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中文摘要  

隨著科技的進步，讓生活變得更自動化的需求是擋不住的浪潮。屆時，將有

許多的服務型機器人會深入到人類的環境中進行各式各樣的任務，例如在家中幫

忙倒牛奶、在餐廳中幫忙端水等等。在我們的生活中，用到了許多透明的物體，

包括玻璃杯、寶特瓶、甚至是玻璃門，若機器人沒有能力辨認透明物體，將會造

成許多問題，這些問題包含機器人容易毀損玻璃杯、容易撞到玻璃門或窗戶等等，

不僅僅會造成機器人工作上的不便利、損壞的玻璃更可能造成人類的危險。因此，

在此篇論文中，我們提出了一個透明物體的姿態辨識系統，其中我們將討論的重

心放在透明物體的辨識上，輔以討論姿態辨識的模組以及抓取的模組。之所以將

重心放在透明物體的辨識上，是因為姿態辨識以及抓取的功能在非透明物體上已

經有相當成熟的研究。然而，辨識透明物體的研究是近十幾年來才漸漸發展起來，

而且論文數量相當稀少，我們若能發展出有效的透明物體辨識演算法，將場景中

透明物體所在的位置標示出來，接下來的姿態辨識和抓取的方法就可以參考適用

於非透明物體的技術了。 

故關於辨識透明物體，我們討論了三種方法，第一種使用 RGBD 感測器來感

測場景、利用感測器的特性加以辨認出透明物體的所在位置。第二種及第三種方

法都使用一般的相機當作感測器，分別使用 Latent Dirichlet Analysis 以及 Deep 

Learning的機器學習方法來學習辨識透明物體。雖然探討了三種方法，我們主要使

用第一種方法辨識到的透明物體輪廓當作姿態辨認模組的輸入。 

於是，我們可以使用已經儲存在資料庫裡的透明物體 3D模型，配合前述方法

所找到的透明物體輪廓，可以利用配準的方式進行姿態的估計，進而得到物體姿

態的估計值。 

 

關鍵字： 服務型機器人、透明物體辨識、姿態辨識、機器人作業系統 
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ABSTRACT 

With the advancement of technology, the trend to make our lives more convenient 

by robot technology is unstoppable. In the future, many service robots will enter our 

living environments to do all kind of tasks from pouring milk for us in our home to 

serve water in restaurants. In our living environment, there are lots of transparent 

objects including cups made of glass, PET bottles and glass doors. If a robot who serve 

in our environment cannot recognize transparent objects, it might easily broke the 

transparent objects made by glass, it might not be able to open the door made of glass, it 

might bump into and broke glass windows and cause danger. As a result, we propose 

algorithms that make a robot be able to recognize and estimate the pose of transparent 

objects in this thesis. We emphasize on transparent object recognition because pose 

estimation and manipulation for non-transparent objects are relatively mature, while 

research on transparent object recognition just starts from a decade ago with a few 

papers discussing this problem. If we can develop effective algorithm for recognizing 

transparent object, we can take advantage of pose estimation and grasping for 

non-transparent object to build a complete system for grasping transparent objects. 

For recognizing transparent object, we discuss three methods in this thesis. The 

first method which uses RGBD sensor to detect the transparent object is mainly used 

because the result is suitable for pose estimation. 

With the stored 3D model of transparent object and the silhouettes of transparent 

object, we can estimate the pose by matching the model and the silhouette. Experiments 

show that our method can be used to detect and estimate the pose of transparent objects. 

Keywords: Service Robotics, Transparent Object Recognition, Pose Estimation, Robot 

Operating System 
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Chapter 1 Introduction 

 The main topic of this thesis is a transparent object recognition system for service 

robotics.  In this chapter, the motivation of the research is stated in section 1.1 and then 

section 1.2 introduces the clear problem statement of the research. In section 1.3, the 

related work is described so that the state-of-the-art algorithms are presented. After 

showing the related work, the contributions are stated in section 1.4. Finally, in section 

1.5, the overall organization of this thesis and the relationship among all chapters are 

illustrated. 

1.1 Motivation 

Robotic technologies advances fast in the past decade, conventional industrial 

robot manipulators are utilized in factory in order to replace human’s work, from the 

simplest pick-and-place job to exquisite IC manufacturing. Nowadays, performance 

(precision, speed, stability) of industrial robots are very good, thus make people develop 

more sophisticated robots.  

Recently, Softbank have launched a new social robot called “Pepper” (as shown in 

Fig 1.1), which is the first humanoid robot designed to live with humans. He is able to 

converse with you, recognize and react to your emotions, move and live autonomously. 

However, Pepper doesn't clean, doesn't cook and doesn't have the abilities to serve as a 

service robot.  

Although the term "service robot" does not have a strict technical definition, The 

International Federation of Robotics (IFR) has proposed a tentative definition: "A 

service robot is a robot which operates semi- or fully autonomously to perform services 

useful to the well-being of humans and equipment, excluding manufacturing operations. 

For example, a service can do household chores and let people focus on more valuable 
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works. 

 

In such context, we are thinking, what is the ability that a service robot must have. 

One of the functions that a service robot need is the ability to recognize and manipulate 

transparent objects. The reason is because transparent objects are almost everywhere, 

from our home and restaurants to laboratories. Some commonly seen transparent objects 

are shown in Fig 1.2. 

 

 

(a)                   (b)                            (c)     

Fig. 1.2 Some commonly seen transparent objects 

(a) PET bottle (b) cup made of glass(c) windows 

 

Fig. 1.1 Softbank’s Pepper Robot 
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If a robot who serve in our environment cannot recognize transparent objects, it 

might easily broke the transparent objects made by glass, it might not be able to open 

the door made of glass, it might bump into and broke glass windows and cause danger 

in our environment. 

As a result, we would like to explore the algorithms that make a robot be able to 

recognize, even manipulate transparent objects in this thesis. 

1.2 Problem statement 

Transparent materials are difficult to detect due to the appearances of transparent 

objects change over different backgrounds, their edges are implicit and contain strong 

highlights. 

Here, we gave a stricter definition of transparent object. A transparent object is the 

object having the property of transmitting rays of light through its substance so that 

bodies situated beyond or behind can be distinctly seen. So if we have a bottle made of 

glass, but the glass has color, the bottle is not considered as transparent. An example can 

be seen in Fig 1.3. 

 

 

 

Fig. 1.3 A non-transparent object. 
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1.3 Literature Review 

Transparent object recognition is a difficult problem for computer vision 

community for a long time, the research about this topic is not popular until 2003. 

In 2003, Osadchy et al. [1] used specular highlights as a positive source of 

information to recognize shiny objects. But the process required a bright light source. 

McHenry et al. [2] proposed several features and characteristic of transparent object 

such as color similarity, blurring, overlay consistency, texture distortion and highlights. 

The method is effective to distinguish transparent objects. Although it successfully 

segment transparent object, the algorithms only adapted with non-cluttered scene 

without pose estimation. Fritz et al. [3] use an additive model of latent features to 

learned transparent local patch appearance. It successfully detects transparency in 

varying backgrounds too. However, all of the methods mentioned above gained no 

knowledge about object pose, thus unable to make robot grasp. 

