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中文ᄔ要

奈米科技發展於實現在生醫、產業、環境及軍事上的應用，最近越

來越多的研究人員關注奈米尺度的裝置間合作的模式以建構更複雜的

系統，在奈米尺度下的通訊中最被看好的一種就是分子通訊，奈米機

器人藉由在流體中釋放與接收分子來交換訊息，這種通訊跟傳統電磁

波通訊有很大的不同，分子通訊不受到天線尺寸的限制，也與生物系

統有較佳的相容性，而且以分子擴散的形式傳遞訊息是一種相當節省

能量的機制，然而，分子擴散的隨機性會在通道中產生雜訊，很多研

究員紛紛提出通訊系統的設計以對抗通道中的雜訊及干擾來增進分子

通訊的品質，大多數在文獻中提出的設計都需要傳送端與接收端的同

步，在這篇論文中我們主要探討擴散式分子通訊下的同步問題，我們

考慮兩種非同步效應包括時鐘偏移與時鐘偏斜，在訓練式同步下，我

們提出的疊代線性估計式比起其他方法只需要相當低的計算量，在盲

同步下，我們應用費雪計分演算法來對抗符元間干擾並且有效的更新

時鐘偏移估計，這兩種方法的估計效率都蠻接近最低均方誤差的比特

曼估計，此外，即使在沒有通道資訊的情況下，我們也可以藉由疊代

估計通道與時鐘偏移量來達到同步，這種方法的均方誤差也相當接近

在沒有通道資訊的克拉馬羅下限。
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Abstract

Nanotechnology has been developing to fulfill applications in biomedicine,

industry, environment, and military. Recently, more and more researchers

have discussed on the cooperation between nano-scale devices to form a more

complicated system. One of most promising solutions to construct nano-scale

communications is molecular communications. In a fluidmedium, nano-scale

devices exchange messages by releasing and capturing molecules. This type

of communications is quite different from the conventional microwave com-

munications. Unrestricted by the antenna size, molecular communications

has a good compatibility with biological systems at the nanoscale. Moreover,

molecular diffusion is really a good power saving mechanism to propagate

information. However, the randomness in the diffusion process arises noises

in molecular communication channel. Many researchers have designed com-

munication systems against noises and interferences to improve communica-

tion quality. Among most systems proposed in literature, synchronization be-

tween transmitter and receiver nanomachines is inevitable. In this thesis, we

deal with synchronization problem in diffusion-based molecular communica-

tions. Non-synchronous effects including clock offset and clock skew have

been considered. In training-based synchronization, we proposed the Itera-

tive Linear Estimator (ILE) with much lower complexity than other methods.

In blind synchronization, we applied Fisher’s Score Algorithm (FSA) to ef-

ficiently update clock offset estimation against the Inter Symbol Interference

(ISI) effect. The efficiencies of ILE and FSA are close to lower bound of

vii



Mean Square Error (MSE) by the Pitman estimator. Even without channel

information, we proposed a method to iteratively update channel estimation

and clock offset estimation. Its MSE is close to Cramer Rao Lower Bound

(CRLB) without channel information.
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Chapter 1

Introduction

Combining with nano-technology, nano-scale communication is a promising tech-

nology in information and communication field. Recently, more and more researchers

have discussed on the cooperation between nano-scale devices to form a functional nano-

network. Inspired by the biological systems in nature, molecular communications are

thought as the most popular solution to construct nano-scale communications. By diffus-

ing across a fluid medium, molecules as messenger barriers are used to propagate infor-

mation. Most molecular communication systems proposed in literature require synchro-

nization between nano-scale nodes to communicating with each other. In our thesis, we

discuss on synchronization problem in molecular diffusion channel. We begin with an

overview of diffusion-based molecular communications and then introduce some related

works and our main contributions on synchronization in molecular communications.

1.1 Overview

In recent years, nanotechnology has been developing rapidly. Beginning with manip-

ulating atoms and molecules precisely, nanotechnology generally includes all the technol-

ogy in the scale from 1 to 100 nanometers. In such small size, it is possible to manufacture

an artificial device in scale of molecules, nano-machine. A nano-machine refers to a most

basic unit in nano-scale but can perform specific function such as computing, sensing or

data storage [1]. Because of the size, the computational capability and the memory of a

1



nano-machine are limited. To reach a more complicated system, we need to form a nano-

network by communicating and cooperating between nano-machines. A nano-network

consists of a collection of nano-machines. They link together and transfer information

with each other to form a functional system. Developing a nano-network is an attractive

topic in nano-technology.

Nano-network can be applied to many aspects of applications like biomedicine, in-

dustry, environment, and military [2]. The blood pressure monitoring and drug delivering

system [3] are examples in biomedicine. Besides, nano-network are possibly used in water

or food inspection and air pollution control. For this prospect in the future, more and more

researchers in communication and information field are interesting in nono-network.

The communication mechanisms between nano-scale devices are diverse, including

electromagnetic, acoustic, mechanical, and molecular communication [2]. Due to the an-

tenna size, the traditional electromagnetic communication are limited. Moreover, much

higher carrier frequency in nano-scale antenna requires computation beyond the capability

of nano-machine. Inspired by cellular communication, one of promising communication

mechanism between nano-machines is molecular communication. Inmolecular communi-

cation, the information is propagated by transmitting and receiving messenger molecules.

Unlike mechanical communication require physical contacts, molecular communication

could use the messenger molecules as barriers embed information and communicate indi-

rectly. The advantage of molecular communication make it suitable in developing nano-

network.

Molecular communications are widely used in biological systems. The distance of

information propagation ranges from hundreds of nano-meters to some centimeters or

meters. In long range molecular communications, pheromone is an example [4]. The

effect of pheromone propagates from interspecies to one body by circulatory system. In

short range, neurons control their electrical activity by the concentration of calcium ions

signal [5]. Messenger molecules like proteins, ions, or DNAs are transported in short

range molecular communications by motor, gap junction, or diffusion. For intracellu-

lar transport, motor proteins carry messenger molecules along microtubule rails [6]. For

2



inter-cellular communications, gap junction connects two adjacent cells as a channel or

messenger molecules like calcium ions diffuses across a free space. In this thesis, we fo-

cus on designing mechanisms in the diffusion-based molecular communications in short

range.

In Diffusion-based Molecular Communications (DMC), molecules diffuse across a

fluid medium from regions of high to low concentration. This process can be modeled by

Fick’s laws of diffusion and Brownian motion process [7]. In this field, many papers de-

sign a good modulation and detection to improve the quality of molecular communication.

For example, the paper [8] considers a time-slotted diffusion-based molecular communi-

cation with information embedded in different quantity levels. However, most literature

assume perfect synchronization between the transmitter and the receiver. In reality, how

to form a time-slotted system in DMC is still a problem. To solve this problem, we analyze

the timing synchronization problem in this thesis.

1.2 Related Works On Timing Synchronization

Generally, transmitter converts information bit stream into a sequence of symbols.

Then, transmitter assigns a period of time called symbol duration to transmit each symbol.

However, with non-synchronous clocks of transmitter and receiver, a clock offset which is

constant but unknown for receiver exists between these two clocks. Accordingly, receiver

may not identify the beginning of each symbol duration. This is the problem of timing

synchronization or symbol synchronization [9].

In conventional electromagnetic communications, Orthogonal FrequencyDivisionMul-

tiplexing (OFDM) system is vulnerable to symbol synchronization error. In molecular

communications, the propagation of diffusion is much slower than light speed, so a longer

symbol duration than conventional communications is inevitable. Due to the long and ran-

dom propagation delay, timing synchronization problem in DMC is difficult [10]. Besides,

the paper [11] proposed a sampling-based detection requires a perfect synchronization sys-

tem between transmitter nano-machine and receiver nano-machine. The performance of

sampling-based detection affected by timing synchronization error. Accordingly, solving

3



synchronization problem in DMC is worth investigating. Analyzing the characteristic of

propagation delay could be a solution [11]. In this thesis, we try to estimate the random

delay in DMC.

Recently, some papers in literature start discussing the synchronization problem in

molecular communication becausemany people notice that it is necessary to keep the clock

synchronized among nanomachines. For example, inspired from biological mechanism,

the paper [12] surveys the Quorum Sensing between Bacteria to reach synchronization in a

cluster of nodes of a nanonetwork. They use some kinds of molecules called autoinducers.

When sensing the concentration of autoinducers over a threshold level, the node in the

nanonetwork will activated and releasing autoinducers as positive feedback. This kind of

mechanism causes chain effect so that the authors claim that the mechanism is efficient

and the delay among nanomachines is acceptable.

For timing synchronization problem in concentration-based molecular communica-

tion, the first blind synchronization algorithm has been proposed in [13]. This paper use

the concentration single measured by receiver to efficiently estimate the propagation delay

of transmission. But our system model is different from this paper’s. The situation in our

transmission is releasing a few number of molecules, which is less than the level to form a

concentration single. Then, when molecules arrive to the position of receiver, they will be

captured one by one and receiver can measure the arrival times of molecules. These two

types of system model of communication in DMC has been studied in literature [8, 14].

1.3 Major Contributions

Our main work is to design an efficient estimator of clock offset and clock skew so

that RN has an estimated time slotted system, which synchronizes with TN’s. The key

contributions of this thesis are listed as below.

First, we compare the Mean Square Error (MSE) and computational complexity of

three methods in clock offset estimation, Maximum Likelihood Estimation (MLE), Lin-

ear Estimation (LE), and Iterative LE. Among them, we proposed the best one, Iterative

LE, with lower complexity and its MSE reaches almost the same efficient level with the

4



others. On the other hand, in blind synchronization, we analyze the theoretical MSE of

two methods, LE for the arrival time of the first molecule and Decision Feedback (DF)

method. Furthermore, we give a sufficient condition when the latter improves the former.

When dealing with Inter Symbol Interference (ISI) effect in blind synchronization, we ap-

ply Fisher Score Algorithm (FSA) to improve the initial estimation of clock offset. The

MSE of FSA in blind synchronization is much closer to the optimal location parameter es-

timator, Pitman estimator, than Iterative LE proposed in training-based synchronization.

Second, in channel estimation, we proposed initial estimation of clock offset τ and

channel estimation µ and λ. To make the MSE converge to zero overtime, we proposed

a method iteratively updating τ , µ, and λ. The MSE of this method is close to the CRLB

with unknown µ and λ.

Third, in clock skew estimation, we proposed Iterative LE for clock skew rate with

channel information and Quasi-likelihood clock skew rate without channel information.

The latter is better than the former when the number of symbols is large enough.

The following structure of our thesis begins with system model and problem formula-

tion in Chapter. 2. We will explain what Additive Inverse Gaussian Noise (AIGN) channel

and quantity-based modulation are in DMC. Then, for clock offset estimation, we discuss

training-based and blind synchronization in Chapter. 3. The channel estimation is consid-

ered in Chapter. 4 when dealing with clock offset estimation. Moreover, we discuss the

clock skew estimation with and without channel information in Chapter. 5. Finally, the

conclusion and future work are discussed in Sec. 6.
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Chapter 2

Synchronization Problem Formulation

In Additive Inverse Gaussian Noise

Channel Model

In this chapter, we describe our system model in diffusion-based molecular commu-

nications. The channel is modeled by Additive Inverse Gaussian Noise channel, which

was investigated by former researchers. Under this model, we discuss on the synchro-

nization problem for quantity-based modulation. In this type of synchronization problem,

we consider both clock offset and clock skew effect.

2.1 System Model

We consider an end-to-end communication in a volume with fluid medium. The trans-

mitter is a nano-machine, and so is the receiver. We call them Transmitter Nano-machine

(TN) and Receiver Nano-machine (RN). They communicate with each other by releas-

ing and capturing molecules. The channel between them is molecular diffusion based on

Brownian motion to propagate information message.

As the model described in [15], TN is in a small scale of molecules, but RN is in a large

scale of the distance apart from TN. Because of the scale, TN is approximately a point

in three-dimensional space but RN is approximately an infinite plane for the molecules

7



released from TN. Besides, on the surface of RN is full of receptors to capture the arrival

molecules .The Brownian motion is isotropic for each direction, so we only consider the

one-dimensional movement perpendicular to the infinite plane of RN. All molecules and

receptors are identical. When a molecule diffuses across the fluid medium and captured

by a receptor, it is completely removed from the space. This absorbing process is different

from concentration-based molecular communications [16].

The movements of molecules are affected by two kinds of effect. One is the Brownian

motion from the particle collision in the fluid medium. The other one is the drift velocity

towards RN. Combine these two kinds of effect, we model the movement of molecules

by the Wiener process with drift. Moreover, because all molecules are in nano-scale and

diffuse in three dimensional space, the collision of two molecules is almost impossible.

We model each movement of molecule is independent. Based on [17], a one-dimensional

molecular diffusion can be described by one-dimensional Brownian motion and the first

hitting time to a specific position follows the Inverse Gaussian distribution. This channel

in our model is called Additive Inverse Gaussian Noise channel model as in [18].

2.1.1 Additive Inverse Gaussian Noise Channel

We define the spatial location by a one-dimensional extent with the origin as TN’s

position. Let d > 0 denote the position of RN apart from TN.When a molecule is released

from TN at time x, it will act as one-dimensional Brownian motion with positive drift

velocity v > 0, which is the direction to RN. Because of positive drift, in a sufficiently

long period of time, this molecule must arrive in the RN’s position and be captured by

RN. However, the arrival time of this molecule is random. Based on [17], we describe the

arrival time as x + T , where the additive first hitting time T is the random variable with

Inverse Gaussian distribution.

fT (t) =


√

λ
2πt3 exp{−λ(t−µ)2

2µ2t
} if t > 0,

0 if t ≤ 0.

