Hz 2B FLPFTAFT T AL ARSI
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Scienece
National Taiwan University
Master Thesis

335 B ¥2 (Zometool) 2. -1 < A R A 4 =
Large-Scale Rapid-Prototyping with Zometool

Ly
Tsung-Hung Wu

hERE RFEL
Advisor: Bing-Yu Chen, Ph.D.

¢oER K 104 & 8 7
August, 2015

Bl 3L & KPR 243 X
DREBEGELS
AVREE LB KA R A A R
Large-Scale Rapid-Prototyping with Zometool

WXGEEARE (235 R01922166) AR EH KL BRI
m%mﬁkz@—bmm X ° 75"&! 104 & 7 B 20 BATFIHFRE
BELRBRORRE » 4FIE

de SR VK
| (45 §33%)
A, AL

oo RRPR

s

Fphhe hrd o AGUuFL A EL B4 T B B AR

RIERER SRR SRS 1 0 I TR 1t

gt
o

£ REF T RS W2 oG At B

;F':i‘;\'“g[&vg‘/i\‘miﬂ%"ﬁﬁﬂ; L R < RN A HP R AP
Tt > X fRdmElRiFeiE £ 5 5 ~ CMLab i B < B4

Nt 7 EAR Y B R B EauEx o TYHAHm

¥
&
/ﬂn
@
(<
F_w.

FAAHE G SRR A F Y RB AP auER e
?ﬁ?%@’ﬁ“ﬁlﬁ‘“ﬁ%AZE%@&%ﬁ’Aﬁﬁw

+ i1 ZI'.}EEF& [hadial 53 jxflﬁ B4 3\ rrllz'f-' o i? A eEa ;E H 1))',E‘H i

FREREHOE R PR - R R R
ENPES mﬁ*a | B 1S Eo 3 3T 0 Aok /AJP [N 'E‘f—ﬂ S

wERF T g AR EL P ERRG ’Zfﬁf—f‘,’\ggﬁ’i’ 5 ok

%
5
é@
f‘f&‘
K
e

LR FRE RIS PG SR E A (R

i

BER W SR hE WS F L T A A ehd A
*?%{&%i’ﬁWﬁLlﬁiW1%ﬁﬁ;%&cﬁﬁ%&ﬁ{%ﬁ
R RS A RS 2 S ?éﬁuﬂ

A st RATF] F LG B o

ARG FRE - A RO T R AR AR D DR
BREFRADHFTEZ > N2 8F F LT %3 - AT R B
BIIF T AT FRL D R EGRKELE A LR R

RHMBRELTAPARFT TEHORY L3P FHEIL A4
FRDEFEGE RFEHES T ORERG EW B R R
;km ﬁhﬁ-pé;qr;:rﬁ%.»\.ﬁﬁ)\]ﬁ]gﬁo‘ '; ﬁmpllﬁﬁ

o RA I 4 AR E TG A

PG fd] et 0 3 F ARERAFE P
m?}—"’f’éfﬁ"] Rttt s NP - A2 R B BB E Y 3§ el
Pk R o R R P AT ARG d o Bfs s ARR
BA R A 0 F A)af,': 'FE’*\‘”I ’b‘i‘gj\t‘ |35 B8 > o 070 At
Eismem el F I ANE L a4 o {gﬁ;\‘.?u,u?{@‘%ggﬁiﬁ—,

Fﬁgﬁ; ’ i%f}a\%ltﬁ"i\‘.ijﬁ%"ﬁ /{_«l-_:—i;‘ , E‘é:]/fz‘é:]"—)‘ ’R°

111

NI

BT F A2 BB @y b s 0 @B A A enip
MAAB DRI B8 - 8P 6z B AP s B2

PR 2 Bl E | e 2 @,?Jﬂgﬁ SRR B N L L

R P 3D AW EE AT A A RAI2 S Ay
oo AN A - B s e i kR 39 R 52 (Zometool) A d! -

3

BT = B

Fsk % o

gl

ST BRREELFENERY L O HH 2 EP R T4
oAk o g 1 ,@%J»_'rﬁ; MECAlR A R E A R S FL
AR BFRLFROEIEL R ORI 261
NIOEBBRADT B HE R B kS RS EF L
L ERghA 4 - Y FaTk KRBT Rz A frdHe T -

LREH NN ERE LR A KRBT AL PR o

AT HRE- B ARKRFRAT H P BIF R T E
4\:)\—\'-&3—5’1]%‘]113@%?'%{ lmxém“"% { 4Fen
A e €% 5w & AR A AR 0 b

2

v

Abstract

In recent years, personalized fabrication has attracted much attention due
to the greatly improved accessibility of consumer-level 3D printers. However,
consumer 3D printers still suffers from the relatively long production time
and limited output size, which are undesirable factors to large-scale rapid-
prototyping. In this paper, we present an efficient method to approximate a

given 3D shape with Zometool.

To achieve ease of assembly and economic usage of building units, the
proposed method generates the Zometool structures through a higher level of
shape abstraction. The input model is first partitioned into a collection of gen-
eralized cylinders by mesh segmentation. The boundaries of mesh segments
are converted into ring-like structures and inter-linked by finding the short-
est path between them. Additional ring structures are then added along the
representative axis of each segment to better approximate the underlying 3D
shape. We demonstrate the effectiveness of the proposed method by a variety

of 3D models along with examples of the physically fabricated objects.

Key words: Zometool structure, Non-manifold structure, Large-scale, Pro-

totyping, Modeling

..'“’b

Contents

rHLAREF LS i
R# ii
A 3 iv
Abstract \4
Contents vi
List of Figures viil
List of Tables xiii
1 Motivation 1
2 Introduction 2
3 Related Work 5

3.1 Mesh Segmentation 5

3.2 Computational Fabrication 6

3.3 Zometool Design and Modeling 9

34 Stability Analysis 12
4 Overview 13
5 Zometool Construction 16

vi

5.1 Preprocessing AT
5.1.1 Ring Generation 1. . =)
512 AxisDecision.:..3..""2 |
5.2 Zometool PathSearch S wa
52.1 Quickapproach
5.2.2 Optimizedapproach
5.3 Structure Construction
53.1 PathConnection
5.3.2 Slicing Ring Generation
5.3.3 Support Addition
54 Special Cases e
54.1 Outward Features
5.4.2 Multi-Branch Segments
5.5 Gravity Analysis
5.5.1 Method Implement
Results and Discussion
6.1 Performance
6.2 Limitation and futurework oL
63 Results.

Implementation of System
7.1 Systemenvironment

7.2 GUIdesign e

Experiment

Conclusion

Bibliography

vil

29
30
30
30

40
40
40

43

48

49

List of Figures

3.1

3.2

33

34

3.5

3.6

3.7

3.8
3.9

4.1

3D printer acceleration of construction by ”Cost-effective Printing of 3D
Objects with Skin-Frame Structures™.
3D printer acceleration of construction by ”Approximate Pyramidal Shape
Decomposition™.
Large-scale construction using 3D printer by ”Chopper: Partitioning Mod-
els into 3D-Printable Parts™.
Decreasing supporting structures by ”Approximate Pyramidal Shape De-
COMPOSItION™. e e e e e e
Construction with other material by ”crdbrd: Shape Fabrication by Sliding
Planar Slices”.
Construction with other material by "Making Papercraft Toys from Meshes
Using Strip-based Approximate Unfolding”.
Construction with other material by "Recursive Interlocking Puzzles”. . .
Zometool Shape Approximation.

