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ABSTRACT

The observation data shows that the eyewall replacement cycle (ERC) re-
sults in different consequences. Kuo et al. (2009) found that approximately
28% of typhoons strengthen after the formation of secondary eyewall. Yang
et al. (2013) developed four categories to classify the situations after the for-
mation. They found these four categories exhibit different behaviors on in-
tensity and routes on T-V diagram.

“Dynamic efficiency of heat” 7 (r, z,t)) developed by Hack and Schu-
bert (1986) is to examine the effect of heating on the energy conversion rate
(C) converting total potential energy (P) into total kinetic energy (K) They
also pointed out that efficiencies vary under different vortex structures while
total heating remains the same. In this study, we would apply dynamic effi-
ciencies to examine the response of concentric eyewall cyclone Francis (2004).
We find that the presence of outer eyewall enhances the efficiency response
by approximately 50% to 400% through reducing Rossby length (Az) while
changing the heating ratio between inner and outer eyewalls from 1 : 2 to
2 : 1 enhances the efficiency by 100% to 600% (total heating is fixed).

Apart from cylindrical coordinates, we also derive the dynamic efficien-
cies in quasi-geostrophic theory (Cartesian coordinates), Cartesian coordi-
nates, spherical coordinates, and shallow water model for potentially appli-

cation to other balance dynamics in different scales.



Keywords: balanced vortex, dynamic efficiency of heat, dynamic efficiency

of momentum, concentric eyewall, double eyewall, secondary circulation
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CHAPTER 1
INTRODUCTION

A cyclone intensifies itself by storing the available potential energy through latent of water
vapor and releasing it into kinetic energy. Charney and Eliassen (1964) proposed Condi-
tion Instability of the Second Kind (CISK) to explain the initiation of the tropical depres-
sion. Later, Schubert and Hack (1982) demonstrated that pre-existing vortex is another
important factor for constructing a warm core for it reduces Rossby deformation length
(Agr). It is also known that given the same amount of energy input, not necessarily every
cyclone grows. By observation data, the eyewall replacement cycle after the generation of
outer eyewall (some hypothesis were given by Rozoff et al., 2008) have different conse-
quences (Kuo et al., 2009; Yang et al., 2013). The work above suggest the need of finding
a way to quantify the effect of structure of heating and wind profile on kinetic energy of a
cyclone.

Assuming an air column is heated uniformly by 10K per day (equivalent to the latent
heat produced by 40mm per day) and its mass is 10 kg per 1 m?. Energy released in 1 m?
is

AT - c,-Mass = 10K - 1004 kg ' K™ - 10* kg ~ 10°J. (1.1)

If 1% of heating energy can be converted into kinetic energy, then we have
8 Ly 2
10°7- 1% = = - 10" kg - (vfinal = Viniiar) (1.2)

where vinitia and vgn, represent the initial and final velocities of the air column.



Let vigiga = 0, then we obtain

Vfinal = 10v2ms ™ ~ 14ms~ L. (1.3)

Since wind speed over 17ms~! will be identified with tropical storm in Saffir-Simpson
hurricane wind scale, heating efficiency about 1% is significant enough in our studies.

To quantify the effect of heating, Hack and Schubert (1986) developed the idea of
dynamic efficiency 7 (r, z) to describe the efficiency of heating at particular position with
the aid of Eliassen-Sawyer circulation equation. This tool is especially convenient for it
requires only temperature profile 6 (r, z) so that we can discuss without considering too
much issue about adiabatic heating ().

Contents in later chapters are structured as follows: Eliassen-Sawyer circulation
equation and dynamic efficiency of heat and momentum will be derived in chapter 2. Re-
laxation method used in this paper in order to solve Eliassen-Sawyer circulation equation
will be introduced in chapter 3. In chapter 4 will introduce our diagnose procedure, ex-

periment settings and results. Summary is in chapter 5.



CHAPTER 2
FORMULATION

We will derive dynamic efficiencies in five different realms. Sec. 2.1 is the derivation
in quasi-geostrophic theory of Cartesian coordinates, which serves as an friendly open-
ing to readers unfamiliar with this topic since this theory is well-known to most of the
meteorologists. Sec. 2.2 is the derivation in Cartesian coordinates without scaling like
quasi-geostrophic theory. Sec. 2.3 is the derivation in cylindrical coordinates, which we
apply to analyze tropical cyclone in particular. Sec. 2.4 is the derivation in spherical co-
ordinates, showing that dynamic efficiencies can also work in planetary scale. In the end,
the intrinsic shared properties of derivation above can be seen in the shallow water model
of cylindrical coordinates, where we will also derive dynamic efficiencies for it, too.

Readers might note that the governing equations in Secs. 2.2-2.5 have no turbulent
fluxes. In fact, turbulent fluxes can be included in external forcings (diabatic heating and
momentum source), so dynamic efficiencies are essentially symmetry dynamics. As a
result, it is better to keep turbulent fluxes away to avoid confusion in these sections. We
keep, however, turbulent fluxes in Sec. 2.1 to retain connections to other studies because
turbulent fluxes are essential to quasi-geostrophic in most applications.

In our basic framework, the system is closed, i.e., no air can go across the bound-
aries. App. C discusses the situations when bottom boundary is connected to the planetary
boundary layer and is not closed.

Of theory interest, inertial buoyancy waves can also be combined with Eliassen-
Sawyer circulation equation to get a clearer understanding of balanced systems. It can be
shown that the product of maximum and minimum frequencies of inertial buoyancy wave

is a constant which is related to the Jacobian determinant of absolute angular momentum



and buoyancy force. These discussions are presented in App. B.

2.1 Efficiency in Quasi-geostrophic Theory

Quasi-geostrophic theory successfully describes the mid-latitude dynamics and is widely
taught in basic meteorology class. So it is necessary to derive dynamic efficiencies in
Quasi-geostrophic theory. Readers might notice that we keep the turbulent fluxes in the
forcing terms. It is because while turbulent fluxes are not the essentials of dynamic ef-
ficiencies, they are still very important to Quasi-geostrophic dynamics so it is better to
keep them in our equations. Sec. 2.2 uses similar framework but it retains the advection

of main circulation and the horizontal advection of potential temperature.

Derivation

Consider a zonally periodic, longitudally balanced flow on an 3 plane. The quasi-geostropic

theory (App. A) gives the governing equations as

Zonal wind: a5 fov, = F, (2.1a)
. 1 9
Geostrophic balance: u, = ———, 2.1b
p g fo ay ( )
. 06 -
Hydrostatic: — =0, (2.1¢)
0z
Continuity:  20¢ 4 977 _, (2.1d)
oy  poz
ob _0b —
Thermodynamic: e + @5 = H%Q , (2.1e)
(2.1

where z = (c,00/9)[1 — (p/po)”] is the pseudo-height, (- ) is the zonal average, p =
po(p/po)H/*)=1 is the pseudo-density (Hoskins and Bretherton, 1972), u, 18 the geostropic
wind speed in zonal direction, v, is the ageostrophic wind speed in longitudinal direction,

w is the vertical components of velocity, b is the buoyancy force and ¢ is the geopotential.



By (2.1b) and (2.1c), we derive the thermal wind relation

o, _8_1_9
0z Oy

200 00
"9t 9z ot Oy
We define
b
Static stability: pA = 8_’
0z

Inertial stability: pC' = f02 ,

to write equation (2.1a) and (2.1e) as

ou —
foa—tg — pu,C = foF,
— wA = =0 .

ot T PA= @

According to (2.1d), we define the streamfunction v such that

_ oY oY
(pUa, pw0) = (—g,a—y) :

2.2)

(2.3)

(2.42)

(2.4b)

(2.52)

(2.5b)

(2.6)

After adding 0(2.5a)/0z and 0(2.5b)/Jy to eliminateg time derivative with the aid of (2.3)

and substituting (2.6) into it, we obtain diagnostic equation known as the Eliassen-Sawyer

circulation equation

where

-5 () 3 ().

(2.72)

(2.7b)

and is elliptic if AC' > 0. The boundary conditions for (2.7a) are that ¢) = 0 on top bottom,

left, and right boundaries.



From a balanced system, we have the following energy equations

dP dK
4 -H-C (2.8a) & —C+M, (2.8b)
where
P= / / e, T pdydz, (2.92) H= / / ¢, 11Q" pdydz, (2.9¢)
_2 _
K= [[ Do eom <= [[uh 2.99)

M = / / F 1, pdydz. (2.9¢)

Substituting (2.6) into (2.9d), we obtain
-0
C= / b—w dydz. (2.10)
Ay
After integrating by parts, (2.10) becomes

C= —/@/Jg—z dydz. (2.11)

Now we define a quantity y which satisfies

db

Ly = —,
X=5,

(2.12)

with the same boundary condition as (2.7a). Substituting (2.12) into (2.11) and applying

self-adjoint property, we obtain

C=- /d)Lxdydz = —/XL@ZJ dydz. (2.13)

Substituting (2.7a) into (2.13) and integrating by parts again, we get

B g oqQ | OF
C= /X (90 dy 05, dydz
= /CPHQ*T)H pdydz + /F*ﬂgnM pdydz, (2.14)

where



(2.152) nar = ——L X (2.15b)
Py Oz

_ 9
pcpl16y Oy’

e

We refer to ny as dynamic efficiency of heat, and 1y, as dynamic efficiency of momentum
which represent the conversion efficiency from potential to kinetic energy due to heating
and momentum source.