(2.1)
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with parameters as follows:

µ = d

v
, λ = d2

2D
and, D = kBTa

6πηr
,

where kB is the Boltzmann constant, Ta is the absolute temperature, η is the viscosity of

the fluid medium, and r is the radius of molecule.

2.1.2 Quantity-based Modulation

A modulation called quantity-based modulation have been discussed on the paper [8]

in AIGN channel. As shown in Fig. 2.1, quantity-based modulation embeds informa-

tion message in the quantities of molecules, which is similar to amplitude modulation in

the traditional wireless communications. Before communication, TN and RN shared a

common period of time, called symbol duration denoted by Ts. Information message is

conveyed by a sequence of symbols in consecutive symbol durations as shown in Fig. 2.1.

For each symbol, TN assign the corresponding quantities of molecules by the information

message and release these molecules at once in the begging of the symbol duration. In

binary case, TN release L0 and L1 unlabeled molecules representing a binary zero and a

binary one, respectively. All molecules are in the same type, so RN cannot distinguish

them. Then, RN will accumulate the quantity of arrival molecules during symbol duration

Ts and demodulate this symbol by some detection methods.

Figure 2.1: Time-slotted system in quantity-based modulation under perfect synchroniza-
tion.

An optimal detection in quantity-based modulation is proposed in [8] to improve qual-

ity of communication. This kind of modulation and detection rely on a synchronous time-
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slotted system, as shown in Fig. 2.1. RN needs to share a perfect synchronous time-slotted

system with TN, otherwise it causes the error to increase. The main work in this thesis is

to meet the non-synchronous gap in quantity-based modulation.

2.1.3 Clock Offset Estimation

We have shown the time-slotted system in quantity-based modulation under perfect

synchronization in Fig. 2.1. However, in the beginning of communication, TN and RN

may have non-synchronous clocks with each other, so the starting point of their clock may

be different. We denote the starting point of TN’s and RN’s clock by OT and OR respec-

tively. As shown in Fig. 2.2, a clock offset τ := OT − OR exists generally. We define

the clock offset as the subtraction of OR from OT , which may be negative. Consequently,

when RN receive a molecule, the arrival time measured by RN includes not only the ran-

dom delay T , but also the clock offset τ . Remind that the first hitting time T is random

and follows Inverse Gaussian distribution caused by AIGN channel. The clock offset τ is

constant but unknown for RN caused by the non-synchronous phenomenon. The problem

is how to efficiently estimate the clock offset τ by the sequence of arrival time, which is

random, measured by RN to reach synchronization with TN.

Figure 2.2: Phenomenon of clock offset.

In quantity-basedmodulation, TN releases consecutive symbols and each symbol carry

an amount of molecules. All of the molecules are unlabeled and in the same type. They

are captured by RN in a sequence of time according to the ascending order. Therefore, one

molecule released in a later time may be captured earlier than another molecule released

in a previous time. We call it crossover effect. The crossover effect is natural in AIGN

channel. RN cannot distinguish whether the observation affect by crossover effect.
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Figure 2.3: Clock offset estimation for quantity-based modulation.

As shown in Fig. 2.3, TN releases n1, n2, ..., nK molecules in the beginning of con-

secutive K symbols. In binary case, nk ∈ {L0, L1}. What RN observe is a sequence

of arrival times of molecules denoted by y1, y2, ..., yN according to the ascending order

of timing, where N = n1 + n2 + ... + nK . The problem is how to design an efficient

estimator τ̂(y) based on the observation y = [y1, y2, ..., yN ]. We want to make the Mean

Square Error (MSE) defined by E[(τ − τ̂(y))2] as small as possible, where the function

E[.] denotes the expectation of some random variable. This is the first problem we deal

with called clock offset estimation.

2.1.4 Clock Skew Estimation

The second problem we deal with is the clock skew estimation as shown in Fig. 2.4. In

real scenarios, RN’s clock may tick in a different rate from TN’s, that is called clock drift

or clock skew. Under clock skew effect, RN could count symbols on a different timing

duration, maybe longer or shorter than TN’s. A bit error of clock skew will accumulate

overtime, causing non-synchronous phenomena gradually. The accumulated error is more

severe in molecular communications than in traditional wireless communications, because

molecules diffuse with much loner delay and the whole system require much longer com-

munication duration.

To reach synchronous with TN, RN needs to adapt symbol duration corresponding to

its own clock skew. Here, we assume the skew is constant overtime but unknown for RN.

Nevertheless, RN perceives the arrival time sequence y by its own clock, so RN could

11



Figure 2.4: Clock skew estimation for quentity-based modulation.

extract the pattern in y to estimate Ts × R, where R is the clock skew rate. Then, TN

and RN could count symbols by Ts and Ts × R̂ respectively with almost the same timing

duration to reach synchronization. For example, if Ts = 10 (sec) and RN’s clock ticks in

a twice rate from TN’s, that is R = 2, then RN can compensate the clock skew effect by

adapting its symbol duration to Ts × R̂ ≈ 20 (sec). Even though TN counts symbols by

Ts = 10 (sec) and RN counts symbols by Ts × R̂ ≈ 20 (sec), they actually count symbols

with almost the same duration because RN’s closk ticks in a twice rate from TN’s.

Combine with above two non-synchronous effect, RN needs to estimate the clock off-

set τ and the unknown clock skew rate R simultaneously. For TN’s time slotted system,

τ + (k − 1)Ts is the boundary between (k − 1)-th symbol and the k-th symbol, where

k = 1, 2, ..., K. However, becasue the clock skew rate R for RN’s clock from TN’s clcok,

the true boundary between (k − 1)-th symbol and the k-th symbol for RN’s time slotted

system is R[τ + (k − 1)Ts], denoted by Sk which is the true parameters we want to esti-

mate. The target is to synchronize the sampling time Ŝk(y) = R̂(y)[τ̂(y) + (k − 1)Ts]

as close to Sk = R[τ + (k − 1)Ts] as possible. By minimum mean square error (MMSE)

criteria, we try to make E[(Sk − Ŝk(y))2] as small as possible.

2.2 Synchronization Problem Formulation

In AIGN channel model, we consider many kinds of synchronization problem for

quantity-based modulation. The following, we describe our overall system model by plot-

ting the whole system diagram. Moreover, our system diagram shows all main parameters
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in our model. With different assumption on these parameters, we formulate many kinds

of synchronization problem described in a table.

2.2.1 System Diagram

Fig. 2.5 shows an overall system diagram for quantity-based modulation. In this sys-

tem, TN modulates information bit stream Ik into the sequence of molecular amounts for

each symbol {nk|1 ≤ k ≤ K}. Then, TN releases molecules based on TN’s clock. We de-

note the molecular releasing time sequence as x = [x1, x2, ..., xN ], where N = n1 + n2 +

...+nK . For quantity-basedmodulation, xi = (j−1)Ts if n1+...+nj−1 < i ≤ n1+...+nj

for i ∈ {1, 2, ...N}. For example, if K = 3 and n1 = 2, n2 = 1, n3 = 1, as shown in Fig.

2.1, we have x = [0, 0, Ts, 2Ts].

Figure 2.5: System diagram of clock offset synchronization for quantity-basedmodulation
in AIGN channel.

After passing through AIGN channel, x becomes y′ = sort(x+t), where t is a random

sample from Inverse Ganssion distribution. We model the channel effect with an additive

Inverse Gaussain Noise ti and the crossover effect by sorting the arrival time sequence.

Moreover, because of the non-synchronous clock between TN and RN, the actual arriving

timemeasured byRNy includes the unknown clock offset τ . According toy, we design an

efficient estimator τ̂(y) to estimate the unknown clock offset τ . This is the synchronization

problem only with clock offset.
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Figure 2.6: System diagram of clock offset and clock skew synchronization for quantity-
based modulation in AIGN channel.

Fig. 2.6 shows an overall system diagram combining clock offset and clock skew. After

passing through AIGN channel, y′ not only add clock offset τ but also multiple clock skew

rate R, where both τ and R are unknown for RN. According to y = R[τ1+y′], we design

two efficient estimators τ̂(y) and R̂(y) to make the sampling time Ŝk = R̂(y)[τ̂(y)+(k−

1)Ts] synchronize with TN’s time slotted system.

2.2.2 Training-based And Blind Synchronization

There are two types of synchronization: training-based synchronization and blind syn-

chronization.

In training-based synchronization, each communication includes tow phases. The first

one is the training phase. In training-phase, TN transmits the training sequence which RN

has already known. After training signal passes through the channel, RN can estimate the

channel information or synchronize with TN by receiving the observations in training-

phase. After training-phase,the other one is communicating phase. In communicating

phase, TN transmits the information message. This time, RN focuses on detecting the

information message with the parameters was fixed before.
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In our work, whenwe discuss on the training-based synchronization, wewant to design

the mechanism of synchronization in training phase. For quantity-based modulation, RN

knows the training sequence Ik in Fig. 2.6. Then, the quantities of molecules released

by TN nk for each symbol is known for RN. For simplification, we often discuss the

constant training sequence. That is, each symbol has the same quantities of molecules

n = n1 = n2 = ... = nK . TN transmits total K × n molecules during K symbol

durations.

In contrast, whenwe discuss on the blind synchronization, wewant to design themech-

anism of synchronization in communicating phase. That is, even TN transmit information

message, RN has to synchronize with TN and detect the message simultaneously. For

quantity-based modulation, TN transmit the information message Ik randomly. Then the

quantities of molecules nk for each symbol is random for RN. Traditionally, we often use

the M -ary with equal a priori probability. That is nk is an discrete uniform distribution

over {l0, l1, ..., lM−1}, where li is the i-th level of quantities.

2.2.3 Channel Information

Besides the information transmitted by TN, the channel information is also important

for RN. For AIGN channel, the additive random delay T follows inverse gaussian dis-

tribution with two parameters µ and λ. These tow parameters depend on some channel

characteristics like the distance between TN and RN d, the drift velocity v, and the dif-

fusion coefficient D of some types of molecules. Nevertheless, µ and λ determine all

information about an AIGN channel as shown in Fig.2.6. Therefore, it is enough for RN

to evaluate the values of µ and λ.

We model the AIGN channel with clock offset τ and clock skew rate R as

y = R[sort(x + t) + 1τ ], (2.2)

where x is the input releasing time sequence and y is the output arrival time sequence and

t is the random sample from the inverse gaussian distribution. Specifically, for an arrival
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cases assume known fix but unknown
clock offset estimation µ, λ, R τ
channel estimation R τ , µ, λ

clock skew estimation µ, λ τ ,R
joint estimation µ, λ,τ ,R

Table 2.1: List 4 kinds of problems with different assumptions about parameters in
stochastic model.

time yi of a molecule which was released at xj = kjTs, that is at the kj-th symbol,

yi = R[xj + ti + τ ] = R[kjTs + ti + τ ]. (2.3)

Note that i might not equal j because the sorting effect changes the order of timing. Nat-

urally, we model the crossover effect by sorting the arrival time sequence.

Overall our system model, we have a stochastic model for an arrival time yi observed

by RN as

yi ∼ fT (yi

R
− τ − kjTs|µ, λ) = f(yi|µ, λ, τ, R, kj). (2.4)

It is clear that we have 5 main parameters, µ, λ, τ , R, and kj , in this stochastic model. τ

and R are clock offset and clock skew rate, respectively, which are our target unknown

parameters. µ and λ are the AIGN channel parameters. kj is related with xj depends on

the signal transmitted by TN. We have discussed that nk is known for training-based syn-

chronization and nk is random for blind synchronization in Sec. 2.2.2. Moreover, different

assumptions about µ, λ, τ , and R lead to many kinds of problems listed as in Table 2.1.

First of all, we consider a simple case, clock offset estimation, in Chapter. 3. We

assume the channel information µ, λ, and the clock skew rate R are all known for RN.

The observations y have been compensated by clock skew rate R as in system diagram

Fig. 2.5. Our target is to estimate the unknown clock offset τ . In clock offset estimation,

we discuss on both training-based synchronization and blind synchronization.

Second, if we have a short symbol duration and overall communication period does

not last too long, the effect of clock skew rate is negligible. The overall system model

is described as in Fig. 2.5. The arrival times of molecules y observed by RN does not
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Figure 2.7: Three kinds of situation by the short or long symbol duration and whether
delay is sensitive or not.

multiple by clock skew rate R. This way, what we really focus on is the unknown channel

information. We call this situation is channel estimation problem. For channel estimation,

we discuss on the case when RN has no idea about channel information but without clock

skew effect in Chapter. 4. The target estimation parameter is still clock offset τ with

minimum MSE.

Third, if we have a long symbol duration or overall communication period lasts too

long, the clock skew effect cannot be ignored. Estimating the clock skew rate R is in-

evitable. For simplification, we begin with the case RN knows the channel information

µ and λ to estimate τ and R simultaneously. In realistic, this is in the situation with de-

lay insensitive communication, so non-synchronous channel estimation methods like [16]

can be applied before synchronization. Then, RN can synchronize with TN under chan-

nel information. We call this problem clock skew estimation and discuss it in Sec. 5.1.

Otherwise, in delay sensitive application like health monitoring, RN needs to do synchro-

nization and channel estimation simultaneously. This is the toughest problem we deal

with, joint estimation. In joint estimation, we considers the case when these 4 parameters

are all unknown. Our target is estimate the unknown clock offset τ and clock skew rate R

so that the sampling time Sk of RN can be synchronized with TN’s time slotted system in

Sec. 5.2.