Zometool Rationalization of Freeform Surfaces.

System overview. Given an input model (a), which is segmented into a
collection of sub-parts (b). We compute the oriented bounding box the
principal axis of each segment (c) and generate Zometool structures ac-
cordingly (d). The system optionally accepts moderate user input to add
supporting structures (e). The system visualizes the synthesis result to

guide user to build the physical object (f).

viil

5.1

5.2

53

54

5.5

5.6

The left one is input model , middle one is the result of segmentationgand

the right one is the result of oriented bounding box. [.. =)

Ring generation. (a) All points. (b) Delete the points with the _disianéé ,

less than the length of the shortest strut. (c¢) Mark next point. (d) Repeat
step(b)(c). (e) Getring.
Example of the special axis selection. In the segment, the longest axis
of bounding box(as green arrow) may not be the best axis, and the axis
draw (red arrow) in the Figure is the most appropriate. Yellow curve is
the cross ring, and its normal vector is red arrow. Because the N, = 1,
we just use the normal vector to be the growing axis ,and not the longest
OBB axis(green arrow).o
Additional features on the model. The yellow rings are interjacent features
and the green point is outward feature. Interjacent features add a ring of
struts to fit, and outward features may add a ring or a point according to
theend.
All close directions. The center hole is the core direction, and columns
from left to right represent the blue, red, and yellow strut as the core di-
rection. The upper row represent layer 1, and the row below is layer 2.
Every step of path searching only get a new direction of strut, in other
words, we choose only one strut from all possible directions no matter in
layer lorlayer2.
Demonstration of path connection. (a) Calculate the vector between end
point and start point (V/,,,), (b) Use V,,, to find the closest direction on node
(D,, as red arrows) and get the near directions of the D,,, (blue arrows).
Each direction has three sizes of struts. (c) Add the best vector to path
and loop the step(b). , (d) Get the whole path. The detailed approach is in

SeCtion 5.2. s

X

16

20

5.7

5.8

5.9

5.10

5.11

5.12

5.13

6.1

Demonstration of Slicing Ring Generation. Yellow curve means theeross

ring, and the growing axis is the red arrow. There is a path as green arrows,

I
and we will slice the model to get the interjacent features just.like the ||

OTANZE CUIVE. . . . v v v e v v e e e et e e e e e e e e e
Demonstration of adding support. We have the path and ring as figure 5.7.
Yellow point is the node on the path and the ring, purple arrow is finding
the farthest on the same ring, and we get the pink node, so we create a
path from the pink node to the closest node on other ring or any node on
the structure as brownpath.
Difference between adding support or not show with Zometool structure.
In the left one, the two rings in the middle only connect with a strut, so
it is not stable. After we add the support automatically, the structure is
stronger than before inrightone.
Example of multi-branch segments. In the beginning, we have yellow
rings as cross rings, and we use growing axis to decide the precedence.

Then link the cross rings with path from left to right on the figure as green

Three types of the directions about force. Up directions receive the weight
passed from upper structure; Horizontal directions share the weight to hor-
izontal nodes; Down directions pass the weight to the nodes below.
Zometool result with gravity analysis. Gray points are weak nodes whose
weight on node are over the threshold.
Zometool refined result with gravity analysis. We connect the paths of
one of the weak nodes and analysis again, and the weak point shift to the

lower point. It means the weight pass to other nodes successfully.

Zometool structure of triceratops. # of Vertex = 2832. # of Edges = 8490.
Segmenting Time = 2.515s. Processing Time = 0.867s. Base # of nodes

= 187. Base # of struts = 213. Refine # of nodes = 610. Refine # of struts

27

28

28

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

Zometool structure of bird. # of Vertex = 3478. # of Edges = 10428~

Segmenting Time = 2.341s. Processing Time = 0.31s. Base # of nodes=

A’
93. Base # of struts = 116. Refine # of nodes = 121. Refine # of struts'= ||

270, . L e
Zometool structure of dolphin. # of Vertex = 5216. # of Edges = 15642.
Segmenting Time = 3.524s. Processing Time = 0.342s. Base # of nodes

= 137. Base # of struts = 154. Refine # of nodes = 223. Refine # of struts

Zometool structure of octopus. # of Vertex = 5944. # of Edges = 17832.
Segmenting Time = 4.165s. Processing Time = 0.524s. Base # of nodes

= 144. Base # of struts = 164. Refine # of nodes = 171. Refine # of struts

Zometool structure of triceratops. # of Vertex = 13826. # of Edges =
41472. Segmenting Time = 9.487s. Processing Time = 1.729s. Base # of
nodes = 394. Base # of struts = 434. Refine # of nodes = 831. Refine # of
struts = 1385, . . . L
Zometool structure of ant. # of Vertex = 8299. # of Edges = 24891. Seg-
menting Time = 5.367s. Processing Time = 0.388s. Base # of nodes =

219. Base # of struts = 262. Refine # of nodes = 268. Refine # of struts =

Results of vase. Left one is the base result, middle one is the refine result,
and the right one is the real model constructed with Zometool.
Result of triceratops.
Results of table. In this case, we also use the paper and material to fit the

surface, and the figures shows the constructing steps.

X1

7.1

7.2

7.3
7.4

8.1

8.2

8.3

8.4

8.5

Split windows for result construction. The biggest one showsthe whole
model, and three right windows show the selected point with different

view direction. They are front view, back view, view with the same direé'- .
tion as left window from top to bottom. Besides, there is a log windew at
bottom to show logs about the vertex information(the edge indices to use)

when user click the vertex. oL 41
Aid for Zometool construction. It shows indices of all directions on the
node. The left node is the front view for the up right window, and the right

node is the back view for the middle right window. 41
Screenshot of practical graphical user interface without log window. . . . 42
Screenshot of practical graphical user interface with log window and black

background. L 42

The method to measure bending moment. We tie the dumbbell to the mid-
dle of the strut, and ensure that the strut would not contact the chair. . . . 44
The method to measure shear force. We tie the dumbbell to the strut near
the node, and stop until the situation as figure 8.4 or as figure 8.5. 45
The method to measure friction. We tie the dumbbell to the node and hold
the other side of the strut. We keep increasing the weight until the node
dropping. 46
The extreme situation for three types of struts. The color of the middle
part of struts become lighter, and we stop adding force when it happens.
Weight of dumbbell for yellow strut is 3 kilogram; Weight of dumbbell
for blue strut is 5 kilogram; Weight of dumbbell for red strut is 4 kilogram. 46
The tenons after undergoing the extreme situation, and it can be the judge-
ment standards for the structural safety. If the color of tenons are lighter,

itis the warning forsafety. 47

xii

List of Tables

6.1
6.2

8.1

9.1

Model data and processing results (part 1). 31
Model data and processing results (part 2). Results are measured on a
desktop PC equipped with an Intel 17 3770 3.40GHz CPU. Processing
time of ”Zometool Rationalization of Freeform Surfaces” : Model with

5820 faces needs 130 minutes to calculate. 31
All data of measurementresults 43

Table about difference between our system ,3D printer and previous works. 48

Xiil

Chapter 1

Motivation

The production cost of 3D printer has been declining and it is available for everyone,
so large amount of applications and requirements for fabrication emerge. As a result, fab-
rication becomes a significant topic. However, the consumer level 3D printers have some
drawbacks: 1.the time consuming process 2. the limited output size 3.relatively high cost
and not reusable materials 4.need support structure. Large-scale fabrication is needed for
some situations. For instances, the props for stage play are usually composed of wooden
boards and lack complete 3D structure. In addition, The prototypes for art exhibition are
needed when planning in advance. The large-scale prototypes require fast construction

and just fit the coarse outline, but recent 3D printers can not realize these features.