Ifwe let A and C'in (2.4a) to be constants, then homogeneous part of (2.7a) becomes

0?1 0% B
Aa—y2+0@—0. (2.16)
Letting
Uy, z) =¥ (y) ®(2), (2.17)

plugging (2.17) into (2.16), and move functions of r and z to different sides, we obtain

1Y -1,
Uz 2od2 M

(2.18)

where 1% is a constant (it is positive otherwise solutions on z direction would not satisfy
boundary condition), and

I =4/2 (2.19)

denoting the ratio between static stability and inertial stability.

Solving for ¥, we obtain

d>v
e 12y, (2.20)
whose solution is
U = cie!” + coe™ M. (2.21)

We thus define p~! as “Rossby length” (also sometimes referred to as “Rossby radius of
deformation”) characterizing horizontal length scale of the system.

Solving for ®, we obtain

® = ¢y sin (ul'z) + o cos (ul'z) . (2.22)



With 1) = 0 on top and bottom boundaries, we further get

® = ¢y sin (pl'z), (2.23)
and
[z
gl =t (2.24)
nm

where 2z, is height of top boundary, and n is a non-negative integer. We again define

S — (2.25)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.25) can
also be rewritten as

(2.26)

showing that the aspect ratio of the system is controlled by I', i.e. the ratio between static
stability and inertial stability. To get more details about I', Schubert and McNoldy (2010)

gave a great discussion about the application of I" to tropical cyclones.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.7a), dynamic effi-
ciency of heat and momentum (2.15) for quasi-geostrophic theory. The last part of this
section shows that the geometry of operator L is controlled by parameter I' (2.19). This

section can be compared with section 2.2 in which bacoclinity exists to get deeper insight.



2.2 Efficiency in Cartesian Coordinates

Cartesian coordinates is suitable for discussing physics without dealing with geometry
factor. The difference between this section and Sec. 2.1 is that we retain the advection of
main circulation and the horizontal advection of potential temperature, hence keeping the

effect of baroclinity on the secondary circulation.

Derivation

Consider a zonally symmetric, longitudinally balanced flow on an f plane. The governing

equations are given as

Zonal wind: a fuo=F, (2.27a)
Ny : 0¢
Logitudinal wind: fu = _8_y’ (2.27b)
0
Hydrostatic: % = —q, (2.27¢)
0z 090
Continuity: 20 + 22% _ . (2.27d)
oy  poz
. dé
Thermodynamic: Fri Q, (2.27¢)

where 2 = (c,00/9)[1 — (p/po)*] is the pseudo-height, p = po(p/po) /=" is the pseudo-
density (Hoskins and Bretherton, 1972), u, v, w are the zonal, longitudinal, and vertical
components of velocity, # is the potential temperature, ¢ is the geopotential, F' is the
external force on zonal wind, and () is the diabatic heating.

Noticing that v = dy/dt, (2.27a) becomes

du d du*

o= =y = (2.28)

where u* = u— fy is the transformed zonal wind, a technique similar to “semi-geostrophic

coordinate” in Hoskins and West (1979). Substituting (2.28) into (2.27b), we get

)
fu=f(u"+ fy) = _a_j' (2.29)



Expanding total derivative, governing equations become

Absolute angular mometnum: - + U&u* + w@u* =
Hie angd T Ty T, T
L ) 99
Gradient wind balance: f (u* + fy) = o
Y
0
Hydrostatic: % = % g,
Continuity: g—; + 2’0715 =0,
00
Thermodynamic: % + vg—z + wo— = Q,
By (2.30b) and (2.30c), we derive the thermal wind relation
Pla— R
dz G0y’
After taking time derivative of (2.31), we get
o0 g0
ot 0z  Hyotoy’
We define
Static stability: pA = 27
90 0z
00 ou*
Baroclinity: pB = —e%a—y =f 8uz ,
ou*

Inertial stability pC = —f oy

to rewrite equation (2.30a) and (2.30e) as

faai — pvC + pwB = fF,
g 00 g

22 _ B A=2L0.
boor VB pwA =gl

10

(2.30a)
(2.30b)
(2.30¢)
(2.30d)

(2.30¢)

2.31)

(2.32)

(2.33a)
(2.33b)

(2.33c)

(2.34a)

(2.34b)



According to (2.30d), we define the streamfunction ¢/ such that

oY 0
o) = (<555 (239)

After adding 0(2.34a)/0z and 0(2.34b) to eliminate time derivative with the aid of (2.32)
and substituting (2.35) into it, we obtain the diagnostic equation known as the Eliassen-

Sawyer circulation equation

g 0Q OF
Ly = B0 0y + fg, (2.362)
where
_ 0 (,9(), ,90) 0 (L0()  ~0()
L(-)—a—y<A By + B 9 >+E(B 9y +C P ), (2.36b)

and is elliptic if B> — AC' < 0. The boundary conditions for (2.36a) are that 1) = 0 on
top, bottom, left, and right boundaries.

From a balanced system, we have the following energy equations

dp dK
— =H- 23 — = M 23
i C, (2.37a) m C+M, (2.37b)

where
P= // cp T pdydz, (2.38a) H = // cp11Q) pdydz, (2.38¢)
u? g
K= 5 pdydz, (2.38b) C= H_QM pdydz, (2.38d)
0
M = // Fu pdydz. (2.38e)

Substituting (2.35) into (2.38d), we obtain

_ [[gs 2%
C= //900 By dydz. (2.39)

11



After integrating by parts, (2.39) becomes

_ [,900
C= / ¥ b0 9y dydz. (2.40)

Now we define a quantity x which satisfies

Ly (2.41)

= e—oa—y’

with the same boundary condition as (2.36a). Substituting (2.41) into (2.40) and applying

self-adjoint property, we obtain

C=- /Q/JLX dydz = —/XL@D dydz. (2.42)

Substituting (2.36a) into (2.42) and integrating by parts again, we get

_ 99Q  LOF
o 1 (32240 o

= /cpHQnH pdydz + /FunM pdydz, (2.43)

where

g Ox

pepllfy Oy’

T opudz

(2.44a) Mt (2.44b)

NH

We refer to ny as dynamic efficiency of heat, and 1, as dynamic efficiency of momentum
which represent the conversion efficiency from potential to kinetic energy due to heating
and momentum source.

If we let A and C' in (2.33a) to be constants, B = 0, then homogeneous part of

(2.36a) becomes
0%
Aa—y2 + CW = 0. (2.45)
Letting
U(y,2) =¥ (y) ®(2), (2.46)

12



plugging (2.46) into (2.45), and move functions of r and z to different sides, we obtain

¢ -1de
Uz rods2 M

(2.47)

where 112 is a constant (it is positive otherwise solutions on z direction would not satisfy

A
= \/g (2.48)

denoting the ratio between static stability and inertial stability..

boundary condition), and

Solving for ¥, we obtain

d>U
= - MQ\II, (2.49)
whose solution 1s
U = e + coe M. (2.50)

We thus define ;! as “Rossby length” (also sometimes referred to as “Rossby radius of
deformation”) characterizing horizontal length scale of the system.

Solving for ®, we obtain

O = ¢y sin (ul'z) + cacos (ul'z) . (2.51)

With ¢ = 0 on top and bottom boundaries, we further get

® = ¢ysin (pl'z), (2.52)
and
I'zoo
ph= (2.53)
nmw

where 2, is height of top boundary, and n is a non-negative integer. We again define

y= (2.54)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.54) can

13



also be rewritten as

(2.55)

showing that the aspect ratio of the system is controlled by I', i.e. the ratio between static
stability and inertial stability. To get more details about I', Schubert and McNoldy (2010)

gave a great discussion about the application of I' to tropical cyclones.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.36a), dynamic ef-
ficiency of heat and momentum (2.44) for Cartesian coordinates. The last part of this
section shows that the geometry of operator L is controlled by parameter I' (2.48). When
compared with Sec. 2.1, the main difference is the existence of baroclinity B in (2.36a)
because we retain the vertical advection of zonal wind and horizontal advection of tem-
perature (or buoyancy in Sec. 2.1). In general, baroclinity makes little difference since A

and C' are usually much more significant than B.
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2.3 Efficiency in Cylindrical Coordinates

Cylindrical coordinates is suitable to deal with any rotation system on a plane, and TC
problems use this coordinates intensively. Schubert and Hack (1982) gave a different
perspective other than CISK to emphasis on the dynamical structure of a vortex which
enhances the warming of the core. Hack et al. (1989) used dynamic efficiency of heat to
point out the importance of horizontal structure of heating. Rozoff et al. (2008) discussed
the effect of a contracting and intensifying concentric eyewall.

Another fact is that governing equations in cylindrical coordinates and spherical
coordinates are conceptually the same. The linkage between them will be elaborated more

in App. D.

Derivation

Consider an axisymmetric, balanced flow on an f plane. The governing equations are

given as

2
Radial wind: 2% = fo 4 (2.56a)
or r
Tangential wind: (31—: = —fu— o + F, (2.56b)
r
0
Hydrostatic: % = —gq, (2.56¢)
0z 90
Continuity: _é?ru + _8pw =0, (2.56d)
ror  p0z
. dé
Thermodynamic: pri Q, (2.56¢)

where 2z = (c,00/9)[1 — (p/po)"] is the pseudo-height, p = po(p/po) /1 is the pseudo-
density (Hoskins and Bretherton, 1972), u, v, w are the radial, tangential, and vertical
components of velocity,  is the potential temperature, ¢ is the geopotential, /' is external

force on tangential wind, and () is the diabatic heating.

