B3 R A TR A IR A 5
ESh
Department of Information Management
College of Management
National Taiwan University

Master Thesis

VAR RE 22 3 AT R

Constructing Parallel Programs Using Homomorphism

#REE 2
Yun-Yan Chi

iEHI B BE
Advisor: Shin-Cheng Mu, Ph.D.

PERE 104 F 8 A
August, 2015

LA) R 32 3 AT A2 R

Constructing Parallel Programs Using Homomorphism

A X R IBE G B RY
TN B E AR
Vel % R B2 EAMSMN T — I

R OAE AR B
FRERBE—B X wWHEANA

St

BAYY BRELEINEZE—FT c FrRFE R ELTREENBOAF
Mo ERABPNEBRE W &S BRG] MR EBIKE -

EARERB AT —B L RAROIE THIRBIE R L o AR ST
HETTHRES WA AEARKRAAFHEA ZFF Rkl TR RE T 69
EHEF o ZERUA R BRIF BN E AN ERELL R RS BB o B o
SRR RO I RE B > EAEE -~ HEBPRANEGL T RIR S H > ERST
URERGHEXNBEARET RGFALT G - AT EHEERELHERLE ST
BEBIHGHZARKEHEER B s o b HARKMERET L
AL ME AR LBRRGE L E LR RMNBETLT T R —ZH
oo dbsh 0 B IE R B T P AR T A B SR BHE ST R ID Bh e 1R R
BARMATH T EM > ERELZHFM IR RE AR RARLANA
B ERE S RERAERBELHORER - B REBRBIEERE
FETRS FAIZAM O R - &iZ > §REBLZERHFEAMN o 2L bF] F g 4747
IR LSBT EANBEFRRESRT AR CEETREE -

Hok R B SR 0 R R oAb AR 18k 44T AR B 60 Bk) B B
B EERBE L LB TRRV DY - BAR TR ARSI REERSRLEE
R B F 47 6 R G A R A RUR $ e Ao BB - A AR B R AR 5] A
RiE—F 8y o

Ay F
BTG IR P
B EwmFN\A

i
o
R
4

| omy

W XA R

24 A F 2015 4 8 A

F5EHIL BB R
LA) R 32 3 AT R

FARAERSHERFEAEEFTEZNHE - 22 > wfTHETFITEK
AAMHHENFE B4t ATHERF TR BXXAGEELLER
RAGF IR EHLERFITORA - 8R4 > ZARME F T8 & 5 I oh A
AR - BAN BARNAGTREA —F AL T ETURBMRLH
TRTIEMENETER—E2FEE X it REWHRABEMHELE ARG S
%o ABEILER AN TR XL ERRERE FAEK - Hd—#T
ATHY ik Ak A A2 X 3 F (program derivation) 2R #4 2 F 471642 K 8y Fosig Akt -
AT ATRABAREX AL AR AVERATRARY > ki
FREEHZERETRIZAER -

AARF » KAMER B B RFAE-FTRK G E L EEE AL S 3] IZ A
B2 X o RATARAER B LT HI R AR R FIF st
homomorphism) > F LA il & 22 47 & 7| 57 43 (list-reducing) 89 #2 X, ; & 5| R [
#& (list-unhomomorphism) > F BA s i i 3 T 4T % 7 & s (list-generating) &9 2 &, °
F = & 7| [A& & #2 (third list-homomorphism theorem)% 3 #&AM @ — B2 X 40 F
B A 4 38 & M (bi-foldability) » R R4 — MBE H FE4F %42 X 7T A H A&
—BEEFNEE BHFAAE=FIRECE MR LBEERETAEA
St S TR XEEH LT TRG T H - F—HAFRMBEEEM2H
Bl — i B PR R mAFAASTERARAZEFRBETR - F=
A FEARFBMEHBTEREMAAL AREFFAEZIEZR —EEERAX
7 55 R ok #(right weak inverse) ™ Akt A E - A —F @ > HPN I RIE
R RAMEEH —EFE = % 3| F A E I 2 H 1% € (dual theorem) ° A
o R ERMEPE I RE AR E ZATRAE M ST AR By3E 0 K/ATT
UREF I B AR R EREHEE —BEEIREEZER -

Mg PR aBAEKX > EHEAE F=EFRETE 2RES

THESIS ABSTRACT

GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Chi, Yun-Yan Month/Year: August, 2015
Advisor: Mu, Shin-Cheng

Constructing Parallel Programs Using Homomorphism

Parallel programming plays an very important role in nowadays world. To develop a
parallel program, however, is not a simple task. Traditionally programmers are used to
and have to rewrite a sequential program to its parallel version. This, however, takes lots
of extra efforts and times. It natural that programmers want to have an automatic
method for saving themselves from re-implementing the same algorithm twice.
Therefore plenty of previous works have tried to develop methods for constructing and
synthesising parallel programs from existing sequential programs. One of potential
ways is using program derivation which allows us to construct a program definition
from its specification, or, in this case, from existing definitions and properties.

In this thesis, we use homomorphism as a model of parallel programs and focus on
programs that handle the well-known linear data structure, list. We realise
homomorphism as two specialisations: the [list-homomorphism, which works as
properties and is used for modelling parallel list-reducing programs; and the /ist-
unhomomorphism, for parallel list-generating programs. By taking advantage of the
third list-homomorphism theorem we introduce two methods to derive parallel list-
reducing programs from its sequential definitions. The first method allows us to
transform a proof of bi-foldability to a proof of existing of list-homomorphism where,
obviously, contains the definition of list-homomorphism itself. The second one,
provides us a syntactical approach to construct a list-homomorphism once an right weak
inverse of the program we want to parallelise can be designed and picked. For list-
unhomomorphism, on the other hand, we develop a dual theorem of the third list-
homomorphism theorem so that list-generating programs can be constructed from its
sequential definitions once the sufficient conditions of two essential properties of list-

unhomomorphism can be satisfied.

Keywords: Parallel Program, Functional Program, List-Homomorphism, Third List-

Homomorphism Theorem, Program Derivation

Contents

1 Introduction
1.1 Correctness e
1.2 Parallelisation
1.3 Background
1.4 Outline

2 Preliminaries
2.1 Mathematical Background
2.2 Program Derivation
2.3 Functional Programming
2.3.1 Programming with Functions
2.3.2 Linear Structures
2.3.3 Foldsand Unfolds
2.3.4 List-Homomorphisms

3 Constructing a List-Homomorphism
3.1 Sufficient Conditions for List-Homomorphism
3.2 The Steepnessof a List
3.3 Essential Properties of List-Homomorphism
3.4 Parallelization with Right Inverse
3.5 Limitation

4 The Duality of Third List-Homomorphism
4.1 Dualising the Third List-Homomorphism Theorem
4.2 Essential Properties of List-Unhomomorphism

4.3 Basic List Generating Functions

10
10
11
12
13
13
14
19

20
20
23
27
30
34

4.4 Prefix Sum via List-Unhomomorphism0, % 46

4.5 DIScusSIiOn e e 50
Conclusion 52
5.1 Contributions e H2
5.2 Future Work H3
Missing Proofs 58
A1 Property (3.3) . . o o oo 58
A2 Properties (3.8), (3.9) and (3.10) 59
A.3 Theorem 4.4.1 e 61

List of Figures

3.1 List-Homomorphism Diagram .

4.1 List-Unhomomorphism Diagram

Chapter 1

Introduction

Since the rising of multi-core processing, cloud computing and machine learning,
program parallelisation has became an important and necessary technique. There
are at least two scenarios where we need the benefits of parallelisation. Firstly
programmers nowadays confront a world with a huge amount of data. A typical
sequential algorithm is no longer satisfied our needs on computation since it is
usually inefficient when input data is too large. Secondly multi-core computers
and distributed systems become more and more common. Developing a program
to execute on a multi-core or distributed system will be an essential skill for a
programmer.

The well-known divide-and-conquer paradigm provides many benefits and one
of the most important advantage is the potential for parallelisation. The main idea
of divide-and-conquer is to split a problem into several sub-problems, and then
recursively solve these sub-problems. For example, function h, which takes a list zs
as input and returns b as result, could be written as a divide-and-conquer algorithm
if we can somehow split zs into two sub-lists, zs and ys such that the result b could
still be obtained by combining A zs and h ys.

This thesis reveals a new parallelisation framework based on homomorphism
[3] which matches the divide-and-conquer paradigm [9]. Moreover, our approach
provides not only a way to construct parallel program from specification but also

the proof of correctness of parallelization.

1.1 Correctness

Plenty of programmers are used to heuristically design and develop program spec-
ifications in their own mind before they actually implement an algorithm. Once
a program is implemented, programmers will perform extensive testing to verify
whether the program’s behavior matches its specification. After a program passes
all of its testing, programmers claim that their program would not go wrong. This
approach do reveal many bugs if the specification was designed correctly. However,
just as Edsger W. Dijkstra said in 1969: “Program testing can be used to show
the presence of bugs, but never to show their absence!” There always exists some
unexpected cases because testing can not be exhaustive.

An alternative approach is the formal program construction [4, 12], that guaran-
tees correctness by modeling a specification as a mathematical structure and then
constructing an implementation from it by performing mathematical manipulations.
The whole construction process must follow mathematical principles and properties
to ensure the consistency between a specification and its implementation. In other
words, formal program construction provides not only the way to “calculate” a pro-
gram specification to its efficient implementation but also the proof of correctness.

In this thesis we would like to discuss a methodology for constructing parallel
program and providing its correctness proof as well. To do so, we will use (purely)
functional programming languages [2, 11] to represent mathematical structures and

therefore one can apply program derivation.

1.2 Parallelisation

To understand the main idea of the method we propose, considering the well-known
algorithm paradigm — divide-and-conquer, a technique to solve problems by splitting

a problem into several smaller sub-problems. For example, mergesort is a typical

parallel algorithm in divide-and-conquer paradigm,

mergesort [| =[]

I
||
=

mergesort [a]
mergesort as = xs ‘merge’ ys where

n = (length as) div 2

zs = mergesort (take n as)

ys = mergesort (drop n as) ,

where merge merges two sorted lists into one.

Although the divide-and-conquer paradigm is powerful framework for solving
complicated problems in parallel, there is no explicit explanations of how to pre-
cisely develop or implement a parallel algorithm. In fact, development of parallel
algorithms is often an ad-hoc process. One usually has to create parallel algorithms
case by case. That developing process could be painful yet still leads us to a wrong
end.