Phillips et al. [4] provide a new idea to detect semi-transparent objects by utilizing 

inverse perspective mapping. This method needs to capture more than one view and 

assumes that object is on a plane. The largest error of pose estimate was about 10.4 mm.  

For pose estimation, Lysenkov et al. [5] detect transparent object by using Kinect 

sensor, while unknown depth information (shown as black area in depth image) is 

considered as transparent object. It proposed an algorithm to calculate poses of 

transparent objects. The improvement in [6] makes their algorithm be able to deal with 

overlapped instances and cluttered transparent objects. Although it proposed a method 

to handle pose estimation of transparent object, there are some cases that make detection 

fails. As shown in Fig.1.4, some non-transparent objects that are common in a 

laboratorial scene also generate unknown depth value so they would be considered as 
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transparent objects as well. These objects will make the method proposed by [6] fail to 

detect the transparent ones. And since [6] is the newest work on recognizing transparent 

objects, we improved the algorithms in [6]. 

 

1.4 Contributions 

To build a service robot system with functions of recognizing, estimating the pose 

and grasping transparent objects, there are three main contributions in this thesis. They 

are listed as follow: 

 Improve the state-of-the-art pose estimation algorithm for transparent object so that 

the robot can correctly distinguish non-transparent objects which cause NaN (Not a 

Number, i.e. invalid) in depth image from transparent ones 

 Investigate some other algorithms for recognizing transparent objects, including 

Latent Dirichlet Allocation and Regions with Convolutional Neural Network 

 System design and the implementation of pose estimation systems for robots 

 

 

 

                   (a)                             (b) 

Fig. 1.4  Some non-transparent objects cause invalid area in depth image. 

(a) Kinect RGB image (b) Kinect Depth image 
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1.5 Thesis Organization 

In chapter 2, we will discuss the system architecture, including hardware and 

software. Next, in chapter 3, several techniques for detecting transparent object will be 

investigated. After detecting the transparent objects in the scene, we would like to 

estimate the pose of the detected objects so that they can be grasped by our robot. As a 

result, pose estimation will be explained in chapter 4. With pose of transparent objects 

estimated, the robot can grasp the transparent object with ease. In chapter 5, we will 

describe the teach-and-play algorithm for robot grasping. And in chapter 6, we will 

present some experiments about our system. Finally, we will make conclusions and state 

the future work in chapter 7. 
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Chapter 2 System Architecture 

 In this chapter, the overall system is described. We use Robot Operating System 

(ROS) as the tool for developing and running our algorithms. So we will introduce ROS 

in section 1. As for the hardware platform, we use Personal Robot 2 (PR2), which will 

be covered in section 2. In the last section, we then explain the software architecture of 

a transparent object grasping robot. 

2.1 Robot Operating System (ROS) 

ROS [7] is a set of utilities and libraries for implementing all different kinds of 

functionality on robots. In short, it is a meta operating system from WillowGarage, 

which is designed for usage with distributed robot systems. It’s called a meta operating 

system, because it needs another operating system to run. It’s mainly developed for 

Ubuntu (a Linux distribution), but it also supports other Operating Systems like 

Windows and Mac OS, but the support for them can still be considered as experimental. 

 

Development in Robotics is slow in the past decades because people distributed 

their efforts to different systems. For instance, the research team in University of Tokyo 

may develop their own robots, but these robots are not compatible to Stanford's robots. 

For normal people as you and me, it is even not possible to get their source codes and 

provide any help to the development in robotics. In that context, making huge progress 

 

Fig. 2.2 ROS Logo. 
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in Robotics is quite difficult. So ROS came out, aiming at gathering people's work 

together and then develop more advanced robots on top of them. 

As a result, the primary goal of ROS is to support code reuse in robotics research 

and development. ROS is a distributed framework of processes (as known as node) that 

enables executables to be individually designed and loosely coupled at runtime. The 

basic idea is shown in Fig 2.2. Each node is a process, and nodes can communicate to 

each other by “ROS topic” [8] or “ROS service” [9].  

 

ROS has lots of great features, but there are two features must be mentioned: 

 Code Reuse 

ROS is open source and provides strong package management system. You can 

easily build your own system by combining packages released on ROS. The example in 

the next point would make this point clearer. 

 Executables can be individually designed and easily connected at runtime 

This feature is explained by an example. We can imagine that if Peter is an expert 

of robot navigation, he wrote a program A that can let robot go anywhere it want and 

avoid obstacles smoothly. However, Peter need to use image so that the robot know how 

to plan its moving trajectory (let's say the program that can process camera data be 

program B). If Peter uses ROS, he can run other people's camera data processing 

 

Fig. 2.2 A diagram for basic ROS concept. 
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program as program B, and connected program A and program B in the environment 

provided by ROS. And vice versa, other people can use the first-class navigation 

program provided by Peter instead of writing a poor-performance navigation program 

by their own. 

Being such a powerful tool, ROS can be run on many robots, as shown in Fig 2.3. 
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Fig. 2.3 The robots that are compatible to ROS. 

Software in the ROS Ecosystem can be separated into three groups: 

 language- and platform-independent tools used for building and distributing 

ROS-based software; 

 ROS client library implementations such as roscpp, rospy, and roslisp; 

 packages containing application-related code which uses one or more ROS 

client libraries. 
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ROS was originally developed in 2007 under the name switchyard by the Stanford  

Artificial Intelligence Laboratory in support of the Stanford AI Robot STAIR project.  

From 2008 until 2013, development was performed primarily at Willow Garage, a 

robotics research institute/incubator. During that time, researchers at more than twenty 

institutions collaborated with Willow Garage engineers in a federated development 

model. 

In February 2013, ROS stewardship transitioned to the Open Source Robotics 

Foundation. And since then, OSRF is the primary maintainer of ROS. 

2.2 Hardware Introduction 

In this thesis, we use Willow Garage’s Personal Robot 2 (PR2) as our platform to 

test our algorithm. As for the sensor, we use the Kinect mounted on PR2’s head to get 

RGB and depth image for recognizing transparent objects. 

2.2.1 Personal Robot 2 (PR2) 

It is of a size similar to a human. PR2 is designed as a common hardware and 

software platform for robot researchers. The PR2 has two 7-DOF arms with a payload 

of 1.8 kilograms (4.0 lb). Sensors include a 5-megapixel camera, a tilting laser range 

finder, and an inertial measurement unit. The "texture projector" projects a pattern on 

the environment to create 3D information for capture by the cameras. This approach is 

also known as structured light. The head-mounted laser scanner measures distance by 

time-of-flight. The two computers located in the base of the robot are 8-core servers, 

each of which has 24 Gigabytes of RAM, for a total of 48 GB. The battery system 

consists of 16 laptop batteries. 
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In June 2010, Willow Garage made two-year loans of a PR2 to 11 research teams. 