15



Noticing that u = dr/dt, we multiply (2.56b) by r to get

dv du d dm
_ L E—— 0.
dt fdt dt (rv fr ) dt’ &7

where m = rv + 1/2fr? is the absolute angular momentum. Substituting (2.57) into

(2.56a), we get

2
1 1 1 1 1
=3 (rv+—fr2—§f7“2) (Tv+§fr2+§f7‘2)

L (m2 1 f2r4> . (2.58)

Expanding total derivative, governing equations become

1 1
mmmmm:gfz— m? — =i, (2.59a)
or 3 4
om om om

Absolute angular momentum: — 4+ u—+w— =7F, (2.59b)
ot or 0z
0
Hydrostatic: 8¢ —q, (2.59¢)
(92 90
Continuity: 222 4+ 9P% g, (2.59d)
ror — poz
. 00 00 00
Thermodynamic: a5 + uss +w W~ = Q. (2.59¢)
By (2.59a) and (2.59c), we derive the thermal wind relation
goo 1 om?
. 2.60
0 Or T3 02 (2.60)
After taking time derivative of (2.60), we get
1 2
0900 _010m 2.61)

Oty Or  Otrd Oz

16



We define

0
Static stability: pA = 327 (2.62a)
60 0z
e g 00 1 Om?
Baroclinity: pB = “o.or =5 (2.62b)
1 2
Inertial stability: pC = —38’” : (2.62¢)
r3 Or
to rewrite (2.59b) and (2.59¢) as
1 Om? 2mF
= + puC — pwB = —2 (2.63a)
g 90 g
=~ — — puB A==0. 2.63b
oot + pw QOQ ( )
According to (2.59d) we define the streamfunction v such that
oY Ory
=(-——=,—. 2.64
(pu, p) ( 0z’ r@r) 2.64)

After subtracting 9(2.63b)/0r from 0(2.63a)/0z to eliminate partial derivative of time
with the aid of (2.61) and substituting (2.64) into it, we obtain the diagnostic equation

known as the Eliassen-Sawyer circulation equation

where
_ 9 (,or() OC)\ 0 (por(-)  ~0()
L()= (A S+ B )+8z (B L0 ) (2.65b)

and (2.65b) is elliptic if B> — AC' < 0. The boundary conditions for (2.65a) are that ¢) = 0
on top, bottom, and inner boundaries and ¢» — 0 as r — oo.

From a balanced vortex system, we can derive the following energy equations

dp dK
—— —H-C 2.66 —=C+M 2.66b

17



where

P= // c, 1" prdrdz, (2.67a) H= // cp11Q prdrdz,
v? g
K= 5 prdrdz, (2.67b) C= 0—w0 prdrdz,
0
M= //Fv pdrdz.

Substituting (2.64) into (2.67d), we obtain

_ 9oy
_//990 or drdz.

After integrating by parts, (2.68) becomes

/ we—oa rdrdz.

Now we define a quantity x which satisfies

g 00

Ly = ~—
X 90 87"’

(2.67c)
(2.67d)

(2.67¢)

(2.68)

(2.69)

(2.70)

with the same boundary condition as (2.65a). Substituting (2.70) into (2.69) and applying

self-adjoint property, we obtain

- / / YL rdrdz = — / / XLy rdrdz.

Substituting (2.65a) into (2.71) and integrating by parts again, we get

. g0Q if)?mF
C= // bor 2 0s rdrdz

:/ QcplIng prdrdz + // Funy prdrdz,

where

g Ooryx 2m 8)(

- pcpll0y ror’

(2.73a) nr =

18
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(2.71)

(2.72)

(2.73b)



We refer to ny as dynamic efficiency of heat, and 1, as dynamic efficiency of momentum
which represent the conversion efficiency from potential to kinetic energy due to heating
and momentum source.

Ifwelet A and C'in (2.62) to be constants, B = 0, then homogeneous part of (2.65a)

becomes
o (0ry 10%)
E <W) + fﬁ =0. (2.74)
Letting
Y(r,z) =V (r)®(2), (2.75)

plugging (2.75) into (2.74), and move functions of  and z to different sides, we obtain

1 (20 140 1 120,
(==L 2= = - = 2.76
1\ (dr2 + rdr 12 ) e d-2 " (2.76)
where 112 is a constant.
Solving for ¥, we obtain
v dw
2 2,2\ _

which is modified Bessel’s differential equation. We thus define p~! as “Rossby length”
(also sometimes referred to as “Rossby radius of deformation”) characterizing horizontal
length scale of the system.

Solving for ®, we obtain

® = ¢y sin (ul'z) + o cos (ul'z) . (2.78)

With ¢» = 0 on top and bottom boundaries, we further get

® = ¢y sin (pl'z), (2.79)
and
Iz
pt = (2.80)
nm
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where 2z, is height of top boundary, and n is a non-negative integer. We again define

S — (2.81)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.81) can
also be rewritten as

(2.82)

showing that the aspect ratio of the system is controlled by I', i.e. the ratio between static

stability and inertial stability.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.65a), dynamic ef-
ficiency of heat and momentum (2.73) for cylindrical coordinates. The last part of this
section shows that the geometry of operator L is controlled by parameter I' (2.81). No-
tice that the efficiency of heat involves horizontal geometry, so efficiency of heat must be
sensitive to its position in radial direction. This might suggest that TC’s properties may

change rapidly when its heating position fluctuates radially in small radius.

20



2.4 Efficiency in Spherical Coordinates

Spherical coordinates can be used when dealing with planetary scale problem. For exam-
ple, Hack et al. (1989) explained why the Hadley cell is stronger in the winter hemisphere,
Schubert et al. (1989) studied the trade-wind inversion to enlight problem from subtropical
latitude to tropics.

Another fact is that governing equations in spherical coordinates and cylindrical
coordinates are conceptually the same. The linkage between them will be elaborated more

in App. D.

Derivation

Consider an axisymmetric, balanced flow on a sphere. The governing equations are given

as

om om om

Absolute angular momentum: o + vm + wa = RF, (2.83a)
Longitudinal wind: s1}r%13¢ (m2 — Q2R4) = — a?ac;), (2.83b)
0
Hydrostatic: 8_G = —q, (2.83¢)
0z 90
Continuity: O pw =0, (2.83d)

RO(ag) * p0z

.00 00 00
Thermodynamic: a5 + Ua(aqﬁ) + wo = Q, (2.83¢)

where a is the radius of Earth, ¢ is the latitude, R = acos ¢ is the radius relative to
the rotation axis, z = (c,00/9)[1 — (p/po)] is the pseudo-height, m = Ru + QR? is
the absolute angular momentum, p = po(p/po)*/*)~! is the pseudo-density (Hoskins and
Bretherton, 1972), u, v, w are the zonal, longitudinal, and radial components of velocity,
0 is the potential temperature, GG is the geopotential, F' is external force on zonal wind,

and @ is the diabatic heating.
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By (2.83b) and (2.83c), we derive the thermal wind relation

g 00 — sin ¢ Om?
Z — ) 2.84
0o 0(ae) R3 0z § 7%
After taking time derivative of (2.84), we get
—qi 2
22 00 _ smgbﬁ@m . (2.85)
o Ot O(a) R3 0Ot 0z
We define
0
Static stability: pA = 327 (2.862)
‘90 0z
. g 00 sin ¢ Om?
Baroclinity: pB = —= = 2.86
aroclinity: p 60 0(ad) ™ 9. (2.86b)
. . sing Om?
Inertial stability: pC' = — 7 m, (2.86¢)
to rewrite (2.83a) and (2.83¢) as
sin ¢ Om? sin ¢
— = B = 2mF 2.
o pvC' + pw 2 m (2.87a)
g 99 g
42 _ B A=< 2.
T pvB + pw 90Q (2.87b)

Notice that since m = 0 on ¢ = £+7/2 (north and south pole), the following integral

/¢7r/2 _pCR3 d(ad) = <m2)

=—m/2 Sin¢

w/2

—0, (2.88)
¢p=—m/2

must be satisfied.

According to (2.83d) we define the streamfunction v such that

o ORy ) (2.89)

(pv, pw) = (—57 Ro(ad)

After adding 0(2.87a)/0z and 0(2.87b)/0(a¢) to eliminate partial derivative of time with

the aid of (2.85) and substituting (2.89) into it, we obtain the diagnostic equation known
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as the Eliassen-Sawyer circulation equation

_ g 0Q sing 0 2mF
Ly = 60 B(a0) + =, (2.90a)

where

_ 9 OR(-)  ,0()\ , 0 (LO0R(:) 0(:)
L(«)_a(a¢) <AR8(G¢)+B o )+$(BR8(G¢>+C 5 ) (2.90b)

and (2.90b) is elliptic if B> — AC' < 0. The boundary conditions for (2.65a) are that ¢) = 0
on top, bottom, inner, and outer boundaries.

From a balanced vortex system, we can derive the following energy equations

dp dK
7 =H-C (2.91a) 5 = C+M. (2.91b)

where

P= ¢, T pRd(ag) dz, (2.92a) H= cl1Q pRd(ap)dz,  (2.92¢)
fi- J
K= /E pRd(a¢) dz, (2.92b) // —wf pRd(a¢)d (2.92d)
M= // Fv pRd(a¢) dz. (2.92¢)

Substituting (2.89) into (2.92d), we obtain

_ [[g9 98
C= //980 (ad) d(ag) dz. (2.93)

After integrating by parts, (2.93) becomes

//w—— Rd(a¢) dz. (2.94)

Now we define a quantity x which satisfies

0

9o 5ad) (2.95)

with the same boundary condition as (2.90a). Substituting (2.95) into (2.94) and applying
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self-adjoint property, we obtain

/ YLy Rd(ag)d / / XL Rd(a¢)d

Substituting (2.90a) into (2.96) and integrating by parts again, we get

g 3@ sinqﬁ@ 2mF
// 9, Rd(a¢) dz

— // c1Qng de(agb) dz + // Funy pRd(ag) dz

where

g ORx
= pcpl10y RO(ag)’

2m sin ¢ Oy

(2.98a) =

puR? 0z’

(2.96)

(2.97)

(2.98b)

We refer to ny as dynamic efficiency of heat, and 1, as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.90a), dynamic effi-

ciency of heat and momentum (2.98) for spherical coordinates. This coordinates is widely

applied to study large-scale dynamics.
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2.5 Efficiency in Shallow Water Model

The linear shallow water equations an be view as a vertical mode of the linearized prim-
itive equations. This implies the essentials of dynamic efficiencies lies in the horizontal

structure of the rotating system.

