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摘 要

隨著科技的進步，⼈們在許多領域（如物理學、地震學、氣體動⼒

學、化學等）上處理著更精密且精確的問題，因此科學計算應該被⾼度重

視。在科學計算中，有率效地解決⼀連串⼤型且稀疏的線性系統扮演了極

為重要的⾓⾊。

在早期，⼈們使⽤直接法或迭代法單獨地解決⼀連串線性系統中的每

⼀個問題，當線性系統的維度很⼤時，直接法將會⾮常悲慘。如果我們使

⽤迭代法，強⼤的預處理器對於解決線性系統⾮常有幫助，但是要找尋或

建造出全能的預處理器是⾮常困難且耗時的任務。現今，我們應⽤先前線

性系統的資訊到⽬前線性系統或是其餘的線性系統達到節省時間的功效。

在⽂章中我們將會以⼀個⼆維度⾮線性對流 -擴散模型問題來當作我

們的例⼦。我們會簡單的介紹有限差分⽅法, ⽜頓 -拉弗森⽅法和線搜索

法，⽽且透過以上的這些概念，我們將會創造出⼀連串的線性系統。

之後，我們會討論三種有趣的逼近更新分解預處理器的⽅法，數值結

果告訴我們這三種⽅法是有幫助的，也就是在使⽤預處理器的迭代法時，

相較於固定⼀連串線性系統中的第⼀個預處理器，這三種⽅法會得到⽐較

少的迭代次數。因為這三種有趣的更新預處理器的⽅法基本上來說是很省

時的、容易實⾏的，所以他們可以取代很耗時的重新計算預處理器。

最後，為了完成我們的⼯作，我們主要的參考⽂獻為 Jurjen Duintjer

Tebbens 和 Miroslav Tuma 共同研究的 [7] 與 [8]，基本知識的準備我們參
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考 John E Dennis Jr 和 Robert B Schnabel 的 [1]、Hans Petter Langtangen

的 [2]、Randall J LeVeque 的 [3] 和 Stephen J Wright 與 Jorge Nocedal 合

⼒完成的 [10] 等著作。我們重新設計與安排 [7]，盡可能讓讀者容易了解

[7] 的內容與想法。

關鍵字：⼀連串線性系統、預處理迭代法、不完全分解、分解更新、⾼斯

喬丹轉換、謝爾曼·莫⾥森公式
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Abstract

With the advance of science and technology, people deal with problems

more precisely and accurately in many fields like Physics, Seismology, Aero-

dynamics, Chemistry and so on and so forth. Therefore scientific computing

should be highly concerned. Effective solving sequence of linear systems with

large and sparse matrices plays a very important role in scientific computing.

In early times, people used direct method or iterative method to solve

linear system one by one in the sequence. The direct method will be mis-

erable if the dimension of the linear system is pretty much large. If we use

iterative method to solve linear systems, a powerful preconditioner will be

very helpful. But finding and constructing an almighty preconditioner will

be a very difficult and time-consuming mission. Nowadays, we can use the

information from the previous linear system to the current linear system or

the other systems in order to save time.

In our article, we will take a two-dimensional nonlinear convection-diffusion

model problem to be our example. We present a brief introduction of finite

difference method, Newton-Raphson method and line search method. After

applying these ideas, we will have a sequence of linear systems needed to be

solve.

And then, we will discuss three interesting methods for approximate up-

iv
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dates of factorized preconditioners for solving sequences of linear systems.

Numerical experiments show that these three method are profitable, that is,

they have fewer number of iterations of preconditioned iterative methods for

solving sequent systems of a sequence than freezing the preconditioner from

the first system of the sequence. Since the interesting updates mainly cost

less and straightforward, they may substitute for recomputing precondition-

ers which may take lots of time.

To complete our work, we mainly consult [1], [2], [3], [7], [8] and

[10]. And we also redesign and rearrange [7] in order to introduce

everything as explicit as we can.

Keywords: Sequence of linear systems, Preconditioned Iterative

method, Incomplete factorizations, Factorization updates, Gauss-

Jordan transformations, Sherman–Morrison formula
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Chapter 1

Introduction

Sequences of linear systems with large and sparse matrices turns up in a lot

of applications such as kinematics, computational fluid dynamics, structural

mechanics, numerical optimization as well as in solving problems derived

from nonlinear partial differential equations. In more detail, we are going to

face sequences of linear systems

A(i)x = b(i), i = 1, · · · , (1.1)

where A(i) ∈ Rn×n are general nonsingular sparse matrices and b(i) ∈ Rn are

the corresponding right-hand sides in the above applications.

1
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1.1 Literature Review

These sequences of linear systems can be derived from solving a system

of nonlinear equations F (x) = 0 where F : Rn → Rn. By using Newton or

quasi-Newton method, we have a sequence of linear problems

J(xi)(xi+1 − xi) = −F (xi), i = 1, · · · , (1.2)

where J(xi) is the Jacobian or approximation to Jacobian in the current

iteration xi.

The Jacobians J(xi) sometimes are expensive so we alternatively compute

their approximations. It is well-known to use Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update which are dense matrices when we compute approx-

imations. At the beginning, Schubert offered a method for updating approx-

imation which makes matrices sparse [5]. Shanno presented a sparse version

of BFGS update.[6]. Toint also proposed an interesting approximation up-

dates which are not only sparse but also symmetric [9]. Lucia tendered a

new quasi-Newton updating formula combined planning for fixed symmetric

and idea from Schubert [4].

Efficient solving sequence of linear systems is a difficult task as we men-

tioned in abstract. We could compute mighty preconditioners M (1),M (2), · · ·

for each system respectively, but it would be pretty expensive in some cases.

So there is a natural way to enhance the performance, that is to freeze the

2
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preconditioner which is only computed from the initial systems and reused

for the other system matrices. But, in practice, freezing the preconditioner

may not be fast enough for convergence. Hence we need distribute some

information or computational effort from the current system among other

systems in the subsequent linear system. This is what we will mainly intro-

duce [7] and [8] in this thesis. We discuss three strategies in [7] for updating

preconditioner which is factorized as LDU ≈ A. The updated precondi-

tioner will be used for solving the subsequence of linear systems. Numerical

experiments show that the three kinds of updates are competitive with re-

computing preconditioners in terms of having the similar convergence rates

for subsequence of systems. Furthermore, it is more cheaper to form the

updated preconditioners.