The popular modeling system, Zometool, is potentially suitable for providing an al-
ternative solution to the scenarios mentioned above. It has several advantages: Firstly,
stability, expandability and lightness satisfying the requirements for large-scale fabrica-
tion. Secondly, its independent structure and modularity can parallelize the construction
to speed up the building process. However, even for 3D models of moderate complexity,
novice users may still have difficulty in building visually plausible results by themselves.
Therefore, the goal of this work is to develop an automatic system to assist users to realize

Zometool rapid-prototyping with a specified 3D shape.

Chapter 2

Introduction

Zometool is a tangible, mathematical modeling system not only used in various fields
of science for research and teaching, but also recreationally for personal fabrication. It
consists of 3 different edge types (or struts) each coming in 3 different lengths related by
the golden ratio. The single node type has 62 different slots (or directions) based on 2, 3,
and 5-fold symmetry axes. Although being limited in the sense of having only a small,
discrete set of available angles and edges, the Zometool system allows for a very rich set

of structures.

In this paper, we present a novel technique, which optionally accepts moderate user in-
put, to enables users automatically generate Zometool structures abstract a given 3D input
model. The proposed method first performs mesh segmentation to split the complex 3D
model into a collection of parts of lower complexity resembling generalized cylinders or
cones. The boundaries of segments are primary candidates for the structure of Zometool.
Then, we find the oriented bounding box to match the segment to extract the represen-
tative axis for each segment. The representative axis in each segment (named growing
axis) have a great influence of constructing Zometool structure, so we implement an al-
gorithm to choose the best axis. It can not only be decided by bounding box, but also by
the segment information to judge the best one. The other important factor is obtaining the
features. There are two types of features, interjacent ones is in section 5.3 and outward

ones in section 5.4.1. These two types come out with different situation about the num-

ber of segments adjacent to a segment(/V,), and outward features are the speeial cases of

the interjacent features and they will be produced only when N, = 1. Then wesfind the
4

Zometool structure with all features. We have two methods for path searching and deal

with the balance of approximate solutions and optimized solutions for speed-and error

Recently, several computational schemes have been proposed to accomplish shape ap-
proximation with Zometool [1,2]. In [2], volumetric voxelization is adopted to obtain a
rough approximation of the input model, making the method feature-insensitive in nature.
Because the resolution of the regular grid is fixed for the whole model, it is difficult to
keep the features and reduce the usage of materials at the same time. [1] uses computation
intensive optimization to fit the surface and rebuild the structure when encountering dead-
locks. The previous methods generate 2-manifold mesh approximation of the given shape
while our method aim to achieve more economic usage of building units with higher level
of shape abstraction. So our approach uses non-manifold structures, and thus can present
the features directly with less building units. We are not just fitting the surfaces. Our
approach just get the obvious features to abstract the original model, and we use the quick
method for path searching in most cases unless the start point and end point are fixed, so

we can construct the Zometool model in a short time.

There are two primary contributions in this paper: First, our approach use the non-
manifold structure to present the model for emphasizing the features, and minimize the
amount of building units at the same time. Second, economic usage of Zometool building
units give us an edge over the two papers [1,2], and accelerate the construction at the same

time.

We have a complete system with great GUI for user, and embed all benefits of this
work Third, we creating a complete system for producing Zometool structure. There are
straightforward operating steps for users, and the system find out the result automatically

with a few inputs by user.

After the result has been calculated, the system provides a convenient usernterface

| 't-
for constructing the Zometool structure using the Zometool in the real world: The GUI
accelerate the process of constructing and decrease a lot of toilsome work for,finding the

right Zometool struts.

Chapter 3

Related Work

3.1 Mesh Segmentation

Mesh segmentation is an important step for decreasing the complexity of the model by
splitting the original model to many small segments, and we prefer to get the parts which
have the boundaries cutting at the articulation to get the better results. There are a lot
of 3D mesh segmentation algorithms which have been proposed, including K-means [3],
graph cuts [4, 5], primitive fitting [6], random walks [7], core extraction [8], spectral clus-

tering [9], critical point analysis [10], shape diameter function [11].

Because we expect the results of segmentation are many general cylinders or cones
(the reason is shown in section 5.1), so we select two methods, primitive fitting [6] and
shape diameter function [11], and we tried the output of the two method and found that
the shape diameter function provides better boundary between segments. The method of
primitive fitting [6] loss some important segments, and can only select the number of seg-
ments. It can not get the appropriate result by change the parameters, and there are not
only primitive shapes on the original model but also some special shapes on the model,
but it ignore the large segment with the shape we want to avoid, so primitive fitting can

not produce the results we need.

The other work [11] calculate the shape diameter function to get the parts of model

5

with the similar diameter, so it can split the segments to cylinders or cq\;igsf* N

o

@
,.

cial shape can be separated to some new parts. Just like a moon-like shape, sha
function can produce at least two parts to split, but primitive fitting can nd -
‘l 5 *'—/\\ Y 4

der on the model part, so it ignore that part and output the original part as‘output. A

result, we choose the shape diameter function as our implementation of segmentation.

Figure 3.1: 3D printer acceleration of construction by ”Cost-effective Printing of 3D
Objects with Skin-Frame Structures”.

3.2 Computational Fabrication

In recent years, computational fabrication has attracted much attention in the reseach
fields such as computer graphics and human computer interaction. Some works fabricate
functional objects like [12—14]. They can ignore problems on constructing because they
have a more important function for the result; some works reduce or change the material
to accelerate the process such as [15—18]. [15, 16] use the thin structure to construct the

base result like a wireframe and [15] can use the glue to generate the surface.

Our work also generate the structure like wireframe or skeleton to speed up and use the
material to encase the result representing the surface. [17] use the mesh joinery to realize
the speed up, but the materials of the building units are not popular and that are not avail-

able for everyone. That work prove that using other material really speed up the process

6

’l‘\""u..,
R
RRCALL MRS

Ll

i,
SRR
\

tAy

-

7=
Al

Figure 3.2: 3D printer acceleration of construction by ”Approximate Pyramidal Shape
Decomposition”.

and can produce large-scale results, and [18] is like coating a interwoven material on the

result of [17].

Large-scale construction is also a problem of 3D printer. Without special treatment,
normal 3D printer can only print the results which are smaller than the size of 3D printer,

so there are some works try to solve the problem by divide the input model and assemble

the parts after printing like [19, 20].

The works using 3D printer would be restricted by the defects of 3D printer, and they
encounter the problem of constructive speed and the flexibility to extend or alter the result,
so they only produce a small result because of consuming a lot of time on fabrication.
Many works comprehend the constrain of 3d printer, so they choose other materials to
construct the result, and we also abandon the normal material and compact structure to
pursue the target of large-scale rapid fabrication, and there are large amount of works

using other materials, such as [21-23]. Constructing model using other materials has some

Figure 3.3: Large-scale construction using 3D printer by "Chopper: Partitioning Models
into 3D-Printable Parts”.

