
!
國立臺灣大學管理學院資訊管理學研究所	

碩士論文
Department of Information Management

College of Management

National Taiwan University

Master Thesis

!
以同態建造平行程式	

Constructing Parallel Programs Using Homomorphism

!
!

郗昀彥	

Yun-Yan Chi

!
!

指導教授：穆信成	
 博士
Advisor: Shin-Cheng Mu, Ph.D.

!

中華民國	
 104	
 年	
 8	
 月
August, 2015

!

以同態建造平行程式	

Constructing Parallel Programs Using Homomorphism

!
!

本	
 論	
 文	
 係	
 提	
 交	
 國	
 立	
 台	
 灣	
 大	
 學	

資	
 訊	
 管	
 理	
 研	
 究	
 所	

作	
 為	
 完	
 成	
 碩	
 士	
 學	
 位	
 所	
 需	
 條	
 件	
 之	
 一	
 部	
 份	

!
!
!
!
!
!
!
!

研	
 究	
 生：郗	
 昀	
 彥	
 	
 	
 	
 撰	

中	
 華	
 民	
 國	
 一	
 百	
 零	
 四	
 年	
 八	
 月

!

謝辭	

!
時光匆匆，轉眼也走到這一步了。非常感謝這一路上給予我各種協助的人事

物，讓我不致於因為現實的無奈與限制而放棄這條路。	
 !
首先最要感謝的是這一路上帶領我的指導教授穆信成老師。老師在很多地方

都給予了我很多協助與自由，尤其是我因為身體因素時常不能如期完成規劃中的

事情時。老師做研究的堅持與學術素養的深厚也給我有很多啟發與激勵。另外，

也很感謝我的口試委員們，王柏堯、莊庭瑞和陳恭老師給予我很多討論，讓我得

以完善我的論文內容以及接下來的研究方向。台大資管的各任課老師讓我學會了

很多資工出身的學生不太容易注意到的議題和知識。此外，雖然說我們實驗室沒

有很多成員，但是也很感謝向上和書泓在我研究的過程中給予了我一些建議與討

論。此外，真的非常感謝在這些日子中總是可以在關鍵的時候給予我協助的健欣，

雖然說他自己有工作要做，但是他還是安排時間幫助我，不管是研究或是私人領

域他都惠我良多，甚至陪我演練過整份口試講稿。另外，我也很感謝少娟幫我處

理了很多中研院相關的庶務。最後，當然還是要感謝家人們。這些時間身體好好

壞壞的，也多虧了家人的陪伴和諒解使得我可以放心繼續完成學業。	
 !
其次我要特別感謝的是家琦。她不但這些年在研究相關的研究上協助我啟發

我，甚至連學業上也給了我不少協助。但是最重要的是在我身體健康不穩定甚至

是動手術的時候她都不時地給我很多安慰和鼓勵。沒有她我是絕對不能堅持到今

天這一步的。	
 !!!!!!
郗昀彥	
 謹識	

于台灣大學資訊管理研究所	

民國一百零四年八月	
 !

論文摘要	

!

學生：郗昀彥	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2015	
 年	
 8	
 月	
 !
指導教授：穆信成	

!
以同態建造平行程式	

!
平行程式在現今的世界中佔有非常重要的份量。但是，如何開發平行程式

卻不是件簡單的事情。傳統上，為了開發平行程式，程式設計師習慣也必須將

現有的序列化程式重新改寫成平行的版本。但是，這樣做卻需要花費額外的成

本與時間。自然地，程式設計師會想要有一套自動化的方法可以讓他們不必為

了平行化而重新實作同一套演算法。因此，大量的研究試圖去開發出有效的方

法，以自動化地從現有的序列化程式開始建構或合成出平行程式。其中一種可

行的方法就是採用程式推導(program	
 derivation)來做為平行化程式的技術基礎。

程式推導允許程式設計師從程式的規格，或是現有的程式定義與性質，來推導

並建構出滿足目標需求的程式定義。	
 !
本研究中，我們使用同態來描述平行程式的性質並且專注在串列處理相關

的程式。我們以兩種不同的特化實例來加以定義：串列同態(list-

homomorphism)，用以描述處理平行串列歸納(list-reducing)的程式；串列反同

態(list-unhomomorphism)，用以描述處理平行串列生成(list-generating)的程式。

第三串列同態定理(third	
 list-homomorphism	
 theorem)告訴我們：一個程式如果

具有雙摺疊性(bi-foldability)，則必然存在一個運算子使得該程式可以被寫成

一個串列同態。經由利用第三串列同態定理，我們推廣並總結出兩種可以由序

列化串列歸納程式推導出其平行定義的方法。第一種允許我們將雙摺疊性之證

明一般化成串列同態之證明，而其中則包含了目標程式之串列同態定義。第二

種方法允許我們經由語法操作而產生出目標串列同態之定義，一旦目標程式之

右弱反函數(right	
 weak	
 inverse)可以被設計並決定。另一方面，對於串列反同

態，我們推廣出一個第三串列同態定理之對偶定理(dual	
 theorem)。基於此定

理，如果某兩個串列反同態之基本性質之前提條件皆可以被滿足的話，我們可

以根據序列化串列生成程式之定義建構出一個串列反同態之定義。	

!
!
關鍵字：平行程式，函數式程式，串列同態，第三串列同態定理，程式推導 

THESIS ABSTRACT
GRADUATE INSTITUTE OF INFORMATION MANAGEMENT

NATIONAL TAIWAN UNIVERSITY

!
Student: Chi, Yun-Yan Month/Year: August, 2015
Advisor: Mu, Shin-Cheng

!
Constructing Parallel Programs Using Homomorphism

!
Parallel programming plays an very important role in nowadays world. To develop a
parallel program, however, is not a simple task. Traditionally programmers are used to
and have to rewrite a sequential program to its parallel version. This, however, takes lots
of extra efforts and times. It natural that programmers want to have an automatic
method for saving themselves from re-implementing the same algorithm twice.
Therefore plenty of previous works have tried to develop methods for constructing and
synthesising parallel programs from existing sequential programs. One of potential
ways is using program derivation which allows us to construct a program definition
from its specification, or, in this case, from existing definitions and properties.

In this thesis, we use homomorphism as a model of parallel programs and focus on
programs that handle the well-known linear data structure, list. We realise
homomorphism as two specialisations: the list-homomorphism, which works as
properties and is used for modelling parallel list-reducing programs; and the list-
unhomomorphism, for parallel list-generating programs. By taking advantage of the
third list-homomorphism theorem we introduce two methods to derive parallel list-
reducing programs from its sequential definitions. The first method allows us to
transform a proof of bi-foldability to a proof of existing of list-homomorphism where,
obviously, contains the definition of list-homomorphism itself. The second one,
provides us a syntactical approach to construct a list-homomorphism once an right weak
inverse of the program we want to parallelise can be designed and picked. For list-
unhomomorphism, on the other hand, we develop a dual theorem of the third list-
homomorphism theorem so that list-generating programs can be constructed from its
sequential definitions once the sufficient conditions of two essential properties of list-
unhomomorphism can be satisfied. !
 Keywords: Parallel Program, Functional Program, List-Homomorphism, Third List-
Homomorphism Theorem, Program Derivation

Contents

1 Introduction 4

1.1 Correctness . 5

1.2 Parallelisation . 5

1.3 Background . 7

1.4 Outline . 9

2 Preliminaries 10

2.1 Mathematical Background . 10

2.2 Program Derivation . 11

2.3 Functional Programming . 12

2.3.1 Programming with Functions . 13

2.3.2 Linear Structures . 13

2.3.3 Folds and Unfolds . 14

2.3.4 List-Homomorphisms . 19

3 Constructing a List-Homomorphism 20

3.1 Sufficient Conditions for List-Homomorphism 20

3.2 The Steepness of a List . 23

3.3 Essential Properties of List-Homomorphism 27

3.4 Parallelization with Right Inverse . 30

3.5 Limitation . 34

4 The Duality of Third List-Homomorphism 36

4.1 Dualising the Third List-Homomorphism Theorem 36

4.2 Essential Properties of List-Unhomomorphism 38

4.3 Basic List Generating Functions . 42

1

4.4 Prefix Sum via List-Unhomomorphism 46

4.5 Discussion . 50

5 Conclusion 52

5.1 Contributions . 52

5.2 Future Work . 53

A Missing Proofs 58

A.1 Property (3.3) . 58

A.2 Properties (3.8), (3.9) and (3.10) . 59

A.3 Theorem 4.4.1 . 61

2

List of Figures

3.1 List-Homomorphism Diagram . 29

4.1 List-Unhomomorphism Diagram . 39

3

Chapter 1

Introduction

Since the rising of multi-core processing, cloud computing and machine learning,

program parallelisation has became an important and necessary technique. There

are at least two scenarios where we need the benefits of parallelisation. Firstly

programmers nowadays confront a world with a huge amount of data. A typical

sequential algorithm is no longer satisfied our needs on computation since it is

usually inefficient when input data is too large. Secondly multi-core computers

and distributed systems become more and more common. Developing a program

to execute on a multi-core or distributed system will be an essential skill for a

programmer.

The well-known divide-and-conquer paradigm provides many benefits and one

of the most important advantage is the potential for parallelisation. The main idea

of divide-and-conquer is to split a problem into several sub-problems, and then

recursively solve these sub-problems. For example, function h, which takes a list zs

as input and returns b as result, could be written as a divide-and-conquer algorithm

if we can somehow split zs into two sub-lists, xs and ys such that the result b could

still be obtained by combining h xs and h ys .

This thesis reveals a new parallelisation framework based on homomorphism

[3] which matches the divide-and-conquer paradigm [9]. Moreover, our approach

provides not only a way to construct parallel program from specification but also

the proof of correctness of parallelization.

4

1.1 Correctness

Plenty of programmers are used to heuristically design and develop program spec-

ifications in their own mind before they actually implement an algorithm. Once

a program is implemented, programmers will perform extensive testing to verify

whether the program’s behavior matches its specification. After a program passes

all of its testing, programmers claim that their program would not go wrong. This

approach do reveal many bugs if the specification was designed correctly. However,

just as Edsger W. Dijkstra said in 1969: “Program testing can be used to show

the presence of bugs, but never to show their absence!” There always exists some

unexpected cases because testing can not be exhaustive.

An alternative approach is the formal program construction [4, 12], that guaran-

tees correctness by modeling a specification as a mathematical structure and then

constructing an implementation from it by performing mathematical manipulations.

The whole construction process must follow mathematical principles and properties

to ensure the consistency between a specification and its implementation. In other

words, formal program construction provides not only the way to “calculate” a pro-

gram specification to its efficient implementation but also the proof of correctness.

In this thesis we would like to discuss a methodology for constructing parallel

program and providing its correctness proof as well. To do so, we will use (purely)

functional programming languages [2, 11] to represent mathematical structures and

therefore one can apply program derivation.

1.2 Parallelisation

To understand the main idea of the method we propose, considering the well-known

algorithm paradigm – divide-and-conquer, a technique to solve problems by splitting

a problem into several smaller sub-problems. For example, mergesort is a typical

5

parallel algorithm in divide-and-conquer paradigm,

mergesort [] = []
mergesort [a] = [a]
mergesort as = xs ‘merge‘ ys where

n = (length as) div 2

xs =mergesort (take n as)
ys =mergesort (drop n as) ,

where merge merges two sorted lists into one.

Although the divide-and-conquer paradigm is powerful framework for solving

complicated problems in parallel, there is no explicit explanations of how to pre-

cisely develop or implement a parallel algorithm. In fact, development of parallel

algorithms is often an ad-hoc process. One usually has to create parallel algorithms

case by case. That developing process could be painful yet still leads us to a wrong

end.

