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摘要

觀測資料顯示眼牆置換 (ERC) 過程會產生不同的結果。Kuo

et al. (2009) 發現在置換過程結束後，大約 28% 的颱風會繼續增

強。Yang et al. (2013)針對雙眼牆置換完成後的演化，發展出四個分

類。他們指出不同分類的颱風在強度的演化上有明顯的不同，於 T-V

圖中亦具有不同的演化路徑。

Hack and Schubert (1986)提出熱動力效率 η (r, z, t)之概念。此物理

量能夠定量描述總位能 (P)轉換到總動能 (P)之能量轉換速率 (C)，並

以加熱 (Q)最為量度基準。該文獻指出儘管總加熱量 (H)維持一樣，

不同的渦漩結構會產生極為不同的轉換效率。在此研究中，我們將利

用熱動力效率，來測試單雙眼牆颱風 Francis (2004)之轉換效率反應。

我們發現外眼牆在動力上能夠透過減少羅士比長度而提高渦漩的能量

轉換效率達 50%至 400%，而改變內外眼牆之加熱率比重 (從 1 : 2至

2 : 1)則可以強化能量轉換效率達 100%至 600%。

除了此研究主要使用的圓柱座標外，本論文也推導在準地轉理論

(卡式座標)，卡式座標，球座標與淺水模型之動力效率，可供參考與應

用於其他尺度平衡動力研究之用。

關鍵字：平衡渦漩、熱動力效率、動量動力效率、雙眼牆、次環流
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ABSTRACT

The observation data shows that the eyewall replacement cycle (ERC) re-

sults in different consequences. Kuo et al. (2009) found that approximately

28% of typhoons strengthen after the formation of secondary eyewall. Yang

et al. (2013) developed four categories to classify the situations after the for-

mation. They found these four categories exhibit different behaviors on in-

tensity and routes on T-V diagram.

“Dynamic efficiency of heat” η (r, z, t)) developed by Hack and Schu-

bert (1986) is to examine the effect of heating on the energy conversion rate

(C) converting total potential energy (P) into total kinetic energy (K) They

also pointed out that efficiencies vary under different vortex structures while

total heating remains the same. In this study, we would apply dynamic effi-

ciencies to examine the response of concentric eyewall cyclone Francis (2004).

We find that the presence of outer eyewall enhances the efficiency response

by approximately 50% to 400% through reducing Rossby length (λR) while

changing the heating ratio between inner and outer eyewalls from 1 : 2 to

2 : 1 enhances the efficiency by 100% to 600% (total heating is fixed).

Apart from cylindrical coordinates, we also derive the dynamic efficien-

cies in quasi-geostrophic theory (Cartesian coordinates), Cartesian coordi-

nates, spherical coordinates, and shallow water model for potentially appli-

cation to other balance dynamics in different scales.
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Keywords: balanced vortex, dynamic efficiency of heat, dynamic efficiency

of momentum, concentric eyewall, double eyewall, secondary circulation
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CHAPTER 1

INTRODUCTION

A cyclone intensifies itself by storing the available potential energy through latent of water

vapor and releasing it into kinetic energy. Charney and Eliassen (1964) proposed Condi-

tion Instability of the Second Kind (CISK) to explain the initiation of the tropical depres-

sion. Later, Schubert and Hack (1982) demonstrated that pre-existing vortex is another

important factor for constructing a warm core for it reduces Rossby deformation length

(λR). It is also known that given the same amount of energy input, not necessarily every

cyclone grows. By observation data, the eyewall replacement cycle after the generation of

outer eyewall (some hypothesis were given by Rozoff et al., 2008) have different conse-

quences (Kuo et al., 2009; Yang et al., 2013). The work above suggest the need of finding

a way to quantify the effect of structure of heating and wind profile on kinetic energy of a

cyclone.

Assuming an air column is heated uniformly by 10K per day (equivalent to the latent

heat produced by 40mm per day) and its mass is 104 kg per 1m2. Energy released in 1m2

is

∆T · cp ·Mass = 10K · 1004 J kg−1K−1 · 104 kg ≈ 108 J. (1.1)

If 1% of heating energy can be converted into kinetic energy, then we have

108J · 1% =
1

2
· 104 kg · (vfinal − vinitial)

2 , (1.2)

where vinitial and vfinal represent the initial and final velocities of the air column.
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Let vinitla = 0, then we obtain

vfinal = 10
√
2ms−1 ≈ 14ms−1. (1.3)

Since wind speed over 17ms−1 will be identified with tropical storm in Saffir–Simpson

hurricane wind scale, heating efficiency about 1% is significant enough in our studies.

To quantify the effect of heating, Hack and Schubert (1986) developed the idea of

dynamic efficiency η (r, z) to describe the efficiency of heating at particular position with

the aid of Eliassen-Sawyer circulation equation. This tool is especially convenient for it

requires only temperature profile θ (r, z) so that we can discuss without considering too

much issue about adiabatic heating Q.

Contents in later chapters are structured as follows: Eliassen-Sawyer circulation

equation and dynamic efficiency of heat and momentum will be derived in chapter 2. Re-

laxation method used in this paper in order to solve Eliassen-Sawyer circulation equation

will be introduced in chapter 3. In chapter 4 will introduce our diagnose procedure, ex-

periment settings and results. Summary is in chapter 5.
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CHAPTER 2

FORMULATION

We will derive dynamic efficiencies in five different realms. Sec. 2.1 is the derivation

in quasi-geostrophic theory of Cartesian coordinates, which serves as an friendly open-

ing to readers unfamiliar with this topic since this theory is well-known to most of the

meteorologists. Sec. 2.2 is the derivation in Cartesian coordinates without scaling like

quasi-geostrophic theory. Sec. 2.3 is the derivation in cylindrical coordinates, which we

apply to analyze tropical cyclone in particular. Sec. 2.4 is the derivation in spherical co-

ordinates, showing that dynamic efficiencies can also work in planetary scale. In the end,

the intrinsic shared properties of derivation above can be seen in the shallow water model

of cylindrical coordinates, where we will also derive dynamic efficiencies for it, too.

Readers might note that the governing equations in Secs. 2.2-2.5 have no turbulent

fluxes. In fact, turbulent fluxes can be included in external forcings (diabatic heating and

momentum source), so dynamic efficiencies are essentially symmetry dynamics. As a

result, it is better to keep turbulent fluxes away to avoid confusion in these sections. We

keep, however, turbulent fluxes in Sec. 2.1 to retain connections to other studies because

turbulent fluxes are essential to quasi-geostrophic in most applications.

In our basic framework, the system is closed, i.e., no air can go across the bound-

aries. App. C discusses the situations when bottom boundary is connected to the planetary

boundary layer and is not closed.

Of theory interest, inertial buoyancy waves can also be combined with Eliassen-

Sawyer circulation equation to get a clearer understanding of balanced systems. It can be

shown that the product of maximum and minimum frequencies of inertial buoyancy wave

is a constant which is related to the Jacobian determinant of absolute angular momentum
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and buoyancy force. These discussions are presented in App. B.

2.1 Efficiency in Quasi-geostrophic Theory

Quasi-geostrophic theory successfully describes the mid-latitude dynamics and is widely

taught in basic meteorology class. So it is necessary to derive dynamic efficiencies in

Quasi-geostrophic theory. Readers might notice that we keep the turbulent fluxes in the

forcing terms. It is because while turbulent fluxes are not the essentials of dynamic ef-

ficiencies, they are still very important to Quasi-geostrophic dynamics so it is better to

keep them in our equations. Sec. 2.2 uses similar framework but it retains the advection

of main circulation and the horizontal advection of potential temperature.

Derivation

Consider a zonally periodic, longitudally balanced flow on anβ plane. The quasi-geostropic

theory (App. A) gives the governing equations as

Zonal wind:
∂ug
∂t

− f0va = F
∗, (2.1a)

Geostrophic balance: ug = − 1

f0

∂ϕ

∂y
, (2.1b)

Hydrostatic:
∂ϕ

∂z
= b, (2.1c)

Continuity:
∂va
∂y

+
∂ρw

ρ∂z
= 0, (2.1d)

Thermodynamic:
∂b

∂t
+ w

∂b

∂z
=

g

θ0
Q

∗, (2.1e)

(2.1f)

where z = (cpθ0/g)[1 − (p/p0)
κ] is the pseudo-height, ( · ) is the zonal average, ρ =

ρ0(p/p0)
(1/κ)−1 is the pseudo-density (Hoskins and Bretherton, 1972), ug is the geostropic

wind speed in zonal direction, va is the ageostrophic wind speed in longitudinal direction,

w is the vertical components of velocity, b is the buoyancy force and ϕ is the geopotential.
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By (2.1b) and (2.1c), we derive the thermal wind relation

f0
∂ug
∂z

= −∂b

∂y
. (2.2)

After taking time derivative of (2.2), we get

f0
∂

∂t

∂ug
∂z

= − ∂

∂t

∂b

∂y
. (2.3)

We define

Static stability: ρA =
∂b

∂z
, (2.4a)

Inertial stability: ρC = f 2
0 , (2.4b)

to write equation (2.1a) and (2.1e) as

f0
∂ug
∂t

− ρvaC = f0F
∗, (2.5a)

∂b

∂t
+ ρwA =

g

θ0
Q

∗. (2.5b)

According to (2.1d), we define the streamfunction ψ such that

(ρva, ρw) =

(
−∂ψ
∂z
,
∂ψ

∂y

)
. (2.6)

After adding ∂(2.5a)/∂z and ∂(2.5b)/∂y to eliminateg time derivative with the aid of (2.3)

and substituting (2.6) into it, we obtain diagnostic equation known as the Eliassen-Sawyer

circulation equation

Lψ =
g

θ0

∂Q
∗

∂y
− f0

∂F
∗

∂z
, (2.7a)

where

L ( · ) = ∂

∂y

(
A
∂ ( · )
∂y

)
+

∂

∂z

(
C
∂ ( · )
∂z

)
, (2.7b)

and is elliptic ifAC > 0. The boundary conditions for (2.7a) are thatψ = 0 on top bottom,

left, and right boundaries.
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From a balanced system, we have the following energy equations

dP
dt

= H− C, (2.8a)
dK
dt

= C+M, (2.8b)

where

P =

∫∫
cpT ρdydz, (2.9a)

K =

∫∫
u2g
2
ρdydz, (2.9b)

H =

∫∫
cpΠQ

∗
ρdydz, (2.9c)

C =

∫∫
wb ρdydz, (2.9d)

M =

∫∫
F

∗
ug ρdydz. (2.9e)

Substituting (2.6) into (2.9d), we obtain

C =

∫
b
∂ψ

∂y
dydz. (2.10)

After integrating by parts, (2.10) becomes

C = −
∫
ψ
∂b

∂y
dydz. (2.11)

Now we define a quantity χ which satisfies

Lχ =
∂b

∂y
, (2.12)

with the same boundary condition as (2.7a). Substituting (2.12) into (2.11) and applying

self-adjoint property, we obtain

C = −
∫
ψLχ dydz = −

∫
χLψ dydz. (2.13)

Substituting (2.7a) into (2.13) and integrating by parts again, we get

C = −
∫
χ

(
g

θ0

∂Q
∗

∂y
− f0

∂F
∗

∂z

)
dydz

=

∫
cpΠQ

∗
ηH ρdydz +

∫
F

∗
ugηM ρdydz, (2.14)

where
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ηH =
g

ρcpΠθ0

∂χ

∂y
, (2.15a) ηM = − f

ρug

∂χ

∂z
. (2.15b)

We refer to ηH as dynamic efficiency of heat, and ηM as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

If we letA andC in (2.4a) to be constants, then homogeneous part of (2.7a) becomes

A
∂2ψ

∂y2
+ C

∂2ψ

∂z2
= 0. (2.16)

Letting

ψ (y, z) = Ψ (y) Φ (z) , (2.17)

plugging (2.17) into (2.16), and move functions of r and z to different sides, we obtain

1

Ψ

d2Ψ
dy2

=
−1

Γ2Φ

d2Φ
dz2

= µ2, (2.18)

where µ2 is a constant (it is positive otherwise solutions on z direction would not satisfy

boundary condition), and

Γ =

√
A

C
, (2.19)

denoting the ratio between static stability and inertial stability.

