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Abstract

The coefficient of intrinsic dependence (CID) is capable of determining associations
among variables without making distributional or functional assumptions regarding
to random variables. The CID value of the target variable would increase when more
predictor variables include. This implies that a CID value of the target variable
given multiple predictors is significant as the most relevant predictor is included
even though the other predictors have weak association with the target variable.

In this study, we developed the partial coefficient of intrinsic dependence (pCID)
to facilitate the step-by-step selection of variables that are relevant to a target vari-
able. Furthermore, we applied pCID method to stepwise variable selection and the
construction of gene regulatory network. In stepwise variable selection, the strategy
of selecting relevant variables using the CID along with the pCID can eliminate inter-
ference from other relevant variables. From simulation results, we observed that the
proposed method is more sensitive to curvilinearity and more specific to linearity
than the combination of Pearson’s correlation coefficient and the partial correla-
tion coefficient (PCC/pPCC). This property may provide the opportunity to index
different levels of curvilinearity according to CID/pCID outcomes. While being
exercised on publicly available microarray data, the CID/pCID procedure success-
fully identified cold-responsive genes related to three C-repeat binding factors, and
was especially effective at identifying some sample-specific gene-gene interactions.
Therefore, the proposed strategy may be beneficial in meta analysis to distinguish
general forms of relationships from the noise.

On the other hand, the strategy of constructing the gene regulatory network
using the CID/pCID can stepwise choose the target node and decide the corre-
sponding source node while eliminating the influence of the other relevant nodes.
Because of the asymmetric CID/pCID values, we used this property to discrimi-
nate the direction of two nodes. Pseudo network was conducted to evaluate the
performance of the heuristic approach by CID/pCID from one hundred replications

with different sample sizes. As the sample size increased, the accuracy of the re-



constructive pseudo network would increase. Furthermore, the proposed approach
was applied to two microarray datasets. One was the known cold signaling path-
way, C-repeat binding factors would induce a set of cold-regulated (COR) genes in
Arabidopsis. The CID/pCID approach could successfully discover the connection
between C-repeat binding factor and cold-regulated gene. The other dataset was
about the basic helix-loop-helix gene family in rice, which network was undiscov-
ered in biology. We constructed the network based on the CID/pCID outcomes to
provide the suggestion for biologists.

In summary, the CID/pCID method could efficiently identify the relevant vari-
ables which had various types of the association. Besides, the asymmetric CID/pCID
values were used to distinguish the direction of two variables from the statistical
viewpoints. Therefore, the statistical outcomes of the variable selection and gene
regulated network construction based on the CID/pCID method could provide ref-

erences for biologists before making an experiment on plants.

Key words: Coefficient of intrinsic dependence, Partial coefficient of intrinsic

dependence, Stepwise variable selection, Gene regulatory network.
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Chapter 1

Introduction

Association is defined as the correlation between explanatory and target variables.
The type of variable involves discrete or continuous and the number of variables is
univariate or multivariate. The association between two variables may exist linear,
nonlinear or mixture relationship in reality. In this study, we explore the expressions
of thousands of genes in biological microarray technology. One typical application is
variable selection, feature selection in the words of machine learning, which used to
identify the most relevant genes from thousands of gene expressions. These selected
genes can provide some informations to biologists to verify an experiment further.
The other application can be extend to construct the gene regulatory network
(GRN). Genes encode the information necessary for life which can be pass down
the central dogma of molecular biology and translate proteins directly involving
in different biological activities. Therefore, the expression level, or the amount of
mRNA transcripts, partly reflects the activity of the gene. The gene expression lev-
els of some genes are regulated by mRNAs of other genes or their protein products.
This kind of gene regulation events can be possibly monitored using modern high-
throughput gene expression technologies, including microarray or next generation
sequencing (Mardis, 2008; Jain, 2012; Shrinet et al., 2014). The gene regulation
events under certain condition serve as small blocks to the entire gene regulation
network (GRN), which may be reconstructed by connecting multiple regulation mod-
ules. An inferred GRN can therefore provide insights into the relationships between
genes of interest by experiments and the understanding of biological functions with
complex biological phenomena (Krouk et al., 2013). More specifically, an inferred
GRN consisting of the nodes (representing genes) and the edges (representing signifi-
cant gene-gene interaction) reflects the gene regulation events that may concurrently
or sequentially occur under the condition of study. In this study, we focus on the

inference of GRN using the results of microarray experiments.



Pearson correlation coefficient (PCC) is mostly adopted to measure the interac-
tion of genes based on their expression levels (Schadt et al., 2005). Other measure-
ments of association including the mutual information (MI) (Priness et al.; 2007),
the partial Pearson correlation coefficient (pPCC) (Fuente et al., 2004), the coef-
ficient of determination (CoD) (Suh et al., 2003), and the coefficient of intrinsic
dependence (CID) (Hsing et al., 2005; Liu, 2005; Liu et al., 2009; Tsai and Liu,
2013) were also used. PCC and pPCC have the limitation of only identifying linear
relationship between two gene expressions. In contrast, CID requires neither distri-
butional (e.g. normal) nor functional (e.g. linear) assumptions on gene expression
data. CID(Y'|X) designates the CID value of a variable Y given the information of
another variable X. It takes any real value between 0 and +1 inclusive. It is +1
in the case of full dependence and is 0 in the case of independence. As the level of
dependence ascends, the CID value goes from 0 to 1. It was used to construct an
estrogen receptor regulatory network in accompany with the correlation coefficient
(Liu et al., 2009), to infer and classify co-regulatory events by two transcription fac-
tors (Liu et al., 2012), and to perform gene set association analysis (GSAA) (Tsai
and Liu, 2013). We have demonstrated that CID outperformed the conventional
methods in identification of different association patterns (Liu et al., 2009; Tsai and
Liu, 2013).

This study was initially motivated by the inquiry to select relevant explanatory
variables to the target variable using CID. We used a toy example to illustrate the
situation one might encountered when selecting variables using CID. Let Y be a
one-dimensional target variable and X;’s (i = 1,2,...,6) be the one-dimensional
candidate explanatory variables identically and independently distributed as Uni-

form(0, 1). In fact,
Y = 10sin(7 X1 X5) + 30(X3 — 0.5)2 + 10X, + 5X5 + ¢, (1.1)

where € is the random disturbance distributed as normal with zero mean and unit
variance. Note that the explanatory variable X is independent of the target variable
Y according to the model. Ideally, a proper stepwise procedure iteratively picks
the relevant X;’s according to its magnitude of association to Y until no more X;
would significantly increase the amount of association. Table lists the summary
statistics for the univariate CID values of Y given one of the explanatory variables
and partially bivariate CID values based on 100 simulated samples of sizes N =
100. According to the result, CID(Y|X,) had the largest value in average among all
CID(Y|X;) (i =1,...,6) and was concluded as the most relevant predictors with Y.

2



Table 1.1: Summary statistics of univariate CID and bivariate CID values based
on 100 simulated samples of size N = 100 from the model Y = 10sin(rX,X5) +
30(X3 — 0.5)* + 10X, + 5X5 + €, where X;’s were distributed as U(0,1) and ¢ was
distributed as N(0, 1).

Proportion of Significant CID’s
Mean SO a=01 a=0.05 a«a=0.01

CID(Y| X,) 0.0664 0.0238 0.9 0.98 0.95
CID(Y| Xy) 0.0683 0.0270  1.00 0.98 0.96
CID(Y | X5) 0.0366 0.0142  0.93 0.83 0.65
CID(Y|X,) 0.1176 0.0325  1.00 1.00 1.00
CID(Y|X5) 0.0328 0.0202  0.74 0.69 0.45
CID(Y | X;) 0.0077 0.0048  0.03 0.02 0.00
CID(Y|X,,X,) 0.1747 0.0319  1.00 1.00 1.00
CID(Y|X,, X,) 0.1783 0.0328  1.00 1.00 1.00
CID(Y|X3,X,) 0.1464 0.0279  1.00 1.00 1.00
CID(Y|X5,X,) 0.1415 0.0324  1.00 1.00 1.00
CID(Y|Xg, X;) 0.1191 0.0309  1.00 1.00 0.99

To determine the second most relevant predictor, we further computed the bivariate
CID values given X, and another predictor X;, CID(Y|Xy, X;) (1 = 1,2,3,5,6)
(Liu et al., 2009). Due to the dominant influence from Xy, the two-predictor CID
values were frequently claimed significant even if an irrelevant predictor, i.e. Xg,
was added (Table [I.I). The above scenario was similar with the computation of
regression coefficient, R?, in a regression analysis — the more variables included in
the model, the larger the CID value. This also implied a significant CID value of
the target variable given multiple predictors once the most relevant variable was
included although the other may not have strong association with the target.

The toy example implied the need of alternatives to evaluate the significance
under stepwise variable selection to study the 'pure effect’ coming from the variable
of interest without disturbing by the other predictors. The process should also
be able to justify different levels or types of association. Inspired by the partial
correlation coefficient (pPCC), we proposed a new measure called partial coefficient
of intrinsic dependence (pCID). The pPCC aims to describe the linear relationship
of the target variable and the second predictor variable which cannot be explained
by their respective linear relationship with the first predictor variable (Baba et al.,
2004). Similarly, pCID proposed in this study will further decompose the variability
of distribution of the target variable which was not explained by the conditional

distribution of the target variable given the first predictor.



In the next chapter, coefficient of intrinsic dependence and partial correlation
coefficient will be reviewed and our proposed method, partial coefficient of intrinsic
dependence, will be introduced. In Chapter 3, the proposed statistical procedure for
stepwise variable selection will be given. The simulation design from Model and
compared results of CID/pCID and PCC/pPCC will be presented and discussed.
A reality example using published microarray dataset in Arabidopsis illustrates the
proposed method. In Chapter 4, the heuristic approach will be advanced to construct
the gene regulatory network and will be used to reconstruct the pseudo network. The
proposed procedure will practice on reconstruction cold-stress responsive regulation
paths in Arabidopsis based on a microarray experiment and will provide an unverified

gene network for biologists. The final conclusions are provided in Chapter 5.



Chapter 2

Partial Coefficient of intrinsic
dependence (pCID)

In the current methods of association, coefficient of intrinsic dependence (CID) does
not need common restrictions such as the type of variable and distributional or
functional assumptions. Besides, CID had been demonstrated that have good per-
formances in identification, classification, construction of gene regulatory network,
performance of gene set association analysis (Liu, 2005; Liu et al., 2009; Liu et al.,
2012; Tsai and Liu, 2013).

CID can find how much information of the target variable be explained by the
predictor variables. Therefore, the CID value of the target variable is increasing as
more predictor variables included. In Chapter 1, the toy example has been observed
that the multivariate CID value was significant when the most relevant predictor
variable was included even though the other irrelevant predictor variable was added.
To solve this problem, we propose a new measure called partial coefficient of intrinsic
dependence (pCID). Main objective in this study is to sift out the actual relevant
predictors step by step. The concept of pCID is inspired by the partial Pearson
correlation coefficient (pPCC). In this chapter, we describe the CID and pPCC in
detail and introduce our method, pCID. And then we explain how to perform a

hypothesis test of independence.

2.1 Coefficient of intrinsic dependence (CID)

Consider a pair of random variables (X,Y") , where X is a predictor variable and Y
is a target variable. The general definition of the coefficient of intrinsic dependence,
CID(Y|X), is defined as follow (Liu, 2005):
* Varx{E 1Y <u)|}dFy(u
oty ) — L Ve B a1 < Wl ()
o Vary [I(Y < v)]dFy (v)

(2.1)
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where Fy(-) is the marginal cumulative distribution function of Y, and I(-) is an
indicator function. If multiple predictors are considered, we let X = {X3,...; X},

where k£ > 2. Then CID can be similarly defined (Tsai and Liu, 2013):

*oo Varx {Eyx[I(Y < u)]}dFy (u
CID(Y |X;, ..., X)) = CID(Y[X) = f_wf“’ viry[lf([y(s j)]d)gf(v) -

(2.2)

The numerator of CID accounts the discrepancy between the marginal cumula-
tive distribution function (cdf) of Y and the conditional cdf of Y given X as the
amount of dependency between Y and X. The dependency (in the numerator) is
then normalized between 0 and 1 by the denominator for the convenience of inter-
pretation. If X and Y are nearly independent, X provides little information about
Y. The independency causes the conditional and marginal distributions of ¥ similar
to each other and the numerator of CID close 0. On the other hand, if X and Y are
highly relevant, the information of X can almost surely predict the behavior of Y.
In these cases, CID yields values close to 1.

It has been shown that the CID has several properties. CID can be carried out
in different instances, such as all types of random variables (discrete, continuous, or
including both ones) and multivariate cases. CID is a model-free measure in that
it depends on calculating the estimator with a different sample. For that reason,
CID does not require some common assumptions like normal and linear. CID is
asymmetric, that is to say, CID(Y|X) does not remain the same as CID(X|Y).

Accordingly, CID takes the causal relationship between variables into account.

2.2 Partial coefficient of intrinsic dependence (pCID)

Inspired by the partial correlation coefficient, the coefficient of partial coefficient of
intrinsic dependence (pCID) further decomposes the variability of distribution of
the target variable. Let Y be the target variable, X; be the first dominant predictor
variable, and X5 be the second dominant predictor variable. By definition, if Y and

X5 are independent given the values of X; if and only if

F(y, wo|21) = F(a2]21) F(y|z1),

and
F(x1,22,y) F(y, za|x) F (1) F(xo|zy) F(y|z,) F (1)
F(y|x1’ IEQ) - F(xl,Ig) - F(ZL‘l,ZEQ) - F(l‘l, 1'2)
_ [Py, 2)/[F@)][F(2y, y)[F@)]F(2) _ Flany) g
- F(x1,12) = Ry W)



where F’s are corresponding conditional or marginal cumulative distribution func-
tions. Hence, the discrepancy between two conditional distributions F'(y|z,xs) and
F(y|z1) represents the amount of dependency between Y and X, given X;. The

Cramér-von Mises distance between the two distributions can be expressed as

/_ " (F(ylan, 72) — Flylan)2dFy (y). (2.3)

To average out the different values of x1’s and x5’s, we take expectations over X; and
X5, respectively. The expectations over X; and X, were taken to average out the
effects from different values of z1’s and x5’s. Hence, Equation (2.3]) can be revised

as follow:

/ " B B {F (gl 7) — Flylen) YdFy (y)

o0

— [ ExEx{P(Y <yl a0 - PY < ylo)dF(y

o0

— [ B BBy nlTY < 0)] - By 1Y < )P dF )

o0

~ [ B Vo Byl < y))dF ), (2.4

[e.o]

where I(+) is an indicator function. The coefficient of partial intrinsic dependence
of Y given X, conditioned on X; was defined by standardized Equation (2.4)) using

variance decomposition:

J 2o Ex, Vary, {Evix, x, [ (Y < u)]}dFy (u)

CID(Y| Xy X
pCID(YX5; %) = [ Ex, Varyx, [[(Y < v)]dFy(v)

(2.5)

Given the target variable takes distinct values on a continuous domain, the denom-

inator of pCID(Y | X5; X) can be expressed as

/_OO EleaI'y‘Xl [[(Y S U)]dFy(U) = /O Eleary|X1 [I(Fy(Y) S U)]d’l}

[e.9]

= [ PxdBya P ) < 0] = BT (RY) < o))

[ BT () < 0)) = B By [T (V) < o)