We are going to introduce in Chapter 2 some backgrounds ,in [1], [2], [3]

and [10],of constructing a sequence of linear systems from a two-dimensional

nonlinear convection-diffusion model problem. For example, after discretiz-

ing the two-dimensional nonlinear convection-diffusion model problem by

finite difference method, we need the concept of solving nonlinear systems

by Newton–Raphson method with line search method. After these proce-

dures, we will have a sequence of linear systems to solve. In Chapter 3, we

present the idea of three interesting approaches in [7] for approximation up-

dates of factorized preconditioners in theory and implemention in practice.

3
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The numerical experiments will be offered and discussed in Chapter 4.

To complete our work, we mainly consult [1], [2], [3], [7], [8] and

[10]. In this thesis, We will discuss the effective triangular preconditioner up-

dates and the other two updates for sequences of linear systems derived from

nonlinear partial differential equations as explicit as we can. Throughout the

article, ∥ · ∥ denotes an unspecified, arbitrary norm.

4
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Chapter 2

Preliminary

2.1 Newton-Raphson Method and Line Search

Method

We first introduce Newton-Raphson method in [2] for one nonlinear equa-

tion F (x) = 0 in single scalar variable x. The systems of nonlinear equations

can be extended by similar ways.

Assume xk is an approximation of x. We hope xk can be close enough to

x, when k increases, so we have to improve the approximation. And we hope

there is an idea that not only makes procedure easier to implement but also

improves the approximation xk. The idea is to construct a approximation of

F (x) close to xk such that F (x) ≈ N(x; xk) where N(x; xk) = 0 is easier to

5
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solve. The solution of N(x;xk) = 0 is viewed as an improved approximation

of xk+1 to the root x of F (x) = 0. By using Taylor expansion, N(x; xk) is

the linear part of a Taylor-series approximation of F at the point of x = xk.

N(x;xk) = F (xk) +
dF

dx
(xk)(x− xk).

Next, we let xk+1 to be the solution of N(x;xk) = 0. In other words, we

are going to find the solution of the equation N(xk+1;xk) = 0 with respect

to xk+1 then we have

xk+1 = xk − F (xk)
dF
dx
(xk)

.

This is the Newton-Raphson iteration scheme for solving F (x) = 0. The

Convergence rate for Newton-Raphson iteration scheme is quadratic, that is,

|x− xk+1| ≤ C|x− xk|2

For the systems of nonlinear equations F (x) = 0, we also construct a

approximating F (x) by N(x;xk) near xk which is also an approximation to

x. And N(x; xk) similarly satisfies

N(x;xk) = F (xk) + J(xk)(x− xk).

where J ≡ ▽F is the Jacobian of F . If F = (F1, · · · , Fn)
T and x =

(x1, · · · , xn)
T then entry (i, j) in J is ∂Fi/∂xj. Similarly, we solve a linear

system with J as coefficient matrix in order to find the next approximation

6
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xk+1 from N(xk+1;xk). By repeating this process, we have a sequence of xi

which is close to the solution of F (x) = 0.

The stopping criterions are

∥xk+1 − xk∥ ≤ ϵx or ∥F (xk+1)∥ ≤ ϵr

or

∥xk+1 − xk∥
∥xk∥

≤ ϵx or ∥F (xk+1)∥
∥F (x0)∥

≤ ϵr

Algorithm 2.1.0.1 Newton-Raphson Method
1: Given a initial x0 for the solution of F (x) = 0

2: while termination criterion is NOT fullfilled do

3: Solve J(xk)δxk+1 = −F (xk) with respect to δxk+1.

4: Set xk+1 = xk + δxk+1

5: end while

The idea of line search algorithm in [10] is very simple : given a descent

direction pk, we find a step in that direction that yields an acceptable xk+1,

that is

Algorithm 2.1.0.2 Line Search Method
1: Calculate the descent direction pk

2: Set xk+1 ≡ xk + λkpk for some λk > 0 which makes xk+1 an acceptable

for next iteration.

A famous inexact line search condition is the Wolfe conditions satisfying

f(xk + αkpk) ≤ f(xk) + c1αk▽fT
k pk (2.1)

7
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for some c1 ∈ (0, 1). The reduction in f should be proportional to both step

length αk and the directional derivative ▽fT
k pk. Inequality (2.1) is called

the Armijo condition. In practice, c1is chosen to be equit small and ussually

to be c1 = 10−4. Sometime, we want a more larger step, we have second

requirement called a curvature condition is introduced

▽f(xk + αkpk)
Tpk ≥ c2▽fT

k pk (2.2)

where c2 ∈ (c1, 1).

Combine (2.1) with (2.2), we have strong Wolfe conditions.

f(xk + αkpk) ≤ f(xk) + c1αk▽fT
k pk,

|▽f(xk + αkpk)
Tpk| ≤ |c2▽fT

k pk|,

0 < c1 < c2 < 1

There are some other conditions, for example : Goldstein Condition,· · · , etc..

When we use line search method, we may face some breakdowns which we

will not discuss here. But we can use the backtracking line search method

below to avoid some of the breakdowns.

8
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Algorithm 2.1.0.3 Backtracking Line Search Method
1: Choose α > 0, ρ, c ∈ (0, 1).

2: Set α = α.

3: while f(xk + αkpk) ≥ f(xk) + c1αk▽fT
k pk do

4: α = ρα

5: end while

6: Terminate with αk = α.

We can combine the Newton-Raphson method with line search method to

make more efficiently and more stably.

9
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2.2 Sherman–Morrison Formula

Suppose A is an invertible matrix and u, v are two column vectors. And

we assume that 1 + vTA−1u ̸= 0. Then the Sherman–Morrison formula is

that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

where uvT is the outer product of the vectors u and v.

Proof.

(A+ uvT )

(
A−1 − A−1uvTA−1

1 + vTA−1u

)
= AA−1 + uvTA−1 − AA−1uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − uvTA−1 + uvTA−1uvTA−1

1 + vTA−1u

= I + uvTA−1 − u(1 + vTA−1u)vTA−1

1 + vTA−1u

= I + uvTA−1 − uvTA−1 = I

Similarly, (
A−1 − A−1uvTA−1

1 + vTA−1u

)
(A+ uvT ) = I

10
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Chapter 3

Preconditioner Update

In this thesis, we are going to present some strategies to update precon-

ditioners from sequences of general, nonsymmetric systems that solved by

preconditioned iterative method. We will also introduce these ways that

updated preconditioner is as powerful as the original one in theory and con-

struct a preconditioner cheap in practice. And this types of updates have

particularly beneficial behavior in [8] under the following three kinds of cir-

cumstances : first, if preconditioner recomputation undergoes instability or

updates have a more stable factorization; second, if the update is dominant,

at the very least structurally or the update covers the important part of

the difference matrix between the current and the other matrix; third, if re-

computed preconditioners is somehow expensive (solving for a long time) in

parallel computations, matrix-free environment.