Solving for Ψ, we obtain
d2Ψ
dr2

= µ2Ψ, (2.20)

whose solution is

Ψ = c1e
µy + c2e

−µy. (2.21)

We thus define µ−1 as “Rossby length” (also sometimes referred to as “Rossby radius of

deformation”) characterizing horizontal length scale of the system.

Solving for Φ, we obtain

Φ = c1 sin (µΓz) + c2 cos (µΓz) . (2.22)
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With ψ = 0 on top and bottom boundaries, we further get

Φ = c1 sin (µΓz) , (2.23)

and

µ−1 =
Γz∞
nπ

, (2.24)

where z∞ is height of top boundary, and n is a non-negative integer. We again define

γ−1 =
1

µΓ
, (2.25)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.25) can

also be rewritten as
γ−1

µ−1
=

1

Γ
, (2.26)

showing that the aspect ratio of the system is controlled by Γ, i.e. the ratio between static

stability and inertial stability. To get more details about Γ, Schubert and McNoldy (2010)

gave a great discussion about the application of Γ to tropical cyclones.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.7a), dynamic effi-

ciency of heat and momentum (2.15) for quasi-geostrophic theory. The last part of this

section shows that the geometry of operator L is controlled by parameter Γ (2.19). This

section can be compared with section 2.2 in which bacoclinity exists to get deeper insight.
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2.2 Efficiency in Cartesian Coordinates

Cartesian coordinates is suitable for discussing physics without dealing with geometry

factor. The difference between this section and Sec. 2.1 is that we retain the advection of

main circulation and the horizontal advection of potential temperature, hence keeping the

effect of baroclinity on the secondary circulation.

Derivation

Consider a zonally symmetric, longitudinally balanced flow on an f plane. The governing

equations are given as

Zonal wind:
du
dt

− fv = F , (2.27a)

Logitudinal wind: fu = −∂ϕ
∂y

, (2.27b)

Hydrostatic:
∂ϕ

∂z
=

θ

θ0
g, (2.27c)

Continuity:
∂v

∂y
+
∂ρw

ρ∂z
= 0, (2.27d)

Thermodynamic:
dθ
dt

= Q, (2.27e)

where z = (cpθ0/g)[1− (p/p0)
κ] is the pseudo-height, ρ = ρ0(p/p0)

(1/κ)−1 is the pseudo-

density (Hoskins and Bretherton, 1972), u, v, w are the zonal, longitudinal, and vertical

components of velocity, θ is the potential temperature, ϕ is the geopotential, F is the

external force on zonal wind, and Q is the diabatic heating.

Noticing that v = dy/dt, (2.27a) becomes

du
dt

− fv =
d
dt

(u− fy) =
du∗

dt
, (2.28)

where u∗ = u−fy is the transformed zonal wind, a technique similar to “semi-geostrophic

coordinate” in Hoskins and West (1979). Substituting (2.28) into (2.27b), we get

fu = f (u∗ + fy) = −∂ϕ
∂y

. (2.29)
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Expanding total derivative, governing equations become

Absolute angular mometnum:
∂u∗

∂t
+ v

∂u∗

∂y
+ w

∂u∗

∂z
= F , (2.30a)

Gradient wind balance: f (u∗ + fy) = −∂ϕ
∂y

, (2.30b)

Hydrostatic:
∂ϕ

∂z
=

θ

θ0
g, (2.30c)

Continuity:
∂v

∂y
+
∂ρw

ρ∂z
= 0, (2.30d)

Thermodynamic:
∂θ

∂t
+ v

∂θ

∂y
+ w

∂θ

∂z
= Q, (2.30e)

By (2.30b) and (2.30c), we derive the thermal wind relation

f
∂u∗

∂z
= − g

θ0

∂θ

∂y
. (2.31)

After taking time derivative of (2.31), we get

f
∂

∂t

∂u∗

∂z
= − g

θ0

∂

∂t

∂θ

∂y
. (2.32)

We define

Static stability: ρA =
g

θ0

∂θ

∂z
, (2.33a)

Baroclinity: ρB = − g

θ0

∂θ

∂y
= f

∂u∗

∂z
, (2.33b)

Inertial stability ρC = −f ∂u
∗

∂y
, (2.33c)

to rewrite equation (2.30a) and (2.30e) as

f
∂u∗

∂t
− ρvC + ρwB = fF , (2.34a)

g

θ0

∂θ

∂t
− ρvB + ρwA =

g

θ0
Q. (2.34b)
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According to (2.30d), we define the streamfunction ψ such that

(ρv, ρw) =

(
−∂ψ
∂z
,
∂ψ

∂y

)
. (2.35)

After adding ∂(2.34a)/∂z and ∂(2.34b) to eliminate time derivative with the aid of (2.32)

and substituting (2.35) into it, we obtain the diagnostic equation known as the Eliassen-

Sawyer circulation equation

Lψ =
g

θ0

∂Q

∂y
+ f

∂F

∂z
, (2.36a)

where

L ( · ) = ∂

∂y

(
A
∂ ( · )
∂y

+B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂ ( · )
∂y

+ C
∂ ( · )
∂z

)
, (2.36b)

and is elliptic if B2 − AC < 0. The boundary conditions for (2.36a) are that ψ = 0 on

top, bottom, left, and right boundaries.

From a balanced system, we have the following energy equations

dP
dt

= H− C, (2.37a)
dK
dt

= C+M, (2.37b)

where

P =

∫∫
cpT ρdydz, (2.38a)

K =

∫∫
u2

2
ρdydz, (2.38b)

H =

∫∫
cpΠQ ρdydz, (2.38c)

C =

∫∫
g

θ0
θw ρdydz, (2.38d)

M =

∫∫
Fu ρdydz. (2.38e)

Substituting (2.35) into (2.38d), we obtain

C =

∫∫
θ
g

θ0

∂ψ

∂y
dydz. (2.39)
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After integrating by parts, (2.39) becomes

C = −
∫
ψ
g

θ0

∂θ

∂y
dydz. (2.40)

Now we define a quantity χ which satisfies

Lχ =
g

θ0

∂θ

∂y
, (2.41)

with the same boundary condition as (2.36a). Substituting (2.41) into (2.40) and applying

self-adjoint property, we obtain

C = −
∫
ψLχ dydz = −

∫
χLψ dydz. (2.42)

Substituting (2.36a) into (2.42) and integrating by parts again, we get

C = −
∫
χ

(
g

θ0

∂Q

∂y
+ f

∂F

∂z

)
dydz

=

∫
cpΠQηH ρdydz +

∫
FuηM ρdydz, (2.43)

where

ηH =
g

ρcpΠθ0

∂χ

∂y
, (2.44a) ηM =

f

ρu

∂χ

∂z
. (2.44b)

We refer to ηH as dynamic efficiency of heat, and ηM as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

If we let A and C in (2.33a) to be constants, B = 0, then homogeneous part of

(2.36a) becomes

A
∂2ψ

∂y2
+ C

∂2ψ

∂z2
= 0. (2.45)

Letting

ψ (y, z) = Ψ (y) Φ (z) , (2.46)
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plugging (2.46) into (2.45), and move functions of r and z to different sides, we obtain

1

Ψ

d2Ψ
dy2

=
−1

Γ2Φ

d2Φ
dz2

= µ2, (2.47)

where µ2 is a constant (it is positive otherwise solutions on z direction would not satisfy

boundary condition), and

Γ =

√
A

C
, (2.48)

denoting the ratio between static stability and inertial stability..

Solving for Ψ, we obtain
d2Ψ
dr2

= µ2Ψ, (2.49)

whose solution is

Ψ = c1e
µy + c2e

−µy. (2.50)

We thus define µ−1 as “Rossby length” (also sometimes referred to as “Rossby radius of

deformation”) characterizing horizontal length scale of the system.

Solving for Φ, we obtain

Φ = c1 sin (µΓz) + c2 cos (µΓz) . (2.51)

With ψ = 0 on top and bottom boundaries, we further get

Φ = c1 sin (µΓz) , (2.52)

and

µ−1 =
Γz∞
nπ

, (2.53)

where z∞ is height of top boundary, and n is a non-negative integer. We again define

γ−1 =
1

µΓ
, (2.54)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.54) can
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also be rewritten as
γ−1

µ−1
=

1

Γ
, (2.55)

showing that the aspect ratio of the system is controlled by Γ, i.e. the ratio between static

stability and inertial stability. To get more details about Γ, Schubert and McNoldy (2010)

gave a great discussion about the application of Γ to tropical cyclones.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.36a), dynamic ef-

ficiency of heat and momentum (2.44) for Cartesian coordinates. The last part of this

section shows that the geometry of operator L is controlled by parameter Γ (2.48). When

compared with Sec. 2.1, the main difference is the existence of baroclinity B in (2.36a)

because we retain the vertical advection of zonal wind and horizontal advection of tem-

perature (or buoyancy in Sec. 2.1). In general, baroclinity makes little difference since A

and C are usually much more significant than B.
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2.3 Efficiency in Cylindrical Coordinates

Cylindrical coordinates is suitable to deal with any rotation system on a plane, and TC

problems use this coordinates intensively. Schubert and Hack (1982) gave a different

perspective other than CISK to emphasis on the dynamical structure of a vortex which

enhances the warming of the core. Hack et al. (1989) used dynamic efficiency of heat to

point out the importance of horizontal structure of heating. Rozoff et al. (2008) discussed

the effect of a contracting and intensifying concentric eyewall.

Another fact is that governing equations in cylindrical coordinates and spherical

coordinates are conceptually the same. The linkage between them will be elaborated more

in App. D.