The way to go, in stead of directly writing a parallel program with human mind,
we model the divide-and-conquer paradigm with mathematical structures, which
provide several helpful mathematical theorems and properties. Then we develop
syntactic construction methods that allow us to calculate (or derive) a definition of
parallel program from its specification by using arithmetical and algebraic methods
only. In other words, one may have an efficient parallel program by using purely
mathematical manipulations rather than relying on problem oriented understanding.

In this thesis, we pick the well-known homomorphism as that mathematical struc-
ture. Taking lists as an example, function h is a list-homomorphism if for any lists

zs and ys there exists an (&) such that

h (zs 4 ys) = (h xs) @ (h ys) (1.1)

holds. In fact, in this thesis we focus only on lists for two reasons. Firstly, as we
mentioned, one of the biggest challenge for nowadays programmers is gathering in-
formation from considerable data. Which means, it will be very common to develop

a parallel program for generating or consuming lists. Secondly, from the viewpoint

of recursive data structure, a list-based method is relatively easier to be developed.
Besides, a list-based method also has potential to be generalised to another method
which can handle some more complicated recursive data structures.

Back to the list-homomorphism, the problem is how could we know there exists
an (@) such that h could be written in terms of a list homomorphism? If so, how
could we construct that (@)? One of the possible ways is to take the advantage
of the third list homomorphism theorem [8], which says that there must exist an
operator (@) such that the equation above holds if A can be evaluated rightwards
and leftwards. The third list-homomorphism theorem provides the existence of (@),
yet without its definition. Therefore, the challenge we are facing is, how does one

develop or construct a definiton of (@)? The answer is to be revealed in this thesis.

1.3 Background

In the late 90’s, much effort has been made to find a systemic way of constructing
a parallel program in terms of homomorphism. Gibbons [8] formalised and seman-
tically proved the third list-homomorphism theorem followed by showing how to
improve a sorting algorithm. This shows an opportunity of constructing a homo-
morphism with help of the third list-homomorphism theorem. Another attempt of
constructing homomorphism was taking advantage of almost homomorphisms. An
almost homomorphism is a non-homomorphic function which can be written either
leftwards (i.e. as a foldr) or rightwards (i.e. as a foldl), after being tupled with sev-
eral functions, each of which provides necessary information such that the almost
homomorphism itself can be written as a homomorphism. Hu et al. [10] proposed
a way to construct a list-homomorphism by fusion with almost homomorphisms.
Gorlatch [9] proposed an extraction method, called CS-method, to extract a defini-
tion of homomorphism by generalising two sequential representations, namely foldr
and foldl. Following the result of previous work, Geser and Gorlatch [7] applied
term rewriting techniques to systematically extract homomorphism from a pair of
sequential representations.
After then, the idea of constructing homomorphism with the third list-homomorphism

theorem has received more attention. Morita et al. [18] proposed to automatically

construct an (@) by picking some right weak inverse h=! and refining the equation
(®) = h (h! s+ h7' t). On the other hand, the third list-homomorphsim theo-
rem, after minor modifications, was also shown to be workable on other polynomial
structures. Taking binary tree as an example, those two sequential representations
are no longer leftwards and rightwards. Instead, a function can be written as a
tree-homomorphism if it can be computed downwards and upwards. Based on that
concept, Morihata et al. [17] developed a method for constructing parallel programs
on trees. To discover more details of the third list-homomorphism theorem, Mu and
Morihata [19] applied relational formalism to formalise the third list-homomorphism
theorem and, with the concept of right weak inverse, developed several necessary
and sufficient conditions. With those results, they also developed a dual theorem
discussing functions that generate lists, rather than consuming lists.

As mentioned above, the right-weak-inverse approach has been take by many
previous works. However, coming up with a proper hA~! is not an easy task. Chi and
Mu [5] observed that the steps of proving h can be written as foldr and foldl, and
the steps of proving A is a list-homomorphism are very similar. From there, they
developed a syntactical method to construct a (@) from the proof of h can be foldr
and foldl.

Morihata [16] applied shortcut deforestation to prove a meta-theorem of the
third list-homomorphism theorem. Additionally, following the formalization in [19],
namely using relations to formalise and prove, the result can generalised to anamor-
phisms (unfolds) and hylomorhpisms.

Based on the previous works mentioned above, we have more and more under-
standing of list-homomorphisms. Some people may start to wonder the practicabil-
ity of list-homomorphism. Liu, Hu and Matsuzaki [15] proposed and implemented
a homomorphism-based framework for systematic parallel programming with the
well-known MapReduce. That framework can derive an efficient parallel algorithm
as a list-homomorphism if it is already known as satisfiying the requirements of
the third list-homomorphism theorem. Since the requirements are still required to
be satisfied, Emoto, Fischer and Hu [6] proposed a calculation-based framework,
named generate-test-and-aggregate (GTA for short), by integrating the generate-

and-test programing paradigm and semiring fusion theorem. That GTA framework

allows programmers to systematically synthesize efficient MapReduce programs. To
put GTA to practical use, Liu, Emoto and Hu [14] implemented this programming
model to work with Scala, Spark or Hadoop.

Excepting to apply list-homomorphism on parallel programming models such
as MapReduce, some researchs also tried to design a notion of homomorphism to
formalise structured models of parallelism. Legaux et al. [13] proposed and imple-

mented the BSP homomorphsim dedicated to bulk synchronous parallelism.

1.4 Outline

The necessary theoretical concepts and technical programming knowledge will be
introduced in Chapter 2 together with some necessary mathematical foundation.
We then will show two possible ways for developing a parallel program from it
specification if those corresponding requirements can be satisfied in Chapter 3. For
each method, we will also demonstrate how to come up with a parallel program with
examples. After introducing the way to build parallel program which folds a list into
a value, we will also show the way to construct a parallel program for expending a
list from a value in Chapter 4. In the end of this chapter, three examples will be
given. Finally we will give a brief summary and discuss some interesting issues for

future works in Chapter 5.

Chapter 2

Preliminaries

In this chapter, we will give mathematical background and a theoretical setting in
Section 2.1. In Section 2.2 we will explain the way of formal program construction.
Finally, we will also introduce those necessary programming technology in Section

2.3.

2.1 Mathematical Background

We assume a set-theoretical model for functional programming. All functions in this
thesis are total, every element in domain is mapped to some element in range, and
simple, every element in domain is mapped to only one element in range.

A function (o) is called functional composition if, given functions f: A - B and
g:B — C, go f returns a function with type as A - C such that for all z:: A, we

have

(gef)x=9g(f).

Given a function f: A - B, a function f~!': B - A is called right weak inverse,
if for all y in the range of f, we have f(f~! y) = y. In set-theoretical model, a right
weak inverse must exist but may not be unique. In this thesis, we use an equivalent
equation,

f=feftef,

instead of the original one.

In set-theoretical model, a relation R: A — B is a set of pair, where, for all

10

r €A AN ye B, we have (z,y) € R. In this thesis, however, we will deal with a
situation where both of domain and range are a set of pair already. Therefore, we
want an alternative representation to make it more friendly to human. Let relation

R be defined as above, we introduce the operator (+):
yvRx=(zr,y)eR.

Additionally, because we will show some diagram in this thesis, based on (+), we

also define that the following snaky arrow,
x WI‘{"’_’y)

which will be used in Figure 3.1 and Figure 4.1, to represent y «+ R z in diagram.

For relation, one can also define the relational composition by
zv(SeR)x=3y.z«Syny«~Rz.

As one could notice, we use the very same notation to indicate both compositions
since the functional composition is actually a special case of relational composition.

Given a relation R: A — B, its converse R°:: B — A is defined by
rv~R y=y~Ruzx.

Plus, we have R- R°- R = R since R and R° are total.

2.2 Program Derivation

As we mentioned in Section 1.1, instead of developing program then verifying it
against its specification, we use formal program construction as our developing
method in this thesis. In formal program construction, one models specifications
by formal representations, usually mathematical structures like algebra [4] or logic
[1], then a program (or a function definition) can be constructed from that specifi-
cation by applying some mathematical properties somehow. In general, there are

several ways to construct a program from its specification.

11

Among the many approaches to construct a program, we will use a framework
named program derivation as our developing approach. As its name implies, con-
structing a program with program derivation means that, given a formal spesifica-
tion, a program can be derived from it by applying mathematical operations and
properties, which guarantee that each step in derivation will be mathematical cor-
rect. More precisely, in this thesis we will use algebraic program derivation — we
model our specification with algebraic structures and derive a program from it by
applying algebraic manipulations.

Usually, a specification is written by a sequence of composition of functions.
But, here is the thing, functions we talk about here are all deterministic because,
for all input, a function returns only one corresponding result. On the other hand, a
relation can be used to present a non-deterministic program since a relation relates
any element in its domain into more then one elements in its range. Therefore, let’s
introduce the relational program derivation that allows us to write a specification
in terms of relations and then derive, or say, refine, it into some properties or
requirements that one can construct a deterministic program, namely a function

definition, from.

2.3 Functional Programming

Functional programming is a very powerful programming paradigm. The most im-
portant feature of functional programming is that it provides capability to capture
or describe mathematical properties of programs. In functional world, it is easier
for programmers to focus on the nature of the problem we want to solve by com-
puter rather than some implement issues. That is, with functional languages and
functional programming techniques, less efforts in issues irrelevant to the problem
will be required; hence programmers can build or even realise complex programs
well. Please notice that, since we assume a set-theoretical model and all functions
are total and simple, when we say functional programming, we actually mean total

functional programming.

12

2.3.1 Programming with Functions

Programming with a functional language means that programmer will use func-
tions as first-class objects. To manipulate functions as atoms, some techniques are
required.

Functional composition is the same thing as in mathematics and provides us a
way to sequentially combine two functions. However, sometimes one may need to
combine two functions parallelly. Therefore, given function f:: A - B and g: A - C,

the function (f,g) = A - (B,(C) is defined by

(f,9) v=(f 2,9 2)

for all x:: A. This composition requires that the domain of both functions must be
the same. For the case two different domains, we can define another kind of parallel
composition. Given h:: A - B and k:C' — D, the function (hxk):(A,C) - (B, D)
is defined by

(hxk) (z,y) = (hz,ky)

for all x:: A and y:: C. Interestingly, one can distribute (o) over (x). That is, we

have

(fxg)e(hxk)=(fohxg-k),

which is a very useful property in program derivation. Those compositions let us
construct a complex program by combining several different functions, or, conversely
we can divide the given program into several subproblems each of which can be solved

by a simple function.