The way to go, in stead of directly writing a parallel program with human mind,

we model the divide-and-conquer paradigm with mathematical structures, which

provide several helpful mathematical theorems and properties. Then we develop

syntactic construction methods that allow us to calculate (or derive) a definition of

parallel program from its specification by using arithmetical and algebraic methods

only. In other words, one may have an efficient parallel program by using purely

mathematical manipulations rather than relying on problem oriented understanding.

In this thesis, we pick the well-known homomorphism as that mathematical struc-

ture. Taking lists as an example, function h is a list-homomorphism if for any lists

xs and ys there exists an (⊕) such that

h (xs ++ ys) = (h xs)⊕ (h ys) (1.1)

holds. In fact, in this thesis we focus only on lists for two reasons. Firstly, as we

mentioned, one of the biggest challenge for nowadays programmers is gathering in-

formation from considerable data. Which means, it will be very common to develop

a parallel program for generating or consuming lists. Secondly, from the viewpoint

6

of recursive data structure, a list-based method is relatively easier to be developed.

Besides, a list-based method also has potential to be generalised to another method

which can handle some more complicated recursive data structures.

Back to the list-homomorphism, the problem is how could we know there exists

an (⊕) such that h could be written in terms of a list homomorphism? If so, how

could we construct that (⊕)? One of the possible ways is to take the advantage

of the third list homomorphism theorem [8], which says that there must exist an

operator (⊕) such that the equation above holds if h can be evaluated rightwards

and leftwards. The third list-homomorphism theorem provides the existence of (⊕),
yet without its definition. Therefore, the challenge we are facing is, how does one

develop or construct a definiton of (⊕)? The answer is to be revealed in this thesis.

1.3 Background

In the late 90’s, much effort has been made to find a systemic way of constructing

a parallel program in terms of homomorphism. Gibbons [8] formalised and seman-

tically proved the third list-homomorphism theorem followed by showing how to

improve a sorting algorithm. This shows an opportunity of constructing a homo-

morphism with help of the third list–homomorphism theorem. Another attempt of

constructing homomorphism was taking advantage of almost homomorphisms. An

almost homomorphism is a non-homomorphic function which can be written either

leftwards (i.e. as a foldr) or rightwards (i.e. as a foldl), after being tupled with sev-

eral functions, each of which provides necessary information such that the almost

homomorphism itself can be written as a homomorphism. Hu et al. [10] proposed

a way to construct a list-homomorphism by fusion with almost homomorphisms.

Gorlatch [9] proposed an extraction method, called CS-method, to extract a defini-

tion of homomorphism by generalising two sequential representations, namely foldr

and foldl . Following the result of previous work, Geser and Gorlatch [7] applied

term rewriting techniques to systematically extract homomorphism from a pair of

sequential representations.

After then, the idea of constructing homomorphism with the third list-homomorphism

theorem has received more attention. Morita et al. [18] proposed to automatically

7

construct an (⊕) by picking some right weak inverse h−1 and refining the equation

(⊕) = h (h−1 s ++ h−1 t). On the other hand, the third list-homomorphsim theo-

rem, after minor modifications, was also shown to be workable on other polynomial

structures. Taking binary tree as an example, those two sequential representations

are no longer leftwards and rightwards. Instead, a function can be written as a

tree-homomorphism if it can be computed downwards and upwards. Based on that

concept, Morihata et al. [17] developed a method for constructing parallel programs

on trees. To discover more details of the third list-homomorphism theorem, Mu and

Morihata [19] applied relational formalism to formalise the third list-homomorphism

theorem and, with the concept of right weak inverse, developed several necessary

and sufficient conditions. With those results, they also developed a dual theorem

discussing functions that generate lists, rather than consuming lists.

As mentioned above, the right-weak-inverse approach has been take by many

previous works. However, coming up with a proper h−1 is not an easy task. Chi and

Mu [5] observed that the steps of proving h can be written as foldr and foldl , and

the steps of proving h is a list-homomorphism are very similar. From there, they

developed a syntactical method to construct a (⊕) from the proof of h can be foldr

and foldl .

Morihata [16] applied shortcut deforestation to prove a meta-theorem of the

third list-homomorphism theorem. Additionally, following the formalization in [19],

namely using relations to formalise and prove, the result can generalised to anamor-

phisms (unfolds) and hylomorhpisms.

Based on the previous works mentioned above, we have more and more under-

standing of list-homomorphisms. Some people may start to wonder the practicabil-

ity of list-homomorphism. Liu, Hu and Matsuzaki [15] proposed and implemented

a homomorphism-based framework for systematic parallel programming with the

well-known MapReduce. That framework can derive an efficient parallel algorithm

as a list-homomorphism if it is already known as satisfiying the requirements of

the third list-homomorphism theorem. Since the requirements are still required to

be satisfied, Emoto, Fischer and Hu [6] proposed a calculation-based framework,

named generate-test-and-aggregate (GTA for short), by integrating the generate-

and-test programing paradigm and semiring fusion theorem. That GTA framework

8

allows programmers to systematically synthesize efficient MapReduce programs. To

put GTA to practical use, Liu, Emoto and Hu [14] implemented this programming

model to work with Scala, Spark or Hadoop.

Excepting to apply list-homomorphism on parallel programming models such

as MapReduce, some researchs also tried to design a notion of homomorphism to

formalise structured models of parallelism. Legaux et al. [13] proposed and imple-

mented the BSP homomorphsim dedicated to bulk synchronous parallelism.

1.4 Outline

The necessary theoretical concepts and technical programming knowledge will be

introduced in Chapter 2 together with some necessary mathematical foundation.

We then will show two possible ways for developing a parallel program from it

specification if those corresponding requirements can be satisfied in Chapter 3. For

each method, we will also demonstrate how to come up with a parallel program with

examples. After introducing the way to build parallel program which folds a list into

a value, we will also show the way to construct a parallel program for expending a

list from a value in Chapter 4. In the end of this chapter, three examples will be

given. Finally we will give a brief summary and discuss some interesting issues for

future works in Chapter 5.

9

Chapter 2

Preliminaries

In this chapter, we will give mathematical background and a theoretical setting in

Section 2.1. In Section 2.2 we will explain the way of formal program construction.

Finally, we will also introduce those necessary programming technology in Section

2.3.

2.1 Mathematical Background

We assume a set-theoretical model for functional programming. All functions in this

thesis are total, every element in domain is mapped to some element in range, and

simple, every element in domain is mapped to only one element in range.

A function (○) is called functional composition if, given functions f ∶∶A→ B and

g ∶∶B → C, g ○ f returns a function with type as A → C such that for all x ∶∶A, we
have

(g ○ f) x = g (f x) .
Given a function f ∶∶A→ B, a function f−1 ∶∶B → A is called right weak inverse,

if for all y in the range of f , we have f(f−1 y) = y. In set-theoretical model, a right

weak inverse must exist but may not be unique. In this thesis, we use an equivalent

equation,

f = f ○ f−1 ○ f ,

instead of the original one.

In set-theoretical model, a relation R ∶∶ A → B is a set of pair, where, for all

10

x ∈ A ∧ y ∈ B, we have (x, y) ∈ R. In this thesis, however, we will deal with a

situation where both of domain and range are a set of pair already. Therefore, we

want an alternative representation to make it more friendly to human. Let relation

R be defined as above, we introduce the operator (↜):
y ↜ R x ≡ (x, y) ∈ R .

Additionally, because we will show some diagram in this thesis, based on (↜), we
also define that the following snaky arrow,

Rx y ,

which will be used in Figure 3.1 and Figure 4.1, to represent y ↜ R x in diagram.

For relation, one can also define the relational composition by

z ↜ (S ○R) x ≡ ∃y . z ↜ S y ∧ y ↜ R x .

As one could notice, we use the very same notation to indicate both compositions

since the functional composition is actually a special case of relational composition.

Given a relation R ∶∶A→ B, its converse R○ ∶∶B → A is defined by

x↜ R○ y ≡ y ↜ R x .

Plus, we have R ○R○ ○R = R since R and R○ are total.

2.2 Program Derivation

As we mentioned in Section 1.1, instead of developing program then verifying it

against its specification, we use formal program construction as our developing

method in this thesis. In formal program construction, one models specifications

by formal representations, usually mathematical structures like algebra [4] or logic

[1], then a program (or a function definition) can be constructed from that specifi-

cation by applying some mathematical properties somehow. In general, there are

several ways to construct a program from its specification.

11

Among the many approaches to construct a program, we will use a framework

named program derivation as our developing approach. As its name implies, con-

structing a program with program derivation means that, given a formal spesifica-

tion, a program can be derived from it by applying mathematical operations and

properties, which guarantee that each step in derivation will be mathematical cor-

rect. More precisely, in this thesis we will use algebraic program derivation – we

model our specification with algebraic structures and derive a program from it by

applying algebraic manipulations.

Usually, a specification is written by a sequence of composition of functions.

But, here is the thing, functions we talk about here are all deterministic because,

for all input, a function returns only one corresponding result. On the other hand, a

relation can be used to present a non-deterministic program since a relation relates

any element in its domain into more then one elements in its range. Therefore, let’s

introduce the relational program derivation that allows us to write a specification

in terms of relations and then derive, or say, refine, it into some properties or

requirements that one can construct a deterministic program, namely a function

definition, from.

2.3 Functional Programming

Functional programming is a very powerful programming paradigm. The most im-

portant feature of functional programming is that it provides capability to capture

or describe mathematical properties of programs. In functional world, it is easier

for programmers to focus on the nature of the problem we want to solve by com-

puter rather than some implement issues. That is, with functional languages and

functional programming techniques, less efforts in issues irrelevant to the problem

will be required; hence programmers can build or even realise complex programs

well. Please notice that, since we assume a set-theoretical model and all functions

are total and simple, when we say functional programming, we actually mean total

functional programming.

12

2.3.1 Programming with Functions

Programming with a functional language means that programmer will use func-

tions as first-class objects. To manipulate functions as atoms, some techniques are

required.

Functional composition is the same thing as in mathematics and provides us a

way to sequentially combine two functions. However, sometimes one may need to

combine two functions parallelly. Therefore, given function f ∶∶A→ B and g ∶∶A→ C,

the function (f, g) ∶∶A→ (B,C) is defined by

(f, g) x ≡ (f x, g x)
for all x ∶∶A. This composition requires that the domain of both functions must be

the same. For the case two different domains, we can define another kind of parallel

composition. Given h ∶∶A→ B and k ∶∶C →D, the function (h×k) ∶∶(A,C)→ (B,D)
is defined by

(h × k) (x, y) ≡ (h x, k y)
for all x ∶∶ A and y ∶∶ C. Interestingly, one can distribute (○) over (×). That is, we

have

(f × g) ○ (h × k) = (f ○ h × g ○ k) ,
which is a very useful property in program derivation. Those compositions let us

construct a complex program by combining several different functions, or, conversely

we can divide the given program into several subproblems each of which can be solved

by a simple function.

2.3.2 Linear Structures

One of the well-known essential data structure in programming is the linear data

structure – list. We use [] and, for example, [x0, x1, x2, ...], for presenting such

abstract list. Ideally a list should be nothing but a sequence of elements. However

when one actually try to build a list, it will be a sequence of connection and suddenly

the ordering of connections does matter. For example, list [1,2,3] may be built in

several ways: one can start by “connecting” 2 to the right-hand side of 1 followed by

13

“connecting” 3 to their right end; or, start with 2 and “connect” 1 to its left-hand-

side followed by “connecting” 3 to the right-hand-side of [1,2]. Even though there

are several different ways to build a list, in this thesis we only require and hence

introduce the most common two types of list, cons-list and snoc-list.

A list is called cons-list if it is constructed leftwards. The structure cons-list can

be defined by:

data [a]c = []c
∣ a ≺ [a]c.

On the other hands, a snoc-list is constructed rightwards as:

data [a]s = []s
∣ [a]s ≻ a.