Derivation

Consider an axisymmetric, balanced flow on an f plane. The governing equations are

given as

Radial wind:
∂ϕ

∂r
= fv +

v2

r
, (2.56a)

Tangential wind:
dv
dt

= −fu− uv

r
+ F , (2.56b)

Hydrostatic:
∂ϕ

∂z
=

θ

θ0
g, (2.56c)

Continuity:
∂ru

r∂r
+
∂ρw

ρ∂z
= 0, (2.56d)

Thermodynamic:
dθ
dt

= Q, (2.56e)

where z = (cpθ0/g)[1− (p/p0)
κ] is the pseudo-height, ρ = ρ0(p/p0)

(1/κ)−1 is the pseudo-

density (Hoskins and Bretherton, 1972), u, v, w are the radial, tangential, and vertical

components of velocity, θ is the potential temperature, ϕ is the geopotential, F is external

force on tangential wind, and Q is the diabatic heating.
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Noticing that u = dr/dt, we multiply (2.56b) by r to get

r
dv
dt

+
du
dt
v + f

dr
dt

=
d
dt

(
rv +

1

2
fr2
)

=
dm
dt

, (2.57)

where m = rv + 1/2fr2 is the absolute angular momentum. Substituting (2.57) into

(2.56a), we get

fv +
v2

r
=

1

r2
v
(
rv + fr2

)
=

1

r3

(
rv +

1

2
fr2 − 1

2
fr2
)(

rv +
1

2
fr2 +

1

2
fr2
)

=
1

r3

(
m2 − 1

4
f 2r4

)
. (2.58)

Expanding total derivative, governing equations become

Radial wind:
∂ϕ

∂r
=

1

r3

(
m2 − 1

4
f 2r4

)
, (2.59a)

Absolute angular momentum:
∂m

∂t
+ u

∂m

∂r
+ w

∂m

∂z
= rF , (2.59b)

Hydrostatic:
∂ϕ

∂z
=

θ

θ0
g, (2.59c)

Continuity:
∂ru

r∂r
+
∂ρw

ρ∂z
= 0, (2.59d)

Thermodynamic:
∂θ

∂t
+ u

∂θ

∂r
+ w

∂θ

∂z
= Q. (2.59e)

By (2.59a) and (2.59c), we derive the thermal wind relation

g

θ0

∂θ

∂r
=

1

r3
∂m2

∂z
. (2.60)

After taking time derivative of (2.60), we get

∂

∂t

g

θ0

∂θ

∂r
=

∂

∂t

1

r3
∂m2

∂z
. (2.61)
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We define

Static stability: ρA =
g

θ0

∂θ

∂z
, (2.62a)

Baroclinity: ρB = − g

θ0

∂θ

∂r
= − 1

r3
∂m2

∂z
, (2.62b)

Inertial stability: ρC =
1

r3
∂m2

∂r
, (2.62c)

to rewrite (2.59b) and (2.59e) as

1

r3
∂m2

∂t
+ ρuC − ρwB =

2mF

r2
, (2.63a)

g

θ0

∂θ

∂t
− ρuB + ρwA =

g

θ0
Q. (2.63b)

According to (2.59d) we define the streamfunction ψ such that

(ρu, ρw) =

(
−∂ψ
∂z
,
∂rψ

r∂r

)
. (2.64)

After subtracting ∂(2.63b)/∂r from ∂(2.63a)/∂z to eliminate partial derivative of time

with the aid of (2.61) and substituting (2.64) into it, we obtain the diagnostic equation

known as the Eliassen-Sawyer circulation equation

Lψ =
g

θ0

∂Q

∂r
− 1

r2
∂2mF

∂z
, (2.65a)

where

L ( · ) = ∂

∂r

(
A
∂r ( · )
∂r

r +B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂r ( · )
r∂r

+ C
∂ ( · )
∂z

)
, (2.65b)

and (2.65b) is elliptic ifB2−AC < 0. The boundary conditions for (2.65a) are that ψ = 0

on top, bottom, and inner boundaries and ψ → 0 as r → ∞.

From a balanced vortex system, we can derive the following energy equations

dP
dt

= H− C, (2.66a)
dK
dt

= C+M, (2.66b)
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where

P =

∫∫
cpT ρrdrdz, (2.67a)

K =

∫∫
v2

2
ρrdrdz, (2.67b)

H =

∫∫
cpΠQ ρrdrdz, (2.67c)

C =

∫∫
g

θ0
wθ ρrdrdz, (2.67d)

M =

∫∫
Fv ρdrdz. (2.67e)

Substituting (2.64) into (2.67d), we obtain

C =

∫∫
θ
g

θ0

∂rψ

∂r
drdz. (2.68)

After integrating by parts, (2.68) becomes

C = −
∫∫

ψ
g

θ0

∂θ

∂r
rdrdz. (2.69)

Now we define a quantity χ which satisfies

Lχ =
g

θ0

∂θ

∂r
, (2.70)

with the same boundary condition as (2.65a). Substituting (2.70) into (2.69) and applying

self-adjoint property, we obtain

C = −
∫∫

ψLχ rdrdz = −
∫∫

χLψ rdrdz. (2.71)

Substituting (2.65a) into (2.71) and integrating by parts again, we get

C = −
∫∫

g

θ0

∂Q

∂r
− 1

r2
∂2mF

∂z
rdrdz

=

∫∫
QcpΠηH ρrdrdz +

∫∫
FvηM ρrdrdz, (2.72)

where

ηH =
g

ρcpΠθ0

∂rχ

r∂r
, (2.73a) ηM = − 2m

ρvr2
∂χ

∂z
. (2.73b)
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We refer to ηH as dynamic efficiency of heat, and ηM as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

If we letA andC in (2.62) to be constants,B = 0, then homogeneous part of (2.65a)

becomes
∂

∂r

(
∂rψ

r∂r

)
+

1

Γ

∂2ψ

∂z2
= 0. (2.74)

Letting

ψ (r, z) = Ψ (r) Φ (z) , (2.75)

plugging (2.75) into (2.74), and move functions of r and z to different sides, we obtain

1

Ψ

(
d2Ψ
dr2

+
1

r

dΨ
dr

− 1

r2
Ψ

)
=

−1

Γ2Φ

d2Φ
dz2

= µ2 (2.76)

where µ2 is a constant.

Solving for Ψ, we obtain

r2
d2Ψ
dr2

+ r
dΨ
dr

+Ψ
(
1 + µ2r2

)
= 0, (2.77)

which is modified Bessel’s differential equation. We thus define µ−1 as “Rossby length”

(also sometimes referred to as “Rossby radius of deformation”) characterizing horizontal

length scale of the system.

Solving for Φ, we obtain

Φ = c1 sin (µΓz) + c2 cos (µΓz) . (2.78)

With ψ = 0 on top and bottom boundaries, we further get

Φ = c1 sin (µΓz) , (2.79)

and

µ−1 =
Γz∞
nπ

, (2.80)
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where z∞ is height of top boundary, and n is a non-negative integer. We again define

γ−1 =
1

µΓ
, (2.81)

as “Rossby depth” characterizing vertical length scale of the system. Indeed, (2.81) can

also be rewritten as
γ−1

µ−1
=

1

Γ
, (2.82)

showing that the aspect ratio of the system is controlled by Γ, i.e. the ratio between static

stability and inertial stability.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.65a), dynamic ef-

ficiency of heat and momentum (2.73) for cylindrical coordinates. The last part of this

section shows that the geometry of operator L is controlled by parameter Γ (2.81). No-

tice that the efficiency of heat involves horizontal geometry, so efficiency of heat must be

sensitive to its position in radial direction. This might suggest that TC’s properties may

change rapidly when its heating position fluctuates radially in small radius.
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2.4 Efficiency in Spherical Coordinates

Spherical coordinates can be used when dealing with planetary scale problem. For exam-

ple, Hack et al. (1989) explained why the Hadley cell is stronger in the winter hemisphere,

Schubert et al. (1989) studied the trade-wind inversion to enlight problem from subtropical

latitude to tropics.

Another fact is that governing equations in spherical coordinates and cylindrical

coordinates are conceptually the same. The linkage between them will be elaborated more

in App. D.

Derivation

Consider an axisymmetric, balanced flow on a sphere. The governing equations are given

as

Absolute angular momentum:
∂m

∂t
+ v

∂m

∂(aϕ)
+ w

∂m

∂z
= RF , (2.83a)

Longitudinal wind:
sinϕ
R3

(
m2 − Ω2R4

)
= − ∂G

∂(aϕ)
, (2.83b)

Hydrostatic:
∂G

∂z
=

θ

θ0
g, (2.83c)

Continuity:
∂Rv

R∂(aϕ)
+
∂ρw

ρ∂z
= 0, (2.83d)

Thermodynamic:
∂θ

∂t
+ v

∂θ

∂(aϕ)
+ w

∂θ

∂z
= Q, (2.83e)

where a is the radius of Earth, ϕ is the latitude, R = a cosϕ is the radius relative to

the rotation axis, z = (cpθ0/g)[1 − (p/p0)
κ] is the pseudo-height, m = Ru + ΩR2 is

the absolute angular momentum, ρ = ρ0(p/p0)
(1/κ)−1 is the pseudo-density (Hoskins and

Bretherton, 1972), u, v, w are the zonal, longitudinal, and radial components of velocity,

θ is the potential temperature, G is the geopotential, F is external force on zonal wind,

and Q is the diabatic heating.
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By (2.83b) and (2.83c), we derive the thermal wind relation

g

θ0

∂θ

∂(aϕ)
=

− sinϕ
R3

∂m2

∂z
. (2.84)

After taking time derivative of (2.84), we get

g

θ0

∂

∂t

∂θ

∂(aϕ)
=

− sinϕ
R3

∂

∂t

∂m2

∂z
. (2.85)

We define

Static stability: ρA =
g

θ0

∂θ

∂z
, (2.86a)

Baroclinity: ρB = − g

θ0

∂θ

∂(aϕ)
=

sinϕ
R3

∂m2

∂z
, (2.86b)

Inertial stability: ρC = −sinϕ
R3

∂m2

∂(aϕ)
, (2.86c)

to rewrite (2.83a) and (2.83e) as

sinϕ
R3

∂m2

∂t
− ρvC + ρwB =

sinϕ
R2

2mF (2.87a)

g

θ0

∂θ

∂t
− ρvB + ρwA =

g

θ0
Q (2.87b)

Notice that sincem = 0 on ϕ = ±π/2 (north and south pole), the following integral

∫ π/2

ϕ=−π/2

−ρCR
3

sinϕ
d(aϕ) =

(
m2
) ∣∣∣∣π/2

ϕ=−π/2

= 0, (2.88)

must be satisfied.

According to (2.83d) we define the streamfunction ψ such that

(ρv, ρw) =

(
−∂ψ
∂z
,
∂Rψ

R∂(aϕ)

)
(2.89)

After adding ∂(2.87a)/∂z and ∂(2.87b)/∂(aϕ) to eliminate partial derivative of time with

the aid of (2.85) and substituting (2.89) into it, we obtain the diagnostic equation known
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as the Eliassen-Sawyer circulation equation

Lψ =
g

θ0

∂Q

∂(aϕ)
+

sinϕ
R2

∂ 2mF

∂z
, (2.90a)

where

L ( · ) = ∂

∂(aϕ)

(
A
∂R ( · )
R∂(aϕ)

+B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂R ( · )
R∂(aϕ)

+ C
∂ ( · )
∂z

)
, (2.90b)

and (2.90b) is elliptic ifB2−AC < 0. The boundary conditions for (2.65a) are that ψ = 0

on top, bottom, inner, and outer boundaries.

From a balanced vortex system, we can derive the following energy equations

dP
dt

= H− C, (2.91a)
dK
dt

= C+M, (2.91b)

where

P =

∫∫
cpT ρRd(aϕ) dz, (2.92a)

K =

∫∫
u2

2
ρRd(aϕ) dz, (2.92b)

H =

∫∫
cpΠQ ρRd(aϕ) dz, (2.92c)

C =

∫∫
g

θ0
wθ ρRd(aϕ) dz, (2.92d)

M =

∫∫
Fv ρRd(aϕ) dz. (2.92e)

Substituting (2.89) into (2.92d), we obtain

C =

∫∫
θ
g

θ0

∂Rψ

∂(aϕ)
d(aϕ) dz. (2.93)

After integrating by parts, (2.93) becomes

C = −
∫∫

ψ
g

θ0

∂θ

∂(aϕ)
Rd(aϕ) dz. (2.94)

Now we define a quantity χ which satisfies

Lχ =
g

θ0

∂θ

∂(aϕ)
, (2.95)

with the same boundary condition as (2.90a). Substituting (2.95) into (2.94) and applying
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self-adjoint property, we obtain

C = −
∫∫

ψLχ Rd(aϕ) dz = −
∫∫

χLψ Rd(aϕ) dz. (2.96)

Substituting (2.90a) into (2.96) and integrating by parts again, we get

C = −
∫∫

g

θ0

∂Q

∂(aϕ)
+

sinϕ
R2

∂ 2mF

∂z
Rd(aϕ) dz

=

∫∫
cpΠQηH ρRd(aϕ) dz +

∫∫
FuηM ρRd(aϕ) dz, (2.97)

where

ηH =
g

ρcpΠθ0

∂Rχ

R∂(aϕ)
, (2.98a) ηM =

2m sinϕ
ρuR2

∂χ

∂z
. (2.98b)

We refer to ηH as dynamic efficiency of heat, and ηM as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

Concluding Remarks

In this section, we derive the Eliassen-Sawyer circulation equation (2.90a), dynamic effi-

ciency of heat and momentum (2.98) for spherical coordinates. This coordinates is widely

applied to study large-scale dynamics.
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2.5 Efficiency in Shallow Water Model

The linear shallow water equations an be view as a vertical mode of the linearized prim-

itive equations. This implies the essentials of dynamic efficiencies lies in the horizontal

structure of the rotating system.