2.3.2 Linear Structures

One of the well-known essential data structure in programming is the linear data
structure — list. We use [] and, for example, [xg, 21, T2, ...], for presenting such
abstract list. Ideally a list should be nothing but a sequence of elements. However
when one actually try to build a list, it will be a sequence of connection and suddenly
the ordering of connections does matter. For example, list [1,2,3] may be built in

several ways: one can start by “connecting” 2 to the right-hand side of 1 followed by

13

“connecting” 3 to their right end; or, start with 2 and “connect” 1 to its left-hand-
side followed by “connecting” 3 to the right-hand-side of [1,2]. Even though there
are several different ways to build a list, in this thesis we only require and hence
introduce the most common two types of list, cons-list and snoc-list.

A list is called cons-list if it is constructed leftwards. The structure cons-list can

be defined by:

data [a]. = [].

| a<][a]e.

On the other hands, a snoc-list is constructed rightwards as:

data [a]s = []s

Sometimes it does not matter which kinds of list we are using since cons-list and
snoc-list are isomorphic — there must exists two functions such that we can convert
a cons-list from/to a snoc-list. In fact, for some list-related problems, it could be
solved easily with both of cons-list or snoc-list. For example, it does not matter that
the summation of a list is processed leftwards or rightwards. But most of times it

would be easier to solve a problem only with either cons-list or snoc-list.

2.3.3 Folds and Unfolds

In this section we will introduce several fundamental concepts such as folds, unfolds

and their fusion theorems.

Folds

A function is a fold if it “folds” a list into a value. Like the ways one can construct
a list, there are planty of possibilities to fold a list. The simplest and most typical
way is folding a list along its constructing direction. That is, since there are two
implementations of list in practice, we may have two corresponding folding methods.
In the following paragraphs, we will introduce the distinguished foldr, corresponding

to cons-list, and the foldl, corresponding to snoc-list.

14

Given e, b and (<) = a - b — b, the following equations have a unique solution

for f:[a] — b which is denoted foldr (<) e.:

flle=ee
f(z<axs)=za(f xs).

Such f takes a list as input and maintains the structure of elements but replaces
constructor []. and (<) respectively by e. and («). For example, g < (21 <[].)
becomes o < (z1 < e.). On the other hand, for snoc-list, the following equations

have an unique solution for f::[a] - b which is denoted foldl (>) es:

f []s:es
fys>y)=(f ys)v>y.

where e b and (<) b —a —b.
As an example of defining folds, to sum up a list of numbers, one can define a
function sum for cons-list as foldr (+) 0; or, for snoc-list as foldl (+) 0. Both of

them are workable, e.g. given a list [3,5, 7], we have its summation 15 by calculating

either
sum (3<(5<(7<[].)))
= foldr (+) 0 (3<(5<(7<[].)))
=3+ (b+(7+0))) =15,

sum ((([1s>3)>5)>7)

= foldl (+) 0 ((([]s>3)>5)>7)
= (((0+3)+5)+7)=15.

Unfortunately, we do not always as lucky as above example, sometimes a function
can be defined only in terms of either one of foldr and foldl. A function f is bi-

foldable if it can be folded leftwards and rightwards. That is, given a bi-foldable

15

function f, there must exists (<), (>) and e such that

f = foldr (1) e = foldl (>) e.

Unfolds

Another well-known process in functional programming is unfold. An unfold takes
a value, called its seed, and expands a list from that seed. Since there are two ways
to construct a list, we have two implementations for unfold, namely unfoldr and

unfoldl, as follows,

unfoldr 2 (a— (b,a)) - (a = Bool) - a — [b]

unfoldr g, p s = if ps then []. else x < unfoldr g, pt
where (z,t) = g.s;

unfoldl = (a - (a,b)) > (a - Bool) > a — [b]

unfoldl g, p s = if ps then [], else unfoldl g, p t >y
where (t,y) = g.5s,

where functions ¢, and g, generate a value and a new seed from an old seed, and
predicate p specifies the terminal condition of unfolding. An unfold is coinductive
and hence could generate list with infinite length. In this thesis, we demand that
our unfoldr and unfoldl generates inductive finite list instead. That it, all successive
applications of seed-generating function eventually reaches some seed so that the
terminal condition can be satisfied. There are two reasons for this restriction. The
first reason will be explained in next paragraph and the other one will be mentioned
later in Section 4.1.

Given a list generating function k, it is bi-unfoldable if there exists g., g, and
predicate p such that

k = unfoldr g, p = unfoldl g, p .

That a function is bi-unfoldable means that any list it returns must have both a
left-end and a right-end. In chapter 4, the bi-unfoldability is an essential and widely-
used property and therefore it becomes the first reason why we restrict our unfolds

to return finite lists.

16

Fusion Theorems

There are plenty of properties and theorems regarding fold that can help us to
construct or develop efficient programs. One of the most useful theorems is the
well-known fold-fusion theorem, which gives conditions under which a function f
can be fused into a fold. Technically, one can specify fold-fusion for different list
implementations such as cons-list and snoc-list, and thus we have a foldr-fusion the-
orem and a foldl-fusion theorem. In this thesis, the reader only needs to understand

the foldr-fusion theorem, so in this section we will introduce this one only.

Theorem 2.3.1. [Foldr-Fusion] Given f = foldr (<) e, for a function g there must

exists a (<) such that

g f = foldr (<) (g €)

if we have

g(x<z)=x<(g2).

It can be easily proved by an induction on the input list. The base case trivially

holds. For inductive case, we have,

g(foldr () e (x <zs))
= { definition of foldr }
g(x < (foldr (<) e xs))
{g(waz)=2<(g92)}
x < (g(foldr (<) e xs))
{ induction }
x < (foldr (<) (g e) xs)
{ definition of foldr, backwards }

foldr (<) (g e) (x<uzs).

For unfold there are also some fusion theorems. In this thesis we will use only
the most basic one - map-unfold-fusion theorem. Again, for unfoldr and unfoldl we

will have map-unfoldr-fusion theorem and map-unfoldl-fusion theorem as follows,

17

Theorem 2.3.2. [Map-Unfoldr-Fusion] Given k = unfoldr g, p, for a function f

there must exists a h, such that

map f ok = unfoldr h, p

if we have

ho=(fxid)-g..

Theorem 2.3.3. [Map-Unfoldl-Fusion] Given k = unfoldl g, p, for a function f there

must exists a h, such that

map f ok =unfoldl h, p

if we have

h. = (id x f)-g. .

The two theorems above have very similar proofs therefore we show only the
proof of map-unfoldr-fusion theorem, which can be proved by an induction on the
applications of seed-generating. The base case, p s is true for some s, is trivially

holds. The inductive case, for any seed s we reason,

map f (unfoldr g, p s)
{let (z,t)=g. s}

map [(z < (unfoldr g, pt))

= { definition of map }

f o< (map f (unfoldr g. p 1))
= { induction }
f x < (unfoldr h, pt)

= {(fat)=(fxid)eg.s=hos}
unfoldr h, p s.

18

2.3.4 List-Homomorphisms

A function h is a list-homomorphism if there exists a function (&) such that for any

lists xs and ys

h (zs+ys) = (h zs) ® (h ys)

can be satisfied. List-homomorphism provides great potential of parallelisation: to
compute h, one may arbitrarily split the input list into two sub-lists, recursively
compute them, and combine the result via (®).

But obviously, not every functions on list can be written as a list-homomorphism.
It is important to find the requirements for a function to be a list-homomorphism.
The well-known third list-homomorphism theorem [8] shows the very requirement we

need.

Theorem 2.3.4. [Third List Homomorphism| Given a bi-foldable function A, there
must exists an (@) such that & is a list-homomorphism. That is, for all zs and ys

there must exists an (@) such that

h (zs+ys)=(h zs) ® (h ys)

if for some some (<), (>) and e we have

h = foldr (<) e = foldl (>) e

19

Chapter 3

Constructing a

List-Homomorphism

The third list-homomorphism theorem provides an opportunity to construct a par-
allel program on lists if it could be specified in both foldr and foldl. A tradi-
tional challenge is finding a mechanical method to take advantage of the third list-
homomorphism theorem to construct operator (@) for a given function h such that
h can be written as a parallel program.

In following sections, we start with developing sufficient conditions for existence
of (@) by introducing the second duality theorem. Then we will apply some tech-
niques, such as inverse function and generalised fold, to form essential properties
of list-homomorphism, hoping these two different properties can lead us to clearer

ways of constructing proper (@).

3.1 Sufficient Conditions for List-Homomorphism

As one may notice, given h = foldr (<) e = foldl (>) e, the (@) is a generalised result
of both of (<) and (). One effective method to construct a (@) is synthesising a
proper (@) from the definitions of (<) and (>) [7, 9]. This attempt, however, may
take plenty of efforts, yet generate no useful result. In this section we try to develop
sufficient conditions for bi-foldability and hope these conditions can show us some
clues to find (@) with less efforts.

Given (<), (>) and e, function h = foldr (<) e is bi-foldable if we can show

20

that h (ys > z) = foldl (>) e (ys > z), which can be written in point-free style as
ho(> z)=(>z)eh. Therefore, to show h is truly bi-foldable, we reason that

he(> 2)

= { foldr-fusion, since (> z) = foldr (<) [2] }
foldr (<) (h [2])

= { foldr-fusion, backwards }
(> 2) o foldr (<) e

= { h=foldr («) e}
(>z)eh,

where two foldr-fusions are required. Fusion conditions in the first foldr-fusion

trivially holds. The second fusion, on the other hand, requires

W=z en (>2) (zag)=2a((>2))

as its fusion-conditions and thus leads us to the second duality theorem[2, Pages

128].

Theorem 3.1.1. [Second Duality Theorem| Given (<), (>) and e, foldr (<) e =

foldl () e for all finite input lists if, for all z, y and z, we have

zde=ebzAxd(yrz)=(rxay)> 2. (3.1)

Now considering that, given h = foldr (<) e = foldl (>) e, our goal is to come
up with an (@) such that h can be defined as a list-homomorphism. We now try
to find out what properties (@) must satisfy and hope those properties can show
us the way to construct (@). Starting with the definition of list-homomorphism,

h (zs+ys) = h zs@® h ys, which can also be written point-free as ho(4ys) = (®ys)-h,

21

one could easily have the following derivation,

hee (#ys)
= { foldr-fusion, since (4#ys) = foldr (<) ys }
foldr (<) (h ys)
= { foldr-fusion, backwards; see below }
(@ ys) - foldr (<) e
= { assumption: h = foldr (<) e }
(@ ys)oh.

Again, fusion conditions in the first fusion trivially holds. For the second fusion, the

fusion-conditions

hys=e@d(hys) A (zay)e(hys)=x<(y® (h ys)) (3.2)

must be satisfied. That is, (3.2) is the essential property we desire.