/ vl — / B [P2(Fy (V) < 0)|a1]dv

- / Ex,[P(Y < Fy'(v))]a:]do



Similarly, the numerator of pCID(Y|X5; X7) is

/ " By, Varx, (By ol I(Y < u)]}dFy ()

[e.o]

:/0 Ex, Varx,{Ey |z, o, [[ (Fy(Y) < u)]}du
Z/O Ex { Ex,[[By 2,00 [L(Fy (YY) < )]°] = [Exy[Ey oy a0 [[(Fy (Y) < u)]]]*}du
:/0 Ex {Ex,[P*(Fy(Y) < ulzy, 25)] — P*(Fy(Y) < ulzy)}du

1 1
— [ ExExlP(Y < B @lealdu— [ Ex [P < B el
0 0
Hence, for the continuous target variable Y,

o Bx,Ex,[P(Y < By (wlay,0)ldu = fy Bx [PP(Y < By (u)fa)ldu

L [VEx, [PAY < Fy'(0))]a]do

According to the CID formula for the continuous target (Liu, 2005),
1
CIDY(X) =6 [ Ex[PHY < By (o)leldy 2
0

the following recursive formula can be derived to compute the coefficient of partial

intrinsic dependence of Y given X5 conditioned on Xj:

BCID(Y|Xy: ) =T 1X0, Xa) +2) = JCID(Y|Xy) + 2]
o F— F[CID(Y]X) + 2]

_ CID(Y| X3, Xo) — CID(Y'| X))
B 1 — CID(Y|X,) ’

where CID(Y| X4, X») and CID(Y'|X;) are the ordinary coefficients of intrinsic de-

(2.6)

pendence of Y given X, X5 and of Y given X, respectively. Similarly, pCID takes
any real values between 0 and +1 inclusive; it is +1 in the case of full dependence be-
tween Y and X, given the value of X; and is zero in the case of independence. As the
level of dependence ascends, the value of pCID goes from 0 to 1. pCID(Y|X3; X)
can be estimated from data by using the recursive formula and plugging in the
corresponding estimated CID values. Similarly, the coefficient of partial intrinsic
dependence of Y given X; conditioned on {X7, X5,..., X; 1} can be derived as

CID(Y|X1,...,X;) — CID(Y|X1,..., X; 1)

CID(Y| X5 {X1,..., Xi1}) =
pCID(Y]X3; { X4 1}) 1— CID(Y[Xy,...,Xi—1)

2.3 Estimation of CID and pCID

According to the definition of CID is not under any assumption, the marginal and

conditional distributions have to be estimated from the sample by the empirical
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distribution function. In section 2.1, CID is defined separately by unitary and
multiple predictors. Let (x;,y;) be the ith paired observation of the random variables
(X,Y) from a sample size of N, where i = 1,..., N. The estimator of CID (Equation
(2.1))) is

i) o L 5 S o [Pl - Ply)|
N SN R 1 P

where z; be the observed value of X in the jth object. If X is k-dimensional predictor

Y

variable (k > 2), x; be the vector containing observations of {Xj,..., X} in the

jth object. Then the estimated value of CID (Equation is as follows:

LSS [Pl - P
CID(Y[Xy, .., X) = CID(Y[X) = . x Y P 1P|
i=1 4" \Yi — Y

In previous studies (Liu, 2005; Liu et al., 2009; Liu et al., 2012; Tsai and Liu,
2013), the estimate of CID relies on subgrouping the sample of predictors X to

(2.7)

calculate the value of conditional distribution function, F(y|x). The subgroup is
used to place the sample of size N into P subgroups according to the observed
values of X. In each subgroup s (s = 1,...,P), the estimate of the cumulative

marginal and conditional distribution functions are below.

N

N 1

F(y;) = N E I<yq <),
g=1

N
~ 1
Fo(y:) = N Z I(y, < y; and x, € the sth subgroup),
s =1
N
and N, = Z I(x; € the sth subgroup)
j=1

A weighted average is taken to account all discrepancies measured within different

subgroups and yields the estimate of CID:
. . 2
S % (B — P
S Bl |1 = Py

Two general sample subgrouping method, quantile and hierarchical clustering

CID(Y|X) =

method, have been used commonly. The quantile method categorizes the mth di-
mension of X into r,, subgroups with an equal or approximate equal number of
observations in each subgroup. If X has k& dimensions, the sample is separated into

P = anzl rm subgroups. In general, the number of subgroups is set r,, = r for all

9



m and P = r* to fairly weight all dimensions of X. However, it is in a predicament
when k increases. This situation causes that the observations distribute sparsely and
each subgroup has zero or too few observations. Besides, the quantile method has
another problem, the number of subgroups is restricted. The hierarchical clustering
method assigns a set of objects into P subgroups such that the objects in the same
subgroup are more similar to each other. The result of the subgroup in the mth
dimension of X was changed when adding another predictor. This situation does
not cause a problem in the estimated value of CID, but it influences the accuracy
of the estimated value of pCID.

In this study, we propose the nonparametric kernel smoothing method using the
np’ package in R (version 0.40-13) (Hayfield and Racine, 2008) to estimate the

corresponding distribution functions as follows.

. vi 1 N Ky(t;ﬁ)
Fly) = [ =S [ g
w = [ ]
KX(m;D]'_qu)

/yz Ly () (e
zp] IP‘Z)
]

- ED DAY ) LT

P

and F(yZ’XJ) = dt

tyq

_/yi Zq 1{[ ] Hp 1K (xPJ pxq)}dt
-0 Zq:l Hp:l KX(%%:%(I) ’
where K(+) is the kernel functlon with bandwidth . We chose Second-Order Gaus-
sian kernel, K(z) = exliﬁ D) for smoothing and the rule-of-thumb method for band—

width selection. The formula of the rule-of-thumb bandwidth is A = 1.060N "5

where ¢ is defined as the minimum value of measures of scale which are stan-
dard deviation (SD), mean absolute deviation (MAD)/1.4826 and interquartile range
(IQR)/1.349. This method could solve the problems which the subgrouping methods
produce. Therefore, the estimated values of CID and pCID are using the nonpara-

metric kernel smoothing method to apply to simulations and real data studies.
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2.4 Hypothesis test of Independence for CID and
pCID

The hypothesis test for coefficient of intrinsic dependence points to identify the

association between two samples as follows.

Hy : Y does not depend on X
H, : Y depends on X

The null distribution of CID(Y|X) is difficult to formulate under assumption are
ignored and will be generated by random permutations. We can chose the observed
values of X or Y to be permuted randomly and the other values of variable are
fixed. After that using these new combination in each run of random permutation
to compute the CID value using Equation (2.7)).

The partial coefficient of intrinsic dependence aims to test which of the following

null and alternative hypotheses are preferred by observing the data:

Hy : Y does not depend on X, conditioned on X;
H, : Y depends on X, conditioned on X

Similarly, the null distribution of pCID(Y|X;; X;) will be generated by random
permutations. But the selection of variable about random permutation would be
changed. To keep the dependence between X; and Y, only the values of X; are
randomly permuted. In other words, when we compute the pCID(Y|X;; X;) value
from each run of random permutation, CID(Y|X;, X;) would be altered where the
values of X, are from permutation and CID(Y'|X;) are computed from the sample.

Random permutation was repeated R times and yielded R internal control values
for each measure under independence. Let Ey be the estimate of an CID(Y|X) or
pCID(Y'|X;; X;) from the sample, and E, be the estimate for that measure from the
rth random permutation. The permuted p-value for CID(Y|X) or pCID(Y|X;; X;)

was determined by

1 R
7l (1 + ;I(E,, > E0)> : (2.8)

2.5 The partial Pearson correlation coefficient (pPCC)

We compared the results of the partial coefficient of intrinsic dependence with that

of the well-known partial correlation coefficient (pPCC). The partial correlation
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coefficient describes the relationship between two variables after taking away the
effect of another variable, or several other variables, on this relationship. The pPCC

of Y and X; adjusted for X; is:

ry.x; — Ty, X, TX;, X,

VA=) =% )

pPCC(Y, Xj; X;) =

where 7y is the Pearson’s correlation coefficient (PCC) between two random vari-
ables U and V. The pPCC of Y with Xz given {Xl, XQ, ey Xi_g, Xi—l} = {Xi_g, Xi—l}

can be derived recursively:

pPCC(Y, Xl, Xl; c. ;Xifl)

= pPCC(Y, Xi; X2, X;_1)

o pPCC(Ya Xi; Xi—?) - PPCC(Y, Xio1; Xz‘—2)pPCC(Xu Xi1; Xi—2)
V(1 = pPCC(Y, X;_1; X;-2)?)(1 — pPCC(X;, X;_1; Xi_2)?) .

In most cases, the pPCC between two variables while removing the effect of the
third variable is smaller than the PCC. But in the other cases where the absolute
value of the pPCC becomes larger, the third variable may be a suppressor variable
which can improve the association with two variables, but that is unrelated to the
target variable. In this study, the pPCC value was calculated using the ppcor’
package (version 1.0) in R (Kim, 2012).

A t-test statistic with N — 2 — k degrees of freedom, where k is the number
of the controlling variables, can be yielded to access the significance of the partial
correlation. However, in order to compare with our proposed method on the same
basis, the p-values of the partial correlation will be obtained through R times of

random permutation in this study similar with those of pCID (Equation [2.8)).
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Chapter 3

Application to stepwise variable
selection

Variable selection, also known as feature selection, is the technique of picking up the
relevant predictor variables with the target variable. In biometric, variable selection
is ordinarily applied in microarray data which contains thousands of genes and a
few tens to hundreds of samples. In order to explain the data more accurately,
the redundant genes should be removed without resulting in much loss of data
information. Further, stepwise variable selection is the process of selecting predictor
variables step by step without the interference from other effect of variables. In this
chapter, we construct the procedure of stepwise variable selection by using pCID
and pPCC methods. Apply the procedure to simulation study and microarray data,

and then compare the result of these methods.

3.1 The procedure for selecting variables

Forward selection is an approach of adding one variable which have the largest
relationship at a time until none of remaining variables provides the statistical sig-
nificance. According to this concept, we could find the important predictors with a
target variable in order by pCID. The decision process by calculating pCID value is
described below (see also Figure ).

Suppose there are one target variable Y and k predictor variables X = X,..., X}
from the sample size of N. First, calculate the all CID values of Y given each X;,
where ¢ = 1,...,k, and then choose the most important predictor X(;) which has
the maximum value of CID(Y'|.X;). To get the p-value of CID(Y| X)), we randomly
permute X3y with R replicates. If the p-value of CID(Y'|X(;)) was more than the

significance level «, the process would be ended. No predictor variables relate to this
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Data: a target variable Y and
a k-dimensional predictors X with NV samples

v

Calculate CID(Y|X;) and
choose X (1) = arg;nax CID(Y|X;)

\, 7

v

r ™
Permute X,y with R replicates to

get the p-value of CID (Y|X(1))

\.

p-value = « p-value < «

Calculate pCID(Y|Xj; X(4)) and
choose X(5) = arg;nax pCID(Y'[X;; X(1y)
J

v

Permute X(,) with R replicates and use X
observations to get the p-value of pCID(Y|X(2); X(l))

Stop the
process

p-value = o or
pCID(Y|X(2y; X(1y) < 0

p-value < aand
pCID(Y|X 2); X(1y) > 0

Calculate pCID (Y| Xg; X4y, X(»)) and
choose X3y = arg max pCID(Y|X; X(1), X(2))
Xs

v

Until statistical insignificance
or negative pCID value

J

Stop the
process

Figure 3.1: Flow chart of stepwise variable selection based on the CID and pCID.
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target variable. Otherwise, the process proceeded and then calculate all pCID values
of Y given each X conditioned on Xy, where j = 1,...,k — 1 and X excluded
X(1), to get the second important predictor X() which has the maximum value of
pCID(Y|X;; X1)). The p-value of pCID(Y | X(2); X(1)) was calculated from the X,
permutation values and Xy observation values. Similarly, the process would be
ended if pCID(Y'|X(9); X(1)) was insignificantly dependent or negative, if not, the
process still go forward to calculate all pCID values of Y given X, which is one of
the other k — 2 predictors, conditioned on Xy and X (). The procedure for selecting
variables was finished until the picked pCID value was insignificantly dependent or
negative. Accordingly, the Pearson correlation coefficient (PCC) and the partial
Pearson correlation coefficient (pPCC) can completely imitate this process to select

relevant predictor variables.

3.2 Simulation study

Our objective in variable selection is applying to pick up most relevant genes from
thousands of gene expressions. Consider the relationship between two genes is not
only linearity, we referred to the Friedman model (Friedman, 1991) and modified it
as follows.

Suppose X;’s (i = 1,...,6) were independent and identically distributed (i.i.d.)

as Uniform(0,1) and Y was determined by the following equation:
Y = 10sin(7 X1 X5) 4+ 30(X3 — 0.5)2 + 10X, + 5X5 + ¢, (3.1)

where ¢ was distributed as Normal(0,1). In Model (3.1)), X; to X5 are dependent
to Y while X§ is not.

The Pearson correlation coefficient (PCC) and the partial Pearson correlation
coefficient (pPCC) are principal methods to discuss the relation of gene expressions
in biological studies. We compared the results of the Partial coefficient of intrinsic
dependence (pCID) to those of the pPCC in simulations of Model . Besides,
we want to observe the effect upon the different sample size to generate a sample
of size N (N = 25,50,100). Then we consulted the procedure of variable selection
which is detailed in Section 3.1 where a parameter k is equal to six. The simulation
results of CID/pCID and PCC/pPCC are displayed in subsection 3.2.1 and 3.2.2,

respectively.
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3.2.1 The results of CID and pCID

As described in Section 1, bivariate CID could not identify the second predictor
variable which associated with the target variable Y when the first predictor had
strong relation with Y. We propose the pCID method to solve this problem. Table
3.1| presents the CID values of Y given either one or two predictors and the pCID
values from 100 simulations and the sample of size N = 100. CID(Y|X,) had
the largest average value of CID(Y'|X;), 0.1176, for all ¢ = 1,...,6, meaning the
distribution of Y was notably altered after conditioning on the values of X;. A
hundred p-values of CID(Y|X,) were obtained from permuting the values of X4
with 1000 replicates. In Table [3.1] the proportions of significant CID(Y'|X,) at
three different significant levels (o = 0.1, 0.05, 0.01) were 100%, which means all p-
values of CID(Y'|X,) were smaller than 0.01. The variable associated with the target
variable Y next to X, in Model was not selected based on the CID(Y'| X}, X})
values for i = {1,2,3,5,6} but selected based on the pCID(Y | X;; X,) values for i =
{1,2,3,5,6}. The proportions of significant CID(Y'|X¢, X4) were almost 100% and
CID(Y| X, X4) had large average value, 0.1191, even if X was not dependent on Y
in Model (3.1)). Besides, we observe the pCID(Y'|X;; Xy4) values for i = {1,2,3,5,6}
from different sample of sizes N = 25, 50 and 100 by the boxplots which are presented
in Figure [3.2] The variance of the pCID estimates would increase along with the
increment of average pCID values. A relatively large sample size was necessary to
obtain a consistent pCID estimate but the hypotheses testing of independence would
already be quite effective under moderate sample size. According to the results
of pCID(Y'|X;; X) values for i = {1,2,3,5,6}, X;, Xy were the most influential
variables next to X, toward Y by having the larger pCID values given X4, while
the random noise, X4, had pCID(Y'|Xg; X4) closest to 0. The results of hypotheses
testing for pCID(Y'| X;; X4)’s in Table[3.1] pCID(Y| Xy; X4) and pCID(Y | X5; X,4) had
the largest average values (0.0644 and 0.0684, respectively) and more than 97% of
the 100 pCID values were significant. The percentage of significant pCID(Y | X¢; X4)
values for irrelevant Xg were roughly consistent with the nominal significance levels
and the average pCID(Y|X¢; X4) value, 0.0015, was close to 0.