Derivation

Consider an axisymmetric, balanced flow on an f plane. The governing equations are

given as

Radial flow: g
∂h

∂r
= fv +

v2

r
, (2.99a)

Tangential flow:
dv
dt

= −fu− uv

r
+ F , (2.99b)

Continuity:
∂h

∂t
+
∂hru

r∂r
= Q, (2.99c)

where u, v are the radial, and tangential component of velocity, h is the height of the

surface, and F is the external force on tangential flow.

Noticing that u = dr/dt, we multiply (2.99b) by r to get

r
dv
dt

+
du
dt
v + f

dr
dt

=
d
dt

(
rv +

1

2
fr2
)

=
dm
dt

, (2.100)

where m = rv + 1/2fr2 is the absolute angular momentum. Substituting (2.100) into

(2.99b), we get

fv +
v2

r
=

1

r2
v
(
rv + fr2

)
=

1

r3

(
rv +

1

2
fr2 − 1

2
fr2
)(

rv +
1

2
fr2 +

1

2
fr2
)

=
1

r3

(
m2 − 1

4
f 2r4

)
. (2.101)
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Expanding total derivative, governing equations become

Radial flow: g
∂h

∂r
=

1

r3

(
m2 − 1

4
f 2r4

)
, (2.102a)

Angular momentum:
∂m

∂t
+ u

∂m

∂r
= rF , (2.102b)

Continuity:
∂h

∂t
+
∂hru

r∂r
= Q. (2.102c)

After taking time derivative of (2.102a), we get

g
∂

∂t

∂h

∂r
=

1

r3
∂m2

∂t
. (2.103)

We define

Inertial stability: ghC =
∂m2

r3∂r
, (2.104)

to rewrite (2.102b) and (2.102c) as

1

r3
∂m2

∂t
+ ghuC =

2mF

r2
, (2.105a)

g
∂h

∂t
+ g

∂rhu

r∂r
= gQ. (2.105b)

We define a variable ψ as

ψ = uh. (2.106)

After subtracting ∂(2.105b)/∂r from (2.105a) to eliminate time derivative with the ad of

(2.103) and substituting (2.106) into it, we obtain the diagnostic equation

Lψ =
∂Q

∂r
− 2mF

gr2
, (2.107a)

where

L ( · ) = ∂

∂r

(
∂r ( · )
r∂r

)
− C ( · ) , (2.107b)

and boundary conditions for (2.107a) are that ψ = 0 on inner boundary and ψ → 0 as
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r → ∞.

From a balanced vortex system, we can derive the following energy equations

dP
dt

= H− C, (2.108a)
dK
dt

= C+M, (2.108b)

where

P =

∫
g
h2

2
rdr, (2.109a)

K =

∫
v2

2
hrdr, (2.109b)

H =

∫
gQ hrdr, (2.109c)

C = −
∫
gh
∂ruh

∂r
dr, (2.109d)

M =

∫
Fvh rdr, (2.109e)

Substituting (2.106) into (2.109d), we obtain

C = −
∫
hg
∂rψ

∂r
dr. (2.110)

After integrating by parts, (2.110) becomes

C =

∫
ψg

∂h

∂r
rdr. (2.111)

Now we define a quantity χ which satisfies

Lχ = g
∂h

∂r
, (2.112)

with the same boundary condition as (2.107a). Substituting (2.112) into (2.110) and ap-

plying self-adjoint property, we obtain

C =

∫
ψLχ rdr =

∫
χLψ rdr. (2.113)

Substituting (2.107a) into (2.113) and integrating by parts again, we get

C =

∫
χ

(
2mF

gr2
+
∂Q

∂r

)
rdr

=

∫
QηH hrdr +

∫
FvηM hrdr, (2.114)
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where

ηH = −1

h

∂χ

∂r
, (2.115a) ηM = − 2mχ

ghvr2
. (2.115b)

We refer to ηH as dynamic efficiency of heat, and ηM as dynamic efficiency of momentum

which represent the conversion efficiency from potential to kinetic energy due to heating

and momentum source.

Concluding Remarks

(2.107a) is different from Eliassen-Sawyer circulation equation, but it shows the similar

idea; inertial stability controls the response of the system to source and sink. Indeed, if C

is constant, then this is a second-order differential equation whose homogeneous solution

is modified Bessel equation

r2
d2ψ
dr2

+ r
dψ
dr

− ψ
(
1 + Cr2

)
= r2

∂Q

∂r
− 2mF

g
, (2.116)

where
√
C

−1 is the Rossby length of this balanced system.
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CHAPTER 3

NUMERICAL METHOD

Although Eliassen-Sawyer circulation equations in different frameworks have different

coefficients and geometry factors, they can still be rewritten as a general form as

Lψ = F , (3.1)

where

L ( · ) = ∂

∂x

(
A
∂ ( · )
∂x

+B
∂ ( · )
∂y

)
+

∂

∂y

(
B
∂ ( · )
∂x

+ C
∂ ( · )
∂y

)
. (3.2)

Table (1) tells us how to replace x, y,A,B, andC in (3.1) tomorph into different equations.

(3.1) is solved by relaxation method in this study.

Derivative along x and y directions at grid point (i, j) are discretized as

∂ ( · )
∂x

=
( · )i+1/2,j − ( · )i−1/2,j

∆x
, (3.3a)

∂ ( · )
∂y

=
( · )i,j+1/2 − ( · )i,j−1/2

∆y
, (3.3b)

where ∆x and ∆y are grid spacings.

Table 1: General form of Eliassen-Sawyer circulation equation in different coordinates
Variables
in (3.1) Quasi-geostrophic Cartesian Cylindrical Spherical

x y y r aϕ
y z z z z
ψ ψ ψ rψ Rψ
A A A A/r A/R
B 0 B B/r B/R
C C C C/r C/R
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After applying (3.3) to (3.1) at grid point (i, j) (2 ≤ i ≤ nx−1 and 2 ≤ i ≤ nx−1),

∂

∂x

(
A
∂ψ

∂x

)
=

1

∆x

[
Ai+1/2,j

(
∂ψ

∂x

)
i+1/2,j

− Ai−1/2,j

(
∂ψ

∂x

)
i−1/2,j

]

=
1

(∆x)2
[
Ai+1/2,j(ψi+1,j − ψi,j)− Ai−1/2,j(ψi,j − ψi−1,j)

]
=

1

(∆x)2
[
ψi+1,jAi+1/2,j + ψi−1,jAi−1/2,j − ψi,j(Ai−1/2,j + Ai+1/2,j)

]
,

(3.4a)

∂

∂y

(
C
∂ψ

∂y

)
=

1

(∆y)2
[
ψi,j+1Ci,j+1/2 + ψi,j−1Ci,j−1/2 − ψi,j(Ci,j−1/2 + Ci,j+1/2)

]
,

(3.4b)

∂

∂x

(
B
∂ψ

∂y

)
=

1

∆x∆y

[
Bi+1/2,j(ψi+1/2,j+1/2 − ψi+1/2,j−1/2)

−Bi−1/2,j(ψi−1/2,j+1/2 − ψi−1/2,j−1/2)
]
, (3.4c)

∂

∂y

(
B
∂ψ

∂x

)
=

1

∆x∆y

[
Bi,j+1/2(ψi+1/2,j+1/2 − ψi−1/2,j+1/2)

−Bi,j−1/2(ψi+1/2,j−1/2 − ψi−1/2,j−1/2)
]
. (3.4d)

We define

ψi+1/2,j+1/2 =
1

2
(ψi+1,j + ψi,j+1) , (3.5a)

ψi−1/2,j+1/2 =
1

2
(ψi−1,j + ψi,j+1) , (3.5b)

ψi+1/2,j−1/2 =
1

2
(ψi+1,j + ψi,j−1) , (3.5c)

ψi−1/2,j−1/2 =
1

2
(ψi−1,j + ψi,j−1) , (3.5d)

to rewrite (3.4c) as

∂

∂x

(
B
∂ψ

∂y

)
+

∂

∂y

(
B
∂ψ

∂x

)
=

1

2∆x∆y

[
ψi+1,j

(
Bi,j+1/2 −Bi,j−1/2

)
+ ψi−1,j

(
Bi,j−1/2 −Bi,j+1/2

)
+ ψi,j+1

(
Bi+1/2,j −Bi−1/2,j

)
+ ψi,j−1

(
Bi−1/2,j −Bi+1/2,j

)]
. (3.6)
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Finally, (3.1) becomes

∂

∂x

(
A
∂ψ

∂x
+B

∂ψ

∂y

)
+

∂

∂y

(
B
∂ψ

∂x
+ C

∂ψ

∂y

)
= MTΨ− Sψi,j , (3.7)

where

M =



Ci,j−1/2

(∆y)2
+

Bi−1/2,j−Bi+1/2,j

2∆x∆y

Ai−1/2,j

(∆x)2
+

Bi−1/2,j−Bi+1/2,j

2∆x∆y

Ai+1/2,j

(∆x)2
+

Bi,j+1/2−Bi,j−1/2

2∆x∆y

Ci,j+1/2

(∆y)2
+

Bi+1/2,j−Bi−1/2,j

2∆x∆y


,

(3.8a)

Ψ =



ψi,j−1

ψi−1,j

ψi+1,j

ψi,j+1


, (3.8b)

are two column matrix, and

S =
Ai−1/2,j + Ai+1/2,j

(∆x)2
+
Ci,j−1/2 + Ci,j+1/2

(∆y)2
. (3.8c)

We define iteration from n to n+ 1 to be

ψn+1
i,j = ψn

i,j +
R

S
, (3.9)

where

R = MTΨn − Sψn
i,j − F , (3.10)

and F is the matrix form of F in (3.1). To estimate the error, substitute (3.10) into (3.9) to

get

MTΨn − Sψn+1
i,j = F . (3.11)

Suppose there exists exact solution ψ∗ such that

MTΨ∗ − Sψ∗
i,j = F , (3.12)

where asterisk superscript denotes exact solution. Extract (3.12) from (3.11) and define
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error at the nth iteration time at grid point (i, j) as En
i,j = ψn

i,j − ψ∗
i,j then we have

MTEn − SEn+1
i,j = 0, (3.13)

where

En =



Ei,j−1

Ei−1,j

Ei+1,j

Ei,j+1


. (3.14)

Solving En+1
i,j , we get

En+1
i,j =

1

S
MTEn. (3.15)

If A,C > 0 and B is relatively small, then the error at (n + 1)th time is the average

of its adjacent error at nth time because the sum of elements in M is exactly S. (3.15)

converges to zero if error on boundary is zero, implying ψn → ψ∗.

To measure the average error, the average residual of the nth iteration is defined as

En
avg =

√
1

N

∑
i,j

(
En
i,j

)2, (3.16)

where N is the number of grid points.