Constructing an (@) So far we know that, given h is bi-foldable for (<), (>) and
e, there are several useful facts. Firstly, there must exists a correctness proof for
(3.1) which involves the definition of (). Secondly, by Theorem 2.3.4, there also
exists an (@) such that h can be defined as a list-homomorphism. That is, there
also exists a correctness proof for (3.2), where we can find a definition of (@) from.
Finally, since (>) is a special case of (@), it’s not hard to see that the proof (3.2)
can be generalised from the proof (3.1). Therefore, the way to go, one can construct
a proof of (3.2) by transforming the proof of (3.1), which should be provided for
showing bi-foldability anyway, with a candidate definition of (@). More precisely,
to construct a correctness proof of (3.2), one can firstly replace each occurrences of
the out-most element in the definition of (>) by some meta-variables and thus has a
candidate definition of (®). Then, copy the steps in the proof of (3.1) and substitute
each occurrences of (>) by the meta-variable-filled definition of (®). As result, one
will obtain a meta-variable-filled correctness proof of (3.2). Those meta-variables

could be refined and determined by verifying other related properties. In the end, a

22

definition of (@) together with its correctness proof can thus be constructed.

3.2 The Steepness of a List

As an example of constructing list-homomorphism, we look at a specific problem.
A list is steep if each number is larger than the sum of the numbers to its right. For

example, [20,10,4,2,1] is steep but not [20,6,4,2,1]. One can easily define steep as:

steep = [Int] - Bool

True

steep []

steep (x < xs) = x> sum xs A steep xs .

Sadly this steep is neither a foldr nor a foldl because it drops all list-related
information and returns only a boolean value. But if one generalize steep a little bit
by making it return more than just a boolean value, it could be written as folds. To
be able to do so, we introduce capacity that is the maximum number which can be
attached on its right-end such that the list is still steep. The capacity of [15,8,4],
for example, would be 3 which is the minimum of 15— (8 +4), 8 -4 and 4. Let
(})! returns the smaller number of its two arguments, one can easily construct a

definition as follows

cap = [Int] — Int
ap[] =
cap (ys > y) = (cap ys—y) 4y

to compute capacity for a list. It not hard to find out that a list is steep if its
capacity is greater than zero. In other words, the following property, its proof is left

to Appendix A.1,

steep xs = cap 18 >0 (3.3)

must be satisfied for any list xs. So, instead of parallelising steep, our goal now is

to construct a list-homomorphic definition for cap.

n this thesis, we assume that (}) has lower associativity than (+), (=), (*), (/) and function
application.

23

To do so, we need to show that cap is bi-foldable. From the definition of cap
above, one can immediately have cap = foldl (A ¢ z > (c—2) | z) oo. For the foldr

part, however, one may write down

cap (x<xs) =x— sum zs | cap xs,

which is almost a foldr but nevertheless not one. The reason of cap cannot be a
foldr is that, the sum xs part is necessary, which, however, is not providable by
foldr.

To solve this problem, one can simply use a technique named tupling that is a
method for generalising the given function by returning more. In this case, we tuple
cap together with sum and thus have capsum xs = (cap xs, sum xs) for any xs. That

is, from the attempting of writting cap as a foldr above, one can come up with

r < (CQ,SQ) = ((fE-Sz)ng,;U-i—Sg),

and thus have capsum = foldr (<) (o00,0). Additionally, since both of cap and sum

are foldl, capsum can also be written as foldl (>) (c0,0) where

(c1,81) > z=((c1-2)) 2,81+ 2) .

Now, with (<) and (), the bi-foldability of capsum can be proved by showing that
(3.1) can be satisfied. For base case, x < (00,0) = (00,0) > x trivially holds. To show

that (z < (¢,8)) >y =2<((c,s) >y) we reason:

24

Derivation 3.2.a.

(x<(c,8))>z

= { definition of (<) }
((x=s)lc,x+s)>z

= { definition of (») }
(=) be) =) b2 se2

= { (-z) distributes over ({) }
(((x-s-2)l(c-2))lzx+5+2)

= { arithmetics }

((z-(s+2))i((c=2)lz),z+5+2)
{ definition of (<) }

x<a((c=2)1z,8+2)

{ definition of (>) }

< ((c,8)>2).

In conclusion, although we failed on showing one of steep or cap could be bi-
foldable, we do know that their generalised function, capsum, is bi-foldable. There-
fore, our goal now is to construct a definition of (&), which must exist by Theorem

2.3.4, such that capsum can be written in terms of list-homomorphism.

Constructing a (&)

As mentioned in Section 3.1, since (1) is a special case of (@), a generalized candidate
definition of (@) can be created by replacing all occurrences of z in the definition of

(>) by meta-variables as follow,
(c,8)@(c2,52) = ((c—X1) | Xa,5+ X3) , (3.4)

which must satisfy (3.2) as well.
To refine a definition of (@) from (3.4), one may start with manipulating the

inductive case. The derivation of (z < y) ® (c2,82) = < (y ® (c2,82)) should

25

contain the same derivation skeleton as Derivation 3.2.a. Therefore we copy steps

in Derivation 3.2.a and replace (>) by (&):

(z<(c,s)) ®(ca,52)

= { definition of (<) }
((z=s)lc,z+s)®(c2,52)

= { definition of (&) }
(((z=s)be)=X1) | Xp,x+ 5+ X3

= { (-X,) distributes over ({) }
(((x-s-X1)(c-X1)) | Xo, 2+ 5+ X3)

= { arithmetics }

((zr=(s+ X)) ((c—X1) | X3),x+ s+ X3)

In the next step, we would like to fold back the definition of (<), which requires

s+ X1 = s+ X3, which can be satisfied by unifying x; and x3.

(z-(s+ X)) L ((c=X1) | Xa),z+5+ X))
= { definition of (<) }
za((c-X1) | Xo, 5+ X1)
= { definition of (&) }

x<((c,8) ®(ca,82))

From the derivation, it can be inferred that (@) must have the following form:

(c,s) ® (c,82) = ((c = X1) | Xo, s+ X7)

for some X; and X,. This (@) have to satisfy the base case of (3.2), namely (cz, $2) =

26

(00,0) & (c2,52), as well. We reason:

(00,0) @ (c2,52)
= { definition of (&) }
((00 = X1) | X5,0+ X71)
= { an obvious choice would be X5 = ¢y and X = sy }

((c0—52) | 2,0+ 82)

= { arithmetics }

(c2,82)

In the end we have our definition of (@) as (¢,s) @ (¢ca,52) = ((c—$2) | €2, 5+ $2).

This (@) has got to be correct because we have the proof already.

3.3 Essential Properties of List-Homomorphism

Synthesizing an (@) with help of the second duality theorem is a very applicable
solution, however, it is also an ad-hoc method. In other words, a proof of (3.1),
which may not easy to come up with, must be provided case by case. In this section
we will try another angle - developing an essential property for (@) by applying
resumable fold and inverse function, hoping that such essential property can also
show us some useful hint to construct ().

The aim is to compute h (zs+ys). If h ys has been computed, we wish that there
exists a function f, such that h (zs # ys) = f, (ws,h ys). There may exist several
such functions, e.g. (@) (h xid), can serve the role as the f,. If h = foldr (<) e, f,

can be defined as the following function

foldrr z ((axb) > b)—> ([a],b) = b

foldrr (<) ([],e) =e
foldrr (<) (z<uzs,e) = x < (foldrr (<) (xs,e)),

we thus have h (zs+ ys) = foldrr (<) (zs,h ys) that, with cat as the uncurried (+),

27

can be presented in point-free style as

hocat = foldrr (<) (id x h) . (3.5)

Function foldrr is a variantion of foldr. It replaces each constructor in zs by (<) and
takes the pre-computed part, h ys, as its base case. Operationally one can image that
function foldrr, a resumable foldr, can resume the process of a paused-in-the-middle
h.

On the other hand, if h xs has been computed first, we wish to define f. such
that h (zs + ys) = f. (h zs,ys). Given that h = foldl (>) e, mimicking the pausing-

resuming idea above, one can define f, as a resumalbe foldl:

foldlr : ((bxa)—>b)—>(b[a]) =D
foldlr (») (e,[])
Joldlr (>) (e, ys>y) = (foldlr () (e,ys)) >y,

e

and thus have
hocat = foldlr (>)-(hxid) . (3.6)

Let h = foldr (<) e = foldl () e, we have (3.5), (3.6) and, by Theorem 2.3.4,
there must exists an (@) such that h can be defined as a list-homomorphism. In

other words, for that A we also know that
hocat=(®)o(hxh). (3.7)

Moreover, given (zs,s) such that zs = zs + ys A h zs = s for some xs and ys, all

properties we discussed above can be summed up as the following diagram,

Calculating (&)

To come up with a definition of that (@), another key concept required here is to
use right inverse to expand h. Defining h~! as a right inverse of h if for all z we have
h (h~' z) = z, which is equivalent to h = hoh~'- h. In set-theoretical model, a right

inverse must exist and may not be unique.

28

(s, ys)

cat.‘:‘-‘_‘ % cat
(id x h) :
(hxh)

Figure 3.1: List-Homomorphism Diagram

Now let us try to develop a property for list-homomorphism. Starting from the

left-hand siede of (3.7), we reason:

29

Derivation 3.3.a.

h o cat
= {35}
foldrr (<) - (id x h)
= {h=heh ol (acbx fog)=(axf)o(bxg)}
foldrr (Q)+ (id x h) - (id x h™Y) « (id x h)
= { (3.5) backwards, and (3.6) }
foldlr (>) o (hxid) o~ (id x h™') « (id x h)
= {h=hehtoh; (acbx feg)=(axf)-(bxg)}
foldlr (>)e(hxid)e(h™ xid)e(hxid)e(idxh™)e(id x h)
= {(acbxfog)=(axf)e(bxg)}
foldlr () e (hxid)o(h™* x h™") o (hx h)
= { (3.6) backwards }
hocato(h™txh™)o(hxh).

We thus have property hocat = hocato(h™' xh™t)o(hxh)=(®)-(hxh) and write

down a lemma as follows

Lemma 3.3.1. For a bi-foldable function h, let (®) = hocat-(h~! x h7!), we have
hocat=(®)-(hxh).

From now on, we know that, for a bi-foldable function h, there must exists an
(@) such that h can be written as a list-homomorphism and a (@) can be defined

as shown in Lemma 3.3.1 if a proper h~! is picked.

