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中中中文文文摘摘摘要要要

在隨機變數沒有分佈或函數的假設前提之下，本質相關係數依然能夠決定變數間

的關係。 當計算越多個預測變數與一個目標變數之間的本質相關係數，其數值會

越大。 這意味著如果存在與目標變數最相關的預測變數且本質相關係數是顯著

的，即使再加入其他與目標變數相關性弱的預測變數，其本質相關係數仍然會是

顯著的。

在這篇研究當中，我們提出了淨本質相關係數這個方法一步一步地選擇與目標

變數相關的預測變數。而且，我們將淨本質相關係數這個方法應用在逐步變數選

擇與建構基因調控網路。關於逐步變數選擇的應用，結合本質相關係數與淨本質

相關係數這兩個方法可以消除其他相關變數的干擾。從模擬的結果當中，可以觀

察到我們所提出的方法比使用結合了皮爾森相關係數與淨相關係數的方法更能具

體地發現變數間曲線與直線的關係。根據結合本質相關係數與淨本質相關係數這

兩個方法的數值結果，上述的特性提供了指示不同曲線關係程度的機會。在使用

公開取得的資料庫之試驗結果中，結合本質相關係數與淨本質相關係數這兩個方

法的逐步變數選擇程序能夠成功地鑑別出與三個低溫誘導因子相關的低溫反應基

因，並且能有效地辨別樣本相關基因之間的相互作用。因此，我們所提出的策略

可能有益於整合分析，並從雜訊中鑑別出相關性的形式。

另一方面，關於建構基因調控網路的策略，使用結合本質相關係數與淨本質相

關係數這兩個方法可以在消除被選擇之相關節點的干擾之下，逐步選擇出目標節

點與相對應的起始節點。由於本質相關係數與淨本質相關係數的數值具有不對稱

性，例如: CID(Y |X)不一定等同於 CID(X|Y )以及 pCID(Y |X2;X1)不一定等同於

pCID(X2|Y ;X1)。所以我們利用此特性去區別出兩個節點之間的方向性。這個研

究進行了虛擬的基因網路，以評估在重複100次不同樣本大小的網路之下使用結合

本質相關係數與淨本質相關係數這兩個方法的啟發式演算法之表現。我們可以觀
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察到當樣本數增加時，重建的基因網路其正確性也會增加。另外將我們提出的策

略應用在兩種不同的微陣列資料庫。其中一個是應用在阿拉伯芥中已知的低溫訊

息傳遞路徑，此路徑是經由低溫誘導因子去誘發低溫相關基因(COR)，我們提出

的策略能夠成功地找出低溫誘導因子與低溫相關基因之間的連結。另一個資料庫

是關於稻米中的鹼性-螺旋-環-螺旋家族，在生物學上還未發現它們的基因網路。

因此，運用我們提出的策略建構出一個基因調控網路，可以給生物學家一些參考

資訊。

綜合上述，結合本質相關係數與淨本質相關係數這兩個方法能夠有效地鑑別出

擁有不同型態關係的相關變數。除此之外，具有不對稱性的本質相關係數與淨本

質相關係數可以從統計學的觀點辨別變數間的方向性。因此，根據本質相關係數

與淨本質相關係數這兩個方法所得到的變數選擇與建構基因調控網路結果，可以

讓生物學家在實驗進行之前當作參考的依據。

關鍵字：本質相關係數、淨本質相關係數、逐步變數選擇、基因調控網路。
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Abstract

The coefficient of intrinsic dependence (CID) is capable of determining associations

among variables without making distributional or functional assumptions regarding

to random variables. The CID value of the target variable would increase when more

predictor variables include. This implies that a CID value of the target variable

given multiple predictors is significant as the most relevant predictor is included

even though the other predictors have weak association with the target variable.

In this study, we developed the partial coefficient of intrinsic dependence (pCID)

to facilitate the step-by-step selection of variables that are relevant to a target vari-

able. Furthermore, we applied pCID method to stepwise variable selection and the

construction of gene regulatory network. In stepwise variable selection, the strategy

of selecting relevant variables using the CID along with the pCID can eliminate inter-

ference from other relevant variables. From simulation results, we observed that the

proposed method is more sensitive to curvilinearity and more specific to linearity

than the combination of Pearson’s correlation coefficient and the partial correla-

tion coefficient (PCC/pPCC). This property may provide the opportunity to index

different levels of curvilinearity according to CID/pCID outcomes. While being

exercised on publicly available microarray data, the CID/pCID procedure success-

fully identified cold-responsive genes related to three C-repeat binding factors, and

was especially effective at identifying some sample-specific gene-gene interactions.

Therefore, the proposed strategy may be beneficial in meta analysis to distinguish

general forms of relationships from the noise.

On the other hand, the strategy of constructing the gene regulatory network

using the CID/pCID can stepwise choose the target node and decide the corre-

sponding source node while eliminating the influence of the other relevant nodes.

Because of the asymmetric CID/pCID values, we used this property to discrimi-

nate the direction of two nodes. Pseudo network was conducted to evaluate the

performance of the heuristic approach by CID/pCID from one hundred replications

with different sample sizes. As the sample size increased, the accuracy of the re-
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constructive pseudo network would increase. Furthermore, the proposed approach

was applied to two microarray datasets. One was the known cold signaling path-

way, C-repeat binding factors would induce a set of cold-regulated (COR) genes in

Arabidopsis. The CID/pCID approach could successfully discover the connection

between C-repeat binding factor and cold-regulated gene. The other dataset was

about the basic helix-loop-helix gene family in rice, which network was undiscov-

ered in biology. We constructed the network based on the CID/pCID outcomes to

provide the suggestion for biologists.

In summary, the CID/pCID method could efficiently identify the relevant vari-

ables which had various types of the association. Besides, the asymmetric CID/pCID

values were used to distinguish the direction of two variables from the statistical

viewpoints. Therefore, the statistical outcomes of the variable selection and gene

regulated network construction based on the CID/pCID method could provide ref-

erences for biologists before making an experiment on plants.

Key words: Coefficient of intrinsic dependence, Partial coefficient of intrinsic

dependence, Stepwise variable selection, Gene regulatory network.
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Chapter 1

Introduction

Association is defined as the correlation between explanatory and target variables.

The type of variable involves discrete or continuous and the number of variables is

univariate or multivariate. The association between two variables may exist linear,

nonlinear or mixture relationship in reality. In this study, we explore the expressions

of thousands of genes in biological microarray technology. One typical application is

variable selection, feature selection in the words of machine learning, which used to

identify the most relevant genes from thousands of gene expressions. These selected

genes can provide some informations to biologists to verify an experiment further.

The other application can be extend to construct the gene regulatory network

(GRN). Genes encode the information necessary for life which can be pass down

the central dogma of molecular biology and translate proteins directly involving

in different biological activities. Therefore, the expression level, or the amount of

mRNA transcripts, partly reflects the activity of the gene. The gene expression lev-

els of some genes are regulated by mRNAs of other genes or their protein products.

This kind of gene regulation events can be possibly monitored using modern high-

throughput gene expression technologies, including microarray or next generation

sequencing (Mardis, 2008; Jain, 2012; Shrinet et al., 2014). The gene regulation

events under certain condition serve as small blocks to the entire gene regulation

network (GRN), which may be reconstructed by connecting multiple regulation mod-

ules. An inferred GRN can therefore provide insights into the relationships between

genes of interest by experiments and the understanding of biological functions with

complex biological phenomena (Krouk et al., 2013). More specifically, an inferred

GRN consisting of the nodes (representing genes) and the edges (representing signifi-

cant gene-gene interaction) reflects the gene regulation events that may concurrently

or sequentially occur under the condition of study. In this study, we focus on the

inference of GRN using the results of microarray experiments.
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Pearson correlation coefficient (PCC) is mostly adopted to measure the interac-

tion of genes based on their expression levels (Schadt et al., 2005). Other measure-

ments of association including the mutual information (MI) (Priness et al., 2007),

the partial Pearson correlation coefficient (pPCC) (Fuente et al., 2004), the coef-

ficient of determination (CoD) (Suh et al., 2003), and the coefficient of intrinsic

dependence (CID) (Hsing et al., 2005; Liu, 2005; Liu et al., 2009; Tsai and Liu,

2013) were also used. PCC and pPCC have the limitation of only identifying linear

relationship between two gene expressions. In contrast, CID requires neither distri-

butional (e.g. normal) nor functional (e.g. linear) assumptions on gene expression

data. CID(Y |X) designates the CID value of a variable Y given the information of

another variable X. It takes any real value between 0 and +1 inclusive. It is +1

in the case of full dependence and is 0 in the case of independence. As the level of

dependence ascends, the CID value goes from 0 to 1. It was used to construct an

estrogen receptor regulatory network in accompany with the correlation coefficient

(Liu et al., 2009), to infer and classify co-regulatory events by two transcription fac-

tors (Liu et al., 2012), and to perform gene set association analysis (GSAA) (Tsai

and Liu, 2013). We have demonstrated that CID outperformed the conventional

methods in identification of different association patterns (Liu et al., 2009; Tsai and

Liu, 2013).

This study was initially motivated by the inquiry to select relevant explanatory

variables to the target variable using CID. We used a toy example to illustrate the

situation one might encountered when selecting variables using CID. Let Y be a

one-dimensional target variable and Xi’s (i = 1, 2, . . . , 6) be the one-dimensional

candidate explanatory variables identically and independently distributed as Uni-

form(0, 1). In fact,

Y = 10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 + 5X5 + ε, (1.1)

where ε is the random disturbance distributed as normal with zero mean and unit

variance. Note that the explanatory variable X6 is independent of the target variable

Y according to the model. Ideally, a proper stepwise procedure iteratively picks

the relevant Xi’s according to its magnitude of association to Y until no more Xi

would significantly increase the amount of association. Table 1.1 lists the summary

statistics for the univariate CID values of Y given one of the explanatory variables

and partially bivariate CID values based on 100 simulated samples of sizes N =

100. According to the result, CID(Y |X4) had the largest value in average among all

CID(Y |Xi) (i = 1, . . . , 6) and was concluded as the most relevant predictors with Y .
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Table 1.1: Summary statistics of univariate CID and bivariate CID values based
on 100 simulated samples of size N = 100 from the model Y = 10 sin(πX1X2) +
30(X3 − 0.5)2 + 10X4 + 5X5 + ε, where Xi’s were distributed as U(0, 1) and ε was
distributed as N(0, 1).

Proportion of Significant CID’s

Mean SD α = 0.1 α = 0.05 α = 0.01

CID(Y |X1) 0.0664 0.0238 0.99 0.98 0.95
CID(Y |X2) 0.0683 0.0270 1.00 0.98 0.96
CID(Y |X3) 0.0366 0.0142 0.93 0.83 0.65
CID(Y |X4) 0.1176 0.0325 1.00 1.00 1.00
CID(Y |X5) 0.0328 0.0202 0.74 0.69 0.45
CID(Y |X6) 0.0077 0.0048 0.03 0.02 0.00

CID(Y |X1, X4) 0.1747 0.0319 1.00 1.00 1.00
CID(Y |X2, X4) 0.1783 0.0328 1.00 1.00 1.00
CID(Y |X3, X4) 0.1464 0.0279 1.00 1.00 1.00
CID(Y |X5, X4) 0.1415 0.0324 1.00 1.00 1.00
CID(Y |X6, X4) 0.1191 0.0309 1.00 1.00 0.99

To determine the second most relevant predictor, we further computed the bivariate

CID values given X4 and another predictor Xi, CID(Y |X4, Xi) (i = 1, 2, 3, 5, 6)

(Liu et al., 2009). Due to the dominant influence from X4, the two-predictor CID

values were frequently claimed significant even if an irrelevant predictor, i.e. X6,

was added (Table 1.1). The above scenario was similar with the computation of

regression coefficient, R2, in a regression analysis – the more variables included in

the model, the larger the CID value. This also implied a significant CID value of

the target variable given multiple predictors once the most relevant variable was

included although the other may not have strong association with the target.

The toy example implied the need of alternatives to evaluate the significance

under stepwise variable selection to study the ’pure effect’ coming from the variable

of interest without disturbing by the other predictors. The process should also

be able to justify different levels or types of association. Inspired by the partial

correlation coefficient (pPCC), we proposed a new measure called partial coefficient

of intrinsic dependence (pCID). The pPCC aims to describe the linear relationship

of the target variable and the second predictor variable which cannot be explained

by their respective linear relationship with the first predictor variable (Baba et al.,

2004). Similarly, pCID proposed in this study will further decompose the variability

of distribution of the target variable which was not explained by the conditional

distribution of the target variable given the first predictor.
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In the next chapter, coefficient of intrinsic dependence and partial correlation

coefficient will be reviewed and our proposed method, partial coefficient of intrinsic

dependence, will be introduced. In Chapter 3, the proposed statistical procedure for

stepwise variable selection will be given. The simulation design from Model (3.1) and

compared results of CID/pCID and PCC/pPCC will be presented and discussed.

A reality example using published microarray dataset in Arabidopsis illustrates the

proposed method. In Chapter 4, the heuristic approach will be advanced to construct

the gene regulatory network and will be used to reconstruct the pseudo network. The

proposed procedure will practice on reconstruction cold-stress responsive regulation

paths in Arabidopsis based on a microarray experiment and will provide an unverified

gene network for biologists. The final conclusions are provided in Chapter 5.
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Chapter 2

Partial Coefficient of intrinsic
dependence (pCID)

In the current methods of association, coefficient of intrinsic dependence (CID) does

not need common restrictions such as the type of variable and distributional or

functional assumptions. Besides, CID had been demonstrated that have good per-

formances in identification, classification, construction of gene regulatory network,

performance of gene set association analysis (Liu, 2005; Liu et al., 2009; Liu et al.,

2012; Tsai and Liu, 2013).

CID can find how much information of the target variable be explained by the

predictor variables. Therefore, the CID value of the target variable is increasing as

more predictor variables included. In Chapter 1, the toy example has been observed

that the multivariate CID value was significant when the most relevant predictor

variable was included even though the other irrelevant predictor variable was added.

To solve this problem, we propose a new measure called partial coefficient of intrinsic

dependence (pCID). Main objective in this study is to sift out the actual relevant

predictors step by step. The concept of pCID is inspired by the partial Pearson

correlation coefficient (pPCC). In this chapter, we describe the CID and pPCC in

detail and introduce our method, pCID. And then we explain how to perform a

hypothesis test of independence.

2.1 Coefficient of intrinsic dependence (CID)

Consider a pair of random variables (X, Y ) , where X is a predictor variable and Y

is a target variable. The general definition of the coefficient of intrinsic dependence,

CID(Y |X), is defined as follow (Liu, 2005):

CID(Y |X) =

∫∞
−∞VarX{EY |X [I(Y ≤ u)]}dFY (u)∫∞

−∞VarY [I(Y ≤ v)]dFY (v)
, (2.1)
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where FY (·) is the marginal cumulative distribution function of Y , and I(·) is an

indicator function. If multiple predictors are considered, we let X = {X1, . . . , Xk},
where k ≥ 2. Then CID can be similarly defined (Tsai and Liu, 2013):

CID(Y |X1, . . . , Xk) = CID(Y |X) =

∫∞
−∞VarX{EY |X[I(Y ≤ u)]}dFY (u)∫∞

−∞VarY [I(Y ≤ v)]dFY (v)
, (2.2)

The numerator of CID accounts the discrepancy between the marginal cumula-

tive distribution function (cdf) of Y and the conditional cdf of Y given X as the

amount of dependency between Y and X. The dependency (in the numerator) is

then normalized between 0 and 1 by the denominator for the convenience of inter-

pretation. If X and Y are nearly independent, X provides little information about

Y . The independency causes the conditional and marginal distributions of Y similar

to each other and the numerator of CID close 0. On the other hand, if X and Y are

highly relevant, the information of X can almost surely predict the behavior of Y .