Derivation

Consider an axisymmetric, balanced flow on an f plane. The governing equations are

given as

h 2
Radial flow: g— = fo+ 2, (2.99a)
Tangential flow: ((11;} =—fu— @ + F, (2.99b)
oh  Oh
Continuity: = + 27 _ ), (2.99¢)
ot ror

where u, v are the radial, and tangential component of velocity, A is the height of the
surface, and F' is the external force on tangential flow.

Noticing that u = dr/dt, we multiply (2.99b) by r to get

dv du d dm

where m = rv + 1/2fr? is the absolute angular momentum. Substituting (2.100) into

(2.99b), we get

2
v
fo+—
;

I
—~
3
<
+
—
=
N—

= r—lg, (TU + %f?"Q - %frz) (rv + %er + %er)
=3 (m2 ~ if%’”‘) : (2.101)
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Expanding total derivative, governing equations become

oh 1 1
Radial flow: ¢g— = — (m?*— = f%*), (2.102a)
or r3 4
0 0
Angular momentum: amn + u—m =rF, (2.102b)
ot or
oh  Ohru
Continuity: — = Q. 2.102
ontinuity T + o Q ( c)
After taking time derivative of (2.102a), we get
0 Oh 1 Om?
—— == 2.103
gat or 13 Ot ( )
We define
Om2
Inertial stability:  ghC = — -, (2.104)
r30r
to rewrite (2.102b) and (2.102c¢) as
1 Om? 2mF
oh orhu
e = q0. 2.105b
99 975, =99 ( )
We define a variable v as
Y = uh. (2.106)

After subtracting 9(2.105b)/0r from (2.105a) to eliminate time derivative with the ad of

(2.103) and substituting (2.106) into it, we obtain the diagnostic equation

- 0Q _2mF

Ly = FIR (2.107a)
where
9 [(or ()
LH_E( SoR >—C(-), (2.107b)

and boundary conditions for (2.107a) are that ¢» = 0 on inner boundary and ¢y — 0 as
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r — OQ.

From a balanced vortex system, we can derive the following energy equations

dp dK
i H-C, (2.108a) - C+M, (2.108Db)
where
h2
P= /97 rdr, (2.109a) H= /gQ hrdr, (2.109¢)
2 oruh
K= [Dwa @iy c=- [a%a @i
M= /th rdr, (2.109¢)
Substituting (2.106) into (2.109d), we obtain
C= —/hgar—w dr. (2.110)
or
After integrating by parts, (2.110) becomes
C= /@/}g@ rdr. (2.111)
or
Now we define a quantity y which satisfies
Ly = g%, (2.112)
or

with the same boundary condition as (2.107a). Substituting (2.112) into (2.110) and ap-

plying self-adjoint property, we obtain

C= /wLX rdr = /XL#} rdr. (2.113)

Substituting (2.107a) into (2.113) and integrating by parts again, we get

C:/X(2m5+%—Q) rdr
gr r

:/QnH hrd?“—l—/Fm]M hrdr, (2.114)
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where

10y 2my
__ 19X _ _— . 2.115b
nNnua hor (2 115a) Ny ghUT2 ( )

We refer to ny as dynamic efficiency of heat, and 1), as dynamic efficiency of momentum
which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

Concluding Remarks

(2.107a) is different from Eliassen-Sawyer circulation equation, but it shows the similar
idea; inertial stability controls the response of the system to source and sink. Indeed, if C'
is constant, then this is a second-order differential equation whose homogeneous solution
is modified Bessel equation

Y dy

TW—FTE—tﬁ(l-FCTz):T

,0Q  2mF

g (2.116)

where /C s the Rossby length of this balanced system.
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CHAPTER 3
NUMERICAL METHOD

Although Eliassen-Sawyer circulation equations in different frameworks have different

coefficients and geometry factors, they can still be rewritten as a general form as

Ly =F, (3.1)

where

L(.)_%(Aa(;;JrBag?)) +%(Ba§¥)+088(?>). (3.2)

Table (1) tells us how to replace x, y, A, B, and C'in (3.1) to morph into different equations.
(3.1) is solved by relaxation method in this study.

Derivative along x and y directions at grid point (i, j) are discretized as

a(-) (')z‘+1/2,j - (')i—1/2,j

or Az ’ (3.3a)
a(+) _ (')i,j+1/2 - (')i,j—1/2 (3.3b)
dy Ay ’ '

where Ax and Ay are grid spacings.

Table 1: General form of Eliassen-Sawyer circulation equation in different coordinates

\iﬂébiis Quasi-geostrophic | Cartesian | Cylindrical | Spherical
T Yy Y " ap
y z ¢ : ;
b W WP r Ry
A A A Alr A/R
B 0 B B / r B / R
C C C C/r C/R
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After applying (3.3) to (3.1) at grid point (7, j) (2 < i <n,—land2 < i < n,—1),

o %
Ai+1/2,j (%)H_I/QJ Ai—1/2J (%)i—l/m]

— (Ar)? [Ait1)25 (Vi1 — ij) — Aim1yo; (Wi — Yim1j)]

= W [wiJrl,in—i-l/Z,j + %71,3'142‘—1/2,]‘ - wi,j<Ai—1/2,j + Ai+1/2,j)} )

(3.4a)

0 0 1
— (Ci) RRPNDE [¢ij41Ci 112 + Vi j1Cijo1y2 — i (Cijo12 + Cigrrge)]

(3.4b)

0 1
B (Ba—z) = m [Bz‘+1/2,j(¢i+1/2,j+1/2 — VYit1/2,5-1/2)

—Bi_1/2 (¢i71/2,j+1/2 - %71/2,3'71/2)] ) (3.4¢)

oY 1
dy (B (%) AzAy [Bigrij2(irizrz = imrjzgense)

—Bi,j—1/2(¢i+1/2,j—1/2 - "%‘—1/2,;’—1/2)] . (3.4d)
We define

1 1
Vit1/2,5+41/2 = 3 (Vi1 + Vije1), B.52)  Yipiypj12 = 3 (Yig1j +Yij-1), (3.5¢)
1 1
Yic12441/2 = 3 (Yic1j +Yije1), B.5b)  Yiyyaj_1)2 = 3 (i1, + ij—1), (3.5d)
to rewrite (3.4¢) as
31/} L9 G@D
8x 8y 8y 8:70
QAxA [i/fwlg ( ijt1/2 — Bi,j—1/2) + i1 (Bi,j—l/Q - Bi,j+1/2)

+ 1/Ji,j+1 (Bi+1/2,j - Bi—l/Q,j) + wi,j—l (Bi—l/Q,j - Bi+1/2,j)} . (36)
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Finally, (3.1) becomes

Q (Ag—w—l—Ba—d}) —i—ﬁ (Ba—¢—|—6’
ox ox

oy ox

y
where
Cij-1/2 + Bi_1/2,;—Bit1/2,5
(Ay)? 2AzAy
Ai_1/2,5 + Bi_1/2,;—Bit1/2,5
M — (Ax)Q 2AxAy

Ait1/2,5 + Bijt+1/2=Bij—1/2
2

(Az)

2AzAy

L (Ay)?

are two column matrix, and

Cijt1/2 + Biy1/2,j—Bi—1/2,5
2AxAy

A2+ Air)2

(3.82)

P

Oy

) =M"¥ — Sy, ;,

wz’,j—l
%71,3‘
¢i+1,j

_wi,j+l_

Cij-12 + Cijt1/2

S:

(Ax)’

We define iteration from n to n + 1 to be

where

ntl _ n g

1,3 i,J E

(Ay)®

b

R=M"U" - Sy, — F,

(3.7)

(3.8b)

(3.8¢)

(3.9)

(3.10)

and F is the matrix form of F in (3.1). To estimate the error, substitute (3.10) into (3.9) to

get

Ty n+l __
M — Syt =

Suppose there exists exact solution ¢)* such that

T 1 * *
M — Sy;; =

F.

F,

(3.11)

(3.12)

where asterisk superscript denotes exact solution. Extract (3.12) from (3.11) and define
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error at the nth iteration time at grid point (i, j) as €; = ¢, — 7, then we have

M'E" — S} =0, (3.13)

where

ei,j—l

¢ 1
E" H

(3.14)
€it1,

€ j+1

Solving €', we get

1
n+1l T 1
@J __SM ¢". (3.15)

If A,C > 0 and B is relatively small, then the error at (n + 1)th time is the average
of its adjacent error at nth time because the sum of elements in M is exactly S. (3.15)
converges to zero if error on boundary is zero, implying )" — *.

To measure the average error, the average residual of the nth iteration is defined as

n 1 n
Coe= /% Z (er)", (3.16)
]

where NV is the number of grid points.