Sometimes pCID(Y| X;; X4) estimates had negative values (i.e., values below the
grey horizontal line in Figure which were not in the range of pCID values
according to the definition. This might be due to the biased nature of the CID
estimates, especially when the sample size is small (Liu, 2005). The pCID would

inherit the bias if it was estimated using the recursive formula (i.e., Equation ([2.6))).
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Table 3.1: Summary statistics of univariate CID, bivariate CID, and pCID values
based on 100 simulated samples of size N = 100 from the model Y = 10sin(7 X, X5)+
30(X3 — 0.5)% + 10X, + 5X5 + ¢, where X;’s were distributed as U(0, 1) and ¢ was
distributed as N(0,1).

Proportion of Significant CID’s
Mean SD  a=01 a=0.05 «a=0.01

CID(Y|X;) 0.0664 0.0238 0.9 0.98 0.95
CID(Y|X,) 0.0683 0.0270  1.00 0.98 0.96
CID(Y | X3) 0.0366 0.0142  0.93 0.83 0.65
CID(Y|X,) 0.1176 0.0325 1.0 1.00 1.00
CID(Y|X5) 0.0328 0.0202  0.74 0.69 0.45
CID(Y | X¢) 0.0077 0.0048  0.03 0.02 0.00
CID(Y|Xy, X,) 01747 0.0319  1.00 1.00 1.00
CID(Y|X,, X,) 0.1783 0.0328  1.00 1.00 1.00
CID(Y|X5,X,) 0.1464 0.0279  1.00 1.00 1.00
CID(Y|X5, X,)  0.1415 0.0324  1.00 1.00 1.00
CID(Y|Xs, X;)  0.1191 0.0309  1.00 1.00 0.99
pCID(Y|X1; X4) 0.0644 0.0221  0.99 0.97 0.97
pCID(Y|Xa; X4) 0.0684 0.0251  1.00 0.99 0.97
pCID(Y|X5; X4) 0.0322 0.0157  0.91 0.82 0.63
pCID(Y|X5: X,) 0.0268 0.0193  0.73 0.65 0.43
pCID(Y|Xg; X4) 0.0015 0.0084  0.10 0.05 0.01
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Figure 3.2: Boxplots of pCID(Y | Xi; X,) values, i = 1,2,3,5,6, based 100 simulated
samples of size 25, 50, or 100 from the model Y = 10sin(rX; X5) + 30(X3 — 0.5)% +
10X, + 5X5 + ¢, where X;’s were distributed as U(0,1) and ¢ was distributed as
N(0,1). The horizontal line indicates the zero value.
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Table 3.2: Proportion (%) of negative pCID values based on 100 simulations from
the model Y = 10sin(rX;X5) + 30(X3 — 0.5)? + 10X, + 5X5 + € of samples size
N = 25, 50, and 100, where X;’s were distributed as U(0, 1) and & was distributed
as N(0,1).

Explanatory Variable
Xl X2 X3 X4 X5 XG
N =25 195 3.73 297 0.00 242 5.70

N =50 114 0.68 0.69 0.00 321 7.24
N =100 0.00 0.00 091 0.00 233 14.44

The proportions of negative pCID values (Table were less than 4% for the
relevant variables (i.e., X; to Xj5), but the problem was elevated for the irrelevant
variable X4. Generally speaking, more negative values would be yielded when the
average pCID value is closer to zero, and all the negative values were indeed close to
0 (the minimal negative pCID value was -0.022 in the entire simulation, and 84% of
the negative values were greater than -0.01). These negative values can be avoided
by using a larger sample size or using Equation and directly estimating the
corresponding conditional distributions.

Based on similar philosophy, the relevant variables can be consecutively selected
according the corresponding CID/pCID values in a real practice. The summary
statistics for sequentially selected CID/pCID values from all 100 simulations for
samples of size N = 25,50, and 100 are provided in Table According to the
average values of pCID, the order of the explanatory variables according to their
importance toward Y is Xy, Xo, X1, X3, and X5, while Xg was identified as being
irrelevant to Y. Note that both the CID and pCID identified the same order of
importance for the six explanatory variables regardless of the sample size. But the
pCID controlled the type I error a bit better than the CID (Tables and .
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Table 3.3: Summary statistics of CID and pCID values based 100 simulatedd samples
of size 25, 50, or 100 from the model Y = 10sin(mX,X5) 4+ 30(X3 — 0.5)? + 10X, +
5X5 + ¢, where X;’s were distributed as U(0, 1) and ¢ was distributed as N(0,1).
The numbers in parenthese indicate the proportion of significant CID / pCID values
at a = 0.05 in 100 simulations.

Average CID / pCID (sig. prop.)

N =25 N =50 N =100
CID(Y|X;) 0.0580 (0.34) 0.0542 (0.71) 0.0665 (0.98)
CID(Y|X,) 0.0641 (0.50) 0.0667 (0.77) 0.0683 (0.93)
CID(Y | X3) 0.0388 (0.16) 0.0353 (0.39) 0.0366 (0.83)
CID(Y | X,) 0.1072 (0.82) 0.1034 (0.98) 0.1177 (1.00)
CID(Y | X5) 0.0407 (0.25) 0.0365 (0.43) 0.0328 (0.69)
CID(Y | Xs) 0.0212 (0.06) 0.0145 (0.07) 0.0077 (0.02)
pCID(Y | X1; Xy) 0.0608 (0.36) 0.0573 (0.75) 0.0644 (0.97)
pCID(Y | Xa; X)) 0.0729 (0.55) 0.0704 (0.87) 0.0685 (0.99)
pCID(Y| X5; X,) 0.0427 (0.19) 0.0371 (0.44) 0.0322 (0.82)
pCID(Y | X5; X) 0.0471 (0.23) 0.0359 (0.41) 0.0269 (0.65)
pCID(Y | X¢; X) 0.0270 (0.07) 0.0122 (0.04) 0.0015 (0.05)
pCID(Y| X1; X2, X4) 0.0850 (0.45) 0.0820 (0.88) 0.0852 (0.99)
pCID(Y| X3; X2, X4) 0.0624 (0.23) 0.0507 (0.41) 0.0398 (0.81)
pCID(Y | X5: Xa, X4) 0.0658 (0.19) 0.0503 (0.37) 0.0356 (0.66)
pCID(Y | Xg; X2, X4) 0.0463 (0.06) 0.0251 (0.04) 0.0088 (0.03)
pCID(Y | X3; X1, X2, X4) 0.0798 (0.23) 0.0719 (0.46) 0.0574 (0.84)
pCID(Y | X5; X1, X, X4) 0.0789 (0.20) 0.0709 (0.48) 0.0531 (0.70)
pCID(Y | Xg; X1, X, X4) 0.0608 (0.08) 0.0451 (0.02) 0.0262 (0.03)
pCID(Y | X5; X1, X, X3, X4) 0.0753 (0.26) 0.0776 (0.50) 0.0721 (0.75)
pCID(Y | Xg; X1, X, X3, X4) 0.0613 (0.04) 0.0565 (0.06) 0.0478 (0.05)
pCID(Y | X¢; X1, X2, X3, X4, X5) 0.0464 (0.08) 0.0516 (0.07) 0.0513 (0.04)
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3.2.2 The results of PCC and pPCC

When the Pearson’s correlation coefficient (PCC) and the partial correlation coef-
ficient (pPCC) were adopted to select relevant variables using the simulated data
of Model , the explanatory variable X, was the most linearly associated with
the target variable Y by having the largest average value of PCC(Y, X;) among
all i = 1,...,6 regardless of the sample size (Table [3.4). About 88% to 100%
PCC(Y, X,) values were significantly not equal to zero according to their permuta-
tion p-values. The PCC(Y, X;), PCC(Y, X;), and PCC(Y, X;5) values ranged from
0.2 to 0.4, values which were mostly identified as significant under the sample size
N = 100. The proportion of significant PCC(Y, X3) values in 100 simulations, how-
ever, was roughly consistent with the nominal significance level of o = 0.05. To
eliminate the impact from the dominant explanatory variable, the pPCC was pro-
posed to quantify linear associations between a relatively minor explanatory vari-
able to the target variable (Baba et al., 2004). As illustrated in Table [3.4] X, X;,
and X5 were sequentially selected according to the average values of pPCC, and
pPCC(Y, X5; X4, Xo, X1) were mostly significant. X3 was frequently discarded to-
gether with the irrelevant variable Xg in the variable selection process. This was
expected due to the natural utilization of the PCC and the pPCC; they were specif-

ically designed to detect linear association instead of association in general forms.
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Table 3.4: Summary statistics of Pearson’s correlation coefficients (PCC) and partial
correlation coefficients (pPCC) based 100 simulated samples of size 25, 50, or 100
from the model Y = 10sin(7X;X5) + 30(X3 — 0.5)% + 10X, + 5X5 + €, where
X;’s were distributed as U(0,1) and e was distributed as N(0,1). The numbers in
parenthese indicate the proportion of significant CID / pCID values at o = 0.05 in
100 simulations.

Average PCC / pPCC (sig. prop.)

N =25 N =50 N =100
PCC(Y, X;) 0.3401 (0.38)  0.3431 (0.73)  0.3759 (0.98)
PCC(Y, X>) 0.3845 (0.53)  0.3903 (0.77)  0.3815 (0.98)
PCC(Y, X5) -0.0050 (0.02) -0.0158 (0.07)  0.0020 (0.03)
PCC(Y, Xy) 0.5691 (0.88)  0.5426 (0.98)  0.5586 (1.00)
PCC(Y, Xs) 0.2645 (0.25)  0.2718 (0.45)  0.2753 (0.79)
PCC(Y, Xe) 0.0008 (0.09)  0.0020 (0.06)  0.0073 (0.01)
pPCC(Y, X1; X,) 0.4105 (0.54)  0.4221 (0.87)  0.4432 (1.00)
pPCC(Y, Xp; X) 0.4629 (0.70)  0.4614 (0.94)  0.4548 (1.00)
pPCC(Y, X3: X) -0.0063 (0.07)  0.0028 (0.07) -0.0008 (0.05)
pPCC(Y, X5: X) 0.3158 (0.36)  0.3060 (0.56)  0.3204 (0.91)
pPCC(Y, Xg; X) -0.0006 (0.07) -0.0042 (0.04)  0.0014 (0.03)
pPCC(Y, X1; X5, Xy) 0.4759 (0.65)  0.4774 (0.93)  0.5063 (1.00)
pPCC(Y, X3; Xo, Xy) -0.0207 (0.08)  0.0008 (0.08)  0.0034 (0.09)
pPCC(Y, X5; Xo, X4) 0.3437 (0.36)  0.3499 (0.71)  0.3554 (0.96)
pPCC(Y, Xg; Xo, X4) 0.0066 (0.08) -0.0006 (0.05) -0.0091 (0.04)
pPCC(Y, X3: X1, Xa, X4) -0.0208 (0.09)  0.0076 (0.10) -0.0003 (0.11)
pPCC(Y, X5: X1, Xa, X4) 0.4189 (0.48)  0.4220 (0.86)  0.4140 (0.98)
pPCC(Y, Xo; X1, Xa, X4) 0.0085 (0.05) -0.0094 (0.07) -0.0170 (0.01)
pPCC(Y, X3: X1, Xo, X4, X5) -0.0215 (0.11)  0.0060 (0.09)  0.0032 (0.13)
pPCC(Y, Xg; X1, Xo, X4, X5) 0.0088 (0.07)  0.0083 (0.03) -0.0064 (0.01)
pPCC(Y, Xg; X1, Xo, X3, X4, X5)  0.0054 (0.06)  0.0069 (0.09)  0.0031 (0.15)
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3.3 Arabidopsis microarray data analysis

We exercised pCID to identify the genes that were associated with (or possibly
regulate or be regulated by) a given transcription factor. The method was uti-
lized to select gene signatures using Arabidopsis Thaliana (Arabidopsis) microarray
dataset. The dataset contained the expression levels of Arabidopsis genes under
cold stress, which can be downloaded from the Arabidopsis Information Resource
(TAIR) database (Huala et al, 2001). This data originally consists of 22,810 probes
and 52 samples (submission number ME00325) treated under cold stress (4 °C) after
0 (control), 0.5, 1, 3, 6, 12 or 24 hours (H). After normalized by the robust multichip
average (RMA) method (Irizarry et al., 2003) and log2-transformed with the Bio-
Conductor (Gentleman et al., 2004) "affylmGUI’ package (Wettenhall et al., 2006),
the expressions of all probes had to be tested by the analysis of variance (ANOVA).
The probes having FDR < 0.001 under the time-course cold treatment were then
further proceeded to CID/pCID analysis (Benjamini and Hochberg, 1995). Three C-
repeat binding factors, CBF1 (probe ID: 254074_at), CBF2 (probe ID: 254075_at),
and CBF3 (probe ID:254066_at), were all cold-responsive genes and were adopted as
the explanatory variables X’s in CID/pCID demonstration while each of the other
probes was treated as the target variable in our analysis.

The expression of C-repeat binding factor (CBF) genes in plants under different
abiotic stresses has been extensively studied (Akhtar et al., 2012). In Arabidopsis,
three CBF genes (CBF1, CBF2 and CBF3) were found to be active under cold stress
(Gilmour et al., 2004; Liu et al., 1998). Here, the proposed CID/pCID methodology
was exercised in studying cold-stress responsive regulation paths governed by three
key regulatory proteins, CBF1, CBF2, and CBF3, at the transcriptional level using
microarray gene expression data. There were 2,388 probes, including three probes of
three CBF genes, identified as cold-responsive genes (ANOVA FDR < 0.001). Three
CBF genes were further treated as the explanatory variable (X)), and each one of
the remaining 2,385 probes was treated as the target variable (Y') for CID/pCID
analysis.

Among the 2,385 probes, 91% (2,177 probes) were significantly associated (CID/pCID
p-values < 0.05) with at least one of the three CBF probes of interest in terms of
their expression levels (Figure[3.3A). 26% (615 probes), 43% (939 probes), and 26%
(623 probes) had the largest significant CID values given CBF1, CBF2, and CBF'3,
respectively. Only 431 probes had selected the second relevant CBF probes with
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significant pCID values (pCID p-values < 0.05); 192 out of 431 probes (45%) were
related to both CBF1 and CBF2, 79 (18%) were related to both CBF2 and CBF3,
and 160 (37%) were related to both CBF1 and CBFS3 (Figure|3.3/A). However, none
of the 2,385 probes were associated with all three CBF probes by having all pCID
with p-values > 0.05 given any two CBF probes (Figure )

The PCC/pPCC method identified fewer significant probes than the CID/pCID.
Among the 2,385 probes, 78% (1,862 probes) were significantly associated (PCC/pPCC
permutation p-values < 0.05) with at least one of the three CBF probes of interest
in terms of their expression levels (Figure [3.3B). However, 63% (1,169 probes) of
the significant probes were found to be relevant to more than one of the three tran-
scription factors; 105 probes were related to all three transcription factors. There
were 1,849 probes commonly identified by both the CID/pCID and PCC/pPCC
methods (Figure [3.3C). Five well known CBF target genes, COR6.6 (246481_s_at),
CORT8 (248337_at), CORAT (259570_at), COR15B (263495_at), and COR15A
(263497 _at), were all commonly identified by both the CID/pCID and PCC/pPCC
methods.

