SRR S TR EE 3 RN E ik
L

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

Invariant Based Test Oracle

Construction for Android Apps

M F &

Tsung-Yau Chen

B 1T

Advisor: Fang Wang, Professor

PERR 104 & 77
July, 2015

B 3L & K2 X
DREBEELE
ARG A AR 0% 2k A A2 RERE A
Invariant Based Test Oracle

Construction for Android Apps

AR EE (RO0943156) B £H REEFTREH
EEr R Z AL SAE X NEE 104507 A 10 AFHARLEF
FiBiB R ORRA 0 4FILEH

EE SR W

AR . i e
fxiE AR f}‘/}\“//)w“/%v\

WAEY REX

=

PAOFEA SR N FREEORY B0 L8
B Android & *

ci- 384 o Android £p # B EE T SR Y Fh S o @ bt

ARNPRRAFT T 2 FE L Avhm o ARd > R ARG - BH Android iR

WRIZ ¥ 0% o RIRRERIAGRE B F P £ R PRS0 & F B AR5 R
TR - BRRER KKEFROF iﬁh{i FEB R o LA § Bonal il 1 AR EF
PEGEROAFE A EPETREE S A o fe)’j‘*u{

*lz{’# A4 K RGE R

PR R EUEBR S - B p B R D LE
SR A RSB AAT Y 3 REREPEL 2 S ERIEER] S 7 o
JEED

BALR RRIGE o 1Bk SRR NPT ke Brehdi e o R HERIR R

PR T R R KT) BRI LR g LN A & e A K

Fwp it o pEgT s ER{ O ER -

Mt @ RRIE TR AENRIE RIEER > 2 REPRIR -

ABSTRACT

Since the invention of the smart phone, the mobile application becomes the
important part of the software industry. Android has the most users in mobile platform.
The researches about Android application testing technology are more and more
completely. However there is no test oracle construction tool for Android. The test
oracle is an important part of test automation. Most applications need the test oracle to
verify the software under test for whether it behaviors correct or not. Recently, software
engineers always do it by human power, which costs lots of time and money. It’s why
the test oracle is becoming a bottleneck of the automated testing.

This paper introduces a system that constructs the test oracle by the concepts of
invariant testing. It works on black-testing. The system gets the features of execution
traces, build the test oracle up. Then we can use the test oracle to predict the behaviors
of the software under test. Our goals are reducing the human cost, and getting as high

accuracy as possible.

Keywords: software testing, Android application testing, test oracle, invariant testing

CONTENTS

CTRE R € F T i s #
B2 BB & s [
ABSTRACT ettt ettt bt et e e b e nbe e b re e ne e i
CONTENTS ettt b e b e et e e et e e s be e s nbeenbeeenee e e ii
LIST OF FIGURESottt Y
LIST OF TABLES ...ttt st e tee Vi
Chapter 1 INErOQUCTIONcviiiiiiiiiireeee e 1
Chapter 2 PreliMiNArY ..o 3
2.1 DAIKON....coeeii s 3
2.2 KPALN. s 5
Chapter 3 FrameWOrK ... 6
Bl OVEIVIBW ...ttt bbbt bbbt 6
3.2 Concepts of using Daikon for GUI teStingcccceevevieieniieniieneseseees 7
3.3 Dtrace format CONSIrAINTS..........covriiieieieie i 10
Chapter 4 AlGOrtNM ... 13
4.1 Test Oracle CONSLIUCTIONcoiiieiiiiiiesierie e 13
4.2 FiXedAUrDULEFINGET ..oeiiiiiieee s 14
4.3 PrOPEIVEIITIEN ..ot 14
Chapter 5 EXPEIIMENTcooiiiiiiiiieiiiieee et 15
51 EXPeriment eNVIFONMENTcccoiiiiiirieieie sttt 15
5.2 BENCAMAIK ..ottt 15
5.3 EXPEriment DESIONcveiueiiiiiiriiiiisieeieie ettt 16