When to stop iteration needs convergence criteria. In our program we use both the
magnitude of residual, relative convergence speed and convergence counter to ensure our
solution approximates true solution. To be clear, the iteration stops at the nth and gives

no warning/error if and only if

1 . eZ\/g S Qsmax
en,—Chg !
2' en—l S D max
avg

3. 1 < Ninax

(3.8a) can be calculated beforehand to reduce computation time.

The grid point used in this method is arrange as Fig. 1.
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Figure 1: Finite-difference grid for solutions of (3.1)

The API for relaxation method is shown in appendix E. The code is written in For-
tran 95 and maintained on Github (http://github.com/meteorologytoday/

XLab-EE-fortran).

33


http://github.com/meteorologytoday/XLab-EE-fortran
http://github.com/meteorologytoday/XLab-EE-fortran

CHAPTER 4
NUMERICAL EXPERIMENTS

General interaction between heating and its response is schematically shown in Fig. 2.
It shows that the heating is a forcing, but also can be adjust by feedback from dynamics
of the system. Our numerical experiments focus on the upper part, i.e. how the heating
generate its dynamic response.

The diagnose procedure is shown in Sec. 4.1. The numerical settings for vortex and
heating are shown in Sec. 4.2. Results for single eyewall are in Sec. 4.3. Results for
concentric eyewall are in Sec. 4.4. Results for structure test and sensitivity test are in Sec.

4.5-4.9

Forcing

/\A

Heating

A

Feedback

Dynamic
Response

Figure 2: General scheme of a tropical cyclone system. Heating is treated as a forcing to
generate dynamic response which feedbacks to heating at the same time. Our work is to

diagnose the effect of the heating and to discuss its dynamic response.
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4.1

Diagnose Procedure

To see the response of heating inside a cyclone, we need secondary circulation (2.64),

Eliassen-Sawyer circulation equation (2.65a), thermodynamic equation (2.59¢), equation

(2.70) for x and equation (2.73) for dynamic efficiency. The diagnose procedure is as

follows:

1.

4.2

Specify A, B, C, Q, F.

. Invert ¢ by Eliassen-Sawyer circulation equation (2.65a) with Jacobi relaxation

method (chapter 3). Specify boundary condition if needed.

. Calculate secondary circulation by (2.64).

00 :
Calculate % by thermodynamic equation (2.59¢).

00

. Calculate 0,,0,, = 0,0 + — At.

ot

. Invert x by equation (2.70) with Jacobi relaxation method. 7y — 0 on boundary.

. Calculate dynamic efficiency ny, nys with equation (2.73).

Vortex and Heating Settings

All simulations in this paper differ in number of regions.

For all cases, the following variables are the same:

A= N? (4.1a)
B=0 (4.1b)
F=0 (4.1¢)
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The vortex is divided into n regions by n — 1 radius {rk 1<k<n-— 1}. The heating

(@ is defined as a half-sined shape confined between zp and 27 in height

Q(r,2) = Q (r)sin (77 S ) (42)
2T — ZB
where
Q if r<mn
Q('f’): Qk if rn—1<r<ryfork=23,..,n—2 (4.3)
0 if r>r,
and total integral of () is conserved
00 n—1
/ Qdr* =Qiri + ) Qi (rp —174) = Hy (4.4)
0 k=2
Inertial stability C' is defined as
C = f2(r) (4.5)
where
fl if r< ™
f(r): fk if re 1 <r<rpfork=23,..n—2 (4.6)

fn lf r Z T'n—1

(4.7)
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Similar to (4.6), distribution of y in (4.7) is

o if r<nr
f(r) =94 fp if re_ <r<ryfork=23,..,n—2 (4.8)

fo, if T >1H

where
i fi
= — 49
e = 57 (oo — 20) (4.9)
For constants, we take N = 1.2x 1072571, f = 5x 107571, u = 1000km, g = 9.8m s 2.
For all cases, domain width and height are 1000km and ¢,6y/g ~ 30km . We use 51
points in z direction, 1001 points in r direction. 2z = z,, and zg = 2y in all cases if not

mentioned.

The setting details are listed in Table 2-4.

4.3 Single eyewall cyclone

The first set of experiments is to examine single eyewall cyclone. The result is shown
in Fig 3. The efficiency plot (f) reveals the connection to temperature anomaly (c): the
contour of them are very similar, and the overlap of heating region and peak of efficiency
supports the idea stating that heating intensifies the vortex. Notice that this calculation
is under Boussinesq approximation which is equivalent using constant density so that the
contour is vertically symmetric.

We also apply this to five stages of typical development of tropical cyclone, the result
is shown in Fig 4. The average efficiency of heat grows as cyclone intensifies. These data
are adapted from Schubert and Hack (1982) in which they construct these curves so as
to be consistent with the observational results of Shea and Gray (1973) and Holliday and
Thompson (1979).

We also plot the local heating response and average efficiency of heat in terms of
the eye strength and the size of eye (Fig 5). Notice the development of a typical cyclone

from A to E. One explanation is that in the initial stage A, vortex is not easy to accumulate

37



Table 2: Two-regioned model settings for typical development of tropical cyclone. Hy =

10 K day™" (250km)”

" Q@1
Case | [km) | O | K day ]
A | 300 | 0 694
B | 250 | 2| 10.00
C | 200 | 4| 1563
D | 150 | 10| 27.78
E | 100 |24| 6250

Table 3: Three-regioned model settings for u-shaped wind profile.
125 K day™" (50km)?
(r1,72) Q2
Case [km] (01, 02) K hr ']
A (10, 20) (140.0, 140.0) 43.4
B (10, 20) (40.0, 144.2) 43.4
C (30,40) (70.0,70.0) 18.6
D (30,40) (13.3,84.3) 18.6

Table 4: Five-regioned model settings for decoupled wind and heating profile.

125 K day ™' (50km)?

H, =

H, =

Case (7"1,7"2,7“3,7”4) (ﬂl;ﬂ27ﬂ37ﬂ4) <Q2,Q4)
[km] [km] [K hr!]
Agyn (8,15,79,85) (5.5,8.5,1000, 1000) -
Abpeat (8,15,79,85) - (21.5,9.71)
Bayn (8,15, 56,62) (5.5,8.5,72.8,36.5) -
Bheat (8,15,56,62) - (21.5,13.5)
Cayn (8,15,79,85) (5.5,8.5,27.2,14.9) -
Cheat (8,15, 34,40) - (21.5,21.5)
Heating 2 : 1 (34.0,17.0)
Heating 1 : 1 (8,15, 34,40) - (21.5,21.5)
Heating 1 : 2 (12.4,24.8)
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Figure 4: Evolution with repect to total time (hr) of average efficiency of heat 77 (x 10~1%,
red line), maximum wind speed (m s™1), ' = /A/C (labeled under each stage) and
central pressure (hpa) of five stages during a typical tropical cyclone development. Time
interval is one hour. The model settings are adapted from Schubert and Hack (1982) and
are listed in table 2.
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Figure 6: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (ms™1). (b) Induced streamfunction
r1p (x10® kg s~1). (c) Local heating rate 0T /0t (K hr™). (d) 9T /0r (x10~' K km™").
Time interval is one hour. (e) Corresponding solution ry (x 10! kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day'). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Agyn + Apeat)-
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Figure 7: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (ms™!). (b) Induced streamfunction
rp (x10% kg s71). (c) Local heating rate 97'/0t (K hr™'). (d) 0T /0r (x10~* K km™).
Time interval is one hour. (e) Corresponding solution ry (x10'° kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day'). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Bayn + Brpeat)-
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Figure 8: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (ms™1). (b) Induced streamfunction
1 (x10% kg s71). (c) Local heating rate 97'/0t (K hr™"). (d) 0T /0r (x10~* K km™1).
Time interval is one hour. (e) Corresponding solution ry (x 10! kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day'). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Cayn + Chear)-
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constant Q) (K hr'). The coupled results of average efficiency 77 (%) are listed in the
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et al. (2008) and are listed in table 4.
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potential energy and to release it into kinetic energy because of low local heating response
and efficiency of heat while in the final stage E it is easy to accumulate potential energy
and to release it into kinetic energy because of high local heating response and efficiency

of heat.

4.4 Concentric eyewall cyclone

We see that in Fig. 6-8 there are two efficiency peaks emerging. Each peak corresponds
to a heating maximum but the inner one is much more efficient than the outside.

To see the effect of inner/outer eyewall, we adapt the setting from Rozoff et al. (2008).
By decoupling the heating and wind fields, Fig. 9 shows that a concentric eyewall cyclone
tends to get high response of efficiency when heating is inside the eye and when outer eye-
wall is small and strong (i.e. high inertial stability). However, outer eyewall position in
this experiment is not fixed, so it remains unclear what role does outer eyewall plays.

Now we design an experiment with the position of outer eyewall fixed by using
wind profile A and C above as single and double eyewall. Moreover, we also alter the
heating ratio between inner and outer eyewall (Fig. 10). When turning on the outer eyewall
(second row), or putting more heating on the inner eyewall (first column), both the average
efficiency and peak value get higher. It is because the outer eyewall (large C' = f?) reduces

the Rossby deformation length (also see (2.80))

ot = M (4.10)
fr
so that it blocks the outflow of the air inside and makes local heating more efficient. This
result is consistent with Schubert and McNoldy (2010).
In the next experiment (Fig. 11) we consider heating totally on inner/outer eyewall
with different outer eyewall configuration. The first column represents single eyewall
scenario. Comparing the first and second or first and third columns, it shows that the outer

eyewall enhances the efficiency. Comparing the first row and second row of the second

or third column, it shows that heating on inner eyewall is better than heating outside the
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eyewall. Comparing second and third columns, it show that efficiency of outer eyewall
of smaller radius is larger than the larger one. We use a table (table 5) to summarize the
experiment results of concentric eyewall.