In these cases, CID yields values close to 1.

It has been shown that the CID has several properties. CID can be carried out

in different instances, such as all types of random variables (discrete, continuous, or

including both ones) and multivariate cases. CID is a model-free measure in that

it depends on calculating the estimator with a different sample. For that reason,

CID does not require some common assumptions like normal and linear. CID is

asymmetric, that is to say, CID(Y |X) does not remain the same as CID(X|Y ).

Accordingly, CID takes the causal relationship between variables into account.

2.2 Partial coefficient of intrinsic dependence (pCID)

Inspired by the partial correlation coefficient, the coefficient of partial coefficient of

intrinsic dependence (pCID) further decomposes the variability of distribution of

the target variable. Let Y be the target variable, X1 be the first dominant predictor

variable, and X2 be the second dominant predictor variable. By definition, if Y and

X2 are independent given the values of X1 if and only if

F (y, x2|x1) = F (x2|x1)F (y|x1),

and

F (y|x1, x2) =
F (x1, x2, y)

F (x1, x2)
=
F (y, x2|x1)F (x1)

F (x1, x2)
=
F (x2|x1)F (y|x1)F (x1)

F (x1, x2)

=
[F (x1, x2)/F (x1)][F (x1, y)/F (x1)]F (x1)

F (x1, x2)
=
F (x1, y)

F (x1)
= F (y|x1),
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where F ’s are corresponding conditional or marginal cumulative distribution func-

tions. Hence, the discrepancy between two conditional distributions F (y|x1, x2) and

F (y|x1) represents the amount of dependency between Y and X2 given X1. The

Cramér-von Mises distance between the two distributions can be expressed as∫ ∞
−∞
{F (y|x1, x2)− F (y|x1)}2dFY (y). (2.3)

To average out the different values of x1’s and x2’s, we take expectations over X1 and

X2, respectively. The expectations over X1 and X2 were taken to average out the

effects from different values of x1’s and x2’s. Hence, Equation (2.3) can be revised

as follow: ∫ ∞
−∞

EX1EX2{F (y|x1, x2)− F (y|x1)}2dFY (y)

=

∫ ∞
−∞

EX1EX2{P (Y ≤ y|x1, x2)− P (Y ≤ y|x1)}2dFY (y)

=

∫ ∞
−∞

EX1EX2{EY |x1,x2 [I(Y ≤ y)]− EY |x1 [I(Y ≤ y)]}2dFY (y)

=

∫ ∞
−∞

EX1VarX2{EY |x1,x2 [I(Y ≤ y)]}dFY (y), (2.4)

where I(·) is an indicator function. The coefficient of partial intrinsic dependence

of Y given X2 conditioned on X1 was defined by standardized Equation (2.4) using

variance decomposition:

pCID(Y |X2;X1) =

∫∞
−∞ EX1VarX2{EY |X1,X2 [I(Y ≤ u)]}dFY (u)∫∞

−∞ EX1VarY |X1 [I(Y ≤ v)]dFY (v)
. (2.5)

Given the target variable takes distinct values on a continuous domain, the denom-

inator of pCID(Y |X2;X1) can be expressed as∫ ∞
−∞

EX1VarY |X1 [I(Y ≤ v)]dFY (v) =

∫ 1

0

EX1VarY |X1 [I(FY (Y ) ≤ v)]dv

=

∫ 1

0

EX1{EY |x1 [I
2(FY (Y ) ≤ v)]− [EY |x1 [I(FY (Y ) ≤ v)]]2}dv

=

∫ 1

0

EY [I(FY (Y ) ≤ v)]− EX1 [EY |x1 [I(FY (Y ) ≤ v)]]2dv

=

∫ 1

0

vdv −
∫ 1

0

EX1 [P
2(FY (Y ) ≤ v)|x1]dv

=
1

2
−
∫ 1

0

EX1 [P
2(Y ≤ F−1

Y (v))|x1]dv
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Similarly, the numerator of pCID(Y |X2;X1) is∫ ∞
−∞

EX1VarX2{EY |x1,x2 [I(Y ≤ u)]}dFY (u)

=

∫ 1

0

EX1VarX2{EY |x1,x2 [I(FY (Y ) ≤ u)]}du

=

∫ 1

0

EX1{EX2 [[EY |x1,x2 [I(FY (Y ) ≤ u)]2]− [EX2 [EY |x1,x2 [I(FY (Y ) ≤ u)]]]2}du

=

∫ 1

0

EX1{EX2 [P
2(FY (Y ) ≤ u|x1, x2)]− P 2(FY (Y ) ≤ u|x1)}du

=

∫ 1

0

EX1EX2 [P
2(Y ≤ F−1

Y (u)|x1, x2)]du−
∫ 1

0

EX1 [P
2(Y ≤ F−1

Y (u)|x1)]du

Hence, for the continuous target variable Y ,

pCID(Y |X2;X1) =

∫ 1

0
EX1EX2 [P

2(Y ≤ F−1
Y (u)|x1, x2)]du−

∫ 1

0
EX1 [P

2(Y ≤ F−1
Y (u)|x1)]du

1
2
−
∫ 1

0
EX1 [P

2(Y ≤ F−1
Y (v))|x1]dv

.

According to the CID formula for the continuous target (Liu, 2005),

CID(Y |X) = 6

∫ 1

0

EX [P 2(Y ≤ F−1
Y (y))|x]dy − 2,

the following recursive formula can be derived to compute the coefficient of partial

intrinsic dependence of Y given X2 conditioned on X1:

pCID(Y |X2;X1) =
1
6
[CID(Y |X1, X2) + 2]− 1

6
[CID(Y |X1) + 2]

1
2
− 1

6
[CID(Y |X1) + 2]

=
CID(Y |X1, X2)− CID(Y |X1)

1− CID(Y |X1)
, (2.6)

where CID(Y |X1, X2) and CID(Y |X1) are the ordinary coefficients of intrinsic de-

pendence of Y given X1, X2 and of Y given X1, respectively. Similarly, pCID takes

any real values between 0 and +1 inclusive; it is +1 in the case of full dependence be-

tween Y and X2 given the value of X1 and is zero in the case of independence. As the

level of dependence ascends, the value of pCID goes from 0 to 1. pCID(Y |X2;X1)

can be estimated from data by using the recursive formula and plugging in the

corresponding estimated CID values. Similarly, the coefficient of partial intrinsic

dependence of Y given Xi conditioned on {X1, X2, . . . , Xi−1} can be derived as

pCID(Y |Xi; {X1, . . . , Xi−1}) =
CID(Y |X1, . . . , Xi)− CID(Y |X1, . . . , Xi−1)

1− CID(Y |X1, . . . , Xi−1)
.

2.3 Estimation of CID and pCID

According to the definition of CID is not under any assumption, the marginal and

conditional distributions have to be estimated from the sample by the empirical
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distribution function. In section 2.1, CID is defined separately by unitary and

multiple predictors. Let (xi, yi) be the ith paired observation of the random variables

(X, Y ) from a sample size of N , where i = 1, . . . , N . The estimator of CID (Equation

(2.1)) is

CID(Y |X) =
1

N
×

∑N
i=1

∑N
j=1

[
F̂ (yi|xj)− F̂ (yi)

]2

∑N
i=1 F̂ (yi)

[
1− F̂ (yi)

] ,

where xj be the observed value ofX in the jth object. If X is k-dimensional predictor

variable (k ≥ 2), xj be the vector containing observations of {X1, . . . , Xk} in the

jth object. Then the estimated value of CID (Equation 2.2) is as follows:

CID(Y |X1, . . . , Xk) = CID(Y |X) =
1

N
×

∑N
i=1

∑N
j=1

[
F̂ (yi|xj)− F̂ (yi)

]2

∑N
i=1 F̂ (yi)

[
1− F̂ (yi)

] . (2.7)

In previous studies (Liu, 2005; Liu et al., 2009; Liu et al., 2012; Tsai and Liu,

2013), the estimate of CID relies on subgrouping the sample of predictors X to

calculate the value of conditional distribution function, F̂ (y|x). The subgroup is

used to place the sample of size N into P subgroups according to the observed

values of X. In each subgroup s (s = 1, . . . , P ), the estimate of the cumulative

marginal and conditional distribution functions are below.

F̂ (yi) =
1

N

N∑
q=1

I(yq < yi),

F̂s(yi) =
1

Ns

N∑
q=1

I(yq < yi and xq ∈ the sth subgroup),

and Ns =
N∑
j=1

I(xj ∈ the sth subgroup)

A weighted average is taken to account all discrepancies measured within different

subgroups and yields the estimate of CID:

CID(Y |X) =

∑N
i=1

∑P
s=1

Ns

N

[
F̂s(yi)− F̂ (yi)

]2

∑N
i=1 F̂ (yi)

[
1− F̂ (yi)

] .

Two general sample subgrouping method, quantile and hierarchical clustering

method, have been used commonly. The quantile method categorizes the mth di-

mension of X into rm subgroups with an equal or approximate equal number of

observations in each subgroup. If X has k dimensions, the sample is separated into

P =
∏k

m=1 rm subgroups. In general, the number of subgroups is set rm = r for all
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m and P = rk to fairly weight all dimensions of X. However, it is in a predicament

when k increases. This situation causes that the observations distribute sparsely and

each subgroup has zero or too few observations. Besides, the quantile method has

another problem, the number of subgroups is restricted. The hierarchical clustering

method assigns a set of objects into P subgroups such that the objects in the same

subgroup are more similar to each other. The result of the subgroup in the mth

dimension of X was changed when adding another predictor. This situation does

not cause a problem in the estimated value of CID, but it influences the accuracy

of the estimated value of pCID.

In this study, we propose the nonparametric kernel smoothing method using the

’np’ package in R (version 0.40-13) (Hayfield and Racine, 2008) to estimate the

corresponding distribution functions as follows.

F̂ (yi) =

∫ yi

−∞

1

N

N∑
q=1

[
KY ( t−yq

hY
)

hY
]dt

and F̂ (yi|xj) =

∫ yi

−∞

1
N

∑N
q=1{[

KY (
t−yq
hY

)

hY
] ·
∏k

p=1[
KX(

xpj−xpq

hp
)

hp
]}

1
N

∑N
q=1

∏k
p=1[

KX(
xpj−xpq

hp
)

hp
]

dt

=

∫ yi

−∞

∑N
q=1{[

KY (
t−yq
hY

)

hY
] ·
∏k

p=1 KX(
xpj−xpq

hp
)}∑N

q=1

∏k
p=1 KX(

xpj−xpq
hp

)
dt,

where K(·) is the kernel function with bandwidth h. We chose Second-Order Gaus-

sian kernel, K(z) =
exp(−z2

2
)√

2π
, for smoothing and the rule-of-thumb method for band-

width selection. The formula of the rule-of-thumb bandwidth is h = 1.06σN−
1
5 ,

where σ is defined as the minimum value of measures of scale which are stan-

dard deviation (SD), mean absolute deviation (MAD)/1.4826 and interquartile range

(IQR)/1.349. This method could solve the problems which the subgrouping methods

produce. Therefore, the estimated values of CID and pCID are using the nonpara-

metric kernel smoothing method to apply to simulations and real data studies.
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2.4 Hypothesis test of Independence for CID and

pCID

The hypothesis test for coefficient of intrinsic dependence points to identify the

association between two samples as follows.

H0 : Y does not depend on X

H1 : Y depends on X

The null distribution of CID(Y |X) is difficult to formulate under assumption are

ignored and will be generated by random permutations. We can chose the observed

values of X or Y to be permuted randomly and the other values of variable are

fixed. After that using these new combination in each run of random permutation

to compute the CID value using Equation (2.7).

The partial coefficient of intrinsic dependence aims to test which of the following

null and alternative hypotheses are preferred by observing the data:

H0 : Y does not depend on Xj, conditioned on Xi

H1 : Y depends on Xj, conditioned on Xi

Similarly, the null distribution of pCID(Y |Xj;Xi) will be generated by random

permutations. But the selection of variable about random permutation would be

changed. To keep the dependence between Xi and Y , only the values of Xj are

randomly permuted. In other words, when we compute the pCID(Y |Xj;Xi) value

from each run of random permutation, CID(Y |Xj, Xi) would be altered where the

values of Xj are from permutation and CID(Y |Xi) are computed from the sample.

Random permutation was repeated R times and yielded R internal control values

for each measure under independence. Let E0 be the estimate of an CID(Y |X) or

pCID(Y |Xj;Xi) from the sample, and Er be the estimate for that measure from the

rth random permutation. The permuted p-value for CID(Y |X) or pCID(Y |Xj;Xi)

was determined by

1

R + 1

(
1 +

R∑
r=1

I(Er ≥ E0)

)
. (2.8)

2.5 The partial Pearson correlation coefficient (pPCC)

We compared the results of the partial coefficient of intrinsic dependence with that

of the well-known partial correlation coefficient (pPCC). The partial correlation
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coefficient describes the relationship between two variables after taking away the

effect of another variable, or several other variables, on this relationship. The pPCC

of Y and Xj adjusted for Xi is:

pPCC(Y,Xj;Xi) =
rY,Xj

− rY,Xi
rXj ,Xi√

(1− r2
Y,Xi

)(1− r2
Xj ,Xi

)
,

where rU,V is the Pearson’s correlation coefficient (PCC) between two random vari-

ables U and V . The pPCC of Y withXi given {X1, X2, . . . , Xi−2, Xi−1} = {Xi−2, Xi−1}
can be derived recursively:

pPCC(Y,Xi;X1, . . . , Xi−1)

= pPCC(Y,Xi; Xi−2, Xi−1)

=
pPCC(Y,Xi; Xi−2)− pPCC(Y,Xi−1; Xi−2)pPCC(Xi, Xi−1; Xi−2)√

(1− pPCC(Y,Xi−1; Xi−2)2)(1− pPCC(Xi, Xi−1; Xi−2)2)
.

In most cases, the pPCC between two variables while removing the effect of the

third variable is smaller than the PCC. But in the other cases where the absolute

value of the pPCC becomes larger, the third variable may be a suppressor variable

which can improve the association with two variables, but that is unrelated to the

target variable. In this study, the pPCC value was calculated using the ’ppcor’

package (version 1.0) in R (Kim, 2012).

A t-test statistic with N − 2 − k degrees of freedom, where k is the number

of the controlling variables, can be yielded to access the significance of the partial

correlation. However, in order to compare with our proposed method on the same

basis, the p-values of the partial correlation will be obtained through R times of

random permutation in this study similar with those of pCID (Equation 2.8).
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Chapter 3

Application to stepwise variable
selection

Variable selection, also known as feature selection, is the technique of picking up the

relevant predictor variables with the target variable. In biometric, variable selection

is ordinarily applied in microarray data which contains thousands of genes and a

few tens to hundreds of samples. In order to explain the data more accurately,

the redundant genes should be removed without resulting in much loss of data

information. Further, stepwise variable selection is the process of selecting predictor

variables step by step without the interference from other effect of variables. In this

chapter, we construct the procedure of stepwise variable selection by using pCID

and pPCC methods. Apply the procedure to simulation study and microarray data,

and then compare the result of these methods.

3.1 The procedure for selecting variables

Forward selection is an approach of adding one variable which have the largest

relationship at a time until none of remaining variables provides the statistical sig-

nificance. According to this concept, we could find the important predictors with a

target variable in order by pCID. The decision process by calculating pCID value is

described below (see also Figure 3.1 ).