There were 328 and 13 probes, respectively, that were only identified by the
CID/pCID or the PCC/pPCC method. This outcome implied, first, that PCC/pPCC
was more sensitive (but maybe less specific) for identifying linear relationships than
the CID/pCID method, and second, that the CID/pCID method identified nonlin-
ear patterns of regulation of transcription factors to their target genes. More genes
were identified as being significantly associated with more than two CBF TF's by the
PCC/pPCC method, even though we initially expected the association to have been
relatively weakened after removing the effect from the first identified CBF TF’s.

Gene set enrichment analysis (Du et al., 2010) was performed on 2,177, 1,862,
and 1,849 probes identified as being associated with at least one of the three CBF
probes by the CID/pCID method, the PCC/pPCC method, or by both, respectively.
There were 154, 134, and 132 significant gene ontology (GO) accessions enriched
(FDR < 0.01), respectively, where 124 GO accessions were commonly identified
(Figure ) Information for 29 GO accessions identified as being significantly
enriched only by the CID/pCID method is listed in Table We investigated
further into two accessions: GO:0052544 (callose deposition in cell wall during de-
fense response) and GO:0052482 (cell wall thickening during defense response); both
accessions were identified through the same seven significant probes (264052_at,

264873 _at, 262899 at, 254270 _at, 253534 _at, 267392_at, and 255378 at), and all of
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A. Cold responsive genes B. Cold responsive genes

by CID/pCID by PCC/pPCC

C. Cold responsive genes by D. Enriched GO accessions by
CID/pCID and/or PCC/pPCC CID/pCID and/or PCC/pPCC
PCC/pPCC

CID/pCID

Figure 3.3: Venn diagrams of the 2,385 cold-responsive genes associated with
three CBF transcription factors according to (A) the CID/pCID method, (B)
the PCC/pPCC method, and (C) the CID/pCID method and/or the PCC/pPCC
method. (D) Venn diagrams of the significantly enriched gene ontology accessions
according to the CID/pCID method and/or the PCC/pPCC method.

25



Table 3.5: Information for 29 GO accessions identified as being significantly enriched
according to CID/pCID significance.

Accession? Type? Description FDR

G0:0016138* P glycoside biosynthetic process 0.0003
GO:0051179% P localization 0.0003
GO:0006810* P transport 0.0012
GO:0051234* P establishment of localization 0.0014
G0:0033036* P macromolecule localization 0.0024
GO:0052542 P callose deposition during defense response 0.0031
GO:0007166 P cell surface receptor linked signaling pathway 0.0033
GO:0033037 P polysaccharide localization 0.0049
GO:0052545 P callose localization 0.0049
GO:0044272% P sulfur compound biosynthetic process 0.0050
GO:0007275*% P multicellular organismal development 0.0070
GO:0007167 P enzyme linked receptor protein signaling pathway 0.0073
GO:0007169 P transmembrane receptor protein tyrosine kinase sig- 0.0073

naling pathway

GO0:0010200% P response to chitin 0.0075
GO:0052544 P callose deposition in cell wall during defense response 0.0084
GO:0052482 P cell wall thickening during defense response 0.0084
GO:0010876* P lipid localization 0.0095
GO:0032555* F purine ribonucleotide binding 0.0014
GO0:0032553* F ribonucleotide binding 0.0014
GO:0000166* F nucleotide binding 0.0019
GO:0032559*% F adenyl ribonucleotide binding 0.0027
GO:0017076* F purine nucleotide binding 0.0032
GO:0005524* F ATP binding 0.0042
GO:0004713 F protein tyrosine kinase activity 0.0057
GO:0010011 F auxin binding 0.0061
GO:0005506 F iron ion binding 0.0062
GO:0001882*% F nucleoside binding 0.0071
GO:0001883* F purine nucleoside binding 0.0071
GO:0030554* F adenyl nucleotide binding 0.0071

'Eighteen accessions containing the 42 genes associated with nore than one CBF
TFs according to CID/pCID are marked ‘*’. 2Accession types: biological process
(P), cellular component (C), and molecular function (F).
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them were also identified as significant by the PCC/pPCC method except 264052 at
(AT2G22330) and 253534 _at (AT4G31500); both were associated with CBF1 by the
CID /pCID method and were confirmed to be cold-responsive genes through a liter-
ature search (Fowler and Thomashow, 2002; Lee et al., 2005). Scatter plots of the
expressions of these two probes to the expressions of CBF1 (Figure ) show that
only moderate linear relationships exist when the log2 expression levels of CBF1
were greater than 7; the scattered patterns when CBF1 lowly express weakened the
linearity (r = -0.13 and -0.14, respectively). By plotting the average log2 expression
levels (Figure [3.4B), we observed that the expressions of 264052 at and 253534 at
descended along with those of CBF1 from 3H to 24H after cold treatment.
Conceptually, the CID values are computed from the cumulative discrepancies
between the marginal and conditional distributions. By comparing such discrep-
ancies observed from each sample, we are able to check in which sample subsets a
stronger association between the predictor and the target variables can be observed.
Figure [3.4C shows the percentages of the sample subsets that contributed to the
association of the CBF TFs with the significant genes. The dashed horizontal line
represents the value 1/26 = 0.038 when all 26 tissues X times X treatments combi-
nations equally contributed to the CID value. The information provided by the ex-
pression of CBF'I from shoot tissue at 24H after treatment, for example, contributed
more than 15% of the significant CID(264052_at| CBF1) and CID(253534_at|CBF1),
respectively. More specifically, 264052_at and 253534 _at mostly had relatively large
expression values when the expression levels of CBF1 were around the range ob-
served from shoot tissue at 24 hour after treatment (from Figure [3.4A, or from
Figure showing the conditional CDF’s due to samples under 24H cold treat-
ment [yellow dashed lines| are above the marginal CDF [black solid line]). The
information provided for 264052_at by CBF1 from root and shoot tissues at one
hour after treatment also largely contributed the CID value, but 264052_at had rel-
atively high expression levels in shoot tissues but relatively low expression levels
in root tissues. This implies that the contributions of the sub-samples to the CID
values are capable of indicating the sample-specific gene-gene interactions.
Furthermore, 42 genes were associated with more than one CBF TF according
to the CID/pCID method but were not identified as significant by the PCC/pPCC
method. These genes were contributed to eighteen GO accessions enriched only
by the CID/pCID method (Table [3.5), where 253114 at (AT4G35860) associated
with both CBF1 and CBF3 contributed to the enrichment of 8 GO accessions. The
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Figure 3.4: Expression profiles and CID/pCID inferences of 264052 at and 253534 _at
based on expression levels of CBF1. (A) Scatter plots of log2 expression levels. (B)
Averages and standard deviations of log2 expression levels over time under control (CTRL)
or cold treatments. (C) Contribution to CID value by different sub-samples. C: control; S:
shoot; R: root. The dashed horizontal line indicates the nominal value 1/26. (D) Marginal
CDF (black solid line) and conditional CDF’s under 0.5H_R, 0.5H_S (red dashed lines),
1H R, 1H_S (green dashed lines), 12H R, 12H_S (pink dashed lines), 24H R, and 24H_S
(yellow dashed lines).
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gene corresponding to 253114 at was previously reported as a gene preferentially ex-
pressed in cold stored peach fruits (Tittarelli et al., 2009). By plotting the average
log2 expression levels over time (Figure ), we observed that the expressions of
CBF1 and CBF3 decreased from 6H to 24H after cold treatment, while the expres-
sion of 253114 _at increased. The percentages of the sample subsets that contributed
to the association of 253534_at with CBFI and CBF3 are shown in Figure [3.5B
and Figure [3.5(C. The information provided by the expression of CBF1 at 24H after
treatment contributed most to the significance of CID(253114_at|CBF1), and the
information provided by the expression of CBF3 at 3H after treatment contributed
most to the significance of pCID(253114_at|CBF3;CBF'1). A minor negative corre-
lation between CBF3 and 253114_at was also observed in the control samples from
6H to 24H. This feature was captured by the discrepancy between the marginal and
conditional distributions at 6H after treatment in the control shoot sample when
calculating pCID(253114 at| CBF3;CBF1) (Figure [3.5C). Further experiments can

be conducted to confirm these hypotheses.
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Figure 3.5: Expression profiles and CID/pCID inferences of 253114 _at based on
expression levels of CBF1 and CBF3. (A) Averages and standard deviations of
log2 expression levels over time under control (CTRL) or cold treatments. (B)
Contribution to CID(253114_at|C'BF'1) and (C) pCID(253114_at|C BF'3; CBF'1) by
different sub-samples. C: control; S: shoot; R: root. The dashed horizontal line
indicates the nominal value 1/26.
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3.4 Discussion

The CID values of Y given either one or two predictors provided hints regarding
how to guess about the approximate pCID values. For example, pCID(Y | X 1; X})
is approximately (0.1747 — 0.1176)/(1 — 0.1176) = 0.065 and pCID(Y|X6; X4) is
approximately (0.1191 —0.1176)/(1 — 0.1176) = 0.002 (see Table [3.1]). The latter is
much smaller than the former, reflecting their differing magnitudes of dependency.
After eliminating the impact from the more dominant variables, the signals from
the minor variables were enlarged and the pCID values were gradually increased as
the number of conditioning variables was increased.

The order of the variables declared relevant also provided hints about the order
of priority for statistical dependence. Linearity was superior to nonlinearity because
X4 was favored over X; and X, even though 10X, and 10sin(7wX;X5) contributed
the same range of Y in Model (3.1)). But the influence of X, (or X;) was stronger
than that of X5, which had only half the impact of X, on Y in the model. X3 and X5
having similar CID and pCID values (see Table but the range of 30(X3 — 0.5)?
and 5X;5 being [0,7.5] and [0, 5], respectively, means that X5 was 1.5 times ‘more
influential’ on Y than Xj3. Therefore, pCID values can serve as indicators for or can
even quantify different types of curvilinearity in regard to statistical dependence.

With a relatively large sample size (N = 100), 96% of the simulations correctly
selected more than four of five relevant variables, while the irrelevant variable Xjg
was falsely included in only three simulations (Figure ) Otherwise, 22% of the
simulations under the moderate sample size (e.g., N = 50) picked all five relevant
variables; 41% of the simulations picked four relevant variables, where X, was never
missed but X3 and X5 were missed in about 20% of the simulations (Figure [3.6B).
Also about 20% of the simulations claimed significance only for X;, X, and X,
(Figure [3.6B). For a small sample size (N = 25), CID / pCID lost sensitivities in
finding X5 (79% missed), X3 (78% missed), X7 (51% missed), Xy (44% missed),
and X, (17% missed) (Figure ). But Xg was selected in 8% of the simulations,

which is about the nominal o = 0.05.
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Figure 3.6: Number of the relevant variable X; (i = 1,2,3,5,6) being selected in
100 simulated samples of size (A) 100, (B) 50, or (C) 25 from the model YV =
10sin(7X1.X5) + 30(X5 — 0.5)* + 10X, + 5X5 + €, where X,’s were distributed as
U(0,1) and e was distributed as N (0, 1).
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Chapter 4

Application to gene regulatory
network

The gene regulation events under certain condition serve as small blocks to the
entire gene regulation network (GRN), which may be reconstructed by connecting
multiple regulation modules. An inferred GRN can therefore provide insights into
the relationships between genes of interest by experiments and the understanding
of biological functions with complex biological phenomena. More specifically, an in-
ferred GRN consisting of the nodes (representing genes) and the edges (representing
significant gene-gene interaction) reflects the gene regulation events that may con-
currently or sequentially occur under the condition of study. In this study, we focus
on the inference of GRN using the results of microarray experiments. It is usually
achieved by (1) identifying a pair of significantly associated genes, (2) elongating
the regulation path from the gene pair, and then (3) assembling all identified paths
to form the complex GRN (Figure [4.1]).

This study aims to infer the causality in a GRN using CID. A causal connection
between a pair of nodes means one is the origin (source) and the other is the con-
sequence (target) in the association. Such cause and effect relationship is usually
expected when studying the relationship between a transcription factor (TF) and its
target genes and is usually indicated as a directed edge in the network. Compared
to co-expression GRN (i.e., network with undirected edges), a cause-and-effect GRN
requires more information to put the direction on the edge. The direction is typically
assigned according to known biological evidences, which may not be available at all
time. In this study, we utilize the asymmetric property of CID (i.e., CID(Y|X) is
not necessarily equal to CID(X|Y)) to distinguish not only the associated gene pairs
but the causes / effects in a gene regulation event. Asymmetry is a very unique fea-

ture of CID whereas the some conventional methods, including PCC, pPCC and MI,
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(A) ~ Source (B)
A

Target
Al

(C) Source Source Source

Figure 4.1: Diagram of gene regulatory network inference workflow. (A) Identifi-
cation of a significantly associated gene pair. (B) Regulation path elongation. (C)
Assembly of all identified regulation paths.

provide symmetric results when considering the association between two variables.
More specifically, the gene Y is designated as the source and gene X, the target, in
the GRN if CID(Y|X) > CID(X|Y).

The pCID method could identify relevant genes in the elongation step. Ideally,
a proper stepwise procedure iteratively picks the relevant genes according to its
magnitude of association to the target until no more gene would significantly increase
the amount of association. For example, in Figure [1.1B, CID(Source A|Target Al)
would be significant while we also expect a significant CID(Source A|Target Al,
Target A2) but a insignificant CID(Source A|Target A1, X) given an irrelevant gene
X. However, due to the dominant effect of the most influential gene, i.e., Target A1,
in the first step, CID(Source A|Target Al, X) were mostly significant (see Section
3). The pCID resolves this problem by decomposing only the information of the

target variable which was not explained by the first predictor.

4.1 Construction of gene regulatory network by
CID/pCID

The inference of GRN has three steps (Figure . However, due to the dramatic
amount of genes simultaneously monitored in a microarray experiment, we develop
the following heuristic approach for the first two steps which were illustrated with
Figure 4.2l Given a source gene Ty, CID(T,|T;) for one of the candidate target

genes, T;, was computed in the first step. The candidate target genes may be all
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other genes in the same microarray dataset or user-defined. In order to reduce the
computation of the programming, we eliminated some irrelevant candidate target
genes which caused the CID(Tp|T;) values to be insignificant (p-value > 0.05) and
which were not proceeded to the following steps. Under the circumstance, the
source gene Ty was discarded as the origin of a regulation path when all CID(75|7;)
values were insignificant in the first run. Otherwise, if CID(7;|T(1)) had the single
smallest significant p-value among the results from all candidate target genes, we
connected the source gene Ty and the target gene T{;). Provided that there were
more than one CID(Tp|7;) value had the smallest significant p-value, we selected
T(1) which had the maximum of these CID(75|7;) value. The decision-making about
the direction between the source gene T and the target gene T(;) was based on
comparing the significance between CID(Ty|T(1y) and CID(T{1)|Tp). If CID(To|T{1))
was more significant than CID(7{1)|Tp) or if these two CID values had equal p-value
and the CID(Tp|T{1)) value was larger than CID(T(y)|T,) value, the direction was
from Ty to T(q); otherwise, the direction was from T(y) to Ty. The gene pair (75, T{1))
was proceeded to the elongation step.