Each PR2 was to include two arms, a "rich sensor suite", a mobile base, 16 CPU cores, 

and the company's free, open-source Robot Operating System (ROS) framework, which 

controls the PR2 and comes with software libraries for perception, navigation, and 

manipulation. The teams were to have a chance not only to program a general-purpose 

robot but also to contribute their work on Willow Garage's open-source robotics 

platform to a wide community of researchers. In August 2010, Willow Garage 

announced that the PR2 robot was available for purchase. As for now, PR2 is an 

important platform for researchers in the world to collaborate on pushing the limit of 

robot technology. 

 

Fig. 2.4 Willow Garage’s PR2. 
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Fig. 2.6 PR2’s Control System. 

 

Fig. 2.5 PR2’s links. 
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2.2.2 Kinect  

Kinect [10] is a RGB-D sensor produced by Microsoft for the Xbox 360 game  

console and Windows PCs. It enables users to control and interact with Xbox without 

touching joystick or keyboard. Through gesture and speech command, Kinect becomes 

an input device that can be applied for human robot interaction applications. And most 

importantly, the stable 3D sensing ability makes it a popular sensor in robotics. Through 

the infrared and camera mounted on Kinect (see Fig. 2.7), RGB and depth information 

of the environment can be obtained, and this property supports us to implement our 

transparent object recognition algorithm. And because the price of Kinect is much 

cheaper than traditional 3D cameras, it is widely used in robotic systems. 

 

 

Fig. 2.7 Microsoft’s Kinect. 
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Fig. 2.8 Kinect’s technical specification. 
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Chapter 3 Detection of Transparent Objects 

 In this chapter, we introduce three kinds of method to detect transparent objects in 

color image. We introduce Grabcut-based method because it is further used for pose 

estimation and grasping. However, this method requires RGBD sensor as input sensor. 

We explore LDA-based method and Deep Learning-based method so that we can detect 

transparent objects by using a monocular camera. This can be helpful in the case that 

RGBD sensor cannot be acquired. 

3.1 Grabcut-Based Method 

3.1.1 Overall process of Grabcut-based method 

For Grabcut-based method, we use RGB image and depth image of Kinect as the 

input of algorithm. To retrieve transparent candidates from depth image, we first extract 

all unknown values from input depth image. Next, we use some morphological 

operation to remove some noise. Then we extract connected components as possible 

regions of transparency. However, in this stage, we often have several regions that are 

non-transparent. In [6], they assume transparent objects are on a table, so they extract 

the table plane and rule out regions that are not on the table. On the other hand, we take 

advantage of strong highlight, which is a visual cue of transparent object, to rule out 

regions that does not contain highlight. We use highlight because every transparent 

object contains highlight in a scene with light source. Both method works fine, but 

calculating highlight is easier and efficient. After extracting the regions containing 

highlight, we use each of these regions as seeds for Grabcut to segment transparent 

candidates as shown in Fig 3.1. 
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Fig. 3.1 Top: The scene containing transparent objects.  

Bottom: Transparent candidates in the scene. 

As for the highlight, in general, transparent object reflects light such that it 

produces multiple highlights on its surface. Various empirical models can be used to 

count the local highlight points on a surface, such as Phong model [12], which is 

commonly used in 3D computer graphics. To find the highlight, a way is to build 

hypothesized 3D shape and search through a large set of candidate image highlights [1]. 

By binary threshold, one can detect highlight regions of transparent object, but 

threshold value is hard to be determined. We then used the method described in [2] as it 

is an efficient but useful method for searching highlight. 



 

 19 

The first step is to threshold image by value from 0 to 255, and estimate number of 

perimeter pixels for each image after threshold. The slope of the curve would 

significantly decrease at the value close to 255. To find the critical value of threshold, 

we produce first order polynomial to fit the straight line of perimeter curve as: 

P aT b    

Variable T represents the threshold value. We fit the perimeter from threshold 255 

to 0, iteratively. For each fit, we estimate the mean square error and plot another curve 

of error. Finally, we compare the slope of error curve from threshold 255 to 0. When 

there is a significant increase of slope, the value is the proper value of threshold. As 

shown in Fig. 3.2, only highlights remain in image after threshold. 

 

Fig 3.2 Three glasses and the detected highlights. 

In summary, for retrieving transparent candidates, we improve the method of [6], 

and the main difference between the previous method and ours is how we rule out 

possible regions of transparency. We use highlight thus accelerate the process of 

candidate retrieval. 

3.1.2 Grabcut 

GrabCut [13] is an iterative image segmentation technique based upon the Graph 

Cut algorithm [14]. GrabCut extends Graph Cut to color images and to incomplete 

trimaps. See Fig 3.3, first player and football is enclosed in a blue rectangle. Then some 
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final touchups with white strokes (denoting foreground) and black strokes (denoting 

background) is made. And we get a nice result from Grabcut algorithm. 

 

 

Fig 3.3 Two examples of Grabcut algorithms. 

Let us briefly introduce the process of Grabcut algorithm. First, user creates an 

initial trimap by selecting a rectangle. Pixels inside the rectangle are marked as 

unknown. Pixels outside of rectangle are marked as known background. Then computer 

creates an initial image segmentation, where all unknown pixels are tentatively placed 

in the foreground class and all known background pixels are placed in the background 

class. Next, Gaussian Mixture Models (GMMs) are created for initial foreground and 

background classes. Each pixel in the foreground class is assigned to the most likely 

Gaussian component in the foreground GMM. Similarly, each pixel in the background is 

assigned to the most likely background Gaussian component. The iterative part comes 

now, the GMMs are thrown away and new GMMs are learned from the pixel sets 

created in the previous set. A graph is built and Graph Cut is run to find a new tentative 
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foreground and background classification of pixels as shown in Fig 3.4.  

 

Fig 3.4 An illustration of Graph cut. 

The process of Graph Cut algorithm is stated as follows: the user first delineates 

pixels in the background and foreground regions using a few strokes of an image brush 

(Figure 3.61). These pixels then become the seeds that tie nodes in the S–T graph to the 

source and sink labels S and T (Figure 3.4). Seed pixels can also be used to estimate 

foreground and background region statistics (intensity or color histograms). 

The capacities of the other edges in the graph are derived from the region and 

boundary energy terms, i.e., pixels that are more compatible with the foreground or 

background region get stronger connections to the respective source or sink; adjacent 

pixels with greater smoothness also get stronger links. Once the 



 

 22 

minimum-cut/maximum-flow problem has been solved using a polynomial time 

algorithm [15], pixels on either side of the computed cut are labeled according to the 

source or sink to which they remain connected. 

As a result, by feeding the NaN area in depth image as seed for Grabcut algorithm, 

we can crop the transparent object in the image, and thus we get our transparent 

candidates. However, since some of the NaN areas in depth image might not be 

transparent, we need the method stated in section 3.3 to further classify these 

transparent candidates. 

3.1.3 Transparent Object Classification 

Some transparent candidates are non-transparent but contains highlight, so there 

may be some candidates that are not transparent, such as the one in the bottom left of 

Fig. 3.1. As result, we need to further evaluate if these candidates are transparent. So 

algorithms to detect characteristics possessed by transparent objects are implemented 

for classification. 