5.4
55
Chapter 6

Chapter 7

EXPEIIMENES .. et b e e a e arg e e ae e iR
Meaningful invariant eXample..........cccovoeiiiie i e
CONCIUSION ..t bbb

FUBUIE WO K e et ee s

LIST OF FIGURES

Figure 2-1PUSH TUNCEIONcviiiiiiecce e s 3
Figure 2-2 top half of dtrace file ..o 4
Figure 2-3 bottom half of dtrace file ..o 4
Figure 2-4 invariant report eXample ... 5
Figure 2-5 example of XPath........ccoooiiiii e 5
Figure 3-1 WOrKFIOW graph.......cooooiiiiiiiiiisieee s 6
Figure 3-2 xml & screenshot eXample(L) ..o 8
Figure 3-3 xml & SCreenshot eXamMPIecooiiiiieiiie e 9
Figure 5-1 SUTIHIPPY LIPPET ...eeiieeieieieeite sttt 15
FIQUIE 5-2 SUT: GYM .ottt bbbt 16
Figure 5-3 Test Oracle hit rate graph.........cocooieiiie 18
Figure 5-4 EXperiment 2 NIt rate.........cccooiieiiiie i 19
Figure 5-5 Experiment 2 error analysis (SUTL)ccccveiiiiiiic i 20
Figure 5-6 Experiment 2 error analysis (SUT2)cccooeiieiiiie i 20
Figure 5-7 Meaningful invariant example(L)cccovveieiieiecie e 22
Figure 5-8 Meaningful invariant example(2)cccooveveiieve e 23
Figure 5-9 Meaningful invariant example(3)cccovveieiieiecie e 23

Table 1 Experiment1 :
Table 2 Experiment1 :
Table 3 Experiment?2 :

Table 4 Experiment2 :

LIST OF TABLES

SUT Lo s 17
SUT 2. 18
SUT Lo e 19
SUT 2. 19

Vi

Chapter 1 Introduction

While the smartphone is becoming popular, hundreds of thousands of specialized
applications, called apps, are available for these mobile platforms. The applications are

getting more and more complicated. It is a big challenge for software testing engineers.

In this paper, we are focused on the test oracle construction for the Android
applications. Test Oracle is an important part of software testing. It is a mechanism for
determining whether a test case has passed or failed. In another word, with a given test
case, the Test Oracle predicts what the result is. The construction of the test oracle is
often much harder than it seems to be. It involves problems related to controllability and
observability problem. It is the reason why the test oracle becoming the bottleneck of
automated testing. Constructing the Test Oracle makes a great help for improving the

testing efficiency.

We are trying to build the test oracle up for black-box testing. Because of we do
not always know the specification of the applications. Even if we got the specification,
the transform from the application specification to the test oracle always needs some
human knowledge. The description of this transform is always fuzzy. We want a more

reliable strategy to build the test oracle up for Android application testing.

We construct the test oracle by the concept of invariant testing. An invariant means
a property that holds at a certain point or points in a program. For example, it includes
being a constant(x = a), ordering (X <y), inarange (a < x < b). The concept of

invariant-based testing assumes that the application behaviors are consistent. An

invariant should include three parts. First, what is the variable? Second, what is the
grammar? Last, where is the program point it holds? Thus, invariants are the rule in the
program point. After getting the constraints of each transition of the application, we can

verify the testing cases, and then report our predicted results.

Chapter 2 Preliminary

2.1 Daikon

Daikon is an invariant detector tool implement by Java. It designed for detect
invariants in C, C++, Java, Python and Perl programs. Daikon version 1.0 is published

by Michael D Ernst at Massachusetts Institute of Technology.

The acceptable input format of Daikon is called "dtrace”. The Daikon frontend
program will execute the program and then output the variable information with dtrace
format. Each language has its own frontend. It is the reason that Daikon can detect
invariants for multi-language. Daikon detects the invariants of test case by reading the
dtrace format files only. The format will describe the metadata of the variables and the

value of each variable.