11
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3.1 Theoretical Analysis

In [7], for the purpose of simplifying the notation, we denote two linear

systems of dimension n by Ax = b and A∗x∗ = b∗. Denote by B the difference

matrix A − A∗ and by M the preconditioner of A, respectively. There are

two some information we can get about the quality of the preconditioner M

from a norm of the following matrix.

A−M (3.1)

If we study preconditioning from the left or right, we can get message from

the two norms of matrices, individually.

I −M−1A (3.2)

or

I − AM−1 (3.3)

We call information from the norm of the matrix (3.1) accuracy of the

preconditioner M with respect to A. Message from the norms of the matrices

(3.2) and (3.3) are said to be stability of M (with respect to A). We let M∗

be to a updated preconditioner for A∗ whose accuracy and stability are close

to the accuracy and stability of M for A. In our thesis, we will consider the

norm of the matrix (3.1) due to its simplicity.

12
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Easily, we get

∥A−M∥ = ∥A∗ − (M −B)∥

Hence the norm of the difference matrix A∗ − M∗ with M∗ ≡ M − B is

the same as the norm of the difference matrix A −M . We will call M∗ the

ideal updated preconditioner with respect to A∗. Actually, there may be

other preconditioners that are ideal with the norm of A∗ −M∗.For example,

we can consider M∗ = M − C for some matrices M ̸= B with

∥A−M∥ = ∥A∗ −M∗∥ = ∥A∗ −M + C∥

Since B is usually directly available, we will focus on M∗ = M −B.

If we use preconditioned iterative method to solve the sequences of linear

systems, we will suffer from multiplying vectors with inverse of the precon-

ditioner M∗ in each iteration of the linear solver. In some special cases, the

difference matrix B can make (M − B)−1 obtain from M−1 with low costs.

For instance, if B has small rank, M∗ = M − B will be directly inverted

by using Sherman-Morrison formula. But in general cases, the ideal pre-

conditioner M∗ can not be accepted in practice since the multiplications of

vectors with (M − B)−1 is very expensive. Instead, we will choose cheaper

approximations of (M −B)−1.

In this thesis, we may assume that M is in the form of a triangular decom-

position, that is, M = LDU ≈ A, where L and U have unit main diagonal.

13
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We typically suppose that the approximate updates of factorized precondi-

tioner that we are going to discuss have strong diagonals. This assumption

is in order to do not have a breakdown when we have a simple incomplete

factorization. For instance, if the system matrix is an H-matrix, ILU(0) and

AINV preconditioners are proved to be breakdown-free. We can extend the

breakdown-free property by some modifications which change the decom-

position and make the diagonal stronger, e.g., preliminary shift or global

modification of the decomposition. In the following we presume that ma-

trices are in the form that factors L and U more or less approximate the

identity matrix.

If M − B is invertible, we may use a product of more factors which are

easier to invert to approximate its inverse such as a product of inverses of

triangular matrices and an inverse of a difference of matrices where a diagonal

matrix is used instead of M take the place of (M −B)−1.

(M −B)−1 = U−1(D − L−1BU−1)−1L−1 ≈ U−1(D −B)−1L−1, (3.4)

where we have D − B is nonsingular. Now we believe D −B is a invertible

approximation of D − B which can be inverted inexpensively. Then we can

define a precondtioner M∗ via the last explication (3.4) as

M∗ = L(D −B)U (3.5)

In the symmetric case, that is, L = U . We have M∗ = L(D −B)LT . If

14
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we choose D −B approximately, we can still preserve the symmetry. Here

we mainly discuss in the nonsymmetric case. We can also get further simple

update. For instance, we can approximate as

(M −B)−1 = (DU − L−1B)−1L−1 ≈ (DU −B)−1L−1 (3.6)

where DU−B is invertible. If DU −B is an easily invertible and nonsingular

approximation of DU −B, then we define M∗ by

M∗ = L(DU −B) (3.7)

It appears to be much easier to cope with two factors than three factors

comparing to (3.5). An analogue of (3.6) is approximation through

(M −B)−1 = U−1(LD −BU−1)−1 ≈ U−1(LD −B)−1 (3.8)

And the analogue of (3.7) is

M∗ = (LD −B)U (3.9)

We will adaptively take approximation between (3.6) and (3.8) in our dis-

cussion (we explain this later on) but we only express theoretical results for

the case (3.6).

The first thing we are interested in is whether the update (3.7) has the

potential to be much more powerful than the frozen preconditioner M =

LDU for A∗. We display the relation of quantity between updated and

frozen preconditioner in the following by using the simple lemma below.

15
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Lemma 3.1. Let ∥A−LDU∥ = ε∥A∥ < ∥B∥. Then the preconditioner from

(3.7) satisfies

∥A∗ −M∗∥ ≤ ∥L(DU −DU −B)−B∥+ ε∥A∥
∥B∥ − ε∥A∥

· ∥A∗ − LDU∥

≤ ∥L∥∥DU −B −DU −B∥+ ∥L− I∥∥B∥+ ε∥A∥
∥B∥ − ε∥A∥

· ∥A∗ − LDU∥

Proof.

Easily, We will have

∥A∗ −M∗∥ = ∥A−B − L(DU −B)∥ = ∥(A− LDU) + L(DU −DU −B)−B∥

≤ (ε∥A∥+ ∥L(DU −DU −B)−B∥)∥B∥ − ε∥A∥
∥B∥ − ε∥A∥

≤ (ε∥A∥+ ∥L(DU −DU −B)−B∥)∥(A− LDU)−B∥
∥B∥ − ε∥A∥

= ∥A∗ − LDU∥∥L(DU −DU −B)−B∥+ ε∥A∥
∥B∥ − ε∥A∥

= ∥A∗ − LDU∥∥L(DU −B −DU −B) + (L− I)B∥+ ε∥A∥
∥B∥ − ε∥A∥

≤ ∥A∗ − LDU∥∥L∥∥DU −B −DU −B∥+ ∥L− I∥∥B∥+ ε∥A∥
∥B∥ − ε∥A∥

By Lemma 3.1, if the DU −B is short distance away from DU−B and ∥L−I∥

is likely to be small then the multipliers of ∥A∗−LDU∥ will be smaller than

one. We take into consideration that preconditioner modifications to improve

the diagonal dominance in practice. When we get a potent preconditioner

M = LDU , the assumption ∥A− LDU∥ = ε∥A∥ < ∥B∥ will be satisfied.