 Color Similarity 

One of the important features of transparent object is that the color tends to be 

similar on both side of the edge. Because the object is transparent, the object presents 

the color of background, which is similar to the color around object. 

To check if the colors on both sides are similar, we calculate the histogram of hue 

in HSV color space on both sides. After retrieving transparent candidate as shown in Fig. 

3.5(b), we can calculate the pixels around the candidate, and the result is shown in Fig. 

3.5(c). Then we can calculate the hue histogram of pixels inside transparent candidate 

and pixels around the candidate. Fig. 3.5(d) shows the histogram of the pixels inside 

candidate and pixels around candidate. To compare the similarity of the two histograms, 

we view these two histograms as vectors. By comparing the Euclidean distance, we are 
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able to compare the similarity, if the value of distance is low, then indicate the color on 

both side are similar. 

 

Fig 3.5 The result of computing color similarity. 

 Intensity Consistency 

Except for the color similarity of transparent objects, yet another characteristic of 

transparent object is that the pixel intensity around the edge is consistent. In other words, 

the intensity distribution inside transparent object is constrained by the intensity 

distribution outside the transparent object. So we use a mask that covers part of the edge, 

which includes pixels on both side of the edge. Apparently, local standard deviation of 

pixel intensity inside the mask around boundaries of transparent objects should be a 

small value. Traditional segmentation methods are difficult to detect the boundaries of 

transparent object. Based on the candidates retrieved, we are able to get accurate 

boundaries, and find out the local standard deviation value of transparent boundaries 

using dynamic mask: 
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SD-Value =    
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For the dynamic mask, M is the length of row, N is the length of columns, and 

I(x,y) is the intensity of pixel at (x,y). As the mask moving around the boundaries of 

transparent candidate, we calculate one local standard deviation at each move, C is the 

total times we calculate the local standard deviation. Finally we have a SD-value, when 

it is small, it indicates the candidate is possible to be transparent object. 

After calculating the color similarity value and SD-value, we got two 

measurements on transparent classification. A simple way to combine the two 

measurements is to take average, and it works well in our scenario. Using 15 images, 

we trained the classifier and get the threshold value of 0.6. That is, if a candidate’s value 

is under 0.6, it is considered transparent. 

3.2 LDA-Based Method 

3.2.1 Gaussian Mixture Model (GMM) 

Gaussian Mixture Model is the base of Latent Dirichlet Allocation, so we make a 

brief introduction here for understanding LDA in section 3.2.2. 

Mixture models are a type of density model which comprise a number of 

component functions, usually Gaussian. These component functions are combined to 

provide a multimodal density. They can be employed to model the colors of an object in 

order to perform tasks such as real-time color-based tracking and segmentation [16]. 

These tasks may be made more robust by generating a mixture model corresponding to 



 

 25 

background colors in addition to a foreground model, and employing Baye’s theorem to 

perform pixel classification. Mixture models are also amenable to effective methods for 

on-line adaptation of models to cope with slowly-varying lighting conditions [17]. 

Mixture models are a semi-parametric alternative to non-parametric histograms [18] 

(which can also be used as densities) and provide greater flexibility and precision in 

modeling the underlying statistics of sample data. They are able to smooth over gaps 

resulting from sparse sample data and provide tighter constraints in assigning object 

membership to color-space regions. Such precision is necessary to obtain the best 

results possible from color-based pixel classification for qualitative segmentation 

requirements. 

Once a model is generated, conditional probabilities can be computed for color 

pixels. Gaussian mixture models can also be viewed as a form of generalized radial 

basis function network in which each Gaussian component is a basis function or 

`hidden' unit. The component priors can be viewed as weights in an output layer. Finite 

mixture models have also been discussed at length elsewhere [19-24] although most of 

this work has concentrated on the general studies of the properties of mixture models 

rather than developing vision models for use with real data from dynamic scenes. 

Let the conditional density for a pixel ξ belonging to a multi-colored object О be a 

mixture with M component densities: 

                  

 

   

 

where a mixing parameter P(j) corresponds to the prior probability that pixel ξ was 

generated by component j and where           
   . Each mixture component is a 

Gaussian with mean μ and covariance matrix ∑: 



 

 26 

       
 

      
 
 

    
 
 
      

   
         

For example, the function f(x) in Fig 3.6 can be approximate by three Gaussian 

components. 

 

Fig 3.6 An example of GMM approximation. 

3.2.2 Probabilistic Latent Semantic Analysis (pLSA) & Latent Dirichlet 

Allocation (LDA) 

pLSA and LDA are developed to model text corpora for information retrieval, 

which can be used in Google’s keyword search or natural language processing. Note 

that LDA is an improved version of pLSA, so we will introduce pLSA first. 

pLSA is based on LSA (Latent Semantic Analysis), also known as Latent Semantic 

Indexing (LSI) literally means analyzing documents to find the underlying meaning or 

concepts of those documents. If each word only meant one concept, and each concept 

was only described by one word, then LSA would be easy since there is a simple 
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mapping from words to concepts. Unfortunately, this problem is difficult because 

English has different words that mean the same thing (synonyms), words with multiple 

meanings, and all sorts of ambiguities that obscure the concepts to the point where even 

people can have a hard time understanding. 

The key concept of LSA is to form a word-document co-occurrence matrix, and by 

doing singular value decomposition (SVD, as shown in Fig 3.7), it can construct the 

latent semantic space for these documents. Let’s see a simple example of LSA by first 

see the word-document co-occurrence matrix shown in Fig 3.8. 

 

 

We can use SVD to decompose the matrix in Fig 3.8, and get the result shown in 

Fig 3.9. One can observe that because the rank of the original word-document 

co-occurrence matrix’s rank is 2, so there are two singular values (two topics also). And 

since different kind of documents in this toy example have non-overlapped words, so 

 

Fig. 3.8 A simple word-document co-occurrence matrix. 

 

Fig. 3.7 An illustration of Singular Value Decomposition (SVD). 
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the result is very good. 

 

However, LSA has some problems that will be inconvenient for calculation. The 

major problem of LSA is the bad handling of large scale information retrieval. For 

example, if we have millions of documents, the word-document co-occurrence matrix 

would be very huge, and computation time of SVD would be very long. 

Compared to standard latent semantic analysis which stems from linear algebra and 

downsizes the occurrence tables (via singular value decomposition), pLSA is based on a 

mixture decomposition derived from a latent class model.  

Considering observations in the form of co-occurrences (w,d) of words and 

documents, pLSA models the probability of each co-occurrence as a mixture of 

conditionally independent multinomial distributions: 

                                          

  

 

where c is the words' topic. The first formulation is the symmetric formulation, 

where w and d are both generated from the latent class c in similar ways (using the 

conditional probabilities P(w|c) and P(d|c). And the second formulation is the 

asymmetric formulation, where, for each document d, a latent class is chosen 

conditionally to the document according to P(c|d) , and a word is then generated from 

that class according to P(c|w). Although we have used words and documents in this 

 

Fig. 3.9 Use SVD to decompose the example word-document matrix. 
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example, the co-occurrence of any couple of discrete variables may be modeled in 

exactly the same way. As a result, the number of parameters is equal to cd+cw. The 

number of parameters grows linearly with the number of documents. These parameters 

are learned using the EM algorithm. 