What the Daikon concerned is every procedure in the test case. Daikon detects the
invariant according to the information that the dtrace file describes. Daikon will output
the value with the grammar that holds in each procedure. We show a java program
example below. It is the push function of the stack program:

public class StackAr
{
public void push(Object x) throws Overflow
{
if(isFull())
throw new Overflow() ;
theArray[++topOfStack] = x;

Figure 2-1Push function

There are some examples of the Daikon input format as following.

The top-half of the dtrace file is “program point declaration block”.

ppt DataStructures.StackAr.push(java.lang.Object):::ENTER
ppt-type enter
variable this
var-kind variable
dec-type DataStructures.StackAr
rep-type hashcode
variable this.theArray
var-kind field theArray
enclosing-var this
dec-type java.lang.Object[]
variable this.theArray.getClass()
var-kind function getClass()
enclosing-var this.theArray
dec-type java.lang.Class
rep-type java.lang.String
variable this.theArray([..]
var-kind array
enclosing-var this.theArray
array 1
dec-type java.lang.Object[]
rep-type hashcode[ﬂ
variable this.theArray[..]
var-kind array

PR, R U, N R

Figure 2-2 top half of dtrace file

The bottom-half of the dtrace format is “value declaration block”

StackAr.push(java.lang.Object):: :ENTER
this_invocation_nonce

55

X

1217030

1

x.getClass()
"DataStructures.MyInteger”

1

this.theArray

3852104

1
this.theArray.getClass()
"java.lang.Object[]"

1

this.theArray[]

[null]

1
this.theArray[].getClass()
[null]

1

this.topOfStack

-1

1

Figure 2-3 bottom half of dtrace file

DataStructures.StackAr.push(java.lang.Object) :: :ENTER
x !'= null

DataStructures.StackAr.push(java.lang.0Object) :: :EXIT
orig(x) == this.theArray[this.topOfStack]
this.topOfStack >= 0

this.topOfStack - orig(this.topOfStack) - 1 ==

Figure 2-4 invariant report example
There is an “object block™ between program point declaration block and value

declaration block. Because we don’t need it for our purpose, we ignore it in this paper.

2.2 Xpath

Xpath is a query language for selecting nodes and attribute from a XML document.
example:

<hierarchy>

<node>
<node text =“Hello World">

</node>
</node>
</hierarchy=>

/hierarchy/node[1]/node[1]/@text = “Hello World”

Figure 2-5 example of xpath
And we modify the xpath expression as below:
/hierarchy/node[1]/node[1]/@text = “Hello World”

=>hierarchy.node[1].node[1].text = “Hello World”

Chapter 3 Framework

3.1 Overview

Abstracted Frontend
Training Set NN === EEEERRS

Test oracle construction

Abstracted Invariants

Testing Set /

Property
Verifier

Test report

Figure 3-1 workflow graph
Component
® Test Oracle Construction
B Frontend
< Transform from xml file to dtrace format file
B Daikon
< Invariant detector
® Test Oracle execution
B Properties\erifier

< read constraints and input traces for verification

Abstracted data

In order to avoid the problem of the state explosion, we need to abstract the
screenshot data. If we don’t abstract the data, the test oracle can be only used for the
same screen with the same action. And it will cause the number of states grow up
prohibitively. It is the main reason why we need to abstract the screenshots and the
actions.

Example of abstract mapping :

Assume we got abstracted set data

View : stateO : screenl, screen2 , screen5
statel : screen3
state2 : screen4

Edge: movel:screenl =» screen3

move2 : screen5 =» screend

statel

movel
Screen3

state2

Screenl,2,5 Screen4d

3.2 Concepts of using Daikon for GUI testing

Daikon focus on every procedure, then the Daikon find out the variables value in

the precondition and the post-condition and report the invariants of each procedure. By

this way, we use this concept in application testing. Actions = procedures in SUT, the
source screen of an action - precondition of an SUT procedure, and the destination
screen of an action - post-condition of an SUT procedure. By this way, we can convert

the screen transition which is mapping to a program procedure.
Dump xml files of screenshots

UlAutomator is a great GUI (Graphic User Interface) ripping tools has been
published by Google. UlAutomator is a framework which is used to manipulate the Ul
form code into a Junit test case. UIAutomator is able to do some actions on a device
such like: touch, scroll, take a screenshot, and ripping screen as xml file etc.