Figure 3.4: Decreasing supporting structures by Approximate Pyramidal Shape Decom-
position”.

benefits: accessible and reusable materials, rapid-constructing, and so on, so we choose
the Zometool to be the building units and output sparse results by our method, and we can
easily build up a large-scale result, because our approach fits the outward features first
and generates the supports later. We can rapidly obtain the basic model to have a roughly
prototype to construct with the real building units. If users need a refined and stable result,
we can add supports with simple operations. The user just need to provide the points they

want to connect, and our approach produce the best Zometool structures.

Figure 3.5: Construction with other material by ”crdbrd: Shape Fabrication by Sliding
Planar Slices”.

Figure 3.6: Construction with other material by ”"Making Papercraft Toys from Meshes
Using Strip-based Approximate Unfolding”.

3.3 Zometool Design and Modeling

There are two software tools for designing Zometool structures: vZome [24] and
ZomeCAD [25], and they are both powerful manual design interface. Their system support
adding struts one by one and some different ways to grow the structure by using symmetry
or creating substructures, but the users can only build up the result by themselves strut by
strut. This is just like build up a real one, and their system just show it on the computer.
Most of the users can not build up the model directly because they do not know if the
struts would be linked together after the struts grows apart, so automatic production and

optimization are necessary.

[2] use voxelize to get the initial result and process the boundary points and edges on

Figure 3.7: Construction with other material by “Recursive Interlocking Puzzles”.

voxel to optimize the result to fit the features on model. This work use local optimization
to reduce the processing time by processing small amount of nodes and struts in one oper-
ation, and our approach also use local optimization to accelerate, we only use optimization
in short distances. When we have to deal with the problem in long distances, we just use
the quick approach of direct guess(in section 5.2) to shrink the distance between target
points until the distance is appropriate for optimizing. The fatal problem of resolution is

mentioned in introduction and we solve it with non-manifold structure.

[1] uses the harmonic field to decide the order of procession, and it can restrict the
area of expanding. The harmonic field can reduce the complexity of optimization, but

they encounter more deadlocks because of it, so they need more time to refine the result.

Our approach can tolerate a few error to avoid the deadlock, and use segmentation to
split the model into many small segments to restrict the area of expanding to speed up the

process as that work.

Our approach consider the features first, and then deal with the surfaces. Surfaces

are always continuous between the feature points, so after we get the feature points, we

10

Figure 3.9: Zometool Rationalization of Freeform Surfaces.

know the surfaces in the same time. Because of finding the features first, we can get a
simple result and adjust the compactness by user to decide the amount of building units.
In addition, our structure is non-manifold, so we can present the result directly with less
building units. For example, if there is a cone or a needle on the model, we can use just
a point to represent the end of cone or needle, and we use the material to cover the result
to replace the surface on model. It makes the result looks smoother and be more like an

object, furthermore, we can decide the color of the material to make it real.

11

3.4 Stability Analysis

There are various methods dealing with the stability analysis, and. the calaalations
about friction are common adopted, including [26-35]. We select a simple. frictiohrmodel

for stability analysis to fit our Zometool structure.

12

Chapter 4

Overview

There is a flow chart at figure 4.1, and first step is mesh segmentation. User has
two parameters to control: cluster level is the number of clusters for the soft clustering
and smoothness is a factor which indicates the importance of the surface features for the
energy minimization. High smoothness results in a small number of segments, since con-
structing a segment boundary would be expensive. In other words, merging facets that are
placed under different clusters is less expensive than separating them and creating bound-
aries. We expect the results of segments are cylinder-like or corn-like, because our method
will consider the boundaries as rings or points to fit the data structure of non-manifold,
and we can obtain the result faster with this assumption. After mesh segmentation has
finished, we can get the points which are the boundary of the segment and cross between
two segments (named cross points). We order the points to a ring (named cross ring), and

the method 1s shown in section 5.1.1.

Second step is to calculate the oriented bounding box and obtain growing axis for
all segments. Growing axis is one of the three axes of the oriented bounding box and it de-
cides the main direction for growing the Zometool structure in each segment. The method
for judgement is shown in section 5.1.2. It is important for every segments to own a grow-
ing axis, because growing axis decides the main direction to find the features between the
boundaries in section 5.3 and can be used to solve the problem about the segments with

only one boundary in section 5.4.1.

13

In the next step, we need to connect all cross rings and decide the order toexecution
of the segments with N,. In a segment, we also decide the execution order_witjl_i t}}'e grow:-
ing axis by projecting the center points of the cross rings to the growing axis. When:we
connect the rings, we first connect two points on two rings with the methods in section
5.2, and we also add interjacent features after the path is decided. We create some slices
on the nodes on the path with the growing axis as a normal vector, and use the method in

section 5.1.1 to create rings of interjacent features.

Up to now we have a lot of rings, but it is not stable enough, so we add the supports to
connect the weak structures. There are two steps for adding supports. First step just create
basic connection from the weakest node on the rings to other rings to ensure the structure
will not be swayed, and the second step connects all probable weak nodes. The method
to judge the weakest node on the rings and all probable weak nodes will be mentioned in

the section 5.3.3.
Finally, the system transforms the polylines to the Zometool struts, and we provide the

convenient user interface for constructing the result. User can look up the struts informa-

tions for each node to speed up the process of building up the result.

14

Oriented
Bounding Box

Zometool structure
creation

Force analysis

Structure refinement

Result construction

Figure 4.1: System overview. Given an input model (a), which is segmented into a
collection of sub-parts (b). We compute the oriented bounding box the principal axis of
each segment (c¢) and generate Zometool structures accordingly (d). The system optionally
accepts moderate user input to add supporting structures (e). The system visualizes the
synthesis result to guide user to build the physical object (f).

15

Chapter 5

Z.ometool Construction

Figure 5.1: The left one is input model , middle one is the result of segmentation, and the
right one is the result of oriented bounding box.

5.1 Preprocessing

After the model has loaded, the next step is model segmentation. Users can set cluster
level and smoothness parameter to get the segmenting result they want, however, the de-
fault value can cover in most instances. System will give a appropriate segmenting result

unless the user needs a special output just like excessive number of segments.

16

We expect the segmentation results would be general cylinders or cones, and:we adopt
the shape diameter function [11] to segment the input model, because we will glice the
model for getting the rings to compose the features, and general cylinders and cones.ean
easily predict the middle slice and the end. It can decrease the complexity and speed up
the process, so it is suitable for rapid fabrication and figure 5.1 shows the input and outputs

in this stage.

-e -e, -
./. . . , /. 1 .
o ® C) ® o ®
) L ® — o ®
0\‘ ® o o o ®
® o o
@) (b) ©)
) & /,.' — & .
. . . 6 2 \\
—_ o lb —_ 0 00 — I\\s b
¢ 0 L/
4 7
e o0 *—o

Figure 5.2: Ring generation. (a) All points. (b) Delete the points with the distance less
than the length of the shortest strut. (c) Mark next point. (d) Repeat step(b)(c). (e) Get
ring.

5.1.1 Ring Generation

Now we have groups of cross points, and we need orders for the points to create the

Zometool structure, so we make the cross rings.

First we delete some points to keep the least distance between any two points. The

distance is set the length of the shortest Zometool strut. Then we pick one of them to be

17

points would be threaded to a cross ring.