 

Fig 3.10 A geometric view of pLSA (z1 to z3 are three latent topics).  

In Fig 3.10, P(w|z1)~ P(w|z3) can be viewed as three vector spanning a linear space 

to describe the real document and word P(w|d). 

Based on pLSA, LDA is a more powerful model to discover the latent topic of 

documents. Let us consider a simple example, suppose you have the following set of 

sentences: 

 A service robot should be able to grasp transparent objects. 

 I don’t care if a service robot can recognize transparent objects or not, I just 

want it to cook for me. 

 Taiwan needs to develop robotic industry. 
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 Taiwan’s economy is stagnant and need a new industry such as robotics to 

make economic growth. 

 If we can develop a service robot capable of grasping transparent objects, we 

can help the robot industry in Taiwan. 

Given these sentences and asked for 2 topics, LDA might produce something like 

 Sentences 1 and 2: 100% Topic A 

 Sentences 3 and 4: 100% Topic B 

 Sentence 5: 60% Topic A and 40% Topic B. 

 Topic A: 40% service robot, 25% grasp, 25% transparent object, 5% cook, … 

(at which point, we could interpret topic A to be about service robot) 

 Topic B: 40% Taiwan, 30% industry, 20% robotic, ... (at which point, we 

could interpret topic B to be about Taiwan’s economy) 

LDA perform this discovery by representing documents as mixtures of topics that 

spit out words with certain probabilities. It assumes that documents are produced in the 

following fashion: when writing each document, you 

 Decide on the number of words N the document will have (say, according to a 

Poisson distribution). 

 Choose a topic mixture for the document (according to a Dirichlet distribution 

over a fixed set of K topics). For example, assuming that we have the two 

service robot and Taiwan’s economy topics above, you might choose the 

document to consist of 1/3 service robot and 2/3 Taiwan’s economy. 

 Generate each word in the document by: 

 First picking a topic (according to the multinomial distribution that you 

sampled above; for example, you might pick the service robot topic with 

1/3 probability and the Taiwan’s economy topic with 2/3 probability). 
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 Using the topic to generate the word itself (according to the topic’s 

multinomial distribution). For example, if we selected the Service robot 

topic, we might generate the word “service robot” with 40% probability, 

“grasp” with 25% probability, and so on. 

Assuming this generative model for a collection of documents, LDA then tries to 

backtrack from the documents to find a set of topics that are likely to have generated the 

collection. 

3.2.3 LDA for transparent object detection 

In [3], they proposed to discover latent topics which are characteristic of particular 

transparent patches and quantize the SIFT space into transparent visual words according 

to the latent topic dimensions. We did not further improve their method, but for 

completeness of this thesis, we will briefly introduce how they employ LDA to discover 

the visual word of transparent objects for transparent object recognition. 

 

Fig 3.11 The method used in [3]. 

As can be seen in the left of Fig 3.11, there are images of a transparent object in 

different environments. A point on the object is highlighted in each image, and the local 

orientation edge energy map is shown. While the background dominates the local patch, 
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there is a latent structure that is discriminative of the object. The model proposed in [3] 

finds local transparent structure by applying a latent factor model (e.g., LDA) before a 

quantization step. In contrast to previous approaches that applied such models to a 

quantized visual word model, they apply them directly to the SIFT representation, and 

then quantize the resulting model into descriptors according to the learned topic 

distribution. 

This is because local transparent patch appearance can be understood as a 

combination of different processes that involve illuminants in the scene, overall 3D 

structure, as well as the geometry and material properties of the transparent object. 

Many of these phenomena can be approximated with an additive image formation 

model, subject to certain deformations. The detailed method of employing LDA to 

recognize the visual word of transparent objects will not be stated here, but the result is 

shown in Fig 3.12. 

 

Fig 3.12 The detection result in [3]. 
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3.3 Deep Learning-Based Method 

Deep Learning is the hottest trend now in AI and Machine Learning. It is a branch 

of machine learning based on a set of algorithms that attempt to model high-level 

abstractions in data by using model architectures, with complex structures or otherwise, 

composed of multiple non-linear transformations. 

Deep learning is part of a broader family of machine learning methods based on 

learning representations of data. An observation (e.g., an image) can be represented in 

many ways such as a vector of intensity values per pixel, or in a more abstract way as a 

set of edges, regions of particular shape, etc. Some representations make it easier to 

learn tasks (e.g., face recognition or facial expression recognition) from examples. One 

of the promises of deep learning is replacing handcrafted features with efficient 

algorithms for unsupervised or semi-supervised feature learning and hierarchical feature 

extraction. 

Research in this area attempts to make better representations and create models to 

learn these representations from large-scale unlabeled data. Some of the representations 

are inspired by advances in neuroscience and are loosely based on interpretation of 

information processing and communication patterns in a nervous system, such as neural 

coding which attempts to define a relationship between the stimulus and the neuronal 

responses and the relationship among the electrical activity of the neurons in the brain. 

Various deep learning architectures such as deep neural networks, convolutional 

deep neural networks, deep belief networks and recurrent neural networks have been 

applied to field of computer vision where they have been shown to produce 

state-of-the-art results on various tasks. 

As a result, we would like to explore the possibility to use this technique on 
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recognizing transparent objects. 

3.3.1 Deep Neural Network & Convolutional Neural Network 

Deep neural network is special group of neural network. So before introducing 

deep neural network, we should address the definition of a neural network.  

Neural Network is a family of statistical learning models inspired by biological 

neural networks (the central nervous systems of animals, in particular the brain) and are 

used to estimate or approximate functions that can depend on a large number of inputs 

and are generally unknown. Since the real function is unknown, neural network takes a 

big amount of pairs of input and corresponding output to automatically learn the 

relationship between the given inputs and outputs. This is possible because artificial 

neural networks are generally presented as systems of interconnected "neurons" which 

send messages to each other. And the connections have numeric weights that can be 

tuned based on experience, making neural nets adaptive to inputs so that it is capable of 

learning.  

For example, a neural network for handwriting recognition is defined by a set of 

input neurons which may be activated by the pixels of an input image. After being 

weighted and transformed by a function (determined by the network's designer), the 

activations of these neurons are then passed on to other neurons. This process is 

repeated until finally, an output neuron is activated. This determines which character 

was read. An illustration of a single hidden layer neural network is presented in Fig 

3.13. 
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Fig 3.13 An illustration of a single hidden layer neural network. 

As shown in Fig 3.13, the first layer has input neurons which send data via 

synapses to the hidden layer of neurons, and then via more synapses to the third layer of 

output neurons. More complex systems will have more layers of neurons, some having 

increased layers of input neurons and output neurons. The synapses store parameters 

called "weights" that manipulate the data in the calculations. 

As for the learning process, training a neural network model essentially means 

selecting one model from the set of allowed models that minimizes the cost criterion. 

There are numerous algorithms available for training neural network models; most of 

them can be viewed as a straightforward application of optimization theory and 

statistical estimation.  