Table 5: Average efficiency 77 (%) with respect to heating distance 3 — 5 (km) and heating
ratio ()5 : (4 between inner and outer eyewall.

o Heating Distance r3 — r5 [km]
] 19 41 64
100:0 10.1 8.4 7.5
Heating Ratio  75:25 3.1 1.5 0.9
Qs : Qy 50:50 1.3 0.4 0.2
25:75 0.9 0.2 0.1

4.5 Eye with hub cloud

Simpson and Starrett (1955) presented the schematic reproduced aircraft data emphasiz-
ing the fact that the hurricane eye often contains low-level stratocumulus known as “hub
cloud” near the circulation center, surrounded by a “moat” of clear air or thin stratocu-
mulus near the outer edge of the eye. Schubert et al. (2007) proved this to be related to
the U-shaped wind profile characterizing strong inertial stability near the eye, making the
maximum downward motion located at some finite distance away from the eye.

To see if hub cloud does any difference inside a cyclone, we adapt the setting from
Schubert et al. (2007) . The results are shown in Fig 12. Though the average efficiency
makes small difference between hub/nonhub cloud cases, the contour of efficiency shows
that their structures differ: non-hub cloud profile elongates the distribution of the effi-
ciency of heat while the other does not. The reason they have similar average efficiency
is clear: their overlapping with heating region are almost identical so that we cannot tell
the difference. We conclude that efficiency structures differ in a strong inertial stability
eye but average efficiencies are the same, because elongated part is not overlapped with

heating region.
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4.6 Internal structure of moat and outer eyewall

We conclude that the structure of heating in concentric cyclone matters. But does the
structure of inertial stability matters? To alter the structure, we fix the total circulation at

particular distance which equivalently implies that tangential wind speed v is fixed

[Total circulation inside r = r*] = 27r*v (r*) = constant (4.11)

= m (r") = constant (4.12)

Notice that the definition of inertial stability in 2.62, we get

*

/ pCr® dr = m? (r*) = constant (4.13)

=0

In this experiment, we use the profile C in fig. 9 and define
A= (4.14)

to characterize the relative rotation strength between outer eyewall and moat. We analyze
1 < A < 2andfixvatr* = 500km. Moreover, we also let the size of moat vary. The result
is shown Fig. 17. It shows that the structure of inertial stability has no significant effect,
but the size of moat does. The latter can be realized in the sense of Rossby deformation
length which is the conclusion of previous section. According to this result, we further
ask: does the efficiency actually depends on the total angular momentum inside the outer
eyewall?

In fig. 18, we smear the inertial stability and heating structures of single and double

eyewall by define A\g and A4y, such that

Qr = Qurer (1= Ag) + Qg (4.15)

('a2)k = (ﬂQ)kvref(l - )‘dyn) +P/\dyn (416)
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~ _

where 1 < k <4, (-), . is the reference state (profile C in fig. 9), (-) is the value if being
constant in r < ry.

It shows that the average efficiency is the largest if we let inertial stability structured
as double eyewall while heating is distributed like single eyewall, lowest if we let inertial
stability be constant and heating be like double eyewall. Diagram shows that there are at
least two situations. One is the upper half where heating structure matters much more than
inertial stability structure and the lower half where inertial stability matters more than the
heating structure but not as significant as the former.

The results shown above let us conclude that average efficiency is linked to total
heating and total circulation if we let heating be like double eyewall but wind profile

varies, otherwise heating profile dominates.

4.7 Position of maximum heating

The analysis above all use the half-sined shape heating profile in z direction, so the max-
imum heating position would be the center of atmosphere. Now we change our heating

profile with

Q* (r,z) = b (4.17)

0 otherwise

Q*(r)sin<ﬂw> if |z—zc| <2

where z¢ is the center of the maximum heating, D = (2., — 20)/2 is the thickness of
heating region. Fig. 13 tests various maximum heating height in different scenarios. The

result roughly shows an increase of average efficiency of heat as the position gets higher.

4.8 Pre-existing baroclinity

Ifthere is a pre-existing baroclinity, i.e. warm-core, then there exists extra potential energy
in the beginning. We want to argue that I' = /A /C controls the efficiency of releasing

APE. To do this, we use the following diagnose procedure:
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1. Specify I', A, B,C = A/T%, F =Q =0

00
2. Invert x by Ly = eia— = — B with ry — 0 on boundary.
o OT

3. Calculate efficiency 7y, and boundary conversion using .

Fig. 14 shows that for the same strength of baroclinity, I' = 64 has higher efficiency
and higher efficiency peak position than I' = 4. This shows that potential energy is harder
for a rotation system to release. This can be understood, since when inertial stability is
higher, it becomes harder for particle to move radially meaning contraction is hard, and
consequently the change in kinetic energy becomes low. One might ask why this result
seems to contradict 5 (strong rotation cases correspond to higher efficiency), but we have
to bear in mind that this diagnose work is different from (2) because the baroclinity is

prescribed rather than being a response of heating.

4.9 Sensitivity of baroclinity on the operator

Baroclinity on the operator is also driven by our heating. But in all of our experiments,
B = 0 in the operator L. The is because in all the cases, baroclinity is roughly 10~"s?
while A and C’s order is greater than 10~5s? which makes the crossing term not important.
Fig. 15 and Fig. 16 shows the results if we exclude/include this term in the operator. Their

contours are very similar which confirm our expectation.
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CHAPTER 5
SUMMARY

In this study, we derive the formula of dynamic efficiency of heat and momentum. These
quantities describe the kinetic energy conversion efficiency if we place heating and ex-
ternal momentum source at particular position. Numerical solver is based on relaxation
method and is written in Fortran 95. Each experiment contains 1001 by 51 grid points and
takes about 5 to 10 minutes to complete. We also design a procedure to test the response of
efficiency of heat under prescribed heating profile. We test the baroclinity on the operator
L and find it distorts the distribution of the efficiency contour slightly. We conclude this
term can be neglected and still gets similar results.

Using the profile given by Schubert and Hack (1982), we found that the response
of efficiency increases as vortex develops. Further analysis (Fig. 5) shows that in the
young stage vortex has little ability to accumulate potential energy and low efficiency to
release potential energy into kinetic energy, whilst in the latter stages it has much ability
to accumulate potential energy and high efficiency to release potential energy into kinetic
energy.

We also analyze concentric eyewall cases. It is shown that not only the radial po-
sition of heating but also the existence of outer eyewall enhances efficiency with notable
extent. The reason for the latter is due to the reduction of Rossby deformation length.

The experiments show the structure of a vortex matters. We analyze strong rotation
core (V-shaped wind profile), relative rotation strength between moat and outer eyewall,
and both structure of heating and inertial stability. We find that there are two situations in
which in the first situation structure of heating dominates over structure of inertial stability,

and in the second situation the structure of inertial stability dominates over structure of
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heating but not as significant as the former.

Next, we alter the position of maximum heating and find that the higher the heating,
the better the efficiency. This result is not very physical since in most of the observations,
lower atmosphere contribute most of the heating. This result needs deeper investigation.

Pre-existing baroclinity creates higher efficiency (both in strength and vertical posi-
tion) if the environment is more stratified and lower efficiency if the enveronment is more
rotational. This is due to its ability to make the air contract, thus it can be realized quali-
tatively by Rossby deformation length. When the environment is more stratified, then the
Rossby deformation length is larger and makes contraction easier and thus larger energy
conversion. When the environment is more rotational, then the Rossby deformation length
is lower and makes contraction harder and thus lower energy conversion. It must be noted
that this experiment uses different diagnose procedure — it has no prescribed heating, so we
cannot mix this result with the previous experiments which include the both the processes

of “accumulating” and “releasing” potential energy.
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APPENDIX A
DERIVATION OF QUASI-GEOSTROPHIC

EQUATIONS

A.1 Perturbation Method

Using pseudo-height as vertical coordinate, governing equations can be written as

%_‘j+v.vv+(fo+ﬁy)l%x17+vh¢:ﬁ (A.1)
%:eﬁog: (A2)

%+2—Z+%=0 (A.3)
%H?-vheﬂu%—cg (A4)

where V denote horizontal velocity and V), denote horizontal gradient pseudo-height z as

D R/cp
()" s

& eref
2= 2=
g
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Use the scaling

¢ = fULo

1
Vi ZV;;
Q= foQ
5 =2 (20" cosg) = L
b= Bb*
ob o\~
N2 =
0z (82)
w = Wuw*

B
2 _ J—

WN —UL

(A.6)
(A7)
(A.8)
(A.9)

(A.10)

(A.11)

(A.12)
(A.13)
(A.14)

(A.15)

(A.16)

where L, U are the synoptic scale, (- )* is non-dimensional and « is the radius of Earth. The

governing equation can be rewritten as non-dimensional version (the asterisk is omitted

for simplicity)

v L - .
R0—+RQVVV+(1+R0Q)/€XV+V}L¢:R0F

ot

a9 _
0z
ou Ov
ar Ty T80
ob

ot

where Ry := U/ foL. Notice that we assume L/a ~ Ry to prevent complication.