Sometimes it does not matter which kinds of list we are using since cons-list and

snoc-list are isomorphic – there must exists two functions such that we can convert

a cons-list from/to a snoc-list. In fact, for some list-related problems, it could be

solved easily with both of cons-list or snoc-list. For example, it does not matter that

the summation of a list is processed leftwards or rightwards. But most of times it

would be easier to solve a problem only with either cons-list or snoc-list.

2.3.3 Folds and Unfolds

In this section we will introduce several fundamental concepts such as folds, unfolds

and their fusion theorems.

Folds

A function is a fold if it “folds” a list into a value. Like the ways one can construct

a list, there are planty of possibilities to fold a list. The simplest and most typical

way is folding a list along its constructing direction. That is, since there are two

implementations of list in practice, we may have two corresponding folding methods.

In the following paragraphs, we will introduce the distinguished foldr , corresponding

to cons-list, and the foldl , corresponding to snoc-list.

14

Given ec ∶∶ b and (⊲) ∶∶ a → b → b, the following equations have a unique solution

for f ∶∶ [a]→ b which is denoted foldr (⊲) ec:
f []c = ec

f (x ≺ xs) = x ⊲ (f xs).
Such f takes a list as input and maintains the structure of elements but replaces

constructor []c and (≺) respectively by ec and (⊲). For example, x0 ≺ (x1 ≺ []c)
becomes x0 ⊲ (x1 ⊲ ec). On the other hand, for snoc-list, the following equations

have an unique solution for f ∶∶ [a]→ b which is denoted foldl (⊳) es:
f []s = es

f (ys ≻ y) = (f ys) ⊳ y.

where es ∶∶ b and (⊲) ∶∶ b→ a→ b.

As an example of defining folds, to sum up a list of numbers, one can define a

function sum for cons-list as foldr (+) 0; or, for snoc-list as foldl (+) 0. Both of

them are workable, e.g. given a list [3,5,7], we have its summation 15 by calculating

either

sum (3 ≺ (5 ≺ (7 ≺ []c)))
= foldr (+) 0 (3 ≺ (5 ≺ (7 ≺ []c)))
= (3 + (5 + (7 + 0))) = 15,

or

sum ((([]s ≻ 3) ≻ 5) ≻ 7)
= foldl (+) 0 ((([]s ≻ 3) ≻ 5) ≻ 7)
= (((0 + 3) + 5) + 7) = 15.

Unfortunately, we do not always as lucky as above example, sometimes a function

can be defined only in terms of either one of foldr and foldl . A function f is bi-

foldable if it can be folded leftwards and rightwards. That is, given a bi-foldable

15

function f , there must exists (⊲), (⊳) and e such that

f = foldr (⊲) e = foldl (⊳) e .
Unfolds

Another well-known process in functional programming is unfold . An unfold takes

a value, called its seed, and expands a list from that seed. Since there are two ways

to construct a list, we have two implementations for unfold, namely unfoldr and

unfoldl , as follows,

unfoldr ∶∶ (a→ (b, a))→ (a→ Bool)→ a→ [b]
unfoldr g⊲ p s = if p s then []c else x ≺ unfoldr g⊲ p t

where (x, t) = g⊲s ;
unfoldl ∶∶ (a→ (a, b))→ (a→ Bool)→ a→ [b]
unfoldl g⊲ p s = if p s then []s else unfoldl g⊳ p t ≻ y

where (t, y) = g⊳s ,
where functions g⊲ and g⊳ generate a value and a new seed from an old seed, and

predicate p specifies the terminal condition of unfolding. An unfold is coinductive

and hence could generate list with infinite length. In this thesis, we demand that

our unfoldr and unfoldl generates inductive finite list instead. That it, all successive

applications of seed-generating function eventually reaches some seed so that the

terminal condition can be satisfied. There are two reasons for this restriction. The

first reason will be explained in next paragraph and the other one will be mentioned

later in Section 4.1.

Given a list generating function k, it is bi-unfoldable if there exists g⊲, g⊳ and

predicate p such that

k = unfoldr g⊲ p = unfoldl g⊲ p .
That a function is bi-unfoldable means that any list it returns must have both a

left-end and a right-end. In chapter 4, the bi-unfoldability is an essential and widely-

used property and therefore it becomes the first reason why we restrict our unfolds

to return finite lists.

16

Fusion Theorems

There are plenty of properties and theorems regarding fold that can help us to

construct or develop efficient programs. One of the most useful theorems is the

well-known fold-fusion theorem, which gives conditions under which a function f

can be fused into a fold. Technically, one can specify fold-fusion for different list

implementations such as cons-list and snoc-list, and thus we have a foldr -fusion the-

orem and a foldl -fusion theorem. In this thesis, the reader only needs to understand

the foldr -fusion theorem, so in this section we will introduce this one only.

Theorem 2.3.1. [Foldr-Fusion] Given f = foldr (⊲) e, for a function g there must

exists a (&) such that

g ○ f = foldr (&) (g e)
if we have

g (x ⊲ z) = x & (g z) .
It can be easily proved by an induction on the input list. The base case trivially

holds. For inductive case, we have,

g(foldr (⊲) e (x ≺ xs))
= { definition of foldr }

g(x ⊲ (foldr (⊲) e xs))
= { g (x ⊲ z) = x & (g z) }
x & (g(foldr (⊲) e xs))
= { induction }

x & (foldr (&) (g e) xs)
= { definition of foldr , backwards }

foldr (&) (g e) (x ≺ xs) .
For unfold there are also some fusion theorems. In this thesis we will use only

the most basic one - map-unfold-fusion theorem. Again, for unfoldr and unfoldl we

will have map-unfoldr-fusion theorem and map-unfoldl-fusion theorem as follows,

17

Theorem 2.3.2. [Map-Unfoldr-Fusion] Given k = unfoldr g⊲ p, for a function f

there must exists a h⊲ such that

map f ○ k = unfoldr h⊲ p

if we have

h⊲ = (f × id) ○ g⊲ .
Theorem 2.3.3. [Map-Unfoldl-Fusion] Given k = unfoldl g⊳ p, for a function f there

must exists a h⊳ such that

map f ○ k = unfoldl h⊳ p
if we have

h⊳ = (id × f) ○ g⊳ .
The two theorems above have very similar proofs therefore we show only the

proof of map-unfoldr-fusion theorem, which can be proved by an induction on the

applications of seed-generating. The base case, p s is true for some s, is trivially

holds. The inductive case, for any seed s we reason,

map f (unfoldr g⊲ p s)
= { let (x, t) = g⊲ s }

map f (x ≺ (unfoldr g⊲ p t))
= { definition of map }

f x ≺ (map f (unfoldr g⊲ p t))
= { induction }

f x ≺ (unfoldr h⊲ p t)
= { (f x, t) = (f × id) ○ g⊲ s = h⊲ s }

unfoldr h⊲ p s .

18

2.3.4 List-Homomorphisms

A function h is a list-homomorphism if there exists a function (⊕) such that for any

lists xs and ys

h (xs ++ ys) = (h xs)⊕ (h ys)
can be satisfied. List-homomorphism provides great potential of parallelisation: to

compute h, one may arbitrarily split the input list into two sub-lists, recursively

compute them, and combine the result via (⊕).
But obviously, not every functions on list can be written as a list-homomorphism.

It is important to find the requirements for a function to be a list-homomorphism.

The well-known third list-homomorphism theorem [8] shows the very requirement we

need.

Theorem 2.3.4. [Third List Homomorphism] Given a bi-foldable function h, there

must exists an (⊕) such that h is a list-homomorphism. That is, for all xs and ys

there must exists an (⊕) such that

h (xs ++ ys) = (h xs)⊕ (h ys)
if for some some (⊲), (⊳) and e we have

h = foldr (⊲) e = foldl (⊳) e

19

Chapter 3

Constructing a

List-Homomorphism

The third list-homomorphism theorem provides an opportunity to construct a par-

allel program on lists if it could be specified in both foldr and foldl . A tradi-

tional challenge is finding a mechanical method to take advantage of the third list-

homomorphism theorem to construct operator (⊕) for a given function h such that

h can be written as a parallel program.

In following sections, we start with developing sufficient conditions for existence

of (⊕) by introducing the second duality theorem. Then we will apply some tech-

niques, such as inverse function and generalised fold, to form essential properties

of list-homomorphism, hoping these two different properties can lead us to clearer

ways of constructing proper (⊕).

3.1 Sufficient Conditions for List-Homomorphism

As one may notice, given h = foldr (⊲) e = foldl (⊳) e, the (⊕) is a generalised result

of both of (⊲) and (⊳). One effective method to construct a (⊕) is synthesising a

proper (⊕) from the definitions of (⊲) and (⊳) [7, 9]. This attempt, however, may

take plenty of efforts, yet generate no useful result. In this section we try to develop

sufficient conditions for bi-foldability and hope these conditions can show us some

clues to find (⊕) with less efforts.

Given (⊲), (⊳) and e, function h = foldr (⊲) e is bi-foldable if we can show

20

that h (ys ≻ z) = foldl (⊳) e (ys ≻ z), which can be written in point-free style as

h ○ (≻ z) = (⊳ z) ○ h. Therefore, to show h is truly bi-foldable, we reason that

h ○ (≻ z)
= { foldr -fusion, since (≻ z) = foldr (≺) [z] }
foldr (⊲) (h [z])
= { foldr -fusion, backwards }

(⊳ z) ○ foldr (⊲) e
= { h = foldr (⊲) e }

(⊳ z) ○ h ,

where two foldr -fusions are required. Fusion conditions in the first foldr -fusion

trivially holds. The second fusion, on the other hand, requires

h [z] = (⊳ z) e ∧ (⊳ z) (x ⊲ y) = x ⊲ ((⊳ z) y)
as its fusion-conditions and thus leads us to the second duality theorem[2, Pages

128].

Theorem 3.1.1. [Second Duality Theorem] Given (⊲), (⊳) and e, foldr (⊲) e =
foldl (⊳) e for all finite input lists if, for all x, y and z, we have

z ⊲ e = e ⊳ z ∧ x ⊲ (y ⊳ z) = (x ⊲ y) ⊳ z . (3.1)

Now considering that, given h = foldr (⊲) e = foldl (⊳) e, our goal is to come

up with an (⊕) such that h can be defined as a list-homomorphism. We now try

to find out what properties (⊕) must satisfy and hope those properties can show

us the way to construct (⊕). Starting with the definition of list-homomorphism,

h (xs++ys) = h xs⊕ h ys , which can also be written point-free as h ○(++ys) = (⊕ys)○h,

21

one could easily have the following derivation,

h ○ (++ys)
= { foldr -fusion, since (++ys) = foldr (≺) ys }

foldr (⊲) (h ys)
= { foldr -fusion, backwards; see below }

(⊕ ys) ○ foldr (⊲) e
= { assumption: h = foldr (⊲) e }

(⊕ ys) ○ h .

Again, fusion conditions in the first fusion trivially holds. For the second fusion, the

fusion-conditions

h ys = e⊕ (h ys) ∧ (x ⊲ y)⊕ (h ys) = x ⊲ (y ⊕ (h ys)) (3.2)

must be satisfied. That is, (3.2) is the essential property we desire.

Constructing an (⊕) So far we know that, given h is bi-foldable for (⊲), (⊳) and
e, there are several useful facts. Firstly, there must exists a correctness proof for

(3.1) which involves the definition of (⊳). Secondly, by Theorem 2.3.4, there also

exists an (⊕) such that h can be defined as a list-homomorphism. That is, there

also exists a correctness proof for (3.2), where we can find a definition of (⊕) from.