Figure 5.3: Example of the special axis selection. In the segment, the longest axis of
bounding box(as green arrow) may not be the best axis, and the axis draw (red arrow) in
the Figure is the most appropriate. Yellow curve is the cross ring, and its normal vector is
red arrow. Because the NV, = 1, we just use the normal vector to be the growing axis ,and
not the longest OBB axis(green arrow).

5.1.2 Axis Decision

The segmentation and cross ring generation are complete, and then we calculate the
oriented bounding box(OBB) for each segments. Because the process of finding OBB is
fast and we just need a approximate solution, so we just use brute-force method to scan
all directions with the alternation of 5 degree to get the OBB. There are three axis for each
bounding box, but the system needs a main axis to make sure that the system can get the
most feature points from the original model for constructing Zometool structure, because
if the growing axis has the closest direction to the normal vectors of faces which are made

from cross rings, the result of slicing the model would be well-distributed.

18

& G

In most cases, the longest axis would be the best axis to choose, E)"'utl 0
longest one is not appropriate as shown in the Figure 5.3. We assun%f
vector of it. when N,=1, there is only a normal vector of cross ring, we compare the three
axis of the OBB, and use the closest axis. when N,>1, We have to separately count the
number of fitting as N,=1, and if there is only a counter of axis more than two, it means
all normal vectors direct the same, so we select that axis; and if there are more than two
counters has the number more than two or all counters have the number less than two,
it means that the growing axis can not be decide by normal vectors and we just use the
longest axis to be the growing axis. Let P be the points on the cross ring, p be the centroid

of P. The normal vector n of the approximate plane of P is obtained by the following

equation:

HZZ{Pi—f)XPiH—I_)} .1)

ae Upi—=p| [Pis1 — Pl
We then calculate the angle between n and the three axes of oriented bounding box. The

axis with the minimum value is chosen as the representative axis.

Outward features

Interjacent features

Figure 5.4: Additional features on the model. The yellow rings are interjacent features
and the green point is outward feature. Interjacent features add a ring of struts to fit, and
outward features may add a ring or a point according to the end.

19

5.2 Zometool Path Search é{ E

We have a lot of feature points on the model, but it is impossible thatth ﬁ)ﬁﬁ car;:_

P

be connected directly by Zometool structure, so the system should find outt}lleresllltto
connect any two nodes. The following paragraphs show the methods to connect boints
using Zometool struts. Both approaches use the vector (V/,,) from start point to end point

to find the closest direction on the node as the initial guess, and it correspond to a direction

>
AL
A

Figure 5.5: All close directions. The center hole is the core direction, and columns from
left to right represent the blue, red, and yellow strut as the core direction. The upper row
represent layer 1, and the row below is layer 2. Every step of path searching only get a new
direction of strut, in other words, we choose only one strut from all possible directions no
matter in layer 1 or layer 2.

(D,,) on node, named core direction.

There are two methods to find the path, the quick approach focuses on the speed and
will have more error to the target, so we use this method when the end node is not decided
and it has some tolerance to fit the end. The optimized approach is for the situation that
the start point and the end point are determined. The optimized approach need more time
to find the answer, but it can guarantee that the answer can be found. We prefer to use the

quick approach first, and use the optimized approach only when it must be used, so we

20

can create the path rapidly and get the right path at the same time, and itworks wells

";,"-.,_
m

Figure 5.6: Demonstration of path connection. (a) Calculate the vector between end point
and start point (V,,,), (b) Use V,, to find the closest direction on node (D,, as red arrows)
and get the near directions of the D,,, (blue arrows). Each direction has three sizes of
struts. (c) Add the best vector to path and loop the step(b). , (d) Get the whole path. The
detailed approach is in section 5.2.

5.2.1 Quick approach

Test all directions near the D,,, and all size of the struts. In figure 5.5 shows the close
directions for any direction, and quick approach use both one and two layer directions to
find the best place to be close to the end point. Let P, be the start point, P, be the end
point, D be all directions in two layers according to D,,, L(d, s) be the three lengths of
the struts with direction (d) and strut size (s), s is from 0 to 2 corresponding to three size

of struts. The best direction and size of strut are decided by the equation below:
i Pe - Ps d L d7 52
e Fe— (Pt dx Lid,5))]| (5.2)

Although we brute-force all the possibilities to find the answer, but this approach only
run all circumstances once to get the closest position. The above equation is just one step

to approach the end point. This method will loop until the path is close enough within the

21

threshold, and the following equation shows the stopping inequality:

where V' refers to the vectors in the path, and T is the threshold. This approach may

-
-

<T |2 6P

P.— (P + > w)

eV

generate more error because it only get the local minimum, but it is enough for the situa-

tion which is not care about completely matching to the end point.

5.2.2 Optimized approach

Use A-star algorithm to optimize the result, and the energy is the summation of the
path walk though and the distance from the node on the end of path to the end point.
We only use one layer close directions to decrease the amount of calculation, because
most of the directions on layer two increase the energy rapidly. The termination criteria is
judging that if the distance from the node on the end of path to the end point is less than
the threshold(default 1mm) we set. The following equation shows the energy (£) of the

A-star:

Pe—(Ps—i'ZUi) .

%

(5.4)

E:Z||UiH+‘

%

E decides the order to add next path, and the smaller E will be ordered in the front, and
the stopping inequality is the same as quick approach but threshold is very close to zero.
Quick approach and optimized approach both can create the Zometool struts between two
points, but these two method are quite apart in time consuming, so we mix them to balance
the time and error. When the distance between start point and end point is more than the
longest struct, we use the quick approach first and run optimized approach on the last part,

so we can get a good enough result in a short time.

22

5.3 Structure Construction & ;f\

y

on:

with N, = 2, the vacancy between cross rings might exist some feature

2 20 . 4

Ly o TGS i
model, we call it interjacent features, and the special cases as N, = 1 and N, > 2'will be
explained in section 5.4. The following three functions construct the structure and fit the
interjacent features: path connection, slice ring generation, and support addition, and

the detailed descriptions are in the following subsections.

5.3.1 Path Connection

This function connect two points and calculate the path of the Zometool from start
point to end point as figure 5.6, and there are two approaches to find the path. The imple-
mentation of quick approach and optimized approach are in the section 5.2. After using
the approaches above, We obtain intermediate nodes between start point and end point.

Then we use the slice ring generation to fit the surface.

Figure 5.7: Demonstration of Slicing Ring Generation. Yellow curve means the cross
ring, and the growing axis is the red arrow. There is a path as green arrows, and we will
slice the model to get the interjacent features just like the orange curve.

23

5.3.2 Slicing Ring Generation V¢ :

The figure 5.7 demonstrate it. For fitting the surface, we slice the med’e
T ‘7’

the path which are produced before. We can get the sample points on the seg‘iﬁe‘n’c and
then use the ring generation in section 5.1.1 to string the sample points to a ring. The
rings we obtain with this method are interjacent features, and can fit the original model

better.

Figure 5.8: Demonstration of adding support. We have the path and ring as figure 5.7.
Yellow point is the node on the path and the ring, purple arrow is finding the farthest on
the same ring, and we get the pink node, so we create a path from the pink node to the
closest node on other ring or any node on the structure as brown path.