Besides the simple case, clock offset estimation, we divided the other three kinds of

situation by short or long symbol duration and delay sensitive or insensitive communi-

cation. If we have a short symbol duration and overall communication period does not

last too long, we focus on the channel estimation but the clock skew effect. Otherwise, if
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in an urgent communication like health monitoring, we have no time to estimate channel

parameters before synchronization, so joint estimation is required. Otherwise, clock skew

estimation is the case only consider the clock skew effect with known channel informa-

tion.
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Chapter 3

Clock Offset Estimation In

Training-based And Blind

Synchronization

The first problem we deal with is clock offset estimation problem. If we have a short

symbol duration and overall communication period does not last too long, the effect of

clock skew rate is negligible. The overall system model is described as in Fig. 2.5. The

arrival times of molecules y observed by RN does not multiple by clock skew rate R. This

way, we only focus on estimating the unknown clock offset τ .

3.1 Training-based Synchronization

In this section, we focus on the training-based synchronization. In training-based syn-

chronization, there is a training phase to synchronize between TN and RN before they

transmit and receive information message. In training phase, TN transmit a pilot signal

which RN have already known, so x is constant for RN.

In clock offset estimation, because the clock skew effect has been compensated perfect,

the evaluation reduce to the MSE of clock offset τ for any k. That is, the error of all

boundary of symbols are the same. RN’s time slotted system is a shift version of TN’s
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time slotted system.

E[(Sk − Ŝk)2] = E[(τ + (k − 1)Ts − τ̂ − (k − 1)Ts)2]

= E[(τ − τ̂)2] (3.1)

The following, We propose some methods to estimate τ under the assumption that RN

knows x.

3.1.1 Maximum Likelihood Estimation

In classic point estimation problem, Maximum Likelihood Estimation (MLE) can be

applied if the joint probability distribution of observations is known. The following, we

derive the probability distribution of RN’s observations (the arrival times of molecules)

under non-synchronous situation.

Based on [14], when τ = 0, that is perfect synchronization, the joint probability density

function (pdf) of observation denoted by y′ given releasing time sequence x has been

derived as below:

f(y′|x) =
∑

u∈P(y′)
f(u|x)

=


∑

u∈P(y′)

N∏
i=1

fT (ui − xi), if y′ = sort(y′);

0, otherwise.

(3.2)

where P(y′) is the set of all possible permutation of y′ and the function sort(y′) sorts y′

according to ascending order.

In our work, because of the non-synchronous phenomenon, the observation of RN is

y = y′ + τ1N , where 1N is the 1 × N vector with all value are equal to 1. Therefore, we
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can derive likelihood function as below:

f(y|x, τ) =


∑

u∈P(y)

N∏
i=1

fT (ui − xi − τ), ify = sort(y);

0, otherwise.

(3.3)

Then, we can apply MLE and denote the estimator by τ̂MLE.

τ̂MLE := arg max
τ

f(y|x, τ). (3.4)

However, the time complexity grows rapidly by factorial on N because of the permutation

of y. In reality, it beyond the computational capability of nano-machine.

3.1.2 Linear Estimation

By considering the complexity issue, we try to apply Linear Estimation (LE). Assume

τ̂LE := aNy⊤ + b for some constant aN = [a1, a2, ..., aN ] and b such that MSE is minimal.

We have y = y′ + τ1N . By derivation above, we have the joint pdf of y′ given x, so

we can derived the mean and covariance of y′, which are used to derive the coefficient aN

and b.

Because the parameter τ is constant but unknown, we set the constraint on aN1⊤
N = 1

to eliminate τ as below:

E[(τ − τ̂ LE)2] = E[(τ − aNy⊤ − b)2]

= E[(τ − aN1⊤τ − aNy′⊤ − b)
2
]

= E[(aNy′⊤ + b)
2
]. (3.5)

According to [19], applying the solution in Non-random parameter estimation, we can
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make MSE reach the minimal value when

aN = 1NC−1
y′ {1NC−1

y′ 1⊤
N}−1 and

b = −E[aNy′⊤] (3.6)

,where Cy′ is the covariance matrix of the random vector y′.

Besides eliminating unknown τ , setting aN1⊤ = 1 make the unbiased property possi-

ble, so we actually apply LE under the unbiased constraint.

E[τ̂LE] = E[aNy⊤ + b]

= E[aN1⊤
Nτ + aNy′⊤ + b]

= E[τ ] + E[aNy′⊤] − E[aNy′⊤] = τ. (3.7)

The last step in (3.7) follows by b = −E[ay′⊤] in (3.6) and the unknown τ is constant.

Figure 3.1: An example for LE when x = 04.

Let’s give an example when K = 1, n1 = N = 4, and x = 0N as a zero vector

with length N . As shown in Fig. 3.1, if TN release N molecules at the beginning of

communication. In this case, the random vector y′ = [T(1), T(2), ..., T(N)], where T(i) is

the i-th order statistic of N independent and identical distribution (iid) random variables

with generic Inverse Gaussian distribution fT (t).

For simplification, we only take the first two components y1 and y2 as example. Ap-
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plying the solution of LE in this case, we get the linear estimator as below:

τ̂ LE := a2y⊤
2 + b

= a1y1 + a2y2 − E[a1T(1) + a2T(2)]

= a1(y1 − µ1) + (1 − a1)(y2 − µ2), (3.8)

where µ1 = E[T(1)], µ2 = E[T(2)], and

a1 =
V ar[T(2)] − E[(T(1) − µ1)(T(2) − µ2)]

E[{(T(1) − µ1) − (T(2) − µ2)}2]

=
V ar[T(2)] − Cov[T(1), T(2)]

V ar[T(1) − T(2)]
, (3.9)

where the function V ar[.] andCov[., .] denotes, respectively, the variance of some random

variable and the covariance of two random variables.

In (3.8), it is clear that τ̂LE is actually a weighted mean of each unbiased estimator

yi − E[yi]. We use the information in the arrival time of each molecule and take weighted

average to minimum MSE.

In this simple example, the theoretical MSE can be derived as below:

E[(τ − τ̂ LE)2] = V ar[a2y⊤
2 ]

=
V ar[T(1)]V ar[T(2)] − Cov[T(1), T(2)]2

V ar[T(1) − T(2)]
. (3.10)

The theoretical MSE is used to verify our simulation results in the following section.

3.1.3 Iterative Linear Estimation For τ

In the above, we proposed LE, which reduces the complexity of MLE, in training-

based synchronization. The LE only needs linear time computation on N after we have

the weighted value aN . However, in the algorithm of LE, the complexity of computing

the weighted value aN and mean vector u beforehand still grows rapidly by factorial on

N , which is incomputable when N is large. For example, if TN transmit K = 10 symbols
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and each symbol release ni = 8 molecules for all 1 ≤ i ≤ 10, then we have to offline

compute 80 means and weighted value by 80 × 80 covariance matrix Cy′ . It costs much.

To simplify the computation of aN and make linear estimation for large N possible, we

rewrite the algorithm to iterative form, which called Iterative LE (ILE) by us.

First of all, let’s recall the linear combination in LE in (3.11). We denote the estimator

of LE for the first N molecules by τ̂N and the corresponding coefficient by aN . Then, we

introduce a constant vector u to represent the expected value of the random vector y′. This

way, it is clear that aN is actually the weighted value of N unbiased estimators yi − ui for

i = 1, 2, ..., N .

τ̂N := aNy⊤ + b = aN(y − u)⊤, (3.11)

where u = E[y′] is the mean vector.

Assume TN transmits total K symbols with the same quantity of n molecules. That is,

the training sequence {nk|1 ≤ k ≤ K} is a constant sequence, so n1 = n2 = ... = nK =

n. When RN receives k symbols, we can apply LE for the first N = kn molecules. When

RN receives k + 1 symbols, we can apply LE for the first N = (k + 1)n molecules. We

compare these two estimators to derive the iterative form of ILE.

τ̂kn = akn(y[1:kn] − u[1:kn])⊤,

τ̂(k+1)n = a(k+1)n(y[1:(k+1)n] − u[1:(k+1)n])⊤ (3.12)

,where y[i1:i2] denote the i1-th component to the i2-th component of vector y and so does

u[i1:i2].

In (3.12), the first kn components of ykn and y(k+1)n are the same, so are ukn and

u(k+1)n. Therefore, y(k+1)n = [ykn, y[kn+1:(k+1)n]] andu(k+1)n = E[y(k+1)n] = [ukn, u[kn+1:(k+1)n]]

However, the first kn components of akn and a(k+1)n are different. We need to derive the

relationship with them.

Recall that aN = 1NC−1
y′ {1NC−1

y′ 1⊤
N}−1 from (3.6). The inverse of covariance matrix

C−1
y′ has the following two properties.
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Approximate diagonal property : The matrix C−1
y′ is similar to a diagonal matrix.

That is, the entries outside the main diagonal are significantly smaller than the diagonal

entries.

This property results from the covariance of y′
i and y′

j , E[(yi − ui)(yj − uj)], is quite

small when |i − j| is large. Accordingly, the matrix Cy′ is similar to a diagonal matrix,

and so is its inverse matrix C−1
y′ .

Approximate repetition property : The diagonal entries of matrix C−1
y′ repeats by

the period of n except the first submatrix. That is, the matrix C−1
y′ approximately shows

as below.

C−1
y′ ≈



An×n 0 0 . . . 0

0 Bn×n 0 0

0 0 Bn×n
...

... . . . 0

0 0 . . . 0 Bn×n



This repetition property results from y′
i+(k−1)n is similar to y′

i+kn for i = 1, 2, ..., n and

2 ≤ k ≤ K − 1 because they all affect by similar level of ISI effect. We assume the

crossover effect over two or more symbols can be ignored. Under this assumption, the

effect of ISI on the second symbol is the same as the third one, and so are the following

symbols. On the other hand, the first symbol without ISI causes the exception.

The above two properties of C−1
y′ is useful when we find the relationship between akn

and a(k+1)n. When N = (k + 1)n, based on the properties of C−1
y′ , we can derive a(k+1)n

as

a(k+1)n =
1NC−1

y′

1NC−1
y′ 1N

⊤ =
1NC−1

y′

1nAn×n1⊤
n + k1nBn×n1⊤

n

=
1(k+1)nC−1

y′

A + kB
, (3.13)

where A = 1nAn×n1⊤
n and B = 1nBn×n1⊤

n . Moreover, when N = kn, we can derive
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akn as

akn =
1knC−1

y′

A + (k − 1)B
. (3.14)

In the same way, we split a(k+1)n into two parts, a[1:kn] and a[kn+1:(k+1)n], where a[1:kn] is

the first kn components of a(k+1)n and a[kn+1:(k+1)n] is n components from the (kn+1)-th

one to the (k + 1)n-th one. In (3.13), the denominator is a constant A + kB, and the

nominator is a row vector which is the sum of all row vectors of C−1
y′ . Accordingly, we

can derive the relationship as below.

a[1:kn] =
1knC−1

y′ + 0
A + kB

=
1knC−1

y′

A + (k − 1)B
A + (k − 1)B

A + kB

= akn
A + (k − 1)B

A + kB
(3.15)

a[kn+1:(k+1)n] = 0 + ... + 0 + 1nBn×n

A + kB
= 1nBn×n

B

B

A + kB

= wn
B

A + kB
, (3.16)

where wn = 1nBn×n

B
.

Then, we split a(k+1)n and replace a[1:kn] and a[kn+1:(k+1)n] by (3.15) and (3.16). The

estimator of LE for the first N = (k + 1)n molecules can be derived from the estimator

of LE for the first N = kn molecules by the iterative form as below.

τ̂(k+1)n := a(k+1)n(y[1:(k+1)n] − u[1:(k+1)n])⊤

= a[1:kn](y[1:kn] − u[1:kn])⊤

+ a[kn+1:(k+1)n](y[kn+1:(k+1)n] − u[kn+1:(k+1)n])⊤

= A + (k − 1)B
A + kB

akn(y[1:kn] − u[1:kn])⊤

+ B

A + kB
wn1(y[kn+1:(k+1)n] − u[kn+1:(k+1)n])⊤

= A + (k − 1)B
A + kB

τ̂kn + B

A + kB
τ̂ (k+1)
new , (3.17)
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where τ̂ (k+1)
new = wn(y[kn+1:(k+1)n] − u[kn+1:(k+1)n])⊤.

For simplification, in ILE, we denote the previous estimator τ̂kn and the next estimator

τ̂(k+1)n in LE by τ̂k and τ̂k+1, respectively. Moreover, another parameter α = A
B
represents

the importance of the new estimator τ̂ (k+1)
new with respect to the previous estimator τ̂k.

τ̂k+1 = α + k − 1
α + k

τ̂k + 1
α + k

τ̂ (k+1)
new , (3.18)

where α = A
B
. In the case when α = 1, which means A = B, that is Ts is large enough

so that all symbols are almost independent with each other. Then, we treat τ̂ (k+1)
new with the

same importance with τ̂k in this case. On the other hand, in the case when α > 1, which

means A > B, that is the following symbols are influenced by the ISI effects. Then, we

reduce the importance of τ̂ (k+1)
new with respect to τ̂k.

Moreover, because of the periodic property ofy′, ui+(k−1)n−ui+kn is close to Ts, which

is constant, for i = 1, 2, ..., n and 1 ≤ k ≤ K−1. As a result, u[kn+1:(k+1)n] = kTs1n+mn

for some constant vector mn = [m1, m2, ..., mn].