Suppose there are one target variable Y and k predictor variables X = X1, . . . , Xk

from the sample size of N . First, calculate the all CID values of Y given each Xi,

where i = 1, . . . , k, and then choose the most important predictor X(1) which has

the maximum value of CID(Y |Xi). To get the p-value of CID(Y |X(1)), we randomly

permute X(1) with R replicates. If the p-value of CID(Y |X(1)) was more than the

significance level α, the process would be ended. No predictor variables relate to this
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Figure 3.1: Flow chart of stepwise variable selection based on the CID and pCID.
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target variable. Otherwise, the process proceeded and then calculate all pCID values

of Y given each Xj conditioned on X(1), where j = 1, . . . , k − 1 and Xj excluded

X(1), to get the second important predictor X(2) which has the maximum value of

pCID(Y |Xj;X(1)). The p-value of pCID(Y |X(2);X(1)) was calculated from the X(2)

permutation values and X(1) observation values. Similarly, the process would be

ended if pCID(Y |X(2);X(1)) was insignificantly dependent or negative, if not, the

process still go forward to calculate all pCID values of Y given Xs, which is one of

the other k−2 predictors, conditioned on X(1) and X(2). The procedure for selecting

variables was finished until the picked pCID value was insignificantly dependent or

negative. Accordingly, the Pearson correlation coefficient (PCC) and the partial

Pearson correlation coefficient (pPCC) can completely imitate this process to select

relevant predictor variables.

3.2 Simulation study

Our objective in variable selection is applying to pick up most relevant genes from

thousands of gene expressions. Consider the relationship between two genes is not

only linearity, we referred to the Friedman model (Friedman, 1991) and modified it

as follows.

Suppose Xi’s (i = 1, . . . , 6) were independent and identically distributed (i.i.d.)

as Uniform(0, 1) and Y was determined by the following equation:

Y = 10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 + 5X5 + ε, (3.1)

where ε was distributed as Normal(0, 1). In Model (3.1), X1 to X5 are dependent

to Y while X6 is not.

The Pearson correlation coefficient (PCC) and the partial Pearson correlation

coefficient (pPCC) are principal methods to discuss the relation of gene expressions

in biological studies. We compared the results of the Partial coefficient of intrinsic

dependence (pCID) to those of the pPCC in simulations of Model (3.1). Besides,

we want to observe the effect upon the different sample size to generate a sample

of size N (N = 25, 50, 100). Then we consulted the procedure of variable selection

which is detailed in Section 3.1 where a parameter k is equal to six. The simulation

results of CID/pCID and PCC/pPCC are displayed in subsection 3.2.1 and 3.2.2,

respectively.
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3.2.1 The results of CID and pCID

As described in Section 1, bivariate CID could not identify the second predictor

variable which associated with the target variable Y when the first predictor had

strong relation with Y . We propose the pCID method to solve this problem. Table

3.1 presents the CID values of Y given either one or two predictors and the pCID

values from 100 simulations and the sample of size N = 100. CID(Y |X4) had

the largest average value of CID(Y |Xi), 0.1176, for all i = 1, . . . , 6, meaning the

distribution of Y was notably altered after conditioning on the values of X4. A

hundred p-values of CID(Y |X4) were obtained from permuting the values of X4

with 1000 replicates. In Table 3.1, the proportions of significant CID(Y |X4) at

three different significant levels (α = 0.1, 0.05, 0.01) were 100%, which means all p-

values of CID(Y |X4) were smaller than 0.01. The variable associated with the target

variable Y next to X4 in Model (3.1) was not selected based on the CID(Y |Xi, X4)

values for i = {1, 2, 3, 5, 6} but selected based on the pCID(Y |Xi;X4) values for i =

{1, 2, 3, 5, 6}. The proportions of significant CID(Y |X6, X4) were almost 100% and

CID(Y |X6, X4) had large average value, 0.1191, even if X6 was not dependent on Y

in Model (3.1). Besides, we observe the pCID(Y |Xi;X4) values for i = {1, 2, 3, 5, 6}
from different sample of sizesN = 25, 50 and 100 by the boxplots which are presented

in Figure 3.2. The variance of the pCID estimates would increase along with the

increment of average pCID values. A relatively large sample size was necessary to

obtain a consistent pCID estimate but the hypotheses testing of independence would

already be quite effective under moderate sample size. According to the results

of pCID(Y |Xi;X4) values for i = {1, 2, 3, 5, 6}, X1, X2 were the most influential

variables next to X4 toward Y by having the larger pCID values given X4, while

the random noise, X6, had pCID(Y |X6;X4) closest to 0. The results of hypotheses

testing for pCID(Y |Xi;X4)’s in Table 3.1, pCID(Y |X1;X4) and pCID(Y |X2;X4) had

the largest average values (0.0644 and 0.0684, respectively) and more than 97% of

the 100 pCID values were significant. The percentage of significant pCID(Y |X6;X4)

values for irrelevant X6 were roughly consistent with the nominal significance levels

and the average pCID(Y |X6;X4) value, 0.0015, was close to 0.

Sometimes pCID(Y |Xi;X4) estimates had negative values (i.e., values below the

grey horizontal line in Figure 3.2) which were not in the range of pCID values

according to the definition. This might be due to the biased nature of the CID

estimates, especially when the sample size is small (Liu, 2005). The pCID would

inherit the bias if it was estimated using the recursive formula (i.e., Equation (2.6)).
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Table 3.1: Summary statistics of univariate CID, bivariate CID, and pCID values
based on 100 simulated samples of sizeN = 100 from the model Y = 10 sin(πX1X2)+
30(X3 − 0.5)2 + 10X4 + 5X5 + ε, where Xi’s were distributed as U(0, 1) and ε was
distributed as N(0, 1).

Proportion of Significant CID’s

Mean SD α = 0.1 α = 0.05 α = 0.01

CID(Y |X1) 0.0664 0.0238 0.99 0.98 0.95
CID(Y |X2) 0.0683 0.0270 1.00 0.98 0.96
CID(Y |X3) 0.0366 0.0142 0.93 0.83 0.65
CID(Y |X4) 0.1176 0.0325 1.00 1.00 1.00
CID(Y |X5) 0.0328 0.0202 0.74 0.69 0.45
CID(Y |X6) 0.0077 0.0048 0.03 0.02 0.00

CID(Y |X1, X4) 0.1747 0.0319 1.00 1.00 1.00
CID(Y |X2, X4) 0.1783 0.0328 1.00 1.00 1.00
CID(Y |X3, X4) 0.1464 0.0279 1.00 1.00 1.00
CID(Y |X5, X4) 0.1415 0.0324 1.00 1.00 1.00
CID(Y |X6, X4) 0.1191 0.0309 1.00 1.00 0.99

pCID(Y |X1;X4) 0.0644 0.0221 0.99 0.97 0.97
pCID(Y |X2;X4) 0.0684 0.0251 1.00 0.99 0.97
pCID(Y |X3;X4) 0.0322 0.0157 0.91 0.82 0.63
pCID(Y |X5;X4) 0.0268 0.0193 0.73 0.65 0.43
pCID(Y |X6;X4) 0.0015 0.0084 0.10 0.05 0.01
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Figure 3.2: Boxplots of pCID(Y |Xi;X4) values, i = 1, 2, 3, 5, 6, based 100 simulated
samples of size 25, 50, or 100 from the model Y = 10 sin(πX1X2) + 30(X3− 0.5)2 +
10X4 + 5X5 + ε, where Xi’s were distributed as U(0, 1) and ε was distributed as
N(0, 1). The horizontal line indicates the zero value.
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Table 3.2: Proportion (%) of negative pCID values based on 100 simulations from
the model Y = 10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 + 5X5 + ε of samples size
N = 25, 50, and 100, where Xi’s were distributed as U(0, 1) and ε was distributed
as N(0, 1).

Explanatory Variable

X1 X2 X3 X4 X5 X6

N = 25 1.95 3.73 2.97 0.00 2.42 5.70
N = 50 1.14 0.68 0.69 0.00 3.21 7.24
N = 100 0.00 0.00 0.91 0.00 2.33 14.44

The proportions of negative pCID values (Table 3.2) were less than 4% for the

relevant variables (i.e., X1 to X5), but the problem was elevated for the irrelevant

variable X6. Generally speaking, more negative values would be yielded when the

average pCID value is closer to zero, and all the negative values were indeed close to

0 (the minimal negative pCID value was -0.022 in the entire simulation, and 84% of

the negative values were greater than -0.01). These negative values can be avoided

by using a larger sample size or using Equation (2.5) and directly estimating the

corresponding conditional distributions.

Based on similar philosophy, the relevant variables can be consecutively selected

according the corresponding CID/pCID values in a real practice. The summary

statistics for sequentially selected CID/pCID values from all 100 simulations for

samples of size N = 25, 50, and 100 are provided in Table 3.3. According to the

average values of pCID, the order of the explanatory variables according to their

importance toward Y is X4, X2, X1, X3, and X5, while X6 was identified as being

irrelevant to Y . Note that both the CID and pCID identified the same order of

importance for the six explanatory variables regardless of the sample size. But the

pCID controlled the type I error a bit better than the CID (Tables 3.1 and 3.3).
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Table 3.3: Summary statistics of CID and pCID values based 100 simulatedd samples
of size 25, 50, or 100 from the model Y = 10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 +
5X5 + ε, where Xi’s were distributed as U(0, 1) and ε was distributed as N(0, 1).
The numbers in parenthese indicate the proportion of significant CID / pCID values
at α = 0.05 in 100 simulations.

Average CID / pCID (sig. prop.)

N = 25 N = 50 N = 100

CID(Y |X1) 0.0580 (0.34) 0.0542 (0.71) 0.0665 (0.98)
CID(Y |X2) 0.0641 (0.50) 0.0667 (0.77) 0.0683 (0.98)
CID(Y |X3) 0.0388 (0.16) 0.0353 (0.39) 0.0366 (0.83)
CID(Y |X4) 0.1072 (0.82) 0.1034 (0.98) 0.1177 (1.00)
CID(Y |X5) 0.0407 (0.25) 0.0365 (0.43) 0.0328 (0.69)
CID(Y |X6) 0.0212 (0.06) 0.0145 (0.07) 0.0077 (0.02)

pCID(Y |X1;X4) 0.0608 (0.36) 0.0573 (0.75) 0.0644 (0.97)
pCID(Y |X2;X4) 0.0729 (0.55) 0.0704 (0.87) 0.0685 (0.99)
pCID(Y |X3;X4) 0.0427 (0.19) 0.0371 (0.44) 0.0322 (0.82)
pCID(Y |X5;X4) 0.0471 (0.23) 0.0359 (0.41) 0.0269 (0.65)
pCID(Y |X6;X4) 0.0270 (0.07) 0.0122 (0.04) 0.0015 (0.05)

pCID(Y |X1;X2, X4) 0.0850 (0.45) 0.0820 (0.88) 0.0852 (0.99)
pCID(Y |X3;X2, X4) 0.0624 (0.23) 0.0507 (0.41) 0.0398 (0.81)
pCID(Y |X5;X2, X4) 0.0658 (0.19) 0.0503 (0.37) 0.0356 (0.66)
pCID(Y |X6;X2, X4) 0.0463 (0.06) 0.0251 (0.04) 0.0088 (0.03)

pCID(Y |X3;X1, X2, X4) 0.0798 (0.23) 0.0719 (0.46) 0.0574 (0.84)
pCID(Y |X5;X1, X2, X4) 0.0789 (0.20) 0.0709 (0.48) 0.0531 (0.70)
pCID(Y |X6;X1, X2, X4) 0.0608 (0.08) 0.0451 (0.02) 0.0262 (0.03)

pCID(Y |X5;X1, X2, X3, X4) 0.0753 (0.26) 0.0776 (0.50) 0.0721 (0.75)
pCID(Y |X6;X1, X2, X3, X4) 0.0613 (0.04) 0.0565 (0.06) 0.0478 (0.05)

pCID(Y |X6;X1, X2, X3, X4, X5) 0.0464 (0.08) 0.0516 (0.07) 0.0513 (0.04)

20



3.2.2 The results of PCC and pPCC

When the Pearson’s correlation coefficient (PCC) and the partial correlation coef-

ficient (pPCC) were adopted to select relevant variables using the simulated data

of Model (3.1), the explanatory variable X4 was the most linearly associated with

the target variable Y by having the largest average value of PCC(Y,Xi) among

all i = 1, . . . , 6 regardless of the sample size (Table 3.4). About 88% to 100%

PCC(Y,X4) values were significantly not equal to zero according to their permuta-

tion p-values. The PCC(Y,X1), PCC(Y,X2), and PCC(Y,X5) values ranged from

0.2 to 0.4, values which were mostly identified as significant under the sample size

N = 100. The proportion of significant PCC(Y,X3) values in 100 simulations, how-

ever, was roughly consistent with the nominal significance level of α = 0.05. To

eliminate the impact from the dominant explanatory variable, the pPCC was pro-

posed to quantify linear associations between a relatively minor explanatory vari-

able to the target variable (Baba et al., 2004). As illustrated in Table 3.4, X2, X1,

and X5 were sequentially selected according to the average values of pPCC, and

pPCC(Y,X5;X4, X2, X1) were mostly significant. X3 was frequently discarded to-

gether with the irrelevant variable X6 in the variable selection process. This was

expected due to the natural utilization of the PCC and the pPCC; they were specif-

ically designed to detect linear association instead of association in general forms.
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Table 3.4: Summary statistics of Pearson’s correlation coefficients (PCC) and partial
correlation coefficients (pPCC) based 100 simulated samples of size 25, 50, or 100
from the model Y = 10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 + 5X5 + ε, where
Xi’s were distributed as U(0, 1) and ε was distributed as N(0, 1). The numbers in
parenthese indicate the proportion of significant CID / pCID values at α = 0.05 in
100 simulations.

Average PCC / pPCC (sig. prop.)

N = 25 N = 50 N = 100

PCC(Y,X1) 0.3401 (0.38) 0.3431 (0.73) 0.3759 (0.98)
PCC(Y,X2) 0.3845 (0.53) 0.3903 (0.77) 0.3815 (0.98)
PCC(Y,X3) -0.0050 (0.02) -0.0158 (0.07) 0.0020 (0.03)
PCC(Y,X4) 0.5691 (0.88) 0.5426 (0.98) 0.5586 (1.00)
PCC(Y,X5) 0.2645 (0.25) 0.2718 (0.45) 0.2753 (0.79)
PCC(Y,X6) 0.0008 (0.09) 0.0020 (0.06) 0.0073 (0.01)

pPCC(Y,X1;X4) 0.4105 (0.54) 0.4221 (0.87) 0.4432 (1.00)
pPCC(Y,X2;X4) 0.4629 (0.70) 0.4614 (0.94) 0.4548 (1.00)
pPCC(Y,X3;X4) -0.0063 (0.07) 0.0028 (0.07) -0.0008 (0.05)
pPCC(Y,X5;X4) 0.3158 (0.36) 0.3060 (0.56) 0.3204 (0.91)
pPCC(Y,X6;X4) -0.0006 (0.07) -0.0042 (0.04) 0.0014 (0.03)

pPCC(Y,X1;X2, X4) 0.4759 (0.65) 0.4774 (0.93) 0.5063 (1.00)
pPCC(Y,X3;X2, X4) -0.0207 (0.08) 0.0008 (0.08) 0.0034 (0.09)
pPCC(Y,X5;X2, X4) 0.3437 (0.36) 0.3499 (0.71) 0.3554 (0.96)
pPCC(Y,X6;X2, X4) 0.0066 (0.08) -0.0006 (0.05) -0.0091 (0.04)

pPCC(Y,X3;X1, X2, X4) -0.0208 (0.09) 0.0076 (0.10) -0.0003 (0.11)
pPCC(Y,X5;X1, X2, X4) 0.4189 (0.48) 0.4220 (0.86) 0.4140 (0.98)
pPCC(Y,X6;X1, X2, X4) 0.0085 (0.05) -0.0094 (0.07) -0.0170 (0.01)

pPCC(Y,X3;X1, X2, X4, X5) -0.0215 (0.11) 0.0060 (0.09) 0.0032 (0.13)
pPCC(Y,X6;X1, X2, X4, X5) 0.0088 (0.07) 0.0083 (0.03) -0.0064 (0.01)

pPCC(Y,X6;X1, X2, X3, X4, X5) 0.0054 (0.06) 0.0069 (0.09) 0.0031 (0.15)

22



3.3 Arabidopsis microarray data analysis

We exercised pCID to identify the genes that were associated with (or possibly

regulate or be regulated by) a given transcription factor. The method was uti-

lized to select gene signatures using Arabidopsis Thaliana (Arabidopsis) microarray

dataset. The dataset contained the expression levels of Arabidopsis genes under

cold stress, which can be downloaded from the Arabidopsis Information Resource

(TAIR) database (Huala et al, 2001). This data originally consists of 22,810 probes

and 52 samples (submission number ME00325) treated under cold stress (4 ◦C) after

0 (control), 0.5, 1, 3, 6, 12 or 24 hours (H). After normalized by the robust multichip

average (RMA) method (Irizarry et al., 2003) and log2-transformed with the Bio-

Conductor (Gentleman et al., 2004) ’affylmGUI’ package (Wettenhall et al., 2006),

the expressions of all probes had to be tested by the analysis of variance (ANOVA).