16
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Lemma 3.1 declares two important informations for us. First, we can get

the relation of quantity between updated and frozen preconditioner. Sec-

ond, when ε∥A∥ is small enough, DU −B is a approximation which is good

enough and L is close enough to a diagonal factor, we will have an accurate

preconditioner that may be as powerful as a recomputed preconditioner. Im-

age that we have ∥A∗−MR∥ = δ = ∥A−M∥, where MR is the a recomputed

preconditioner with respect to A∗, so we have ∥A∗−MR∥ ≥ δ in general. But

Lemma 3.1 do not exclude ∥A∗ −MR∥ < δ at all. Hence M∗ is potential to

be as great as the preconditioner which is recomputed. The update (3.7) has

a higher convergence rate than a recomputed preconditioner in some cases.

Lemma 3.1 gives a relation with accuracy according to (3.1). Now we

want to introduce a theorem that is related to (3.3) or (3.2). And the the-

orem express that, under some particular assumptions, the quality of up-

dates may be better than recomputed preconditioners if the approximation

DU −B is suitably chosen. For the purpose of simplification, the scaled up-

dated approximate factor D−1(DU −B) will be denoted by U −D−1B and

U−1(U −D−1B) will be denoted by I − U−1D−1B.

Theorem 3.2. Assume that LDU + E = A. for some error matrix E and

let ∥U−1D−1B∥2 ≤ 1/c < 1 where ∥·∥2 denotes the Euclidean norm. Further

17
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assume that the singular values σi of

M∗ − A∗ = L(DU −B)− A∗ = (I − L)B + L(DU −B − (DU + L−1E −B))

satisfy

σ1 ≥ σ2 ≥ · · · ≥ σt ≥ δ ≥ σt+1 ≥ · · · ≥ σn

for some integer t, t ≪ n, and some small δ > 0. Let (DU −B) have nonzero

main diagonal, and D = diag(d1, · · · , dn). Then there exist matrices F and

△ such that the stability of M∗ with respect to A∗ satisfies

I − (M∗)−1A∗ = I − (DU −B)−1L−1A∗ = △+ F, (3.10)

with rank(△)≤ t and

∥F∥2 ≤
c

c− 1
max

i

δ

|di|
∥L−1∥2∥U−1∥2.

Proof.

We have

L(DU −B)− A∗ = L(DU + L−1E −B +DU −B − (DU + L−1E −B))− A∗

= (I − L)B + L(DU −B − (DU + L−1E −B)).

By assumption, the singular value decomposition of the latter matrix can be

18
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written as

(I − L)B + L(DU −B − (DU + L−1E −B)) = WΣV T =

Wdiag(σ1, · · · , σt, 0, · · · , 0)V T +Wdiag(0, · · · , 0, σt+1, · · · , σn)V
T

≡ △1 + F1, with rank(△1) ≤ t

and

∥F1∥2 = ∥Wdiag(0, · · · , 0, σt+1, · · · , σn)V
T∥2 (3.11)

= ∥diag(0, · · · , 0, σt+1, · · · , σn)V
T∥2 (3.12)

= ∥diag(0, · · · , 0, σt+1, · · · , σn)∥2 (3.13)

≤ δ (3.14)

The second equality (3.12) is caused by

∥Wdiag(0, · · · , 0, σt+1, · · · , σn)V
T∥22

= (Wdiag(0, · · · , 0, σt+1, · · · , σn)V
T )T (Wdiag(0, · · · , 0, σt+1, · · · , σn)V

T )

= V diag(0, · · · , 0, σt+1, · · · , σn)W
TWdiag(0, · · · , 0, σt+1, · · · , σn)V

T

= V diag(0, · · · , 0, σt+1, · · · , σn)diag(0, · · · , 0, σt+1, · · · , σn)V
T

= ∥diag(0, · · · , 0, σt+1, · · · , σn)V
T∥22

19



3.1. Theoretical Analysis Page 20

And the third equality (3.13) is satisfied by

∥diag(0, · · · , 0, σt+1, · · · , σn)V
T∥2

= max
∥x∥2=1

∥diag(0, · · · , 0, σt+1, · · · , σn)V
Tx∥2

= max
∥y∥2=1

∥diag(0, · · · , 0, σt+1, · · · , σn)y∥2

= ∥diag(0, · · · , 0, σt+1, · · · , σn)∥2

≤ δ

Hence

L(DU −B)− A∗ = △1 + F1

then

I − (M∗)−1A∗ = I − (DU −B)−1L−1A∗ = (DU −B)−1L−1 △1 +(DU −B)−1L−1F1

By setting

F ≡ (DU −B)−1L−1F1, △ ≡ (DU −B)−1L−1△1

we get (3.10),where rank(△) ≤ t. The matrix F can be bounded by

∥F∥2 ≤ ∥L−1∥2∥(D(U −D−1B))−1∥2δ

hence

∥F∥2 ≤ max
i

δ

|di|
∥L−1∥2∥(U −D−1B)−1∥2

≤ max
i

δ

|di|
∥L−1∥2∥U−1∥2∥(I − U−1D−1B)−1∥2

By assumption, ∥U−1D−1B∥2 ≤ 1/c < 1, and consequently

∥F∥2 ≤ max
i

δ

|di|
∥L−1∥2∥U−1∥2(1− ∥U−1D−1B∥2)−1

≤ c

c− 1
max

i

δ

|di|
∥L−1∥2∥U−1∥2.
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If the matrix F in (3.10) is a zero matrix then the preconditioned system

is a rank t update and Krylov subspace methods converges theoretically in

at most t+ 1 iterations.

3.2 Practical Manipulation

In [7], in this section, we are going to discuss approximations DU −B of

DU − B which can be efficiently computed and make the preconditioners

that are cheap to put in use. More precisely, updated preconditioners are

easily invertible matrices. We will offer three strategies which are classified

into triangular updates or unstructured updates according to the structure of

the preconditioner. Likewise, we only present for the case (3.7) but all means

can be analogously formulated for (LD −B)U corresponding to (3.9).