When to stop iteration needs convergence criteria. In our program we use both the

magnitude of residual, relative convergence speed and convergence counter to ensure our

solution approximates true solution. To be clear, the iteration stops at the nth and gives

no warning/error if and only if

1. En
avg ≤ Emax

2.
∣∣∣En

avg−En−1
avg

En−1
avg

∣∣∣ ≤ Omax

3. n ≤ nmax

(3.8a) can be calculated beforehand to reduce computation time.

The grid point used in this method is arrange as Fig. 1.
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Figure 1: Finite-difference grid for solutions of (3.1)

The API for relaxation method is shown in appendix E. The code is written in For-

tran 95 and maintained on Github (http://github.com/meteorologytoday/

XLab-EE-fortran).
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CHAPTER 4

NUMERICAL EXPERIMENTS

General interaction between heating and its response is schematically shown in Fig. 2.

It shows that the heating is a forcing, but also can be adjust by feedback from dynamics

of the system. Our numerical experiments focus on the upper part, i.e. how the heating

generate its dynamic response.

The diagnose procedure is shown in Sec. 4.1. The numerical settings for vortex and

heating are shown in Sec. 4.2. Results for single eyewall are in Sec. 4.3. Results for

concentric eyewall are in Sec. 4.4. Results for structure test and sensitivity test are in Sec.

4.5-4.9

Figure 2: General scheme of a tropical cyclone system. Heating is treated as a forcing to

generate dynamic response which feedbacks to heating at the same time. Our work is to

diagnose the effect of the heating and to discuss its dynamic response.
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4.1 Diagnose Procedure

To see the response of heating inside a cyclone, we need secondary circulation (2.64),

Eliassen-Sawyer circulation equation (2.65a), thermodynamic equation (2.59e), equation

(2.70) for χ and equation (2.73) for dynamic efficiency. The diagnose procedure is as

follows:

1. Specify A, B, C, Q, F .

2. Invert ψ by Eliassen-Sawyer circulation equation (2.65a) with Jacobi relaxation

method (chapter 3). Specify boundary condition if needed.

3. Calculate secondary circulation by (2.64).

4. Calculate
∂θ

∂t
by thermodynamic equation (2.59e).

5. Calculate θnew = θold +
∂θ

∂t
∆t.

6. Invert χ by equation (2.70) with Jacobi relaxation method. rχ→ 0 on boundary.

7. Calculate dynamic efficiency ηH , ηM with equation (2.73).

4.2 Vortex and Heating Settings

All simulations in this paper differ in number of regions.

For all cases, the following variables are the same:

A = N2 (4.1a)

B = 0 (4.1b)

F = 0 (4.1c)
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The vortex is divided into n regions by n − 1 radius
{
rk

∣∣∣∣1 ≤ k ≤ n− 1

}
. The heating

Q is defined as a half-sined shape confined between zB and zT in height

Q (r, z) = Q̂ (r) sin
(
π
z − zB
zT − zB

)
(4.2)

where

Q̂ (r) =


Q̂1 if r < r1

Q̂k if rk − 1 ≤ r < rk for k = 2, 3, ..., n− 2

0 if r ≥ rn−1

(4.3)

and total integral of Q is conserved

∫ ∞

0

Q̂ dr2 = Q̂1r
2
1 +

n−1∑
k=2

Q̂k

(
r2k − r2k−1

)
= H0 (4.4)

Inertial stability C is defined as

C = f̂ 2 (r) (4.5)

where

f̂ (r) =


f̂1 if r < r1

f̂k if rk−1 ≤ r < rk for k = 2, 3, ..., n− 2

f̂n if r ≥ rn−1

(4.6)

Inverse of Rossby length is defined as

µ̂ (r) =
f̂ (r)

N (z∞ − z0)
(4.7)
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Similar to (4.6), distribution of µ in (4.7) is

µ̂ (r) =


µ̂1 if r < r1

µ̂k if rk−1 ≤ r < rk for k = 2, 3, ..., n− 2

µ̂n if r ≥ rn−1

(4.8)

where

µ̂k =
f̂k

N (z∞ − z0)
(4.9)

For constants, we takeN = 1.2×10−2s−1, f = 5×10−5s−1, µ = 1000km, g = 9.8m s−2.

For all cases, domain width and height are 1000km and cpθ0/g ≈ 30km . We use 51

points in z direction, 1001 points in r direction. zT = z∞ and zB = z0 in all cases if not

mentioned.

The setting details are listed in Table 2-4.

4.3 Single eyewall cyclone

The first set of experiments is to examine single eyewall cyclone. The result is shown

in Fig 3. The efficiency plot (f) reveals the connection to temperature anomaly (c): the

contour of them are very similar, and the overlap of heating region and peak of efficiency

supports the idea stating that heating intensifies the vortex. Notice that this calculation

is under Boussinesq approximation which is equivalent using constant density so that the

contour is vertically symmetric.

We also apply this to five stages of typical development of tropical cyclone, the result

is shown in Fig 4. The average efficiency of heat grows as cyclone intensifies. These data

are adapted from Schubert and Hack (1982) in which they construct these curves so as

to be consistent with the observational results of Shea and Gray (1973) and Holliday and

Thompson (1979).

We also plot the local heating response and average efficiency of heat in terms of

the eye strength and the size of eye (Fig 5). Notice the development of a typical cyclone

from A to E. One explanation is that in the initial stage A, vortex is not easy to accumulate
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Table 2: Two-regioned model settings for typical development of tropical cyclone. H0 =
10 K day−1 (250km)2

Case
r1

[km] δ1
Q̂1

[K day−1]
A 300 0 6.94
B 250 2 10.00
C 200 4 15.63
D 150 10 27.78
E 100 24 62.50

Table 3: Three-regioned model settings for u-shaped wind profile. H0 =
125 K day−1 (50km)2

Case (r1, r2)
[km] (δ1, δ2)

Q̂2

[K hr−1]
A (10, 20) (140.0, 140.0) 43.4
B (10, 20) (40.0, 144.2) 43.4
C (30, 40) (70.0, 70.0) 18.6
D (30, 40) (13.3, 84.3) 18.6

Table 4: Five-regioned model settings for decoupled wind and heating profile. H0 =
125 K day−1 (50km)2

Case (r1, r2, r3, r4)
[km]

(µ̂1, µ̂2, µ̂3, µ̂4)
[km]

(
Q̂2, Q̂4

)
[K hr−1]

Adyn (8, 15, 79, 85) (5.5, 8.5, 1000, 1000) -
Aheat (8, 15, 79, 85) - (21.5, 9.71)
Bdyn (8, 15, 56, 62) (5.5, 8.5, 72.8, 36.5) -
Bheat (8, 15, 56, 62) - (21.5, 13.5)
Cdyn (8, 15, 79, 85) (5.5, 8.5, 27.2, 14.9) -
Cheat (8, 15, 34, 40) - (21.5, 21.5)

Heating 2 : 1 (34.0, 17.0)
Heating 1 : 1 (8, 15, 34, 40) - (21.5, 21.5)
Heating 1 : 2 (12.4, 24.8)
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Figure 4: Evolution with repect to total time (hr) of average efficiency of heat η (×10−1%,
red line), maximum wind speed (m s−1), Γ =

√
A/C (labeled under each stage) and

central pressure (hpa) of five stages during a typical tropical cyclone development. Time
interval is one hour. The model settings are adapted from Schubert and Hack (1982) and
are listed in table 2.
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Figure 6: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (m s−1). (b) Induced streamfunction
rψ (×108 kg s−1). (c) Local heating rate ∂T/∂t (K hr−1). (d) ∂T/∂r (×10−1 K km−1).
Time interval is one hour. (e) Corresponding solution rχ (×1010 kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day−1). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Adyn + Aheat).

Figure 7: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (m s−1). (b) Induced streamfunction
rψ (×108 kg s−1). (c) Local heating rate ∂T/∂t (K hr−1). (d) ∂T/∂r (×10−1 K km−1).
Time interval is one hour. (e) Corresponding solution rχ (×1010 kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day−1). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Bdyn + Bheat).
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Figure 8: The flowchart of a five-regioned barotropic model which represents a double
eyewall tropical cyclone. (a) Tangential wind profile (m s−1). (b) Induced streamfunction
rψ (×108 kg s−1). (c) Local heating rate ∂T/∂t (K hr−1). (d) ∂T/∂r (×10−1 K km−1).
Time interval is one hour. (e) Corresponding solution rχ (×1010 kg). (f) Dynamic ef-
ficiency of heat (%). Shades in all graphs are adiabatic heating (K day−1). The model
setting is adapted from Rozoff et al. (2008) and listed in table 4 (case Cdyn + Cheat).

Figure 9: Three settings of tangential wind speed profile (m s−1, solid lines) and heat
constant Q̂ (K hr−1). The coupled results of average efficiency η (%) are listed in the
top-right table. Time interval is one hour. The model settings are adapted from Rozoff
et al. (2008) and are listed in table 4.
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Figure 10: The wind profile (m s−1, solid line), heating (K hr−1, shading) and result
efficiency η (×10−1%, contour) of six different cases. The wind profiles represent single
(Adyn) and double (Cdyn) eyewall and in the first and second rows, respectively. The heating
ratios between inner and outer eyewalls are 2 : 1, 1 : 1 and 1 : 2 (shown in table 4) in the
first, second and third columns, respectively.

Figure 11: The wind profile (m s−1, solid line), heating (K hr−1, shading) and result
efficiency η (×10−1%, contour) of six different cases. The wind profiles represent sin-
gle, double, and larger double eyewall (Adyn, Bdyn and Cdyn) in the first, second and third
columns, respectively. The heating is totally on inner eyewall and outer eyewall (80.9,
29.3 and 18.4 K hr−1) in the first and second rows, respectively.
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potential energy and to release it into kinetic energy because of low local heating response

and efficiency of heat while in the final stage E it is easy to accumulate potential energy

and to release it into kinetic energy because of high local heating response and efficiency

of heat.

4.4 Concentric eyewall cyclone

We see that in Fig. 6-8 there are two efficiency peaks emerging. Each peak corresponds

to a heating maximum but the inner one is much more efficient than the outside.

To see the effect of inner/outer eyewall, we adapt the setting fromRozoff et al. (2008).

By decoupling the heating and wind fields, Fig. 9 shows that a concentric eyewall cyclone

tends to get high response of efficiency when heating is inside the eye and when outer eye-

wall is small and strong (i.e. high inertial stability). However, outer eyewall position in

this experiment is not fixed, so it remains unclear what role does outer eyewall plays.

Now we design an experiment with the position of outer eyewall fixed by using

wind profile A and C above as single and double eyewall. Moreover, we also alter the

heating ratio between inner and outer eyewall (Fig. 10). When turning on the outer eyewall

(second row), or putting more heating on the inner eyewall (first column), both the average

efficiency and peak value get higher. It is because the outer eyewall (largeC = f̂ 2) reduces

the Rossby deformation length (also see (2.80))

µ̂−1 =
N (z∞ − z0)

f̂π
, (4.10)

so that it blocks the outflow of the air inside and makes local heating more efficient. This

result is consistent with Schubert and McNoldy (2010).

In the next experiment (Fig. 11) we consider heating totally on inner/outer eyewall

with different outer eyewall configuration. The first column represents single eyewall

scenario. Comparing the first and second or first and third columns, it shows that the outer

eyewall enhances the efficiency. Comparing the first row and second row of the second

or third column, it shows that heating on inner eyewall is better than heating outside the
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eyewall. Comparing second and third columns, it show that efficiency of outer eyewall

of smaller radius is larger than the larger one. We use a table (table 5) to summarize the

experiment results of concentric eyewall.