In the elongation step, pCID(75|1}; T1y) and pCID(T(1)|T}; Tp) were computed
for one of the remaining candidate target genes, 7}, to identify the second relevant
target gene, T{y) (Figure[d.2). Suppose that all pCID(Tp|T}; Tiyy) and pCID(T(4)|T}; Tp)
values were insignificant, the regulation path would stop and the network was
with two nodes (Ty, T(1y). In other respects, the process was continued and there
were two routes to connect the regulation path. Provided that there were more
than one pCID(7p|7}; T(1y) or pCID(T(1)|T};Ty) value had the smallest significant
p-value among the results of the pCID(Ty|7}; T(1)) and pCID(T()|T}; Tp) from all
remaining candidate target genes, we selected T{) which had the maximum of these
pCID(Ty|Tj; T(1y) and pCID(T(1)|T}; Tp) values. One of these routes was that we con-
nected the gene Ty and T{y), if T{) was selected as a result of the pCID(To|T(2); T(1))
value. The decision of the direction by pCID values was similar to the previous
resolution by CID values. The direction was from Tp to T{y), if pCID(T0|T(2);T(1))
was more significant than pCID(7{9)|To; T{1y) or if these two pCID values had equal
p-value and the pCID(Ty|T(2); T(1)) value was larger than pCID(T 2)|To; (1)) value; or
from Ty to Ty, otherwise. The other route was that we connected the gene T(;) and
T2), if T(2) was selected as a result of the pCID(T(1|T(2); T) value. The direction was
from T{qy to T(z), if pCID(T(1)|T(2); To) was more significant than pCID(T(2)|1{1; To)
or if these two pCID values had equal p-value and the pCID(T(y)|T2); Tp) value was
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CID(T, | T(5)) is most significant

Direction: From Ty to Ty, if CID(T,| Tjy)) is more significant than
CID(T(4)| To) or if they have equal p-value and CID(Ty|Ty)) > CID(T(1)| To).

o Y

pCID(T, | T(3);T(y) is most significant pCID(T (4| T();To) is most significant

Direction: From Ty to Ty, if pCID(Ty| Tjz);T(y)) is more
significantthan pCID(T ;)| To;T(y)) or if they have equal p-value
and pCID(Ty| Tz Tiay) > PCID(T o) Tei Tyy) -

Direction: From Ty to Ty, if pCID(T(y)| Ty Ta) is more
significant than pCID(T(Z)ITm;TD) or if they have equal p-value
and pCID(T(y)| T2y To) > PCID(Tio | T2y To) -

Figure 4.2: Illustration of the heuristic approach for regulation path elongation.
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larger than pCID(T(2)|T(1y; To) value; or from Tis) to 11y, otherwise. This finished
the first run of the elongation.

Furthermore, we explain the next steps of GRN construction. In the rth run
(r > 2) of the elongation, all possible values of pCID(S|T}; {To, T(1y,- <+, Ty} \ )
for one of the remaining candidate genes, T}, and S € {1y, T(1, ..., T(y)} were com-
puted. Suppose that all pCID(S|T}; {70, Tny, .., T} \S) values were insignificant,
the regulation path would stop and the network was with r + 1 nodes (7o, Ty, - . .,
T(+y). Provided that there were more than one pCID(S|7T}; {To, T(1),---, T} \ S)
value had the smallest significant p-value among the results of the pCID(S|T;
{To, Ty, ..., T} \ S) from all remaining candidate target genes, we selected T{,11)
which had the maximum of these pCID(S|7T};{To,T(1),-.., T} \ S) value and
connected the target gene S and T{,41). The direction was from S to T{,;y), if
pCID(S|T 41y {16, Ty, -, Ty} \ S) was more significant than pCID(T(,41)]S;
{To, Ty, ..., Ty} \ ) or if these two pCID values had equal p-value and the
pCID(S|T 41y {16, T(ays - - -, Ty } \ S) value was larger than the pCID(T{,41)]5; {70,
Ty, - Ty} \S) value; or from T{, 41y to S, otherwise. The whole elongation process
was continued until all of the pCID(S|T; {To, T(1y, - - -, T(¢)} \S) values in the eth run
of the elongation were insignificant (p-value > 0.05). The resulting network would
contain e+ 1 nodes (7o, T(1y, - . ., T(¢)). For example, Figure 4.3 illustrates one of the
GRN construction results. Let Ty be the source gene and the other genes be the
target genes. First (Step (0) in Figure 4.3), we computed all CID values of Tj given
one of the target genes, and then CID(75|7{1)) had the most significant p-value, we
connected the Ty and T(;y with the direction was from Ty to T{;) when the value of
CID(T5|T(1y) > CID(T{1y|Tp). Second (Step (1)), we selected the target gene, T\,
which might be connected with Tj or T{y. Therefore, we computed the pCID(Tp|T5;
T(1y) and pCID(T(1)| : To), where T; was one of the remaining genes. The result was
that pCID(T,|T(2); T(1y) had the most significant p-value and T{9) was connected with
Ty from Ty to T When pCID(To|T12); T(1y) > pCID(T(2)|To; Try) value. In Step (2),
the next selected gene, T(3), could be connected with Tj or Ty or T(3). We computed
the pCID(T0|T5; T(1y, T(2)), PCID(T(1y|T5; To, T(2)) and pCID(T(2)|T}; To, T(1y), where
T; was one of the remaining genes. The result was that pCID(To|1{s); T(1), T{2)) had
the most significant p-value and T(3) was connected with T from T3y to Ty when
pCID(T(3)|To; Ty, T(2)) > pCID(To|T(3); Thr), T2y). In Step (3), the chosen target
gene, T(y), Would be connected with one of the prior selected genes (1, T(1), T{(2)
and 1(3)). We computed the pCID(To|T}; Ty, T2y, 1(3)), PCID(T(0y|Ty; To, T2y, T3))
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(0) CID(T, | T(y)) is significant,
its p-value is minimum, and
CID(T,| T(1)) > CID(T(l) | To)

(1) pCID(T, | Tz Tiyy) is significant, its p-value is
minimum, and pCID(Ty | T(2);T(1)) > PCID(T 5| T; ()

(2) pCID(Ty| T(); Ty T)) is significant,
its p-value is minimum, and
pCID(T(3) |T0;T(1)'T(2)) > pCID(T,| T(3)JT(1)'T(2))

(3) PCID(T ) | T2y To, Ty T3)) is significant,
its p-value is minimum, and
pCl D(T(z) |T(4);T0,T(1),T(3)) > pCl D(T(4) |T(2);T0,T(1),T(3))

(4) pCID(T o) | T5);To T (1) T ()T () is significant, its p-value is minimum,
and pC|D(T(5) |T(z)}To;T(1);T(3);T(4)) > pC|D(T(z) |T(5)}T0;T(1);T(3);T(4))

Figure 4.3: Illustration of the simple example for regulation path elongation used
by CID/pCID method.

pCID(T(9)|Tj; To, Ty, Tisy) and pCID(T3)|1}; To, T(ay, T(2)), where T} was one of the
remaining genes. Therefore the pCID(T(2)|T(4); To,T1), T(3)) had the most signifi-
cant p-value and {4 was connected with Ty from T{s) to T(4) when pCID(T(2)|1 4);
To, T1y, T(3)) > pCID(T(4)|T(2y; To, Ty, T(3)).- In Step (4), the chosen target gene,
T(5), would be connected with one of the previous selected genes (Tp, T(1y, 1(2),
T3 and T(y)). We computed the pCID(To|7T}; Thy, T2y, T(s), T(ay), PCID(T(1y|T};
To, T2y Tis), Tray) s PCID (T T35 To, Ty, Tisys Tiy), CID(Tis) [ T35 To, Ty Tz, Tiay)
and pCID(T(4)|T; To,T(1y, T(2), T(3)), where T; was one of the remaining genes.
Therefore the pCID(T(2)|1(5); To, T(1), T(3), T(1y) had the most significant p-value and
15 was connected with T{) from T(s5) to Ta) when pCID(T(s)|T{2); To, Ty, T(s), T(ay)
> pCID(T(9)|T(5); To, T(1y, T(3), T(ay)- In the next step, we wanted to find the next
linked gene () but all of pCID(S|Tj; {To, T(1y, - - -, (5} \ S) values were insignificant
(p-value > 0.05), where S was one of these previous selected genes, To, T(1), T(2), T(3),
Ti4y and Tis).

4.2 Simulation study

The proposed procedure of GRN inference was examined in the simulation study. A
pseudo network with six nodes (genes) was generated according to normal mixture
model (Figure [£.4)). It contained one source node (A1l), four target nodes (A21,
A22; A31 and A32), and one node (B) independent to the others. The expression

levels of nodes A1l and B were randomly generated from the Normal distribution
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with mean and standard deviation both equal to 1, which was denoted by N(1,1).
The expression levels of the target nodes would be affected by two factors of its direct
source: the expression level and the binding efficiency. This intended to mimic the
occasions (1) the transcription factor was not expressed so that the target gene would
not be regulated by the source gene, and (2) even the source gene was expressed,
the target gene may still not be regulated by the source gene due to various binding
efficiency of the transcription factor. Let S and T denote the direct source and the
target gene, respectively. In the simulated network (Figure , A11 was the direct
source of {A21, A22} and A21 was the direct source of {A31, A32}. If the binding
efficiency for this pair of S and T" was set to be 1000%), then 100(1—b)% of the objects
in the sample were not affected by the expression level of S and their expression
levels were generated from N(—1,0.25). The binding efficiency (b) for {A11, A21},
{A11, A22}, {A21, A31}, and {A21, A32} were 0.9, 0.7, 0.9, and 0.8, respectively.
For the 1006% objects that the regulation did take place, if the expression level of
S in the ¢th sample was s;, the expression level of the ith sample was randomly
generated from N(s;,0.25) if s; > 0 and from N(—1,0.25) if s; < 0 (meaning S was
not expressed). Based on statistical theory, the approximate proportions of gene
expressions of the target gene actually determined by the expression levels of the
source gene were indicated next to the arrows in Figure [£.4, The inference process
of the proportions of gene expressions of the target gene was showed in Appendix
A. The pseudo network was replicated 100 times with sample size N = 25, 50 and
100.
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Simulation setup

Figure 4.4: Pseudo network for the simulation study. The numbers next to the
arrows illustrate the proportions of the objects in the sample that the expressions
of the target node actually determined by the expressions of the source node.

A pseudo network with six nodes (genes) was generated to assess the proposed
procedure of GRN inference (Figure. Two source genes, A1l and B, were prede-
termined. The CID and pCID values as well as their p-values for a particular simu-
lation under sample size N =50 are shown in Table [£.1] for demonstration of network
reconstruction. Starting from A1l, the CID(A11|B) value was insignificant (p-value:
0.4136 > 0.05), hence the node B did not exist in the following steps. Then the re-
sults showed CID(A11|A21), CID(A11|A22), CID(A11|A31) and CID(A11|A32) had
the minimum p-value (0.0010) and CID(A11|A22) value (0.2028) was the maximum
of these CID values, so that A22 would be selected as the first node connected to
Al1l. Because CID(A11|A22) and CID(A22]|A11) had the same significant p-value
(0.0010) and CID(A11|A22) value (0.2028) was larger than CID(A22|A11) value
(0.1791), the direction was set from A1l to A22. The computation of pCID(A11|x;
A22) and pCID(A22|z; All) for another gene x followed and resulted in the se-
lection of A21 as the second node connected to A1l due to that pCID(A11|A21;
A22) had the smallest p-value (0.0010) and the largest pCID value (0.1013). The
direction was set from A1l to A21 because pCID(A11|A21; A22) had the same sig-
nificant p-value (0.0010) as pCID(A21|A11; A22) and it’s value (0.1013) was larger
than pCID(A21|A11; A22) value (0.0934). Similarly, the third and fourth target,
A31 and A32, was selected based on pCID(A21|A31; A11, A22) and pCID(A21|A32;
A11, A22; A31); both A31 and A32 was connected from A21 due to pCID(A21|A31;
Al11, A22) was equal significant (p-value: 0.0010) to and has larger value than
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Table 4.1: The estimated CID and pCID values in one of the 100 simulations with

sample size N = 50.

CID/pCID

Estimate (p-value) CID/pCID

Estimate (p-value)

CID(A11]A21)
CID(A11]A22)
CID(A11]A31)
CID(A11]A32)
CID(A11|B)

0.1936 (0.0010)

0.2028 (0.0010) CID(A22|A11)

0.1612 (0.0010)
0.1281 (0.0010)
0.0129 (0.4136)

0.1791 (0.0010)

pCID(A11]A21;A22
pCID(A11]A31;A22

0.1013 (0.0010) PCID(A21|A11;A22)

0.0639 (0.0020)

0.0934 (0.0010)

)

)
pCID(A11|A32;A22) 0.0534 (0.0010)
pCID(A22|A21;A11) 0.0582 (0.0060)
pCID(A22|A31;A11) 0.0446 (0.0100)
pCID(A22|A32;A11) 0.0500 (0.0090)
pCID(A11|A31;:A21,A22 0.0097 (0.2208)

pCID(A11]A32;A21,A22

pCID(A22|A31;A11,A21

)
)
)
pCID(A21|A32;A11,A22)
)
pCID(A22|A32;A11,A21)

0.0130 (0.1858)

0.1131 (0.0010) pCID(A31|A21;A11,A22)

0.0929 (0.0010)
0.0122 (0.3227)
0.0205 (0.1638)

0.1123 (0.0010)

pCID(A11|A32;A21,A22,A31

(

(

(

(

(

E
pCID(A21]|A31;A11,A22

(

(

(
( )
pCID(A21|A32;A11,A22,A31)
( )
)

pCID(A22|A32;A11,A21,A31

0.0123 (0.5465)

0.0553 (0.0020) pCID(A32|A21;A11,A22,A31)

0.0162 (0.5415)

0.0576 (0.0350)

pCID(A31|A32:A11,A21,A22) 0.0298 (0.1788)
CID(BJAL1) 0.0036 (0.9999)
CID(B|A21) 0.0202 (0.2468)
CID(B|A22) 0.0012 (0.9990)
CID(B|A31) 0.0137 (0.4905)
CID(B|A32) 0.0090 (0.6563)
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pCID(A31|A21; A11, A22) (value: 0.1131 > 0.1123), and pCID(A21]|A32; A11, A22,
A31) was more significant than pCID(A32|A21; A1l, A22, A31) (p-value: 0.0020
< 0.0350) even though pCID(A21|A32; A1l, A22, A31) value (0.0553) was smaller
than pCID(A32|A21; A11, A22, A31) value (0.0576), respectively. When consider-
ing the negative-control node B as the source node, it had all insignificant values
of CID at the first step of GRN inference and was isolated from the other nodes.
Therefore, the resulting network was identical to our setting showing in Figure [4.4]

We also collected all networks reconstructed under the source node was All in
the simulations for N = 25, 50 and 100; networks consisting of the same set of
nodes were grouped together and the groups occurred at least 5 times were shown
in Figure Fourteen resulting networks obtained the correct network structure
among these one hundred simulations for N = 25, sixty-five correct networks were
restructured for N = 50 and eighty-one correct networks were for N = 100. For N
= 25, 54% of the simulations only revealed the partial network; when using a larger
sample (N = 50), as few as 10 simulations obtained partial network; moreover, there
were not any partial network under the sample of size N = 100. In addition, we
could observe that the two nodes were sometimes discarded to produce the partial
networks, if the proportion of gene expressions of the target gene actually determined
by the expression levels of the source gene was lower than 76% (Figure under
the sample of size N = 25. In other words, the edges between (A1l, A22) and
(A21, A32) could be missed in the reconstruction of pseudo network. Similarly,
the edge between (All, A22) would be discarded when the proportion of A22 gene
expressions actually determined by A1l was lower than 60% (Figure under the
sample of size N = 50. In this instance, the GRN would be accurately reconstructed
in the large sample.