Finally, since (⊳) is a special case of (⊕), it’s not hard to see that the proof (3.2)

can be generalised from the proof (3.1). Therefore, the way to go, one can construct

a proof of (3.2) by transforming the proof of (3.1), which should be provided for

showing bi-foldability anyway, with a candidate definition of (⊕). More precisely,

to construct a correctness proof of (3.2), one can firstly replace each occurrences of

the out-most element in the definition of (⊳) by some meta-variables and thus has a

candidate definition of (⊕). Then, copy the steps in the proof of (3.1) and substitute

each occurrences of (⊳) by the meta-variable-filled definition of (⊕). As result, one
will obtain a meta-variable-filled correctness proof of (3.2). Those meta-variables

could be refined and determined by verifying other related properties. In the end, a

22

definition of (⊕) together with its correctness proof can thus be constructed.

3.2 The Steepness of a List

As an example of constructing list-homomorphism, we look at a specific problem.

A list is steep if each number is larger than the sum of the numbers to its right. For

example, [20,10,4,2,1] is steep but not [20,6,4,2,1]. One can easily define steep as:

steep ∶∶ [Int]→ Bool

steep [] = True

steep (x ≺ xs) = x > sum xs ∧ steep xs .

Sadly this steep is neither a foldr nor a foldl because it drops all list-related

information and returns only a boolean value. But if one generalize steep a little bit

by making it return more than just a boolean value, it could be written as folds. To

be able to do so, we introduce capacity that is the maximum number which can be

attached on its right-end such that the list is still steep. The capacity of [15,8, 4],
for example, would be 3 which is the minimum of 15 − (8 + 4), 8 − 4 and 4. Let

(↓)1 returns the smaller number of its two arguments, one can easily construct a

definition as follows

cap ∶∶ [Int]→ Int

cap [] = ∞
cap (ys ≻ y) = (cap ys − y) ↓ y

to compute capacity for a list. It not hard to find out that a list is steep if its

capacity is greater than zero. In other words, the following property, its proof is left

to Appendix A.1,

steep xs = cap xs > 0 (3.3)

must be satisfied for any list xs . So, instead of parallelising steep, our goal now is

to construct a list-homomorphic definition for cap.

1In this thesis, we assume that (↓) has lower associativity than (+), (−), (∗), (/) and function
application.

23

To do so, we need to show that cap is bi-foldable. From the definition of cap

above, one can immediately have cap = foldl (λ c z → (c − z) ↓ z) ∞. For the foldr

part, however, one may write down

cap (x ≺ xs) = x − sum xs ↓ cap xs ,

which is almost a foldr but nevertheless not one. The reason of cap cannot be a

foldr is that, the sum xs part is necessary, which, however, is not providable by

foldr .

To solve this problem, one can simply use a technique named tupling that is a

method for generalising the given function by returning more. In this case, we tuple

cap together with sum and thus have capsum xs = (cap xs , sum xs) for any xs . That

is, from the attempting of writting cap as a foldr above, one can come up with

x ⊲ (c2, s2) = ((x − s2) ↓ c2, x + s2) ,
and thus have capsum = foldr (⊲) (∞,0). Additionally, since both of cap and sum

are foldl , capsum can also be written as foldl (⊳) (∞,0) where
(c1, s1) ⊳ z = ((c1 − z) ↓ z, s1 + z) .

Now, with (⊲) and (⊳), the bi-foldability of capsum can be proved by showing that

(3.1) can be satisfied. For base case, x ⊲ (∞,0) = (∞,0) ⊳ x trivially holds. To show

that (x ⊲ (c, s)) ⊳ y = x ⊲ ((c, s) ⊳ y) we reason:

24

Derivation 3.2.a.

(x ⊲ (c, s)) ⊳ z

= { definition of (⊲) }
((x − s) ↓ c, x + s) ⊳ z

= { definition of (⊳) }
((((x − s) ↓ c) − z) ↓ z, x + s + z
= { (−z) distributes over (↓) }
(((x − s − z) ↓ (c − z)) ↓ z, x + s + z)
= { arithmetics }

((x − (s + z)) ↓ ((c − z) ↓ z), x + s + z)
= { definition of (⊲) }
x ⊲ ((c − z) ↓ z, s + z)
= { definition of (⊳) }
x ⊲ ((c, s) ⊳ z) .

In conclusion, although we failed on showing one of steep or cap could be bi-

foldable, we do know that their generalised function, capsum, is bi-foldable. There-

fore, our goal now is to construct a definition of (⊕), which must exist by Theorem

2.3.4, such that capsum can be written in terms of list-homomorphism.

Constructing a (⊕)
As mentioned in Section 3.1, since (⊳) is a special case of (⊕), a generalized candidate

definition of (⊕) can be created by replacing all occurrences of z in the definition of

(⊳) by meta-variables as follow,

(c, s)⊕ (c2, s2) = ((c −X1) ↓X2, s +X3) , (3.4)

which must satisfy (3.2) as well.

To refine a definition of (⊕) from (3.4), one may start with manipulating the

inductive case. The derivation of (x ⊲ y) ⊕ (c2, s2) = x ⊲ (y ⊕ (c2, s2)) should

25

contain the same derivation skeleton as Derivation 3.2.a. Therefore we copy steps

in Derivation 3.2.a and replace (⊳) by (⊕):
(x ⊲ (c, s))⊕ (c2, s2)
= { definition of (⊲) }
((x − s) ↓ c, x + s)⊕ (c2, s2)
= { definition of (⊕) }
((((x − s) ↓ c) −X1) ↓X2, x + s +X3

= { (−X1) distributes over (↓) }
(((x − s −X1) ↓ (c −X1)) ↓X2, x + s +X3)
= { arithmetics }

((x − (s +X1)) ↓ ((c −X1) ↓X2), x + s +X3)
In the next step, we would like to fold back the definition of (⊲), which requires

s +X1 = s +X3, which can be satisfied by unifying x1 and x3.

((x − (s +X1)) ↓ ((c −X1) ↓X2), x + s +X1)
= { definition of (⊲) }
x ⊲ ((c −X1) ↓X2, s +X1)
= { definition of (⊕) }
x ⊲ ((c, s)⊕ (c2, s2))

From the derivation, it can be inferred that (⊕) must have the following form:

(c, s)⊕ (c2, s2) = ((c −X1) ↓X2, s +X1)
for some X1 and X2. This (⊕) have to satisfy the base case of (3.2), namely (c2, s2) =

26

(∞,0)⊕ (c2, s2), as well. We reason:

(∞,0)⊕ (c2, s2)
= { definition of (⊕) }
((∞−X1) ↓X2,0 +X1)
= { an obvious choice would be X2 = c2 and X1 = s2 }

((∞− s2) ↓ c2,0 + s2)
= { arithmetics }

(c2, s2)
In the end we have our definition of (⊕) as (c, s)⊕ (c2, s2) = ((c− s2) ↓ c2, s+ s2).

This (⊕) has got to be correct because we have the proof already.

3.3 Essential Properties of List-Homomorphism

Synthesizing an (⊕) with help of the second duality theorem is a very applicable

solution, however, it is also an ad-hoc method. In other words, a proof of (3.1),

which may not easy to come up with, must be provided case by case. In this section

we will try another angle - developing an essential property for (⊕) by applying

resumable fold and inverse function, hoping that such essential property can also

show us some useful hint to construct (⊕).
The aim is to compute h (xs++ys). If h ys has been computed, we wish that there

exists a function f⊲ such that h (xs ++ ys) = f⊲ (xs , h ys). There may exist several

such functions, e.g. (⊕) ○ (h × id), can serve the role as the f⊲. If h = foldr (⊲) e, f⊲
can be defined as the following function

foldrr ∶∶ ((a × b)→ b)→ ([a], b)→ b

foldrr (⊲) ([], e) = e

foldrr (⊲) (x ≺ xs , e) = x ⊲ (foldrr (⊲) (xs , e)) ,
we thus have h (xs ++ ys) = foldrr (⊲) (xs , h ys) that, with cat as the uncurried (++),

27

can be presented in point-free style as

h ○ cat = foldrr (⊲) ○ (id × h) . (3.5)

Function foldrr is a variantion of foldr . It replaces each constructor in xs by (⊲) and
takes the pre-computed part, h ys , as its base case. Operationally one can image that

function foldrr , a resumable foldr , can resume the process of a paused-in-the-middle

h.

On the other hand, if h xs has been computed first, we wish to define f⊳ such

that h (xs ++ ys) = f⊳ (h xs , ys). Given that h = foldl (⊳) e, mimicking the pausing-

resuming idea above, one can define f⊳ as a resumalbe foldl :

foldlr ∶∶ ((b × a)→ b)→ (b, [a])→ b

foldlr (⊳) (e, []) = e

foldlr (⊳) (e, ys ≻ y) = (foldlr (⊳) (e, ys)) ⊳ y ,

and thus have

h ○ cat = foldlr (⊳) ○ (h × id) . (3.6)

Let h = foldr (⊲) e = foldl (⊳) e, we have (3.5), (3.6) and, by Theorem 2.3.4,

there must exists an (⊕) such that h can be defined as a list-homomorphism. In

other words, for that h we also know that

h ○ cat = (⊕) ○ (h × h) . (3.7)

Moreover, given (zs , s) such that zs = xs ++ ys ∧ h zs = s for some xs and ys , all

properties we discussed above can be summed up as the following diagram,

Calculating (⊕)
To come up with a definition of that (⊕), another key concept required here is to

use right inverse to expand h. Defining h−1 as a right inverse of h if for all z we have

h (h−1 z) = z, which is equivalent to h = h ○ h−1 ○ h. In set-theoretical model, a right

inverse must exist and may not be unique.

28

(xs , ys)

s

(xs , u) (t, ys)
(t, u)

zs

cat○cat

h

(id × h) (h × h) (h × id)

foldrr (⊲) (⊕) folder (⊳)

(h × id)
(id × h)

Figure 3.1: List-Homomorphism Diagram

Now let us try to develop a property for list-homomorphism. Starting from the

left-hand siede of (3.7), we reason:

29

Derivation 3.3.a.

h ○ cat

= { (3.5) }

foldrr (⊲) ○ (id × h)
= { h = h ○ h−1 ○ h; (a ○ b × f ○ g) = (a × f) ○ (b × g) }
foldrr (⊲) ○ (id × h) ○ (id × h−1) ○ (id × h)
= { (3.5) backwards, and (3.6) }

foldlr (⊳) ○ (h × id) ○ (id × h−1) ○ (id × h)
= { h = h ○ h−1 ○ h; (a ○ b × f ○ g) = (a × f) ○ (b × g) }
foldlr (⊳) ○ (h × id) ○ (h−1 × id) ○ (h × id) ○ (id × h−1) ○ (id × h)
= { (a ○ b × f ○ g) = (a × f) ○ (b × g) }
foldlr (⊳) ○ (h × id) ○ (h−1 × h−1) ○ (h × h)
= { (3.6) backwards }

h ○ cat ○ (h−1 × h−1) ○ (h × h) .
We thus have property h ○ cat = h ○ cat ○ (h−1 × h−1) ○ (h × h) = (⊕) ○ (h × h) and write

down a lemma as follows

Lemma 3.3.1. For a bi-foldable function h, let (⊕) = h ○ cat ○ (h−1 × h−1), we have

h ○ cat = (⊕) ○ (h × h) .
From now on, we know that, for a bi-foldable function h, there must exists an

(⊕) such that h can be written as a list-homomorphism and a (⊕) can be defined

as shown in Lemma 3.3.1 if a proper h−1 is picked.

3.4 Parallelization with Right Inverse

Chi and Mu [5] argued that, in practical, Lemma 3.3.1 may be not as that applicable

as one might image since, in many examples, we have failed to find any simple inverse

which can lead us to the definition of (⊕). But it turns out that it may not be that

30

unuseful. In fact, if one can generalise the target function with enough information,

the inverse function we need can often be defined by returning a smaller list which

has the same properties of the original input list. In this section we will show how to

find a definition of (⊕) with two examples. As the first example, we will show that

the steep problem can also be solved by applying this inverse method. Secondly we

will derive an (⊕) for computing the maximum prefix sum for a given list in parallel.