3.2.1 Triangular Update

A strategy which not only is obvious and effective but also preserves the

triangular structure which we consider entries from is to set

DU −B ≡ triu(DU −B) (3.15)
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,where triu denotes the sparsified upper triangular part which also includes

the main diagonal part, herefore the updated preconditioner will be

M∗ = L(DU − triu(B)) (3.16)

Due to the sparsity pattern of (3.15) is triangle, we will call this update

triangular updates. We know that M∗ can be acquired totally for free because

we just take only one triangular sweep with the triangular part of B, if we

store U and B separately. If the sparsity patterns of triu(B) and U are close

enough then it nearly costs us nothing in practice.

And the analogue of (3.16) is

M∗ = (LD − tril(B))U (3.17)

These two updates (3.16) and (3.17) are powerful in many problems when one

triangular part of B is clearly dominates the other. we will show this result

in our experiments. However, they only take into account one triangular part

of the difference matrix B, the information from the other part of B will be

lost. This will lead to weak convergence in some applications.

3.2.2 Unstructured Update

In this section, for the purpose of avoiding the information from each

triangular part of the difference matirx B, we will propose two strategies to
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get the same idea of updated preconditioner which is easily to get inverse

matrix. But these two strategies give rise to matrix which is generally not

triangular.

Denote the matrices diag(DU −B) by D̃, and D̃−1(D̃ −DU −B) by B̃,

respectively. We have zero diagonal on the main diagonal of B̃ and

DU −B = D̃(I − B̃) (3.18)

For the first strategy, we are motivated by Sherman-Morisson formula. For

example, when B̃ = βeie
T
j for some 1 ≤ i, j ≤ n, i ̸= j,and remember that

we assume DU −B is nonsingular, so is I − B̃. Then ,by Sherman-Morisson

formula, we have

(I − B̃)−1 = I +
βeie

T
j

(1− eTj ei)
= I + βeie

T
j = I + B̃ (3.19)

From (3.19), we know the inverse of (I − B̃) is the identity matrix which is

modified by an off-diagonal entry β at the position (i, j), so it costs nothing

and is fill-in free. And we know (I−B̃) is a particular Gauss-Jordan transfor-

mation. According to this motivation, we are going to find approximations

DU −B of DU − B such that the scaled matrix I − B̃ can be transformed

by a product of Gauss-Jordan transformations

(I − ei1 b̃i1∗)(I − ei2 b̃i2∗) · · · (I − eiK b̃iK∗), K ≤ n− 1 (3.20)
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where B̃ = (b̃)ij. We denote by row(i) the sparsity structure of a row i of B̃

(with zero diagonal). It is very cheap for multiplication of (I − B̃)−1v with

a given vector v, as we can see from Observation 3.3.

Observation 3.3. The number of operations for multiplying a vector by a

matrix of the form (3.20) or its inverse is at most 2
∑K

j=1 |row(ij)|.

Proof.

The number of element in each row of the matrix which can be written

as (3.20) is |row(ij)| elements. Every element in the ij-th row needs to

multiply a element in the given vector so there will be
∑K

j=1 |row(ij)| opera-

tions. And the number of operations for summing up the products is at most∑K
j=1 |row(ij)|. Hence the total number of operations is 2

∑K
j=1 |row(ij)|.

We know that (3.16) is special case of (3.20) because of the well-known fact

that unit upper triangular matrix I − B̃ from (3.18) can be trivially written

as the product Rn−1 · · ·R1 of n − 1 elementary triagular matrices ,where

Ri = I − eib̃i∗ for i = 1, · · · , n − 1. In the following theorem, we discuss

a necessary and sufficient condition for the existence of a decomposition of

I − B̃ of the form (3.20).
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Theorem 3.4. Let I − B̃ = I −
∑

jl:l=1,··· ,K ejlb̃jl∗. Then

I − B̃ = (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) · · · (I − eiK b̃iK∗) (3.21)

if and only if

il /∈
l−1∪
k=1

row(ik) for 2 ≤ l ≤ K (3.22)

for all i1, · · · , iK such that {j1, · · · , jK} = {i1, · · · , iK}.

Proof.

The equivalence of (3.21) and (3.22) follows from the orthogonality of the

unit vector eil with respect to all b̃ik∗ for k < l, 1 ≤ l ≤ K.

Now, we are going to introduce the first strategy for finding the approxi-

mation DU −B with I − B̃ satisfying (3.21).In algorithm (3.2.2.1), we first

initialize a candidate rows R by {1, · · · , n}. In each step, after choosing

a row i, we update the candidate rows R by removing all the rows j ∈ R

for which b̃ij ̸= 0. At the end of the algorithm (3.2.2.1), we will have a se-

quence of row indices i1, · · · iK , where K ≤ n − 1, which are made from the

algorithm.
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Algorithm 3.2.2.1 Find matrix DU −B such that it, scaled by its diagonal,

can be written in the form (3.21)
1: Set R = {1, · · · , n}, K = 0

2: for k = 1, · · · , n do

3: Set row(k) = {i|i ̸= k ∧ |(DU −B)ki| ̸= 0}

4: Set pk =
∑

j∈row(k) |(DU −B)ki|

5: end for

6: while R ̸= 0 do

7: Choose a row i ∈ R maximizing pi −
∑

j∈R∩row(i) pj

8: Set K = K + 1, ik = i,R = R\{row(iK) ∪ i}

9: end while

We can use the row indices i1, · · · iK determined from the algorithm to

construct the approximation in (3.18) with I − B̃ which can be written as

the product (3.20). The heuristic criterions in step (7) and (8) not only are

the point in finding the row of DU − B with largest entries but also spur

the choice of a row to remove the candidate rows R with small entries. To

equalize the two heuristics,we may perform a weighting parameter ω when

running the algorithm and substitute step (7) with the new step (3.23).

7′ Choose a row i ∈ R maximizing pi − ω ·
∑

j∈R∩row(i)

pj (3.23)

It may be happen that, if there are fewer nonzero entries in the hunted

rows, we may have more factors of (3.21). Hence we may introduce a drop-

tolerance tol into step (3) and replace step (3) with
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3′ Set row(k) = {i|i ̸= k ∧ |(DU −B)ki| > tol} (3.24)

Other than tolerance dropping, we can also sparsify the structure of the

matrix DU−B had a foothold on the given mask in order to enhance the effi-

cientibility of the strategy. Sparsification stimulates the the chosen candidate

rows R covering as much rows as possible by Gauss-Jordan transformation

as well as gives rise to less expensive matvecs (matrix-vector computations)

with the inverse of (3.20).

