1/9
V4I.sea					 				178
CylI.seq									178
Cy7I.seq									179
Cy23I.seq	C.T	• • • • • • • • • • • •			TGC	•••••	T		178
JV201.Seq		• • • • • • • • • • • •				•••••			182
v28I.sea					 				177
y2T.seq	сст		GC.	A	TGCA.	CT.C		T	184
Cy19T.seq		•••••							179
MZIg.seq		•••••		L					101
V1P.sea			r.		 				178
y14P.seq									182
y21P.seq									181
y24P.seq						•••••			180
y13K.seq		•••••				•••••	• • • • • • • • • • • •		177
M6U.sea			 		 		 		178
y13U.seq							G		180
y21U.seq									177
									111
y5N.seq		ACT0	cGC.	A.A	cc		AG	AT	183
y5N.seq (M2N.seq Cv1N.seq		ACT (cGC.	A.A	CC		G T	AT	183 181 179
y5N.seq (M2N.seq Cy1N.seq Cy15N.seq	······································	ACT (cGc.	A.A	CC A.C.A.			AT	183 181 179 178
y5N.seq (M2N.seq Cy1N.seq Cy15N.seq	···-····	ACT (GCGC.	A.A	CC A.C.A.		G 	AT	183 181 179 178
ySN.seq M2N.seq y1N.seq y15N.seq ajority		ACT (с	A. A	CC A.C.A.		G T	AT	177 183 181 179 178
ysN.seq MZN.seq y1N.seq y15N.seq ajority	CAGT GAATCT	ACTC		AGT GGAT GGA	ACATTAACAA			AT	177 183 181 179 178
y5N.seq M2N.seq y1N.seq y15N.seq Jjority	<u>CAGT GAATCT</u> 2710	ACTC	CCCTCCTGGG 2730	AGT GGAT GGA 2740	ACATTAACAA	CATTAATTCA 2760		AT 	177 183 181 179 178
/>N.seq M2N.seq /1N.seq /15N.seq ujority V-10 Vir460/88.seq	<u>CAGT GAATCT</u> 2710 CAGT GAATCT	ACT(<u>ссстсстваа</u> 2730 ссстсстваа	AGT GGAT GGA 2740 AGT GGAT GGA	СС А.С.А. АСАТТААСААН 2750 АСАТТААСААН	CATTAATTCA 2760 CATTAATTCA		ATAT	2785 256
/>N.seq M2N.seq /1N.seq /15N.seq /jority V-10 Vir460/88.seq /2F.seq /5F.seq	<u>CAGT GAATCT</u> 2710 CAGT GAATCT	TACTCTATGT(2720 TACTCTATGT(сGC. ссстсства 2730 ссстсства	AGT GGAT GGA. 2740 AGT GGAT GGA.	CC	CATTAATTCA 2760 CATTAATTCA	AG .T	ATAT	2785 256 258
y>N.seq M2N.seq y1N.seq y15N.seq 1jority V-10 Vir460/88.seq y2F.seq M6F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(сGC. ссстсства 2730 ссстсства	AGT GGAT GGA. 2740 AGT GGAT GGA.	CC .A.C.A ACATTAACAAI 2750 ACATTAACAAI	САТТААТТ СА 2760 САТТААТТ СА	AG .T	ATAT	2785 256 258 259
ysN.seq M2N.seq y1N.seq y15N.seq ajority [V-10 Vir460/88.seq y2F.seq M5F.seq M6F.seq M1F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	ACT (TACTCTATGT (2720 TACTCTATGT (сGC. ссстсства 2730 ссстсства	AGT GGAT GGA 2740 AGT GGAT GGA	CC A.C.A. ACATTAACAAI 2750 ACATTAACAAI	САТТААТТ СА 2760 САТТААТТ СА	AG 	ATAT	2785 256 258 259 260
y5N.seq M2N.seq y1N.seq y15N.seq Djority IV-10 Vir460/88.seq y2F.seq M5F.seq M1F.seq y4F.seq y4F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATCT	ACT (TACTCTATGT (2720 TACTCTATGT (с	AGT GGAT GGA 2740 AGT GGAT GGA	ССА.С.А. АСАТТААСААН 2750 АСАТТААСААН	CATTAATTCA 2760 CATTAATTCA	AG 	ATAT	2785 256 258 259 256
ysN.seq MZN.seq y1JN.seq y1SN.seq ajority IV-10 Vir460/88.seq y2F.seq MSF.seq MGF.seq y4F.seq y10F.seq y11F.seq y11F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATCT	ACT (TACTCTATGT (2720 TACTCTATGT (C.	сGC. <u>ссстсстваа</u> 2730 ссстсстваа Са.А	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA. 	CC A.C.A. ACATTAACAAI 2750 ACATTAACAAI	CATTAATTCA 2760 CATTAATTCA	AG .T	ATAT	2785 256 258 259 260 259 260 259