τ̂ (k+1)
new = wn(y[kn+1:(k+1)n] − u[kn+1:(k+1)n])⊤

= wn(y[kn+1:(k+1)n] − mn)⊤ − kTs (3.19)

To sum up, the algorithm of ILE is described as below. First, we compute an and

u[1:n] beforehand to initialize the first estimator τ̂1. Second, we compute α, wn, and mn

beforehand to iteratively update the previous estimator τ̂k for 1 ≤ k ≤ K − 1.

τ̂1 = an(y[1:n] − u[1:n])⊤ (3.20)

τ̂k+1 = α + k − 1
α + k

τ̂k + 1
α + k

[wn(y[kn+1:(k+1)n] − mn)⊤ − kTs] (3.21)

The algorithm of ILE only needs the statistics of the first symbol without ISI, an and un,

the second or third symbol with ISI, wn and mn, and the ratio of importance between

them, α. By these information, it is enough to iteratively derive LE for large amount of

molecules N and large index of symbol k without too much performance lost. Unlike
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an the weighted value of each arrival time without ISI
(derived from covariance matrix of the arrival time).

un the mean vector of the arrival time without ISI.
wn the weighted value of each arrival time with ISI

(derived from covariance matrix of the arrival time).
mn the mean vector of the arrival time with ISI.
α the weighted value between the previous estimation

and the new estimation.

Table 3.1: The parameters of the Iterative LE for clock offset τ .

LE, whose complexity grows rapidly when N and k increases, ILE only needs a constant

amount of computational complexity when offline computing the weighted values and

means.

3.1.4 Lower Bound Without Crossover

In this part, we derive the theoretical lower bound of MSE without ISI as a benchmark

to evaluate the performance of our estimator proposed above.

Because we want to derive the lower bound of MSE, the ideal case under some unre-

alistic condition can be considered. Here, we just consider the situation without crossover

effect. That is, if TN transmit K symbols, these K symbols are without ISI. Moreover,

if nk molecules are released in the k-th symbol, these nk arrival times of molecules are

i.i.d. To sum up, All arrival times of molecules y are a random sample with the sample

size N = n1 + ... + nK .

According to the classic estimation theory, the classic lower bound of MSE for all

unbiased estimators is Cramer-Rao Lower Bound (CRLB). The fisher information number

of inverse gaussian distribution with respect to τ is

I0 = −E[ ∂2

∂τ 2 {ln fT (t − τ)}]

= −E[{ 3
2(t − τ)2 − λ

(t − τ)3 }]

= −E[ 3
2(T )2 − λ

(T )3 ]

= λ

µ3 + 9
2µ2 + 21

2µλ
+ 21

2λ2 . (3.22)
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Moreover, we assume y are a random sample with the sample size N = n1 + ... + nK , so

the CRLB is

1
NI0

= 1
I0

∑K
k=1 nk

, (3.23)

However, the parameter we want to estimate is the location parameter τ . The support

of fT (t − τ) is (τ, ∞], which depends on the parameter τ . Accordingly, the assumption

of Cramer-Rao inequality does not hold, so we cannot claim CRLB is the lower bound of

MSE for all unbiased estimator.

Nevertheless, the minimumMSE estimator for location parameter was investigated by

Pitman [20]. For all estimators τ̂(y) satisfy the invariant property as

τ̂(y + c1) = τ̂(y) + c, (3.24)

for any constant c, then Pitman estimator τ̂P (y) has the minimum MSE.

τ̂P (y) :=
∫ ∞

−∞θf(y|x, τ = θ) dθ∫ ∞
−∞f(y|x, τ = θ) dθ

(3.25)

The joint pdf f(y|x, τ = θ) described in (3.3) is too complicated to integral. Under

the crossover effect, we have to consider all the permutation of y in (3.3), so P(y) has

N ! terms need to be considered. The factorial N ! grows so rapidly that the computational

complexity beyonds the capacity of nano-machines. This is why we need to investigate

the other estimator with lower complexity and without too much MSE loss.

Nevertheless, under the condition without crossover effect, we treat y is a random
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sample with sample size N . We can simplify the Pitman estimator as

τ̂P (y) :=
∫ ∞

−∞θ
∏N

i=1 fT (yi − 0 − θ) dθ∫ ∞
−∞

∏N
i=1 fT (yi − 0 − θ) dθ

(3.26)

=
∫ y1

−∞θ
∏N

i=1 fT (yi − θ) dθ∫ y1
−∞

∏N
i=1 fT (yi − θ) dθ

(3.27)

=
∫ 0

∞[y1 − α] ∏N
i=1 fT (yi − y1 + α) d(y1 − α)∫ 0

∞
∏N

i=1 fT (yi − y1 + α) d(y1 − α)
(3.28)

= y1 −
∫ ∞

0 θ
∏N

i=1 fT (yi − y1 + θ) dθ∫ ∞
0

∏N
i=1 fT (yi − y1 + θ) dθ

(3.29)

The integral in (3.29) has no close form, so we numerically compute the value in our

simulation.

3.1.5 Simulation Results

We simulate the quantity-based modulation in AIGN channel with non-synchronous

effect and try to synchronize by MLE, LE, and ILE proposed in training-based synchro-

nization. Moreover, we numerically plot the CRLB and Pitman estimator shown as bench-

mark to evaluate the efficiency of these estimators.

For the parameters of AIGN channel, we set Ta = 298(25◦C), η = 8.9 × 10−4(water

in 25◦C), r = 10−8(10nm), d = 2 × 10−5(20µm), and v = 2 × 10−6(2µm/sec), so we use

the random variable T ∼ IG(µ,λ) with µ = 10 and λ ≈ 8.1955 in the whole thesis.

The following, we present two simulation results in one case when K = 1, which is

just considering the first symbol, and another case when K ≥ 2, which is considering

multi-symbol with ISI effect.

In Fig. 3.2, we only consider the first symbol with n1 = N molecules. When we use

LE for n1 arrival times to estimate τ , the MSE can reach as small as using MLE, but the

complexity of LE reduce to linear time on N , which is quite lower thanMLE. Considering

the efficiency, the MSE of LE is closer to that of Pitman estimator than MLE when the

quantity of molecules n1 is small. This is reasonable because of the asymptotic efficiency

property of MLE. Moroever, we find out that the MSE of both two methods are close to

CRLB when the quantity of molecules N is large enough.
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Figure 3.2: The MSE of MLE and LE with CRLB and Pitman as benchmark in case when
K = 1, n1 = N , and x = 0n1 .

The experiment in Fig. 3.2 only simulates the special case when we consider the first

symbol, which is K = 1. In general, when we use multi-symbol to estimate τ , that is

K ≥ 2, the ISI effect will affect our result. In this case, we simulate LE for all arrival

N molecules when TN releases K symbols with n1 molecules per symbol, that is n1 =

n2 = ... = nK . Because ISI effect, the symbol duration Ts affects the performance of

estimation.

We simulate K = 6 symbols in Fig. 3.3. When Ts is closed to µ := E[T ], that is ISI

effect is severe, the MSE of our estimators increase. On the other hand, when Ts is large

enough, all symbols become almost independent, so all symbols act as the first symbol

without ISI effect. The MSE of our estimators are close to the lower bound, Pitman or

CRLB without ISI effect. Moreover, the MSE of Iterative LE is really close to that of LE,

especially when Ts is large, which verify that we do not lose too much information when

we reform the iterative process in order to reduce the complexity.
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Figure 3.3: The MSE of LE with multi-symbol in case when K = 6, and n1 = n2 = ... =
n6, where µ is the mean of T .

3.2 Blind Synchronization

In this section, we discuss on clock offset estimation when {nk} for 1 ≤ k ≤ K is

not constant but random for RN, because of the message embedded in the quantity level

of molecules for each symbol. Therefore, different from above discussion, this case has

no training phase anymore before communication.

Following the paper [8], we consider M -ary quantity-based modulation in general,

that is nk ∈ {L0, L1, ..., LM−1} as M hypotheses and Li > 0 for 0 ≤ i < M . Accord-

ingly, RN need to use the information in y to do both synchronization (estimating τ ) and

demodulation (detecting nk).

3.2.1 Non-decision-directed Parameter Estimation

Under the uncertainty of {nk}, the releasing time sequence x is also random for RN.

We can rewrite the joint pdf of observation y′ when τ = 0 by averaging the conditional

joint pdf over the probability of x. Here, we assume a priori probability of x is known for

32



RN, so the joint pdf of y′ can be derived as follows:

f(y′) =
∑

x
Pr{x}f(y′|x). (3.30)

For simplification, we just apply Linear Estimation (LE) proposed in Sec. 3.1.2 only

for the first molecule, that is τ̂LE := y1 − E[y′
1] ,which is a simple and efficient estima-

tor. Obviously, we just use the first molecule in the first symbol duration to estimate τ .

In general case when Ts is large enough, the probability of crossover happen to all the

molecules from the first symbol is quite small, so we almost can assume the first arrival

molecule is from the first symbol. As a result, what we really care about is the uncertainty

of n1, because y′
1 is almost the first order statistic of n1 iid random variables with generic

distribution fT (t).

f(y′
1) =

LM−1∑
l=L0

Pr{n1 = l}f(y′
1|x = 0l)

=
M−1∑
j=0

pjf
T

(Lj )
(1)

(y′
1), (3.31)

where T
(l)
(i) is the i-th order statistic of l iid random variables with generic distribution fT (t)

and pj is a priori probability of n1 = Lj . Accordingly, we can rewrite the LE only for the

first molecule as below:

τ̂LE := y1 −
M−1∑
j=0

pjE[T (Lj)
(1) ]. (3.32)

With this estimator, the theoretical MSE can be derived as below:

E[(τ − τ̂LE)2] = V ar[y′
1] =

M−1∑
j=0

pjσ
2
j +

M−1∑
j=0

j∑
i=0

(vj − vi)2pipj, (3.33)

where σ2
j = V ar[T (Lj)

(1) ], and vj = E[T (Lj)
(1) ] for j = 0, 1, ..., (M − 1).

33



3.2.2 Decision Feedback

Because of blind synchronization, the output of demodulation is useful for clock offset

estimation. That is, the better the performance of detection is, the smaller theMSE of clock

offset estimationwill be, and vice versa. As a result, we can apply Decision Feedback (DF)

method to improve LE only for the first molecule.

The steps are listed as follows. First, get τ̂1 := y1 − E[y′
1] by LE only for the first

molecule, and then demodulate the first symbol to get ñ1 based on τ̂1, where ñ1 is the

detected value of the molecular quantity of the first symbol n1. Finally, get τ̂DF := y1 −

E[T (ñ1)
(1) ] by DF method, where E[T (ñ1)

(1) ] is a derived random variable on the domain of

{v0, v1, ..., vM−1}.

To analyze the performance of DF, let qi,j denote the probability when RN detects n1

as Lj condition on n1 = Li, that is qi,j := Pr{ñ1 = Lj|n1 = Li}. We can derive the

theoretical MSE as below:

E[(τ − τ̂DF)2] =
M−1∑
j=0

pjσ
2
j +

M−1∑
j=0

j∑
i=0

(vj − vi)2(piqi,j + pjqj,i). (3.34)

If we compare the (3.34) with (3.33), the only difference is the coefficient of (vj −vi)2

term. Therefore, applying DF will improve performance when piqi,j +pjqj,i < pipj for all

0 ≤ i < j ≤ M − 1, that is the average crossover error probability of level i and j is less

than pipj . Moreover, the best performance of DF can make MSE reach
M−1∑
j=0

pjσ
2
j when

qij = 0 for i ̸= j, that is in the absence of demodulation errors, ñ1 = n1, which known as

Decision-directed Parameter Estimation.

3.2.3 Fisher’s Scoring Algorithm For Symbols With ISI

The above methods to estimate clock offset τ only use the first symbol without ISI.

In blind synchronization, how to use the information in the following symbols with ISI

is still a problem. We introduce a method to iteratively update the initial estimation τ̂LE

or τ̂DF. This way, in one communication, RN can both receive information message and

synchronize with TN overtime. We expect that the updated clock offset will be more and
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more accurate overtime.

First, we denote the initial estimation by τ̂(0), which may be the LE only for the first

molecule in blind synchronization or use the decision feedback method τ̂DF. The error of

initial estimation is defined by

ϵ := τ̂(0) − τ. (3.35)

If ϵ is positive, it means that our initial estimation is overestimated. Otherwise, our initial

estimation is underestimated. The following, we want to use the symbols with ISI to detect

whether τ̂(0) is overestimated or underestimated. Then updating to the new clock offset

estimation by compensating the estimated error ϵ̂.

To overcome the ISI effect, we try to derive the new observations, which affected by

ISI. We define a function g(x) as below.

g(x) :=


Ts, if x

Ts
∈ Z;

x −
⌊

x
Ts

⌋
Ts, otherwise.

=
∞∑

k=0
[x − (k − 1)Ts]1{(k − 1)Ts < x ≤ kTs} (3.36)

As shown in Fig. 3.4, the domain of g(x) is (−∞, ∞) and the range of g(x) is (0, T s].

To short, the function g(x) is the residue of x divided by Ts if x is not a multiple of Ts,

otherwise g(kTs) = Ts for some k ∈ Z. g(x) is a many-to-one function, which maps the

values from (−∞, ∞) to (0, T s].

Figure 3.4: Function g(x) from the domain (−∞, ∞) to the range (0, Ts] with Ts = 30.

In AIGN channel, the random delay T follows inverse gaussian distribution. If the
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error of initial estimation is zero, that is, τ̂(0) = τ and ϵ = 0, then T > Ts causes ISI

effect. g(T ) is the derived random variable, which means the residue of T divided by Ts.