The asymmetric property of CID was utilized to infer causal effect in the network.
When CID(Y|X) was more significant than CID(X|Y") or pCID(Y'|X; Z) was more
significant than pCID(X|Y’;Z), Y was claimed to be the source of the relationship.
In Figure 4.5 and Figure [4.6] the numbers of arrows which pointed to correct direc-
tions were shown beside the arrows outside of the parentheses whereas the numbers
of incorrect directions in the parentheses. In Figure [4.6] we combined all the correct
connections between two nodes from 100 simulations for N = 25, 50 and 100. When
the sample of size N = 25 and the source node was A11, there were 88% of networks
to connect (A11, A21) together, 86% for (A21, A31), 55% for (A11, A22), and 40%
for (A21, A32); 2% of the networks included the negative control node, B (Figure
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A. N = 25:

14/100:

B. N =50:

65/100:

C. N =100:

81,/100:

Figure 4.5: The results of the network reconstructed under the source node was A1l
based on the procedure in Section 4.1 (Exclude the insignificant node by CID, and
pick up the connected node which has the minimum significant CID/pCID p-value,
if there existed at least two nodes which fitted the requests, we chose the node that
had the maximum CID/pCID value) from 100 simulations of pseudo network for
N = 25, 50 and 100, respectively. The numbers next to the arrows illustrate the
number of connection from the source node to the target node; besides, the number
of connection in the brackets illustrated the inverse direction.
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A. Simulation setup B. Results of N =25

Figure 4.6: Pseudo network for the simulation study based on the procedure in
Section 4.1 (Exclude the insignificant node by CID, and pick up the connected
node which has the minimum significant CID/pCID p-value, if there existed at least
two nodes which fitted the requests, we chose the node that had the maximum
CID/pCID value). (A) The numbers next to the arrows illustrate the proportions of
the objects in the sample that the expressions of the target node actually determined
by the expressions of the source node. (B), (C) and (D) were the results which were
combined with all connection from 100 simulations when the source node T, was
A1l for N = 25, 50 and 100, respectively.
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B). When N = 50, 97%, 99%, 82%, and 88% of the networks contained the
edges between (A11, A21), (A21, A31), (Al1, A22) and (A21, A32), respectively,
while 7% of them had the negative control node, B (Figure 4.6 C). When N = 100,
99%, 100%, 99%, and 94% of the networks contained the edges between (A11, A21),
(A21, A31), (A11, A22) and (A21, A32), respectively, while 12% of them had the
negative control node, B (Figure D). When the negative control node, B, was set
to be the source gene, 16% (Figure [4.6|B), 21% (Figure 4.6{C) and 26% (Figure
D) of the networks were significant build at o = 0.05. However, the false networks
were built spontaneously without consensus. All false networks started from B of
the same combination of nodes only appeared less than or equal to five times in
100 simulations for N = 25, 50 and 100. Therefore, CID/pCID method robustly
identified the relationships between nodes and extended the association network.

The medians and interquartile ranges of some CID and pCID values summarized
from 100 simulations were shown in Table[4.2l The CID values of A1l to a directed
or undirected associated node were much larger than the CID values of A1l to the
irrelevant node B. Also, it could be observed that CID(A11|A21) > CID(A11|A22),
CID(A11|A31) > CID(A11|A32), and CID(A11]A21) was larger than the maximum
of CID(A11]|A31) and CID(A11|A32) values. Therefore, CID value can not only
distinguish the existence of association but also reflect the strength of the associ-
ation and successfully pick the direct (or strongest) association among all possible
connections. In addition, 100% of CID(A11]A21) and CID(A21|A11) values were
declared significant if setting o = 0.05. The pCID values further assisted to select
next All-related or A21-related node after eliminating the effects from A21 and
A11, respectively. Among these pCID values, 100% of pCID(A21|A31; A11) values
were significant at o = 0.05 and the medians of pCID(A21]A31; All) values in
different sample of size N were maximum, A31 was the most likely to be selected
as A2l-related node after eliminating the effects from A11l. Furthermore, A22 was
possibly picked up to connect with A1l based on 63% significance for the sample
of size N =25 and 100% significance for N =100; A32 was possibly picked up to
connect with A21 according to 97% significance for N =50. In the final step, the
chance A32 being selected in the elongation process to connect with A21 was only
29% for the sample of size N =25, but there was 100% for N = 100; the chance
A22 being selected in the elongation process to connect with A1l was 83% for N =
50. On the other hand, the false positive rates of gene selection using either CID or
pCID were all about 0.05.
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Table 4.2: Summary of the estimated CID/pCID values in 100 simulations with
sample size N = 25, 50 and 100.

N =25 N =50 N = 100
Median (IQRY) DEUAR Nedian (1QR) DERIE Median (1QRY) S eEn

CID(A11|A21) 0.1967 (0.0534) 1.00  0.2049 (0.0527) 1.00 0.2319 (0.0378) 1.00
CID(A11|A22) 0.1100 (0.0568)  0.86  0.1232 (0.0522)  1.00 0.1402 (0.0331) 1.00
CID(A11|A31) 0.1348 (0.0631)  0.93  0.1457 (0.0610)  1.00 0.1600 (0.0345) 1.00
CID(A11|A32) 0.1130 (0.0708) 0.86 0.1233 (0.0499) 1.00 0.1328 (0.0377) 1.00
CID(A11|B) 0.0281 (0.0369) 0.06 0.0157 (0.0166) 0.13 0.0119 (0.0077) 0.16
CID(A21|A11) 0.1941 (0.0609)  1.00  0.2024 (0.0510)  1.00 0.2310 (0.0302) 1.00
pCID(A11]|A22;A21) 0.0781 (0.0425)  0.74  0.0824 (0.0496)  0.96 0.0842 (0.0304) 1.00
pCID(A11]A31;A21) 0.0359 (0.0320) 0.22  0.0297 (0.0226) 0.55 0.0172 (0.0165) 0.83
pCID(A11]|A32;A21) 0.0309 (0.0319) 0.19  0.0221 (0.0212) 0.40 0.0122 (0.0156) 0.72
pCID(A21|A22;A11) 0.0358 (0.0312)  0.19  0.0210 (0.0221)  0.33 0.0091 (0.0140) 0.61
pCID(A21|A31;A11) 0.1301 (0.0431)  1.00  0.1285 (0.0356)  1.00 0.1320 (0.0272) 1.00
pCID(A21]A32;A11) 0.0937 (0.0412) 0.93 0.1017 (0.0350) 1.00 0.0989 (0.0259) 1.00
pCID(A31|A21;A11) 0.1274 (0.0570)  0.92  0.1258 (0.0431)  1.00 0.1397 (0.0215) 1.00
pCID(A11|A22;A21,A31) 0.0764 (0.0536) 0.63 0.0772 (0.0461) 0.88 0.0838 (0.0385) 1.00
pCID(A11]|A32;A21,A31) 0.0239 (0.0238) 0.04  0.0156 (0.0182) 0.09 0.0086 (0.0148) 0.23
pCID(A21|A22;A11,A31) 0.0202 (0.0242)  0.11  0.0126 (0.0197)  0.15 0.0009 (0.0156) 0.33
pCID(A21|A32;A11,A31) 0.0517 (0.0381)  0.52  0.0567 (0.0265)  0.97 0.0611 (0.0247) 1.00
pCID(A31|A22;A11,A21) 0.0160 (0.0211) 0.03 0.0057 (0.0137) 0.04 -0.0039 (0.0134) 0.07
pCID(A31|A32;A11,A21) 0.0295 (0.0273)  0.16  0.0237 (0.0238)  0.32 0.0195 (0.0181) 0.68
pCID(A22|A11;A21,A31) 0.0615 (0.0440) 0.18 0.0611 (0.0238) 0.86
pCID(A32|A21;A11,A31) 0.0486 (0.0222) 0.41

pCID(A11]A32;A21,A22,A31) 0.0206 (0.0205) 0.01 0.0095 (0.0104) 0.14
pCID(A21|A32;A11,A22,A31) 0.0479 (0.0379)  0.29 0.0584 (0.0238) 1.00
pCID(A22|A32;A11,A21,A31) 0.0237 (0.0211)  0.01 0.0128 (0.0130) 0.02
pCID(A31]A32;A11,A21,A22) 0.0316 (0.0262) 0.08 0.0259 (0.0150) 0.41
pCID(A32|A21;A11,A22,A31) 0.0407 (0.0369)  0.02 0.0493 (0.0171) 0.59
pCID(A11|A22;A21,A31,A32) 0.0793 (0.0446)  0.83

pCID(A21|A22;A11,A31,A32) 0.0123 (0.0189)  0.03

pCID(A31|A22;A11,A21,A32) 0.0119 (0.0188)  0.07

pCID(A32|A22;A11,A21,A31) 0.0143 (0.0192)  0.02

pCID(A22|A11;A21,A31,A32) 0.0626 (0.0341) 0.35

CID(B|A11) 0.0273 (0.0285) 0.08 0.0167 (0.0163) 0.07 0.0119 (0.0100) 0.10
CID(B|A21) 0.0220 (0.0231)  0.06  0.0144 (0.0129)  0.04 0.0103 (0.0072) 0.08
CID(B|A22) 0.0187 (0.0222) 0.03 0.0114 (0.0117) 0.05 0.0075 (0.0060) 0.04
CID(B|A31) 0.0199 (0.0239) 0.08 0.0125 (0.0149) 0.08 0.0079 (0.0086) 0.11
CID(B|A32) 0.0188 (0.0158) 0.05 0.0131 (0.0171) 0.11 0.0078 (0.0064) 0.09

T IQR = interquartile range.
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4.3 Arabidopsis microarray data analysis

C-repeat binding factors (CBF) would bind to the promoter regions of downstream
cold-regulated (COR) genes and induce COR genes expression under cold stress
(Thomashow et al., 2001; McKhann et al., 2008; Zhang et al., 2013). We ex-
ercised the gene regulation network (GRN) inference on the expression dataset
of Arabidopsis Thaliana under cold stress to reconstruct the well-known CBF-
COR regulatory network. The detailed description about this dataset from TAIR
database was in Section 3.3. After normalized and log2-transformed, the expres-
sions of eight probes, three C-repeat binding factors (CBF1 (probe ID: 254074 _at),
CBF2 (probe ID: 254075_at) and CBF3 (probe ID: 254066_at)) and five COR gene
family (CORG6.6 (probe ID: 246481_s_at), COR78 (probe ID: 248337_at), COR/7
(probe ID: 259570_at), COR15A (probe ID: 263497_at) and COR15B (probe ID:
263495_at)) , were taken to construct the GRN by CID/pCID method.

Three CBF genes took turns being the source of the regulation path elongation
while the other probes were all considered as potential targets. Figure (B), (C)
and (D) showed the reconstructed pathways from the soure CBF genes (rectangle
nodes), respectively. The blue nodes and arrows denoted the CBF genes and the
connections between CBF genes; the orange nodes and arrows denoted the COR
genes and the connections between COR genes; the pink arrows denoted the con-
nections between CBF and COR genes. The reconstructed pathways starting from
CBF2 (Figure[t.7(C)) and CBF3 (Figure[d.7/(D)) were the same; the pathway from
the source gene CBF1 (Figure (B)) was similar to them and just the directions
between CBF genes were different. Then we combined these pathways to recon-
struct GRN in Figure (A). Both CBF1 and CBF3 connected with CBF2 in the
sample, while CBF3 had direct contact with the studied downstream COR genes.
The CORG6.6 was the first receiver of the information passed down from CBF genes,
which further influenced COR78 and COR15B. By contrast, COR47 and COR15A
served as signal providers to the resulting path.

The heatmap and cluster analysis of CBF and COR relative gene expressions
of different stressed conditions to their corresponding control samples was shown
in Figure 1.8l The expressions of CBF genes on cold stress were increase early
than COR genes, hence they would be the upstream of COR genes. Among them,
CBF3 had high expressions from 3hr to 12hr and lasted out longer than the other
CBF genes. For that reason, C'BF3 might induce COR genes principally in our
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Figure 4.7: Reconstruction of CBF-COR regulatory network with eight genes under
cold stress was based on CID/pCID method. (A) Combination of the pathways
from three source genes (CBF1, CBF2 and CBF3). (B), (C) and (D) were the
pathways from the source genes, CBF1, CBF2 and CBF3, respectively. Rectangle
nodes indicate the source genes. Ellipse nodes are the candidate target genes.
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Figure 4.8: Cluster analysis and heatmap. A heatmap visualization of the log2
relative treatment gene expression levels for the CBF and COR probes. R, root; S,
shoot.
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CID/pCID network results (Figure 4.7 (A)). Besides, expression of COR47, COR7S,
COR15A, COR15B and COR6.6 was activated by CBF3 in cold stress (Sakuma et
al, 2006). On the other hand, COR/7 and COR6.6 had similar expression levels;
COR15A expressions were close to COR15B. The expressions of COR78, COR15A
and COR15B had a tendency towards high level as time and CORT78 expressions
occurred early of them. About the result of cluster analysis was shown the CBF
and COR gene expressions could be separated into two groups.

Suppose that the regulation of CBF and COR genes was not discovered in bi-
ology. Each of eight probes was interchanged to be the source node of the gene
pathway and the other seven probes would be the candidate target genes. The
pathways of the CBF genes had exhibited in Figure 4.7 (B), (C) and (D). The other
pathways of COR genes were shown in Figure (B), (C), (D), (E) and (F). The
reconstructed pathways starting from COR15A (Figure[4.9|(E)) and COR15B (Fig-
ure (F)) were the same; the pathway from the source gene COR47 (Figure
(B)) was similar to the result of COR6.6 (Figure (C)) and just the direction
between CBF1 and CBF2 was different; the pathway from COR78 (Figure[4.9] (D))
was different from others. However, there existed reverse direction between CBF
and COR genes (pink arrows) in the pathways starting from each of COR genes.
Based on the above pathways, the reconstructed GRN in Figure (A) had 9%
(5/54) reverse directions. Therefore, the reconstructed GRN based on CID/pCID
could be more accurate while the source node had evidenced to be the upstream

regulatory gene in biology.
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Figure 4.9: Reconstruction of CBF-COR regulatory network with eight genes under
cold stress was based on CID/pCID method. (A) Combination of the pathways
from all source genes (three CBF and five COR genes). (B), (C), (D), (E) and (F)
were the pathways from the source genes, COR/7, COR6.6, COR78, COR15A and
COR15B, respectively. Rectangle nodes indicate the source genes. Ellipse nodes are
the candidate target genes.
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4.4 Rice microarray data analysis

The second dataset was to study the bHLH (basic helix-loop—helix) Pathway in
rice (Oryza Sativa). The expressions data were downloaded from the NCBI-GEO
database [ http://www.ncbi.nlm.nih.gov/gds| (accession numbers GSE6901 and GSE
14275). The GSE6901 dataset includes gene expression of the 7-day-old light-grown
rice seedlings under drought, salt and cold stresses from 9 samples (three biological
replicates of each stress) as well as the gene expression from the adjacent controlled
conditions of 3 samples. The GSE14275 dataset includes gene expression of the 14-
day-old light-grown rice seedlings under heat shock stress from 3 samples and the
gene expression from the adjacent controlled conditions of 3 samples. Both datasets
hybridized the RNA samples on Affymetrix microarrays (NCBI-GEO accession num-
ber GPL2025). The raw expression data of 51,279 probes from 18 samples also went
through pre-processing using the RMA method and log2 transformed. In this study,
we were interested in the 167 genes that were previously reported as related genes
involving in bHLH Pathway (Li et al., 2006). Through matching the annotations of
the affymetrix probe 1D, we identified 128 bHLH-related probes in the microarray
(Table[B.1). Among them, 72 probes (61 genes) were called the G-box binders, which
meant recognizing and binding to the G-box sequence (5-CACGTG-3"), according
to Li et al. (2006). We also downloaded the gene sequences of the bHLH-related
genes in the microarray from RAP-DB (version 7.0) and found 104 probes (80 genes)
containing G-box sequences in their promoter regions. The 72 probes recognize the
G-box sequence and the 104 probes contain G-box sequences were designated as
source and the candidate target genes, respectively, to construct the bHLH gene
network. Besides, we match the 72 probes ID with 104 probes ID. There were 54
probes (45 genes) among these chosen probes to be appointed as source and the
candidate target genes.