ySN.seq M2N.seq y1N.seq y1SN.seq ajority TV-10 Vir460/88.seq y2F.seq MSF.seq MSF.seq y4F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATCT	ACT (TACTCTATGT (2720 TACTCTATGT (C.	CCCTCCTGGG 2730 CCCTCCTGGG CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA. 	CC A.C.A. ACATTAACAAI 2750 ACATTAACAAI	CATTAATTCA 2760 CATTAATTCA	AG .T.CAACTTCCA 2770 .TCAACTTCCA .A.CT	AT ATTGAGCAGGCC 2780 ATTGAGCAGGCC 	2785 256 258 259 260 259 256 262 260
y5N.seq M2N.seq y1N.seq y15N.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M5F.seq y4F.seq y1F.seq y1F.seq y14F.seq y14F.seq y21F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	ACT (TACTCTATGT (2720 TACTCTATGT (CCCTCCTGGG 2730 CCCTCCTGGG CCCTCCTGGG	AGT GGAT GGA 2740 AGT GGAT GGA	СС А.С.А. <u>АСАТТААСААН</u> 2750 АСАТТААСААН АСАТТААСААН	CAT TAATT CA 2760 CAT TAATT CA	AG .T.CAACTTCCA 2770 .TCAACTTCCA .A.CT	AT ATTGAGCAGGCC 2780 ATTGAGCAGGCC 	2785 256 258 259 260 259 260 259
y5N.seq M2N.seq y1N.seq y15N.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M5F.seq M1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y2F.seq y2F.seq y2F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	ACT(TACTCTATGT(2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGATGGA 2740 AGT GGATGGA	ССА.С.А. АСАТТААСАА 2750 АСАТТААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	AT ATTGAGCAGGCC 2780 ATTGAGCAGGCC C. 	2785 256 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259
y5N.seq M2N.seq y1N.seq y15N.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M5F.seq M1F.seq y10F.seq y11F.seq y11F.seq y21F.seq y24F.seq y24F.seq y24F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC		CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGAT GGA 2740 AGT GGAT GGA TAA.	СС	<u>САТТААТТСА</u> 2760 САТТААТТСА	AG TCAACTTCCA 2770 TCAACTTCCA	AT ATTGAGCAGGCC 2780 ATTGAGCAGGCC 	2785 258 259 260 260 260 260 260 260 260 260 260 260
y5N.seq M2N.seq y1N.seq y15N.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M5F.seq M1F.seq y10F.seq y10F.seq y11F.seq y21F.seq y24F.seq y24F.seq y24F.seq y24F.seq y30F.seq M11.seq y44T.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC		CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGAT GGA 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	<u>САТТААТТСА</u> 2760 САТТААТТСА	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT ATTGAGÇAGGCC 2780 TTGAGCAGGCC 	2785 256 258 259 256 259 259 256 259 259 256 259 259 259 259 259 259 259 259 259 259
y5N.seq M2N.seq y1N.seq y15N.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M5F.seq M4F.seq y10F.seq y11F.seq y2F.seq y21F.seq y24F.seq y24F.seq y24F.seq y30F.seq y30F.seq y30F.seq y30F.seq y41.seq y41.seq y41.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	ACT (TACTCTAT GT (2720 TACTCTAT GT (CCTCCTGGG 2730 CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	<u>САТТААТТСА</u> 2760 САТТААТТСА	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	AT ATTGAGÇAGGCC 2780 TTGAGCAGGCC 	2785 256 258 259 260 259 256 259 256 259 256 259 260 259 256 259 256 259 256 259 258 259 258 259 258 258