3.4 Parallelization with Right Inverse

Chi and Mu [5] argued that, in practical, Lemma 3.3.1 may be not as that applicable
as one might image since, in many examples, we have failed to find any simple inverse

which can lead us to the definition of (@). But it turns out that it may not be that

30

unuseful. In fact, if one can generalise the target function with enough information,
the inverse function we need can often be defined by returning a smaller list which
has the same properties of the original input list. In this section we will show how to
find a definition of (@) with two examples. As the first example, we will show that
the steep problem can also be solved by applying this inverse method. Secondly we

will derive an (@) for computing the maximum prefix sum for a given list in parallel.

Steepness

As we described in Section 3.2, a list is steep if each number is larger than the sum
of the numbers to its right. Clearly steep can not be written as a fold because of the
lack of information. So we tuple function cap, which computes the bound of input
list, and function sum as an alternative specification of steep, namely steep = (> 0)-
fstecapsum. Function capsum::[Int] — (Int, Int) can be defined by foldr (<) (o0,0)
and foldl (>) (o0,0) where

x < (c,82)=((x—-82))ca,x+82),

(c1,81) > z=((c1—2) L 2,81+ 2) .

To pick an inverse for capsum, one can assume the inverse function will always
return a list with two elements and the cap is decided by the difference between these

two elements. That is, one may pick the inverse function as capsum=(c,s) = [a,b]

31

where a = %€ and b = %¢?. Now, from lemma 3.3.1 we reason:

(c1,51) @ (ca,82)

{lemma 3.3.1 }

capsum (capsum™ (cy, s1) + capsum™ (ca, 52))

{ let (a1,b1) = (242,259 and (ag,by) = (252, 252) }
capsum [ay,by,az, bs]

{ let z < zs =[ay, by, as,bs]; capsum as a foldr }

a; < (capsum zs)

{ let (¢, s) = capsum zs; definition of (<) }

((a1 - s){c,ar+5)

For deriving further, one may want to directly expend s and ¢ by their definition.
But that will lead us to a very tricky derivation which is not the point here. So,
instead of just expending s and ¢, we use three properties below to help us to

continue our derivation.

§=81+8—ay, (38)
(a1=35) =(c1-s2), (3.9)
(c1-s2)lc=(c1-52))ca. (3.10)

Proving the properties above is relatively less important here so we leave it to

*Please notice that, to solve capsum™(c,s) = [a,b] for some (a,b), taking (a,b) = (%<, 2:¢) is
not the only solution. In fact, this inverse function is designed under an assumption that ¢ = a —b.
If one takes another assumption, namely ¢ = b, then we have another definition of inverse function

by taking (a,b) = (s - ¢,¢). This second solution will lead us to the very same (@) as the first one.

32

Appendix A.2. Now, one can continue the derivation as,

((a1-8){c,ar+5)
= { by (3.8), (3.9) and (3.10) }
((c1=52) b ca,a1 + (81 + 82— aq))

= { arithmetic }

((e1—s2) L ca, 81+ 52)

This is the very same definition of (&) we discovered in Section 3.2!

Maximum Prefix Sum

As the second example, considering a list of natural numbers, the maximum pre-
fix sum function, mps :: [Int] — Int, returns the biggest summation of each prefix
of it. Let (1) returns the maximum of its two arguments and has the same asso-
ciativity as (}), an example of mps could be mps [1,3,-5,1,-2,8] = (mps []) 1
(mps [1])1 (mps [1,3]) t (mps [1,3,-5])* (mps [1,3,-5,1]) 1 (mps [1,3,-5,1,-2])1
(mps [1,3,-5,1,-2,8]) =011141-1101-216 = 6. This function can easily be
defined in terms of foldr, but not foldl. To overcome this problem, tupling sum
with mps is required. Let mpsum = (mps, sum), we have mpsum = foldr (<) (0,0) =

foldl (») (0,0) where

r <4 (m,s)=(01(zx+m),x+5s),

(m,s) > z=(m1t(s+2),s+2) .

Notice that mps returns at least 0 since every list has [| as one of its prefixes.
Assuming mpsum zs = (m,s) for list zs, we then know that m > 0 and m > s.

The aim now is to define (a,b) in terms of m and s such that mpsum [a,b] = (m, s).

Immediately, one can take b = s —a. And then, since mps [a,b] =01a?ts=m and

m >0 Am > s, an obvious choice is taking a = m. As result, we can now define that

33

mpsum=t (m,s) =[m,s—m], and then with Lemma 3.3.1 we derive,

(m1,s1) ® (Mo, S2)

{lemma 3.3.1 }

mpsum (mpsum™" (my,s1) + mpsum™" (ma, s))

{ definition of capsum-! }

mpsum [mq, s1 — My, Mo, So — M|

{ let (m,s) = mpsum [s; —myi,ma, S —ma]; mpsum as a foldr }
(01 (my +m),m +s)
= { mpsum as a foldr again }
(01 (my+ (01 (s;—=my+mg))), my +S1—my + S2)
= { (x+) distributes over (1) }
(01 mq 1 (my+s1—mq +mz), my + 81— mq + S2)
= { arithmetic }
(01 mq 1 (s1+m2),s1+ S2)
= {since m; >0}

(ml T (s1+ mz), S1+ 83)

Finally, we have a list-homomorphic definition of mpsum with (@) defined by (m;, s1)®

(mg, 82) = (m1 T (81 + mg), S1 + 82).

3.5 Limitation

So far in this chapter we have introduced two approaches to construct a list-homomorphism.
On the one hand, with the sufficient conditions we developed in Section 3.1, one
can easily construct a well definition of (@) for list-homomorphism if a proof of
bi-foldability can be provided. On the other hand, with the essential property we
discovered in Section 3.3, an (@) can be simplified if a proper right inverse is chosen.
They both serve as good methods for constructing list-homomorphism with its cor-
rectness proof from a given function. However, both of them also have limitations.

First of all, both of methods in this chapter require the bi-foldability, namely,

34

both (<) and (>) are pre-defined and known. But, in most cases, only one of them
can easily be produced. The other one would be rather hard to define. For example,
the function mps we mentioned in last section can be easily defined in terms of foldr
but not foldl due to the lack of necessary information. In fact, the required efforts
in finding proper definition for both of (<) and (>) are often very considerable.

For the second approach, even if (<) and (>) are provided, one still need to
pick a proper right inverse. The tricky part is, as one can see in Section 3.4, where
capsum~" and mpsum~! are both designed, picking a right inverse may not be a
simple task. In fact, it usually requires us to take several attempts on designing the
very h™! we need.

The bottomline is, although we are thirsty on a purely syntactical mechanism
to construct a list-homomorphism by using only algebraic manipulations. In the
end, it turns out those methods still require some semantical operation in different

degree.

35

Chapter 4

The Duality of Third

List-Homomorphism

As beautiful as the third list-homomorphism theorem is, considering the duality
between fold and unfold, one may naturally wonder whether there exists a dual
theorem? The answer is yes! In this chapter we will discuss a dual theorem and

how to derive it from Theorem 2.3.4 by using algebraic manipulations only.

4.1 Dualising the Third List-Homomorphism The-
orem

The third list-homomorphism theorem describes requirements of being a list-homomorphism.
Similarly, the dual theorem of third list-homomorphism theorem, if it exists, should
describe some requirements of being a parallel unfold. That is, before starting to
develop that dual theorem, we need to find out what a parallel unfold is by revealing

its most essential properties.

The very first difference between sequential unfold and parallel unfold is as fol-
lows. In sequential unfold, only one sub-list will be generated within each step, thus,
the seed-generating function will always spawn merely one single seed. In parallel
unfold, on the other hand, n sub-lists will be generated in each step, therefore the
seeds-generating function must returns n seeds in each step. In this thesis, we discuss
only the situation of n = 2 since properties for cases when n > 3 can be developed in

ways similar to that when n = 2.

36

Considering that we are looking for a dual theorem regarding list-homomorphism,
the parallel unfold must satisfy the “reversed” properties of list-homomorphism.
More precisely, it must satisfy the properties corresponding to the patterns in list-
homomorphism, namely empty-list, singleton-list and concatenation-of-two-sub-lists.

Let function g, be a two-seeds-generating function and g, is a value-generating
function. A list-generating function k is a list-unhomomorphism, denoted by k =

unhom g g, p1 po, if k satisfies:

kslps =[]
k‘8|p25 :[gvs]
ks|(tu)« gy s=Fkt+ku,

where the predicates p; and py present terminal conditions corresponding to empty-
list case and singleton-list case respectively.

In this thesis, we view unfolding as the relational converse of folding, which is
the other reason why we restrict our unfoldr and unfoldl to return finite lists, and
a list-unhomomorphism is therefore the relational converse of a list-homomorphism.
In other words, for any unfolding function, we demand that successive applications
of its seed-generating functions eventually produce seeds which satisfy its terminal
condition. This restriction also makes list-unhomomorphism we discussed produce
only finite list and hence successive applications of g, will eventually produce seeds
which satisfy either p; or ps.

Given a bi-unfoldable function k, namely k = unfoldr g, p = unfoldl g, p for some
g4, g- and p. To establish a dual theorem of the third list-homomorphism theorem,
the aim is to show that k is a list-unhomomorphism as well. We need to find out
some proper ¢, p1 and py by using g., g. and p such that k = unhom g, p1 pa.
For predicates p; and py, a simple choice is to pick p; = p, po = posnd - g, and
gy = fstog,. The real challenge here is to come up with a g,. The way to go, instead
of directly proving the existence of g, we apply the same method in Section 3.3 to
develop essential properties of g, which, if satisfied, guarantees the existence of a

list-unhomomorphism.

37

4.2 Essential Properties of List-Unhomomorphism

Conceptually, in Section 3.3, we firstly fold a list by one kind of implementation of
folding, say foldr, then we stop that folding process in the middle and “switch” to
the other implementation, foldl, to finish the rest folding process. In that case, we
need a resumable fold such that the whole folding process can be finished. Following
this idea, we also want to pause an unfolding process in the middle and resume it
by another unfolding. To make this possible, a “pausable” unfolding is required.
Such pausable unfolding returns an intermediate list together with a seed. Taking
unfoldr as an example, the intermediate list should be a prefix of the final list and
the corresponding suffix should be able to be generated by the returned seed. Please
notice that a pausable unfolding is non-deterministic because an unfolding process
could be paused in any position. This is the place where the relational derivation
can help us.

Before we just jump into the definition of pausable unfolding, let’s get familiar
with relations by taking an exercise. Considering the following situation, given a
bi-unfoldable k and an initial seed s, there must exist a list zs = £ s and, since our
goal is to parallelise k£, we can arbitrarily cut zs into two lists, say zs and ys. We

can easily come up with the following property
(zs,ys) « (cat® o k) s=3zs.k s=25 Axs+ ys = zs .