Steepness

As we described in Section 3.2, a list is steep if each number is larger than the sum

of the numbers to its right. Clearly steep can not be written as a fold because of the

lack of information. So we tuple function cap, which computes the bound of input

list, and function sum as an alternative specification of steep, namely steep ≡ (> 0) ○
fst ○capsum. Function capsum ∶∶ [Int]→ (Int , Int) can be defined by foldr (⊲) (∞,0)
and foldl (⊳) (∞,0) where

x ⊲ (c2, s2) = ((x − s2) ↓ c2, x + s2) ,
(c1, s1) ⊳ z = ((c1 − z) ↓ z, s1 + z) .

To pick an inverse for capsum, one can assume the inverse function will always

return a list with two elements and the cap is decided by the difference between these

two elements. That is, one may pick the inverse function as capsum−1(c, s) = [a, b]

31

where a = s+c
2 and b = s−c

2
2. Now, from lemma 3.3.1 we reason:

(c1, s1)⊕ (c2, s2)
= { lemma 3.3.1 }

capsum (capsum−1 (c1, s1) ++ capsum−1 (c2, s2))
= { let (a1, b1) = (s1+c12 , s1−c12) and (a2, b2) = (s2+c22 , s2−c22) }
capsum [a1, b1, a2, b2]
= { let z ≺ zs = [a1, b1, a2, b2]; capsum as a foldr }

a1 ⊲ (capsum zs)
= { let (c, s) = capsum zs ; definition of (⊲) }
((a1 − s) ↓ c, a1 + s)

For deriving further, one may want to directly expend s and c by their definition.

But that will lead us to a very tricky derivation which is not the point here. So,

instead of just expending s and c, we use three properties below to help us to

continue our derivation.

s = s1 + s2 − a1 , (3.8)

(a1 − s) = (c1 − s2) , (3.9)

(c1 − s2) ↓ c = (c1 − s2) ↓ c2 . (3.10)

Proving the properties above is relatively less important here so we leave it to

2Please notice that, to solve capsum−1(c, s) = [a, b] for some (a, b), taking (a, b) = (s+c2 , s−c2) is
not the only solution. In fact, this inverse function is designed under an assumption that c = a− b.
If one takes another assumption, namely c = b, then we have another definition of inverse function
by taking (a, b) = (s− c, c). This second solution will lead us to the very same (⊕) as the first one.

32

Appendix A.2. Now, one can continue the derivation as,

((a1 − s) ↓ c, a1 + s)
= { by (3.8), (3.9) and (3.10) }

((c1 − s2) ↓ c2, a1 + (s1 + s2 − a1))
= { arithmetic }

((c1 − s2) ↓ c2, s1 + s2)
This is the very same definition of (⊕) we discovered in Section 3.2!

Maximum Prefix Sum

As the second example, considering a list of natural numbers, the maximum pre-

fix sum function, mps ∶∶ [Int] → Int , returns the biggest summation of each prefix

of it. Let (↑) returns the maximum of its two arguments and has the same asso-

ciativity as (↓), an example of mps could be mps [1,3,−5, 1,−2,8] = (mps []) ↑
(mps [1])↑(mps [1, 3])↑(mps [1, 3,−5])↑(mps [1,3,−5, 1])↑(mps [1, 3,−5,1,−2])↑
(mps [1, 3,−5,1,−2, 8]) = 0 ↑ 1 ↑ 4 ↑ −1 ↑ 0 ↑ −2 ↑ 6 = 6. This function can easily be

defined in terms of foldr , but not foldl . To overcome this problem, tupling sum

with mps is required. Let mpsum = (mps , sum), we have mpsum = foldr (⊲) (0,0) =
foldl (⊳) (0,0) where

x ⊲ (m,s) = (0 ↑ (x +m), x + s) ,
(m,s) ⊳ z = (m ↑ (s + z), s + z) .

Notice that mps returns at least 0 since every list has [] as one of its prefixes.

Assuming mpsum xs = (m,s) for list xs , we then know that m ≥ 0 and m ≥ s.

The aim now is to define (a, b) in terms of m and s such that mpsum [a, b] = (m,s).
Immediately, one can take b = s − a. And then, since mps [a, b] = 0 ↑ a ↑ s = m and

m ≥ 0 ∧m ≥ s, an obvious choice is taking a =m. As result, we can now define that

33

mpsum−1 (m,s) = [m,s −m], and then with Lemma 3.3.1 we derive,

(m1, s1)⊕ (m2, s2)
= { lemma 3.3.1 }

mpsum (mpsum−1 (m1, s1) ++mpsum−1 (m2, s2))
= { definition of capsum−1 }

mpsum [m1, s1 −m1,m2, s2 −m2]
= { let (m,s) =mpsum [s1 −m1,m2, s2 −m2]; mpsum as a foldr }

(0 ↑ (m1 +m),m1 + s)
= { mpsum as a foldr again }

(0 ↑ (m1 + (0 ↑ (s1 −m1 +m2))),m1 + s1 −m1 + s2)
= { (x+) distributes over (↑) }
(0 ↑m1 ↑ (m1 + s1 −m1 +m2),m1 + s1 −m1 + s2)
= { arithmetic }

(0 ↑m1 ↑ (s1 +m2), s1 + s2)
= { since m1 ≥ 0 }

(m1 ↑ (s1 +m2), s1 + s2)
Finally, we have a list-homomorphic definition ofmpsum with (⊕) defined by (m1, s1)⊕
(m2, s2) = (m1 ↑ (s1 +m2), s1 + s2).

3.5 Limitation

So far in this chapter we have introduced two approaches to construct a list-homomorphism.

On the one hand, with the sufficient conditions we developed in Section 3.1, one

can easily construct a well definition of (⊕) for list-homomorphism if a proof of

bi-foldability can be provided. On the other hand, with the essential property we

discovered in Section 3.3, an (⊕) can be simplified if a proper right inverse is chosen.

They both serve as good methods for constructing list-homomorphism with its cor-

rectness proof from a given function. However, both of them also have limitations.

First of all, both of methods in this chapter require the bi-foldability, namely,

34

both (⊲) and (⊳) are pre-defined and known. But, in most cases, only one of them

can easily be produced. The other one would be rather hard to define. For example,

the function mps we mentioned in last section can be easily defined in terms of foldr

but not foldl due to the lack of necessary information. In fact, the required efforts

in finding proper definition for both of (⊲) and (⊳) are often very considerable.

For the second approach, even if (⊲) and (⊳) are provided, one still need to

pick a proper right inverse. The tricky part is, as one can see in Section 3.4, where

capsum−1 and mpsum−1 are both designed, picking a right inverse may not be a

simple task. In fact, it usually requires us to take several attempts on designing the

very h−1 we need.

The bottomline is, although we are thirsty on a purely syntactical mechanism

to construct a list-homomorphism by using only algebraic manipulations. In the

end, it turns out those methods still require some semantical operation in different

degree.

35

Chapter 4

The Duality of Third

List-Homomorphism

As beautiful as the third list-homomorphism theorem is, considering the duality

between fold and unfold, one may naturally wonder whether there exists a dual

theorem? The answer is yes! In this chapter we will discuss a dual theorem and

how to derive it from Theorem 2.3.4 by using algebraic manipulations only.

4.1 Dualising the Third List-Homomorphism The-

orem

The third list-homomorphism theorem describes requirements of being a list-homomorphism.

Similarly, the dual theorem of third list-homomorphism theorem, if it exists, should

describe some requirements of being a parallel unfold. That is, before starting to

develop that dual theorem, we need to find out what a parallel unfold is by revealing

its most essential properties.

The very first difference between sequential unfold and parallel unfold is as fol-

lows. In sequential unfold, only one sub-list will be generated within each step, thus,

the seed-generating function will always spawn merely one single seed. In parallel

unfold, on the other hand, n sub-lists will be generated in each step, therefore the

seeds-generating function must returns n seeds in each step. In this thesis, we discuss

only the situation of n = 2 since properties for cases when n > 3 can be developed in

ways similar to that when n = 2.
36

Considering that we are looking for a dual theorem regarding list-homomorphism,

the parallel unfold must satisfy the “reversed” properties of list-homomorphism.

More precisely, it must satisfy the properties corresponding to the patterns in list-

homomorphism, namely empty-list, singleton-list and concatenation-of-two-sub-lists.

Let function g◇ be a two-seeds-generating function and gv is a value-generating

function. A list-generating function k is a list-unhomomorphism, denoted by k =
unhom g◇ gv p1 p2, if k satisfies:

k s ∣ p1 s = []
k s ∣ p2 s = [gv s]
k s ∣ (t, u)← g◇ s = k t ++ k u,

where the predicates p1 and p2 present terminal conditions corresponding to empty-

list case and singleton-list case respectively.

In this thesis, we view unfolding as the relational converse of folding, which is

the other reason why we restrict our unfoldr and unfoldl to return finite lists, and

a list-unhomomorphism is therefore the relational converse of a list-homomorphism.

In other words, for any unfolding function, we demand that successive applications

of its seed-generating functions eventually produce seeds which satisfy its terminal

condition. This restriction also makes list-unhomomorphism we discussed produce

only finite list and hence successive applications of g◇ will eventually produce seeds

which satisfy either p1 or p2.

Given a bi-unfoldable function k, namely k = unfoldr g⊲ p = unfoldl g⊳ p for some

g⊲, g⊳ and p. To establish a dual theorem of the third list-homomorphism theorem,

the aim is to show that k is a list-unhomomorphism as well. We need to find out

some proper g◇, p1 and p2 by using g⊲, g⊳ and p such that k = unhom g◇ p1 p2.

For predicates p1 and p2, a simple choice is to pick p1 = p, p2 = p ○ snd ○ g⊲ and

gv = fst ○g⊲. The real challenge here is to come up with a g◇. The way to go, instead

of directly proving the existence of g◇, we apply the same method in Section 3.3 to

develop essential properties of g◇, which, if satisfied, guarantees the existence of a

list-unhomomorphism.

37

4.2 Essential Properties of List-Unhomomorphism

Conceptually, in Section 3.3, we firstly fold a list by one kind of implementation of

folding, say foldr , then we stop that folding process in the middle and “switch” to

the other implementation, foldl , to finish the rest folding process. In that case, we

need a resumable fold such that the whole folding process can be finished. Following

this idea, we also want to pause an unfolding process in the middle and resume it

by another unfolding. To make this possible, a “pausable” unfolding is required.

Such pausable unfolding returns an intermediate list together with a seed. Taking

unfoldr as an example, the intermediate list should be a prefix of the final list and

the corresponding suffix should be able to be generated by the returned seed. Please

notice that a pausable unfolding is non-deterministic because an unfolding process

could be paused in any position. This is the place where the relational derivation

can help us.

Before we just jump into the definition of pausable unfolding, let’s get familiar

with relations by taking an exercise. Considering the following situation, given a

bi-unfoldable k and an initial seed s, there must exist a list zs = k s and, since our

goal is to parallelise k, we can arbitrarily cut zs into two lists, say xs and ys . We

can easily come up with the following property

(xs , ys)↜ (cat○ ○ k) s ≡ ∃zs .k s = zs ∧ xs ++ ys = zs .
This property is quite easy to understand and, in fact, is very helpful for under-

standing some properties we will introduce later.

Now, let’s define the pausable unfolding with relation! Given k = unfoldr g⊲ p, a

relation r⊲ is a pausable unfoldr , denoted by unfoldrp g⊲ p, if given s as an initial

seed we have

(xs , u)↜ r⊲ s ≡ (xs = [] ∧ s = u)
∨ (∃x, xs ′ . xs = x ≺ xs ′ ∧ (∃u′.¬p u′ ∧ g⊲ u′ = (x, u) ∧ (xs ′, u′)↜ r⊲ s)) .