The probes having FDR < 0.001 under the time-course cold treatment were then

further proceeded to CID/pCID analysis (Benjamini and Hochberg, 1995). Three C-

repeat binding factors, CBF1 (probe ID: 254074 at), CBF2 (probe ID: 254075 at),

and CBF3 (probe ID:254066 at), were all cold-responsive genes and were adopted as

the explanatory variables X’s in CID/pCID demonstration while each of the other

probes was treated as the target variable in our analysis.

The expression of C-repeat binding factor (CBF) genes in plants under different

abiotic stresses has been extensively studied (Akhtar et al., 2012). In Arabidopsis,

three CBF genes (CBF1, CBF2 and CBF3 ) were found to be active under cold stress

(Gilmour et al., 2004; Liu et al., 1998). Here, the proposed CID/pCID methodology

was exercised in studying cold-stress responsive regulation paths governed by three

key regulatory proteins, CBF1, CBF2, and CBF3, at the transcriptional level using

microarray gene expression data. There were 2,388 probes, including three probes of

three CBF genes, identified as cold-responsive genes (ANOVA FDR < 0.001). Three

CBF genes were further treated as the explanatory variable (X), and each one of

the remaining 2,385 probes was treated as the target variable (Y ) for CID/pCID

analysis.

Among the 2,385 probes, 91% (2,177 probes) were significantly associated (CID/pCID

p-values < 0.05) with at least one of the three CBF probes of interest in terms of

their expression levels (Figure 3.3A). 26% (615 probes), 43% (939 probes), and 26%

(623 probes) had the largest significant CID values given CBF1, CBF2, and CBF3,

respectively. Only 431 probes had selected the second relevant CBF probes with
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significant pCID values (pCID p-values < 0.05); 192 out of 431 probes (45%) were

related to both CBF1 and CBF2, 79 (18%) were related to both CBF2 and CBF3,

and 160 (37%) were related to both CBF1 and CBF3 (Figure 3.3A). However, none

of the 2,385 probes were associated with all three CBF probes by having all pCID

with p-values ≥ 0.05 given any two CBF probes (Figure 3.3A).

The PCC/pPCC method identified fewer significant probes than the CID/pCID.

Among the 2,385 probes, 78% (1,862 probes) were significantly associated (PCC/pPCC

permutation p-values < 0.05) with at least one of the three CBF probes of interest

in terms of their expression levels (Figure 3.3B). However, 63% (1,169 probes) of

the significant probes were found to be relevant to more than one of the three tran-

scription factors; 105 probes were related to all three transcription factors. There

were 1,849 probes commonly identified by both the CID/pCID and PCC/pPCC

methods (Figure 3.3C). Five well known CBF target genes, COR6.6 (246481 s at),

COR78 (248337 at), COR47 (259570 at), COR15B (263495 at), and COR15A

(263497 at), were all commonly identified by both the CID/pCID and PCC/pPCC

methods.

There were 328 and 13 probes, respectively, that were only identified by the

CID/pCID or the PCC/pPCC method. This outcome implied, first, that PCC/pPCC

was more sensitive (but maybe less specific) for identifying linear relationships than

the CID/pCID method, and second, that the CID/pCID method identified nonlin-

ear patterns of regulation of transcription factors to their target genes. More genes

were identified as being significantly associated with more than two CBF TFs by the

PCC/pPCC method, even though we initially expected the association to have been

relatively weakened after removing the effect from the first identified CBF TF’s.

Gene set enrichment analysis (Du et al., 2010) was performed on 2,177, 1,862,

and 1,849 probes identified as being associated with at least one of the three CBF

probes by the CID/pCID method, the PCC/pPCC method, or by both, respectively.

There were 154, 134, and 132 significant gene ontology (GO) accessions enriched

(FDR < 0.01), respectively, where 124 GO accessions were commonly identified

(Figure 3.3D). Information for 29 GO accessions identified as being significantly

enriched only by the CID/pCID method is listed in Table 3.5. We investigated

further into two accessions: GO:0052544 (callose deposition in cell wall during de-

fense response) and GO:0052482 (cell wall thickening during defense response); both

accessions were identified through the same seven significant probes (264052 at,

264873 at, 262899 at, 254270 at, 253534 at, 267392 at, and 255378 at), and all of
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Figure 3.3: Venn diagrams of the 2,385 cold-responsive genes associated with
three CBF transcription factors according to (A) the CID/pCID method, (B)
the PCC/pPCC method, and (C) the CID/pCID method and/or the PCC/pPCC
method. (D) Venn diagrams of the significantly enriched gene ontology accessions
according to the CID/pCID method and/or the PCC/pPCC method.
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Table 3.5: Information for 29 GO accessions identified as being significantly enriched
according to CID/pCID significance.

Accession1 Type2 Description FDR

GO:0016138* P glycoside biosynthetic process 0.0003
GO:0051179* P localization 0.0003
GO:0006810* P transport 0.0012
GO:0051234* P establishment of localization 0.0014
GO:0033036* P macromolecule localization 0.0024
GO:0052542 P callose deposition during defense response 0.0031
GO:0007166 P cell surface receptor linked signaling pathway 0.0033
GO:0033037 P polysaccharide localization 0.0049
GO:0052545 P callose localization 0.0049
GO:0044272* P sulfur compound biosynthetic process 0.0050
GO:0007275* P multicellular organismal development 0.0070
GO:0007167 P enzyme linked receptor protein signaling pathway 0.0073
GO:0007169 P transmembrane receptor protein tyrosine kinase sig-

naling pathway
0.0073

GO:0010200* P response to chitin 0.0075
GO:0052544 P callose deposition in cell wall during defense response 0.0084
GO:0052482 P cell wall thickening during defense response 0.0084
GO:0010876* P lipid localization 0.0095
GO:0032555* F purine ribonucleotide binding 0.0014
GO:0032553* F ribonucleotide binding 0.0014
GO:0000166* F nucleotide binding 0.0019
GO:0032559* F adenyl ribonucleotide binding 0.0027
GO:0017076* F purine nucleotide binding 0.0032
GO:0005524* F ATP binding 0.0042
GO:0004713 F protein tyrosine kinase activity 0.0057
GO:0010011 F auxin binding 0.0061
GO:0005506 F iron ion binding 0.0062
GO:0001882* F nucleoside binding 0.0071
GO:0001883* F purine nucleoside binding 0.0071
GO:0030554* F adenyl nucleotide binding 0.0071

1Eighteen accessions containing the 42 genes associated with nore than one CBF
TFs according to CID/pCID are marked ‘*’. 2Accession types: biological process
(P), cellular component (C), and molecular function (F).
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them were also identified as significant by the PCC/pPCC method except 264052 at

(AT2G22330) and 253534 at (AT4G31500); both were associated with CBF1 by the

CID/pCID method and were confirmed to be cold-responsive genes through a liter-

ature search (Fowler and Thomashow, 2002; Lee et al., 2005). Scatter plots of the

expressions of these two probes to the expressions of CBF1 (Figure 3.4A) show that

only moderate linear relationships exist when the log2 expression levels of CBF1

were greater than 7; the scattered patterns when CBF1 lowly express weakened the

linearity (r = -0.13 and -0.14, respectively). By plotting the average log2 expression

levels (Figure 3.4B), we observed that the expressions of 264052 at and 253534 at

descended along with those of CBF1 from 3H to 24H after cold treatment.

Conceptually, the CID values are computed from the cumulative discrepancies

between the marginal and conditional distributions. By comparing such discrep-

ancies observed from each sample, we are able to check in which sample subsets a

stronger association between the predictor and the target variables can be observed.

Figure 3.4C shows the percentages of the sample subsets that contributed to the

association of the CBF TFs with the significant genes. The dashed horizontal line

represents the value 1/26 = 0.038 when all 26 tissues × times × treatments combi-

nations equally contributed to the CID value. The information provided by the ex-

pression of CBF1 from shoot tissue at 24H after treatment, for example, contributed

more than 15% of the significant CID(264052 at|CBF1 ) and CID(253534 at|CBF1 ),

respectively. More specifically, 264052 at and 253534 at mostly had relatively large

expression values when the expression levels of CBF1 were around the range ob-

served from shoot tissue at 24 hour after treatment (from Figure 3.4A, or from

Figure 3.4D showing the conditional CDF’s due to samples under 24H cold treat-

ment [yellow dashed lines] are above the marginal CDF [black solid line]). The

information provided for 264052 at by CBF1 from root and shoot tissues at one

hour after treatment also largely contributed the CID value, but 264052 at had rel-

atively high expression levels in shoot tissues but relatively low expression levels

in root tissues. This implies that the contributions of the sub-samples to the CID

values are capable of indicating the sample-specific gene-gene interactions.

Furthermore, 42 genes were associated with more than one CBF TF according

to the CID/pCID method but were not identified as significant by the PCC/pPCC

method. These genes were contributed to eighteen GO accessions enriched only

by the CID/pCID method (Table 3.5), where 253114 at (AT4G35860) associated

with both CBF1 and CBF3 contributed to the enrichment of 8 GO accessions. The
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Figure 3.4: Expression profiles and CID/pCID inferences of 264052 at and 253534 at
based on expression levels of CBF1. (A) Scatter plots of log2 expression levels. (B)
Averages and standard deviations of log2 expression levels over time under control (CTRL)
or cold treatments. (C) Contribution to CID value by different sub-samples. C: control; S:
shoot; R: root. The dashed horizontal line indicates the nominal value 1/26. (D) Marginal
CDF (black solid line) and conditional CDF’s under 0.5H R, 0.5H S (red dashed lines),
1H R, 1H S (green dashed lines), 12H R, 12H S (pink dashed lines), 24H R, and 24H S
(yellow dashed lines).
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gene corresponding to 253114 at was previously reported as a gene preferentially ex-

pressed in cold stored peach fruits (Tittarelli et al., 2009). By plotting the average

log2 expression levels over time (Figure 3.5A), we observed that the expressions of

CBF1 and CBF3 decreased from 6H to 24H after cold treatment, while the expres-

sion of 253114 at increased. The percentages of the sample subsets that contributed

to the association of 253534 at with CBF1 and CBF3 are shown in Figure 3.5B

and Figure 3.5C. The information provided by the expression of CBF1 at 24H after

treatment contributed most to the significance of CID(253114 at|CBF1 ), and the

information provided by the expression of CBF3 at 3H after treatment contributed

most to the significance of pCID(253114 at|CBF3 ;CBF1 ). A minor negative corre-

lation between CBF3 and 253114 at was also observed in the control samples from

6H to 24H. This feature was captured by the discrepancy between the marginal and

conditional distributions at 6H after treatment in the control shoot sample when

calculating pCID(253114 at|CBF3;CBF1 ) (Figure 3.5C). Further experiments can

be conducted to confirm these hypotheses.
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Figure 3.5: Expression profiles and CID/pCID inferences of 253114 at based on
expression levels of CBF1 and CBF3. (A) Averages and standard deviations of
log2 expression levels over time under control (CTRL) or cold treatments. (B)
Contribution to CID(253114 at|CBF1) and (C) pCID(253114 at|CBF3;CBF1) by
different sub-samples. C: control; S: shoot; R: root. The dashed horizontal line
indicates the nominal value 1/26.
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3.4 Discussion

The CID values of Y given either one or two predictors provided hints regarding

how to guess about the approximate pCID values. For example, pCID(Y |X1;X4)

is approximately (0.1747 − 0.1176)/(1 − 0.1176) = 0.065 and pCID(Y |X6;X4) is

approximately (0.1191− 0.1176)/(1− 0.1176) = 0.002 (see Table 3.1). The latter is

much smaller than the former, reflecting their differing magnitudes of dependency.

After eliminating the impact from the more dominant variables, the signals from

the minor variables were enlarged and the pCID values were gradually increased as

the number of conditioning variables was increased.

The order of the variables declared relevant also provided hints about the order

of priority for statistical dependence. Linearity was superior to nonlinearity because

X4 was favored over X1 and X2 even though 10X4 and 10 sin(πX1X2) contributed

the same range of Y in Model (3.1). But the influence of X2 (or X1) was stronger

than that of X5, which had only half the impact of X4 on Y in the model. X3 and X5

having similar CID and pCID values (see Table 3.1) but the range of 30(X3 − 0.5)2

and 5X5 being [0, 7.5] and [0, 5], respectively, means that X5 was 1.5 times ‘more

influential’ on Y than X3. Therefore, pCID values can serve as indicators for or can

even quantify different types of curvilinearity in regard to statistical dependence.

With a relatively large sample size (N = 100), 96% of the simulations correctly

selected more than four of five relevant variables, while the irrelevant variable X6

was falsely included in only three simulations (Figure 3.6A). Otherwise, 22% of the

simulations under the moderate sample size (e.g., N = 50) picked all five relevant

variables; 41% of the simulations picked four relevant variables, where X4 was never

missed but X3 and X5 were missed in about 20% of the simulations (Figure 3.6B).

Also about 20% of the simulations claimed significance only for X1, X2, and X4

(Figure 3.6B). For a small sample size (N = 25), CID / pCID lost sensitivities in

finding X5 (79% missed), X3 (78% missed), X1 (51% missed), X2 (44% missed),

and X4 (17% missed) (Figure 3.6C). But X6 was selected in 8% of the simulations,

which is about the nominal α = 0.05.
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A. N = 100 B. N = 50

C. N = 25

Figure 3.6: Number of the relevant variable Xi (i = 1, 2, 3, 5, 6) being selected in
100 simulated samples of size (A) 100, (B) 50, or (C) 25 from the model Y =
10 sin(πX1X2) + 30(X3 − 0.5)2 + 10X4 + 5X5 + ε, where Xi’s were distributed as
U(0, 1) and ε was distributed as N(0, 1).
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Chapter 4

Application to gene regulatory
network

The gene regulation events under certain condition serve as small blocks to the

entire gene regulation network (GRN), which may be reconstructed by connecting

multiple regulation modules. An inferred GRN can therefore provide insights into

the relationships between genes of interest by experiments and the understanding

of biological functions with complex biological phenomena. More specifically, an in-

ferred GRN consisting of the nodes (representing genes) and the edges (representing

significant gene-gene interaction) reflects the gene regulation events that may con-

currently or sequentially occur under the condition of study. In this study, we focus

on the inference of GRN using the results of microarray experiments. It is usually

achieved by (1) identifying a pair of significantly associated genes, (2) elongating

the regulation path from the gene pair, and then (3) assembling all identified paths

to form the complex GRN (Figure 4.1).