5.3.3 Support Addition

The rings created by previous subsections only connect like a string, but they are not
stable because the rings are only connected with one Zometool path. There are two steps to
create the supports, the first one only process the weakest nodes on a ring, and the second
one analyze the whole structure to find the probable weak nodes to link. We will introduce

the two methods Sequentially in the following.

24

Figure 5.9: Difference between adding support or not show with Zometool structure. In
the left one, the two rings in the middle only connect with a strut, so it is not stable. After
we add the support automatically, the structure is stronger than before in right one.

First, as we know, one node on the ring is connected, so we get the farthest node rel-

ative to that linked node to find a supporting path to link to the whole Zometool structure

by searching the closest node on it. Show in figure 5.8 and figure 5.9.

Second, We have the basic fix structure but it is not strong enough, so we analyze all
nodes to find the weaker node with all nodes adjacent to that have only two struts link out.
This method can find the potential weak nodes which are located on a long string, and we

can link these nodes to others to make it stable than before.

5.4 Special Cases

5.4.1 Outward Features

Outward feature is a special case of a segment, so we have to change the situation to
the normal form. Outward feature is needed when the segment has N, = 1 and we can
produce the outward feature at the end away from the cross ring. Figure 5.4 shows an

example. The shape of the segment might be a cylinder or a cone, but our approach can

25

:.‘._\' et} . N

deal with these two situation in the same way, because of the non-manifgl'\dﬁtm\\wgﬁ__.

first use the growing axis to find the farthest point from the cross ring, and use sti¢e ring . =
: - i\ g '-3

generation in section 5.3.2 to get the ring (or a point when the sample po:;ﬁt) &

2 =
at the end. Then use the path connection in section 5.3.1 to connect the end ting and cross

ring.

5.4.2 Multi-Branch Segments

The segments of trunk always have N, > 2 as figure 5.10, so we need a method to
find the order to link the cross rings. We first calculate the center point of the cross rings,

and use it to decide the precedence with growing axis. Then, we can link the cross rings

with path one by one, and this situation is the same as N, = 2.

el (SrOWING AXIS

Figure 5.10: Example of multi-branch segments. In the beginning, we have yellow rings
as cross rings, and we use growing axis to decide the precedence. Then link the cross rings
with path from left to right on the figure as green paths.

5.5 Gravity Analysis

We calculate the weight and normal force from top to the bottom, and the normal force
will pass the weight in the process, so usually the nodes below bear more weight and nor-

mal force, but sometimes will distribute to more nodes to bear, as a result, each node bear

26

part of the weight from the upper node.

Up
Horizontal

Down

Figure 5.11: Three types of the directions about force. Up directions receive the weight
passed from upper structure; Horizontal directions share the weight to horizontal nodes;
Down directions pass the weight to the nodes below.

5.5.1 Method Implement

We first define three types of directions: up, horizontal, and down directions as figure
5.11. First, initialize the weight on each node as weight of node. Then we process the
nodes by the order of height from high to low. For each node, we add the weight on upper

node and struts to the processing node with following equation:

W, d
pper node
Wprocessing(new) = Wprocessing(old) + Z (+ Wstrut)

all upper struts Ndown struts of wupper node
(5.5)

W means weight and N means amount number. Besides the equation, we find all
nodes connect with horizontal struts and share the weight before the height of processing
node changes. The method to share the weight is split the weight into (Nporizontar struts +

1) parts and pass the weights to horizontal nodes.

27

With this method and we set a threshold, we can find the weak point$,’?%m& weshow

the weak point on the model. we can create paths on the weak nodes by li

nodes or can just show the weak nodes and let user to select the nodes to lii_}_l_(,

get a stronger structure.

A\ .
¥ “*f%(\!\\- . a

o \/l_i‘\-« (]
L*’K --/{4\{/L\27}‘j T

Figure 5.12: Zometool result with gravity analysis. Gray points are weak nodes whose
weight on node are over the threshold.

|/’f ZT’ (¥ ':{(\\li_ A
— A B
LA ﬁéﬁ_ N e B
;@Bﬁ\lg_g-_/l/ ~
4 ¢
! d

Figure 5.13: Zometool refined result with gravity analysis. We connect the paths of one

of the weak nodes and analysis again, and the weak point shift to the lower point. It means
the weight pass to other nodes successfully.

28

Chapter 6

Results and Discussion

In this section, we demonstrate the results of our system on a number of examples.
Our system automatically generate the base result, and we provide the function for user to
refine the output. The base result guarantee the connectivity and the basic stability. If the
users need a stabler result, they just need to find out pairs of points they want to connect,

and the system will automatically create the path for Zometool structure.

We choose the Computational Geometry Algorithms Library (CGAL) to deal with the
segmentation. The package of triangulated surface mesh segmentation in CGAL provides

an implementation of the algorithm relying on the shape diameter function [11].

The data of the Zometool struts and nodes are set by the real size, and there are some

important parameters:

1. Minimum diameter of a ring is set to be the shortest strut plus the diameter of node,
because if the diameter of a ring is smaller than the smallest strut, it does not exist the

structure to construct a ring, and it judges the whether the ring should be shrink to a point.

2. Minimum size of connect two points is the same as the minimum diameter of a ring
because the shortest strut is the same, and it is the condition to know if two points has a

strut to connect.

29

3. Maximum size of connect two points is set to be the longest strut plus the-diameter
of node, and it is ised to judge to be the boundary to use the quick approach jor d’ptimize

approach.

4. Optimized threshold is set to be 0.3cm for the Zometool has a few flexibility to

tolerate this error in our non-manifold structure.

6.1 Performance

The descriptions in result figures show the model information used in this paper and
the performance measured on a desktop PC equipped with an Intel 17 3770 3.40GHz CPU
and 20GB RAM. The optimization time is proportional to the number of vertices,and it

usually takes only seconds to obtain the result.

6.2 Limitation and future work

The proposed still has several limitations. First, it sometimes cannot find the most
appropriate growing axis when local mesh vertices are isotropically distributed and the

orientation check is ambiguous. In this case, we simply select the longest axis of the OBB.

Second, our approach mainly deal with the connectivity and feature maintenance, and
we provide semi-automatic structural supports to enhance the stability. It can be a future
work to consider the structure stability, and generate results of different fineness to give

users to select the sparse or complex result they needs.

6.3 Results

The followings figure 6.1 to figure 6.5 are the results of the work. There are four

pictures that each picture individually means the original models, segmentation result,

30

base results, and the refined results by user.

After we construct the Zometool model in real world, we will use paper to produce the
surface of the result, and use material to design the pattern of the model just lil;é figure
6.9. In this case, we use A4 paper to coat the Zometool and use pure colour-materials If

the result need multiple colors, different color patches of materials are usable.

model triceratops bird dolphin octopus
of Vertex 2832 3478 5216 5944
of Edges 8490 10428 15642 17832
of Faces 5660 6952 14238 11888
Segmenting Time 2.468s 2.338s 3.171s 4.044s
Processing Time 5.84s 0.22s 0.342s 0.514s
Add Support Time 5.016s 0.044s 1.52s 4.371s
Force Analysis Time 0.057s 0.038s 0.053s 0.047s
node 610 121 223 171
strut 679 270 420 557
size(cm) 100x43x30 | 68x12x101 | 97x30x32 | 99x73x30

Table 6.1: Model data and processing results (part 1).

model teddy ant vase table

of Vertex 13826 8299 9299 6626
of Edges 41472 24891 27891 19872
of Faces 27648 16594 18594 13248
Segmenting Time 9.16s 5.367s 10.577s 4.379s
Processing Time 0.423s 0.388s 0.41s 4.502s
Add Support Time 0.924s 0.307s 10.017s 4.553s
Force Analysis Time | 0.077s 0.001s 0.077s 0.001s

node 831 268 601 430

strut 1385 352 675 538

size(cm) 80x96x38 | 63x97x54 | 44x93x45 | 50x50x18

Table 6.2: Model data and processing results (part 2). Results are measured on a desktop
PC equipped with an Intel i7 3770 3.40GHz CPU. Processing time of ”Zometool Ratio-
nalization of Freeform Surfaces” : Model with 5820 faces needs 130 minutes to calculate.