8b
— + V Vhb+w—
0z

(A.17)

(A.18)
(A.19)

(A.20)

If we assume all non-dimensional variables have the same magnitude, then solution

clearly depends on R,. Since R, is generally much smaller than 1 in our consideration,
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we let Ry being our perturbation parameter. The solution may be expanded as

Ry)=> Ri(-), (A21)
n=0

Substitute this into governing equations and group terms by order of Ry. The Oth

order terms give

Vo =k x Vo (A.22)
9% = by (A.23)
0z
0b 0b
ot Vo Vo + 05> = Qo (A24)
The 1st order terms give
vy
a——l—vo ViVo + k x Vi + Byk x Vo + Vyoy = (A.25)
991 =b (A.26)
0z
- 0
V- Vh+ 20— (A.27)
p0z
0b Ob
oy Vo Vb + Vi Vibo +un 2 = Q) (A28)

ot

The above equations form the governing equations of quasi-geostrophic thoery.

A.2 Balanced Condition

If the flow is zonally periodic and balanced in y-direction

81}0

o + Vo Vg =0 (A.29)
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then take zonal mean governing equations of Oth-order

9% _ 7
-0 — A31
0 =By (A31)
Oby _ Oby —  OvLb,
-0 =0, — A.32
The 1st order terms give
ouy _ = vy,
W V1 = Fl,x ay (A33)
o —
T + Byt + % ~F, (A.34)
Y
001 _ g (A.35)
0z
851 @pr
— = A.36
dy * p0z 0 ( )
Oby _ Oby —  OVQb
5 + W 5 @, — By (A.37)

Collect suitable equations from above (0Oth order equations, zonal momentum equa-

tion and continuity from 1st order equations) we finally get

ouy . — ovjuly
o T e, (A.38)
Oy  _ Obg  —  Ovpby
851 8p@0
- = A.40
dy p0z 0 ( )
00y _ 7
y bo ) (A.41)
Uy = —% (A.42)
Y

We replace ug by uy, v9 by vy, v1 by v,, drop all other subscripts and recover our
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dimension to get more conventional notations

Oy —  Ovu, .
E—fova - By
ob  _ob — ol «
o "o Ty
o, Opw
dy ' poz

oo -

@Zb

__ 19

o= Jo Oy

The equation above are the governing equations given in section 2.1.
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APPENDIX B
WAVES AND THE ELIASSEN-SAWYER

CIRCULATION EQUATION

Eliassen circulation equation is primarily based on balanced state, in which buoyancy
waves cannot exist. In this appendix we will use perturbation method to include buoyancy
wave. We will also see that the frequency product of horizontal and vertical direction is a
constant constrained by Jacobian of angular momentum and buoyancy.

Consider the following primitive equations in Cartesian space which is symmetric

in z-direction and its vertical coordinate z is physical height

ou ou ou

E—kv@—y%—w% = fo+ F, (B.1a)
%—FU?—Z%—@U%:—L}%—%Z—Z (B.1b)

%_@;Hg_%waa_f :_g_%%, (B.1¢)
g—Z+g—f o, (B.1d)

% 9 .2 o, (B.1e)

ot Vay Tz

in which sound waves are eliminated by letting dp/dt = 0.

We define “geostrophic state” as the state when

| el

() =0, (B.2)

o,

t
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where
i_(‘? 50 _8. (B.3)

v =0, (B.4a)
1 Op
U=———, (B.4b)
frpoy
op  _
9.~ P9 (B.4c)
z
ow
— =0. B.4d
5 (B.4d)
Since ¢ does not appear explicitly in (B.4a)-(B.4d), we set
9= (B.5)

Thermal wind relation can be derived through (B.4b) and (B.4c) as

10p Ou 10p 100
f :—_l_— :g —— T — = N (B.6)
poz 0z POy 60y
where v = ¢,/c,. If we assume variation of p in y and variation of p in z are at least an

order less than others, then we obtain

ou g 00
— -z B.7
0z 0y (B.7)
Integrating (B.4d) with z, we obtain
(B.8)

w = constant = 0.

otherwise w # 0 on top and bottom boundaries.

Letting all variables be perturbed by a small amplitude, i.e. (-) = (-)+ (-), and
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retaining the first order of (B.1a)-(B.1e) , we obtain

() e wi
ag;" _ i — 2_7;/, (B.9b)

agy ; agj" 0, (B.9d)
2(5) o

in which we approximate

b\
N

Q
|
|

. (B.10)

I |
>

under the physical sense that sound wave is relatively fast in our scale. Equation (B.9d)

oY 0
(5o, ') = (—a—fa—j) (B.11a)

enables us to write

After taking z and y derivative of (B.9b) and (B.9c), respectively, we derive an modified

version of thermal wind relation

opu’ 0 4 o (dpw'  Ip’ o [ 0 82
)y B2
9= oy (’%) o ( oy - ) ail\ap To2 )V BI1

We define

0
Static stability: A = 227, (B.13a)
9 0z
o 9
Baroclinity: B = fa—z - Z 5 (B.13b)
) - ou
Inertial stability: C' = f ( — 8_) . (B.13c)
Y

65



to rewrite (B.9a) and (B.9¢) as
dpu’
ot

o[ ¢ g
- ) _— — D ,B 0 /A = = . B14
5 (pge) pv' B + pw eQ (B.14b)

f —p'C +pw'B = fF, (B.14a)

Adding 0(B.14a)/0z and J(B.14b)/dy, substituting (B.11a) and (B.12) into it, we get

82 82 82 B 0 gQ OF
@(Ty?jL@)erLw—@_y(?)Jrf%’ (B-152)
where
_ 0 (00)  L0()\ , 90 [(,0() ~90()
L(~)_ay (A 3 +B—- )+82 <B 3 +C0—- > (B.15b)

which is elliptic if B> — AC' < 0.
Neglecting (), F' and assuming A, C' are constants, dispersion relation given by
(B.15a) is

w? (I +m?) = Al* + 2BIm + Cm?, (B.16)

where w, [ and m are wavenumber of ¢, y and z. (B.16) reduces to purely dispersion

relation in usual buoyancy wave system if there is no baroclinity, i.e. B = 0,
w? (12 + m2) = Al* + Cm?. (B.17)
Let

[ m
sinf = -, (B.18a) cosf = —, (B.18b)
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where k = v/[? + m?. Substituting (B.18b)-(B.18a) into (B.16), we get

w? = Asin® 0 + Bsinf cosf + C cos’ 6

= g(l — cos 20) +Bsin29—|—g(1—|—cos26)

A —A
= C; + ¢ 5 cos 20 + B sin 26
A —A\?
= 0—2'— +\/B2+ (CT> sin (20 + «), (B.19)
where « is designed as
sina = -4/ , (B.20a)
B2+ (%3%)°
cosa = B , (B.20b)
B2+ (%34)°

to apply sum-to-product identities.

To get the group velocity, we first notice

o 0
V—(a%)

B dcosf df i@sin@ do i
n Ol dcosfdfd’ Ol dsinhdd

1d

Applying (B.21) to (B.16), we get
(Cge, Cgy) = Vw
1 C— A\
= — 2 - _
— B? + < 5 ) cos (260 + a) (m, —1). (B.22)

So the direction of energy transport is orthogonal to the wave geometry whose amplitude

is controlled by A, B, and C'.
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Possible range of w? is

2
’M—C;A‘g\/Bu(OT_A). (B.23)

The stable solution requires w? > 0,

2
O+A—\/B2+(C_A> >0 (B.24)

2 2

= B*—- AC <0, (B.25)

which is equivalent to require the time-independent part of (B.15a) to be elliptic. The

maximum and minimum frequencies are

A — A\?
Wmax = O; + \/B2 + OT) P (B26a)
A — A\?
Wi = C; _ \/ B+ <CT) : (B.26b)
and their product is
Winax Wmin = AC' — B2. (B.27)

(B.27) implies the stiffnes of the system is controlled by AC' — B? variable only. If on
direction gets stiffer, it will be accompanied by the relaxation of the other direction.
The quantity AC' — B? is actually the Jacobian of absolute angular momentum and

buoyancy force

m=f(fy ), (B.28a)

b=gln (ﬁ> : (B.28b)

68



which is shown as follows

AC — B? =

000 (05 . mgde

00z oy 0z 0 dy
obom  Om Ob

T 020y 020y

_o(m)
9(y,2)

(B.29)

The condition (B.15b) is elliptic if B> — AC can be realized through the example

shown in Fig. 19, 20, and through the use of B.29. m controls the movement in y direc-

tion, when an air parcel is displaced from its original position, it will oscillate back to its

original y position. The same is also true for b, but in z direction. The composite effect

gives Fig. 19 a stable configuration in which the displaced air parcel tends to go back its

original position, corresponding to (B.29) being positive (elliptic), and Fig. 20 an unsta-

ble configuration in which the displaced air parcel tends to move away from its original

position, corresponding to (B.29) being negative (non-elliptic).
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Figure 19: A stable configuration of m and b. The red and blue arrows are buoyancy
restorcing force and inertial restoring force, respectively.

b + &b b

Figure 20: An unstable configuration of m and b. The red and blue arrows are buoyancy
restorcing force and inertial restoring force, respectively.
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APPENDIX C
BOUNDARY CONVERSION

In the derivation of efficiency, we apply boundary condition for ) and ry to get the de-
sired self-adjoint property (equation [2.71]). However when dealing with open boundary
condition, i.e. when Ekman pumping is considered, extra terms appear.