Our Test Oracle is based on the invariants of the xml attributes, and because of the
UlAutomator only supports Android version 4.1 and after. If your SUT(software under
test) is early version, you should find out another way for GUI ripping.

We can obtain screen data as XML file type by UlAutomator. So we can focus on
any attribute in the XML type file. We can easily express the attributes and the values in

Xpath expression.

Example of Daikon for GUI testing

ML am
Tippy Tipper

$0.00

$0.00

Total: $0.00

—

<node bounds="[6,39][474,74]" selected="false"
password="false" long-clickable="false"
scrollable="false" focused="false" focusable="false” | |
enabled="true" clickable="false" checked="false"
checkable="false" content-desc=""
package="net.mandaria.tippytipper"
class="android.widget.TextView" resource-
id="android:id/title" text="Tippy Tipper" index="0"/>

</node>

h =I5 - =
password="false" long-clickable="false" scrollable="false"

Figure 3-2 xml & screenshot example(1)

The red block of the XML area is describes the red block of the screenshot, by this

way we can get the attributes of the XML, which is mapping to data of the screenshot.

gi@o Rse
Tippy Tipper .
_ resource-id=
Enter bill amount:
"net.mandaria.tippvtipper:i
d/btn_nine

hierarchy.node[1].node[1].node[2
].node[1].node[1].node[3].node[1
].node[3].text=9

Figure 3-3 xml & screenshot example

There is a example of transform from xml attribute to xpath expression.

Reduce the complexity

Because of the Daikon invariants detect algorithm complexity is O(n°) (n : the
number of all the variables). It is a big problem for testing some larger size application.
So we are necessary to reduce the number of the variables for solving the complexity
problem.

1. Filiter:

We can focus on the attributes we concern only. It will help reduce the
number of attributes effectively.

2. Fixed values

For each abstracted state, we try to find out the variables with fixed
values. so we can add those attributes in the constraints of the xml, so we

are not need to describe in dtrace anymore.

3.3 Dtrace format constraints

Daikon is the best invariant detection tool as we known. Daikon has complete user
manual, exception handler, and troubleshooting. Daikon designed for detecting normal
programs. However, we treat Daikon as an XML invariant detector, which results in
some additional problems while doing our experiments. Daikon makes some constraints
checking which is reasonable for program, but not for XML transitions.

The following paragraph discuss about the extra constraint we met, and how to
solve those constraints:

1. Procedure variable check

The Daikon checks that every variable in the pre-condition should also exist in the
post-condition. In order to pass through this check, we modify the variable declaration
rules. For any transition, the pre-condition and the post-condition, we declare both the
variables in pre-condition and post-condition.

For example, there is a procedure from the screen A to the screen B, and the screen
A has three attributes: a, b and c. And screen B has three attributes also, x, y and z.
while we describe about the procedure, we should describe that there are six attributes
in pre-condition and there are six attributes in post-condition too, they are a, b, ¢, X, y
and z. However, in the value declaration of screen A, the attributes variable values
which belong to the screen B would be an empty string. Similar to the screen B, the
variable values of those attributes belongs to screen A would be an empty sting too. We
can pass the procedure variable check by the modification on the declaration.

The weakness of this method is that we will increase the number of the variables,

and it will make the loading of Daikon becomes heavier

10

2. Modify xpath expression

Because of the variable check in statement above, it will confuse us about attributes
of XMLs. In order to solve this problem, we modify the xpath expression, we added the
abstracted ID in front of every attributes in the xml files.