The second strategy, we introduce below, for finding the approximation

DU −B based on Gauss-Jordan transformation will be more systematic and

beautiful, is characterized by bipartite graph model.We define the bipartite

graph of (DU − B) as G(DU − B) = (R,C,E), where R = {1, · · · , n},

C = {1′, · · · , n′} and E = {(i, j′)|(DU −B)ij′ ̸= 0}. The following Theorem

(3.5) give us a first glance through this idea.

Theorem 3.5. Assume that T = (VT , ET ) is a spanning forest of G(DU−B)

such that {(i, i′)|1 ≤ i ≤ n} ⊆ ET where VT is the vertices of T and ET is

the edge of T. We define entries of the matrix DU −B ∈ Rn×n by

(DU −B)ij =


(DU −B)ij if (i, j′) ∈ ET

0 otherwise
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scaled by its diagonal entries as in (3.18). Then DU −B can be expressed

as a product of the form (3.20).

Proof.

There are two kind of T , connected or unconnected. If T is unconnected

then T is a spanning forest. Then the spanning forest T will be pieces of

connected parts. Each connected part associates a block diagonal submatrix

of DU −B, and submatrices corresponding to individual connected parts can

be mutually multiplied in any order. And it lead the same result and causes

no fill-in. So we can only take T is connected into consideration without loss

of generality.

In the following of the proof, we will present how to find the indices of the

Gauss-Jordan transformations from the left to the right for T is connected.

Due to {(i, i′)|1 ≤ i ≤ n} ⊆ ET and T is connected, T contains at most

n − 1 edges (i, j′) with i ̸= j. We can find a free row vertex i ∈ R in T

which is in T incident only to the edge (i, j′) such that there is an edge

(k, j′) ∈ ET for some k. Set i1 = i. Then remove from T the vertices

i ∈ R, j′ ∈ C and all edges incident to them. Again, there exists a free

row vertex in the updated tree T . We reduplicate choice of free row vertices

and update T in this way, we will get the sequence of indices i1, · · · , in−1

for I − B̃ = (I − ei1 b̃i1∗)(I − ei2 b̃i2∗) · · · (I − ein−1 b̃in−1∗) which is scaled the
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diagonal entries from DU −B.

We marshal theorem (3.5) to the algorithm (3.2.2.2) which could find an

approximation DU −B of DU − B. At the end, DU −B would be written

as a product of Gauss-Jordan transformations.

Algorithm 3.2.2.2 Approximate DU−B such that (3.21) is satisfied based

on a bipartite graph of DU −B

1: Find spanning forest T = (VT , ET ) of G(DU − B) of maximum weight

with edge weights wij = |(DU − B)ij| for (i, j′) ∈ ET such that

{(i, i′)|1 ≤ i ≤ n} ⊆ ET .

2: Find the entries of B̃ (and corresponding entries of DU −B) as well as

a feasible ordering of Gauss-Jordan factors for i1, · · · , in−1 in (3.20) with

Theorem (3.5).

3: For each k = 2, · · · , n add to DU −B all entries (DU −B)ikl of DU −B

such that l ∈ {i1, · · · , ik−1}.

The last step of algorithm (3.2.2.2) will put much more nonzero entries than

the 2n−1 entries given by the weighted spanning forest into DU −B. This is

an allowed procedure which still can be written as a product of Gauss-Jordan

transformations because of Theorem (3.4). The computational complexity of

weighted minimum spanning forest for the Kruskal algorithm (But actually,

here, we are applying weighted maximum spanning forest) is O(m log m) and

for the Prim algorithm is O(n+m log m), where m is the number of edges

in the graph G. Note that we begin with the partial spanning tree with
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the set of edges {(i, i′)|1 ≤ i ≤ n} in the Kruskal algorithm. The Kruskal

algorithm in some cases will be time-consuming but this algorithm provided

us powerful updates. In order to save time, we can do the same things in

Algorithm (3.2.2.1). We can sparsify DU − B by omitting entries smaller

than a pre-given drop tolerance tol. This idea decreases not only the number

of edges m but also the complexity.

We know that, from Lemma (3.1), the quality of the preconditioner DU −

B will play an important role in the power of the preconditioner M∗ =

L(DU −B). For the purpose of using the most effective type of update, we

switch between the equality (3.16) and the equality (3.17) adaptively in our

experiments. The criteria for switch is in terms of the weighting of both

triangular parts of B. We will use the the triangular part of B which has the

bigger weight.

Despite of the truth that the updated preconditioner loses some informa-

tion on the system matrix, it is a preconditioner that is sometimes better than

the recomputed preconditioner. For instance, as we have shown theoretically

in Lemma (3.1) and Theorem (3.2), the updated preconditioner has the po-

tential to be better that preconditioner which is recomputed. It occasionally

occurred that updated preconditioner is related to previous decomposition

which is more diagonally dominant than a recomputed preconditioner. The

updated precondtioner can inherit the property of stable and may also sta-

30



3.2. Practical Manipulation Page 31

bilizes the less stable factors.

The next chapter will be devoted to some numerical experiments. We will

compare all the ideas that we introduced in chapter 3.
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Chapter 4

Numerical Result

To finish our work, we mainly consult [1], [2], [3], [7], [8] and [10].

In this thesis, we only use our own Matlab code to complete our

experiments comparing to the code , in [7], which is a combination

of Matlab and Fortran. We also optimize our Matlab code so that

the numerical results have excellent behavior in some cases and are

also reliable. The Matlab is a new version 8.0 and the computer is

nearly high standard as compared with [7]. However, the updates

are still fantastic for these facilities in some cases.

In this chapter, we will present numerical results for our experiments with

preconditioned krylov subspace methods for solving a sequence of linear sys-

tems and compare the strategies that we introduce in chapter (3) with re-

computed preconditioners and frozen preconditioners. We also give the nu-
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merical results with many kinds of incomplete LU-decompositions to show

the circumstances that we will meet.

All of the tests were performed by Matlab version 8.0. The codes were run

on a computer with Xeon E5160, 3.0GHz processor, 2 cores, 4M L2 cache,

32GB RAM memory. BiCGSTAB iterative method with left preconditioning

was used to be our accelerator. Iterations were stopped when the Euclidean

norm of residual was decreased by ten orders of magnitude.