31

™ :
et X _xj/ \ \} A
— S0
qi\ \ A\
~7 ™
s

Figure 6.1: Zometool structure of triceratops. # of Vertex = 2832. # of Edges = 8490.
Segmenting Time = 2.515s. Processing Time = 0.867s. Base # of nodes = 187. Base # of
struts = 213. Refine # of nodes = 610. Refine # of struts = 679.

32

Figure 6.2: Zometool structure of bird. # of Vertex = 3478. # of Edges = 10428. Seg-
menting Time = 2.341s. Processing Time = 0.31s. Base # of nodes = 93. Base # of struts
= 116. Refine # of nodes = 121. Refine # of struts = 270.

33

Figure 6.3: Zometool structure of dolphin. # of Vertex = 5216. # of Edges = 15642.
Segmenting Time = 3.524s. Processing Time = 0.342s. Base # of nodes = 137. Base # of
struts = 154. Refine # of nodes = 223. Refine # of struts = 420.

34

T
LD 4
Topepeen®”

Figure 6.4: Zometool structure of octopus. # of Vertex = 5944. # of Edges = 17832.
Segmenting Time = 4.165s. Processing Time = 0.524s. Base # of nodes = 144. Base # of
struts = 164. Refine # of nodes = 171. Refine # of struts = 557.

35

Figure 6.5: Zometool structure of triceratops. # of Vertex = 13826. # of Edges = 41472.
Segmenting Time = 9.487s. Processing Time = 1.729s. Base # of nodes = 394. Base # of
struts = 434. Refine # of nodes = 831. Refine # of struts = 1385.

36

Figure 6.6: Zometool structure of ant. # of Vertex = 8299. # of Edges =24891. Segment-
ing Time = 5.367s. Processing Time = 0.388s. Base # of nodes = 219. Base # of struts =
262. Refine # of nodes = 268. Refine # of struts = 352.

37

/“l_:_:tl
3 \
A L %
— -,
“ - -
e R,

et
o o S VA ey

Sy S/ TP

Figure 6.7: Results of vase. Left one is the base result, middle one is the refine result,
and the right one is the real model constructed with Zometool.

Figure 6.8: Result of triceratops.

38

Figure 6.9: Results of table. In this case, we also use the paper and material to fit the
surface, and the figures shows the constructing steps.

39

..'“’b

Chapter 7

Implementation of System

7.1 System environment

All functions are implemented as a plugin attaching on the Openflipper. Openflip-
per is a stable platform to develop the functions. Although it provide a little functions
for mesh processing, it render the results well and has a great Graphical user interface for

developer to add plugin and for user to use.

For segmentation, we choose the Computational Geometry Algorithms Library(CGAL)
which implements the shape diameter function(SDF) as the default method of segmenta-

tion.

7.2 GUI design

The system shows the result with four split windows as Figure 7.1. Different views

collocate with the log window and the Figure 7.2 to speed up the Zometool construction.

The system transforms the polylines to the Zometool struts, and we provide the con-
venient user interface for constructing the result. User can look up the struts informations

for each node to speed up the process of building up the result.

40

[SegmentationPlugin - V39, E0(L,2) E1(48,1) £2(4,2)
| SegmentationPlugin : V38, E0(1,2) E1(48,1) E2(4,2)
| SegmentationPlugin - V39, EO(1,2) E1(48,1) £24.2)

Figure 7.1: Split windows for result construction. The biggest one shows the whole
model, and three right windows show the selected point with different view direction.
They are front view, back view, view with the same direction as left window from top to
bottom. Besides, there is a log window at bottom to show logs about the vertex informa-
tion(the edge indices to use) when user click the vertex.

Figure 7.2: Aid for Zometool construction. It shows indices of all directions on the node.
The left node is the front view for the up right window, and the right node is the back view
for the middle right window.

41

P OpenFlipper v2.1 N [y e ™
e

IIBIEA

Visvbode

ool 9. e
View Tools Windows Backup Primitives Scripting Help

‘Hdmm ¢ R0~ L © F e

e Chango View Mode it View Modes

O Fuopesty Vinulization

& —

Tog Vawer

st

argets se

© roei

(CrotZameol

[ComezT |
[LesiZi |

b ome)

[4
A/ NV,

Outpot Size(em): 100
DesuOBB Drsw conrlne
Symmetey Acoslemation 444 Support

[(meet | casssassino [Pz] G, (Consect Point

6

1%

3 soucsons

Simpl Smootier

% Skeletl Animation

PR,

lected

GHMEAGS: 50511024 MB 11 REE % 756720412 MB |o

Figure 7.3: Screenshot of practical graphical user interface without log window.

B Openfippervad N . _— T . | i J) han O S
Fle View Tools Windows Backup Primitives Scripting Help
‘i mm A IPEIER
Vievbole
Cheng View bole EditView Moles

Log Vewer

] @ o] Foiog! @ Eoe

= SetFlers

Output Size(om): 100
DesuOBB Dosw contrlne

Symmetey foselerton 444 Sopport

[mei) unsnm [e)

(Connect oins|

Y ekt

Simpl Smos

oer

% Skeletl Animation

5 targets selected

RS 05104 v 1 W wovzamoia s °

Figure 7.4: Screenshot of practical graphical user interface with log window and black

background.

42

..'“’b

Chapter 8

Experiment

For supporting the physical analysis system, we measure some physical parameters.

We measure the bending moment, shear force, and friction.

Bending moment is about the tolerance of bending, and the measuring method is show

in figure 8.1. There are two methods to judge the safety as figure 8.4 and figure 8.5.

Shear force represents the force which tenons can bear, so we try to add force on the
strut near the node and perpendicular to the direction of strut. Figure 8.2 shows it and

figure 8.5 is the stopping condition.

Friction is the resistance force to stabilize the tenons and mortises, and the measuring

method is show in figure 8.3.

Yellow/Triangle | Blue/Rectangle | Red/Pentagon

bending moment 9.4kg + cm 18.3kg + cm 13.9kg + cm
shear force Tkg 9kg 9kg
friction lkg 1.5kg 2kg

Table 8.1: All data of measurement results

43

Figure 8.1: The method to measure bending moment. We tie the dumbbell to the middle
of the strut, and ensure that the strut would not contact the chair.

44

Figure 8.2: The method to measure shear force. We tie the dumbbell to the strut near the
node, and stop until the situation as figure 8.4 or as figure 8.5.

45

<f il "Eoéfl{us&

.;;'{"\i "* i
£

Figure 8.3: The method to measure friction. We tie the dumbbell to the node and hold
the other side of the strut. We keep increasing the weight until the node dropping.