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq TV-10 Vir460/88.seq y2F.seq M5F.seq M6F.seq M1F.seq y1F.seq y11F.seq y14F.seq y21F.seq y24F.seq y30F.seq M11.seq y41.seq	<u>CAGTGAATC</u> 2710 CAGTGAATC	ACT (TACTCTAT GT (2720 TACTCTAT GT (<u>ссстсстббб</u> 2730 <u>ссстсстббб</u> СGА	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	ATAT	2785 256 258 259 260 259 260 259 256 259 260 259 256 259 260 259 256 259 260 259 256 259 260 259 258 259
ysN.seq M2N.seq y1N.seq y1SN.seq y1SN.seq ajority TV-10 Vir460/88.seq y2F.seq MSF.seq MSF.seq y1F.seq y1F.seq y1F.seq y1F.seq y2F.seq	CAGT GAATC 2710 CAGT GAATC	ACT (TACTCTAT GT (2720 TACTCTAT GT (<u>ссстсстббб</u> 2730 <u>ссстсстббб</u> СGА	<u>AGT GG AT GGA</u> 2740 AGT GG AT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	AT AT 	2785 256 258 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 258 259 260 258 259 260 258 259 260 258 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 250 259 250 259 250 250 259 250 259 250 259 250 259 250 259 250 259 250 259 259 250 259 250 259 259 259 259 259 259 259 259 259 259
y>N.seq M2N.seq M2N.seq y1N.seq y1SN.seq y15N.seq fV-10 Vir460/88.seq V2F.seq M5F.seq M6F.seq M1F.seq y1F.seq y11F.seq y14F.seq y14F.seq y14F.seq y14F.seq y14F.seq y14F.seq y14F.seq y14F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y21F.seq y23F.seq y23F.seq y23F.seq y23F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	ACT (TACTCTAT GT (2720 TACTCTAT GT (<u>ссстсстббб</u> 2730 <u>ссстсстббб</u> СGА	<u>AGT GG AT GGA</u> 2740 AGT GG AT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	AT 	2785 256 259 260 259 256 259 260 259 256 259 266 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 259 256 259 259 256 259 259 259 259 259 259 259 259 259 259
/>N.seq //2N.seq //2N.seq //1N.seq //1SN.seq //15N.seq //2F.seq /2F.seq /2F.seq /2F.seq /1F.seq /1F.seq /14F.seq /14F.seq /14F.seq /24F.seq /24F.seq /24F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /21F.seq /22F.seq /23F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(<u>ссстсстббб</u> 2730 СССТССТБСБ СССТССТБСБ СССТССТБСБ	AGT GGAT GGA 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT 	2785 256 259 260 259 250 259 250 259 260 259 250 259 259 259 250 259 259 259 259 259 259 259 259 259 259
/5N.seq /2N.seq /2N.seq /1N.seq /1SN.seq /15N.seq /2F.seq /	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(<u>ссстсстббб</u> 2730 СССТССТБСБ СССТССТБСБ ССА	AGT GGAT GGA. 2740 AGT GGAT GGA.	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CATTAATTCA 2760 CATTAATTCA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT 	2785 256 259 260 259 260 259 260 259 260 259 260 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 259 259 259 260 259 259 259 259 259 259 259 259 259 259