Note that most of the algorithms used in training artificial neural networks employ 

some form of gradient descent, using back-propagation to compute the actual gradients. 

This is done by simply taking the derivative of the cost function with respect to the 
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network parameters and then changing those parameters in a gradient-related direction. 

And since the gradient direction equals the direction of increasing the value of cost 

function, the optimization process would take the direction inverse to the gradient 

direction to find the parameters that minimize the cost function. 

Now we know the definition of neural networks, we can now introduce the 

difference between common neural network and deep neural network. Usually, the 

common neural network has only one or two hidden layers. While deep neural network 

has more hidden layers than common neural network, or referred to be shallow neural 

network in Fig 3.14. Note that the H1 in Fig 3.14 means hidden layer 1. 

 

Fig 3.14 The difference between shallow and deep neural network. 

In deeper ANNs, each “layer” (i.e., H1, H2, etc) learns to extract important features 

about the layer before. This is not unlike the brain, especially when it comes to vision. 

The eye converts light energy into electrical energy that the brain uses for 



 

 37 

communication via photoreceptors in the retina. This information is then passed through 

different layers of in the brain. The first layer in the visual system is primary visual 

cortex (V1). V1 is most famous for extracting oriented edges in your visual world, but it 

does a lot more than that of which we won’t explain in this thesis. This information is 

then passed onto different layers throughout the visual system. But it’s important to 

keep in mind that biological nervous systems are substantially more complicated than 

ANNs. In short summary, deep neural networks are neural networks that contain more 

hidden layers. However, fully connected deep neural network does not take advantage 

of the spatial information in image. As a result, for image-related tasks such as image 

classification, image captioning and video recognition, convolutional neural network is 

a better choice. 

A Convolutional Neural Network (CNN) is comprised of one or more 

convolutional layers (often with a subsampling step) and then followed by one or more 

fully connected layers as in a standard multilayer neural network. The architecture of a 

CNN is designed to take advantage of the 2D structure of an input image (or other 2D 

input such as a speech signal). This is achieved with local connections and tied weights 

followed by some form of pooling which results in translation invariant features. 

Another benefit of CNNs is that they are easier to train and have many fewer parameters 

than fully connected networks with the same number of hidden units. A common 

architecture of CNN is shown in Fig 3.15. 
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Fig 3.15 The architecture of common convolutional neural network. 

3.3.2 Regions with Convolutional Neural Network (R-CNN) 

Although CNN is very powerful in image classification task, it cannot handle tasks 

like object detection and segmentation. It is because CNN take the whole image as input 

and does not deal with the local patches of image. As a result, R-CNN [29] is proposed 

to deal with the problem mentioned above. 

The overall process of R-CNN is shown in Fig 3.16: 

 

Fig 3.16 Object detection system overview. 

R-CNN solve the CNN localization problem by operating within the “recognition 

using regions” paradigm [30], which has been successful for both object detection [31] 

and semantic segmentation [32].  

For feature extraction, R-CNN extracts a 4096-dimensional feature vector from 

each region proposal using the Caffe [33] implementation of the CNN described by 
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Krizhevsky et al. [34]. Features are computed by forward propagating a 

mean-subtracted 227 × 227 RGB image through five convolutional layers and two fully 

connected layers. In order to compute features for a region proposal, we must first 

convert the image data in that region into a form that is compatible with the CNN (its 

architecture requires inputs of a fixed 227 × 227 pixel size). Of the many possible 

transformations of our arbitrary-shaped regions, R-CNN uses the simplest. Regardless 

of the size or aspect ratio of the candidate region, it warp all pixels in a tight bounding 

box around it to the required size. Prior to warping, the tight bounding box is dilated so 

that at the warped size there are exactly p pixels of warped image context around the 

original box (p = 16). 

At test time, R-CNN generates around 2000 category-independent region proposals 

for the input image, extracts a fixed-length feature vector from each proposal using a 

CNN, and then classifies each region with category-specific linear SVMs. We use a 

simple technique (affine image warping) to compute a fixed-size CNN input from each 

region proposal, regardless of the region’s shape. 

3.3.3 Selective Search 

The first problem in the testing stage is to select the candidate regions for scoring, 

the techniques used in R-CNN is selective search [31]. Selective search addresses the 

problem of generating possible object locations for use in object recognition. They 

introduce selective search which combines the strength of both an exhaustive search and 

segmentation. Like segmentation, they use the image structure to guide the sampling 

process. Like exhaustive search, the paper aim to capture all possible object locations. 

By using selective search, we don’t need to exhaustively enumerate all possible regions 

for scoring. 
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Fig. 3.17 An illustration of selective search. 

Since we are interested in using this method on recognizing transparent objects, we 

have to test if selective search can crop transparent object or not. We use Fig 3.18 as 

input to selective search and get the result in Fig 3.19. 

 

Fig. 3.18 Our input for selective search. 
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Fig 3.19 The result of selective search on our example. 

As shown in Fig 3.19, some proposals (in red rectangle) are good, although there 
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are still many regions that are not transparent, the result is good enough for transparent 

object detection. The experiment of detection with R-CNN is presented in section 6.2.2. 
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Chapter 4 Pose Estimation of Transparent Objects 

In this chapter we introduce the algorithm for pose estimation. The overall process 

is shown in Fig 4.1. Our algorithm is template-based method, so it needs a predefined 

3D model of the transparent object we want to detect. As a result, we divide the process 

into two separated stages – training stage and testing stage. In training stage, the goal is 

to prepare 3D model of transparent objects and store some useful information in a 

database for matching the model in the image containing transparent objects. In testing 

stage, the information stored in the database will be used to estimate the pose of 

transparent objects. The two stages will be explained in this chapter. 

 

 

Fig. 4.1 Flowchart of Grabcut-based pose estimation. 
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4.1 Training 

4.1.1 Model Construction 

This algorithm needs a predefined 3D model of the transparent object you want to 

detect. So you need to provide your model, either by using KinectFusion to construct 

one or downloading from web. 

If we want to use KinectFusion to reconstruct the model, we should first make the 

transparent object non-transparent. This can be done by paint the object or wrap some 

paper on it, as shown in Fig 4.2. 

 

After we have the non-transparent copy of object, we can put this the 

non-transparent copy on top of a table, and use KinectFusion provided in Windows 

operating system for construction. (See Fig 4.3) 

 

Fig. 4.2 A transparent object and its wrapped-up copy. 
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One of the constructed models is shown in Fig 4.4. Due to the imperfection of 

KinectFusion, the model’s surface is not very smooth. As a result, we’ll introduce 

another way of model construction by downloading model from web. 

 

 

Fig. 4.4 An illustration of the built model. 

 

Fig. 4.3 The KinectFusion app in Windows. 
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We use a model of test tube as example to introduce how download a model from 

the web. The first step is to download a PLY model. However, this model is not suitable 

for silhouettes generation because the point is too sparse. The model can be visualized 

in Meshlab, as shown in Fig 4.5. 

The reason that the sparse model is not suitable for silhouette generation is stated 

in the bottom of section 4.1.2. 