This study aims to infer the causality in a GRN using CID. A causal connection

between a pair of nodes means one is the origin (source) and the other is the con-

sequence (target) in the association. Such cause and effect relationship is usually

expected when studying the relationship between a transcription factor (TF) and its

target genes and is usually indicated as a directed edge in the network. Compared

to co-expression GRN (i.e., network with undirected edges), a cause-and-effect GRN

requires more information to put the direction on the edge. The direction is typically

assigned according to known biological evidences, which may not be available at all

time. In this study, we utilize the asymmetric property of CID (i.e., CID(Y |X) is

not necessarily equal to CID(X|Y )) to distinguish not only the associated gene pairs

but the causes / effects in a gene regulation event. Asymmetry is a very unique fea-

ture of CID whereas the some conventional methods, including PCC, pPCC and MI,
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Figure 4.1: Diagram of gene regulatory network inference workflow. (A) Identifi-
cation of a significantly associated gene pair. (B) Regulation path elongation. (C)
Assembly of all identified regulation paths.

provide symmetric results when considering the association between two variables.

More specifically, the gene Y is designated as the source and gene X, the target, in

the GRN if CID(Y |X) > CID(X|Y ).

The pCID method could identify relevant genes in the elongation step. Ideally,

a proper stepwise procedure iteratively picks the relevant genes according to its

magnitude of association to the target until no more gene would significantly increase

the amount of association. For example, in Figure 4.1B, CID(Source A|Target A1)

would be significant while we also expect a significant CID(Source A|Target A1,

Target A2) but a insignificant CID(Source A|Target A1, X) given an irrelevant gene

X. However, due to the dominant effect of the most influential gene, i.e., Target A1,

in the first step, CID(Source A|Target A1, X) were mostly significant (see Section

3). The pCID resolves this problem by decomposing only the information of the

target variable which was not explained by the first predictor.

4.1 Construction of gene regulatory network by

CID/pCID

The inference of GRN has three steps (Figure 4.1). However, due to the dramatic

amount of genes simultaneously monitored in a microarray experiment, we develop

the following heuristic approach for the first two steps which were illustrated with

Figure 4.2. Given a source gene T0, CID(T0|Ti) for one of the candidate target

genes, Ti, was computed in the first step. The candidate target genes may be all
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other genes in the same microarray dataset or user-defined. In order to reduce the

computation of the programming, we eliminated some irrelevant candidate target

genes which caused the CID(T0|Ti) values to be insignificant (p-value > 0.05) and

which were not proceeded to the following steps. Under the circumstance, the

source gene T0 was discarded as the origin of a regulation path when all CID(T0|Ti)
values were insignificant in the first run. Otherwise, if CID(T0|T(1)) had the single

smallest significant p-value among the results from all candidate target genes, we

connected the source gene T0 and the target gene T(1). Provided that there were

more than one CID(T0|Ti) value had the smallest significant p-value, we selected

T(1) which had the maximum of these CID(T0|Ti) value. The decision-making about

the direction between the source gene T0 and the target gene T(1) was based on

comparing the significance between CID(T0|T(1)) and CID(T(1)|T0). If CID(T0|T(1))

was more significant than CID(T(1)|T0) or if these two CID values had equal p-value

and the CID(T0|T(1)) value was larger than CID(T(1)|T0) value, the direction was

from T0 to T(1); otherwise, the direction was from T(1) to T0. The gene pair (T0, T(1))

was proceeded to the elongation step.

In the elongation step, pCID(T0|Tj; T(1)) and pCID(T(1)|Tj; T0) were computed

for one of the remaining candidate target genes, Tj, to identify the second relevant

target gene, T(2) (Figure 4.2). Suppose that all pCID(T0|Tj; T(1)) and pCID(T(1)|Tj;T0)

values were insignificant, the regulation path would stop and the network was

with two nodes (T0, T(1)). In other respects, the process was continued and there

were two routes to connect the regulation path. Provided that there were more

than one pCID(T0|Tj;T(1)) or pCID(T(1)|Tj;T0) value had the smallest significant

p-value among the results of the pCID(T0|Tj;T(1)) and pCID(T(1)|Tj;T0) from all

remaining candidate target genes, we selected T(2) which had the maximum of these

pCID(T0|Tj;T(1)) and pCID(T(1)|Tj;T0) values. One of these routes was that we con-

nected the gene T0 and T(2), if T(2) was selected as a result of the pCID(T0|T(2);T(1))

value. The decision of the direction by pCID values was similar to the previous

resolution by CID values. The direction was from T0 to T(2), if pCID(T0|T(2);T(1))

was more significant than pCID(T(2)|T0;T(1)) or if these two pCID values had equal

p-value and the pCID(T0|T(2);T(1)) value was larger than pCID(T(2)|T0;T(1)) value; or

from T(2) to T0, otherwise. The other route was that we connected the gene T(1) and

T(2), if T(2) was selected as a result of the pCID(T(1)|T(2);T0) value. The direction was

from T(1) to T(2), if pCID(T(1)|T(2);T0) was more significant than pCID(T(2)|T(1);T0)

or if these two pCID values had equal p-value and the pCID(T(1)|T(2);T0) value was
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Figure 4.2: Illustration of the heuristic approach for regulation path elongation.
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larger than pCID(T(2)|T(1);T0) value; or from T(2) to T(1), otherwise. This finished

the first run of the elongation.

Furthermore, we explain the next steps of GRN construction. In the rth run

(r ≥ 2) of the elongation, all possible values of pCID(S|Tj; {T0, T(1), . . . , T(r)} \ S)

for one of the remaining candidate genes, Tj, and S ∈ {T0, T(1), . . . , T(r)} were com-

puted. Suppose that all pCID(S|Tj; {T0, T(1), . . . , T(r)}\S) values were insignificant,

the regulation path would stop and the network was with r+ 1 nodes (T0, T(1), . . . ,

T(r)). Provided that there were more than one pCID(S|Tj; {T0, T(1), . . . , T(r)} \ S)

value had the smallest significant p-value among the results of the pCID(S|Tj;
{T0, T(1), . . . , T(r)} \S) from all remaining candidate target genes, we selected T(r+1)

which had the maximum of these pCID(S|Tj; {T0, T(1), . . . , T(r)} \ S) value and

connected the target gene S and T(r+1). The direction was from S to T(r+1), if

pCID(S|T(r+1); {T0, T(1), . . . , T(r)} \ S) was more significant than pCID(T(r+1)|S;

{T0, T(1), . . . , T(r)} \ S) or if these two pCID values had equal p-value and the

pCID(S|T(r+1); {T0, T(1), . . . , T(r)}\S) value was larger than the pCID(T(r+1)|S; {T0,

T(1),. . . ,T(r)}\S) value; or from T(r+1) to S, otherwise. The whole elongation process

was continued until all of the pCID(S|Tj; {T0, T(1), . . . , T(e)}\S) values in the eth run

of the elongation were insignificant (p-value > 0.05). The resulting network would

contain e+ 1 nodes (T0, T(1), . . . , T(e)). For example, Figure 4.3 illustrates one of the

GRN construction results. Let T0 be the source gene and the other genes be the

target genes. First (Step (0) in Figure 4.3), we computed all CID values of T0 given

one of the target genes, and then CID(T0|T(1)) had the most significant p-value, we

connected the T0 and T(1) with the direction was from T0 to T(1) when the value of

CID(T0|T(1)) > CID(T(1)|T0). Second (Step (1)), we selected the target gene, T(2),

which might be connected with T0 or T(1). Therefore, we computed the pCID(T0|Tj;
T(1)) and pCID(T(1)|Tj; T0), where Tj was one of the remaining genes. The result was

that pCID(T0|T(2); T(1)) had the most significant p-value and T(2) was connected with

T0 from T0 to T(2) when pCID(T0|T(2); T(1)) > pCID(T(2)|T0; T(1)) value. In Step (2),

the next selected gene, T(3), could be connected with T0 or T(1) or T(2). We computed

the pCID(T0|Tj; T(1), T(2)), pCID(T(1)|Tj; T0, T(2)) and pCID(T(2)|Tj; T0, T(1)), where

Tj was one of the remaining genes. The result was that pCID(T0|T(3); T(1), T(2)) had

the most significant p-value and T(3) was connected with T0 from T(3) to T0 when

pCID(T(3)|T0; T(1), T(2)) > pCID(T0|T(3); T(1), T(2)). In Step (3), the chosen target

gene, T(4), would be connected with one of the prior selected genes (T0, T(1), T(2)

and T(3)). We computed the pCID(T0|Tj; T(1), T(2), T(3)), pCID(T(1)|Tj; T0, T(2), T(3)),
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Figure 4.3: Illustration of the simple example for regulation path elongation used
by CID/pCID method.

pCID(T(2)|Tj; T0, T(1), T(3)) and pCID(T(3)|Tj; T0, T(1), T(2)), where Tj was one of the

remaining genes. Therefore the pCID(T(2)|T(4); T0, T(1), T(3)) had the most signifi-

cant p-value and T(4) was connected with T(2) from T(2) to T(4) when pCID(T(2)|T(4);

T0, T(1), T(3)) > pCID(T(4)|T(2); T0, T(1), T(3)). In Step (4), the chosen target gene,

T(5), would be connected with one of the previous selected genes (T0, T(1), T(2),

T(3) and T(4)). We computed the pCID(T0|Tj; T(1), T(2), T(3), T(4)), pCID(T(1)|Tj;
T0, T(2), T(3), T(4)), pCID(T(2)|Tj; T0, T(1), T(3), T(4)), pCID(T(3)|Tj; T0, T(1), T(2), T(4))

and pCID(T(4)|Tj; T0, T(1), T(2), T(3)), where Tj was one of the remaining genes.

Therefore the pCID(T(2)|T(5); T0, T(1), T(3), T(4)) had the most significant p-value and

T(5) was connected with T(2) from T(5) to T(2) when pCID(T(5)|T(2); T0, T(1), T(3), T(4))

> pCID(T(2)|T(5); T0, T(1), T(3), T(4)). In the next step, we wanted to find the next

linked gene T(6) but all of pCID(S|Tj; {T0, T(1), . . . , T(5)}\S) values were insignificant

(p-value > 0.05), where S was one of these previous selected genes, T0, T(1), T(2), T(3),

T(4) and T(5).

4.2 Simulation study

The proposed procedure of GRN inference was examined in the simulation study. A

pseudo network with six nodes (genes) was generated according to normal mixture

model (Figure 4.4). It contained one source node (A11), four target nodes (A21,

A22, A31 and A32), and one node (B) independent to the others. The expression

levels of nodes A11 and B were randomly generated from the Normal distribution
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with mean and standard deviation both equal to 1, which was denoted by N(1, 1).

The expression levels of the target nodes would be affected by two factors of its direct

source: the expression level and the binding efficiency. This intended to mimic the

occasions (1) the transcription factor was not expressed so that the target gene would

not be regulated by the source gene, and (2) even the source gene was expressed,

the target gene may still not be regulated by the source gene due to various binding

efficiency of the transcription factor. Let S and T denote the direct source and the

target gene, respectively. In the simulated network (Figure 4.4), A11 was the direct

source of {A21, A22} and A21 was the direct source of {A31, A32}. If the binding

efficiency for this pair of S and T was set to be 100b%, then 100(1−b)% of the objects

in the sample were not affected by the expression level of S and their expression

levels were generated from N(−1, 0.25). The binding efficiency (b) for {A11, A21},
{A11, A22}, {A21, A31}, and {A21, A32} were 0.9, 0.7, 0.9, and 0.8, respectively.

For the 100b% objects that the regulation did take place, if the expression level of

S in the ith sample was si, the expression level of the ith sample was randomly

generated from N(si, 0.25) if si > 0 and from N(−1, 0.25) if si < 0 (meaning S was

not expressed). Based on statistical theory, the approximate proportions of gene

expressions of the target gene actually determined by the expression levels of the

source gene were indicated next to the arrows in Figure 4.4. The inference process

of the proportions of gene expressions of the target gene was showed in Appendix

A. The pseudo network was replicated 100 times with sample size N = 25, 50 and

100.
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Figure 4.4: Pseudo network for the simulation study. The numbers next to the
arrows illustrate the proportions of the objects in the sample that the expressions
of the target node actually determined by the expressions of the source node.

A pseudo network with six nodes (genes) was generated to assess the proposed

procedure of GRN inference (Figure 4.4). Two source genes, A11 and B, were prede-

termined. The CID and pCID values as well as their p-values for a particular simu-

lation under sample size N =50 are shown in Table 4.1 for demonstration of network

reconstruction. Starting from A11, the CID(A11|B) value was insignificant (p-value:

0.4136 > 0.05), hence the node B did not exist in the following steps. Then the re-

sults showed CID(A11|A21), CID(A11|A22), CID(A11|A31) and CID(A11|A32) had

the minimum p-value (0.0010) and CID(A11|A22) value (0.2028) was the maximum

of these CID values, so that A22 would be selected as the first node connected to

A11. Because CID(A11|A22) and CID(A22|A11) had the same significant p-value

(0.0010) and CID(A11|A22) value (0.2028) was larger than CID(A22|A11) value

(0.1791), the direction was set from A11 to A22. The computation of pCID(A11|x;

A22) and pCID(A22|x; A11) for another gene x followed and resulted in the se-

lection of A21 as the second node connected to A11 due to that pCID(A11|A21;

A22) had the smallest p-value (0.0010) and the largest pCID value (0.1013). The

direction was set from A11 to A21 because pCID(A11|A21; A22) had the same sig-

nificant p-value (0.0010) as pCID(A21|A11; A22) and it’s value (0.1013) was larger

than pCID(A21|A11; A22) value (0.0934). Similarly, the third and fourth target,

A31 and A32, was selected based on pCID(A21|A31; A11, A22) and pCID(A21|A32;

A11, A22, A31); both A31 and A32 was connected from A21 due to pCID(A21|A31;

A11, A22) was equal significant (p-value: 0.0010) to and has larger value than
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Table 4.1: The estimated CID and pCID values in one of the 100 simulations with
sample size N = 50.

CID/pCID Estimate (p-value) CID/pCID Estimate (p-value)

CID(A11|A21) 0.1936 (0.0010)
CID(A11|A22) 0.2028 (0.0010) CID(A22|A11) 0.1791 (0.0010)
CID(A11|A31) 0.1612 (0.0010)
CID(A11|A32) 0.1281 (0.0010)
CID(A11|B) 0.0129 (0.4136)

pCID(A11|A21;A22) 0.1013 (0.0010) PCID(A21|A11;A22) 0.0934 (0.0010)
pCID(A11|A31;A22) 0.0639 (0.0020)
pCID(A11|A32;A22) 0.0534 (0.0010)
pCID(A22|A21;A11) 0.0582 (0.0060)
pCID(A22|A31;A11) 0.0446 (0.0100)
pCID(A22|A32;A11) 0.0500 (0.0090)

pCID(A11|A31;A21,A22) 0.0097 (0.2208)
pCID(A11|A32;A21,A22) 0.0130 (0.1858)
pCID(A21|A31;A11,A22) 0.1131 (0.0010) pCID(A31|A21;A11,A22) 0.1123 (0.0010)
pCID(A21|A32;A11,A22) 0.0929 (0.0010)
pCID(A22|A31;A11,A21) 0.0122 (0.3227)
pCID(A22|A32;A11,A21) 0.0205 (0.1638)

pCID(A11|A32;A21,A22,A31) 0.0123 (0.5465)
pCID(A21|A32;A11,A22,A31) 0.0553 (0.0020) pCID(A32|A21;A11,A22,A31) 0.0576 (0.0350)
pCID(A22|A32;A11,A21,A31) 0.0162 (0.5415)
pCID(A31|A32;A11,A21,A22) 0.0298 (0.1788)

CID(B|A11) 0.0036 (0.9999)
CID(B|A21) 0.0202 (0.2468)
CID(B|A22) 0.0012 (0.9990)
CID(B|A31) 0.0137 (0.4905)
CID(B|A32) 0.0090 (0.6563)

41



pCID(A31|A21; A11, A22) (value: 0.1131 > 0.1123), and pCID(A21|A32; A11, A22,

A31) was more significant than pCID(A32|A21; A11, A22, A31) (p-value: 0.0020

< 0.0350) even though pCID(A21|A32; A11, A22, A31) value (0.0553) was smaller

than pCID(A32|A21; A11, A22, A31) value (0.0576), respectively. When consider-

ing the negative-control node B as the source node, it had all insignificant values

of CID at the first step of GRN inference and was isolated from the other nodes.