This property is quite easy to understand and, in fact, is very helpful for under-
standing some properties we will introduce later.

Now, let’s define the pausable unfolding with relation! Given k = unfoldr g, p, a
relation r, is a pausable unfoldr, denoted by unfoldrp g, p, if given s as an initial

seed we have

(zs,u) v r,s= (zs=[]Ans=u)

v (3z, s’ xs=x<xs' A (U =p u' Ag,u = (zu) A(xs’ u') o, s)) .

That is, unfoldrp g, p s relates s to a pair of zs, a prefix of k£ s, and a seed u, which

the corresponding suffix can be generated from. Symmetrically, for k = unfoldl g, p

38

and s as an initial seed, a relation r, is a pausable unfoldl, denoted by unfoldlp g, p,

if

(t,ys) < r.s= (ys=[]rs=1t)

v Qys iy ys=ys' sy n (3t -ptiag t=(Ly) A ys") v s)) .

That is, unfoldlp g, p s relates s to a pair of ys, a suffix of k£ s, and a seed t, which
the corresponding prefix can be generated from.
Based on these two definitions above and given k = unfoldr g, p = unfoldl g, p,

one can immediately have the following equations,

cat® o k = (id x k) o unfoldrp g, p; (4.1)

cat® ok = (k x id) - unfoldlp g, p, (4.2)

by applying k to seed t and u. The commutative diagram shown in Figure 4.1 can

help us to get an intuition of properties above.

(25, ys)

(id x k)
(kx k)

(zs,u) ke x id) (t,ys)

unfoldrp g, p unfoldlp g. p

9o

S

Figure 4.1: List-Unhomomorphism Diagram

Recall that our goal is to apply the same way as Section 3.3 for discovering

39

essential properties of g,. In other words, we want to mimic Derivation 3.3.a to come
up with a similar derivation for list-unhomomorphism, where an essential property
of g, can be found out. Interestingly, Derivation 3.3.a is started with (3.7), which
says that two particular paths from (zs,ys) to s in Figure 3.1 are equal. So, it
is natural that we want a property what shows two corresponding paths from s to
(zs,ys) in Figure 4.1 are also equal. That is, given k = unfoldr g, p = unfoldl rwdg p,

we have

cat® ok = (kxk)og,. (4.3)

Now, starting with cat®- k one can derive that

Derivation 4.2.a.

cat® o k
= {@D}

(id x k) o unfoldrp g, p
= { k=Ekok°ok, product functor }

(id x k) o (id x k°) - (id x k) o unfoldrp g, p
= { (4.1) backwards, and (4.2) }

(id x k) o (id x k°) o (k x id) o unfoldlp g, p
= { k=kok°ok, product functor }

(id x k) o (id x k°) o (k x id) o (k° x id) » (k x id) » unfoldlp g. p
= { product functor }

(kxk)o(k°xk®)o(kxid)eunfoldlp g, p
= { (4.2) backwards }

(ke x k) o (k° x k°) o cat® o k

We thus have g, = (k° x k°) < cat®-k! But wait! The g, we want should be a function
rather than a relation like (k° x k°) - cat® - k. So the property we need here should
be g, € (k° x k°) o cat® - k.

In the end, summing up everything we discussed so far, we will obtain the dual

40

theorem of the third list-homomorphism theorem as follows,

Theorem 4.2.1. Given a bi-unfoldable function k for some g., g, and p, there must
exists a function

Go € (K°x k°)ocat® ok

such that k = unhom g, (fst-g.) p (posnd-g.).

Calculating g,

Although (k°x k°). cat® -k looks very lovely, unfortunately, it is not easy to simplify.

However, starting from it, one can derive that

(k° x k°) o cat® - k
= {VvS.5=5nS}
((k° x k) o cat® > k) A ((k° x k°) o cat® o k)
= {(41) and (4.2) }
((k° x k°) o (id x k) » unfoldrp g. p) N
((k° x k) = (k x id) - unfoldlp g. p)
= {(fxg)e(Gxk)=(fejxgek)and k°ok=id }
((k° x id) » unfoldrp g. p) n ((id x k°) = unfoldlp g. p).

That is, we now have both of the following properties,

9o € ((K° x id) o unfoldrp g. p) ;
9o € ((id x k°) o« unfoldlp g, p) .

Let g, s = (t,u) for seeds s, t and wu, the first property says that, (¢,u) must be
related by s by relation (k° x id) - unfoldrp g, p. In other words, we have

(t,u) « ((k° xid) - unfoldrp g, p) s.

41

Similarly, for the second property above, we have that
(t,u) « ((id x k°) - unfoldlp g, p) s.

Putting everything so far we have together, the following lemma will show itself!

Lemma 4.2.2. Let k be a bi-unfolable with given g., g. and p, the function g, is a
subset of (k° x k°) o cat® - k if, for all s, we have g, s = (t,u) such that

(k t,u) ~ unfoldrp g.p s A (t,k u) « unfoldlp g, p s.

From now on, we will use Lemma 4.2.2 to help us to calculate g.

4.3 Basic List Generating Functions

Lemma 4.2.2 shows a hint for constructing a list-unhomomorphism from a bi-
unfoldable function. However, writing g,, as a real function still requires some efforts
and is not entirely syntactical. To help readers to get familiar with the way of build-

ing a proper g, we show two of the most elementary examples in this section.

Example: map

The well-known function map, which applies the given function to each element in
the input list, is widely used in plenty of applications. It is also known on being able
to be written as unfoldr and unfoldl with g, (z<zs) = (f x,xs), g. (ys>y) = (ys, f y)
and p = null. Given function f, the function map f can obviously be written as a
parallel program.

By lemma 4.2.2, to construct a g, such that map f is indeed a list-unhomomorphism,

we need to find out sufficient conditions of both of following memberships:

(k ts,us) <« unfoldrp g, p ss

(ts, k us) <« unfoldlp g, p ss,

where (ts, us) = g, ss. Starting with the first membership, for ss = [], no requirement

42

will be produced. For non-empty ss, we can reason

(k ts,us) <« unfoldrp g, p ss
= {let s’<ss' =55}
(k ts,us) = ([],ss) v
(k ts,us) « ((((f §") <) xid) o unfoldrp g, p) ss’
< { for non-empty ts, let t' <ts" = ts }
(ts =[] Aus=ss)v
((f) <k 15", us) < ((((f ") <) xid) o unfoldrp g. p) ss'
< { induction }
(ts=[]nAnus=ss)v(ft'=fsnts+us=ss")

= ts #+ us = ss

For the second membership, one will obtain the very same condition as ts + us = ss
from another derivation.
That is, to parallelly map f to a list, we splits the input list ss into two and

applies map f to them recursively. In other words, let ss = ts # us, we have

map f (ts+ us) = (map f ts)+ (map f us) .

This equation is valid but not form a definition. As a program map f might not
terminate since, for exmaple, ts could be empty and the size of us equals that of ss.
To avoid this situation, one may construct a terminating definition by enforcing that
neither ts nor us could be empty. We thus have map f = unhom g, g, p1 p2 where
Jo 88 = (ts,us) for some non-empty ts and us such that ts+ us = ss, g, = fsteg, = f,
p1 =p = null and py = posnd-g, is the predicate that generates a singleton list. Recall

the definition of list-unhomomorphism, one can come up with a easy-to-understand

43

definition

map f[]=1]
map f [s]= [fs]

map f (ts+us)|ts#[]Aus#[]= map f ts+ map f us.

Example: fromTo

In the last example, the sufficient condition of two memberships are identical. But
not every function has that kind of luck. For example, the function fromTo takes a
pair of numbers (m,n) and returns a list of numbers from m to n. The fromTo is

obviously a bi-unfoldable function with

p (m,n)=m>n
g. (myn)| m<n=(m,(m+1,n))

g. (myn)| m<n=_((mmn-1),n).

Assume that ((7,7),(a,b)) = g, (m,n). To construct g, the aim is to develop

sufficient conditions of

(fromTo (i,7),(a,b)) « unfoldrp g, p (m,n)

((2,7), fromTo (a,b)) < unfoldlp g. p (m,n) .

Taking the first one as an example, the derivation itself would be an induction on

the difference between m and n. For m > n, there produce no requirement. For

44

m <n we reason,

(fromTo (i,7), (a,b)) « unfoldrp g, p (m,n)
= {form<n, g. (m,n) = (m,(m+1,n)) }

(fromTo (i,7), (a,b)) = ([], (m,n)) v

(fromTo (i,5),(a,b)) = (((m <) x id) - unfoldrp g, p) (m+1,n)
<= (i>jra=mAab=n)v

(i< fromTo (i+1,7),(a,b)) « (((m<) x id) - unfoldrp g, p) (m+1,n)
< { induction }

(i>jra=mnab=n) v (i<jri=mab=nrj+1l=a)

=i<jAnt=mAb=naj+l=a.

We thus have ¢ < jAi = mAb=nAj+1 = a as the sufficient condition for
the first membership. On the other hand, for the second membership, namely
((2,7), fromTo (a,b)) € unfoldlp g. p (m,n), one can easily calculate another set of
sufficient condition —a < bAt=mAb=nAj+1=a. In the end we have a requirement

of g, as

(i<jni=mab=naj+l=a) A (a<bri=mAb=nArj+1l=a)

=m<jAj+1l<n.

That is, given (m,n), to parallelly construct a list from m to n, we split the
range of m to n into two parts and recursively generate sub-lists from those two

sub-ranges. Namely, picking a j such that m < j A (j + 1) <n holds, we have

fromTo (m,n) = fromTo (m,j) + fromTo (j+1,n)

This equation can seve as the definition of fromTo if m >n. We thus have map f =

unhom g. g, p1 pa where g, (m,n) = ((m,5),(j+1,n)) for some j such that m <
JA(G+1)<n, g,=fstog,=(+1), pr=p=(>) and py = posnd-g, = (==). Again,

45

fromTo can also be written as

fromTo (m,n)| m>n=[]
fromTo (m,n)| m==n=[m+1]

fromTo (m,n) | m<n=fromTo (m,j)+ fromTo (j+1,n).

4.4 Prefix Sum via List-Unhomomorphism

Given a list of numbers xs, the prefiz sum of xs, denoted by ps zs, is a list of
summation of each prefix of zs. In this section, we will take prefix sum as another
example of constructing a list-unhomomorphism.