Figure 8.4: The extreme situation for three types of struts. The color of the middle part
of struts become lighter, and we stop adding force when it happens. Weight of dumbbell
for yellow strut is 3 kilogram; Weight of dumbbell for blue strut is 5 kilogram; Weight of
dumbbell for red strut is 4 kilogram.

46

Figure 8.5: The tenons after undergoing the extreme situation, and it can be the judgement
standards for the structural safety. If the color of tenons are lighter, it is the warning for
safety.

47

= '“'b

Chapter 9

Conclusion

We have presented an system for large-scale rapid-prototyping that enables users to
semi-automatically generate a Zometool structure with a 3D model input. The main prop-
erty of the approach is non-manifold based structure to rapidly fit the features and de-
crease the amount of building units in the same time. In contrast to the previous works
about Zometool, we can use less building units to construct the model in the same size,
because of our sparse structure, so we can also build up the result faster. And we provide
a convenient GUI for user to speed up the process of construct the result. The proposed
technique can be use as the large prototype in exhibition, the the props for stage play, and

all situations which need the prototype constructed rapidly.

3D Printer | TVCG | GMOD | Ours
Unlimited output size X O O O
Reusable X 0) (0] 0]
Save constructing time X o o O
(2d) (3h) (3h) | (1h)
Save materials X A AN O
Save processing time - o 0 0
(2h) (2m) | (15s)
Must have solution - X (@) (@)
Feature preserving in low resolution - A X O
Can output different size - A A O

Table 9.1: Table about difference between our system, 3D printer and previous works.

48

Bibliography

[1] H. Zimmer and L. Kobbelt. Zometool rationalization of freeform surfaces. IEEE

Trans. Vis. Comput. Graph.,20(10):1461-1473, 2014.

[2] Henrik Zimmer, Florent Lafarge, Pierre Alliez, and Leif Kobbelt. Zometool shape
approximation. Graph. Models, 76(5):390-401, 2014.

[3] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of polyhedral sur-

faces using decomposition. Comput. Graph. Forum, 21(3):219-228, 2002.

[4] Aleksey Golovinskiy and Thomas Funkhouser. Randomized cuts for 3D mesh anal-
ysis. ACM Trans. Graph., 27(5):145:1-145:12, 2008.

[5] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy clustering

and cuts. ACM Trans. Graph., 22(3):954-961, 2003.

[6] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical mesh seg-

mentation based on fitting primitives. Vis. Comput., 22(3):181-193, 2006.

[7] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. Fast mesh segmen-
tation using random walks. In Proc. SPM 08, pages 183—-191, 2008.

[8] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using feature point

and core extraction. Vis. Comput., 21(8-10):649—-658, 2005.

[9] Rong Liu and Hao Zhang. Segmentation of 3D meshes through spectral clustering.

In Proc. PG 04, pages 298-305, 2004.

49

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hsueh-Yi Lin, H. Y. M. Liao, and Ja-Chen. Lin. Visual salience-guided mesh. de-

-
=

composition. IEEE Trans. Multi., 9(1):46-57, 2007. =

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh partifioning and
skeletonisation using the shape diameter function. Vis. Comput., 24(4):249-259,
2008.

Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick
Baudisch. fabrickation: Fast 3D printing of functional objects by integrating con-

struction kit building blocks. In Proc. ACM CHI 14, pages 3827-3834, 2014.

Valkyrie Savage, Colin Chang, and Bjorn Hartmann. Sauron: Embedded single-
camera sensing of printed physical user interfaces. In Proc. ACM UIST ’13, pages
447-456, 2013.

Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. Interactive construction: Inter-
active fabrication of functional mechanical devices. In Proc. ACM UIST ’12, pages

599-606, 2012.

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer,
Francois Guimbretiére, and Patrick Baudisch. Wireprint: 3D printed previews for

fast prototyping. In Proc. ACM UIST 14, pages 273-280, 2014.

Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua
Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. Cost-effective printing of 3D
objects with skin-frame structures. ACM Trans. Graph., 32(6):177:1-177:10, 2013.

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. Field-aligned

mesh joinery. ACM Trans. Graph., 33(1):11:1-11:12, 2014.

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grin-
spun, Mark Pauly, and Max Wardetzky. Wire mesh design. ACM Trans. Graph.,
33(4):66:1-66:12, 2014.

50

[19] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusiks Chbpper:
partitioning models into 3d-printable parts. ACM Trans. Graph., 31(6):1295:2012.
[l A

[20] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. ApproXiniéte pyrami-
dal shape decomposition. ACM Transactions on Graphics (TOG), 33(6):213,2014.

[21] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes using strip-

based approximate unfolding. ACM Trans. Graph., 23(3):259-263, August 2004.

[22] Kristian Hildebrand, Bernd Bickel, and Marc Alexa. crdbrd: Shape fabrication by

sliding planar slices. Computer Graphics Forum, 31(2pt3):583-592, 2012.

[23] Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. Recursive interlocking puzzles.
ACM Trans. Graph., 31(6):128:1-128:10, November 2012.

[24] S. Vorthmann. vZome [online].
[25] E. Schlapp. ZomeCAD. [online].

[26] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’94, pages 23-34, New York, NY, USA, 1994. ACM.

[27] Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. Fast frictional dynamics
for rigid bodies. ACM Trans. Graph., 24(3):946-956, July 2005.

[28] D. E. STEWART and J. C. TRINKLE. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction. International Journal

for Numerical Methods in Engineering, 39(15):2673-2691, 1996.

[29] Jong-ShiPang and David E. Stewart. A unified approach to discrete frictional contact

problems. International Journal of Engineering Science, 37(13):1747 — 1768, 1999.

[30] M. Raous, L. Cangémi, and M. Cocu. A consistent model coupling adhesion, friction,

and unilateral contact. Computer Methods in Applied Mechanics and Engineering,

177(3—4):383 — 399, 1999.

51

[31] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Nonconvex sigid bodies

with stacking. ACM Trans. Graph., 22(3):871-878, July 2003.

1

[32] Kenny Erleben. Velocity-based shock propagation for multibody dy’narhics anima-

tion. ACM Trans. Graph., 26(2), June 2007.

[33] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. Staggered
projections for frictional contact in multibody systems. ACM Trans. Graph., 27(5):

164:1-164:11, December 2008.

[34] Jorge Gascon, Javier S. Zurdo, and Miguel A. Otaduy. Constraint-based simulation
of adhesive contact. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’10, pages 39-44, Aire-la-Ville, Switzer-

land, Switzerland, 2010. Eurographics Association.

[35] Nobuyuki Umetani, Takeo Igarashi, and Niloy J Mitra. Guided exploration of phys-
ically valid shapes for furniture design. ACM Trans. Graph., 31(4):86, 2012.

52

	口試委員會審定書
	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Motivation
	Introduction
	Related Work
	Mesh Segmentation
	Computational Fabrication
	Zometool Design and Modeling
	Stability Analysis

	Overview
	Zometool Construction
	Preprocessing
	Ring Generation
	Axis Decision

	Zometool Path Search
	Quick approach
	Optimized approach

	Structure Construction
	Path Connection
	Slicing Ring Generation
	Support Addition

	Special Cases
	Outward Features
	Multi-Branch Segments

	Gravity Analysis
	Method Implement

	Results and Discussion
	Performance
	Limitation and future work
	Results

	Implementation of System
	System environment
	GUI design

	Experiment
	Conclusion
	Bibliography