/5N.seq 1/2N.seq 1/2N.seq /1SN.seq /15N.seq /15N.seq /15N.seq /15N.seq 2F.seq 2F.seq 16F.seq 11F.seq 14F.seq 14F.seq 21F.seq 24F.seq 30F.seq 11I.seq 4I.seq 4I.seq 21I.seq 23I.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGAT GGA. 2740 AGT GGAT GGA.	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT 	2785 256 259 260 259 260 259 260 259 260 259 260 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 259 259 259 259 259 259 259 259
/5N.seq 4/2N.seq 4/2N.seq /1N.seq /1SN.seq /15N.seq /15N.seq /2F.seq /2F.seq /2F.seq /16F.seq /10F.seq /11F.seq /14F.seq /14F.seq /24F.seq /24F.seq /24F.seq /24F.seq /21I.seq /21I.seq /21I.seq /23I.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGATGGA 2740 AGT GGATGGA	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT AT 	2785 256 258 259 256 258 259 256 259 256 259 256 259 256 259 256 259 256 258 259 256 259 257 257 257 257 257 257 257 257 257 257
/5N.seq /2N.seq /2N.seq /1N.seq /1SN.seq /1SN.seq /2F.seq /	CAGT GAATC 2710 CAGT GAATC	<u>TACTCTATGTC</u> 2720 TACTCTATGTC	CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGATGGA 2740 AGT GGATGGA	СС	CAT TAATT CA 2760 CAT TAATT CA	AG TCAACTTCCA 2770 TCAACTTCCA	ATAT	2785 256 258 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 258 259 256 258 259 256 258 259 256 258 259 256 259 257 257 257 257 257 257 257 257 257 257
/5N.seq 4/2N.seq 4/2N.seq /1D.seq /1D.seq /15N.seq /15N.seq /2F.seq 15F.seq 15F.seq 14F.seq /14F.seq /14F.seq /14F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /24F.seq /21I.seq /21I.seq /23I.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	<u>TACTCTATGT(</u> 2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGATGGA 2740 AGT GGATGGA	ССА.С.А. АСАТТААСАА 2750 АСАТТААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT AT 	2785 256 258 259 256 258 259 256 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 258 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 257 260 259 260 260 260 260 260 260 260 260 260 260
y5N.seq M2N.seq y1N.seq y1SN.seq y15N.seq y15N.seq y15N.seq A5F.seq A5F.seq A5F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y2F.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGAT GGA 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT	2785 256 258 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 257 260 259 257 260 259 257 260 257 257 260 257 257 257 257 257 260 257 257 257 257 257 257 257 260 257 257 257 257 257 257 257 257 257 257
ysN.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq y2F.seq MSF.seq MSF.seq y4F.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y2F.seq y2AF.seq y1AF.seq y2AF.seq	<u>CAGT GAATC</u> 2710 CAGT GAATC		CCCTCCTGGG 2730 CCCTCCTGGG	AGT GGAT GGA 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT	2785 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 256 259 256 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 256 259 258 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 257 260 259 257 260 259 257 260 259 257 260 259 257 260 259 257 260 259 257 260 257 257 257 257 257 257 257 257 257 257