In RN’s time slotted system, if an arrival time yi of a molecule falls in the ki-th symbol

duration of RN, that is τ + (ki − 1)Ts < yi ≤ τ + kiTs, then t′
i := yi − τ − (ki − 1)Ts

follows the distribution of g(T ). As shown in Fig. 3.5, the meaning of t′
i is the duration

from the previous boundary of the ki-th symbol to the arrival time yi.

Figure 3.5: The variable g(T ) is the residue of random delay T divided by Ts in RN’s time
slotted system under perfect synchronization.

However, ϵ ̸= 0 in general. To derive the random quantity t′
i := yi − τ̂(0) − (ki − 1)Ts

with error, we define the derived random variable T ISI from the inverse gaussian random

variable T by

T ISI := g(T − ϵ) (3.37)

The meaning of T ISI is shown in Fig. 3.6. RN derives the initial estimation τ̂(0) when

receiving the first symbol. Then, according to τ̂(0), RN constructs its own time slotted

system {τ̂(0), τ̂(0) + Ts, τ̂(0) + 2Ts, ...} assume clock skew has been compensated perfect.

RN receives information message by this time slotted system and simultaneously observes

the random quantities t′
i = yi − τ̂(0) − (ki − 1)Ts if the arrival time yi falls in the ki-th

symbol, where t′
i is a realization of random variable T ISI follows the pdf fT ISI(t′).

The following, we want to derive the distribution of T ISI by the inverse gaussian dis-
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Figure 3.6: The meaning of T ISI in RN’s time slotted system.

tribution fT (t). Let us begin with a simple case when ϵ = 0, then

FT ISI(t′) = Pr(T ISI ≤ t′) = Pr(g(T ) ≤ t′) =
∫ ∞

0
1{g(t) ≤ t′}fT (t) dt (3.38)

=
∞∑

k=0

∫ kTs

(k−1)Ts

1{t − (k − 1)Ts ≤ t′}fT (t) dt (3.39)

=
∞∑

k=0

∫ (k−1)Ts+t′

(k−1)Ts

fT (t) dt (3.40)

The equation (3.40) shows the cumulative distribution function (cdf) of T ISI under perfect

synchronization. Take derivation with respect to t′ to get the pdf of T ISI.

fT ISI(t′) =
∞∑

k=0

d
dt′

∫ (k−1)Ts+t′

(k−1)Ts

fT (t) dt =
∞∑

k=0
fT (t′ + (k − 1)Ts), (3.41)

where 0 < t′ ≤ Ts. As shown in (3.41), the pdf of T ISI under perfect synchronization

accumulates the inverse gaussian distribution fT (t) with the period Ts and shifts each

period to the support (0, Ts].

In general, if ϵ ̸= 0, then

FT ISI(t′) = Pr(g(T − ϵ) ≤ t′) =
∫ ∞

0
1{g(t − ϵ) ≤ t′}fT (t) dt (3.42)

=
∞∑

k=0

∫ kTs

(k−1)Ts

1{t − ϵ − (k − 1)Ts ≤ t′}fT (t) dt (3.43)

=
∞∑

k=0

∫ ϵ+(k−1)Ts+t′

ϵ+(k−1)Ts

fT (t) dt (3.44)

Similarly, let us take derivation with respect to t′ to both side.

fT ISI(t′) =
∞∑

k=0

d
dt′

∫ ϵ+(k−1)Ts+t′

ϵ+(k−1)Ts

fT (t) dt =
∞∑

k=0
fT (t′ + ϵ + (k − 1)Ts) (3.45)
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where 0 < t′ ≤ Ts. Note that the support of T ISI is still (0, Ts], even though ϵ ̸= 0. We

see the pdf of T ISI as a distribution function with two parameters, ϵ and Ts as in (3.46).

fT ISI(t′|ϵ, Ts) =
∞∑

k=0
fT (t′ + ϵ + (k − 1)Ts)1{0 < t′ ≤ Ts} (3.46)

The support of T ISI only depends on Ts and is independent on the parameter ϵ which

we want to estimate.

According to the observations t′
i affected by ISI and its distribution fT ISI(t′|ϵ, Ts), we

want to apply Fisher’s Scoring Algorithm to find the MLE of the true error ϵ0 = τ̂(0) − τ

of initial estimation.

Let t′
1, t′

2, ...,t′
n be a random sample from the generic random variable T ISI follows

fT ISI(t′|ϵ, Ts) distribution. Assume Ts is known, so the support is independent on the pa-

rameter ϵ. Denote the MLE for the parameter ϵ by ϵ̂ as:

ϵ̂ := arg max
ϵ

n∑
i=1

log fT ISI(t′
i|ϵ, Ts) (3.47)

To find ϵ̂, we need to find the root of score statistics sT ISI(t′
i + ϵ) defined by the derivation

of log likelihood with respect to ϵ. Note that fT ISI(t′
i|ϵ, Ts) is a function of t′

i + ϵ, so is the

score function.

0 =
n∑

i=1

∂

∂ϵ
log fT ISI(t′

i|ϵ̂, Ts) =
n∑

i=1
sT ISI(t′

i + ϵ̂) (3.48)
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To simply the score statistic, Let us apply chain rule and substitute (3.46) into (3.48).

sT ISI(t′
i + ϵ) := ∂

∂ϵ
log fT ISI(t′

i|ϵ, Ts) = 1
fT ISI(t′

i|ϵ, Ts)
∂fT ISI(t′

i|ϵ, Ts)
∂ϵ

(3.49)

= 1
fT ISI(t′

i|ϵ, Ts)

∞∑
k=0

∂

∂ϵ
fT (t′ + ϵ + (k − 1)Ts) (3.50)

= 1
fT ISI(t′

i|ϵ, Ts)

∞∑
k=0

fT (t′
i + ϵ + (k − 1)Ts)

∂ log fT (t′
i + ϵ + (k − 1)Ts)

∂ϵ

(3.51)

=
∞∑

k=0
w(t′

i + ϵ + (k − 1)Ts)
∂ log fT (t′ + ϵ + (k − 1)Ts)

∂ϵ
(3.52)

=
∞∑

k=0
w(t′

i + ϵ + (k − 1)Ts)sT (t′
i + ϵ + (k − 1)Ts) (3.53)

where the weighted statistic w(t′
i +ϵ+(k−1)Ts) and the score statisic of inverse gaussian

sT (t + ϵ) is defined as below. In (3.51), we apply chain rule again.

w(t′
i + ϵ + (k − 1)Ts) := fT (t′

i + ϵ + (k − 1)Ts)
fT ISI(t′

i|ϵ, Ts)
(3.54)

= fT (t′
i + ϵ + (k − 1)Ts)∑∞

k′=0 fT (t′ + ϵ + (k′ − 1)Ts)
(3.55)

In (3.55), it is obvious that w(t′
i +ϵ+(k−1)Ts) is the (k−1)-th weighted value of inverse

gaussian pdf fT (t′
i + ϵ + (k − 1)Ts) when t′

i + ϵ and Ts is fixed. Note that the denominator

of (3.55) must converge because of the integral test and the integral of a pdf is equal to 1.

sT (t + ϵ) := ∂

∂ϵ
log fT (t + ϵ) = 1

fT (t + ϵ)
∂fT (t + ϵ)

∂ϵ
(3.56)

= 1
fT (t + ϵ)

∂

∂ϵ

{√
λ

2π(t + ϵ)3 exp {−λ(t + ϵ − µ)2

2µ2(t + ϵ)
}

}
(3.57)

= 1
fT (t + ϵ)

{
− 3

2(t + ϵ)
− λ

2µ2 + λ

2(t + ϵ)2

}
fT (t + ϵ) (3.58)

= λ

2(t + ϵ)2 − 3
2(t + ϵ)

− λ

2µ2 (3.59)

It is not surprise that the score statistic of inverse gaussian is simple as (3.59) becasue

inverse gaussian distribution is one of the exponential family.

39



The equation (3.53) points out that the score of T ISI is the weighted mean of the score

of T , sT (t′
i+ϵ+(k−1)Ts), and the weighed value is proportional to the probability density

fT (t′
i + ϵ + (k − 1)Ts). The meaning of (3.53) is intuitive. When RN observes an arrival

timewith ISI t′
i, this molecule could be released before the random delay ti equals t′

i+ϵ+0,

t′
i + ϵ + Ts , or t′

i + ϵ + 2Ts ..., and ti follows inverse gaussian distribution and the chance

of each possible delay is proportional to the probability density fT (t′
i + ϵ + (k − 1)Ts).

To reduce the complexity when computing sT ISI(t′
i + ϵ), which is an infinite weighted

mean, we approximate it by s̃T ISI(t′
i + ϵ) with just the first two terms. The approximate is

reasonable if lever-1 crossover probability dominates lever-2 or more crossover probabil-

ity, especially in the case Ts > E[T ] = µ.

sT ISI(t′
i + ϵ) ≈ w(t0)sT (t0) + (1 − w(t0))sT (t0 + Ts) = s̃T ISI(t′

i + ϵ), (3.60)

where w(t0) and sT (t0) are the first non-zero terms of weighted value and score value in

the infinite summation (3.53). sT (t0 + Ts) is the second non-zero term of score value.

The first non-zero term might be k = 0, 1, or 2 in the following three cases, respec-

tively. In most cases, t′
i + ϵ ∈ (0, Ts] falls in the support of fT ISI(t′), as shown in Fig. 3.7,

then the first non-zero term is k = 1 in (3.53), that is, t0 = t′
i + ϵ However, sometimes the

initial estimation τ̂0 is too underestimated. It causes t′
i +ϵ ≤ 0 as shown in Fig. 3.8. In this

case, the first non-zero term is k = 2 in (3.53), that is, t0 = t′
i + ϵ + Ts. On the other hand,

sometimes the initial estimation τ̂0 is too overestimated. It causes t′
i + ϵ > Ts as shown in

Fig. 3.9. In this case, the first non-zero term is k = 0 in (3.53), that is t0 = t′
i + ϵ − Ts.

NormalCase :If 0 < t′
i+ϵ ≤ Ts for some t′

i, then fT (t′
i+ϵ−Ts) = 0 and fT (t′

i+ϵ) > 0.

Therefore, the first non-zero term is k = 1 in (3.53). We approximate the score statistic by

s̃T ISI(t′
i + ϵ) with w(t0) = fT (t′

i+ϵ)
f

T ISI (t′
i|ϵ,Ts) , sT (t0) = λ

2(t′
i+ϵ)2 − 3

2(t′
i+ϵ) − λ

2µ2 , and sT (t0 + Ts) =
λ

2(t′
i+ϵ+Ts)2 − 3

2(t′
i+ϵ+Ts) − λ

2µ2 .

Too Underestimated Case :If ϵ < 0 and t′
i + ϵ ≤ 0 for some t′

i, then fT (t′
i + ϵ−Ts) =

fT (t′
i+ϵ) = 0 and fT (t′

i+ϵ+Ts) > 0. Therefore, the first non-zero term is k = 2 in (3.53).

We approximate the score statistic by s̃T ISI(t′
i + ϵ) with w(t0) = fT (t′

i+ϵ+Ts)
f

T ISI (t′
i|ϵ,Ts) , sT (t0) =
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Figure 3.7: It is the normal case when t′
i + ϵ falls in the support (0, Ts].

λ
2(t′

i+ϵ+Ts)2 − 3
2(t′

i+ϵ+Ts) − λ
2µ2 , and sT (t0 + Ts) = λ

2(t′
i+ϵ+2Ts)2 − 3

2(t′
i+ϵ+2Ts) − λ

2µ2 . Because

the initial estimation is underestimated, it is possible that the arrival molecules actually

was released from the previous symbol. The situation is significant, so our consideration

have to include this part.

Figure 3.8: In too Underestimated case when t′
i + ϵ ≤ 0, the probability of crossover from

the past symbol is significant.

TooOverestimatedCase :If 0 < ϵ and Ts < t′
i+ϵ for some t′

i, then fT (t′
i+ϵ−Ts) > 0.

Therefore, the first non-zero term is k = 0 in (3.53). We approximate the score statistic

by s̃T ISI(t′
i + ϵ) with w(t0) = fT (t′

i+ϵ−Ts)
f

T ISI (t′
i|ϵ,Ts) , sT (t0) = λ

2(t′
i+ϵ−Ts)2 − 3

2(t′
i+ϵ−Ts) − λ

2µ2 , and

sT (t0 + Ts) = λ
2(t′

i+ϵ)2 − 3
2(t′

i+ϵ) − λ
2µ2 . Because the initial estimation is overestimated,

it is possible that the arrival molecules actually was released from the next symbol. The

situation is significant, so our consideration have to include this part.

Figure 3.9: In too overestimated case when t′
i + ϵ > Ts, the probability of crossover from

the future symbol is significant.

By Fisher’s Score Algorithm (FSA), we iteratively update the estimated error ϵ̂(k+1)

41



by

ϵ̂(k+1) = ϵ̂(k) + 1
nI0(ϵ0)

n∑
i=1

sT ISI(t′
i + ϵ̂(k)), (3.61)

where I0(ϵ0) is the fisher information number defined by

E[−∂2 log fT ISI(T ISI|ϵ0, Ts)
∂ϵ2 |ϵ0] (3.62)

= E[−∂sT ISI(T ISI + ϵ0)
∂ϵ

|ϵ0], (3.63)

and ϵ0 is the true error of the initial estimation.