For example, there is a xpath is "a/b/@c", and the abstracted state of the attribute
screen ID is "n™. Then we change it to "n.a.b.c”. So we can change the xpath expression

by this way and no more confuse problem.

3. Undetermined state

There are some “move” actions which are different if the conditions are different. It
means the same source state screen with the same move action, but it goes to another
destination screen state. The situation is impossible for program procedure. While
Daikon detects it happened, Daikon will report it as an error and reject the file. It is a
big problem for detecting invariants.

In order to avoid the problem, when we got the traces set, we will build the
undetermined state table up. When we declare the procedure, we list all the variables of
the pre-condition and possible post-condition, like statement 1. It solves the format
problem, so we can verify whether the transition behaviors following the invariants or
not. Just like statement 1, the weakness of the solution is enlarging the number of
variables.

4. check the variable type

In our purpose, we want to find out as much meaningful invariants as possible. It
will increase the effectiveness and accuracy, and it will be easier for human to
recognize.

The invariants of number relation are more powerful than invariants of string
11

relation, so we want to support integer, floating point and more types. In order to avoid
the dtrace format constraints, we check every value in each abstracted state. Find out the
attributes with same type and build the table. While we are writing the dtrace file, we
will declare the attributes with the corresponding type to improve the power of invariant
detection.

In our experiment, we find that for a Calculator application, the text block write
down the number calculated. But we cannot declare the block value as integer or

floating point, because of there is sometimes be the "scientific notation".

12

4.1

Chapter 4 Algorithm

Test Oracle Construction

Input : Test cases with abstracted mapping data

1.

Construct the table that describe how the screenshot XMLs mapping to abstracted
states.
Compare every transition, find the undetermined transition out
Build undetermined table for describe the destinations of each undetermined state
Transform every xml into xpath type data. (attribute filter here)
Check the type of every attribute in each abstracted state.
For each abstracted state, check every attribute of every xml, find out the attributes
with fixed value in the abstracted state.
For each transition:

— Look up the correspond abstracted state.

— Load precondition and postcondition attributes

— Check the contents which is not contradicted to dtrace format constraints.
Output dtrace file by dtrace file format.

Daikon generate the invariant report.

13

4.2 FixedAttributeFinder :

Input : (name, value) list for all screen XMLs

OwnList =[] # list all attribute with the value used before

FixedList =] # list all the attribute with fixed value

For each abstracted state s:

for each xml in s:
for each candidate in xml:

It (the candidate is not in OwnList):
OwnList.append(candidate)
FixedList.append(candidate)

else:
iIf OwnList[candidate] != candidate :
FixedList.remove(candidate)

Return FixedList

4.3 Proper\Verifier

Input : traces set & invariant constraints
for each transition in SUT:
for each Attributes in precondition, postcondition:
If not ComplyConstraint(Attribute, constraints):

Report (Attribute, constraints)

14

Chapter 5 Experiment

5.1 Experiment environment

- CPU : Intel® Core ™ CPU 2.5GHz *2
* Ram : 16GB

+ OS : Windows 64bit

+ VM : VMware Workstation 8.0
 WMRam : 4GB

5.2 Benchmark

SUTL1: Trippy Tripper (17 View States):
It is a simple and open source Tip Calculator, it calculates the bill and the select
tips, and split bill. Only 17 state under our testing. It is a really simple application.
Data: 104 pass, 96 fail traces, totally 200 traces.
SUT screenshot example as below

Trippy tripper

Q= 5 RIT B #0385 05:40
Tippy Tipper

atm
Tippy Tipper

Enter bill amount:

$0.00

=B EE B

P-_.

Figure 5-1 SUT:tippy tipper

15

SUT2: GYM Guide(166 View States)

It a dictionary of GYM nouns, show the knowledge you should know before GYM
exercises. It provides the suggestions for each GYM exercise, demo them and gives a
simple exercise plan.