Our test problem is a two-dimensional nonlinear convection-diffusion model

problem. It has the form

−∆u+Ru(
∂u

∂x
+

∂u

∂y
) = 2000x(1− x)y(1− y)

on the unit square, discretized by 5-point finite differences with natural order-

ing on a uniform 70×70 grid. The initial approximation is the discretization

of u0(x, y) = 0. And we choose R = 50. Then we have a sequence of matrices

with 24220 nonzeros each. In the following tables, the number of nonzero

is denoted by nnz and the average number of nonzero of preconditioner is

represented by psize.

The update techniques are, in particular, beneficial when it is expensive to

recompute preconditioners. We begin with ILU (incomplete LU decomposi-

tion) with threshold 0.1. This kind of ILU is very expensive in Matlab, i.e.it

takes lots of time to compute ILU(0.1). Note that, in Matlab, loop is much
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slower that array operation but there are some operations that we can not

use array operations due to data dependency so we are much more concerned

to the numbers of BiCGSTAB iterations in our experiments.

In table (4.1), we present the numbers of BiCGSTAB iterations which is

needed to solve individual linear systems for several preconditioning strate-

gies we introduced in Chapter 3, and time including solving the sequence of

linear systems and constructing the preconditioners. In the second row, the

’Recomp’ represents that the preconditioner ILU(0.1) will be recomputed for

each matrix separately. The method ’Freeze’ displays that the preconditioner

will be computed only once at the first linear system and reused for the other

linear systems. ’Triangular’ denotes the triangular updated we introduced in

in Chapter 3. Algorithm 3.2.2.1 and Algorithm 3.2.2.2 in Chapter 3 are just

denoted by the ’Algorithm 3.2.2.1’ and ’Algorithm 3.2.2.2’. We use Kruskal

algorithm to construct our spanning forest for’Algorithm 3.2.2.2’.

In table (4.1), we can see that ILU(0.1)-decomposition gives the test prob-

lem a very powerful preconditioner but computing ILU(0.1)-decomposition

costs a lot. Thought freezing the ILU(0.1)-decomposition can reduce the

computational time and bring much higher number of BiCGSTAB itera-

tions, the overall time to solve these matrices is still shorter. Triangular

updates has a wonderful performance in this table. Note that we choose the

triangular part adaptively based on the magnitudes of the difference matrix
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B. While the numbers of iterations for triangular updates are all but as

low as the iteration number of recomputation, and most important of all,

we save some significant time comparing to recomputed preconditioner. The

iteration numbers for Algorithm 3.2.2.1 are a little higher than triangular

updates but obviously lower that frozen preconditioners. Iteration counts for

Algorithm 3.2.2.2 are comparable to triangular updates.
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Table 4.1.

Numbers of iteration for individual linear systems and

totally elapsed time with ILU(0.1)

ILU(0.1), psize ≈ 24000

Matrix Recomp Freeze Triangular Algorithm 3.2.2.1 Algorithm 3.2.2.2

A(0) 42 42 42 42 42

A(1) 34 45 36 38 39

A(2) 27 51 34 34 37

A(3) 27 60 35 36 36

A(4) 26 77 34 37 37

A(5) 22 82 31 36 37

A(6) 22 83 31 35 35

A(7) 19 66 27 29 28

Elapsed

time

1.273 s 1.021 s 0.732 s 9.812 s 26.104 s
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As we can see in Table 4.1, the elapsed times for ’Algorithm 3.2.2.1’ and

’Algorithm 3.2.2.2’ are really pessimistic. There are two explanation for this

phenomenon. First, as we have already said, some procedures in Algorithm

3.2.2.1 and Algorithm 3.2.2.2 are data dependency so we have no choice

but to use loop in our code. For example, the loop from step(6) to step(9)

in the Algorithm 3.2.2.1. And the loop in Matlab costs much more time.

Second, the unstructured updates from Algorithm 3.2.2.1 and Algorithm

3.2.2.2 may not be triangular forms which can not be competitive with the

highly optimized operations for back-substitution and forward-substitution

in Matlab. Hence the elapsed time for Algorithm 3.2.2.1 and Algorithm

3.2.2.2 are somehow not comparable to the other strategies. So, in Table 4.1,

we focus on the numbers of iterations of Algorithm 3.2.2.1 and Algorithm

3.2.2.2 than the elapsed times of them.

Using the drop tolerance has an influence on the number of nonzeros and

the computational time as well in Algorithm 3.2.2.1 and Algorithm 3.2.2.2.

In Algorithm 3.2.2.1, We can not overestimate or underestimate the drop

tolerance. If we underestimate this parameter, the updated preconditioner

will be pretty sparse because we have only a small number of factors of the

form (3.16). When we overestimate it then the updated preconditioner will

be very sparse as well since small number of nonzero entries are covered

by Gauss-Jordan transformations. For Algorithm 3.2.2.2 the case is more
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simple, we set the tol to choose the 2n − 1 largest entries and as few other

entries as necessary to construct the spanning forest.

We have optimized the tol in Algorithm 3.2.2.2 between one orders of meg-

nitude and choose tol = 1 in order to get the smaller numbers of iterations,

leading to an overall time of 32.075 seconds. We do not choose a perfect tol

in Algorithm 3.2.2.1 but choose the same value of tol = 1 because this value

produces a scaled system matrix to keep reasonable number of nonzeros in

a row in Matlab which makes the smaller number of factors due to the most

of the whole elapsed time is to find the indices i1, · · · , iK which takes much

more time.

Apart from the sensitivity of dropping-tolerance tol, the omega ω is not

easy to be affected in this test problem. In Figure 4.1, we show the total

number of BiCGSTAB iterations for solving the eight linear systems for the

values of ω. We can see that the overall number of iterations do not change

a lot from ω = 0.6 to 2. For the values smaller than 0.6, criterion (7)

of Algorithm 3.2.2.1 overemphasize the weight of the chosen candidate row

which lead to a bad approximation of DU − B. In all our experiments, we

use ω = 2 for Algorithm 3.2.2.1.
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Figure 4.1. Iteration counts for Algorithm 3.2.2.1 in dependency of ω

In Table 4.2 and Table 4.3, we present the accuracies ∥A(i) − M∗∥F and

∥DU − B − DU −B∥F , respectively, where ∥ · ∥F represents the Frobenius

norm. ∥A(i)−M∗∥F tells how far between the linear systems and the precon-

ditioners for each strategies. ∥DU − B − DU −B∥F gives the information

about the difference of DU − B and our approximations DU −B(equality

of DU −B). For this test problem, we do not meet any problem of stabil-

ity of the preconditioner. From these two Table, we can see that the values

correspond to the numbers of BiCGSTAB iterations.
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Table 4.2.