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq TV-10 Vir460/88.seq y2F.seq M5F.seq M6F.seq M1F.seq y1F.seq y1F.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y2F.seq YF.se	<u>CAGTGAATC</u> 2710 CAGTGAATC		CCCTCCTGGG 2730 CCCTCCTGGG	A. A	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	CAT TAATT CA 2760 CAT TAATT CA	AG TCAACTTCCA 2770 TCAACTTCCA	AT	2785 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 258 259 256 259 256 259 256 259 256 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 260 257 257 257 257 257 257 257 257 257 257
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq ajority TV-10 Vir460/88.seq M5F.seq M5F.seq M6F.seq M1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y1F.seq y2F.seq YF.seq	<u>CAGTGAATC</u> 2710 CAGTGAATC		CCTTCCTGGG 2730 CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСААЦ 2750 АСАТТ ААСААЦ	<u>САТТААТТСА</u> 2760 САТТААТТСА	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT	2785 256 259 260 259 260 259 260 259 260 259 260 259 258 259 260 259 259 260 259 260 259 257 260 259 257 260 257 257 260 257 257 257 257 257 257 257 257 257 257
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq ajority TV-10 Vir460/88.seq y2F.seq M5F.seq M6F.seq M1F.seq y1F.seq y1F.seq y1F.seq y2F.seq y1F.seq y2F.seq y1F.seq y2F.seq y2F.seq y1F.seq y2F.seq y1F.seq y2F.seq y1F.seq y2F.seq y2F.seq y2F.seq y1F.seq y2F.se	<u>CAGTGAATC</u> 2710 CAGTGAATC	TACTCTAT GT (2720 TACTCTAT GT (CCTCCTGGG 2730 CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG TCAACTTCCA 2770 TCAACTTCCA	AT	2785 256 259 260 259 256 259 260 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 258 259 256 259 256 257 260 257 260 257 257 260 257 257 257 260 257 257 260 257 257 260 257 257 257 257 257 257 257 257 257 257
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq y1SN.seq TV-10 Vir460/88.seq y2F.seq M5F.seq M6F.seq M1F.seq y1F.seq y1F.seq y1F.seq y2F.seq y1F.seq y2F.seq y1F.seq y2F.s	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTAT GT (2720 TACTCTAT GT (CCTCCTGGG 2730 CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA	AT	2785 256 258 259 260 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 263 257 264 257 261 258 263 257 261 258 263 257 261 258 263 257 261 258 263 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 258 259 260 259 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 259 259 260 257 260 257 261 257 257 260 257 261 257 261 257 261 257 261 257 261 257 261 257 261 257 262 259 259 258 259 257 260 257 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 257 260 257 257 257 257 257 257 257 257 257 257