That is, unfoldrp g⊲ p s relates s to a pair of xs , a prefix of k s, and a seed u, which

the corresponding suffix can be generated from. Symmetrically, for k = unfoldl g⊳ p

38

and s as an initial seed, a relation r⊳ is a pausable unfoldl , denoted by unfoldlp g⊳ p,

if

(t, ys)↜ r⊳ s ≡ (ys = [] ∧ s = t)
∨ (∃ys ′, y . ys = ys ′ ≻ y ∧ (∃t′.¬p t′ ∧ g⊳ t′ = (t, y) ∧ (t′, ys ′)↜ r⊳ s)) .

That is, unfoldlp g⊳ p s relates s to a pair of ys , a suffix of k s, and a seed t, which

the corresponding prefix can be generated from.

Based on these two definitions above and given k = unfoldr g⊲ p = unfoldl g⊳ p,
one can immediately have the following equations,

cat○ ○ k = (id × k) ○ unfoldrp g⊲ p ; (4.1)

cat○ ○ k = (k × id) ○ unfoldlp g⊳ p , (4.2)

by applying k to seed t and u. The commutative diagram shown in Figure 4.1 can

help us to get an intuition of properties above.

(xs , ys)

s

(xs , u) (t, ys)
(t, u)

zs

cat○cat

k

(id × k) (k × k) (k × id)

unfoldrp g⊲ p
g◇

unfoldlp g⊳ p

(k × id)
(id × k)

Figure 4.1: List-Unhomomorphism Diagram

Recall that our goal is to apply the same way as Section 3.3 for discovering

39

essential properties of g◇. In other words, we want to mimic Derivation 3.3.a to come

up with a similar derivation for list-unhomomorphism, where an essential property

of g◇ can be found out. Interestingly, Derivation 3.3.a is started with (3.7), which

says that two particular paths from (xs , ys) to s in Figure 3.1 are equal. So, it

is natural that we want a property what shows two corresponding paths from s to

(xs , ys) in Figure 4.1 are also equal. That is, given k = unfoldr g⊲ p = unfoldl rwdg p,

we have

cat○ ○ k = (k × k) ○ g◇. (4.3)

Now, starting with cat○ ○ k one can derive that

Derivation 4.2.a.

cat○ ○ k
= { (4.1) }

(id × k) ○ unfoldrp g⊲ p

= { k = k ○ k○ ○ k, product functor }
(id × k) ○ (id × k○) ○ (id × k) ○ unfoldrp g⊲ p

= { (4.1) backwards, and (4.2) }

(id × k) ○ (id × k○) ○ (k × id) ○ unfoldlp g⊳ p

= { k = k ○ k○ ○ k, product functor }
(id × k) ○ (id × k○) ○ (k × id) ○ (k○ × id) ○ (k × id) ○ unfoldlp g⊳ p

= { product functor }

(k × k) ○ (k○ × k○) ○ (k × id) ○ unfoldlp g⊳ p

= { (4.2) backwards }

(k × k) ○ (k○ × k○) ○ cat○ ○ k .
We thus have g◇ = (k○×k○) ○cat○ ○k! But wait! The g◇ we want should be a function

rather than a relation like (k○ × k○) ○ cat○ ○ k. So the property we need here should

be g◇ ⊆ (k○ × k○) ○ cat○ ○ k.
In the end, summing up everything we discussed so far, we will obtain the dual

40

theorem of the third list-homomorphism theorem as follows,

Theorem 4.2.1. Given a bi-unfoldable function k for some g⊲, g⊳ and p, there must

exists a function

g◇ ⊆ (k○ × k○) ○ cat○ ○ k
such that k = unhom g◇ (fst ○ g⊲) p (p ○ snd ○ g⊲).

Calculating g◇

Although (k○×k○) ○cat○ ○k looks very lovely, unfortunately, it is not easy to simplify.

However, starting from it, one can derive that

(k○ × k○) ○ cat○ ○ k
= { ∀S.S = S ∩ S }

((k○ × k○) ○ cat○ ○ k) ∩ ((k○ × k○) ○ cat○ ○ k)
= { (4.1) and (4.2) }

((k○ × k○) ○ (id × k) ○ unfoldrp g⊲ p) ∩
((k○ × k○) ○ (k × id) ○ unfoldlp g⊳ p)
= { (f × g) ○ (j × k) = (f ○ j × g ○ k) and k○ ○ k = id }

((k○ × id) ○ unfoldrp g⊲ p) ∩ ((id × k○) ○ unfoldlp g⊳ p) .
That is, we now have both of the following properties,

g◇ ⊆ ((k○ × id) ○ unfoldrp g⊲ p) ;
g◇ ⊆ ((id × k○) ○ unfoldlp g⊳ p) .

Let g◇ s = (t, u) for seeds s, t and u, the first property says that, (t, u) must be

related by s by relation (k○ × id) ○ unfoldrp g⊲ p. In other words, we have

(t, u)↜ ((k○ × id) ○ unfoldrp g⊲ p) s .

41

Similarly, for the second property above, we have that

(t, u)↜ ((id × k○) ○ unfoldlp g⊳ p) s .
Putting everything so far we have together, the following lemma will show itself!

Lemma 4.2.2. Let k be a bi-unfolable with given g⊲, g⊳ and p, the function g◇ is a

subset of (k○ × k○) ○ cat○ ○ k if, for all s, we have g◇ s = (t, u) such that

(k t, u)↜ unfoldrp g⊲ p s ∧ (t, k u)↜ unfoldlp g⊳ p s.

From now on, we will use Lemma 4.2.2 to help us to calculate g◇.

4.3 Basic List Generating Functions

Lemma 4.2.2 shows a hint for constructing a list-unhomomorphism from a bi-

unfoldable function. However, writing g◇ as a real function still requires some efforts

and is not entirely syntactical. To help readers to get familiar with the way of build-

ing a proper g◇, we show two of the most elementary examples in this section.

Example: map

The well-known function map, which applies the given function to each element in

the input list, is widely used in plenty of applications. It is also known on being able

to be written as unfoldr and unfoldl with g⊲ (x≺xs) = (f x, xs), g⊳ (ys≻y) = (ys , f y)
and p = null . Given function f , the function map f can obviously be written as a

parallel program.

By lemma 4.2.2, to construct a g◇ such thatmap f is indeed a list-unhomomorphism,

we need to find out sufficient conditions of both of following memberships:

(k ts ,us)↜ unfoldrp g⊲ p ss

(ts , k us)↜ unfoldlp g⊳ p ss ,

where (ts ,us) = g◇ss . Starting with the first membership, for ss = [], no requirement

42

will be produced. For non-empty ss , we can reason

(k ts ,us)↜ unfoldrp g⊲ p ss

≡ { let s′ ≺ ss ′ = ss }

(k ts ,us) = ([], ss) ∨
(k ts ,us)↜ ((((f s′) ≺) × id) ○ unfoldrp g⊲ p) ss ′

⇐ { for non-empty ts , let t′ ≺ ts ′ = ts }

(ts = [] ∧ us = ss) ∨
((f t′) ≺ k ts ′,us)↜ ((((f s′) ≺) × id) ○ unfoldrp g⊲ p) ss ′

⇐ { induction }

(ts = [] ∧ us = ss) ∨ (f t′ = f s′ ∧ ts ′ ++ us = ss ′)
≡ ts ++ us = ss

For the second membership, one will obtain the very same condition as ts ++ us = ss
from another derivation.

That is, to parallelly map f to a list, we splits the input list ss into two and

applies map f to them recursively. In other words, let ss = ts ++ us , we have

map f (ts ++ us) = (map f ts) ++ (map f us) .
This equation is valid but not form a definition. As a program map f might not

terminate since, for exmaple, ts could be empty and the size of us equals that of ss .

To avoid this situation, one may construct a terminating definition by enforcing that

neither ts nor us could be empty. We thus have map f = unhom g◇ gv p1 p2 where

g◇ ss = (ts ,us) for some non-empty ts and us such that ts ++us = ss , gv = fst ○ g⊲ = f ,
p1 = p = null and p2 = p ○snd ○g⊲ is the predicate that generates a singleton list. Recall

the definition of list-unhomomorphism, one can come up with a easy-to-understand

43

definition

map f [] = []
map f [s] = [fs]

map f (ts ++ us) ∣ ts ≠ [] ∧ us ≠ [] = map f ts ++map f us .

Example: fromTo

In the last example, the sufficient condition of two memberships are identical. But

not every function has that kind of luck. For example, the function fromTo takes a

pair of numbers (m,n) and returns a list of numbers from m to n. The fromTo is

obviously a bi-unfoldable function with

p (m,n) =m > n
g⊲ (m,n) ∣ m ≤ n = (m, (m + 1, n))
g⊳ (m,n) ∣ m ≤ n = ((m,n − 1), n) .

Assume that ((i, j), (a, b)) = g◇ (m,n). To construct g◇, the aim is to develop

sufficient conditions of

(fromTo (i, j), (a, b))↜ unfoldrp g⊲ p (m,n)
((i, j), fromTo (a, b))↜ unfoldlp g⊳ p (m,n) .

Taking the first one as an example, the derivation itself would be an induction on

the difference between m and n. For m > n, there produce no requirement. For

44

m ≤ n we reason,

(fromTo (i, j), (a, b))↜ unfoldrp g⊲ p (m,n)
≡ { for m ≤ n, g⊲ (m,n) = (m, (m + 1, n)) }
(fromTo (i, j), (a, b)) = ([], (m,n)) ∨
(fromTo (i, j), (a, b))↜ (((m ≺) × id) ○ unfoldrp g⊲ p) (m + 1, n)

⇐ (i > j ∧ a =m ∧ b = n) ∨
(i ≺ fromTo (i + 1, j), (a, b))↜ (((m≺) × id) ○ unfoldrp g⊲ p) (m + 1, n)

⇐ { induction }

(i > j ∧ a =m ∧ b = n) ∨ (i ≤ j ∧ i =m ∧ b = n ∧ j + 1 = a)
≡ i ≤ j ∧ i =m ∧ b = n ∧ j + 1 = a .

We thus have i ≤ j ∧ i = m ∧ b = n ∧ j + 1 = a as the sufficient condition for

the first membership. On the other hand, for the second membership, namely

((i, j), fromTo (a, b)) ∈ unfoldlp g⊳ p (m,n), one can easily calculate another set of

sufficient condition – a ≤ b∧i =m∧b = n∧j+1 = a. In the end we have a requirement

of g◇ as

(i ≤ j ∧ i =m ∧ b = n ∧ j + 1 = a) ∧ (a ≤ b ∧ i =m ∧ b = n ∧ j + 1 = a)
≡m ≤ j ∧ j + 1 ≤ n .

That is, given (m,n), to parallelly construct a list from m to n, we split the

range of m to n into two parts and recursively generate sub-lists from those two

sub-ranges. Namely, picking a j such that m ≤ j ∧ (j + 1) ≤ n holds, we have

fromTo (m,n) = fromTo (m, j) ++ fromTo (j + 1, n)
This equation can seve as the definition of fromTo if m > n. We thus have map f =
unhom g◇ gv p1 p2 where g◇ (m,n) = ((m, j), (j + 1, n)) for some j such that m ≤
j ∧ (j + 1) ≤ n, gv = fst ○ g⊲ = (+1), p1 = p = (>) and p2 = p ○ snd ○ g⊲ = (==). Again,

45

fromTo can also be written as

fromTo (m,n) ∣ m > n = []
fromTo (m,n) ∣ m == n = [m + 1]
fromTo (m,n) ∣ m < n = fromTo (m, j) ++ fromTo (j + 1, n) .