If we restrict ourselves by considering bottom-opened scenario (which is reasonable
since in a tropical cyclone dynamical influence usually comes from bottom), we will re-
quire 7y — 0asr — 0,00 or as z — 2.,. Apply integral by parts to LHS of equation
(2.71)

Zoo

rdr (C.1)

([ toras = [ v [ (002)

The second term due to boundary condition is called boundary conversion, denoted

20

as Cp, characterizing the effect of boundary condition on 7% (vertical motion). This term
depends only on boundary condition and x (or temperature profile 6 (r, z)) but not on

diabatic heating () nor external forcing F'.
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APPENDIX D
SIMILARITY BETWEEN CYLINDRICAL

AND SPHERICAL COORDINATES

In this appendix we would prove that governing equations in cylindrical coordinates (Sec.

2.3) and spherical coordinates (Sec. 2.4) are essentially identical but with minor differ-

€nce.

For clarity we list again the governing equations in both coordinates [(2.59) and

(2.83)] and arrange them in proper order. We also redefine geopotential ¢ in cylindrical

coordinates as (G to avoid obfuscation.

Cylindrical coordinates:

om om
Ua— + w% = T’F,
060 00
Ua— w& =Q,
1 1
_ ﬁ (mz o Zf2r4) ’
_9
0,7
opw
— =0.
p0z

where m = rv + 1/2fr?.

Spherical coordinates:

om om om
I + vm + wo— = RFE,
06 06 06
ot Va0 TVe: T @
sing , 9 4 oG
e (m* — °RY) = —m,
oG 0
a = 9—09,

ORv opw _0
RO(ag)  pdz '

where m = Ru + QR?.

(D.2a)
(D.2b)
(D.2c)
(D.2d)

(D.2e)

After speculation and with the aid of Fig. 21, we notice that there are two types of “radius”.

One is the coordinate radius 7 while the other is the radius R (7) with respect to the rotation



Rotation axis

b

ﬁ
®

Cylindrical

Spherical

Figure 21: The comparison between cylindrical and spherical coordinates.
center. The following gives more general governing equations.

om om om

Absolute angular momentum: —— + G—— + w—— = RF, (D.3a)
ot or 0z
0 0 0
Thermodynamic: % + ﬂ% + w% =@, (D.3b)
Balanced condition: S~(T) (m2 — QQR4> = %, (D.3c)
R3 or
oG 0
Hydrostatic: — = —g, (D.3d)
0z 00
.. ORu  Opw
Continuity: —— + —— =0. D.3e
* Ror  poz (B-3¢)

where m = R0 + QR? is the absolute angular momentum, v is the main circulation,
@ = dr/dt together with w represents the secondary circulation, and S (7') is a parameter

depending only on 7.
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By (D.3c¢) and (D.3d), we derive the thermal wind relation

900 _ S om?
0o OF R3 0z

(D.4)

in which we notice that the parameter S is a minor issue since it depends only on horizontal
direction so it would not involve in the operation when deriving thermal wind relation.

After taking time derivative of (D.4), we get

0 (gdo0\ 0 (S om?
— (=)= == = ) D.5
ot (00 87’) ot <R3 0z ) (D-5)
We define
0
Static stability: pA = ga—, (D.6a)
90 0z
e g0 S om?
Baroclinity: pB = Teor T 0s (D.6b)
. o 1 Om?
Inertial stability: pC' = o (D.6c)
to rewrite (D.3a) and (D.3b) as
1 om?* 2mF
g oo . g
=~ — — puB A==Q. D.
T pubB + pw GOQ (D.7b)
According to (D.3e) we define the streamfunction v such that
_ o ORY
u, pw) = | ————, = . D.8
(pti, pw) ( 9 F W) (D.8)

After subtracting 9(D.7b)/07 from 0(D.7a)/0z to eliminate partial derivative of time with
the aid of (D.5) and substituting (D.8) into it, we obtain a generalized Eliassen-Sawyer

circulation equation for both coordinates

g 0Q 1 92mF
N 90 or RZ 0z

, (D.9a)



where

L(.)= % (Aag;%) +Ba£§;)> + % (Baga(%) +Caa(;)> , (D.9b)

and (D.9b) is elliptic if B? — AC' < 0. The boundary conditions for (D.9a) are that ¢) = 0
on top, bottom, and inner boundaries and ¢) — 0 as r — oo.
We close this part by deriving Eliassen operators for both coordinates. Using the

variables defined in Table 6, we get the Eliassen operators for cylindrical coordinates

_ o (,or() O()\, 0 (por(-)  ~9()
L(')_ar(A or r+B 0z +8z Brar +C 0z )’ (D-10)
where

Static stability: pA = E@, (D.11a)

90 0z

_god  1om?

Baroclinity: pB = bor - 1 as (D.11b)

2
Inertial stability: pC' = %c’%n , (D.11c¢)

r3 Or

and spherical coordinates

9 [ OR() ()N 9 (LOR(:) . 9(0)
LO)= 5ag) <ARa<a¢> 5 )*é (BRa<a¢> T ) (.12)

where

g 00

Static stability: pA = =——, (D.13a)
90 0z
. g 00 sin ¢ Om?
B linity: pB = —= = D.13b
aroclinity: p bodlad) B 07 ( )
: 2
Inertial stability: pC' = —S}%Lf%. (D.13¢)
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Table 6: General form of Eliassen-Sawyer circulation equation in cylindrical and spherical

coordinates

Variables in (D.9b) | Cylindrical | Spherical
T r ao
R r R
Q f/2 Q
v v u
U u v
S 1 —sin ¢
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APPENDIX E
APPLICATION PROGRAMMING

INTERFACE

Here we list the core API to solve (3.1). The code is written in Fortran 95 and maintained
on Github (http://github.com/meteorologytoday/XLab-EE-fortran).

Basic usage is as follows

1 |! This is a simple example of solving Eliassen-Sawyer
2 | ! circulation equation. All other variables are set

3 |! initially with the correct type specified by API below
4

5

6 |! #1: Calculate coefficient matrix first

7 |err_flg = ©

8 |call cal_coe(a, b, c, coe, dx, dy, nx, ny, err_flg)

9 |if (err_flg /= 0) then ! Error occurs.

10 exit

11 |end if

12

13 | ! #2: Solve the equation

14 |err_flg = ©

15 |strategy = 0

16 |strategy_r = le-3

17 |call solve_elliptic(max_iter, strategy_r, 1.0, dat, coe, f, &

18 |& workspace, nx, ny, err_flg, debug)
19 |if (err_flg /= 0) then ! Error occurs
20 exit
21 |end if
||
#Subroutine:

cal_coe (a, b, ¢, coe, dx, dy, nx, ny, err)
#Description:
Calculate (3.8a) and store result in coe.

#Parameters:

— Real(4) :: a (nx-1, ny-2)
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Static stability A in (3.1) whose dimension is (nx-1, ny-2).
— Real(4) :: b (nx-1, ny-1)
Static stability B in (3.1) whose dimension is (nx-1, ny-1).
— Real(4) :: ¢ (nx-2, ny-1)
Static stability C in (3.1) whose dimension is (nx-2, ny-1).
— Real(4) :: coe (9, nx, ny)
Coefficient matrix which stores the result of this subroutine. Its dimension
is (9, nx, y).
— Real(4) :: dx
Grid spacing in x direction.
— Real(4) :: dy
Grid spacing in y direction.
— Integer :: nx
Number of grid points in = direction.
— Integer :: ny
Number of grid points in y direction.
— Integer :: err

Error flag. Modified to 0 if completed and without error, otherwise not 0.

#Subroutine:
do_elliptic (psi, coe, outdat, nx, ny, err)
#Description:
Calculate L) in (3.1). Result is stored in outdat.
#Parameters:
— Real(4) :: psi (nx, ny)
1 field whose dimension is (nx-1, ny-2).

— Real(4) :: coe (9, nx, ny)
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Coefficient matrix calculated beforehand by Subroutine cal coe.
— Real(4) :: outdat (nx, ny)
Result of L) in (3.1).
— Integer :: nx
Number of grid points in = direction.
— Integer :: ny
Number of grid points in y direction.
— Integer :: err

Error flag. Modified to 0 if completed and without error, otherwise not 0.

H
o
#Subroutine:
solve_elliptic(max _iter, strategy, strategy r, alpha, dat, coe, f, workspace, nx,
ny, err, debug)
#Description:
Invert ¢ in (3.1). Boundary conditions are given in the boundaries of f. Result is
stored in dat. This subroutine now provides two ways to judge the convergence
which can be specified with strategy.
“1” specifies to judge “absolute” residue defined in (3.10) and this critical value
should be given in strategy r.
“2” specifies to judge “relative” variation of residue defined in (3.10) and this
critical value should be given in strategy r.
#Parameters:

— Integer :: max_iter
Maximum iteration time. If iteration time is reached and convergence crite-
ria is not met, then err # 0.

— Integer :: strategy

Strategy used to judge convergence. See #Description part.
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— Real(4) :: strategy r
This value service different criteria according to strategy. See #Description
part.
— Real(4) :: alpha
Over-relaxation parameter. It is recommended to set this value 1.0.
— Real(4) :: dat (nx, ny)
Result of relaxation. The initial guess of iteration can be placed in this array.
Its dimension is (nx, ny).
— Real(4) :: coe (9, nx, ny)
Coefficient matrix calculated beforehand by Subroutine cal coe.
— Real(4) :: f (nx, ny)
This is F' in (3.1) whose dimension is (nx, ny). Notice that boundary condi-
tions are given in the boundaries of f.
— Real(4) :: workspace (nx, ny)
The workspace when doing relaxation whose dimension is (nx, ny).
— Integer :: nx
Number of grid points in x direction.
— Integer :: ny
Number of grid points in y direction.
— Integer :: err
Error flag. Modified to 0 if completed and without error, otherwise not 0.
— Integer :: debug

Debug message output if 1. No debug message if 0.
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