 

To solve the sparsity, one can use the points adding function provided in Meshlab 

(Filters -> Remeshing, simplification and reconstruction -> Subdivision surfaces: 

Midpoint). The result is shown in Fig. 4.6. 

 

Fig. 4.5 The downloaded model is very sparse. 
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Fig. 4.6 Applying midpoint adding algorithm to solve for sparsity. 

However, the point added model usually contains too many points. One can down 

sample the model to around 1000 vertices by sub-sampling function provided in 

Meshlab (Filters->Sampling->Mesh Elements Subsampling). The result of 

sub-sampling is shown in Fig 4.7. 

 

 

Fig. 4.7 Downsample the model to around 1000 points. 
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If the 3D model contains too many point, it will cause the huge memory usage and 

computation power during runtime. Normally, after adding midpoint, the model 

contains around 200,000 points, this will consume around more than 8 GB memory 

space during runtime, and the hardware of general laptop cannot handle that. By an 

empirical study, we found that a 3D model should contain around 1000 points.  

Now the model is almost ready, and one needs not forget that to scale the model to 

the same size as the real transparent object. This is important because the pose 

estimation algorithm estimate the pose of transparent object by fitting the model in the 

test image. And this can be done by using the scaling function in Meshlab (Filters -> 

Normals, Curvatures and Orientation -> Transform: Scale). 

4.1.2 Silhouettes Generation 

Once we have the model, the training algorithm will rotate the 3D model in 

different viewpoint, and store the silhouette of each viewpoint in database. (The 

silhouettes are different in different viewpoints, as shown in Fig 4.8) This is because in 

testing stage, the test silhouette (the silhouette in the scene) can be matched to the 

silhouettes in database (training silhouettes). The best match provide hint about the pose 

of test silhouette. 

 

Fig 4.8 An illustration of silhouette generation. 
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The sparse model is not suitable for silhouette generation is because when turning 

the model in different viewpoint, the sparse model might contain very few points on lots 

of silhouettes. This make pose estimation fail because many training silhouettes cannot 

be used to match the test silhouette. 

4.2 Testing 

4.2.1 Test Silhouette Detection 

In testing stage, first the depth map from Kinect is used to search the candidate 

region of transparency. The idea is that transparent object cause NaN in depth map 

(black region in depth map), so the NaN regions in depth map can be candidates of 

transparency. As described in section 3.1, once the candidate regions are fetched, 

GrabCut is used to crop them. 

However, some of the candidates might not be transparent, so we use a transparent 

classification algorithm to further classify between the transparent candidates and get 

test silhouettes. 

4.2.2 Initial Pose Estimation 

The test silhouette is now at hand. As mentioned earlier in section 4.1, we build the 

model and store many silhouettes of different Rx, Ry. To determine the pose in the test 

image, first we want to find the translation and Rz for each silhouette in the database. 

After finding the geometric relationship between the silhouette in the test image and 

each of the silhouettes in database, we use Chamfer Distance [24] to evaluate which 

relationship best fits to the measured silhouette. 

So firstly, we would like to find the translation and Rz for each silhouette in the 

database. To do that, a two-dimensional similarity transform between train and test 

silhouettes should be estimated. This can be estimated by Procrustes Analysis [25]. This 



 

 55 

2D shape matching algorithm includes three steps－centering, scaling and rotation. 2D 

translation is estimated by centering (aligning centroids): 

        
 

 
        

 

   

 

, where n is the number of points in a silhouette. 

Next, scaling is to align the scatters of the points in train and test silhouettes: 

   
 

 
                    

 

   

 

, then the rotation can be estimated using 2D-2D ICP [26]. 

Now we can proceed to compute Rz and 3D translation which maps the point of 

the stored 3D model to the location in the test image. However, as mentioned in [6], 

there is no such transform under the perspective camera model. So the weak perspective 

projection model [27] is used. This model assumes all points of the 3D model have the 

same depth. As a result, the point on the model should be put into the right hand side of: 

 

  
   

 
 
  
  

 

     
  

       
       
   

    

  
  
  

  

 
 
  
 

  

where K is the matrix of intrinsic parameters, S is the similarity transformation 

obtained from Procrustes Analysis. Note that the equation should be solved for all x and 

y simultaneously. And  

       
       
       
   

    

  
  
  

  

After calibration and Procrustes Analysis, we have S and K. So we can solve the 

translation and Rz for each training silhouette. If a training silhouette match well to the 

testing silhouette, we can get some plausible pose for further pose refinement. 
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4.2.3 Pose Refinement 

We have silhouette and surface edges from provided 3D point cloud model, and 

they should be aligned with the test silhouette and canny edges in the test image. This is 

a problem of 3D-2D registration and we use a robust variant of Levenberg-Marquardt 

Iterative Closest Point (LM-ICP [28]) to solve it. The result of this algorithm is the 

refined pose. 

 

 

Fig 4.9 An illustration of pose estimation. 
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Chapter 5 Grasping 

Although we have not implemented the grasping function yet, we still survey for 

the grasping function so that the whole pipeline proposed in this thesis can be complete 

for a service robot to manipulate transparent objects. Since the estimated pose of 

transparent objects is in RGBD sensor’s coordinate, so we need to transform the pose to 

gripper’s coordinate frame to let robot grasp. This can be done by ROS tf introduced in 

section 5.1. Also, there is a manipulation pipeline in ROS that can be used for 

manipulating objects, which will be covered in section 5.2. 

5.1 ROS tf for Coordinate Transform 

A robotic system typically has many 3D coordinate frames that change over time, 

such as a world frame, base frame, gripper frame, head frame, etc. (See Fig 5.1) tf keeps 

track of all these frames over time, and it can operate in a distributed system. This 

means all the information about the coordinate frames of a robot is available to all ROS 

components on any computer in the system. 

 

Fig 5.1 PR2’s 3D coordinate frames. 
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Many ROS packages require the transform tree of a robot to be published using the 

tf software library. At an abstract level, a transform tree defines offsets in terms of both 

translation and rotation between different coordinate frames. To make this more 

concrete, consider the example of a simple robot that has a mobile base with a single 

laser mounted on top of it, as shown in Fig 5.2. In referring to the robot let's define two 

coordinate frames: one corresponding to the center point of the base of the robot and 

one for the center point of the laser that is mounted on top of the base. Let's also give 

them names for easy reference. We'll call the coordinate frame attached to the mobile 

base "base_link" (for navigation, its important that this be placed at the rotational center 

of the robot) and we'll call the coordinate frame attached to the laser "base_laser." 

 

Fig 5.2 An example of a simple robot. 

At this point, let's assume that we have some data from the laser in the form of 

distances from the laser's center point. In other words, we have some data in the 

"base_laser" coordinate frame. Now suppose we want to take this data and use it to help 

the mobile base avoid obstacles in the world. To do this successfully, we need a way of 

transforming the laser scan we've received from the "base_laser" frame to the 

"base_link" frame. In essence, we need to define a relationship between the "base_laser" 
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and "base_link" coordinate frames. 