The actual fisher information number of T ISI is hard to derive, so we approximate it

by Ĩ0 which is in the case without ISI. When Ts is large enough with respect to E[T ] = µ,

fT (t′
i + ϵ + (k − 1)Ts) decays quickly over k, so w(t0) ≈ 1 and

sT ISI(T ISI + ϵ0) ≈ sT (T ISI + ϵ0) = λ

2(T ISI + ϵ0)2 − 3
2(T ISI + ϵ0)

− λ

2µ2 . (3.64)

Moreover, because the crossover effect is negligible, so the residue effect of g(x) is also

negligible, that is g(x) ≈ x. Therefore, T ISI + ϵ0 = g(T − ϵ0) + ϵ0 ≈ T − ϵ0 + ϵ0 = T .

This way, Ĩ0 is simple as

I0(ϵ0) ≈ Ĩ0 := E[−∂sT (T ISI + ϵ0)
∂ϵ

|ϵ0] = E[ λ

(T ISI + ϵ0)3 − 3
2(T ISI + ϵ0)2 ] (3.65)

= E[ λ

T 3 − 3
2T 2 ] = λ

µ3 + 9
2µ2 + 21

2µλ
+ 21

2λ2 . (3.66)

The fisher information number is the value after taking expectation, so it only depends on

the parameters of AIGN channel but the observations. Moreover, the fisher information

number is always positive because it is the variance of score statistic.
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Finally, the approximated FSA is

ϵ̂(k+1) = ϵ̂(k) + 1
nĨ0

n∑
i=1

s̃T ISI(t′
i + ϵ̂(k)) (3.67)

= ϵ̂(k) + 1
nĨ0

n∑
i=1

{w(t0)sT (t0) + (1 − w(t0))sT (t0 + Ts)} . (3.68)

The iteration keeps going until the absolute value of s̃T ISI(t′
i + ϵ) is small enough.

3.2.4 Simulation Results

In blind synchronization, we present the numerical MSE of LE with the first symbol,

Decision Feedback (DF) method, and Fisher’s Score Alogrithm (FSA) propsed above.

Also, we verify our results by matching with theoretical curve and compare it with MSE

of Pitman estimator in training-based methods as benchmark.

The parameters for M -ary quantity-based modulation is described as below; we set

Lj = (2j+1)n1
M

and pj = 1
M

so that
∑M−1

j=0 pjLj = L̄ = n1 forM = 2, 4, 8. Moreover, when

M = 1, the case reduce to training-based synchronization, which n1 = L0 is constant.
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Figure 3.10: The MSE of LE with the first molecule and its theoretical curve in case when
K = 1, Ts = 3µ, where µ is the mean of T .

Fig. 3.10 shows that the performance of LE with the first molecule is worse when M
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(a) Pitman Estimation
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(b) Initial Estimation

Figure 3.11: Normplot of Pitman Estimation and Initial Estimation of clock offset τ .

increases, which can be intuitively interpreted as the more random the message is, the

harder we can estimate clock offset efficiently. For M = 2, 4, and 8, the numerical MSE

matches the theoretical curve followed by (3.33). For M = 1, training-based synchro-

nization performs better than blind synchronization.

In Fig. 3.11, we plot some estimations of clock offset τ and fit it with normal distribu-

tion. The estimation points are close to a line so that we use normal distribution to show

the relationship of MSE and BER as below.

How the synchronization error affects the whole communication system evaluated by

Bit Error Rate (BER)? Fig. 3.12 shows the BER with L0 = 32 and L1 = 96 versus

synchronization error which follows normal distribution with mean from 0.4 to 1.2 and

variance from 0.1 to 0.5. We set the demodulation threshold at the middle of two adjacent

quantity levels, that is ñk := arg minLj
|Lj − l1|, where l1 is the quantity of molecules in

the range of (τ̂1 +(k−1)Ts, τ̂1 +kTs]. Note that the minimal BER happens to the synchro-

nization error follows normal distribution with mean near 0.9 and variance near 0 instead

of the perfect synchronization with zero synchronization error. This is reasonable because

a bit overestimation of clock offset τ is helpful due to the propagation delay. The optimal

error ϵop satisfies fT (ϵop) = fT (ϵop + Ts). Moreover, the effect of synchronization error

to BER is not symmetric with respect to zero. This means that 1 second overestimation

does not equivalent to 1 second underestimation.

As shown in Fig. 3.13, compared with Pitman Estimator, LE with the first molecule

loses a bit MSE when the number of molecules n1 = L̄ is large. However, the inaccuracy
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Figure 3.12: The BER versus the synchronization error which follows normal distribution
with mean from 0.4 to 1.2 and variance from 0.1 to 0.5.
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Figure 3.13: The BER of LE with the first molecule and Pitman Estimator with Ts = µ.

of LE with the first molecule does not affect much BER loss for overall communication

system. In this simulation, all estimation has been compensated by the optimal error ϵop.
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Figure 3.15: The MSE of FSA τ(K) with M -ary versus the number of symbols K when
Ts = 3µ and n1 = L̄ = 16.

In Fig. 3.14, we use the same detection threshold to apply DF method. The numerical

result shows that DF improves the MSE of LE with the first molecule and is closed to

Decision-directed Parameter Estimation for this detection. Moreover, when M is large,

the improvement of DF method becomes notable.
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In Fig. 3.15, We compare Iterative LE (ILE) proposed in training-based synchroniza-

tion with Fisher’s Scoring Algorithm (FSA) proposed in blind synchronization. When

number of symbols is 1, that is initial estimation, the MSE of ILE and FSA are almost

the same. However, when we use the information in the following symbols with ISI and

iteratively update clock offset estimation over K symbols, FSA is quite better than ILE.

The MSE of FSA with ISI effect is close to Pitman estimator and CRLB without ISI. This

means that FSA is close to the optimal estimator in the sense with minimum MSE. More-

over, the performance of FSA is independent on M for M-ary quantity-based modulation.
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Chapter 4

Channel Estimation In Training-based

Synchronization

In this chapter, we still focus on clock offset estimation problem in AIGN channel. We

have proposed some approaches in both training-based synchronization and blind synchro-

nization. Those approaches are applied only when RN knows perfect information about

AIGN channel. In AIGN channel, the random delay T has two parameters, µ = d
v
and

λ = d2

2D
, which depend on the distance d, drift velocity v, and diffusion coefficient D of

molecule. However, in reality, the distance d of RN apart from TN is unknown for RN.

Some channel estimation approaches must apply before synchronization, such as [16] pro-

pose solutions about distance estimation in diffusion-based molecular communications.

Here, we want to release the assumption that RN knows the perfect information about

channel, such as distance d. Moreover, instead of d, the target parameters used in syn-

chronization are µ and λ. Therefore, we want to design some approaches such that RN

can estimate the channel parameters µ and λ and clock offset τ simultaneously, base on

the observed arrival time sequence y.

4.1 Initial Estimation

In our system model, RN received symbols with ISI except for the first symbol. The

estimations for the symbols with and without ISI are quite different, so we separate our
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estimation into two parts. First, according to the first symbol without ISI, RN estimate all

parameters with initial estimation, τ̂(0), µ̂(0), and λ̂(0). Then, by the following symbols with

ISI, RN update all estimations with τ̂(k), µ̂(k), and λ̂(k) for k > 1. Note that the channel

parameters µ and λ are nuisance parameters, our target is the MSE of τ̂(k) as small as

possible over k.

Let y1, y2, ..., yn1 be the arrival times of molecules in the first symbol. RN knows that

TN transmits n1 molecules in the first symbol. Assume the ISI effect from the second

symbol is negligible, then y1, y2, ..., yn1 are i.i.d follows the three parameters inverse

gaussian distribution.

fY (y|τ, µ, λ) =
√

λ

2π(y − τ)3 exp{−λ(y − τ − µ)2

2µ2(y − τ)
}1{y > τ}. (4.1)

Note that the support of three parameters inverse gaussian distribution depend on the

location parameter τ , so this is not one of the exponential family distribution.

According to [21], the estimators of three parameters inverse gaussian distribution

have been investigated. The MLE of τ , µ, and λ are computed by numerically applying

Newton-Raphson iteration in [21]. Because of the computational complexity issue, we do

not apply iteration in the initial estimation, so the initial estimator of τ is

τ̂(0) = y1 − (ȳ − y1)3

2s2 log n
, (4.2)

where ȳ = 1
n1

∑n1
i=1 yi is the sample mean, and s2 = 1

n1−1
∑n1

i=1(yi − ȳ)2 is the sample

variance. We leave the iteration of τ̂(0) to the following update with ISI symbols.

With the initial estimation τ̂(0), the MLE of inverse gaussian parameters µ and τ are

well known as:

µ̂(0) = 1
n1

n1∑
i=1

(yi − τ̂(0)) = ȳ − τ̂(0) (4.3)
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, and

1
λ̂(0)

= 1
n1

n1∑
i=1

1
yi − τ̂(0)

− 1
µ̂(0)

. (4.4)

The sample mean is used to estimate the mean parameter µ. On the other hand, the sample

moment with order −1 is used to estimate the shape parameter λ.

After receiving the first symbol, RN keeps updating all parameters by the information

in the following symbols with ISI. The process is to iteratively update τ , µ, and λ. That

is, RN fixes the previous estimation µ̂(K−1) and λ̂(K−1) to update τ̂(K). Then, update µ̂(K)

by the new estimation τ̂(K). Finally, update λ̂(K) by the new estimation τ̂(K) and µ̂(K).

After receiving the (K + 1)-th symbol, RN keeps repeating the iterative update process.

Our goal is to make the MSE of τ̂(K) as small as possible. Besides, we hope that the MSE

converges to zero when K approaches infinity.

In (3.68), we have an approximated FSA to estimate the initial error ϵ0 := τ̂(0) − τ

when fixing the channel parameters µ and λ. In channel estimation, we still apply this

method in our iterative update process by

τ̂(K) = τ̂(0) − ϵ̂(K), (4.5)

where ϵ̂(K) is computed by (3.68) with the previous channel estimation µ̂(K−1) and λ̂(K−1)

for K = 1, 2, .... This way, the problem remains how to update µ̂(K) by τ̂(K) and how to

update λ̂(K) by τ̂(K) and µ̂(K).

4.2 Iterative update µ̂(K)

Although the second or later symbols have the ISI effect, this effect only sorts the

arrival times of molecules but the value of arrival times. Therefore, the summation over all

arrival times y1, y2, ..., yN is independent on the ISI effect, that is,
∑N

i=1 y′
i = ∑N

i=1(xi +ti)

because y′ = sort(x + t). For this reason, the sample mean statistic is quite good against
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the ISI effect, so we have

y1⊤
N = y′1⊤

N + Nτ = x1⊤
N + t1⊤

N + Nτ. (4.6)

Then, divided by N to get the sample mean of all arrival times y, that is,

ȳ − τ = x̄ + t̄ (4.7)

where ȳ = 1
N

y1⊤
N , and so are x̄, t̄. Moreover, we derive the relation between x̄ and Ts,

x̄ = 1
N

N∑
i=1

xi = 1
N

K∑
k=1

nk(k − 1)Ts = n̄KTs, (4.8)

where n̄K = 1
N

∑K
k=1 nk(k − 1) is constant. In channel estimation problem, we assume

that RN knows the training sequence nk, that is in training-based synchronization. If TN

transmit a constant training sequence with n1 = n2 = ... = nK , then n̄K = K−1
2 .

Because the first hitting time ti of every molecule is i.i.d. and follows generic Inverse

Gaussian distribution, by Central Limit Theory,

t̄ = 1
N

N∑
i=1

ti ∼ N(E[T ], V ar[T ]
N

) = N(µ,
µ3

Nλ
). (4.9)

We use the sample mean t̄ to estimate the mean parameter of AIGN channel µ. After

receiving the K-th symbols with ISI, RN can estimate µ by µ̂(K) as

µ̂(K) := ȳK − τ̂(K) − n̄KTs, (4.10)

where ȳK is the sample mean of all arrival times during K symbols.

4.3 Iterative update λ̂(K)

Unlike the mean parameter µ could be estimated by sample mean, the shape parameter

λ is hard to estimate under ISI effect. In this section, we apply Maximum Conditional
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Likelihood (MCL) to estimate λ under the initial error ϵ0 is fixed.

Recall that we have derived the distribution of arrival times with ISI effect in (3.46).

In channel estimation, the unknown parameters of this distribution include the channel

information µ and λ, so

fT ISI(t′|ϵ, Ts, µ, λ) =
∞∑

k=0
fT (t′ + ϵ + (k − 1)Ts|µ, λ)1{0 < t′ ≤ Ts} (4.11)

where fT (t|µ, λ) is the inverse gaussian distribution with two unknown parameters µ and

λ.

We define the conditional likeilhood function of µ and λ under the initial error ϵ is

fixed by

L(µ, λ|t′, ϵ) :=
n∑

i=1
log fT ISI(t′

i|ϵ, Ts, µ, λ). (4.12)

The MCL of µ and λ is a function of ϵ as

[µ̂(ϵ), λ̂(ϵ)] := arg max
µ,λ

L(µ, λ|t′, ϵ). (4.13)

To solve this maximization problem, let us take first order derivation to both parameters

and try to find the simultaneous solution [µ̂(ϵ), λ̂(ϵ)],


0 = ∑n

i=1
∂

∂µ
log fT ISI(t′

i|ϵ, Ts, µ̂(ϵ), λ̂(ϵ)),

0 = ∑n
i=1

∂
∂λ

log fT ISI(t′
i|ϵ, Ts, µ̂(ϵ), λ̂(ϵ)).