Let’s start with calculating prefix. Assume that inits :: [a] - [[a]] returns a
list of all prefixes of the input list. Please notice that, for the reason that we want
to compute prefixes with unfolding, the prefixes we talk about here includes only
non-empty prefixes'. That is, for example, inits [1,2,3] returns [[1],[1,2][1,2,3]]
rather than [[],[1],[1,2][1,2,3]].

It is not hard to find out that inits can easily be defined as a unfoldl as follow
inits ys = unfoldl (X (ys>y) = (ys,ys >y)) null ys .

For another direction, however, things become a little more complicated. The seed
used here is a list, which means in each step of unfoldr a seed will be destructed into
a head and a tail. Then the tail will be picked as a new seed. That is, unfoldr drop
the information of the left-most element in each step. This makes it impossible to
compute inits by using merely an unfoldr, at least not directly. To overcome this
problem, one could simply generalise inits with an accumulating parameter, which
is another technique for function generalisation with extra information. Comparing
with tupling, which is to generalise with an additional computation, accumulating
parameter is generalising with an additional growable data structure. It is a very
useful technique especially when one need to record information about what has

already been seen.

In the maximum prefix sum example in Section 3.4, we compute prefixes with the empty list
since we need mps returns at least 0.

46

The generalised inits can be written as an unfoldr as follows

inits zs = unfoldr (A (a,x<xs) - (a>xz,(a>x,2s))) (null-snd) ([], zs) .

Therefore, we define a function perfiz = ([a], [a]) = [[a]] by

prefic (zs,zs) = map (zs+#) (inits xs)

which satisfies inits xs = perfiz ([], zs). This prefiz can be written as a unfoldr g, p

and a unfoldl g, p where

p = null-snd
9. (ws,x <xs) = (ws >z, (ws >x,x8))

g» (ws,ys>y) = ((ws, ys), ws + (ys >y))

and thus a list-unhomomorphism. The domain of g, and g, are pair whose second
components are non-empty list.

Back to the prefix sum problem, taking

map sum o prefix

as the specification of prefix sum, the real challenge is, can we come up with a
definition of list-unhomomorphism for map sum - prefix?

To solve this problem, one may have two ways to go: the first and straightforward
way is, since prefiz are already bi-unfoldable, one can apply map-unfold fusion to
obtain another bi-unfoldable function then construct a proper g, for it. The alter-
native approach will be slightly tricky. Considering the characteristics of map and
list-unhomomorphism, it is no surprising that there is a map-list-unhomomorphism
fusion theorem. Therefore, as an alternative approach, one can constrcut a g, for
prefix then try to fuse map sum to it. In the rest of this section, we will show both

approaches.

47

fusion-first

Given bi-unfoldable prefir with g., g. and p defined as above. The main idea of
the first approach is to apply map-unfold fusion to construct map sum s prefiz bi-
unfoldable such that one can define it as a list-unhomomorhpsim.

In fact, since the map-unfold fusion theorem requires nothing of the mapped
function, one can derive with a general specification. Let prefizf = map f - prefiz
for any function f. By map-unfold fusion theorem we have prefizf = unfoldr ¢’ p' =
unfoldl g’ p" where p' =p, ¢ = (f xid)-g, and g’ = (id x f) o g,. The aim now is to
construct a definition of g} such that prefizf = unhom g, g, p} py. where g; = fst-g’,
py=p" and py =peosnd - g..

Assume ((wsy, ts), (ws,, us)) = g, (ws, ss) for any non-empty ss, we have

(prefief (wsi,ts), (ws,, us)) < unfoldrp g p (ws, ss)

((wsy, ts), preficf (ws,,us)) « unfoldlp g. p (ws,ss) .

The base case, ss is a singlton list, trivally holds. For inductive case, since both of
above memberships will produce the same requirement, we therefore show only the

derivation of first membership as follows,

(prefiaf (s, ts), (wsy, us)) < unfoldrp g, p (us, 55)
= {let s'<ss"=ss}

(prefizf (wsy,ts), (ws,,us)) = (ws,s" <ss")v

(prefiaf (usi, 1), (wsy, u5)) = ((((f (ws >) <) x id) < unfoldrp g, p) (ws > s',55')
< { for non-empty ts, let t' < ts" = ts }

(ts=[]Aus=ssAws,=ws)V

(F (s > 1)) < prefiaf (wsy> 1/, 15"), (s, us))

« ((((f (ws > ")) <) x id) - unfoldrp g, p) (ws>s',ss")

< { induction }

(ts=[]Aus=ssAws,=ws)V

(f (ws;>t")=f (ws>s")Aws; >t =ws>s Ats' # us =ss" ANws, = (ws; >t") + ts")

= WS = WS A LS H uS = 8§ A WS, = ws; # ts

48

Taking f = sum, one can easily write down a parallel function, denoted by ps, which

computes a prefix sum for its input list, as follows

ps (ws,[1) = []
ps (ws,[s]) = [sum (ws>s)]

ps (ws,ts # us) = ps (ws,ts) + ps (ws + ts, us) .

constructing-g,.-first

Given bi-unfoldable prefixr with g., g, and p defined as above, the other approach is
constrcuting a g, for prefiz first followed by fusing map sum to that paralle prefiz.
Assume ((wsy, ts), (ws,, us)) = g, (ws,ss) for any non-empty ss, from Lemma

4.2.2, we know that

(prefiz (wsy, ts), (ws,, us)) « unfoldrp g, p (ws, ss)

((wsy, ts), prefix (ws,, us)) <« unfoldlp g, p (ws,ss) .

They both produce the same requirements, we therefore show only the derivation of

the first membership.

(prefiz (wsy, ts), (ws,, us)) « unfoldrp g, p (ws, ss)
= {let s'<ss'=ss}
(prefix (wsy, ts), (ws,, us)) = (ws,s" < ss") v
(prefiz (wsy, ts), (ws,, us)) « ((((ws > s") <) x id) o unfoldrp g, p) (ws>s',ss")
< { for non-empty ts, let t' <ts" =ts }
(ts=[]Aus=ssAws,=ws)Vv
((ws; >t") < prefiz (ws;>t',ts"), (ws,, us))
« ((((ws > s") <) xid) o unfoldrp g, p) (ws>s',ss")
< { induction }
(ts=[]Aus=ssAnws.=ws) Vv (ws; >t =ws>s Ats" 4 us =ss" Anws, = (ws;>t") + ts')

= wWS; = WS A TS H# us =88 Aws, = ws; + ts

49

Now one can define that g, (ws, ts+ us) = ((ws, ts), (ws + ts, us)) and thus have

prefic = unhom g go P1 P2

where g, = fstog., p1 = p and py = posnd-g,. With this definition, now the goal is trying
to fuse map sum to prefiz. To do so, let’s introduce the map-list-unhomomorphism

fusion theorem proved in Appendix A.3.

Theorem 4.4.1. [Map-List-Unhomomorphism Fusion] Given a list-unhomomorphism

k = unhom g, g, p1 P2, we have
map f -k =unhom g} g pl p}

if gb = fog, and gl = g, Apl = p1 ApL = po.

Taking f = sum, by Theorem 4.4.1 we finally have parallel prefix sum, denoted
by ps, as follows

ps = map sum o unhom gs g, p1 P2 = unhom g, (sum g,) p1 pa -

This equation can easily be expanded to the definition we revealed in the fusion-first

approach.

4.5 Discussion

In this chapter we have shown how to construct a list-unhomomorphism for a bi-
unfoldable function k& with the help of Lemma 4.2.2. The method we introduced in
this chapter provides a very helpful derivation framework such that one can construct
a parallel list generating function together with its correctness proof. Still, there are
some shortcomings that are worthwhile to bring up and discuss.

First of all, even we have Lemma 4.2.2, there is still some human effort required
to come up with a real definition of g,. That is, this method is not as syntactical as
we were looking forward. Then, as one may noticed, this method basically provides

only a way to construct a correct parallel program but no guarantee on its efficiency.

20

For example, the function ps we shown in Section 4.4 is inefficient because we have
to compute sum for each prefix.

Although this method might not be a realistic way to directly translate a list gen-
erating function into its parallel version, from what we can see in Section 4.4, it can
still helpful in a way of program derivation. In Section 4.4 we constructed a parallel
program for prefiz sum by deriving a composition of two list-unhomomorphisms,
map f and inits. Therefore, even we can not have a syntactical way to parallelise a
list generating function, we can still derive and build a parallel program by applying

list-unhomomorphism related theorems and properties.

51

Chapter 5

Conclusion

In this chapter, we give a summary of this thesis, and point out some possible future

work.

5.1 Contributions

The capability of parallel programming is important for programmers nowadays.
But it takes lots of experience and efforts to write a parallel program. In this thesis,
we try to summarise several methods, as syntactical as possible, to make developing
parallel programs easier and faster. First of all, we use formal program construction,
more precisely, program derivation, as our developing method. This gives us the
capability of manipulating program’s definition as mathematical structure and hence
provides correctness as the same way in algebraic calculation. Then, to be able to
derive and calculate parallel programs, a formal model is required. Therefore we use
a mathematical structure named homomorphism to model parallel programs such
that we can calculate and derive a parallel definition from its specification. We have
also restricted ourselves to focus on folding or unfolding lists.

Based on the third list-homomorphism theorem, we have summarised two meth-

ods for constructing parallel folding programs.

e After studying some proofs, we noticed the similarity between the proof of bi-
foldability and the proof of list-homomorphism. As result, we have developed
a mechanism to syntactically derive a definition of list-homomorphism for f

from the proof of bi-foldability. This is the first method we presented in Section

52

3.1.

e The second method presented in Section 3.3 says that, for a bi-foldable function
f, one can also construct a list-homomorphic definition if a proper right inverse
of f can be chosen. We used to think that an inverse is not easy to find, or,
even if we have (@) constructed, we cannot find any simple inverse to explain
its discovery. But it turns out that this inverse-based method may not be that
hard to apply. In fact, it seems there is an approach to construct an inverse

by algebraic calculation.

Dually, we have also shown a method to construct parallel list-generating pro-
grams. For any bi-unfoldable function, to construct its list-unhomomorphic defini-
tion means that there must exist a seeds-generating function g, such that these two
memberships in Lemma 4.2.2 can be satisfied. Therefore, the way to go is to refine
the conditions derived from those two memberships and thus one can construct a

list-homomorphic definition. Our contributions are,

e We use another notation for represneting a relation and make it looks much
like a function. This makes our derivations and properties in Section 4.2 and

4.4 much friendly for reader who is not familiar with relation.

e Moreover, based on that notation, we also developed a diagram, Figure 4.1,
to show the relationships among input data, output data and immediate data.
Besides, this very same diagram can also show all properties we used and
hence helps reader to get an intuition. Additionally, we also found out that
if we “revert” the arrows in Figure 4.1, we get a diagram that captures all

mathematical properties for list-homomorphism.