4.4 Prefix Sum via List-Unhomomorphism

Given a list of numbers xs , the prefix sum of xs , denoted by ps xs , is a list of

summation of each prefix of xs . In this section, we will take prefix sum as another

example of constructing a list-unhomomorphism.

Let’s start with calculating prefix. Assume that inits ∶∶ [a] → [[a]] returns a

list of all prefixes of the input list. Please notice that, for the reason that we want

to compute prefixes with unfolding, the prefixes we talk about here includes only

non-empty prefixes1. That is, for example, inits [1,2,3] returns [[1], [1, 2][1,2,3]]
rather than [[], [1], [1,2][1,2, 3]].

It is not hard to find out that inits can easily be defined as a unfoldl as follow

inits ys = unfoldl (λ (ys ≻ y)→ (ys , ys ≻ y)) null ys .
For another direction, however, things become a little more complicated. The seed

used here is a list, which means in each step of unfoldr a seed will be destructed into

a head and a tail. Then the tail will be picked as a new seed. That is, unfoldr drop

the information of the left-most element in each step. This makes it impossible to

compute inits by using merely an unfoldr , at least not directly. To overcome this

problem, one could simply generalise inits with an accumulating parameter, which

is another technique for function generalisation with extra information. Comparing

with tupling, which is to generalise with an additional computation, accumulating

parameter is generalising with an additional growable data structure. It is a very

useful technique especially when one need to record information about what has

already been seen.

1In the maximum prefix sum example in Section 3.4, we compute prefixes with the empty list
since we need mps returns at least 0.

46

The generalised inits can be written as an unfoldr as follows

inits xs = unfoldr (λ (a, x ≺ xs)→ (a ≻ x, (a ≻ x, xs))) (null ○ snd) ([], xs) .
Therefore, we define a function perfix ∶∶ ([a], [a])→ [[a]] by

prefix (zs , xs) =map (zs++) (inits xs)
which satisfies inits xs = perfix ([], xs). This prefix can be written as a unfoldr g⊲ p

and a unfoldl g⊳ p where

p = null ○ snd
g⊲ (ws , x ≺ xs) = (ws ≻ x, (ws ≻ x, xs))
g⊳ (ws , ys ≻ y) = ((ws , ys),ws ++ (ys ≻ y))

and thus a list-unhomomorphism. The domain of g⊲ and g⊳ are pair whose second

components are non-empty list.

Back to the prefix sum problem, taking

map sum ○ prefix ,

as the specification of prefix sum, the real challenge is, can we come up with a

definition of list-unhomomorphism for map sum ○ prefix?

To solve this problem, one may have two ways to go: the first and straightforward

way is, since prefix are already bi-unfoldable, one can apply map-unfold fusion to

obtain another bi-unfoldable function then construct a proper g◇ for it. The alter-

native approach will be slightly tricky. Considering the characteristics of map and

list-unhomomorphism, it is no surprising that there is a map-list-unhomomorphism

fusion theorem. Therefore, as an alternative approach, one can constrcut a g◇ for

prefix then try to fuse map sum to it. In the rest of this section, we will show both

approaches.

47

fusion-first

Given bi-unfoldable prefix with g⊲, g⊳ and p defined as above. The main idea of

the first approach is to apply map-unfold fusion to construct map sum ○ prefix bi-

unfoldable such that one can define it as a list-unhomomorhpsim.

In fact, since the map-unfold fusion theorem requires nothing of the mapped

function, one can derive with a general specification. Let prefixf = map f ○ prefix

for any function f . By map-unfold fusion theorem we have prefixf = unfoldr g′⊲ p′ =
unfoldl g′⊳ p′ where p′ = p, g′⊲ = (f × id) ○ g⊲ and g′⊳ = (id × f) ○ g⊳. The aim now is to

construct a definition of g′◇ such that prefixf = unhom g′◇ g′v p′1 p′2. where g′v = fst ○g′⊲,
p′1 = p′ and p′2 = p ○ snd ○ g′⊲.

Assume ((ws l, ts), (wsr,us)) = g′◇ (ws , ss) for any non-empty ss , we have

(prefixf (ws l, ts), (wsr,us))↜ unfoldrp g′⊲ p (ws , ss)
((ws l, ts),prefixf (wsr,us))↜ unfoldlp g′⊳ p (ws , ss) .

The base case, ss is a singlton list, trivally holds. For inductive case, since both of

above memberships will produce the same requirement, we therefore show only the

derivation of first membership as follows,

(prefixf (ws l, ts), (wsr,us))↜ unfoldrp g′⊲ p (ws , ss)
≡ { let s′ ≺ ss ′ = ss }

(prefixf (ws l, ts), (wsr,us)) = (ws , s′ ≺ ss ′) ∨
(prefixf (ws l, ts), (wsr,us))↜ ((((f (ws ≻ s′)) ≺) × id) ○ unfoldrp g′⊲ p) (ws ≻ s′, ss ′)

⇐ { for non-empty ts , let t′ ≺ ts ′ = ts }

(ts = [] ∧ us = ss ∧wsr = ws) ∨
(f (ws l ≻ t′)) ≺ prefixf (ws l ≻ t′, ts ′), (wsr,us))
↜ ((((f (ws ≻ s′)) ≺) × id) ○ unfoldrp g′⊲ p) (ws ≻ s′, ss ′)

⇐ { induction }

(ts = [] ∧ us = ss ∧wsr = ws) ∨
(f (ws l ≻ t′) = f (ws ≻ s′) ∧ws l ≻ t′ = ws ≻ s′ ∧ ts ′ ++ us = ss ′ ∧wsr = (ws l ≻ t′) ++ ts ′)

≡ ws l = ws ∧ ts ++ us = ss ∧wsr = ws l ++ ts
48

Taking f = sum, one can easily write down a parallel function, denoted by ps , which

computes a prefix sum for its input list, as follows

ps (ws , []) = []
ps (ws , [s]) = [sum (ws ≻ s)]

ps (ws , ts ++ us) = ps (ws , ts) ++ ps (ws ++ ts ,us) .

constructing-g◇-first

Given bi-unfoldable prefix with g⊲, g⊳ and p defined as above, the other approach is

constrcuting a g◇ for prefix first followed by fusing map sum to that paralle prefix .

Assume ((ws l, ts), (wsr,us)) = g◇ (ws , ss) for any non-empty ss , from Lemma

4.2.2, we know that

(prefix (ws l, ts), (wsr,us))↜ unfoldrp g⊲ p (ws , ss)
((ws l, ts),prefix (wsr,us))↜ unfoldlp g⊳ p (ws , ss) .

They both produce the same requirements, we therefore show only the derivation of

the first membership.

(prefix (ws l, ts), (wsr,us))↜ unfoldrp g⊲ p (ws , ss)
≡ { let s′ ≺ ss ′ = ss }

(prefix (ws l, ts), (wsr,us)) = (ws , s′ ≺ ss ′) ∨
(prefix (ws l, ts), (wsr,us))↜ ((((ws ≻ s′) ≺) × id) ○ unfoldrp g⊲ p) (ws ≻ s′, ss ′)

⇐ { for non-empty ts , let t′ ≺ ts ′ = ts }

(ts = [] ∧ us = ss ∧wsr = ws) ∨
((ws l ≻ t′) ≺ prefix (ws l ≻ t′, ts ′), (wsr,us))
↜ ((((ws ≻ s′) ≺) × id) ○ unfoldrp g⊲ p) (ws ≻ s′, ss ′)

⇐ { induction }

(ts = [] ∧ us = ss ∧wsr = ws) ∨ (ws l ≻ t′ = ws ≻ s′ ∧ ts ′ ++ us = ss ′ ∧wsr = (ws l ≻ t′) ++ ts ′)
≡ ws l = ws ∧ ts ++ us = ss ∧wsr = ws l ++ ts

49

Now one can define that g◇ (ws , ts ++us) = ((ws , ts), (ws ++ ts ,us)) and thus have

prefix = unhom g◇ gv p1 p2

where gv = fst ○g⊲, p1 = p and p2 = p○snd ○g⊲. With this definition, now the goal is trying

to fuse map sum to prefix . To do so, let’s introduce the map-list-unhomomorphism

fusion theorem proved in Appendix A.3.

Theorem 4.4.1. [Map-List-Unhomomorphism Fusion] Given a list-unhomomorphism

k = unhom g◇ gv p1 p2, we have

map f ○ k = unhom g†◇ g†
v p†

1 p†
2

if g†
v = f ○ gv and g†◇ = g◇ ∧ p†

1 = p1 ∧ p†
2 = p2.

Taking f = sum, by Theorem 4.4.1 we finally have parallel prefix sum, denoted

by ps , as follows

ps =map sum ○ unhom g◇ gv p1 p2 = unhom g◇ (sum gv) p1 p2 .

This equation can easily be expanded to the definition we revealed in the fusion-first

approach.

4.5 Discussion

In this chapter we have shown how to construct a list-unhomomorphism for a bi-

unfoldable function k with the help of Lemma 4.2.2. The method we introduced in

this chapter provides a very helpful derivation framework such that one can construct

a parallel list generating function together with its correctness proof. Still, there are

some shortcomings that are worthwhile to bring up and discuss.

First of all, even we have Lemma 4.2.2, there is still some human effort required

to come up with a real definition of g◇. That is, this method is not as syntactical as

we were looking forward. Then, as one may noticed, this method basically provides

only a way to construct a correct parallel program but no guarantee on its efficiency.

50

For example, the function ps we shown in Section 4.4 is inefficient because we have

to compute sum for each prefix.

Although this method might not be a realistic way to directly translate a list gen-

erating function into its parallel version, from what we can see in Section 4.4, it can

still helpful in a way of program derivation. In Section 4.4 we constructed a parallel

program for prefix sum by deriving a composition of two list-unhomomorphisms,

map f and inits . Therefore, even we can not have a syntactical way to parallelise a

list generating function, we can still derive and build a parallel program by applying

list-unhomomorphism related theorems and properties.

51

Chapter 5

Conclusion

In this chapter, we give a summary of this thesis, and point out some possible future

work.

5.1 Contributions

The capability of parallel programming is important for programmers nowadays.

But it takes lots of experience and efforts to write a parallel program. In this thesis,

we try to summarise several methods, as syntactical as possible, to make developing

parallel programs easier and faster. First of all, we use formal program construction,

more precisely, program derivation, as our developing method. This gives us the

capability of manipulating program’s definition as mathematical structure and hence

provides correctness as the same way in algebraic calculation. Then, to be able to

derive and calculate parallel programs, a formal model is required. Therefore we use

a mathematical structure named homomorphism to model parallel programs such

that we can calculate and derive a parallel definition from its specification. We have

also restricted ourselves to focus on folding or unfolding lists.

Based on the third list-homomorphism theorem, we have summarised two meth-

ods for constructing parallel folding programs.

• After studying some proofs, we noticed the similarity between the proof of bi-

foldability and the proof of list-homomorphism. As result, we have developed

a mechanism to syntactically derive a definition of list-homomorphism for f

from the proof of bi-foldability. This is the first method we presented in Section

52

3.1.

• The second method presented in Section 3.3 says that, for a bi-foldable function

f , one can also construct a list-homomorphic definition if a proper right inverse

of f can be chosen. We used to think that an inverse is not easy to find, or,

even if we have (⊕) constructed, we cannot find any simple inverse to explain

its discovery. But it turns out that this inverse-based method may not be that

hard to apply. In fact, it seems there is an approach to construct an inverse

by algebraic calculation.