Table 5: Average efficiency η (%) with respect to heating distance r3−r2 (km) and heating
ratio Q2 : Q4 between inner and outer eyewall.

η[%] Heating Distance r3 − r2 [km]
19 41 64

Heating Ratio
Q2 : Q4

100:0 10.1 8.4 7.5
75:25 3.1 1.5 0.9
50:50 1.3 0.4 0.2
25:75 0.9 0.2 0.1

4.5 Eye with hub cloud

Simpson and Starrett (1955) presented the schematic reproduced aircraft data emphasiz-

ing the fact that the hurricane eye often contains low-level stratocumulus known as “hub

cloud” near the circulation center, surrounded by a “moat” of clear air or thin stratocu-

mulus near the outer edge of the eye. Schubert et al. (2007) proved this to be related to

the U-shaped wind profile characterizing strong inertial stability near the eye, making the

maximum downward motion located at some finite distance away from the eye.

To see if hub cloud does any difference inside a cyclone, we adapt the setting from

Schubert et al. (2007) . The results are shown in Fig 12. Though the average efficiency

makes small difference between hub/nonhub cloud cases, the contour of efficiency shows

that their structures differ: non-hub cloud profile elongates the distribution of the effi-

ciency of heat while the other does not. The reason they have similar average efficiency

is clear: their overlapping with heating region are almost identical so that we cannot tell

the difference. We conclude that efficiency structures differ in a strong inertial stability

eye but average efficiencies are the same, because elongated part is not overlapped with

heating region.
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Figure 13: Average dynamic efficiency of heat η (%) in various height of maximum heat-
ing zmax (km). Heating thickness is half of the atmosphere height. A, B and C represent
wind profile as in Fig. 9 Notice that heating is now totally in the first eyewall.

Figure 14: Distribution of dynamic efficiency of heat (%, contour) under pre-existing
baroclinity (shaded) with different Γ (4 and 64). B = 1× 10−6s−2 in both cases.
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Figure 15: Distribution of dynamic efficiency of heat (%, contour) solved under barotropic
(upper panel) and baroclinic (lower panel) conditions.
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Figure 16: Distribution of dynamic efficiency of heat (%, contour) solved under barotropic
(upper panel) and baroclinic (lower panel) conditions.
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Figure 17: Average dynamic efficiency of heat η (%) in terms of relative rotation strength
µ̂4/µ̂3 and outer eyewall position r3 (km). Total local heat response is 12.6% throughout
the domain.
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4.6 Internal structure of moat and outer eyewall

We conclude that the structure of heating in concentric cyclone matters. But does the

structure of inertial stability matters? To alter the structure, we fix the total circulation at

particular distance which equivalently implies that tangential wind speed v is fixed

[Total circulation inside r = r∗] = 2πr∗v (r∗) = constant (4.11)

⇒ m (r∗) = constant (4.12)

Notice that the definition of inertial stability in 2.62, we get

∫ r=r∗

r=0

ρCr3 dr = m2 (r∗) = constant (4.13)

In this experiment, we use the profile C in fig. 9 and define

λ =
µ̂4

µ̂3

(4.14)

to characterize the relative rotation strength between outer eyewall and moat. We analyze

1 ≤ λ ≤ 2 and fix v at r∗ = 500km. Moreover, we also let the size of moat vary. The result

is shown Fig. 17. It shows that the structure of inertial stability has no significant effect,

but the size of moat does. The latter can be realized in the sense of Rossby deformation

length which is the conclusion of previous section. According to this result, we further

ask: does the efficiency actually depends on the total angular momentum inside the outer

eyewall?

In fig. 18, we smear the inertial stability and heating structures of single and double

eyewall by define λQ and λdyn such that

Q̂k = Q̂k,ref (1− λQ) +QλQ (4.15)(
µ̂2
)
k
=
(
µ̂2
)
k,ref (1− λdyn) + µ2λdyn (4.16)
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where 1 ≤ k ≤ 4, (̂·)k,ref is the reference state (profile C in fig. 9), (·) is the value if being

constant in r ≤ r4.

It shows that the average efficiency is the largest if we let inertial stability structured

as double eyewall while heating is distributed like single eyewall, lowest if we let inertial

stability be constant and heating be like double eyewall. Diagram shows that there are at

least two situations. One is the upper half where heating structure matters much more than

inertial stability structure and the lower half where inertial stability matters more than the

heating structure but not as significant as the former.

The results shown above let us conclude that average efficiency is linked to total

heating and total circulation if we let heating be like double eyewall but wind profile

varies, otherwise heating profile dominates.

4.7 Position of maximum heating

The analysis above all use the half-sined shape heating profile in z direction, so the max-

imum heating position would be the center of atmosphere. Now we change our heating

profile with

Q∗ (r, z) =

 Q̂∗ (r) sin
(
π z−(zC−D/2)

D

)
if |z − zC | ≤ D

2

0 otherwise
(4.17)

where zC is the center of the maximum heating, D = (z∞ − z0)/2 is the thickness of

heating region. Fig. 13 tests various maximum heating height in different scenarios. The

result roughly shows an increase of average efficiency of heat as the position gets higher.

4.8 Pre-existing baroclinity

If there is a pre-existing baroclinity, i.e. warm-core, then there exists extra potential energy

in the beginning. We want to argue that Γ =
√
A/C controls the efficiency of releasing

APE. To do this, we use the following diagnose procedure:
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1. Specify Γ, A, B, C = A/Γ2, F = Q = 0

2. Invert χ by Lχ =
g

θ0

∂θ

∂r
= −B with rχ→ 0 on boundary.

3. Calculate efficiency ηH , and boundary conversion using χ.

Fig. 14 shows that for the same strength of baroclinity, Γ = 64 has higher efficiency

and higher efficiency peak position than Γ = 4. This shows that potential energy is harder

for a rotation system to release. This can be understood, since when inertial stability is

higher, it becomes harder for particle to move radially meaning contraction is hard, and

consequently the change in kinetic energy becomes low. One might ask why this result

seems to contradict 5 (strong rotation cases correspond to higher efficiency), but we have

to bear in mind that this diagnose work is different from (2) because the baroclinity is

prescribed rather than being a response of heating.

4.9 Sensitivity of baroclinity on the operator

Baroclinity on the operator is also driven by our heating. But in all of our experiments,

B = 0 in the operator L. The is because in all the cases, baroclinity is roughly 10−7s2

whileA andC’s order is greater than 10−5s2 which makes the crossing term not important.

Fig. 15 and Fig. 16 shows the results if we exclude/include this term in the operator. Their

contours are very similar which confirm our expectation.
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CHAPTER 5

SUMMARY

In this study, we derive the formula of dynamic efficiency of heat and momentum. These

quantities describe the kinetic energy conversion efficiency if we place heating and ex-

ternal momentum source at particular position. Numerical solver is based on relaxation

method and is written in Fortran 95. Each experiment contains 1001 by 51 grid points and

takes about 5 to 10 minutes to complete. We also design a procedure to test the response of

efficiency of heat under prescribed heating profile. We test the baroclinity on the operator

L and find it distorts the distribution of the efficiency contour slightly. We conclude this

term can be neglected and still gets similar results.

Using the profile given by Schubert and Hack (1982), we found that the response

of efficiency increases as vortex develops. Further analysis (Fig. 5) shows that in the

young stage vortex has little ability to accumulate potential energy and low efficiency to

release potential energy into kinetic energy, whilst in the latter stages it has much ability

to accumulate potential energy and high efficiency to release potential energy into kinetic

energy.

We also analyze concentric eyewall cases. It is shown that not only the radial po-

sition of heating but also the existence of outer eyewall enhances efficiency with notable

extent. The reason for the latter is due to the reduction of Rossby deformation length.

The experiments show the structure of a vortex matters. We analyze strong rotation

core (V-shaped wind profile), relative rotation strength between moat and outer eyewall,

and both structure of heating and inertial stability. We find that there are two situations in

which in the first situation structure of heating dominates over structure of inertial stability,

and in the second situation the structure of inertial stability dominates over structure of
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heating but not as significant as the former.

Next, we alter the position of maximum heating and find that the higher the heating,

the better the efficiency. This result is not very physical since in most of the observations,

lower atmosphere contribute most of the heating. This result needs deeper investigation.

Pre-existing baroclinity creates higher efficiency (both in strength and vertical posi-

tion) if the environment is more stratified and lower efficiency if the enveronment is more

rotational. This is due to its ability to make the air contract, thus it can be realized quali-

tatively by Rossby deformation length. When the environment is more stratified, then the

Rossby deformation length is larger and makes contraction easier and thus larger energy

conversion. When the environment is more rotational, then the Rossby deformation length

is lower and makes contraction harder and thus lower energy conversion. It must be noted

that this experiment uses different diagnose procedure – it has no prescribed heating, so we

cannot mix this result with the previous experiments which include the both the processes

of “accumulating” and “releasing” potential energy.
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APPENDIX A

DERIVATION OF QUASI-GEOSTROPHIC

EQUATIONS

A.1 Perturbation Method

Using pseudo-height as vertical coordinate, governing equations can be written as

∂V⃗

∂t
+ V⃗ · ∇V⃗ + (f0 + βy) k̂ × V⃗ +∇hϕ = F⃗ (A.1)

∂ϕ

∂z
=

θ

θ0
g = b (A.2)

∂u

∂x
+
∂v

∂y
+
∂ρw

ρ∂z
= 0 (A.3)

∂θ

∂t
+ V⃗ · ∇hθ + w

∂θ

∂z
= Q (A.4)

where V⃗ denote horizontal velocity and∇h denote horizontal gradient pseudo-height z as

z :=
cpθref
g

[
1−

(
p

pref

)R/cp
]

(A.5)
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Use the scaling

t =
L

U
t∗ (A.6)

V⃗ = UV⃗ ∗ (A.7)

(x, y) = L (x∗, y∗) (A.8)

ϕ = fULϕ∗ (A.9)

∇h =
1

L
∇∗

h (A.10)

Ω = f0Ω
∗ (A.11)

β =
f0
a
(2Ω∗ cosϕ) =

f0
a
β∗ (A.12)

b = Bb∗ (A.13)

∂b

∂z
= N2

(
∂b

∂z

)∗

(A.14)

w = Ww∗ (A.15)

WN2 = U
B

L
(A.16)

whereL,U are the synoptic scale, ( · )∗ is non-dimensional and a is the radius of Earth. The

governing equation can be rewritten as non-dimensional version (the asterisk is omitted

for simplicity)

R0
∂V⃗

∂t
+R0V⃗ · ∇V⃗ + (1 +R0y) k̂ × V⃗ +∇hϕ = R0F⃗ (A.17)

∂ϕ

∂z
=

θ

θ0
g = b (A.18)

∂u

∂x
+
∂v

∂y
+R0

∂ρw

ρ∂z
= 0 (A.19)

∂b

∂t
+ V⃗ · ∇hb+ w

∂b

∂z
= Q (A.20)

where R0 := U/f0L. Notice that we assume L/a ∼ R0 to prevent complication.