Data : 75 pass, 25 fail traces, totally 100 traces

&+ =
Lt}

GYM Exercise Guide

-IM sorry to inform that i will be deliting this app ‘Secrets”

while i wc o 1g it, if you like t p then There are really not screts when it comes to

don't dele) ewheniuploaditagainitw bodybuilding butim gonna tell you some common
be priced for , on the other hand if you wis begginer mistakes so that you dont have to learn

to support me then please buy the app when it them the hard way
comes out on april 1 |

GYMTEXerase Guade

The more you train the bigger the muscle its
gonna get
-Yes but no, there is such thing as overtraining and
when you overtrain its gonna be the opposite. The
muscle grows when its resting not while you are
B lifting so why would you keep training when your
muscle has not recovered yet? The recovery time
varies depending on a lot of factors but the general

rule its 3 full days for a mucle meaning if you train

Routines your biceps on monday you should let them rest
until at least thursday, but thats just my opinion on
the resting periods.

Diet 2. "More reps=definition and less reps=mass
-No,the look of being "Toned" its having a low
bodyfat percentage and whether you are bulking
or cutting you should stick with the same rep range

Info and thatin typically 6 to 12 reps. Whether you are
bulking or cutting its more about the diet than the
weight lifting routine.

Supplementation

Figure 5-2 SUT: GYM
5.3 Experiment Design

Experiment 1
® In order to test the accuracy of our test evaluation, we calculate the hit rate of
the testing set with different size of the training data.
® \We record the hit rate from 10 traces as training data to 50 traces as training
data.
Experiment 2

® In order to find out the bottleneck of the test oracle accuracy, we calculated

16

the hit rate of a larger testing set with fixed size of the training set.

® \We analysis the result, and try to improve the test oracle.

Before we discuss about the experiment results, what we most concerned is the hit
rate of the test oracle. The “pass” in our definition means that for each trace in traces set,
every transition of the trace comply with the constraints, concluding pre-condition,
post-condition and the relation between them. If any transition of the trace not complies

with the rules, then we report the trace fail.
54 Experiments

False positive & false negative

In binary classification testing, there are two kinds of errors, False positive and
False negative.

A false positive is an error in data reporting in which a test result improperly
indicates presence of a condition. Such as a fail (the result is positive), when in really it
is not.

A false negative is an error in which a test result improperly indicates no presence
of a condition (the result is negative).

There are two kind of errors in a binary test, and are contrasted with a correct result

Experiment 1 :

Environment: Each SUT has 50 traces as max training data.

Tippy tipper

testing set : 50 traces

pass : 25 traces fail : 25 traces
|

Table 1 Experimentl : SUT 1
17

GYM guide
testing set : 50 traces

pass : 25 traces fail : 25 traces

Table 2 Experimentl : SUT 2

Hit rate Experiment 1
8058

5% ‘.

655 ./
% / “=GYM
w5 =Tipper

Htraces

¢} 10 20 30 40 50 =]

fitrace

Figure 5-3 Test Oracle hit rate graph

In Experiment 1, the accurate of test oracle is raise up with the number of traces as

training data. The application with lesser states “tippy tipper”, hit rate is higher than the

application with more states “GYM guide” obviously. But the hit rate is lower than what

we respected. We will discuss what the problem is in experiment 2 result.

Experiment 2:

Environment:

The size of training set of each application is 50 traces
18

Tippy tipper
testing set : 90 traces

pass . 54 traces fail : 36 traces
Table 3 Experiment2 : SUT 1
GYM guide

testing set : 50 traces

pass : 25 traces fail : 25 traces

Table 4 Experiment2 : SUT 2

Tippy Tipper GYM guide
M hit B miss B hit H miss

Figure 5-4 Experiment 2 hit rate

The hit rate is lower than our respect too. So we are trying to find out the
reason by analysis the fail trace reports.
According the test case report, 100% of fail trace in our trace set are found out

by test oracle. So there is no false negative problem in our experiment environment.