Dually, we have also shown a method to construct parallel list-generating pro-

grams. For any bi-unfoldable function, to construct its list-unhomomorphic defini-

tion means that there must exist a seeds-generating function g◇ such that these two

memberships in Lemma 4.2.2 can be satisfied. Therefore, the way to go is to refine

the conditions derived from those two memberships and thus one can construct a

list-homomorphic definition. Our contributions are,

• We use another notation for represneting a relation and make it looks much

like a function. This makes our derivations and properties in Section 4.2 and

4.4 much friendly for reader who is not familiar with relation.

• Moreover, based on that notation, we also developed a diagram, Figure 4.1,

to show the relationships among input data, output data and immediate data.

Besides, this very same diagram can also show all properties we used and

hence helps reader to get an intuition. Additionally, we also found out that

if we “revert” the arrows in Figure 4.1, we get a diagram that captures all

mathematical properties for list-homomorphism.

5.2 Future Work

Besides limitations and shortcomings we mentioned in this thesis, there are still

improvements that can be done.

• In this thesis we model only the linear structure, however, there are tons of

other data structures used in real world. So the very first improvement is to

generalise the methods to other data structures.

53

• Moreover, as one can see, Figure 3.1 and Figure 4.1 are nothing but the same

diagram with opposite arrows. It is natural one would wonder: does there exist

a general diagram where some joint properties might be able to be found? and,

are there other diagrams for other data structures? Both of these questions

opens the door to another researching topic.

• In Section 4.4, we introduced and appied the map-list-unhomomorphism fusion

theorem. This enlighten us that there may be other properties related to

list-homomorphism or list-unhomomorphism that can be useful in the way of

deriving a parallel program from its specification.

• Homomorphism is a general mathematical structure and we used it for model-

ing the ideal parallel programs. Interestingly, there is an assumption for using

it – those parallel programs will be executed on a system where processes are

independent of each other. It is a wonderful assumption if we only discuss in

a purely functional world. However, if we change our point of view from func-

tional programming to distributed system, it not hord to find out that, the

distributed system a homomorphism described is quite limitative because that

assumption leads us the lack of communication among instances or processes.

This brings up another opportunity of improvement. That is, to increase the

suitability of homomorphism-based methods, different homomorphism-liked

mathematical structures, and its mathematical properties, are required for

different distributed systems. As an example, the BSP-homomorphism [13] is

a mathematical structure designed for the bulk synchronous parallel model.

54

Bibliography

[1] Backhouse, R. Program Construction: Calculating Implementations from

Specifications. Wiley, 2003.

[2] Bird, R. Introduction to Functional Programming using Haskell, second ed.

Prentice Hall, 1998.

[3] Bird, R. S. An introduction to the theory of lists. In Proceedings of the NATO

Advanced Study Institute on Logic of programming and calculi of discrete

design (New York, NY, USA, 1987), Springer-Verlag New York, Inc., pp. 5–

42.

[4] Bird, R. S., and de Moor, O. Algebra of Programming. Prentice Hall

International series in computer science. Prentice Hall, 1997.

[5] Chi, Y.-Y., and Mu, S.-C. Constructing list homomorphisms from proofs.

In Proceedings of the 9th Asian conference on Programming Languages and

Systems (Berlin, Heidelberg, 2011), APLAS’11, Springer-Verlag, pp. 74–88.

[6] Emoto, K., Fischer, S., and Hu, Z. Generate, test, and aggregate - a

calculation-based framework for systematic parallel programming with mapre-

duce. In ESOP (2012), pp. 254–273.

[7] Geser, A., and Gorlatch, S. Parallelizing functional programs by gener-

alization. J. Funct. Program. 9, 6 (Nov. 1999), 649–673.

[8] Gibbons, J. The third homomorphism theorem. Journal of Functional

Programming 6, 4 (1996), 657–665.

55

[9] Gorlatch, S. Systematic extraction and implementation of divide-and-

conquer parallelism. In PLILP (1996), H. Kuchen and S. D. Swierstra, Eds.,

vol. 1140 of Lecture Notes in Computer Science, Springer, pp. 274–288.

[10] Hu, Z., Iwasaki, H., and Takeichi, M. Construction of list homomor-

phisms by tupling and fusion. In MFCS (1996), W. Penczek and A. Szalas,

Eds., vol. 1113 of Lecture Notes in Computer Science, Springer, pp. 407–418.

[11] Hughes, J. Why Functional Programming Matters. Computer Journal 32, 2

(1989), 98–107.

[12] Kaldewaij, A. Programming: The Derivation of Algorithms. Prentice Hall

International Series in Computer Science. Prentice Hall International, 1990.

[13] Legaux, J., Hu, Z., Loulergue, F., Matsuzaki, K., and Tesson, J.

Programming with bsp homomorphisms. In Euro-Par (2013), F. Wolf, B. Mohr,

and D. an Mey, Eds., vol. 8097 of Lecture Notes in Computer Science, Springer,

pp. 446–457.

[14] Liu, Y., Emoto, K., and Hu, Z. A generate-test-aggregate parallel pro-

gramming library: systematic parallel programming for mapreduce. In PMAM

(2013), pp. 71–81.

[15] Liu, Y., Hu, Z., and Matsuzaki, K. Towards systematic parallel program-

ming over mapreduce. In Euro-Par (2) (2011), E. Jeannot, R. Namyst, and

J. Roman, Eds., vol. 6853 of Lecture Notes in Computer Science, Springer,

pp. 39–50.

[16] Morihata, A. A short cut to parallelization theorems. In ACM SIGPLAN

International Conference on Functional Programming, ICFP’13, Boston, MA,

USA - September 25 - 27, 2013 (2013), pp. 245–256.

[17] Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M. The third

homomorphism theorem on trees: downward & upward lead to divide-and-

conquer. In POPL (2009), Z. Shao and B. C. Pierce, Eds., ACM, pp. 177–185.

56

[18] Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M.

Automatic inversion generates divide-and-conquer parallel programs. In PLDI

(2007), pp. 146–155.

[19] Mu, S.-C., and Morihata, A. Generalising and dualising the third list-

homomorphism theorem: functional pearl. In Proceedings of the 16th ACM

SIGPLAN international conference on Functional programming (New York,

NY, USA, 2011), ICFP ’11, ACM, pp. 385–391.

57

Appendix A

Missing Proofs

A.1 Property (3.3)

The correctness of steep = (> 0) ○cap can be shown by an induction on the input list.

For the base case, we show that,

steep [] = True =∞ > 0
= cap ∞ > 0 .

For inductive case, we reason,

steep (x ≺ xs)
= { definition of steep }

x > sum xs ∧ steep xs

= { induction }

x > sum xs ∧ cap xs > 0
= { arithmetic }

x − sum xs > 0 ∧ cap xs > 0
= { m > i ∧ n > i = (m ↓ n) > i }
(x − sum xs ↓ cap xs) > 0
= { definition of cap }

cap (x ≺ xs) > 0 .
58

A.2 Properties (3.8), (3.9) and (3.10)

Given (c1, s1) = capsum xs and (c2, s2) = capsum ys for some xs and ys . By

the definition of capsum−1 we given in Section 3.4, let (a1, b1) = (s1+c12 , s1−c12) and
(a2, b2) = (s2+c22 , s2−c22) then we have the following equations.

sum [a1, b1] = a1 + b1 = s1 + c1
2
+ s1 − c1

2
= s1 (A.1)

sum [a2, b2] = a2 + b2 = s2 + c2
2
+ s2 − c2

2
= s2 (A.2)

cap [a1, b1] = (a1 − b1) ↓ b1 = s1 + c1
2

− s1 − c1
2
↓ b1 = c1 ↓ b1 = c1 (A.3)

cap [a2, b2] = (a2 − b2) ↓ b2 = s2 + c2
2

− s2 − c2
2
↓ b2 = c2 ↓ b2 = c2 (A.4)

That is, xs and [a1, b1] have the identical capability and summation, as well as ys

and [a2, b2].
Now, let (c, s) = capsum [b1, a2, b2], (3.8) and (3.9) can be easily proved as the

following derivations:

s

= { definition of sum }

b1 + a2 + b2
= { arithmetic }

(a1 + b1 + a2 + b2) − a1

= { (A.1) and (A.2) }

s1 + s2 − a1

59

(a1 − s)
= { by (3.8) }

(a1 − (s1 + s2 − a1))
= { arithmetic }

(2 ∗ a1 − (s1 + s2))
= { definition of a1 }

(2 ∗ (s1 + c1
2
) − s1 − s2)

= { arithmetic }

(c1 − s2)
To prove (3.10), however, another equation is necessary. Starting with c1 − s2,

one could show that

c1 − s2

= { definition of c1 }

(a1 − b1 ↓ b1) − s2

= { (−s2) distributes over (↓) }

a1 − b1 − s2 ↓ b1 − s2

≡ { (A.2) }

a1 − b1 − s2 ↓ b1 − a2 − b2.

60

Now, to prove (3.10), we reason

c1 − s2 ↓ c
= { c = cap [b1, a2, b2] }
c1 − s2 ↓ b1 − a2 ↓ a2 − b2 ↓ b2
= { the last derivation }

a1 − b1 − s2 ↓ b1 − a2 − b2 ↓ b1 − a2 ↓ a2 − b2 ↓ b2
= { x − n ↓ x = x − n⇐ n ≥ 0 }

a1 − b1 − s2 ↓ b1 − a2 − b2 ↓ a2 − b2 ↓ b2
= { the last derivation, reverse! }

c1 − s2 ↓ a2 − b2 ↓ b2
= { (A.4) }

c1 − s2 ↓ c2.

A.3 Theorem 4.4.1

The map-list-unhomomorphism fusion theorem says that, given a list-unhomomorphism

k = unhom g◇ gv p1 p2, we have

map f ○ k = unhom g†◇ g†
v p†

1 p†
2

if g†
v = f ○gv and g†◇ = g◇∧p†

1 = p1∧p†
2 = p2. This theorem can be proved by an induction

on seed generating sequence since we restrict that all successive applications of g⊲
and g⊳ eventually reaches some s such that either p1 s or p2 s is ture. For p1 s is

61

true, 4.4.1 trivally holds if p†
1 = p1. For p2 s is true, one can reason

map f (unhom g◇ gv p1 p2 s)
= { assumption: p2 s is true }

map f [gv s]
= { definition of map }

[f (gv s)]
= { g†

v = f ○ gv ∧ p†
2 = p2 }

unhom g†◇ g†
v p†

1 p†
2 s.

Finally, for the inductive case, we have,

map f (unhom g◇ gv p1 p2 s)
= { let (t, u) = g◇ s }

map f (unhom g◇ gv p1 p2 t ++ unhom g◇ gv p1 p2 u)
= { map f (xs ++ ys) = (map f xs) ++ (map f ys) }
(map f unhom g◇ gv p1 p2 t) ++ (map f unhom g◇ gv p1 p2 u)
= { induction }

unhom g†◇ g†
v p†

1 p†
2 t ++ unhom g†◇ g†

v p†
1 p†

2 u

= { g†◇ = g◇ }

unhom g†◇ g†
v p†

1 p†
2 s.

62

	coverish
	main
	Introduction
	Correctness
	Parallelisation
	Background
	Outline

	Preliminaries
	Mathematical Background
	Program Derivation
	Functional Programming
	Programming with Functions
	Linear Structures
	Folds and Unfolds
	List-Homomorphisms

	Constructing a List-Homomorphism
	Sufficient Conditions for List-Homomorphism
	The Steepness of a List
	Essential Properties of List-Homomorphism
	Parallelization with Right Inverse
	Limitation

	The Duality of Third List-Homomorphism
	Dualising the Third List-Homomorphism Theorem
	Essential Properties of List-Unhomomorphism
	Basic List Generating Functions
	Prefix Sum via List-Unhomomorphism
	Discussion

	Conclusion
	Contributions
	Future Work

	Missing Proofs
	Property (3.3)
	Properties (3.8), (3.9) and (3.10)
	Theorem 4.4.1