A family of transcription factors bHLH in plant plays principal role in develop-
mental processes (Buck et al., , 2003). The abiotic stresses affect the growth of crops.
Up to the present, the functions of OsbHLH (Oryza sativa bHLH) transcription fac-
tors have not been studied completely. In this study, we explored the relationship
of the OsbHLH gene expressions under the abiotic stresses by CID/pCID and the
result of bHLH gene network was shown in Figure .10} The arrows indicate the
association between two OsbHLH probes by CID/pCID. Rectangle nodes indicate
the OsbHLH probes are the G-box binders and exclude G-box sequences. Ellipse
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nodes indicate the OsbHLH probes include G-box sequences and are not the G-
box binders. Octagon nodes are the G-box binders and include G-box sequences at
the same time. The gray nodes represent that could respond in different stress have
been verified in rice studies. OsbHLH001 (OsICE2) and OsbHLH002 (OsICE1) are
induced at the protein level in response to cold and salt stresses, but not effected
by cold stress on mRNA level (Nakamura et al., 2011). OsbHLH006 (RERJ1) was
shown to be up-regulated on drought stress (Kiribuchi et al., 2005, Miyamoto et al.,
2013); OsbHLHO009 (OsMYC') corresponded to Arabidopsis AtMYC2 (Zhu et al.,
2005) and AtMYC2 could induce the expression under drought stress (Abe et al.,
1997); OsbHLH062 (OsbHLH1) could be able to enhance the cold tolerance (Wang
et al., 2003); OsbHLH148 was induced by salt stress and resulted in activation under
cold stress (Seo et al., 2011); OsbHLH152 (OsPILI1) could reduce internode elonga-
tion under drought stress (Todaka et al., 2012). Besides, OsbHLH001, OsbHLH002
and OsbHLHO003 are related to the GO term, response to stress (GO: 0006950),
from agriGO (GO Analysis Toolkit and Database for Agricultural Community). In
Figure [4.10] we could observe that OsbHLH009 and OsbHLH148 connected with
the downstream gene , OsbHLH006, respectively. Furthermore, OsbHLHO006, Os-
bHLH009 and OsbHLH1/8 are important in drought stress.

In addition, OsbHLH010, OsbHLH024-1 (0s.10316.1.51_at), OsbHLH024-2 ( Os.
26054.1.51_s_at), OsbHLHO025-1 (0s.32770.1.51_x_at), OsbHLH031, OsbHLH032,
OsbHLHO033-2 (0s.8796.2.51_a_at), OsbHLHO044, OsbHLH058, OsbHLHO060, Os-
bHLH061, OsbHLH088, OsbHLH093, OsbHLH104-1 (0s.15089.1.51_at) and Os-
bHLH 104-2 (0s.44516.1.51_x_at) might be the key roles in abiotic stresses because
they had a lot of connections within these genes and with the other OsbHLH probes.
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Figure 4.10: The gene regulatory network for OsbHLH rice seedlings contained the
G-box binders and sequences under abiotic stresses is constructed by CID/pCID
method from the NCBI-GEO database. Each node is the code of the OsbHLH
number, for example 152 means the OsbHLH152. An arrow between nodes indicates
a connection is determined by CID/pCID. Gray nodes show the genes are related
to abiotic stresses have been confirmed from paper or GO term. Rectangle nodes
indicate the OsbHLH probes are the G-box binders and exclude G-box sequences.
Ellipse nodes indicate the OsbHLH probes include G-box sequences and are not the
G-box binders. Octagon nodes are the G-box binders and include G-box sequences

at the same time.
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4.5 Discussion

For diminishing the computation of the programming, some irrelevant candidate
target genes were eliminated in the first step of our proposed heuristic approach and
were not proceed in the next steps. However, we use the same approach without
eliminating the irrelevant genes to select the next genes for constructing the network.
In order to compare the results with these two programmings, we use the same 100
simulations of pseudo network for sample size N =25, 50 and 100. Consider a
particular simulation with N =50, which is the same as that is used in Table [4.1]
the CID and pCID values as well as their p-values are shown in Table 4.3 Starting
from the source node, All, the first selected node is A22 and the direction is set
from A11 to A22. For proceeding the steps, the results are A11 — A21, A21 — A31,
A21 — A32 and A21 — B. Next starting from the other source node, B, there are all
insignificant values of CID at the first step of GRN inference and was isolated from
the other nodes. Hence, the resulting network is distinct from the pseudo network
in Figure [£.4. We obtain another connection, A21 — B, which is unsuitable for our
expectations.

We also collect all networks reconstructed under the source node is All in the
simulations for N = 25, 50 and 100; networks consisting of the same set of nodes
are grouped together and the groups occurr at least 5 times are shown in Figure
Fifteen resulting networks match the correct network structure among these
one hundred simulations for N = 25, thirty-eight correct networks are restructured
for N = 50 and forty-seven correct networks are for N = 100. However, these
proportions of correct networks with different sample sizes are almost less than the
results of our proposed heuristic approach in Figure Because of using the new
approach may increase additional connections besides the complete network. There
are 23% and 39% of the simulations have additional connections with the negative-
control node B for N = 50 and 100, respectively. In addition, there also have the
partial networks. For N = 25, 47% of the simulations only reveal the partial network;
when using a larger sample (N = 50), as few as 8 simulations obtain partial network;
moreover, there were not any partial network under the sample of size N = 100.

In Figure [4.12] we combine all the correct connections between two nodes from
100 simulations for N = 25, 50 and 100. When the sample of size N = 25 and the
source node is A11, there are 88% of networks to connect (A1l, A21) together, 92%
for (A21, A31), 57% for (A11, A22), and 44% for (A21, A32); 14% of the networks
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Table 4.3: The estimated CID and pCID values in one of the 100 simulations with

sample size N = 50.

CID/pCID

Estimate (p-value) CID/pCID Estimate (p-value)

CID(A11|A21)
CID(A11]A22)
CID(A11]A31)
CID(A11]A32)
CID(A11|B)

0.1936 (0.0010)
0.2028 (0.0010) CID(A22|A11)
0.1612 (0.0010)

0.1281 (0.0010)

0.0129 (0.4136)

0.1791 (0.0010)

pCID(A11|A21;A22)

0.1013 (0.0010) PCID(A21|A11;A22) 0.0934 (0.0010)

pCID(A11|A31;A22) 0.0639 (0.0020)
pCID(A11|A32;A22) 0.0534 (0.0010)
pCID(A11|B;A22) -0.0040 (0.5894)
pCID(A22|A21;A11) 0.0582 (0.0060)
pCID(A22|A31;A11) 0.0446 (0.0100)
pCID(A22|A32;A11) 0.0500 (0.0090)
pCID(A22|B;A11) -0.0182 (0.9860)
pCID(A11|A31;A21,A22) 0.0097 (0.2208)
pCID(A11|A32;A21,A22) 0.0130 (0.1858)
pCID(A11|B;A21,A22) -0.0068 (0.7642)
pCID(A21|A31;A11,A22) 0.1131 (0.0010) pCID(A31|A21;A11,A22) 0.1123 (0.0010)
pCID(A21|A32;A11,A22) 0.0929 (0.0010)
pCID(A21|B;A11,A22) 0.0063 (0.5994)
pCID(A22|A31;A11,A21) 0.0122 (0.3227)
pCID(A22|A32;A11,A21) 0.0205 (0.1638)
pCID(A22|B;A11,A21) -0.0150 (0.9950)
pCID(A11|A32;A21,A22,A31)  0.0123 (0.5465)
pCID(A11|B;A21,A22,A31) 0.0075 (0.6853)
pCID(A21|A32;:A11,A22,A31)  0.0553 (0.0020) pCID(A32|A21;A11,A22,A31) 0.0576 (0.0350)
pCID(A21|B;A11,A22,A31) 0.0073 (0.6424)
pCID(A22|A32;A11,A21,A31)  0.0162 (0.5415)
pCID(A22|B;A11,A21,A31) -0.0003 (0.9830)
pCID(A31|A32;A11,A21,A22)  0.0298 (0.1788)
pCID(A31|B;A11,A21,A22) 0.0194 (0.4486)
pCID(A11|B;A21,A22,A31,A32) 0.0149 (0.5854)
pCID(A21|B;A11,A22,A31,A32) 0.0327 (0.0410)
pCID(A22|B;A11,A21,A31,A32)  0.0032 (0.9840)
pCID(A31|B;A11,A21,A22,A32) 0.0254 (0.5754)
pCID(A32|B;A11,A21,A22 A31)  0.0484 (0.0609)
CID(B|A11) 0.0036 (0.9999)
CID(B|A21) 0.0202 (0.2468)
CID(B|A22) 0.0012 (0.9990)
CID(B|A31) 0.0137 (0.4905)
CID(B|A32) 0.0090 (0.6563)
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A. N =25:

15/100: 15/100: 10/100:

B. N =50:

38/100:

C.N=100:

47/100: 13/100:

Figure 4.11: The results of the network reconstructed from 100 simulations of pseudo
network for N = 25, 50 and 100, respectively. The numbers next to the arrows
illustrate the number of connection from the source node to the target node; besides,
the number of connection in the brackets illustrated the inverse direction.
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A. Simulation setup B. Results of N =25

Figure 4.12: Pseudo network for the simulation study based on the procedure (Pick
up the connected node which has the minimum significant CID/pCID p-value, if
there existed at least two nodes which fitted the requests, we chose the node that
had the maximum CID/pCID value). (A) The numbers next to the arrows illustrate
the proportions of the objects in the sample that the expressions of the target node
actually determined by the expressions of the source node. (B), (C) and (D) were
the results which were combined with all connection from 100 simulations when the
source node Ty was A1l for N = 25, 50 and 100, respectively.
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include the negative control node B (Figure[4.12 B). When N = 50, 97%, 98%, 82%,
and 85% of the networks contain the edges between (A11, A21), (A21, A31), (A1l
A22) and (A21, A32), respectively, while 46% of them had node B (Figure
C). When N = 100, 99%, 100%, 97%, and 94% of the networks contain the edges
between (All, A21), (A21, A31), (A1l, A22) and (A21, A32), respectively, while
48% of them had node B (Figure [4.12] D). We can observe that the proportions
of networks which are combined all correct edges are similar to the outcomes in
Figure 4.6 However, the proportions of networks include node B are larger than
the results of our proposed approach and go up as the sample size increases. On the
other source node B, 16% (Figure [£.12] B), 21% (Figure C) and 26% (Figure
4.12| D) of the networks are significant build at o = 0.05. All false networks start
from B of the same combination of nodes only appear less than or equal to five
times in 100 simulations for N = 25, 50 and 100. Therefore, our proposed heuristic
approach which was eliminated some irrelevant nodes in the first step based on CID

has more accuracy.
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Chapter 5

Conclusions

We have proposed a strategy to select explanatory variables that are relevant to
the target variable using the CID along with the pCID without interference from
other essential variables. The proposed method is more sensitive to curvilinearity
and more specific to linearity than the PCC/pPCC method. It is also demonstrated
in the simulations that the proposed procedure is able to quantify various types of
associations in a stepwise manner. It also had the potential to index different levels
of curvilinearity. While practicing on real microarray data, we have noticed that
the CID/pCID procedure can not only identify cold-responsive genes but can also
capture sample-specific gene-gene interactions. Biologists may find the proposed
strategy useful in their efforts to extract meaningful relationships among genes out
of the noise when meta analysis is of large interest in the post-genomic era.

In addition, we have extended the CID/pCID method to construct the gene
regulatory network. The proposed heuristic approach can obtain more accurate re-
constructed network when the sample size increase in the simulation study. While
exercising a known gene regulatory network inference on gene expression data, we
have observed that the CID/pCID programming can acquire more consistent path-
way if the source gene is an upstream gene which has evidenced in biology. On
the other hand, we practice an unknown gene regulatory network inference to sup-
ply not only some notable genes but also the new network. Biologists can verify
the gene-gene interactions according to the experiments and explore the biological

properties.
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Appendix A

The inference of pseudo network

Suppose A1l and B were randomly generated from N(1,1). In the pair genes (S, 7)),
if S was expressed, the expression level of 7' was distributed as N(1,0.25); otherwise,
the expression level of T was distributed as N(—1,0.25). The critical value of these
two distribution was setted at the mean value minus two standard deviations and
which value was calculated to be zero. The binding efficiency (b) for {A11, A21},
{A11, A22}, {A21, A31}, and {A21, A32} were 0.9, 0.7, 0.9, and 0.8, respectively.
The approximate proportions of gene expressions of the target gene actually deter-
mined by the expression levels of the source gene were expressed as P(S — T') and

the inferences were shown as follows.

o P(ALl > 0) ~ 0.84.
The binding efficiency b{All, A21; Was 0.9.
Therefore P(A11 — A21) ~ 0.84 x 0.9 ~ 0.76.

o P(A11>0) =084 and bo1y A99, = 0.7.
Then P(A11 — A22) ~ 0.84 x 0.7 ~ 0.59.

° P(All > O) ~ (.84 and b{AQl, A31} =0.9.

=biA11, A21,[P(0 < A1 < 1)P(N(0,0.25) > —0.5) + P(A11 > 1)]

+ (1 =ba11, A21) P(N(=1,0.25) > 0)
~ 0.9 x (0.34 X 0.84 4 0.5) 4+ 0.24 x 0.025
~0.713

P(A11 — A31) ~ 0.713 x 0.9 ~ 0.64.
Thus P(A21 — A31) ~ 264 ~ (.84,

- 0.76 —
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° P(A21 > O) ~ ().713 and b{AQl, A32} = 0.8.
P(A11 — A32) ~ 0.713 x 0.8 ~ 0.57.

Thus P(A21 — A32) ~ 831 ~ (.75,
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Appendix B

Supplement table

Table B.1: GenBank accession number of OsbHLH members is in this study.