(4.14)

To simplify the notation, we denote µ̂(ϵ) and λ̂(ϵ) by µ̂ and λ̂, respectively. They are still

the functions of the fix parameter ϵ.
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The score function of inverse gaussian distribution with respect to µ is

∂

∂µ
log fT (t + ϵ|µ, λ) = 1

fT (t + ϵ)
∂fT (t + ϵ)

∂µ

= 1
fT (t + ϵ)

∂

∂µ

{√
λ

2π(t + ϵ)3 exp {−λ(t + ϵ − µ)2

2µ2(t + ϵ)
}

}

= 1
fT (t + ϵ)

{
λ(t + ϵ)

µ3 − λ

µ2

}
fT (t + ϵ)

= λ(t + ϵ)
µ3 − λ

µ2 . (4.15)

Similar to the derivation of the score function of ϵ in (3.53), the score function under ISI

effect is a weighted mean of the score function of original inverse gaussian distribution.

Accordingly, (4.15) is derived for the original score function of inverse gaussian distribu-

tion with respect to µ and substitute in (4.16).

0 =
n∑

i=1

∂

∂µ
log fT ISI(t′

i|ϵ, Ts, µ̂, λ̂)

=
n∑

i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts)

∂

∂µ
log fT (t′

i + ϵ + (k − 1)Ts|µ̂, λ̂)

=
n∑

i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts)

 λ̂(t′
i + ϵ + (k − 1)Ts)

µ̂3 − λ̂

µ̂2

 (4.16)

In (4.16), eliminate the scale constant λ̂ and µ̂3 to get

µ̂(ϵ) = 1
n

n∑
i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts|µ̂(ϵ), λ̂(ϵ))(t′

i + ϵ + (k − 1)Ts). (4.17)

Note that the weighted value w(t′
i + ϵ + (k − 1)Ts|µ̂(ϵ), λ̂(ϵ)) is proportional to fT (t′

i +

ϵ + (k − 1)Ts|µ, λ) which depends on the channel parameters µ and λ.
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Similarly, the same derivation is applied with respect to the shape parameter λ.

∂

∂λ
log fT (t + ϵ|µ, λ) = 1

fT (t + ϵ)
∂fT (t + ϵ)

∂λ

= 1
fT (t + ϵ)

∂

∂λ

{√
λ

2π(t + ϵ)3 exp {−λ(t + ϵ − µ)2

2µ2(t + ϵ)
}

}

= 1
fT (t + ϵ)

{
1

2λ
− t + ϵ

2µ2 + 1
µ

− 1
2(t + ϵ)

}
fT (t + ϵ)

= 1
2λ

− t + ϵ

2µ2 + 1
µ

− 1
2(t + ϵ)

(4.18)

The equation (4.18) is derived for the original score function of inverse gaussian distribu-

tion with respect to λ and substitute in (4.19).

0 =
n∑

i=1

∂

∂λ
log fT ISI(t′

i|ϵ, Ts, µ̂, λ̂)

=
n∑

i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts)

∂

∂λ
log fT (t′

i + ϵ + (k − 1)Ts|µ̂, λ̂) (4.19)

=
n∑

i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts){

1
2λ̂

− t′
i + ϵ + (k − 1)Ts

2µ̂2 + 1
µ̂

− 1
2(t′

i + ϵ + (k − 1)Ts)

}
(4.20)

There are four terms in (4.20). The first term is n
2λ̂

and the third term is n
µ̂
because they are

independent on k and i. Moreover, the second term includes the solution µ̂(ϵ) in (4.17).

We try to solve the simultaneous solutions [µ̂(ϵ), λ̂(ϵ)], so we could substitute (4.17) in

(4.20).

0 = n

2λ̂
− nµ̂

2µ̂2 + n

µ̂
−

n∑
i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts)

{
1

2(t′
i + ϵ + (k − 1)Ts)

}

= n

2λ̂
+ n

2µ̂
− 1

2

n∑
i=1

∞∑
k=0

{
w(t′

i + ϵ + (k − 1)Ts)
t′
i + ϵ + (k − 1)Ts

}
(4.21)
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Then, eliminate the scale constant 1
2 to get

1
λ̂(ϵ)

= 1
n

n∑
i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts|µ̂(ϵ), λ̂(ϵ))

t′
i + ϵ + (k − 1)Ts

 − 1
µ̂(ϵ)

(4.22)

≈ 1
n

n∑
i=1

w(t0|µ̂(ϵ), λ̂(ϵ))
t0

+ (1 − w(t0|µ̂(ϵ), λ̂(ϵ)))
t0 + Ts

 − 1
µ̂(ϵ)

. (4.23)

Therefore, the solution of MCL [µ̂(ϵ), λ̂(ϵ)] is in (4.17) and (4.23). Similar to MLE of µ

and λ in original inverse gaussian distribution, µ̂(ϵ) is estimated by the sample mean and

λ̂(ϵ) is estimated by the sample moment with order −1. Moreover, because the observa-

tions y′
i is affected by the ISI effect, we need to take weighted average to all possible score

value with the weighted value w(t′
i +ϵ+(k −1)Ts) proportional to the probability density

fT (t′
i + ϵ + (k − 1)Ts).

The samewith (3.60), the equation (4.23) is approximated by the first and second terms

of summation over k. The approximation is reasonable because the crossover effect over

two symbol durations is negligible, that is, w(t0 + 2Ts) and w(t0 + 3Ts)... are dominated

by w(t0) and w(t0 + Ts). Moreover, the score value 1
t0+(k−1)Ts

decreases over k, so we

only consider the first and second terms.

However, we cannot approximate (4.17) by the first and second term. The reason

is even the weighted value concentrates on the first and second term, the score value in-

creases over k. Moreover, t0+(k−1)Ts approaches to infinity when k approaches infinity.

Therefore, the value of µ̂(ϵ) is hard to evaluate.

µ̂(ϵ) = 1
n

n∑
i=1

∞∑
k=0

w(t′
i + ϵ + (k − 1)Ts|µ̂(ϵ), λ̂(ϵ))(t′

i + ϵ + (k − 1)Ts)

̸≈ 1
n

n∑
i=1

w(t0)t0 + w(t0 + Ts)(t0 + Ts). (4.24)

Nevertheless, we still can estimated µ by sample mean as described in (4.10). For this

reason, We replace the MCL of µ̂ in (4.23) by the sample mean estimator µ̂(K) in (4.10)
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to iteratively update λ̂(K).

1
λ̂(K)

:= 1
n

n∑
i=1

w(t0|µ̂(K), λ̂(K−1))
t0

+
(1 − w(t0|µ̂(K), λ̂(K−1)))

t0 + Ts

 − 1
µ̂(K)

. (4.25)

where t0 uses the information of the new estimation ϵ(K), and the weighted value uses the

information of the previous estimation µ̂(K) and λ̂(K−1).

To sum up, the whole channel estimation process includes three initial estimations and

three iterative update estimations. The initial estimations of τ , µ, and λ are τ̂(0), µ̂(0), and

λ̂(0), respectively, as described in (4.2), (4.3), and (4.4). The iterative update estimation of

τ , µ, and λ are τ̂(K), µ̂(K), and λ̂(K), respectively, as described in (4.5), (4.10), and (4.25).

4.4 Lower Bound with unknown µ and λ

Different from Sec. 3.1.4, the channel information µ and λ are unknown for channel

estimation problem. Now, we have three unknown parameters θ = [τ, µ, λ] to be esti-

mated.

Similar with Sec. 3.1.4, let us derive the Cramer-Rao Lower Bound of τ under µ and λ

are unknown. Without crossover effect, all the arrival times of molecules y are a random

sample from a generic distribution fT (yi − τ |µ, λ) with the sample size N . For this three
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parameters model θ = [τ, µ, λ], the fisher information matrix is

I0 := −E




∂2 log fT (y−τ |µ,λ)

∂τ2
∂2 log fT (y−τ |µ,λ)

∂τ∂µ
∂2 log fT (y−τ |µ,λ)

∂τ∂λ

∂2 log fT (y−τ |µ,λ)
∂µ∂τ

∂2 log fT (y−τ |µ,λ)
∂µ2

∂2 log fT (y−τ |µ,λ)
∂µ∂λ

∂2 log fT (y−τ |µ,λ)
∂λ∂τ

∂2 log fT (y−τ |µ,λ)
∂λ∂µ

∂2 log fT (y−τ |µ,λ)
∂λ2




(4.26)

= −E




3

2T 2 − λ
T 3

λ
µ3

1
2T 2 − 1

2µ2

λ
µ3 −3λT

µ4 + 2λ
µ3

T
µ3 − 1

µ2

1
2T 2 − 1

2µ2
T
µ3 − 1

µ2 − 1
2λ2




(4.27)

=


Ĩ0 − λ

µ3 − 3
2µλ

− 3
2λ2

− λ
µ3

λ
µ3 0

− 3
2µλ

− 3
2λ2 0 1

2λ2

 (4.28)

The inverse of the fisher information matrix for θ = [τ, µ, λ] is

I−1
0 = 1

det(I0)


1

2µ3λ
1

2µ3λ
3

2µ4 + 3
2λµ3

1
2µ3λ

1
2µ3λ

+ 3
4µλ3 + 3

λ4
3

2µ4 + 3
2λµ3

3
2µ4 + 3

2λµ3
3

2µ4 + 3
2λµ3 (Ĩ0 − λ

µ3 ) λ
µ3

 , (4.29)

where det(I0) = 1
2µ3λ

( 3
2µλ

+ 6
λ2 ). By Cramer-Rao inequality, for any unbiased estima-

tor θ̂ = [τ̂ , µ̂, λ̂], its covariance matrix has the property that Cov[θ̂] − I−1
0 is a positive

semidefinite matrix.

x[Cov[θ̂] − I−1
0 ]x⊤ ≥ 0, (4.30)

for any three dimensional vector x ∈ R
3. For x = [1, 0, 0], we get the lower bound of the

variance τ̂ with unknown µ and λ as

1
N

1
det(I0)

1
2µ3λ

= 1
N( 3

2µλ
+ 6

λ2 )
(4.31)

The CRLB of clock offset τ with unknown µ and λ is in (4.31), but we still cannot claim

the lower bound property because the support depends on the parameter τ . Moreover, the
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Pitman estimator cannot applied because µ and λ are unknown. Pitman estimator requires

the information of whole distribution fT (t|µ, λ) except for the location parameter τ .

4.5 Simulation Results

In this section, we simulate the MSE of some methods proposed above and plot lower

bound to evaluate the performance of our estimators. The parameters of AIGN channel

are the same with Sec. 3.1.5.
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Figure 4.1: Initial Estimation τ̂(0) and CRLB with unknown µ and λ.

In Fig. 4.1, the MSE of our initial estimator for clock offset τ as in (4.2) is worse than

the MLE proposed in Sec. 3.1.1. This is reasonable because the latter use more channel

information than the former. Moreover, the MSE of our initial estimator for clock offset

τ is close to the CRLB with unknown channel information µ and λ as derived in (4.31).

In Fig. 4.2, the MSE of FSA with updating µ(K) and λ(K) proposed above has been

plotted. When we only use the first symbol ,that is the number of symbols K = 1, the

MSE is the initial estimator proposed in (4.2). Moreover, when we use the information in

the following symbols with ISI effect and iteratively update our estimator of clock offset

τ and channel information µ and λ, respectively, proposed in (4.10) and (4.25), the MSE
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Figure 4.2: TheMSE of FSA τ(K) with update µ(K) and λ(K) versus the number of symbols
K when Ts = 3µ and n1 = L̄ = 16.

improves over the number of symbols K except for the case when K is small. The reason

why the updated clock offset when K is small worse than K = 1 is that the sample size

is not enough for FSA to find a quite good statistical estimation. Besides, compare with

FSA with known µ and λ proposed in Sec. 3.2.3, we lose a bit accuracy than before.

Nevertheless, its MSE is close to the CRLB with unknown µ and λ as derived in (4.31).
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Chapter 5

Clock Skew Estimation With And

Without Channel Information

In this chapter, we consider a more tough problem with clock skew effect. In Fig. 2.6,

the sampling time is Ŝk = R̂[τ̂ + (k − 1)Ts]. Before this chapter, we assume the clock

skew rate R is known and fix, so R̂(y) is correct without any error. This way, the error

of all starting point of symbols Ŝk are the same and equal to the error of clock offset

estimation Ŝ1 = τ̂ . However, in real scenarios, RN’s clock may tick in a different rate

from TN’s, that’s called clock drift or clock skew. Under clock skew effect, RN needs to

adapt its symbol duration Ts corresponding to its own clock skew rate R so that they can

count symbols on the same time duration. How to estimate R̂(y) from the pattern in the

observation signal y received by RN is still a problem. We deal with this problem in this

chapter.

5.1 Training-based Synchronization With Perfect Chan-

nel Information

For a solid communication system, the effect of clock skew is more severe than that of

clock offset because the error of clock skew would accumulate over time. If we don’t keep

tracing the starting points of every symbol, the accumulated error will make our system
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gradually become non-synchronous, as shown in Fig. 2.4. A good methodology to solve

this problem should make the error of sampling time Sk converges to zero over time, that

is, we can make RN’s time slotted system locked with TN’s time slotted system in steady

state.