Therefore, the resulting network was identical to our setting showing in Figure 4.4.

We also collected all networks reconstructed under the source node was A11 in

the simulations for N = 25, 50 and 100; networks consisting of the same set of

nodes were grouped together and the groups occurred at least 5 times were shown

in Figure 4.5. Fourteen resulting networks obtained the correct network structure

among these one hundred simulations for N = 25, sixty-five correct networks were

restructured for N = 50 and eighty-one correct networks were for N = 100. For N

= 25, 54% of the simulations only revealed the partial network; when using a larger

sample (N = 50), as few as 10 simulations obtained partial network; moreover, there

were not any partial network under the sample of size N = 100. In addition, we

could observe that the two nodes were sometimes discarded to produce the partial

networks, if the proportion of gene expressions of the target gene actually determined

by the expression levels of the source gene was lower than 76% (Figure 4.4) under

the sample of size N = 25. In other words, the edges between (A11, A22) and

(A21, A32) could be missed in the reconstruction of pseudo network. Similarly,

the edge between (A11, A22) would be discarded when the proportion of A22 gene

expressions actually determined by A11 was lower than 60% (Figure 4.4) under the

sample of size N = 50. In this instance, the GRN would be accurately reconstructed

in the large sample.

The asymmetric property of CID was utilized to infer causal effect in the network.

When CID(Y |X) was more significant than CID(X|Y ) or pCID(Y |X; Z) was more

significant than pCID(X|Y ; Z), Y was claimed to be the source of the relationship.

In Figure 4.5 and Figure 4.6, the numbers of arrows which pointed to correct direc-

tions were shown beside the arrows outside of the parentheses whereas the numbers

of incorrect directions in the parentheses. In Figure 4.6, we combined all the correct

connections between two nodes from 100 simulations for N = 25, 50 and 100. When

the sample of size N = 25 and the source node was A11, there were 88% of networks

to connect (A11, A21) together, 86% for (A21, A31), 55% for (A11, A22), and 40%

for (A21, A32); 2% of the networks included the negative control node, B (Figure
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Figure 4.5: The results of the network reconstructed under the source node was A11
based on the procedure in Section 4.1 (Exclude the insignificant node by CID, and
pick up the connected node which has the minimum significant CID/pCID p-value,
if there existed at least two nodes which fitted the requests, we chose the node that
had the maximum CID/pCID value) from 100 simulations of pseudo network for
N = 25, 50 and 100, respectively. The numbers next to the arrows illustrate the
number of connection from the source node to the target node; besides, the number
of connection in the brackets illustrated the inverse direction.
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Figure 4.6: Pseudo network for the simulation study based on the procedure in
Section 4.1 (Exclude the insignificant node by CID, and pick up the connected
node which has the minimum significant CID/pCID p-value, if there existed at least
two nodes which fitted the requests, we chose the node that had the maximum
CID/pCID value). (A) The numbers next to the arrows illustrate the proportions of
the objects in the sample that the expressions of the target node actually determined
by the expressions of the source node. (B), (C) and (D) were the results which were
combined with all connection from 100 simulations when the source node T0 was
A11 for N = 25, 50 and 100, respectively.
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4.6 B). When N = 50, 97%, 99%, 82%, and 88% of the networks contained the

edges between (A11, A21), (A21, A31), (A11, A22) and (A21, A32), respectively,

while 7% of them had the negative control node, B (Figure 4.6 C). When N = 100,

99%, 100%, 99%, and 94% of the networks contained the edges between (A11, A21),

(A21, A31), (A11, A22) and (A21, A32), respectively, while 12% of them had the

negative control node, B (Figure 4.6 D). When the negative control node, B, was set

to be the source gene, 16% (Figure 4.6 B), 21% (Figure 4.6 C) and 26% (Figure 4.6

D) of the networks were significant build at α = 0.05. However, the false networks

were built spontaneously without consensus. All false networks started from B of

the same combination of nodes only appeared less than or equal to five times in

100 simulations for N = 25, 50 and 100. Therefore, CID/pCID method robustly

identified the relationships between nodes and extended the association network.

The medians and interquartile ranges of some CID and pCID values summarized

from 100 simulations were shown in Table 4.2. The CID values of A11 to a directed

or undirected associated node were much larger than the CID values of A11 to the

irrelevant node B. Also, it could be observed that CID(A11|A21) > CID(A11|A22),

CID(A11|A31) > CID(A11|A32), and CID(A11|A21) was larger than the maximum

of CID(A11|A31) and CID(A11|A32) values. Therefore, CID value can not only

distinguish the existence of association but also reflect the strength of the associ-

ation and successfully pick the direct (or strongest) association among all possible

connections. In addition, 100% of CID(A11|A21) and CID(A21|A11) values were

declared significant if setting α = 0.05. The pCID values further assisted to select

next A11-related or A21-related node after eliminating the effects from A21 and

A11, respectively. Among these pCID values, 100% of pCID(A21|A31; A11) values

were significant at α = 0.05 and the medians of pCID(A21|A31; A11) values in

different sample of size N were maximum, A31 was the most likely to be selected

as A21-related node after eliminating the effects from A11. Furthermore, A22 was

possibly picked up to connect with A11 based on 63% significance for the sample

of size N =25 and 100% significance for N =100; A32 was possibly picked up to

connect with A21 according to 97% significance for N =50. In the final step, the

chance A32 being selected in the elongation process to connect with A21 was only

29% for the sample of size N =25, but there was 100% for N = 100; the chance

A22 being selected in the elongation process to connect with A11 was 83% for N =

50. On the other hand, the false positive rates of gene selection using either CID or

pCID were all about 0.05.
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Table 4.2: Summary of the estimated CID/pCID values in 100 simulations with
sample size N = 25, 50 and 100.

N = 25 N = 50 N = 100

Median (IQR1)
Significant

Median (IQR1)
Significant

Median (IQR1)
Significant

proportion proportion proportion

CID(A11|A21) 0.1967 (0.0534) 1.00 0.2049 (0.0527) 1.00 0.2319 (0.0378) 1.00
CID(A11|A22) 0.1100 (0.0568) 0.86 0.1232 (0.0522) 1.00 0.1402 (0.0331) 1.00
CID(A11|A31) 0.1348 (0.0631) 0.93 0.1457 (0.0610) 1.00 0.1600 (0.0345) 1.00
CID(A11|A32) 0.1130 (0.0708) 0.86 0.1233 (0.0499) 1.00 0.1328 (0.0377) 1.00
CID(A11|B) 0.0281 (0.0369) 0.06 0.0157 (0.0166) 0.13 0.0119 (0.0077) 0.16
CID(A21|A11) 0.1941 (0.0609) 1.00 0.2024 (0.0510) 1.00 0.2310 (0.0302) 1.00

pCID(A11|A22;A21) 0.0781 (0.0425) 0.74 0.0824 (0.0496) 0.96 0.0842 (0.0304) 1.00
pCID(A11|A31;A21) 0.0359 (0.0320) 0.22 0.0297 (0.0226) 0.55 0.0172 (0.0165) 0.83
pCID(A11|A32;A21) 0.0309 (0.0319) 0.19 0.0221 (0.0212) 0.40 0.0122 (0.0156) 0.72
pCID(A21|A22;A11) 0.0358 (0.0312) 0.19 0.0210 (0.0221) 0.33 0.0091 (0.0140) 0.61
pCID(A21|A31;A11) 0.1301 (0.0431) 1.00 0.1285 (0.0356) 1.00 0.1320 (0.0272) 1.00
pCID(A21|A32;A11) 0.0937 (0.0412) 0.93 0.1017 (0.0350) 1.00 0.0989 (0.0259) 1.00
pCID(A31|A21;A11) 0.1274 (0.0570) 0.92 0.1258 (0.0431) 1.00 0.1397 (0.0215) 1.00

pCID(A11|A22;A21,A31) 0.0764 (0.0536) 0.63 0.0772 (0.0461) 0.88 0.0838 (0.0385) 1.00
pCID(A11|A32;A21,A31) 0.0239 (0.0238) 0.04 0.0156 (0.0182) 0.09 0.0086 (0.0148) 0.23
pCID(A21|A22;A11,A31) 0.0202 (0.0242) 0.11 0.0126 (0.0197) 0.15 0.0009 (0.0156) 0.33
pCID(A21|A32;A11,A31) 0.0517 (0.0381) 0.52 0.0567 (0.0265) 0.97 0.0611 (0.0247) 1.00
pCID(A31|A22;A11,A21) 0.0160 (0.0211) 0.03 0.0057 (0.0137) 0.04 -0.0039 (0.0134) 0.07
pCID(A31|A32;A11,A21) 0.0295 (0.0273) 0.16 0.0237 (0.0238) 0.32 0.0195 (0.0181) 0.68
pCID(A22|A11;A21,A31) 0.0615 (0.0440) 0.18 0.0611 (0.0238) 0.86
pCID(A32|A21;A11,A31) 0.0486 (0.0222) 0.41

pCID(A11|A32;A21,A22,A31) 0.0206 (0.0205) 0.01 0.0095 (0.0104) 0.14
pCID(A21|A32;A11,A22,A31) 0.0479 (0.0379) 0.29 0.0584 (0.0238) 1.00
pCID(A22|A32;A11,A21,A31) 0.0237 (0.0211) 0.01 0.0128 (0.0130) 0.02
pCID(A31|A32;A11,A21,A22) 0.0316 (0.0262) 0.08 0.0259 (0.0150) 0.41
pCID(A32|A21;A11,A22,A31) 0.0407 (0.0369) 0.02 0.0493 (0.0171) 0.59
pCID(A11|A22;A21,A31,A32) 0.0793 (0.0446) 0.83
pCID(A21|A22;A11,A31,A32) 0.0123 (0.0189) 0.03
pCID(A31|A22;A11,A21,A32) 0.0119 (0.0188) 0.07
pCID(A32|A22;A11,A21,A31) 0.0143 (0.0192) 0.02
pCID(A22|A11;A21,A31,A32) 0.0626 (0.0341) 0.35

CID(B|A11) 0.0273 (0.0285) 0.08 0.0167 (0.0163) 0.07 0.0119 (0.0100) 0.10
CID(B|A21) 0.0220 (0.0231) 0.06 0.0144 (0.0129) 0.04 0.0103 (0.0072) 0.08
CID(B|A22) 0.0187 (0.0222) 0.03 0.0114 (0.0117) 0.05 0.0075 (0.0060) 0.04
CID(B|A31) 0.0199 (0.0239) 0.08 0.0125 (0.0149) 0.08 0.0079 (0.0086) 0.11
CID(B|A32) 0.0188 (0.0158) 0.05 0.0131 (0.0171) 0.11 0.0078 (0.0064) 0.09

1 IQR = interquartile range.
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4.3 Arabidopsis microarray data analysis

C-repeat binding factors (CBF) would bind to the promoter regions of downstream

cold-regulated (COR) genes and induce COR genes expression under cold stress

(Thomashow et al., 2001; McKhann et al., 2008; Zhang et al., 2013). We ex-

ercised the gene regulation network (GRN) inference on the expression dataset

of Arabidopsis Thaliana under cold stress to reconstruct the well-known CBF-

COR regulatory network. The detailed description about this dataset from TAIR

database was in Section 3.3. After normalized and log2-transformed, the expres-

sions of eight probes, three C-repeat binding factors (CBF1 (probe ID: 254074 at),

CBF2 (probe ID: 254075 at) and CBF3 (probe ID: 254066 at)) and five COR gene

family (COR6.6 (probe ID: 246481 s at), COR78 (probe ID: 248337 at), COR47

(probe ID: 259570 at), COR15A (probe ID: 263497 at) and COR15B (probe ID:

263495 at)) , were taken to construct the GRN by CID/pCID method.

Three CBF genes took turns being the source of the regulation path elongation

while the other probes were all considered as potential targets. Figure 4.7 (B), (C)

and (D) showed the reconstructed pathways from the soure CBF genes (rectangle

nodes), respectively. The blue nodes and arrows denoted the CBF genes and the

connections between CBF genes; the orange nodes and arrows denoted the COR

genes and the connections between COR genes; the pink arrows denoted the con-

nections between CBF and COR genes. The reconstructed pathways starting from

CBF2 (Figure 4.7 (C)) and CBF3 (Figure 4.7 (D)) were the same; the pathway from

the source gene CBF1 (Figure 4.7 (B)) was similar to them and just the directions

between CBF genes were different. Then we combined these pathways to recon-

struct GRN in Figure 4.7 (A). Both CBF1 and CBF3 connected with CBF2 in the

sample, while CBF3 had direct contact with the studied downstream COR genes.

The COR6.6 was the first receiver of the information passed down from CBF genes,

which further influenced COR78 and COR15B. By contrast, COR47 and COR15A

served as signal providers to the resulting path.

The heatmap and cluster analysis of CBF and COR relative gene expressions

of different stressed conditions to their corresponding control samples was shown

in Figure 4.8. The expressions of CBF genes on cold stress were increase early

than COR genes, hence they would be the upstream of COR genes. Among them,

CBF3 had high expressions from 3hr to 12hr and lasted out longer than the other

CBF genes. For that reason, CBF3 might induce COR genes principally in our
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Figure 4.7: Reconstruction of CBF-COR regulatory network with eight genes under
cold stress was based on CID/pCID method. (A) Combination of the pathways
from three source genes (CBF1, CBF2 and CBF3 ). (B), (C) and (D) were the
pathways from the source genes, CBF1, CBF2 and CBF3, respectively. Rectangle
nodes indicate the source genes. Ellipse nodes are the candidate target genes.
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Figure 4.8: Cluster analysis and heatmap. A heatmap visualization of the log2
relative treatment gene expression levels for the CBF and COR probes. R, root; S,
shoot.
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CID/pCID network results (Figure 4.7 (A)). Besides, expression of COR47, COR78,

COR15A, COR15B and COR6.6 was activated by CBF3 in cold stress (Sakuma et

al, 2006). On the other hand, COR47 and COR6.6 had similar expression levels;

COR15A expressions were close to COR15B. The expressions of COR78, COR15A

and COR15B had a tendency towards high level as time and COR78 expressions

occurred early of them. About the result of cluster analysis was shown the CBF

and COR gene expressions could be separated into two groups.

Suppose that the regulation of CBF and COR genes was not discovered in bi-

ology. Each of eight probes was interchanged to be the source node of the gene

pathway and the other seven probes would be the candidate target genes. The

pathways of the CBF genes had exhibited in Figure 4.7 (B), (C) and (D). The other

pathways of COR genes were shown in Figure 4.9 (B), (C), (D), (E) and (F). The

reconstructed pathways starting from COR15A (Figure 4.9 (E)) and COR15B (Fig-

ure 4.9 (F)) were the same; the pathway from the source gene COR47 (Figure 4.9

(B)) was similar to the result of COR6.6 (Figure 4.9 (C)) and just the direction

between CBF1 and CBF2 was different; the pathway from COR78 (Figure 4.9 (D))

was different from others. However, there existed reverse direction between CBF

and COR genes (pink arrows) in the pathways starting from each of COR genes.