19

The problem happens in false positive type. Because of our “pass” and “fail”
definition, we will report fail if the transition that is not included in the given
training data. Somehow the transition might be reasonable transition. It is the

reason why we are rarely found false negative result out (zero in our experiment).

Experiment 2:

Tippy tipper

Tippy Tipper

B constraints error

M new transition

Figure 5-5 Experiment 2 error analysis (SUT1)

GYM guide

GYM guide
M constraints error

B new transition

Figure 5-6 Experiment 2 error analysis (SUT2)

20

After analysis the report of the application “tippy tipper”, we found most of the
error predicts occurred at meet a new transition verify. And the others errors are
constraint errors.

Constraint errors are come from the test oracle is not well-trained. the invariant
constraints hold the properties if where are none contradicted in the training data. If
there is no counterexample of the fail constraint, invariant detector will set it true as
invariant. With more and more training data, test oracle will discard the error constraints,
and the remained constraints will be more reliable. The constraint error will lower with
the increasing number of traces as training data.

New transition errors result from the transition we cannot verify. It might be a pass
or a fail transition. If it is a fail transition, it should not happen in training data. By this
way, an error transition is always a new transition for our Test Oracle. In another way, if
it is a pass trace, it come from the transition is not happen before. It cause we don’t have
the constraints corresponding to this transition. We can’t identify these two types, and it
makes error prediction happened.

In the SUT “tippy tipper”, we found that all of the new transition errors come from
one type of action, the “TEXT” action. While the screenshot has its block which is
editable, the trace would try to edit the editable area. The departure of editing action is
the “TEXT” type. 80%+ the wrong predict are because of it.

For GYM guide application. Most of the errors happen because of the type of the
action “Rolling”, and we called it “scrolling” also. The argument of scrolling is -20 to
+20. Then it will generate a lot of new action with low repetition, and those actions
coverage is very low. However those actions are necessary for testing the applications
completely, so we need a solution for this problem.

Both of tippy tipper and GYM guide applications, the true problem is the state
21

explosion. It is a serious problem for our purpose. Several possible solutions for solving
this problem, one solution is to redesign the action record, increasing the coverage of
those actions, but it not an easy task. Another solution to solve the problem is ignored
the actions with those types. In our experiment 2 environment, if we ignored those type
of action, the hit rate of the tippy tipper application will reach about 95% hit rate, and
the hit rate of the GYM guide application will reach 70%+ hit rate. It is a great
increasing for our experiment results.

However there a risk come from the ignored strategy, if we ignore those actions, it
means that we do not verify those type of actions, if one day, an error happen over those

action, we cannot notice it happen. It is a big risk for us.
5.5 Meaningful invariant example

There is some meaningful invariant we got in the experiment
Example 1:
screen.15():::EXIT :14.hierarchy.node[1].node[1].node[2].node[1].node[1].node[1].node
[9].node[1].node[1].node[2].text-orig(14.hierarchy.node[1].node[1].node[2].node[1].nod

e[1].node[1].node[9].node[1].node[1].node[2].text) - 1 ==

Q¢ oz@m RIT 000 0745 ad o Rl & #(168] 07:45 [+ e
Tippy Tipper Tippy Tipper Tippy Tipper

Subtotal Subtotal Subtotal
Tip Tip: Tip:

Adjustment Adjustment: Adjustment:

Total: Total: Total:

Number of people: Number of people: Number of people:

2 3 4

Figure 5-7 Meaningful invariant example(1)

22

12.hierarchy.node[1].node[1].node[2].node[1].node[1].node[
1].node[3].node[1].node[1].text one of { "Tip (10.0%):", "Tip
(15.0%):", "Tip (20.0%):“}

Total:

Set :

"Tip (10.0%):“
"Tip (15.0%):“
"Tip (20.0%):“

Figure 5-8 Meaningful invariant example(2)

4.hierarchy.node[1].node[1].node[1].node[1] .textj==

cadoccoceen il ot iss
really mpontant part of bodybauiiding, If you train
e 255 off but hawe a bad nusrition R rot genna
mean aythng and you ore rever going ie make
any progress.