Consider the case without clock offset error, then the MSE of sampling time Sk be-

comes

E[(Ŝk − Sk)
2
] = E[(R̂[τ + (k − 1)Ts] − R[τ + (k − 1)Ts])

2
]

= [τ + (k − 1)Ts]2E[(R̂(y) − R)
2
] (5.1)

The equation (5.1) presents that the error of clock skew reteRwill cause its [τ + (k − 1)Ts]2

times error of sampling time and the factor increases over time. This is the effect of accu-

mulated error of clock skew. To conquer this effect, we require a much efficient estimator

to reduce the error over [τ + (k − 1)Ts]2 times. Otherwise, it is impossible that the error

of sampling time Sk converges to zero over time

For clock skew estimation, we only consider the training-based synchronization and

the training sequence is constant for all symbols. That is, TN transmits total K symbols

and each symbol has the same quantity of molecules, so the training sequence is n = n1 =

n2 = · · · = nK . Then, the arrival timing sequence of molecules y observed by RN has

some periodic patterns of cycle n. We can use the information of the period to estimate

the unknown clock skew rate R

5.1.1 Iterative Linear Estimation For Clock Skew Rate

In Sec. 3.1.3, we have derived two kind of weight, an without ISI and wn with ISI. For

the second and later symbols with ISI, we use the wighted value wn and mean value mn

to estimate the clock offset τ as (3.19). However, In (3.19), we assume the clock skew rate

R is known and has been compensated in y[1:n]. However, in the situation with unknown
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clock skew rate R, (3.19) should be rewritten as

τ̂ (k+1)
new = wn(y[kn+1:(k+1)n]

R
− mn)⊤ − kTs (5.2)

In Sec. 3.1.3, we estimate the unknown clock offset τ with correct clock skew rate. Re-

versely, we could estimate the unknown clock skew rate R with correct clock offset τ

as

τ = wn(y[kn+1:(k+1)n]

R̂
− mn)⊤ − kTs, (5.3)

where 1 ≤ k ≤ K − 1. For k = 1,

τ = wn(y[n+1:2n]

R̂
− mn)⊤ − Ts. (5.4)

Let us subtract (5.4) from (5.3), then we get

(k − 1)Ts = wn(y[kn+1:(k+1)n] − y[n+1:2n])⊤

R̂
. (5.5)

The notation y[kn+1:(k+1)n] is the (k + 1)-th symbol received by RN. We want to derive

the estimator of R for the k-th symbol, so we replace (k + 1) with k in (5.5).Then, we can

get an estimator of R by the n molecules in the k-th symbol received by RN.

R̂(k) := wn(y[(k−1)n+1:kn] − y[n+1:2n])⊤

(k − 2)Ts

, (5.6)

where 3 ≤ k ≤ K. In (5.6), R̂(2) = 0
0 has no definition, so k begins with 3. This way,

we lost the information in the first symbol y[1:n] because the first symbol without ISI use

different weighted values an from the other symbols with ISI. To include the information

in the first symbol y[1:n], we rewrote the form (5.6) to

R̂(k) ≈ wn(y[(k−1)n+1:kn])⊤ − an(y[1:n])⊤

(k − 1)Ts

. (5.7)
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where 2 ≤ k ≤ K. This way, our estimator R̂(k) begins with k = 2. Even though the first

symbol an(y[1:n])⊤ has a bit error with wn(y[n+1:2n])⊤ + Ts, the error is divided by k − 1

and is eliminated gradually.

For every symbol, 2 ≤ k ≤ K, we use (5.7) to estimate R. We found out that R̂(k)

is more accurate as k increases because the estimator divided by k − 1 can reduce the

variance. Specifically,

V ar[R̂(k)] = V ar[R̂(2)]
(k − 1)2 . (5.8)

Accordingly, when using overall estimators by all symbols, we give more weighted

value on the latter estimator.

R̂
(K)
LE := 1R̂(2) + 4R̂(3) + ... + (K − 1)2R̂(K)

(K−1)K(2K−1)
6

(5.9)

We call (5.9) Linear Estimation (LE) for the clock skew rate R. Actually, R̂
(K)
LE is a linear

combination of all arrival times of molecules y1, y2, ..., yN with some coefficients.

To reduce nano-machine’s computational complexity, we rewrite LE for the clock

skew rate to iterative form as

R̂
(2)
LE (y) = R̂(2)

= wn(y[n+1:2n])⊤ − an(y[1:n])⊤

Ts

(5.10)

R̂
(k)
LE (y) =

[
1 − 6(k − 1)

k(2k − 1)

]
R̂

(k−1)
LE (y) + 6(k − 1)

k(2k − 1)
R̂(k)

=
[
1 − 6(k − 1)

k(2k − 1)

]
R̂

(k−1)
LE (y)

+
6

[
wn(y[(k−1)n+1:kn])⊤ − an(y[1:n])⊤

]
k(2k − 1)Ts

, (5.11)

where 2 < k ≤ K,and R̂
(k−1)
LE (y) is the previous estimator only using the previous (k −1)

symbols to estimate R.
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5.2 Training-based SynchronizationWithoutChannel In-

formation

In this section, we discuss on joint estimation. Both clock offset τ and clock skew rate

R are unknown and are considered in our channel model as in Fig.2.6 without channel

information µ and λ.

Remind that (2.3) describes the observations by RN in our stochastic model. Actually,

yi includes three terms, Rτ , RTskj , and Rti as

yi = Rτ + RTskj + Rti, (5.12)

where R and τ are unknown and our target parameters. The additive first hitting time ti

follows inverse gaussian distribution with channel parameters µ and λ, which are both

unknown. The symbol duration Ts is known and shared with TN before communication

and yi is released at the kj-th symbols. Because of the ISI effect, RN actually is not sure

what kj is. However, ISI effect only affects the arrival times of molecules at the margin

of symbol duration. Most arrival times of molecules are without ISI effect, so we actually

can estimate kj by RN’s time slotted system with a bit detection error.

Compare our stochastic model in (5.12) with the classical linear regression model. The

sample yi with covarites xi follow the stochastic model as

yi = β00 + β01xi + ϵi, (5.13)

for 1 ≤ i ≤ N with the sample size N . The error term ϵi ∼ i.i.d. N(0, σ2) with zero

mean and unknown but constant variance σ2. The linear model y = β00 + β01x with the

intercept β00 and slope β01. The estimator β̂ = [β̂00, β̂01]⊤ can be derived by Least Square

(LS) criterion as

β̂ = (Z⊤Z)−1Z⊤Y (5.14)
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where Z = [Z1, Z2, ..., Zn]⊤, Zi = [1, xi]⊤ and Y = [y1, y2, ..., yn]⊤. The model in (5.13)

is similar to our model in (5.12). Let the unknown intercept β00 is Rτ , the unknown slope

β01 is RTs and the error term ϵi is Rti, respectively.

However, tow stochastic models have something different. First, the pairs (yi, xi) are

clear in classical linear regression model, but (yi, kj) are not clear in our model because of

the crossover effect. Nevertheless, with constant training sequence , RN knows that TN

transmit n molecules each symbol. RN can estimate kj by the quotient of i divided by n

because the arrival time sequence y has a cycle with n molecules. Second, the error term

Rti does not follow normal distribution with zero mean but the scaled inverse gaussian

distribution with parameters R, µ, and λ as

Rti ∼ 1
R

fT ( t

R
|µ, λ). (5.15)

Nevertheless, generalized linear regressionmodel can deal with themodel with error terms

follows a more general distribution. By quasi-likelihood estimator, we only need the mean

structure and variance structure of our model, then the estimator β̂ can be derived as

0 =
n∑

i=1

∂µ(Zi, β̂)
∂β

yi − µ(Zi, β̂)
v(µ(Zi, β̂))

, (5.16)

where µ(Zi, β̂) is the mean structure and v(µ(Zi, β̂)) is the variance structure. In our

model, we have linear mean structure µ(Zi, β̂) = Ziβ̂ and constant variance structure

v(µ(Zi, β̂)) = V ar[Rti] = R2µ3

λ
. Then, the quasi-likelihood estimator β̂ in our model

reduces to (5.14) because

0 = s(β̂) =
n∑

i=1

∂µ(Zi, β̂)
∂β

yi − µ(Zi, β̂)
v(µ(Zi, β̂))

=
n∑

i=1
Z⊤

i

yi − Z⊤
i β̂

V ar[Rti]
= V ar[Rti]−1Z⊤(Y − Zβ̂). (5.17)

Note that E[Rti] = Rµ ̸= 0. The non-zero mean property causes the estimated intercept
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β̂00 to be shifted. Nevertheless, we still can estimate clock skew rate by

R̂q := β̂01

Ts

, (5.18)

because the symbol duration Ts is known and the slope β̂01 is derived in (5.16). We call

(5.18) by Quasi-likelihood clock skew estimator and denoted by R̂q

By the asymptotic efficiency of MLE, we know that V ar[β̂01] approaches to Cramer

Rao Lower Bound. Let us derive the fisher information matrix of β = [β00, β01]⊤ in this

model as

F (β) = E[−∂s(β)
∂β

] = Z⊤V ar[Rti]−1Z

= 1
V ar[Rti]

 N
∑N

i=1 ki∑N
i=1 ki

∑N
i=1 k2

i



= Nλ

R2µ3

1 k̄

k̄ k̄2

 , (5.19)

where k̄ = 1
N

∑N
i=1 ki and k̄2 = 1

N

∑N
i=1 k2

i . For kN = [01n, 11n, ..., (K − 1)1n] and

N = Kn, the inverse matrix of F (β) is

F (β)−1 = R2µ3

Nλ(k̄2 − k̄2)

 k̄2 −k̄

−k̄ 1



= µ3R2

λnK(K − 1)(K + 1)

2(K − 1)(2K − 1) −6(K − 1)

−6(K − 1) 12

 . (5.20)

The variance of R̂q equals V ar[ ˆβ01]
T 2

s
, which approaches

[0, 1]F (β)−1[0, 1]⊤ = 12µ3R2

λnK(K − 1)(K + 1)T 2
s

. (5.21)

The equation (5.21) is an asymptotic MSE of R̂q by the asymptotic efficiency property of

MLE.
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5.3 Simulation Results

In this section, we simulate the MSE of clock skew rate R for Quasi-likelihood esti-

mator and Iterative LE proposed above. The parameters of AIGN channel are the same

with Sec. 3.1.5.

In Fig. 5.1, the MSE of Quasi-likelihood clock skew estimator R̂q approaches to the

asymptotic variance as in (5.21). The reason why the simulated MSE is lower than CRLB

is that the error term in our stochastic model Rti actually affected by ISI effect. If a

realization of errorRti is larger than the symbol durationTs, it causes ISI effect. Therefore,

the actually variance of Rti is smaller than R2V ar[T ] because the data affected by ISI

effect is like censored data.
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Figure 5.1: The MSE of clock skew rate R for Quasi-likelihood estimator and Iterative
LE with R = 1, Ts = 3µ and n1 = L̄ = 16.

On the other hand, the MSE of Iterative LE for clock skew rate R̂
(K)
LE is lower than that

of Quasi-likelihood clock skew estimator R̂q. This is reasonable because the former uses

more channel information than the latter. However, the MSE of the latter decreases more

quickly than that of the former. We expect that Quasi-likelihood clock skew estimator R̂q

becomes better when the number of symbols is large enough.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, as far as we know, we first discuss on the timing synchronization problem

for quantity-based modulation in Additive Inverse Gaussian Channel.

In training-based synchronization for clock offset estimation problem, we have pro-

posed Iterative LE, whose computational complexity is much lower than LE and MLE.

Moreover, its MSE reaches almost the same efficient level with LE and MLE.

In blind synchronization for clock offset estimation problem, we compare the theoreti-

cal MSE of LEwith that of DF, and give a sufficient condition when the latter improves the

former. Besides the initial estimator, we proposed FSA to update the clock offset estima-

tion under ISI effect. TheMSE of FSA is close to the optimal location parameter estimator,

Pitman estimator. Accordingly, our FSA is nearly optimal in the minimum MSE sense.

Moreover, FSA is suitable in blind synchronization and the accuracy is independent on M

for M -ary quantity-based modulation.

In channel estimation, we take the clock offset estimator without channel information

µ and λ proposed in [21] as our initial estimator. The MSE of initial estimator is close to

the CRLB with unknown µ and λ. Moreover, we use the MLE of µ and λ as our initial

channel estimation. Then, the method updating channel estimation µ̂(K) and λ̂(K) with ISI

symbols was proposed. Combining with FSA proposed in Sec. 3.2.3, its MSE is close to

the CRLB with unknown µ and λ.
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When considering the clock skew effect, we proposed Iterative LE for the clock skew

rate R and its complexity is linear time on N . However, these method require the chan-

nel information. In joint estimation, we proposed Quasi-likelihood clock skew estimator

to estimate the clock skew rate without channel information. Moreover, we derive its

asymptotic MSE. When the number of symbols are large enough, the Quasi-likelihood

clock skew estimator is better than Iterative LE for clock skew rate.

6.2 Future work

The next question we face is how accurate we need to estimate the clock offset and

the clock skew. To answer this question, the Bit Error Rate (BER) has to be considered

for future work. This analysis depends on the whole modulation and detection scheme we

choose, which is more complicated and difficult to extent to general situation.

In our thesis, we use MSE as criterion to evaluate our estimators. Because the square

loss function is symmetric to the true parameter, overestimation has the same loss with

underestimation. However, if the BER of the whole communication system is consid-

ered, overestimation will perform worse than underestimation. By our investigation, the

reason is that overestimation will cause ISI from the future symbols, which affects BER

significantly. Intuitively, when considering BER as our evaluation, we prefer to design

the mechanism tends to underestimation.

In our thesis, we only discuss on blind synchronization in clock offset estimation. The

clock skew estimation or channel estimation in blind synchronization might be the next

topic. Furthermore, our channel model only consider one-dimensional first hitting and

molecular capture one by one rather than concentration-based molecular communications,

which has been a popular model recently in molecule communications. In concentration-

based synchronization, the estimation from a random process as observations need to be

investigated rather than our analysis in random sample as observations.
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