Based on the above pathways, the reconstructed GRN in Figure 4.9 (A) had 9%

(5/54) reverse directions. Therefore, the reconstructed GRN based on CID/pCID

could be more accurate while the source node had evidenced to be the upstream

regulatory gene in biology.
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Figure 4.9: Reconstruction of CBF-COR regulatory network with eight genes under
cold stress was based on CID/pCID method. (A) Combination of the pathways
from all source genes (three CBF and five COR genes). (B), (C), (D), (E) and (F)
were the pathways from the source genes, COR47, COR6.6, COR78, COR15A and
COR15B, respectively. Rectangle nodes indicate the source genes. Ellipse nodes are
the candidate target genes.
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4.4 Rice microarray data analysis

The second dataset was to study the bHLH (basic helix–loop–helix) Pathway in

rice (Oryza Sativa). The expressions data were downloaded from the NCBI-GEO

database [ http://www.ncbi.nlm.nih.gov/gds] (accession numbers GSE6901 and GSE

14275). The GSE6901 dataset includes gene expression of the 7-day-old light-grown

rice seedlings under drought, salt and cold stresses from 9 samples (three biological

replicates of each stress) as well as the gene expression from the adjacent controlled

conditions of 3 samples. The GSE14275 dataset includes gene expression of the 14-

day-old light-grown rice seedlings under heat shock stress from 3 samples and the

gene expression from the adjacent controlled conditions of 3 samples. Both datasets

hybridized the RNA samples on Affymetrix microarrays (NCBI-GEO accession num-

ber GPL2025). The raw expression data of 51,279 probes from 18 samples also went

through pre-processing using the RMA method and log2 transformed. In this study,

we were interested in the 167 genes that were previously reported as related genes

involving in bHLH Pathway (Li et al., 2006). Through matching the annotations of

the affymetrix probe ID, we identified 128 bHLH-related probes in the microarray

(Table B.1). Among them, 72 probes (61 genes) were called the G-box binders, which

meant recognizing and binding to the G-box sequence (5’-CACGTG-3’), according

to Li et al. (2006). We also downloaded the gene sequences of the bHLH-related

genes in the microarray from RAP-DB (version 7.0) and found 104 probes (80 genes)

containing G-box sequences in their promoter regions. The 72 probes recognize the

G-box sequence and the 104 probes contain G-box sequences were designated as

source and the candidate target genes, respectively, to construct the bHLH gene

network. Besides, we match the 72 probes ID with 104 probes ID. There were 54

probes (45 genes) among these chosen probes to be appointed as source and the

candidate target genes.

A family of transcription factors bHLH in plant plays principal role in develop-

mental processes (Buck et al., , 2003). The abiotic stresses affect the growth of crops.

Up to the present, the functions of OsbHLH (Oryza sativa bHLH) transcription fac-

tors have not been studied completely. In this study, we explored the relationship

of the OsbHLH gene expressions under the abiotic stresses by CID/pCID and the

result of bHLH gene network was shown in Figure 4.10. The arrows indicate the

association between two OsbHLH probes by CID/pCID. Rectangle nodes indicate

the OsbHLH probes are the G-box binders and exclude G-box sequences. Ellipse
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nodes indicate the OsbHLH probes include G-box sequences and are not the G-

box binders. Octagon nodes are the G-box binders and include G-box sequences at

the same time. The gray nodes represent that could respond in different stress have

been verified in rice studies. OsbHLH001 (OsICE2 ) and OsbHLH002 (OsICE1 ) are

induced at the protein level in response to cold and salt stresses, but not effected

by cold stress on mRNA level (Nakamura et al., 2011). OsbHLH006 (RERJ1 ) was

shown to be up-regulated on drought stress (Kiribuchi et al., 2005, Miyamoto et al.,

2013); OsbHLH009 (OsMYC ) corresponded to Arabidopsis AtMYC2 (Zhu et al.,

2005) and AtMYC2 could induce the expression under drought stress (Abe et al.,

1997); OsbHLH062 (OsbHLH1 ) could be able to enhance the cold tolerance (Wang

et al., 2003); OsbHLH148 was induced by salt stress and resulted in activation under

cold stress (Seo et al., 2011); OsbHLH152 (OsPILI1 ) could reduce internode elonga-

tion under drought stress (Todaka et al., 2012). Besides, OsbHLH001, OsbHLH002

and OsbHLH003 are related to the GO term, response to stress (GO: 0006950),

from agriGO (GO Analysis Toolkit and Database for Agricultural Community). In

Figure 4.10, we could observe that OsbHLH009 and OsbHLH148 connected with

the downstream gene , OsbHLH006, respectively. Furthermore, OsbHLH006, Os-

bHLH009 and OsbHLH148 are important in drought stress.

In addition, OsbHLH010, OsbHLH024-1 (Os.10316.1.S1 at), OsbHLH024-2 (Os.

26054.1.S1 s at), OsbHLH025-1 (Os.32770.1.S1 x at), OsbHLH031, OsbHLH032,

OsbHLH033-2 (Os.8796.2.S1 a at), OsbHLH044, OsbHLH058, OsbHLH060, Os-

bHLH061, OsbHLH088, OsbHLH093, OsbHLH104-1 (Os.15089.1.S1 at) and Os-

bHLH 104-2 (Os.44516.1.S1 x at) might be the key roles in abiotic stresses because

they had a lot of connections within these genes and with the other OsbHLH probes.

53



Figure 4.10: The gene regulatory network for OsbHLH rice seedlings contained the
G-box binders and sequences under abiotic stresses is constructed by CID/pCID
method from the NCBI-GEO database. Each node is the code of the OsbHLH
number, for example 152 means the OsbHLH152. An arrow between nodes indicates
a connection is determined by CID/pCID. Gray nodes show the genes are related
to abiotic stresses have been confirmed from paper or GO term. Rectangle nodes
indicate the OsbHLH probes are the G-box binders and exclude G-box sequences.
Ellipse nodes indicate the OsbHLH probes include G-box sequences and are not the
G-box binders. Octagon nodes are the G-box binders and include G-box sequences
at the same time.
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4.5 Discussion

For diminishing the computation of the programming, some irrelevant candidate

target genes were eliminated in the first step of our proposed heuristic approach and

were not proceed in the next steps. However, we use the same approach without

eliminating the irrelevant genes to select the next genes for constructing the network.

In order to compare the results with these two programmings, we use the same 100

simulations of pseudo network for sample size N =25, 50 and 100. Consider a

particular simulation with N =50, which is the same as that is used in Table 4.1,

the CID and pCID values as well as their p-values are shown in Table 4.3. Starting

from the source node, A11, the first selected node is A22 and the direction is set

from A11 to A22. For proceeding the steps, the results are A11→ A21, A21→ A31,

A21→ A32 and A21→ B. Next starting from the other source node, B, there are all

insignificant values of CID at the first step of GRN inference and was isolated from

the other nodes. Hence, the resulting network is distinct from the pseudo network

in Figure 4.4. We obtain another connection, A21 → B, which is unsuitable for our

expectations.

We also collect all networks reconstructed under the source node is A11 in the

simulations for N = 25, 50 and 100; networks consisting of the same set of nodes

are grouped together and the groups occurr at least 5 times are shown in Figure

4.11. Fifteen resulting networks match the correct network structure among these

one hundred simulations for N = 25, thirty-eight correct networks are restructured

for N = 50 and forty-seven correct networks are for N = 100. However, these

proportions of correct networks with different sample sizes are almost less than the

results of our proposed heuristic approach in Figure 4.5. Because of using the new

approach may increase additional connections besides the complete network. There

are 23% and 39% of the simulations have additional connections with the negative-

control node B for N = 50 and 100, respectively. In addition, there also have the

partial networks. For N = 25, 47% of the simulations only reveal the partial network;

when using a larger sample (N = 50), as few as 8 simulations obtain partial network;

moreover, there were not any partial network under the sample of size N = 100.

In Figure 4.12, we combine all the correct connections between two nodes from

100 simulations for N = 25, 50 and 100. When the sample of size N = 25 and the

source node is A11, there are 88% of networks to connect (A11, A21) together, 92%

for (A21, A31), 57% for (A11, A22), and 44% for (A21, A32); 14% of the networks

55



Table 4.3: The estimated CID and pCID values in one of the 100 simulations with
sample size N = 50.

CID/pCID Estimate (p-value) CID/pCID Estimate (p-value)

CID(A11|A21) 0.1936 (0.0010)
CID(A11|A22) 0.2028 (0.0010) CID(A22|A11) 0.1791 (0.0010)
CID(A11|A31) 0.1612 (0.0010)
CID(A11|A32) 0.1281 (0.0010)
CID(A11|B) 0.0129 (0.4136)

pCID(A11|A21;A22) 0.1013 (0.0010) PCID(A21|A11;A22) 0.0934 (0.0010)
pCID(A11|A31;A22) 0.0639 (0.0020)
pCID(A11|A32;A22) 0.0534 (0.0010)
pCID(A11|B;A22) -0.0040 (0.5894)
pCID(A22|A21;A11) 0.0582 (0.0060)
pCID(A22|A31;A11) 0.0446 (0.0100)
pCID(A22|A32;A11) 0.0500 (0.0090)
pCID(A22|B;A11) -0.0182 (0.9860)

pCID(A11|A31;A21,A22) 0.0097 (0.2208)
pCID(A11|A32;A21,A22) 0.0130 (0.1858)
pCID(A11|B;A21,A22) -0.0068 (0.7642)
pCID(A21|A31;A11,A22) 0.1131 (0.0010) pCID(A31|A21;A11,A22) 0.1123 (0.0010)
pCID(A21|A32;A11,A22) 0.0929 (0.0010)
pCID(A21|B;A11,A22) 0.0063 (0.5994)
pCID(A22|A31;A11,A21) 0.0122 (0.3227)
pCID(A22|A32;A11,A21) 0.0205 (0.1638)
pCID(A22|B;A11,A21) -0.0150 (0.9950)

pCID(A11|A32;A21,A22,A31) 0.0123 (0.5465)
pCID(A11|B;A21,A22,A31) 0.0075 (0.6853)
pCID(A21|A32;A11,A22,A31) 0.0553 (0.0020) pCID(A32|A21;A11,A22,A31) 0.0576 (0.0350)
pCID(A21|B;A11,A22,A31) 0.0073 (0.6424)
pCID(A22|A32;A11,A21,A31) 0.0162 (0.5415)
pCID(A22|B;A11,A21,A31) -0.0003 (0.9830)
pCID(A31|A32;A11,A21,A22) 0.0298 (0.1788)
pCID(A31|B;A11,A21,A22) 0.0194 (0.4486)

pCID(A11|B;A21,A22,A31,A32) 0.0149 (0.5854)
pCID(A21|B;A11,A22,A31,A32) 0.0327 (0.0410)
pCID(A22|B;A11,A21,A31,A32) 0.0032 (0.9840)
pCID(A31|B;A11,A21,A22,A32) 0.0254 (0.5754)
pCID(A32|B;A11,A21,A22,A31) 0.0484 (0.0609)

CID(B|A11) 0.0036 (0.9999)
CID(B|A21) 0.0202 (0.2468)
CID(B|A22) 0.0012 (0.9990)
CID(B|A31) 0.0137 (0.4905)
CID(B|A32) 0.0090 (0.6563)
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Figure 4.11: The results of the network reconstructed from 100 simulations of pseudo
network for N = 25, 50 and 100, respectively. The numbers next to the arrows
illustrate the number of connection from the source node to the target node; besides,
the number of connection in the brackets illustrated the inverse direction.
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Figure 4.12: Pseudo network for the simulation study based on the procedure (Pick
up the connected node which has the minimum significant CID/pCID p-value, if
there existed at least two nodes which fitted the requests, we chose the node that
had the maximum CID/pCID value). (A) The numbers next to the arrows illustrate
the proportions of the objects in the sample that the expressions of the target node
actually determined by the expressions of the source node. (B), (C) and (D) were
the results which were combined with all connection from 100 simulations when the
source node T0 was A11 for N = 25, 50 and 100, respectively.

58



include the negative control node B (Figure 4.12 B). When N = 50, 97%, 98%, 82%,

and 85% of the networks contain the edges between (A11, A21), (A21, A31), (A11,

A22) and (A21, A32), respectively, while 46% of them had node B (Figure 4.12

C). When N = 100, 99%, 100%, 97%, and 94% of the networks contain the edges

between (A11, A21), (A21, A31), (A11, A22) and (A21, A32), respectively, while

48% of them had node B (Figure 4.12 D). We can observe that the proportions

of networks which are combined all correct edges are similar to the outcomes in

Figure 4.6. However, the proportions of networks include node B are larger than

the results of our proposed approach and go up as the sample size increases. On the

other source node B, 16% (Figure 4.12 B), 21% (Figure 4.12 C) and 26% (Figure

4.12 D) of the networks are significant build at α = 0.05. All false networks start

from B of the same combination of nodes only appear less than or equal to five

times in 100 simulations for N = 25, 50 and 100. Therefore, our proposed heuristic

approach which was eliminated some irrelevant nodes in the first step based on CID

has more accuracy.
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Chapter 5

Conclusions

We have proposed a strategy to select explanatory variables that are relevant to

the target variable using the CID along with the pCID without interference from

other essential variables. The proposed method is more sensitive to curvilinearity

and more specific to linearity than the PCC/pPCC method. It is also demonstrated

in the simulations that the proposed procedure is able to quantify various types of

associations in a stepwise manner. It also had the potential to index different levels

of curvilinearity. While practicing on real microarray data, we have noticed that

the CID/pCID procedure can not only identify cold-responsive genes but can also

capture sample-specific gene-gene interactions. Biologists may find the proposed

strategy useful in their efforts to extract meaningful relationships among genes out

of the noise when meta analysis is of large interest in the post-genomic era.

In addition, we have extended the CID/pCID method to construct the gene

regulatory network. The proposed heuristic approach can obtain more accurate re-

constructed network when the sample size increase in the simulation study. While

exercising a known gene regulatory network inference on gene expression data, we

have observed that the CID/pCID programming can acquire more consistent path-

way if the source gene is an upstream gene which has evidenced in biology. On

the other hand, we practice an unknown gene regulatory network inference to sup-

ply not only some notable genes but also the new network. Biologists can verify

the gene-gene interactions according to the experiments and explore the biological

properties.
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Appendix A

The inference of pseudo network

Suppose A11 and B were randomly generated from N(1, 1). In the pair genes (S, T ),

if S was expressed, the expression level of T was distributed as N(1, 0.25); otherwise,

the expression level of T was distributed as N(−1, 0.25). The critical value of these

two distribution was setted at the mean value minus two standard deviations and

which value was calculated to be zero. The binding efficiency (b) for {A11, A21},
{A11, A22}, {A21, A31}, and {A21, A32} were 0.9, 0.7, 0.9, and 0.8, respectively.

The approximate proportions of gene expressions of the target gene actually deter-

mined by the expression levels of the source gene were expressed as P (S → T ) and

the inferences were shown as follows.

• P (A11 > 0) ' 0.84.

The binding efficiency b{A11, A21} was 0.9.

Therefore P (A11→ A21) ' 0.84× 0.9 ' 0.76.

• P (A11 > 0) ' 0.84 and b{A11, A22} = 0.7.

Then P (A11→ A22) ' 0.84× 0.7 ' 0.59.

• P (A11 > 0) ' 0.84 and b{A21, A31} = 0.9.