If we assume all non-dimensional variables have the same magnitude, then solution

clearly depends on R0. Since R0 is generally much smaller than 1 in our consideration,
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we let R0 being our perturbation parameter. The solution may be expanded as

( · ) (R0) =
∞∑
n=0

Rn
0 ( · )n (A.21)

Substitute this into governing equations and group terms by order of R0. The 0th

order terms give

V⃗0 = k̂ ×∇hϕ0 (A.22)
∂ϕ0

∂z
= b0 (A.23)

∂b0
∂t

+ V⃗0 · ∇hb0 + w0
∂b0
∂z

= Q0 (A.24)

The 1st order terms give

∂V⃗0
∂t

+ V⃗0 · ∇hV⃗0 + k̂ × V⃗1 + βyk̂ × V⃗0 +∇hϕ1 = F⃗1 (A.25)

∂ϕ1

∂z
= b1 (A.26)

∇h · V⃗1 +
∂ρw0

ρ∂z
= 0 (A.27)

∂b1
∂t

+ V⃗0 · ∇hb1 + V⃗1 · ∇hb0 + w0
∂b0
∂z

= Q1 (A.28)

The above equations form the governing equations of quasi-geostrophic thoery.

A.2 Balanced Condition

If the flow is zonally periodic and balanced in y-direction

∂v0
∂t

+ V⃗0 · ∇hv0 = 0 (A.29)
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then take zonal mean governing equations of 0th-order

(u0, v0) =

(
−∂ϕ0

∂y
, 0

)
(A.30)

∂ϕ0

∂z
= b0 (A.31)

∂b0
∂t

+ w0
∂b0
∂z

= Q0 −
∂v′0b

′
0

∂y
(A.32)

The 1st order terms give

∂u0
∂t

− v1 = F 1,x −
∂v′0u

′
0

∂y
(A.33)

u1 + βyu0 +
∂ϕ1

∂y
= F y (A.34)

∂ϕ1

∂z
= b1 (A.35)

∂v1
∂y

+
∂ρw0

ρ∂z
= 0 (A.36)

∂b1
∂t

+ w0
∂b0
∂z

= Q1 −
∂v′0b

′
1

∂y
(A.37)

Collect suitable equations from above (0th order equations, zonal momentum equa-

tion and continuity from 1st order equations) we finally get

∂u0
∂t

− v1 = F 1,x −
∂v′0u

′
0

∂y
(A.38)

∂b0
∂t

+ w0
∂b0
∂z

= Q0 −
∂v′0b

′
0

∂y
(A.39)

∂v1
∂y

+
∂ρw0

ρ∂z
= 0 (A.40)

∂ϕ0

∂z
= b0 (A.41)

u0 = −∂ϕ0

∂y
(A.42)

We replace u0 by ug, v0 by vg, v1 by va, drop all other subscripts and recover our
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dimension to get more conventional notations

∂ug
∂t

− f0va = F −
∂v′gu

′
g

∂y
= F

∗ (A.43)

∂b

∂t
+ w

∂b

∂z
= Q− ∂v′b′

∂y
= Q

∗ (A.44)

∂va
∂y

+
∂ρw

ρ∂z
= 0 (A.45)

∂ϕ

∂z
= b (A.46)

ug = − 1

f0

∂ϕ

∂y
(A.47)

The equation above are the governing equations given in section 2.1.
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APPENDIX B

WAVES AND THE ELIASSEN-SAWYER

CIRCULATION EQUATION

Eliassen circulation equation is primarily based on balanced state, in which buoyancy

waves cannot exist. In this appendix we will use perturbation method to include buoyancy

wave. We will also see that the frequency product of horizontal and vertical direction is a

constant constrained by Jacobian of angular momentum and buoyancy.

Consider the following primitive equations in Cartesian space which is symmetric

in x-direction and its vertical coordinate z is physical height

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= fv + F , (B.1a)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −fu− 1

ρ

∂p

∂y
, (B.1b)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −g − 1

ρ

∂p

∂z
, (B.1c)

∂v

∂y
+
∂w

∂z
= 0, (B.1d)

∂θ

∂t
+ v

∂θ

∂y
+ w

∂θ

∂z
= Q, (B.1e)

in which sound waves are eliminated by letting dρ/dt = 0.

We define “geostrophic state” as the state when

d
dt
( · ) = 0, (B.2)
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where
d
dt

=
∂

∂t
+ v

∂

∂y
+ w

∂

∂z
. (B.3)

for all variables and Q = F = 0. From (B.1a)-(B.1c) we have

v = 0, (B.4a)

u = − 1

fρ

∂p

∂y
, (B.4b)

∂p

∂z
= −ρg, (B.4c)

∂w

∂z
= 0. (B.4d)

Since t does not appear explicitly in (B.4a)-(B.4d), we set

∂

∂t
( · ) = 0. (B.5)

Thermal wind relation can be derived through (B.4b) and (B.4c) as

f

(
1

ρ

∂ρ

∂z
+
∂u

∂z

)
= g

(
1

γp

∂p

∂y
− 1

θ

∂θ

∂y

)
, (B.6)

where γ = cp/cv. If we assume variation of p in y and variation of ρ in z are at least an

order less than others, then we obtain

f
∂u

∂z
≈ −g

θ

∂θ

∂y
. (B.7)

Integrating (B.4d) with z, we obtain

w = constant = 0. (B.8)

otherwise w ̸= 0 on top and bottom boundaries.

Letting all variables be perturbed by a small amplitude, i.e. ( · ) = ( · ) + ( · )′, and
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retaining the first order of (B.1a)-(B.1e) , we obtain

∂ρu′

∂t
+ ρv′

(
∂u

∂y
− f

)
+ ρw′∂u

∂z
= ρF , (B.9a)

∂ρv′

∂t
= −fρu′ − ∂p′

∂y
, (B.9b)

∂ρw′

∂t
= −∂p

′

∂z
+ ρ

(
θ′

θ
g

)
, (B.9c)

∂ρv′

∂y
+
∂ρw′

∂z
= 0, (B.9d)

∂

∂t

(
θ′

θ
g

)
+ ρv′

g

θ

∂θ

∂y
+ w′ g

θ

∂θ

∂z
=
g

θ
Q, (B.9e)

in which we approximate
ρ′

ρ
≈ −θ

′

θ
. (B.10)

under the physical sense that sound wave is relatively fast in our scale. Equation (B.9d)

enables us to write

(ρv′, ρw′) =

(
−∂ψ
∂z
,
∂ψ

∂y

)
. (B.11a)

After taking z and y derivative of (B.9b) and (B.9c), respectively, we derive an modified

version of thermal wind relation

f
∂ρu′

∂z
+

∂

∂y

(
ρg
θ′

θ

)
=

∂

∂t

(
∂ρw′

∂y
− ∂ρv′

∂z

)
=

∂

∂t

(
∂2

∂y2
+

∂2

∂z2

)
ψ. (B.12)

We define

Static stability: A =
g

θ

∂θ

∂z
, (B.13a)

Baroclinity: B = f
∂u

∂z
= −g

θ

∂θ

∂y
, (B.13b)

Inertial stability: C = f

(
f − ∂u

∂y

)
. (B.13c)
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to rewrite (B.9a) and (B.9e) as

f
∂ρu′

∂t
− ρv′C + ρw′B = fF , (B.14a)

∂

∂t

(
ρg
θ′

θ

)
− ρv′B + ρw′A =

g

θ
Q. (B.14b)

Adding ∂(B.14a)/∂z and ∂(B.14b)/∂y, substituting (B.11a) and (B.12) into it, we get

∂2

∂t2

(
∂2

∂y2
+

∂2

∂z2

)
ψ + Lψ =

∂

∂y

(
gQ

θ

)
+ f

∂F

∂z
, (B.15a)

where

L ( · ) = ∂

∂y

(
A
∂ ( · )
∂y

+B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂ ( · )
∂y

+ C
∂ ( · )
∂z

)
, (B.15b)

which is elliptic if B2 − AC < 0.

Neglecting Q, F and assuming A, C are constants, dispersion relation given by

(B.15a) is

ω2
(
l2 +m2

)
= Al2 + 2Blm+ Cm2, (B.16)

where ω, l and m are wavenumber of t, y and z. (B.16) reduces to purely dispersion

relation in usual buoyancy wave system if there is no baroclinity, i.e. B = 0,

ω2
(
l2 +m2

)
= Al2 + Cm2. (B.17)

Let

sin θ =
l

κ
, (B.18a) cos θ =

m

κ
, (B.18b)
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where κ =
√
l2 +m2. Substituting (B.18b)-(B.18a) into (B.16), we get

ω2 = A sin2 θ +B sin θ cos θ + C cos2 θ

=
A

2
(1− cos 2θ) + B sin 2θ +

C

2
(1 + cos 2θ)

=
C + A

2
+
C − A

2
cos 2θ +B sin 2θ

=
C + A

2
+

√
B2 +

(
C − A

2

)2

sin (2θ + α) , (B.19)

where α is designed as

sinα =
(C − A) /2√
B2 +

(
C−A
2

)2 , (B.20a)

cosα =
B√

B2 +
(
C−A
2

)2 , (B.20b)

to apply sum-to-product identities.

To get the group velocity, we first notice

∇ =

(
∂

∂l
,
∂

∂m

)
=

(
∂ cos θ
∂l

dθ
d cos θ

d
dθ
,
∂ sin θ
∂l

dθ
d sin θ

d
dθ

)
= (m,−l) 1

κ2
d
dθ

. (B.21)

Applying (B.21) to (B.16), we get

(cgx, cgy) = ∇ω

=
1

ωκ2

√
B2 +

(
C − A

2

)2

cos (2θ + α) (m,−l) . (B.22)

So the direction of energy transport is orthogonal to the wave geometry whose amplitude

is controlled by A, B, and C.
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Possible range of ω2 is

∣∣∣∣ ω2 − C + A

2

∣∣∣∣ ≤
√
B2 +

(
C − A

2

)2

. (B.23)

The stable solution requires ω2 > 0,

C + A

2
−

√
B2 +

(
C − A

2

)2

> 0 (B.24)

⇒ B2 − AC < 0, (B.25)

which is equivalent to require the time-independent part of (B.15a) to be elliptic. The

maximum and minimum frequencies are

ωmax =
C + A

2
+

√
B2 +

(
C − A

2

)2

, (B.26a)

ωmin =
C + A

2
−

√
B2 +

(
C − A

2

)2

, (B.26b)

and their product is

ωmax ωmin = AC −B2. (B.27)

(B.27) implies the stiffnes of the system is controlled by AC − B2 variable only. If on

direction gets stiffer, it will be accompanied by the relaxation of the other direction.

The quantity AC −B2 is actually the Jacobian of absolute angular momentum and

buoyancy force

m = f (fy − u) , (B.28a)

b = g ln
(
θ

θ0

)
, (B.28b)
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which is shown as follows

AC −B2 =
g

θ

∂θ

∂z
f

(
f − ∂u

∂y

)
+ f

∂u

∂z

g

θ

∂θ

∂y

=
∂b

∂z

∂m

∂y
− ∂m

∂z

∂b

∂y

=
∂
(
m, b

)
∂ (y, z)

. (B.29)

The condition (B.15b) is elliptic if B2 − AC can be realized through the example

shown in Fig. 19, 20, and through the use of B.29. m controls the movement in y direc-

tion, when an air parcel is displaced from its original position, it will oscillate back to its

original y position. The same is also true for b, but in z direction. The composite effect

gives Fig. 19 a stable configuration in which the displaced air parcel tends to go back its

original position, corresponding to (B.29) being positive (elliptic), and Fig. 20 an unsta-

ble configuration in which the displaced air parcel tends to move away from its original

position, corresponding to (B.29) being negative (non-elliptic).
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Figure 19: A stable configuration of m and b. The red and blue arrows are buoyancy
restorcing force and inertial restoring force, respectively.

Figure 20: An unstable configuration of m and b. The red and blue arrows are buoyancy
restorcing force and inertial restoring force, respectively.
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APPENDIX C

BOUNDARY CONVERSION

In the derivation of efficiency, we apply boundary condition for rψ and rχ to get the de-

sired self-adjoint property (equation [2.71]). However when dealing with open boundary

condition, i.e. when Ekman pumping is considered, extra terms appear.