y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq y1SN.seq w1SN.seq m3F.seq M3F.seq M3F.seq y1F.seq y1AF.seq y1AF.seq y1AF.seq y1AF.seq y2AF.seq y	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(CCTCCTGGG 2730 CCCTCCTGGG	<u>AGT GGAT GGA</u> 2740 AGT GGAT GGA	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG .TCAACTTCCA 2770 .TCAACTTCCA .A.CT	AT	2785 256 258 259 260 259 260 258 259 260 258 259 260 258 259 260 258 259 260 258 259 263 257 264 257 261 258 262 261 257 264 257 261 258 260 257 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 260 260 260 277 260 277 260 277 260 277 260 277 260 277 260 277 260 277 260 277 260 277 260 277 277 260 277 260 277 260 277 277 260 277 277 260 277 277 260 277 277 260 277 277 260 277 277 260 277 277 260 277 277 277 277 277 277 277 277 277 27
ysN.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y1SN.seq y1SN.seq m3F.seq M3F.seq M3F.seq y4F.seq y1F.seq y1F.seq y1F.seq y1F.seq y24F.	<u>CAGT GAATC</u> 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(C	<u>AGT GG AT GGA.</u> 2740 AGT GG AT GGA. 	ССА.С.А. АСАТТ ААСАА 2750 АСАТТ ААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG TCAACTTCCA 2770 TCAACTTCCA .A.CT	AT AT A 	2785 256 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 259 260 257 261 257 261 257 261 257 260 257 257 257 257 257 257 257 257 257 257
<pre>y5N.seq M2N.seq y1N.seq y1SN.seq y1SN.seq y15N.seq %F.seq %F.seq %F.seq %F.seq %F.seq %F.seq %F.seq %AF.</pre>	CAGT GAATC 2710 CAGT GAATC	TACTCTATGT(2720 TACTCTATGT(CCCTCCTGGG 2730 CCCTCCTGGG CT	AGT GGATGGA 2740 AGT GGATGGA	ССА.С.А. АСАТТААСАА 2750 АСАТТААСАА	CAT TAATT CA 2760 CAT TAATT CA	AG TCAACTTCCA 2770 TCAACTTCCA .A.CT	AT AT A	2785 256 258 259 256 257 260 259 256 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 260 257 257 260 257 257 260 257 257 257 257 257 257 257 257 257 257

Majority CAGGACT CAGTAGACAATT ATGCATTGCCCTCAT TTACATGGAAGCCCACACAAA-CACCCCAXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATT ATGCATTGCCCTCAT TTACATGGAAGCCCACACAAA-CACCCAXXXXXXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATTATGCATTGCCCTCATTTACATGGAAGCCCACACAAA-CACCCAXXXXXXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATTATGCATTGCCCTCATTTACATGGAAGCCCACACAAA-CACCCCAXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATTATGCATTGCCCTCAT TTACATGGAAGCCCACACAAA-CACCCCAXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATTATGCATTGCCCTCATTTACATGGAAGCCCACACAAA-CACCCCAXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATT ATGCATTGCCCTCAT TTACATGGAAGCCC ACACAAA - CACCCAXXXXXXXXXXXXXXXX	
Majority CAGGACT CAGTAGACAATTATGCATTGCCCTCATTTACATGGAAGCCCACACAAA-CACCCAXXXXXXXXXXXXXXX	
Z790 Z800 Z810 Z820 Z830 Z8-2 Z850 Z860 PTV-10 Vi r460/88.seq CAGGACT CAGTAGACAATTATGCATTGCCCT CATTTACATGGAAGCAGCACAGA-CGCCGCATCTTTACATGCTACAG 2860 2860 Ty2F.seq	jority
2790 2800 2810 2820 2830 2810 2820 2830 2810 2850 2860 PTV-10 Vir460/88.seq CAGGACT CAGTAGACAATTATGCATTGCCTCATTTACATGGAAGCAGCAAGA-CGCCAGTCTTTACATGCTCAG 2860 2810	