P (A21 > 0) = P [I
(A11→A21)

N(A11, 0.25) > 0] + P [I
(A119A21)

N(−1, 0.25) > 0]

= b{A11, A21}[P (0 < A11 < 1)P (N(0, 0.25) > −0.5) + P (A11 > 1)]

+ (1− b{A11, A21})P (N(−1, 0.25) > 0)

' 0.9× (0.34× 0.84 + 0.5) + 0.24× 0.025

' 0.713

P (A11→ A31) ' 0.713× 0.9 ' 0.64.

Thus P (A21→ A31) ' 0.64
0.76
' 0.84.
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• P (A21 > 0) ' 0.713 and b{A21, A32} = 0.8.

P (A11→ A32) ' 0.713× 0.8 ' 0.57.

Thus P (A21→ A32) ' 0.57
0.76
' 0.75.
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Appendix B

Supplement table

Table B.1: GenBank accession number of OsbHLH members is in this study.

OsbHLH number
GenBank Affymetrix

MSU ID RAP ID
accession number probe ID

OsbHLH001-1 (OsICE2) AK102594.1 Os.13595.1.S1 at LOC Os01g70310 Os01g0928000
OsbHLH001-2 (OsICE2) BI796438 Os.13595.2.S1 x at LOC Os01g70310 Os01g0928000
OsbHLH002 (OsICE1) AK109915.1 Os.56356.1.S1 at LOC Os11g32100 Os11g0523700
OsbHLH003 (RAI1) AK103779.1 Os.5860.1.S1 at LOC Os03g04310 Os03g0135700
OsbHLH004-1 AK063669.1 Os.46563.1.S1 at LOC Os10g39750 Os10g0544200
OsbHLH004-2 AK063669.1 Os.46563.1.S1 a at LOC Os10g39750 Os10g0544200
OsbHLH005 (TDR) AK106761.1 Os.50000.1.S1 at LOC Os02g02820 Os02g0120500
OsbHLH006 (RERJ1) AB040744.1 Os.6043.1.S1 at LOC Os04g23550 Os04g0301500
OsbHLH008 AK064943.1 Os.3825.1.S1 at LOC Os01g13460 Os01g0235700
OsbHLH009 (OsMYC) AY536428.1 Os.46443.1.S1 at LOC Os10g42430 Os10g0575000
OsbHLH010 AK064946.1 Os.46956.1.S1 at LOC Os01g50940 Os01g0705700
OsbHLH013 (OSB1/Ra) AB021079.1 Os.2233.1.S1 at LOC Os04g47080 Os04g0557800
OsbHLH015 AK111704.1 Os.49810.1.S1 at LOC Os04g47040 Os04g0557200
OsbHLH016 (OSB2) AB021080.1 Os.57542.1.S1 at LOC Os04g47059 Os04g0557500
OsbHLH018 AK120539.1 Os.7441.1.S1 at LOC Os03g51580 Os03g0725800
OsbHLH020 AK107190.1 Os.54959.1.S1 at LOC Os03g46860 Os03g0671800
OsbHLH024-1 AK106333.1 Os.10316.1.S1 at LOC Os01g39330 Os01g0575200
OsbHLH024-2 BM038927 Os.26054.1.S1 s at LOC Os01g39330 Os01g0575200
OsbHLH024-3 BM038927 Os.26054.1.S1 at LOC Os01g39330 Os01g0575200
OsbHLH025-1 AK102964.1 Os.32770.1.S1 x at LOC Os01g09990 Os01g0196300
OsbHLH025-2 AK102964.1 Os.32770.1.S1 at LOC Os01g09990 Os01g0196300
OsbHLH028 AK107675.1 Os.55212.1.S1 at LOC Os05g11070 Os05g0199800
OsbHLH031 AK100183.1 Os.5093.1.S1 at LOC Os08g38210 Os08g0490000
OsbHLH032 AK071315.1 Os.16741.1.S1 a at LOC Os09g29930 Os09g0475400
OsbHLH033-1 AK072417.1 Os.8796.1.S2 s at LOC Os01g65080 Os01g0871200
OsbHLH033-2 AK065024.1 Os.8796.2.S1 a at LOC Os01g65080 Os01g0871200
OsbHLH034 AK068228.1 Os.52592.1.S1 at LOC Os02g49480 Os02g0726700
OsbHLH035 AK106292.1 Os.1443.1.S1 a at LOC Os01g06640 Os01g0159800
OsbHLH036 AK110619.1 Os.56950.1.S1 at LOC Os05g07120 Os05g0163900
OsbHLH037 AK068593.1 Os.26488.1.S1 at LOC Os01g11910 Os01g0218100
OsbHLH038 AK109616.1 Os.56209.1.S1 at LOC Os08g33590 Os08g0432800
OsbHLH040 AK106649.1 Os.54743.1.S1 at LOC Os03g15440 Os03g0260600
OsbHLH044 AK107555.1 Os.31303.1.S1 at LOC Os03g08930 Os03g0188400
OsbHLH045 AK058809.1 Os.46600.1.S1 at LOC Os10g23050 Os10g0376900
OsbHLH047 AK107626.1 Os.55174.1.S1 at LOC Os08g37730 Os08g0483900
OsbHLH048 AK107898.1 Os.55338.1.S1 at LOC Os02g52190 Os02g0759000
OsbHLH049 AK060695.1 Os.51109.1.S1 at LOC Os02g46560 Os02g0691500
OsbHLH050 AK062895.1 Os.51474.1.S1 at LOC Os04g50090 Os04g0590800
OsbHLH056-1 (OsIRO2) AK073385.1 Os.12498.1.S1 at LOC Os01g72370 Os01g0952800
OsbHLH056-2 (OsIRO2) AK104991.2 Os.12498.2.S1 at LOC Os01g72370 Os01g0952800
OsbHLH057 AK068361.1 Os.26508.2.S1 a at LOC Os07g35870 Os07g0543000
OsbHLH058 AK063498.1 Os.49628.1.S1 at LOC Os05g38140 Os05g0455400
OsbHLH059 AK103434.1 Os.17893.1.S1 at LOC Os02g02480 Os02g0116600
OsbHLH060 AK102951.1 Os.18333.1.S1 at LOC Os08g04390 Os08g0138500
OsbHLH061 AK068017.1 Os.27243.1.S1 at LOC Os11g38870 Os11g0601700
OsbHLH062 (OsbHLH1) AY222337.1 Os.34549.1.S1 at LOC Os07g43530 Os07g0628500
OsbHLH063 (OsIRO3) AK068704.1 Os.9216.1.S1 at LOC Os03g26210 Os03g0379300
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OsbHLH064 AK069790.1 Os.52897.1.S1 at LOC Os02g23823 Os02g0433600
OsbHLH065-1 AK059273.1 Os.6328.1.S1 at LOC Os04g41570 Os04g0493100
OsbHLH065-2 AK107304.1 Os.55009.1.S1 at LOC Os04g41570 Os04g0493100
OsbHLH066-1 AK072833.1 Os.51847.1.S1 x at LOC Os03g55220 Os03g0759700
OsbHLH066-2 AK064057.1 Os.51847.2.S1 at LOC Os03g55220 Os03g0759700
OsbHLH068 AK069366.1 Os.25006.1.A1 at LOC Os04g53990 Os04g0631600
OsbHLH071 AK119493.1 Os.45859.1.S1 at LOC Os01g01600 Os01g0105700
OsbHLH072 AK072848.1 Os.8589.1.S1 at LOC Os02g17680 Os02g0276900
OsbHLH073-1 AK121917.1 Os.10063.1.S1 at LOC Os05g14010 Os05g0228400
OsbHLH073-2 AK107340.1 Os.10063.2.S1 at LOC Os05g14010 Os05g0228400
OsbHLH074 AK065732.1 Os.38009.1.S1 at LOC Os01g13000 Os01g0230200
OsbHLH075 AK109094.1 Os.55989.1.S1 at LOC Os04g47810 Os04g0565900
OsbHLH076 AK107063.1 Os.54904.1.S1 at LOC Os02g45010 Os02g0671300
OsbHLH079-1 AK119183.1 Os.7751.1.S1 at LOC Os02g47660 Os02g0705500
OsbHLH079-2 AK107038.1 Os.7751.2.S1 at LOC Os02g47660 Os02g0705500
OsbHLH080 AK059041.1 Os.14318.1.S1 at LOC Os08g42470 Os08g0536800
OsbHLH081 082

AK066188.1 Os.35707.1.S1 at LOC Os09g33580 Os09g0510500
(OsbHLH081 & OsbHLH082)
OsbHLH083 AK065864.1 Os.23082.1.S1 at LOC Os05g01256 Os05g0103000
OsbHLH084 CB631822 Os.24540.1.A1 at LOC Os03g51910 Os03g0728900
OsbHLH085 AK121418.1 Os.38400.1.S1 at LOC Os09g29830 Os09g0474100
OsbHLH086-1 AK101279.1 Os.47378.1.S1 s at LOC Os06g16400 Os06g0275600
OsbHLH086-2 AK103853.1 Os.32526.1.S1 at LOC Os06g16400 Os06g0275600
OsbHLH088 AK068324.1 Os.52614.1.S1 at LOC Os03g12940 Os03g0232000
OsbHLH089 AK100177.1 Os.33544.1.S1 at LOC Os03g58830 Os03g0802900
OsbHLH090 AK101063.1 Os.5763.1.S1 at LOC Os01g68700 Os01g0915600
OsbHLH092-1 AK099291.1 Os.10830.1.S1 at LOC Os09g32510 Os09g0501600
OsbHLH092-2 AK059036.1 Os.20775.1.S1 at LOC Os09g32510 Os09g0501600
OsbHLH093 AK108605.1 Os.55703.1.S1 at LOC Os04g28280 Os04g0350700
OsbHLH095 AK070970.1 Os.4952.1.S1 at LOC Os06g41060 Os06g0613500
OsbHLH096 (OsPTH1) AY238991.1 Os.8790.1.S1 a at LOC Os06g09370 Os06g0193400
OsbHLH098-1 AK067446.1 Os.27522.2.S1 at LOC Os03g58330 Os03g0797600
OsbHLH098-2 AK068388.1 Os.27522.1.S1 x at LOC Os03g58330 Os03g0797600
OsbHLH099 AK066623.1 Os.8344.1.S1 at LOC Os07g08440 Os07g0182200
OsbHLH101 AK106689.1 Os.4548.1.S1 at LOC Os04g52770 Os04g0618600
OsbHLH102 (OsBP-5) AK066763.1 Os.11675.1.A1 at LOC Os12g41650 Os12g0610200
OsbHLH103 AK060505.1 Os.19229.1.S1 a at LOC Os03g43810 Os03g0639300
OsbHLH104-1 AK060245.1 Os.15089.1.S1 at LOC Os07g05010 Os07g0143200
OsbHLH104-2 CF326413 Os.44516.1.S1 x at LOC Os07g05010 Os07g0143200
OsbHLH108 D43106 Os.23257.1.A1 at LOC Os06g06900 Os06g0164400
OsbHLH109-1 AK068254.1 Os.12030.1.S1 at LOC Os01g67480 Os01g0900800
OsbHLH109-2 AK121411.1 Os.50489.1.S1 at LOC Os01g67480 Os01g0900800
OsbHLH110 AK110833.1 Os.49337.1.S1 at LOC Os02g39140 Os02g0603600
OsbHLH111-1 AK068039.1 Os.7694.1.S1 at LOC Os04g41229 Os04g0489600
OsbHLH111-2 AK062301.1 Os.51233.1.S1 at LOC Os04g41229 Os04g0489600
OsbHLH111-3 AF467735.1 Os.57535.1.S1 at LOC Os04g41229 Os04g0489600
OsbHLH111-4 AF467735.1 Os.57535.1.A1 at LOC Os04g41229 Os04g0489600
OsbHLH112-1 AK100106.1 Os.5311.1.S1 at LOC Os08g39630 Os08g0506700
OsbHLH112-2 AK120902.1 Os.20361.1.A1 at LOC Os08g39630 Os08g0506700
OsbHLH113-1 CB624216 Os.27587.1.S1 at LOC Os10g40740 Os10g0556200
OsbHLH113-2 CB624215 Os.46626.1.S1 x at LOC Os10g40740 Os10g0556200
OsbHLH118-1 AK109307.1 Os.25546.1.S1 at LOC Os01g51140 Os01g0707500
OsbHLH118-2 AK100208.1 Os.32078.1.S1 at LOC Os01g51140 Os01g0707500
OsbHLH120 AK070458.1 Os.51063.1.S1 at LOC Os09g28210 Os09g0455300
OsbHLH123 (OsLAX/LAX1) AB115668.1 Os.38423.1.S1 at LOC Os01g61480 Os01g0831000
OsbHLH125 AK108587.1 Os.30617.1.S1 at LOC Os01g02110 Os01g0111500
OsbHLH126 AK109662.1 Os.56232.1.S1 at LOC Os02g48060 Os02g0710300
OsbHLH135 AK108042.1 Os.55414.1.S1 at LOC Os12g40590 Os12g0597800
OsbHLH138 AK065674.1 Os.28061.1.S1 at LOC Os03g27390 Os03g0391700
OsbHLH139-1 AK107002.1 Os.49098.1.S1 x at LOC Os02g21090 Os02g0315600
OsbHLH139-2 AK106848.1 Os.49098.2.S1 at LOC Os02g21090 Os02g0315600
OsbHLH140 AK101749.1 Os.54081.1.S1 at LOC Os03g39432 Os03g0591300
OsbHLH141 (EAT1) AK119509.1 Os.49995.1.S1 at LOC Os04g51070 Os04g0599300
OsbHLH142 AK106850.1 Os.54828.1.S1 at LOC Os01g18870 Os01g0293100
OsbHLH144 AK108728.1 Os.30520.1.S1 at LOC Os04g35010 Os04g0429400
OsbHLH145 AK107268.1 Os.54995.1.S1 at LOC Os04g35000 Os04g0429300
OsbHLH148 AK071734.1 Os.7116.1.S1 at LOC Os03g53020 Os03g0741100
OsbHLH149-1 AK099677.1 Os.14287.1.S1 at LOC Os01g64560 Os01g0865600
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OsbHLH149-2 AK099677.1 Os.14287.1.S1 a at LOC Os01g64560 Os01g0865600
OsbHLH150 AK074015.1 Os.48567.1.S1 at LOC Os12g06330 Os12g0160400
OsbHLH151 AK106579.1 Os.31883.1.A1 at LOC Os11g06010 Os11g0158500
OsbHLH152 (OsPIL1/OsPIL13) AK105637.1 Os.5178.1.A1 s at LOC Os03g56950 Os03g0782500
OsbHLH155 AK063523.1 Os.11409.1.S1 at LOC Os06g50900 Os06g0724800
OsbHLH157 AK110943.1 Os.15780.1.S1 at LOC Os02g08220 Os02g0178700
OsbHLH158 AK058439.1 Os.50771.1.S1 at LOC Os06g44320 Os06g0653200
OsbHLH160 AU031410 Os.18660.1.S1 x at LOC Os11g02054 Os11g0111800
OsbHLH161 AK062951.1 Os.51497.1.A1 s at LOC Os12g02020 Os12g0111400
OsbHLH162 AK063202.1 Os.11231.1.S1 at LOC Os05g27090 Os05g0337200
OsbHLH165-1 (Rb) U39866.1 Os.57500.1.S1 at LOC Os01g39580 Os01g0577300
OsbHLH165-2 (Rb) U39866.1 Os.57500.1.S1 x at LOC Os01g39580 Os01g0577300
OsbHLH166-1 AK073378.1 Os.53575.1.S1 at LOC Os03g21970 Os03g0338400
OsbHLH166-2 AK073378.1 Os.53575.1.S1 s at LOC Os03g21970 Os03g0338400
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