If we restrict ourselves by considering bottom-opened scenario (which is reasonable

since in a tropical cyclone dynamical influence usually comes from bottom), we will re-

quire rψ → 0 as r → 0,∞ or as z → z∞. Apply integral by parts to LHS of equation

(2.71)

∫∫
ψLχ rdrdz =

∫∫
χLψ rdrdz +

∫ (
Cψ

∂χ

∂z

) ∣∣∣∣z∞
z0

rdr (C.1)

The second term due to boundary condition is called boundary conversion, denoted

as CB, characterizing the effect of boundary condition on rψ (vertical motion). This term

depends only on boundary condition and χ (or temperature profile θ (r, z)) but not on

diabatic heating Q nor external forcing F .
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APPENDIX D

SIMILARITY BETWEEN CYLINDRICAL

AND SPHERICAL COORDINATES

In this appendix we would prove that governing equations in cylindrical coordinates (Sec.

2.3) and spherical coordinates (Sec. 2.4) are essentially identical but with minor differ-

ence.

For clarity we list again the governing equations in both coordinates [(2.59) and

(2.83)] and arrange them in proper order. We also redefine geopotential ϕ in cylindrical

coordinates as G to avoid obfuscation.

Cylindrical coordinates:

∂m

∂t
+ u

∂m

∂r
+ w

∂m

∂z
= rF , (D.1a)

∂θ

∂t
+ u

∂θ

∂r
+ w

∂θ

∂z
= Q, (D.1b)

∂G

∂r
=

1

r3

(
m2 − 1

4
f 2r4

)
, (D.1c)

∂G

∂z
=

θ

θ0
g, (D.1d)

∂ru

r∂r
+
∂ρw

ρ∂z
= 0. (D.1e)

wherem = rv + 1/2fr2.

Spherical coordinates:

∂m

∂t
+ v

∂m

∂(aϕ)
+ w

∂m

∂z
= RF , (D.2a)

∂θ

∂t
+ v

∂θ

∂(aϕ)
+ w

∂θ

∂z
= Q, (D.2b)

sinϕ
R3

(
m2 − Ω2R4

)
= − ∂G

∂(aϕ)
, (D.2c)

∂G

∂z
=

θ

θ0
g, (D.2d)

∂Rv

R∂(aϕ)
+
∂ρw

ρ∂z
= 0. (D.2e)

wherem = Ru+ ΩR2.

After speculation andwith the aid of Fig. 21, we notice that there are two types of “radius”.

One is the coordinate radius r̃while the other is the radius R̃ (r̃)with respect to the rotation
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Figure 21: The comparison between cylindrical and spherical coordinates.

center. The following gives more general governing equations.

Absolute angular momentum:
∂m

∂t
+ ũ

∂m

∂r̃
+ w

∂m

∂z
= R̃F , (D.3a)

Thermodynamic:
∂θ

∂t
+ ũ

∂θ

∂r̃
+ w

∂θ

∂z
= Q, (D.3b)

Balanced condition:
S̃ (r̃)

R̃3

(
m2 − Ω̃2R̃4

)
=
∂G

∂r̃
, (D.3c)

Hydrostatic:
∂G

∂z
=

θ

θ0
g, (D.3d)

Continuity:
∂R̃ũ

R̃∂r̃
+
∂ρw

ρ∂z
= 0. (D.3e)

where m = R̃ṽ + Ω̃R̃2 is the absolute angular momentum, ṽ is the main circulation,

ũ = dr̃/dt together with w represents the secondary circulation, and S̃ (r̃) is a parameter

depending only on r̃.
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By (D.3c) and (D.3d), we derive the thermal wind relation

g

θ0

∂θ

∂r̃
=

S̃

R̃3

∂m2

∂z
, (D.4)

in which we notice that the parameter S̃ is a minor issue since it depends only on horizontal

direction so it would not involve in the operation when deriving thermal wind relation.

After taking time derivative of (D.4), we get

∂

∂t

(
g

θ0

∂θ

∂r̃

)
=

∂

∂t

(
S̃

R̃3

∂m2

∂z

)
. (D.5)

We define

Static stability: ρA =
g

θ0

∂θ

∂z
, (D.6a)

Baroclinity: ρB = − g

θ0

∂θ

∂r̃
= − S̃

R̃3

∂m2

∂z
, (D.6b)

Inertial stability: ρC =
1

R̃3

∂m2

∂r̃
, (D.6c)

to rewrite (D.3a) and (D.3b) as

1

R̃3

∂m2

∂t
+ ρũC − ρwB =

2mF

R̃2
, (D.7a)

g

θ0

∂θ

∂t
− ρũB + ρwA =

g

θ0
Q. (D.7b)

According to (D.3e) we define the streamfunction ψ such that

(ρũ, ρw) =

(
−∂ψ
∂z
,
∂R̃ψ

R̃∂r̃

)
. (D.8)

After subtracting ∂(D.7b)/∂r̃ from ∂(D.7a)/∂z to eliminate partial derivative of time with

the aid of (D.5) and substituting (D.8) into it, we obtain a generalized Eliassen-Sawyer

circulation equation for both coordinates

Lψ =
g

θ0

∂Q

∂r̃
− 1

R̃2

∂2mF

∂z
, (D.9a)
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where

L ( · ) = ∂

∂r̃

(
A
∂R̃ ( · )
R̃∂r̃

+B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂R̃ ( · )
R̃∂r̃

+ C
∂ ( · )
∂z

)
, (D.9b)

and (D.9b) is elliptic if B2 −AC < 0. The boundary conditions for (D.9a) are that ψ = 0

on top, bottom, and inner boundaries and ψ → 0 as r → ∞.

We close this part by deriving Eliassen operators for both coordinates. Using the

variables defined in Table 6, we get the Eliassen operators for cylindrical coordinates

L ( · ) = ∂

∂r

(
A
∂r ( · )
∂r

r +B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂r ( · )
r∂r

+ C
∂ ( · )
∂z

)
, (D.10)

where

Static stability: ρA =
g

θ0

∂θ

∂z
, (D.11a)

Baroclinity: ρB = − g

θ0

∂θ

∂r
= − 1

r3
∂m2

∂z
, (D.11b)

Inertial stability: ρC =
1

r3
∂m2

∂r
, (D.11c)

and spherical coordinates

L ( · ) = ∂

∂(aϕ)

(
A
∂R ( · )
R∂(aϕ)

+B
∂ ( · )
∂z

)
+

∂

∂z

(
B
∂R ( · )
R∂(aϕ)

+ C
∂ ( · )
∂z

)
, (D.12)

where

Static stability: ρA =
g

θ0

∂θ

∂z
, (D.13a)

Baroclinity: ρB = − g

θ0

∂θ

∂(aϕ)
=

sinϕ
R3

∂m2

∂z
, (D.13b)

Inertial stability: ρC = −sinϕ
R3

∂m2

∂(aϕ)
. (D.13c)
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Table 6: General form of Eliassen-Sawyer circulation equation in cylindrical and spherical
coordinates

Variables in (D.9b) Cylindrical Spherical
r̃ r aϕ

R̃ r R

Ω̃ f/2 Ω
ṽ v u
ũ u v

S̃ 1 − sinϕ
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APPENDIX E

APPLICATION PROGRAMMING

INTERFACE

Here we list the core API to solve (3.1). The code is written in Fortran 95 and maintained

on Github (http://github.com/meteorologytoday/XLab-EE-fortran).

Basic usage is as follows
1 ! This is a simple example of solving Eliassen-Sawyer
2 ! circulation equation. All other variables are set
3 ! initially with the correct type specified by API below
4
5
6 ! #1: Calculate coefficient matrix first
7 err_flg = 0
8 call cal_coe(a, b, c, coe, dx, dy, nx, ny, err_flg)
9 if (err_flg /= 0) then ! Error occurs.
10 exit
11 end if
12
13 ! #2: Solve the equation
14 err_flg = 0
15 strategy = 0
16 strategy_r = 1e-3
17 call solve_elliptic(max_iter, strategy_r, 1.0, dat, coe, f, &
18 & workspace, nx, ny, err_flg, debug)
19 if (err_flg /= 0) then ! Error occurs
20 exit
21 end if

#Subroutine:

cal_coe (a, b, c, coe, dx, dy, nx, ny, err)

#Description:

Calculate (3.8a) and store result in coe.

#Parameters:

– Real(4) :: a (nx-1, ny-2)
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Static stability A in (3.1) whose dimension is (nx-1, ny-2).

– Real(4) :: b (nx-1, ny-1)

Static stability B in (3.1) whose dimension is (nx-1, ny-1).

– Real(4) :: c (nx-2, ny-1)

Static stability C in (3.1) whose dimension is (nx-2, ny-1).

– Real(4) :: coe (9, nx, ny)

Coefficient matrix which stores the result of this subroutine. Its dimension

is (9, nx, y).

– Real(4) :: dx

Grid spacing in x direction.

– Real(4) :: dy

Grid spacing in y direction.

– Integer :: nx

Number of grid points in x direction.

– Integer :: ny

Number of grid points in y direction.

– Integer :: err

Error flag. Modified to 0 if completed and without error, otherwise not 0.

#Subroutine:

do_elliptic (psi, coe, outdat, nx, ny, err)

#Description:

Calculate Lψ in (3.1). Result is stored in outdat.

#Parameters:

– Real(4) :: psi (nx, ny)

ψ field whose dimension is (nx-1, ny-2).

– Real(4) :: coe (9, nx, ny)
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Coefficient matrix calculated beforehand by Subroutine cal_coe.

– Real(4) :: outdat (nx, ny)

Result of Lψ in (3.1).

– Integer :: nx

Number of grid points in x direction.

– Integer :: ny

Number of grid points in y direction.

– Integer :: err

Error flag. Modified to 0 if completed and without error, otherwise not 0.

#Subroutine:

solve_elliptic(max_iter, strategy, strategy_r, alpha, dat, coe, f, workspace, nx,

ny, err, debug)

#Description:

Invert ψ in (3.1). Boundary conditions are given in the boundaries of f. Result is

stored in dat. This subroutine now provides two ways to judge the convergence

which can be specified with strategy.

“1” specifies to judge “absolute” residue defined in (3.10) and this critical value

should be given in strategy_r.

“2” specifies to judge “relative” variation of residue defined in (3.10) and this

critical value should be given in strategy_r.

#Parameters:

– Integer :: max_iter

Maximum iteration time. If iteration time is reached and convergence crite-

ria is not met, then err ̸= 0.

– Integer :: strategy

Strategy used to judge convergence. See #Description part.
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– Real(4) :: strategy_r

This value service different criteria according to strategy. See #Description

part.

– Real(4) :: alpha

Over-relaxation parameter. It is recommended to set this value 1.0.

– Real(4) :: dat (nx, ny)

Result of relaxation. The initial guess of iteration can be placed in this array.

Its dimension is (nx, ny).

– Real(4) :: coe (9, nx, ny)

Coefficient matrix calculated beforehand by Subroutine cal_coe.

– Real(4) :: f (nx, ny)

This is F in (3.1) whose dimension is (nx, ny). Notice that boundary condi-

tions are given in the boundaries of f.

– Real(4) :: workspace (nx, ny)

The workspace when doing relaxation whose dimension is (nx, ny).

– Integer :: nx

Number of grid points in x direction.

– Integer :: ny

Number of grid points in y direction.

– Integer :: err

Error flag. Modified to 0 if completed and without error, otherwise not 0.

– Integer :: debug

Debug message output if 1. No debug message if 0.
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