PTV-10 Vi r460/88.seq CAGGACTCAGTAGACAATTATGCATTGCCCTCATTTACATGGAAGCCAGCACAGA-CGCCAGTCTTTACATGCTCAG 286 Ty2F.seq	
Ty2F.seq CA. A A. A. A 317 KMSF.seq A. CCCCA.C. AC- C. CCA 322 KMGF.seq CA. A A. CA 326 KMGF.seq CA C. A A. CA 326 Cy1F.seq CA C. A A. CA 327 Cy1F.seq CA. A A. CA 327 Cy1F.seq CA. C. A A. CA 327 Cy1F.seq CA. C. A A. CA 314 Cy1F.seq CA. C. A A. A. 312 Cy1F.seq CA. C. A A. 313 Cy21F.seq CA. C. A A. 313 Cy24F.seq CA. C. A A. 313 Cy24F.seq CA. C. A A. 313 Cy24F.seq CA. C. A A. 314 Cy24F.seq CA. C. A A. 313 Cy30F.seq CA. C. A A. 314 Cy24F.seq CA. C. A A. 317 Cy24F.seq CA. C. A A. 317 Cy21F.seq CA. A A. 317 Cy21F.seq CA. C. A A. 317 Cy21I.seq CA. C. A A. 317	V-10 Vir460/88.se
1/Linksq	7F sen
MAGE seq	SE sea
NMDF.seq CAC.AA.A.CA 322 Cy4F.seq CAC.AA.A.CA 324 Cy10F.seq CAAAA 326 Cy11F.seq CA.C.AACA 321 Cy12F.seq CA.C.AACA 321 Cy14F.seq CA.C.AACA 321 Cy14F.seq CA.C.AACA 321 Cy21F.seq CA.C.AACA 322 Cy24F.seq CA.C.AACA 319 Cy24F.seq CA.C.AACA 319 Cy30F.seq CA.C.AACA 322 Cy31F.seq CA.C.AACA 322 Cy31F.seq CA.C.AACA 322 Cy31F.seq CA.AACA 322 Cy31F.seq CA.AACA 322 Cy31F.seq CA.AACA 317 Cy11.seq CA.AACA 317 Cy23I.seq CA.AACA 324 Cy23I.seq CA.C.AACA 324 Cy21S.seq CA.C.AACA 324 Cy21S.seq CA.C.AACA 324 Cy21F.seq	IGE Sec
NNLF-Seq	IL DOG
Cy10F.seq	IT. sey
Cy107.Seq A 314 Cy11F.seq CA.C.AA. 321 Cy21F.seq CA.C.AA. 319 Cy21F.seq CA.C.AA. 319 Cy21F.seq CA.C.AA. 319 Cy21F.seq CA.C.AA. 319 Cy24F.seq CA.C.AA. 319 Cy30F.seq CA.C.AA. 319 Cy30F.seq CA.C.AA. 319 Cy30F.seq CA.C.AA. 319 Cy41.seq CA.C.AA. 317 Cy11F.seq CA.A.AA. 317 Cy11.seq CA.A.AA. 317 Cy21.seq	4F.Seq
Cy14F.seq CA.C.AA. 321 Cy24F.seq CA.C.AA. 315 Cy24F.seq CA.C.AA. 315 Cy24F.seq CA.C.AA. 315 Cy30F.seq CA.C.AA. 315 Cy30F.seq CA.C.AA. 317 Cy31F.seq CA.AA. 317 Cy31F.seq CA.AA. 317 Cy41.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy31F.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy23I.seq CA.AA. 318 Cy23I.seq CA.C.AA. 319 Cy30I.seq CA.C.AA. 319 Cy30I.seq CA.C.AA. 312 Cy30I.seq CA.C.AA. 324 Cy12T.seq CA.C.AA. 324 Cy13T.seq CA.C.AA. 326 Cy14P.seq CA.C.AA. 326 Cy19T.seq CA.C.AA. 327 Cy19F.seq CA.C.AA. 327 Cy19F	LOF.seq
Cy14+.seq CA A A A A A A	11F.seq
Cy21F.seq CA. C. A A	14⊢.seq
Cy24F.seq CA.C.AA. 315 Cy30F.seq CA.AA. 326 KMII.seq CA.AA. 317 Cy14I.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy11.seq CA.AA. 317 Cy23I.seq CA.AA. 318 Cy23I.seq CA.AA. 318 Cy23I.seq CA.A.AA. 317 Cy23I.seq CA.C.AA. 318 Cy23I.seq CA.C.AA. 317 Cy23I.seq CA.C.AA. 317 Cy23I.seq CA.C.AA. 319 Cy30I.seq CA.C.AA. 324 Cy23I.seq CA.C.AA. 324 Cy23I.seq CA.C.AA. 324 Cy23I.seq CA.C.AA. 324 Cy23I.seq CA.C.AA. 324 Cy21.seq CA.C.AA. 326 Cy19T.seq CA.A. A.CA 327 <td< td=""><td>21F.seq</td></td<>	21F.seq