Accuracies of ∥A(i) −M∗∥F

ILU(0.1), psize ≈ 24220

Matrix Recomp Freeze Triangular Algorithm 3.2.2.1 Algorithm 3.2.2.2

A(0) 28.51 28.51 28.51 28.51 28.51

A(1) 27.51 37.20 37.51 78.66 78.41

A(2) 26.58 44.00 43.09 79.81 79.57

A(3) 26.61 52.70 49.88 81.15 80.91

A(4) 28.45 62.91 57.78 82.73 82.49

A(5) 28.17 66.71 60.74 83.35 83.11

A(6) 28.21 66.57 60.64 83.33 83.09

A(7) 28.21 66.57 60.64 83.33 83.09

40



4. Numerical Result Page 41

Table 4.3.

Accuracies of ∥DU −B −DU −B∥F

ILU(0.1), psize ≈ 24220

Matrix Triangular Algorithm 3.2.2.1 Algorithm 3.2.2.2

A(1) 16.93 23.90 26.61

A(2) 23.78 33.52 35.50

A(3) 31.49 44.32 45.84

A(4) 39.92 56.08 57.29

A(5) 42.96 60.31 61.44

A(6) 42.84 60.16 61.29

A(7) 42.84 60.16 61.29
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In Table 4.1, we can see that triangular updates gives more powerful and

efficient preconditioner than the other preconditioners. But this is not clear

in Table 4.4. We use ILU-factorization with drop tolerance 0.005 as an ini-

tial preconditioner in Table 4.4. The tolerance tol in Algorithm 3.2.2.1 and

Algorithm 3.2.2.2 are still 1. Although the elapsed time of Algorithm 3.2.2.1

and Algorithm 3.2.2.2 are much longer than Triangular updates in Matlab,

Algorithm 3.2.2.1 will be quicker than Triangular updates in Fortran(cf. [7]).

There are two explanations to these issues. First, it is caused by the loop in

Matlab. We have already told that the loop comparing to vector operations

in Matlab may be expensive. And The computational complexity of Algo-

rithm 3.2.2.1 and Algorithm 3.2.2.2 are not very high because it is just linear

in the number of matrix nonzeros so Algorithm 3.2.2.1 may be faster than

Triangular updates in Fortran(cf. [7]) or C. Second reason is that the num-

bers of BiCGSTAB iterations is much smaller that the Triangular updates.

This is caused by the truth that Triangular updates take only one part of

information and the updates from Algorithm 3.2.2.1 will take larger entries

which has more important information. In the following, we will describe the

second reason in more detail. We randomly choose a difference matrix from

the middle of the sequence B = A(0)−A(4). For other choice of matrices A(i),

we have similar phenomenon. Though the nonzeros are evenly distributed

over both triangular parts of LD − B, ∥stril(LD − B)∥F ≈ 142.95 and
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∥striu(DU − B)∥F ≈ 39.39 , where stril(·) and striu(·), represent the strict

lower and upper triangular part, respectively. According to the two values,

the lower triangular part dominates the upper part. But there may be some

important entries in upper part and they are neglected by the Triangular up-

dates. On the contrary, unstructured updates consider both triangular parts.

This is reflected by, in the Frobenius norms,∥stril(LD −B)∥F ≈ 142.95 and

∥striu(LD −B)∥F ≈ 39.39 for the approximation LD −B from Algorithm

3.2.2.1 ,and ∥stril(LD −B)∥F ≈ 142.43 and ∥striu(LD −B)∥F ≈ 39.39 for

the approximation LD −B from Algorithm 3.2.2.2. Since the step 3 of Algo-

rithm 3.2.2.2 inserts more nonzero entries, the values of ∥striu(LD −B)∥F

and ∥stril(LD −B)∥F will be bigger in some other cases. In our experiments,

this phenomenon is not obvious since we are more conerned the numbers of

iterations which leads both the unstructure updates contain more nonzero

entries. Also note that the number of nonzeros of triangular updates is

more or less 61500 nevertheless unstructured updates have smaller number

of nonzeros, around 61000, which may let Algorithm 3.2.2.1 and Algorithm

3.2.2.2 more cheaper. This gap will increase when tol is overestimated or

underestimated as we have said before.

Algorithm 3.2.2.1 needs more elapsed time to implement in Matlab but it

will be faster than Triangular method when it is performed in Fortran.(cf.

[7] )with this kind of preconditioner.
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Table 4.4.

Numbers of iteration for individual linear systems and

totally elapsed time with ILU(0.005)

ILU(0.005), psize ≈ 61486

Matrix Freeze Triangular Algorithm 3.2.2.1 Algorithm 3.2.2.2

A(0) 17 17 17 17

A(1) 46 28 29 29

A(2) 66 33 32 32

A(3) 89 54 34 34

A(4) 128 118 34 38

A(5) 136 136 34 37

A(6) 144 135 32 34

A(7) 136 125 31 30

Elapsed

time

1.493 s 1.317 s 9.485 s 32.075 s
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There is another situation we will meet. when the recomputed precondi-

tioners is straightforward and cheaper then most of the updates may not be

efficient. In Table 4.5, we use ILU-decomposition with level one (i.e. ILU(1))

as the initial preconditioner. The number of nonzeros of the initial precondi-

tioner is approximately 33000. Elapsed time to compute the ILU(1) is very

small, the most of overall time is taken on solving with BiCGSTAB. Note

that the iteration counts for Triangular is also a little worse than recompu-

tation. We have the same results for ILU-decomposition with level zero (i.e.

ILU(0)) in Table 4.6 as well.
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Table 4.5.

Numbers of iteration for individual linear systems and

totally elapsed time with ILU(1)

ILU(1), psize ≈ 33742

Matrix Recomp Freeze Triangular

A(0) 28 28 28

A(1) 22 44 29

A(2) 17 52 27

A(3) 16 69 33

A(4) 14 92 45

A(5) 11 105 48

A(6) 12 92 44

A(7) 9 94 42

Elapsed

time

0.295 s 0.813 s 0.507 s
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Table 4.6.

Numbers of iteration for individual linear systems and

totally elapsed time with ILU(0)

ILU(0), psize ≈ 24220

Matrix Recomp Freeze Triangular

A(0) 41 41 41

A(1) 34 45 36

A(2) 27 50 34

A(3) 25 60 35

A(4) 22 76 34

A(5) 21 79 31

A(6) 19 77 31

A(7) 16 68 27

Elapsed

time

0.345 s 0.694 s 0.506 s
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