5.2 Future Work

Besides limitations and shortcomings we mentioned in this thesis, there are still

improvements that can be done.

e In this thesis we model only the linear structure, however, there are tons of
other data structures used in real world. So the very first improvement is to

generalise the methods to other data structures.

23

e Moreover, as one can see, Figure 3.1 and Figure 4.1 are nothing but the same
diagram with opposite arrows. It is natural one would wonder: does there exist
a general diagram where some joint properties might be able to be found? and,
are there other diagrams for other data structures? Both of these questions

opens the door to another researching topic.

e In Section 4.4, we introduced and appied the map-list-unhomomorphism fusion
theorem. This enlighten us that there may be other properties related to
list-homomorphism or list-unhomomorphism that can be useful in the way of

deriving a parallel program from its specification.

e Homomorphism is a general mathematical structure and we used it for model-
ing the ideal parallel programs. Interestingly, there is an assumption for using
it — those parallel programs will be executed on a system where processes are
independent of each other. It is a wonderful assumption if we only discuss in
a purely functional world. However, if we change our point of view from func-
tional programming to distributed system, it not hord to find out that, the
distributed system a homomorphism described is quite limitative because that
assumption leads us the lack of communication among instances or processes.
This brings up another opportunity of improvement. That is, to increase the
suitability of homomorphism-based methods, different homomorphism-liked
mathematical structures, and its mathematical properties, are required for
different distributed systems. As an example, the BSP-homomorphism [13] is

a mathematical structure designed for the bulk synchronous parallel model.

o4

Bibliography

[1]

[6]

BAackHOUSE, R. Program Construction: Calculating Implementations from

Specifications. Wiley, 2003.

BirD, R. Introduction to Functional Programming using Haskell, second ed.

Prentice Hall, 1998.

BIRD, R. S. An introduction to the theory of lists. In Proceedings of the NATO

Advanced Study Institute on Logic of programming and calculi of discrete
design (New York, NY, USA, 1987), Springer-Verlag New York, Inc., pp. 5
42.

BirD, R. S., AND DE MOOR, O. Algebra of Programming. Prentice Hall

International series in computer science. Prentice Hall, 1997.

CHI, Y.-Y., AND Mu, S.-C. Constructing list homomorphisms from proofs.

In Proceedings of the 9th Asian conference on Programming Languages and

Systems (Berlin, Heidelberg, 2011), APLAS’11, Springer-Verlag, pp. 74-88.

Emorto, K., FISCHER, S., AND HU, Z. Generate, test, and aggregate - a
calculation-based framework for systematic parallel programming with mapre-

duce. In ESOP (2012), pp. 254-273.

GESER, A., AND GORLATCH, S. Parallelizing functional programs by gener-

alization. J. Funct. Program. 9, 6 (Nov. 1999), 649-673.

GIBBONS, J. The third homomorphism theorem. Journal of Functional

Programming 6, 4 (1996), 657-665.

95

[9]

[11]

[12]

[13]

[14]

[15]

[17]

GORLATCH, S. Systematic extraction and implementation of divide-and-
conquer parallelism. In PLILP (1996), H. Kuchen and S. D. Swierstra, Eds.,
vol. 1140 of Lecture Notes in Computer Science, Springer, pp. 274-288.

Hu, Z., IwaAsAKkl, H., AND TAkKEICHI, M. Construction of list homomor-
phisms by tupling and fusion. In MFCS (1996), W. Penczek and A. Szalas,
Eds., vol. 1113 of Lecture Notes in Computer Science, Springer, pp. 407-418.

HucuEs, J. Why Functional Programming Matters. Computer Journal 32, 2
(1989), 98-107.

KALDEWALJ, A. Programming: The Derivation of Algorithms. Prentice Hall

International Series in Computer Science. Prentice Hall International, 1990.

LEcAux, J., Hu, Z., LOULERGUE, F., MATSUZAKI, K., AND TESSON, J.
Programming with bsp homomorphisms. In Euro-Par (2013), F. Wolf, B. Mohr,
and D. an Mey, Eds., vol. 8097 of Lecture Notes in Computer Science, Springer,
pp. 446-457.

Liu, Y., EmMoTo, K., AND HU, Z. A generate-test-aggregate parallel pro-
gramming library: systematic parallel programming for mapreduce. In PMAM

(2013), pp. 71-81.

Liu, Y., Hu, Z., AND MATSUZAKI, K. Towards systematic parallel program-
ming over mapreduce. In Euro-Par (2) (2011), E. Jeannot, R. Namyst, and
J. Roman, Eds., vol. 6853 of Lecture Notes in Computer Science, Springer,

pp- 39-50.

MORIHATA, A. A short cut to parallelization theorems. In ACM SIGPLAN

International Conference on Functional Programming, ICFP’13, Boston, MA,

USA - September 25 - 27, 2013 (2013), pp. 245-256.

MORIHATA, A., MATsuzaki, K., Hu, Z., AND TAKEICHI, M. The third

homomorphism theorem on trees: downward & upward lead to divide-and-

conquer. In POPL (2009), Z. Shao and B. C. Pierce, Eds., ACM, pp. 177-185.

o6

[18] MoriTA, K., MORIHATA, A., MATSUZAKI, K., Hu, Z., AND TAKEICHI, M.
Automatic inversion generates divide-and-conquer parallel programs. In PLDI

(2007), pp. 146-155.

[19] Mu, S.-C., AND MORIHATA, A. Generalising and dualising the third list-

homomorphism theorem: functional pearl. In Proceedings of the 16th ACM

SIGPLAN international conference on Functional programming (New York,

NY, USA, 2011), ICFP "11, ACM, pp. 385-391.

o7

Appendix A

Missing Proofs

A.1 Property (3.3)

The correctness of steep = (> 0)ocap can be shown by an induction on the input list.

For the base case, we show that,

steep [] = True = 00 >0

= cap o >0.
For inductive case, we reason,

steep (< xs)

{ definition of steep }

T > sum TS A steep xs

{ induction }

x> sum xs A cap xs >0

{ arithmetic }

x—sum xs>0A cap xs >0

{m>inn>i=(mln)>i}
(x = sum zs | cap zs) >0
= { definition of cap }

cap (x<zs)>0.

o8

A.2 Properties (3.8), (3.9) and (3.10)

Given (c1,s1) = capsum xs and (co,$2) = capsum ys for some xs and ys. By

1

the definition of capsum™ we given in Section 3.4, let (ai,by) = (252,52) and

(az,by) = (552, 252) then we have the following equations.

S1+Cp S1—C1

sum [a1,b1] =a; +by = 5 + 5 =5 (A.1)
sum [az, by] = ag + by = 52;@ " SQ;CQ - 5 (A.2)
cap [ar,b1] = (a1 = by) L by = 31‘2”1 _a ;Cl Vbi=c b= (A.3)
cap [ag,ba] = (ag —bo) | by = 82;_62 - 82562 Lba=cy by =0 (A.4)

That is, zs and [ay,b;] have the identical capability and summation, as well as ys
and [CLQ, bg]
Now, let (¢, s) = capsum [by, as,b2], (3.8) and (3.9) can be easily proved as the

following derivations:

= { definition of sum }
by + as + by
= { arithmetic }
(a1 +by+as+by) —ay
= { (A1) and (A2) }

S1+S9—ay

29

(CL1 - 5)
= { by (3.8)}

(a1 - (51 + 82 — al))
= { arithmetic }

(2 *Qp — (81 + 52))
= { definition of a; }

(24 (1 : 1

= { arithmetic }

) = 81— 52)

(c1-52)

To prove (3.10), however, another equation is necessary. Starting with ¢; — so,

one could show that

C1 — Sg
= { definition of ¢; }
(a1 —=by L by) = 89
{ (-sy) distributes over ({) }

ay—by—s21b1 -5

{(A2) }

al—bl—Sglbl—ag—bg.

60

Now, to prove (3.10), we reason

c1—S3)c¢
{ ¢=cap [by,a2,b2] }

c1—S2lby—azlas—"byl by

{ the last derivation }
a1 —br—salbi—az—bylbr—aslaz—by by

{z-nlr=r-n<n>0}

ay—by =521 b1—as—bylas—by by

{ the last derivation, reverse! }
c1—Salaz—by by
{ (A4) }

CI_SQJ,CQ.

A.3 Theorem 4.4.1

The map-list-unhomomorphism fusion theorem says that, given a list-unhomomorphism

k = unhom g, g, p1 P2, we have
map [k =unhom gl gl pl p}

if gl = fog, and gl =7, /\pJ{ = /\p; = po. This theorem can be proved by an induction
on seed generating sequence since we restrict that all successive applications of g,

and g, eventually reaches some s such that either p; s or py s is ture. For p; s is

61

true, 4.4.1 trivally holds if pI =p,. For py s is true, one can reason

map f (unhom go gs p1 p2 s)

= { assumption: p, s is true }

map f [gv 5]

{ definition of map }
[f (90)]

= {g=fegenph=p }

unhom gl gf pl pl s.
Finally, for the inductive case, we have,

map f (unhom g, g, p1 P2 S)
{ let (tvu) :g<>) }

map f (unhom gs g, p1 p2 t # unhom g, g, p1 P2 u)

{ map f (x5 +ys) = (map [xs)+ (map [ys) }

(map f unhom g, g, p1 p2 t) + (map [unhom g, g, p1 P2 u)

{ induction }
unhom gi gl pi pg t + unhom 9<T> 9% pi pg u

{gl=g<>}

unhom gl g} p} pl s.

62

	coverish
	main
	Introduction
	Correctness
	Parallelisation
	Background
	Outline

	Preliminaries
	Mathematical Background
	Program Derivation
	Functional Programming
	Programming with Functions
	Linear Structures
	Folds and Unfolds
	List-Homomorphisms

	Constructing a List-Homomorphism
	Sufficient Conditions for List-Homomorphism
	The Steepness of a List
	Essential Properties of List-Homomorphism
	Parallelization with Right Inverse
	Limitation

	The Duality of Third List-Homomorphism
	Dualising the Third List-Homomorphism Theorem
	Essential Properties of List-Unhomomorphism
	Basic List Generating Functions
	Prefix Sum via List-Unhomomorphism
	Discussion

	Conclusion
	Contributions
	Future Work

	Missing Proofs
	Property (3.3)
	Properties (3.8), (3.9) and (3.10)
	Theorem 4.4.1