Cy30F.seq CA A A A 320 CM1I.seq CA A A A 319 Cy4I.seq CA A A A 317 Cy7I.seq CA A A A 317 Cy23I.seq CA. C. A A A 317 Cy23I.seq CA. C. A A A 317 Cy23I.seq CA. C. A A A 317 Cy28I.seq CA. C. A A A 319 Cy28I.seq CA. C. A A CA 324 Cy28I.seq CA. C. A A CA 324 Cy19T.seq CA A A CA 324 Cy19T.seq C A A CA 324 Cy19T.seq C A A CA 326 Cy19.seq CA. C. A A CA 326 Cy19.seq CA. C. A CA	24F.seq
KM11.seq	30F.seq
Cy4I.seq	1I.seq
Cy1I.seq	4I.seq
Cy71.seq	1I.seq
Cy231.seq	7I.seq
Cy291.seq	23I.sea
Cy301.seq CA.C.AACA 324 Cy281.seq CA.C.AACA 316 Cy27.seq CA.C.AACA 324 Cy191.seq CA.C.AACA 324 Cy191.seq CA.C.AACA 324 KM21g.seq CAAACA 326 KM21g.seq CA.C.AACA 317 Cy1P.seq CA.C.AACA 319 Cy14P.seq CA.C.ACA 323 Cy21P.seq CA.C.AA 322 Cy21P.seq CA.C.AA 324 Cy21P.seq CA.C.AA 323 Cy21P.seq CA.C.AA 321 Cy21P.seq CA.C.AA 321 Cy31K.seq CA.C.AAA. 321 Cy13K.seq CA.C.AAA. 321 Cy13K.seq CA.C.AAA. 321 Cy13K.seq CA.C.AA 331 Y6B.seq CA.C.A	291.sea
Cy281.seq	301 sea
Cy2T.seq .AA. 224 Cy19T.seq .CAACA 324 Cy19T.seq .CAACA 326 KM6Ig.seq .CAACA 326 Cy1P.seq .CAAACA 326 Cy1P.seq .CAAACA 326 Cy1P.seq .CAAACA 326 Cy1P.seq .CAC.AACA 323 Cy21P.seq .CA.C.ACA 323 Cy21P.seq .CA.C.AACA 323 Cy21P.seq .CA.C.AA 321 Cy24P.seq .CA.C.AA 321 Cy31K.seq .CA.C.AACA. 321 Cy13K.seq .CA.C.AACA. 321 Cy16B.seq .CAC.AACA. 321 Cy13K.seq .CAC.AACA. 321 Cy13K.seq .CAAA	281 sea
Cy191.seq C4AACA 320 KM21g.seq C4AACA 317 KM61g.seq CAAACA 317 Cy19.seq CAAACA 312 Cy1P.seq CAAACA 312 Cy1P.seq CAAACA 312 Cy1P.seq CAAACA 323 Cy1P.seq CA.C.AACA 323 Cy21P.seq CA.C.AACA 321 Cy21P.seq CA.C.AA 321 Cy21S.seq CA.C.AA 321 Cy13K.seq CA.C.AA 321 Cy13K.seq CA.C.AA 317 Y6B.seq CA 317	2T sen
Cy19 : seq C4A A. CA 317 KM2Ig.seq CA A. CA 317 Cy1P.seq CA. C. A A. CA 319 Cy14P.seq CA. C. A A. CA 319 Cy14P.seq CA. C. A CAACA 323 Cy21P.seq CA. C. A CAACA 323 Cy24P.seq CA. C. A A 321 Cy24P.seq CA. C. A A 321 Cy24P.seq CA. C. A A	10T con
NH219.5eq CAAA 317 Cy1P.seq CAAA 328 Cy14P.seq CAAA 323 Cy21P.seq CA.C.ACA 323 Cy21P.seq CA.C.AA 321 Cy21P.seq CA.C.AA 321 Cy21P.seq CA.C.AA 321 Cy21P.seq CA.C.AA 321 Cy24P.seq CA.C.AA 321 Cy13K.seq CA.C.AAA 321 Cy13K.seq CA.C.AAA 321	
NMO1g.Seq CA.T.AA.CA 312 Cy1P.seq CA.T.AA.CA 323 Cy21P.seq CA.C.ACA 323 Cy21P.seq CA.C.AA.CA 321 Cy21P.seq CA.C.AA. 321 Cy21P.seq CA.C.AA. 321 Cy24P.seq CA.C.AA. 321 Cy3K.seq CA.C.AA.CA 321 Cy13K.seq CA.C.AA.CA. 321 Cy6B.sea CA.C.A 317	ZIY.SEQ
Cy1P.seq CA.C.ACA 312 Cy14P.seq CA.C.ACAACA 323 Cy21P.seq CA.C.AA 321 Cy24P.seq CA.C.AA 321 Cy13K.seq CA.C.AAA. 321 Cy13K.seq CA.C.AAA. 321 Cy13K.seq CA.C.AAA. 321	org.seq
Cy14P.seq CA.C.AC.ACALA 322 Cy21P.seq CA.C.AA 321 Cy24P.seq CA.C.AA 321 Cy13K.seq CA.C.AA 321 Cy13K.seq CA.C.AA 321 Cy13K.seq CA.C.AA 321	IP.Seq
Ly21P.seq 321 Cy24P.seq CA.C.AA. 321 Cy13K.seq CA.C.AA. 321 V6B.seq CA A A. 317	14P.seq
Cy24P.seq CA.C.AA. 321 Cy13K.seq CA.C.AA. 320 V6B.seq CA A 317	Z1P.seq
Cy13K.seqCA.C.AA.CA.A 320 Tv6B.seg	24P.seq
Tv68.seg	13K.seq
· · · · · · · · · · · · · · · · · · ·	6B.seq
KM6U.seqA.A.ACAAA 321	6U.seq
Cy13U.seq	13U.seq
Cy21U.seqCAAACAAAA 321	21U.seq
Ty5N.seqAAT	5N.seq
KM2N.seq	ZN.seq
Cy1N.seg	1N.seq
Cy15N.segCA 319	15N.sea