OsbHLH number GenBank Affymetrix MSU ID RAP ID
accession number  probe ID

OsbHLHO001-1 (OsICE2) AK102594.1 0s.13595.1.51_at LOC_0Os01g70310 Os01g0928000
OsbHLHO001-2 (OsICE2) BI796438 0s.13595.2.51_x at LOC_Os01g70310 Os01g0928000
OsbHLHO002 (OsICE1) AK109915.1 0s.56356.1.51_at LOC_Os11g32100 0Os11g0523700
OsbHLHO003 (RAI1) AK103779.1 0s.5860.1.51_at LOC_0s03g04310 0Os03g0135700
OsbHLHO004-1 AK063669.1 0s.46563.1.51_at LOC_0Os10g39750 Os10g0544200
OsbHLHO004-2 AKO063669.1 0s.46563.1.51_a_at  LOC_0Os10g39750 Os10g0544200
OsbHLHO005 (TDR) AK106761.1 0s.50000.1.51_at LOC_0s02g02820 0s02g0120500
OsbHLHO006 (RERJ1) AB040744.1 0s.6043.1.51_at LOC_0Os04g23550 Os04g0301500
OsbHLHO008 AK064943.1 0s.3825.1.51_at LOC_Os01g13460 0Os01g0235700
OsbHLHO009 (OsMYC) AY536428.1 0s.46443.1.51_at LOC_0Os10g42430 0Os10g0575000
OsbHLHO010 AKO064946.1 0s.46956.1.51_at LOC_0Os01g50940 Os01g0705700
OsbHLHO013 (OSB1/Ra) AB021079.1 0s.2233.1.51_at LOC_0Os04g47080 Os04g0557800
OsbHLHO015 AK111704.1 0s.49810.1.51_at LOC_0Os04g47040 Os04g0557200
OsbHLHO016 (OSB2) AB021080.1 0s.57542.1.51_at LOC_0Os04g47059 Os04g0557500
OsbHLHO018 AK120539.1 0s.7441.1.51_at LOC_0Os03g51580 Os03g0725800
OsbHLHO020 AK107190.1 0s.54959.1.51_at LOC_0Os03g46860 0Os03g0671800
OsbHLH024-1 AK106333.1 0s.10316.1.51_at LOC_0Os01g39330 Os01g0575200
OsbHLHO024-2 BMO038927 0s.26054.1.51_s_at ~ LOC_0Os01g39330 Os01g0575200
OsbHLH024-3 BMO038927 0s.26054.1.51_at LOC_0Os01g39330 Os01g0575200
OsbHLHO025-1 AK102964.1 0s.32770.1.51_x_at LOC_0Os01g09990 Os01g0196300
OsbHLH025-2 AK102964.1 0s.32770.1.51_at LOC_0Os01g09990 Os01g0196300
OsbHLHO028 AK107675.1 0s.55212.1.51_at LOC_0Os05g11070  Os05g0199800
OsbHLHO031 AK100183.1 0s.5093.1.51_at LOC_0Os08g38210 0Os08g0490000
OsbHLHO032 AKO071315.1 0s.16741.1.51_a_at  LOC_0s09g29930 Os09g0475400
OsbHLHO033-1 AKO072417.1 0s.8796.1.52_s_at LOC_Os01g65080 0Os01g0871200
OsbHLHO033-2 AK065024.1 0s.8796.2.51_a_at LOC_0Os01g65080 Os01g0871200
OsbHLHO034 AKO068228.1 0s.52592.1.81_at LOC_0s02g49480 0Os02g0726700
OsbHLHO035 AK106292.1 0s.1443.1.51_a_at LOC_0Os01g06640 Os01g0159800
OsbHLHO036 AK110619.1 0s.56950.1.51_at LOC_0Os05g07120 Os05g0163900
OsbHLHO037 AK068593.1 0s.26488.1.51_at LOC_Os01g11910 0Os01g0218100
OsbHLHO038 AK109616.1 0s.56209.1.51_at LOC_0Os08g33590 Os08g0432800
OsbHLHO040 AK106649.1 0s.54743.1.51_at LOC_Os03g15440 0Os03g0260600
OsbHLHO044 AK107555.1 0s.31303.1.51_at LOC_0s03g08930 Os03g0188400
OsbHLHO045 AKO058809.1 0s.46600.1.51_at LOC_0Os10g23050 Os10g0376900
OsbHLHO047 AK107626.1 0s.55174.1.51_at LOC_0Os08g37730  Os08g0483900
OsbHLHO048 AK107898.1 0s.55338.1.51_at LOC_0s02g52190  Os02g0759000
OsbHLHO049 AK060695.1 0s.51109.1.51_at LOC_0s02g46560 0Os02g0691500
OsbHLHO050 AKO062895.1 0s.51474.1.51_at LOC_0Os04g50090 Os04g0590800
OsbHLH056-1 (OsIRO2) AKO073385.1 0s.12498.1.51_at LOC_Os01g72370 0Os01g0952800
OsbHLHO056-2 (OsIRO2) AK104991.2 05.12498.2.51_at LOC_0Os01g72370 Os01g0952800
OsbHLHO057 AKO068361.1 0s.26508.2.51_a_at  LOC_0Os07g35870 0Os07g0543000
OsbHLHO058 AK063498.1 0s.49628.1.51_at LOC_0Os05g38140 Os05g0455400
OsbHLHO059 AK103434.1 0s.17893.1.51_at LOC_0s02g02480 0Os02g0116600
OsbHLHO060 AK102951.1 0s.18333.1.51_at LOC_0Os08g04390 Os08g0138500
OsbHLHO061 AKO068017.1 0s.27243.1.51_at LOC_Os11g38870 Os11g0601700
OsbHLHO062 (OsbHLH1) AY222337.1 0s.34549.1.51_at LOC_0Os07g43530 0Os07g0628500
OsbHLHO063 (OsIRO3) AKO068704.1 0s.9216.1.51_at LOC_0s03g26210 Os03g0379300
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OsbHLH number GenBank Affymetrix MSU ID RAP ID
accession number  probe ID

OsbHLHO064 AK069790.1 0s.52897.1.51_at LOC_0s02g23823 0s02g0433600
OsbHLHO065-1 AK059273.1 0s.6328.1.51_at LOC_0Os04g41570 = Os04g0493100
OsbHLHO065-2 AK107304.1 0s.55009.1.51_at LOC_0Os04g41570  Os04g0493100
OsbHLHO066-1 AKO072833.1 0s.51847.1.51_x_at LOC_0s03gh5220 0Os03g0759700
OsbHLHO066-2 AK064057.1 0s.51847.2.51_at LOC_0Os03g55220  Os03g0759700
OsbHLHO068 AK069366.1 0s.25006.1.A1_at LOC_0s04g53990 0Os04g0631600
OsbHLHO071 AK119493.1 0s.45859.1.51_at LOC_Os01g01600 0Os01g0105700
OsbHLHO072 AKO072848.1 0s.8589.1.51_at LOC_0s02g17680 0s02g0276900
OsbHLHO073-1 AK121917.1 0s.10063.1.51_at LOC_0Os05g14010 Os05g0228400
OsbHLHO073-2 AK107340.1 0s.10063.2.51_at LOC_0Os05g14010 0Os05g0228400
OsbHLHO074 AKO065732.1 0s.38009.1.S1_at LOC_0Os01g13000 0Os01g0230200
OsbHLHO075 AK109094.1 0s.55989.1.51_at LOC_0Os04g47810 0Os04g0565900
OsbHLHO076 AK107063.1 0s.54904.1.51_at LOC_0s02g45010 0Os02g0671300
OsbHLHO079-1 AK119183.1 0Os.7751.1.51_at LOC_0Os02g47660 0Os02g0705500
OsbHLHO079-2 AK107038.1 0s.7751.2.51_at LOC_0s02g47660 0Os02g0705500
OsbHLHO080 AK059041.1 0s.14318.1.51_at LOC_0s08g42470 Os08g0536800
?Obsgl—%‘g{lfl)ggf%i2ostLH082) AK066188.1 0s.35707.1.51_at LOC_0Os09g33580 0Os09g0510500
OsbHLHO083 AK065864.1 0s.23082.1.51_at LOC_0Os05g01256  Os05g0103000
OsbHLHO084 CB631822 0s.24540.1.A1_at LOC_0s03g51910 0Os03g0728900
OsbHLHO085 AK121418.1 0s.38400.1.51_at LOC_0Os09g29830 0Os09g0474100
OsbHLHO086-1 AK101279.1 0s.47378.1.51_s_at  LOC_Os06g16400 Os06g0275600
OsbHLHO086-2 AK103853.1 0s.32526.1.51_at LOC_Os06g16400 Os06g0275600
OsbHLHO088 AK068324.1 0s.52614.1.51_at LOC_0s03g12940 0Os03g0232000
OsbHLHO089 AK100177.1 0s.33544.1.51_at LOC_0s03g58830 0Os03g0802900
OsbHLH090 AK101063.1 0s.5763.1.51_at LOC_0Os01g68700 0Os01g0915600
OsbHLHO092-1 AKO099291.1 0s.10830.1.S1_at LOC_0s09g32510 0s09g0501600
OsbHLH092-2 AK059036.1 0s.20775.1.51_at LOC_0Os09g32510 0Os09g0501600
OsbHLH093 AK108605.1 0s.55703.1.51_at LOC_0Os04g28280 0Os04g0350700
OsbHLHO095 AKO070970.1 0s.4952.1.51_at LOC_Os06g41060 0Os06g0613500
OsbHLHO096 (OsPTH1) AY238991.1 0s.8790.1.51_a_at LOC_0s06g09370 Os06g0193400
OsbHLH098-1 AKO067446.1 0s.27522.2.51_at LOC_0s03g58330 0Os03g0797600
OsbHLH098-2 AK068388.1 0s.27522.1.51_x_at LOC_0Os03g58330 0Os03g0797600
OsbHLH099 AKO066623.1 0s.8344.1.51_at LOC_0Os07g08440 0Os07g0182200
OsbHLH101 AK106689.1 0s.4548.1.51_at LOC_0Os04g52770 0Os04g0618600
OsbHLH102 (OsBP-5) AK066763.1 0s.11675.1.A1_at LOC_0Os12g41650 0Os12g0610200
OsbHLH103 AK060505.1 0s.19229.1.51_a_at LOC_0Os03g43810 0Os03g0639300
OsbHLH104-1 AK060245.1 0s.15089.1.51_at LOC_0Os07g05010 Os07g0143200
OsbHLH104-2 CF326413 0s.44516.1.51_x_at LOC_0Os07g05010 Os07g0143200
OsbHLH108 D43106 0s.23257.1.A1_at LOC_0Os06g06900 0Os06g0164400
OsbHLH109-1 AK068254.1 0s.12030.1.51_at LOC_0Os01g67480 0Os01g0900800
OsbHLH109-2 AK121411.1 0s.50489.1.51_at LOC_0Os01g67480 Os01g0900800
OsbHLH110 AK110833.1 0s.49337.1.S1_at LOC_0s02g39140 0s02g0603600
OsbHLH111-1 AK068039.1 0s.7694.1.51_at LOC_0Os04g41229 0Os04g0489600
OsbHLH111-2 AK062301.1 0s.51233.1.51_at LOC_0Os04g41229 0Os04g0489600
OsbHLH111-3 AF467735.1 0s.57535.1.51_at LOC_0Os04g41229 0Os04g0489600
OsbHLH111-4 AF467735.1 0s.57535.1.A1_at LOC_0Os04g41229 0Os04g0489600
OsbHLH112-1 AK100106.1 0s.5311.1.51_at LOC_0s08g39630 Os08g0506700
OsbHLH112-2 AK120902.1 0s.20361.1.A1_at LOC_0Os08g39630 Os08g0506700
OsbHLH113-1 CB624216 0s.27587.1.S1_at LOC_0Os10g40740 0Os10g0556200
OsbHLH113-2 CB624215 0s.46626.1.51_x_at LOC_0Os10g40740 Os10g0556200
OsbHLH118-1 AK109307.1 0s.25546.1.51_at LOC_Os01g51140 0Os01g0707500
OsbHLH118-2 AK100208.1 0s.32078.1.51_at LOC_Os01g51140 0Os01g0707500
OsbHLH120 AKO070458.1 0s.51063.1.51_at LOC_0s09g28210 0Os09g0455300
OsbHLH123 (OsLAX/LAX1) AB115668.1 0s.38423.1.51_at LOC_0Os01g61480 Os01g0831000
OsbHLH125 AK108587.1 0s.30617.1.51_at LOC_0Os01g02110 0Os01g0111500
OsbHLH126 AK109662.1 0s.56232.1.S1_at LOC_0s02g48060 0Os02g0710300
OsbHLH135 AK108042.1 0s.55414.1.51_at LOC_0Os12g40590 0Os12g0597800
OsbHLH138 AK065674.1 0s.28061.1.51_at LOC_0s03g27390 0s03g0391700
OsbHLH139-1 AK107002.1 0s.49098.1.51_x at LOC_0s02g21090 0s02g0315600
OsbHLH139-2 AK106848.1 0s.49098.2.51_at LOC_0s02g21090 0s02g0315600
OsbHLH140 AK101749.1 0s.54081.1.51_at LOC_0s03g39432 0Os03g0591300
OsbHLH141 (EAT1) AK119509.1 0s.49995.1.51_at LOC_0Os04g51070  0Os04g0599300
OsbHLH142 AK106850.1 0s.54828.1.51_at LOC_0Os01g18870 0s01g0293100
OsbHLH144 AK108728.1 0s.30520.1.51_at LOC_0Os04g35010 0Os04g0429400
OsbHLH145 AK107268.1 0s.54995.1.S1_at LOC_0Os04g35000 0Os04g0429300
OsbHLH148 AKO071734.1 0s.7116.1.51_at LOC_0Os03g53020 0Os03g0741100
OsbHLH149-1 AK099677.1 0s.14287.1.51_at LOC_0Os01g64560 0Os01g0865600
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OsbHLH number GenBank Affymetrix MSU ID RAP ID
accession number  probe ID

OsbHLH149-2 AK099677.1 0s.14287.1.51_a_at LOC_Os01g64560 Os01g0865600
OsbHLH150 AKO074015.1 0s.48567.1.51_at LOC_0Os12g06330 = Os12g0160400
OsbHLH151 AK106579.1 0s.31883.1.A1_at LOC_0Os11g06010  Os11g0158500
OsbHLH152 (OsPIL1/OsPIL13) AK105637.1 0s.5178.1.A1_s_at LOC_0s03g56950 Os03g0782500
OsbHLH155 AK063523.1 0s.11409.1.51_at LOC_0Os06g50900  Os06g0724800
OsbHLH157 AK110943.1 0s.15780.1.51_at LOC_0s02g08220 0s02g0178700
OsbHLH158 AK058439.1 0s.50771.1.51_at LOC_Os06g44320 0Os06g0653200
OsbHLH160 AU031410 0s.18660.1.51_x_at LOC_0Os11g02054 Os11g0111800
OsbHLH161 AK062951.1 0s.51497.1.A1_s_at LOC_0s12g02020 0Os12g0111400
OsbHLH162 AKO063202.1 0s.11231.1.51_at LOC_0Os05g27090 0Os05g0337200
OsbHLH165-1 (Rb) U39866.1 0s.57500.1.S1_at LOC_0s01g39580 0Os01g0577300
OsbHLH165-2 (Rb) U39866.1 0s.57500.1.51_x_at LOC_0Os01g39580 Os01g0577300
OsbHLH166-1 AKO073378.1 0s.53575.1.51_at LOC_0s03g21970 0s03g0338400
OsbHLH166-2 AKO073378.1 0s.53575.1.51_s_at  LOC_0s03g21970 0Os03g0338400
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