it cronutrients sre the nutrients tha
. . have calories these are peoten, carbohydraies, Tat
Exarcises Actlon and akcohol butwe ane going to focus only on the 3
g wents which are proten,
carbohydeaies and fai. Each gram of these contain
<ertamn calories.
Routnes
1 gram of protein= 4 calories

1 gram of carbodydraiess 4 cakms
1 gram of Fl= 9 calor s
Diet 1 gram of alcohal = T calories
Sonow that you know the relation beteesn

macronitrients and cakories you need 1o know how
ko enarry caleres you need o corsume per day in

ander o mantain you weighd cud or bul, and how
do youdivide you macronutrents 1o get 1o the
numiber of calores.

Supglementation The easiestway 80 do this & the Tolowing: Keep in
vl thl o o Bre Bk MR you CM0 LSS YO

_ _ :

Figure 5-9 Meaningful invariant example(3)

23

Chapter 6 Conclusion

In this paper, we have purposed a reasonable system for constructing the test
oracle of Android applications. The test oracle finds out the rules of the transitions
of each Android application. The accuracy of the test oracle will increase as the
size of the training set larger. There are still some problem needed to be resolved,
such as state explosion and algorithm complexity problem. Ignoring the trouble
actions is an easy solution, but it will also cause another problem. In order to
handle more traces as training data, the algorithm complexity is becoming a serious

problem of invariant detecting.

24

Chapter 7 Future Work

The state explosion is big problem to resolving. We need a better solution than
what we did, and ignore the trouble actions might be one possible solution. The
better solution should be a smarter strategy to abstract those actions.

We can reduce the complexity of the invariant detection algorithm by made our
invariant detection tool up. Daikon is a well-done invariant detector for programs.
However, there are many properties and grammar that we don’t need to check in
xml transition testing. In order to fit the “dtrace” format, we modify the transition
attributes and enlarge the number of elements for pass the Daikon check. If we
make an invariant detector for XML, we can reduce the algorithm complexity by
reduce the grammar types and reduce the variable number efficiently. It will be a

better way to solve the complexity problem.

25

Reference

* “Using declarative specification to improve the understanding, extensibility, and
comparison of model-inference algorithms”by lvan Beschastnikh, Yuriy Brun,
Jenny Abrahamson, Michael D. Ernst, and Arvind Krishnamurthy.

IEEE Transactions on Software Engineering (2015)

* “Mining temporal invariants from partially ordered logs”
by Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and
Thomas E. Anderson.

SIGOPS Operating Systems Review (2011)

* “Building and using pluggable type-checkers”by Werner Dietl, Stephanie
Dietzel, Michael D. Ernst, Kivan¢ Muslu, and Todd Schiller.

In ICSE'11, Proceedings of the 33rd International Conference on Software
Engineering,(2011)

* “Performance Enhancements for a Dynamic Invariant Detector”by Chen Xiao.
Masters thesis, MIT Department of Electrical Engineering and Computer
Science, (2007)

* "IODINE: A tool to automatically infer dynamic invariants for hardware
designs” In the Design Automation Conference, DAC 2005.

* The Daikon system for dynamic detection of likely invariants Michael D.
Ernst+ , Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, Chen Xiao (2007)

» “Efficient Incremental Algorithms for Dynamic Detection of Likely Invariants”

Jeff H. Perkins Michael D. Ernst MIT(2004)

26

“Dynamically discovering likely program invariants to support program
evolution”

by Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
IEEE Transactions on Software Engineering, vol. 27, no. 2, Feb. 2001
“Dynamically Discovering Likely Program Invariants”

by Michael D. Ernst.

Ph.D. dissertation, University of Washington Department of Computer Science
and Engineering, (Seattle, Washington), Aug. 2000

“JDiff: A differencing technique and tool for object-oriented programs”

by Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.

Automated Software Engineering Journal, vol. 14, Mar. 2007

27