In defining this relationship, assume we know that the laser is mounted 10cm 

forward and 20cm above the center point of the mobile base shown in Fig 5.3. This 

gives us a translational offset that relates the "base_link" frame to the "base_laser" 

frame. Specifically, we know that to get data from the "base_link" frame to the 

"base_laser" frame we must apply a translation of (x: 0.1m, y: 0.0m, z: 0.2m), and to get 

data from the "base_laser" frame to the "base_link" frame we must apply the opposite 

translation (x: -0.1m, y: 0.0m, z: -0.20m). 

 

Fig 5.3 The relationship between laser and base of the simple robot. 

We could choose to manage this relationship ourselves, meaning storing and 

applying the appropriate translations between the frames when necessary, but this 

becomes a real pain as the number of coordinate frames increase. Luckily, however, we 

don't have to do this work ourselves. Instead we'll define the relationship between 

"base_link" and "base_laser" once using tf and let it manage the transformation between 

the two coordinate frames for us. 

To define and store the relationship between the "base_link" and "base_laser" 

frames using tf, we need to add them to a transform tree. Conceptually, each node in the 
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transform tree corresponds to a coordinate frame and each edge corresponds to the 

transform that needs to be applied to move from the current node to its child. Tf uses a 

tree structure to guarantee that there is only a single traversal that links any two 

coordinate frames together, and assumes that all edges in the tree are directed from 

parent to child nodes. 

To create a transform tree for our simple example, we'll create two nodes, one for 

the "base_link" coordinate frame and one for the "base_laser" coordinate frame. To 

create the edge between them, we first need to decide which node will be the parent and 

which will be the child. Remember, this distinction is important because tf assumes that 

all transforms move from parent to child. Let's choose the "base_link" coordinate frame 

as the parent because as other pieces/sensors are added to the robot, it will make the 

most sense for them to relate to the "base_laser" frame by traversing through the 

"base_link" frame. This means the transform associated with the edge connecting 

"base_link" and "base_laser" should be (x: 0.1m, y: 0.0m, z: 0.2m). With this transform 

tree set up, converting the laser scan received in the "base_laser" frame to the 

"base_link" frame is as simple as making a call to the tf library. Our robot can use this 

information to reason about laser scans in the "base_link" frame and safely plan around 

obstacles in its environment. 

 

Fig 5.4 The tf tree for the simple robot. 
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5.2 PR2 manipulation pipeline 

Object manipulator [35] provides the core-functionality for pick and place tasks, 

implemented in a robot-independent way. The object manipulator assumes a number of 

actions and services are available for it to call. For the PR2 robot equipped with a 

gripper, default implementations are available for all of these. 

Chronologically, the process of grasping an object goes through the following 

stages: 

 the target object is identified in sensor data from the environment 

 a set of possible grasp points are generated for that object 

 a collision map of the environment is built based on sensor data 

 a feasible grasp point (no collisions with the environment) is selected from the 

list 

 a collision-free path is generated and executed, taking the arm from its current 

configuration to a pre-grasp position for the desired grasp point 

 the final path from pre-grasp to grasp is executed 

 the gripper is closed on the object and tactile sensors are used to detect 

presence or absence of the object in the gripper 

 the object is lifted from the table 

We can identify the transparent objects by the algorithms stated in the previous 

sections. And the detailed description on other modules can be found in [35]. So we just 

present an example from [35] in Fig 5.5 to Fig 5.8. 
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Fig 5.5 Interpolated IK path from pre-grasp to grasp planned for a grasp point of an 

unknown object. 

 

Fig 5.6 A path to get the arm to the pre-grasp position has been planned using the 

motion planner and executed. 
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Fig 5.7 The interpolated IK path from pre-grasp to grasp has been executed. 

 

Fig 5.8 The object has been lifted. 
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Chapter 6 Experiment 

6.1 Experiment Setup 

As shown in Fig.6.1, we put the transparent objects on the table in front of PR2 for  

recognition and pose estimation. 

 

6.2 Detection of Transparent Objects 

In this section, we present the experiment on transparent object detection 

6.2.1 Grabcut-based Method 

Here we test the performance of the transparent candidate recognition, and 

compare the result with the method proposed in [6]. The inputs of this test are RGB and 

depth images, and output is the marked regions that are considered as transparent 

 

Fig. 6.1 PR2 robot manipulates transparent object. 
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objects. In this test, we use recall and precision to evaluate the performance. Recall is 

the ratio of the number of correctly retrieved transparent object over the number of all 

transparent objects should be retrieved. Precision is the ratio of the number of correctly 

retrieved transparent object over the number of all retrieved. So in the ideal case, one 

can expect that the output regions are always transparent objects (100% precision) and 

all transparent objects in the scene are all retrieved (100% recall). 

We randomly put 5 transparent objects as shown in Fig.6.2 (2 different kinds of 

glass goblets, beaker, graduate cylinder, test tube) and other non-transparent objects that 

will cause unknown depth value in the scene. Then we test if our transparent candidate 

retrieving module can correctly retrieve the transparent ones. In Fig.6.3, the green 

silhouette means the algorithm think that region is transparent. If the green silhouette 

contains the region that is a non-transparent object, we view it as error.  

 

 

Fig. 6.2 Five transparent objects used to test the performance of recognition. 
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In the test, the total retrieved candidates are over 200. The result is shown in table 

6.1. As can be seen in table 6.1, recalls of both methods are similar, which means if 

there are transparent objects in the scene, both method can retrieved them in most cases. 

However, our method outperforms the previous method on precision since our method 

better rules out non-transparent regions which have unknown value in the depth image. 

Since the method in [6] is not focusing on tackling this problem, so the result can be 

 

 

Fig. 6.3 The original image and the correct recognition result. 
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expected. 

 

6.2.2 Deep Learning Based Method 

To test if our algorithm can detect transparent objects in color image, we use the 

test dataset used in [3], which contains 14 images. These images are taken in a normal 

house scenario, with different lighting conditions and occlusions. Three of them are 

shown in Fig 6.4. Note that this experiment is not related to the PR2 and the experiment 

setup stated in section 6.1. 

 

Table 6.1 Recall and Precision of Grabcut-based Transparent Object Recognition 

Method Recall Precision 

Method in 

[6] 

86.11% 38.24% 

our method 
86.11% 93.93% 
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Fig. 6.4 Some of the images in test dataset. 

As can be seen in Fig. 6.5, the red rectangle contains a transparent object and the 

label is beaker. Although there is a blue rectangle recognized, the label is axe, so it is not 

related to transparent object. Note that R-CNN can actually recognize multiple objects 

in the scene instead of recognize transparent object only. 
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The results are shown in Fig. 6.6. In Fig. 6.6, we only show rectangles contains 

beaker. As can be seen, in most of the cases, transparent object can be detected in red 

rectangle. The result shows that R-CNN can be used to recognize transparent objects in 

color image. 

 

 

Fig. 6.5 A recognition result from R-CNN. 



 

 70 
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Fig. 6.6 Testing result of R-CNN method. 

6.3 Pose Estimation of transparent Objects 

We evaluate the pose estimation module on transparent equipment. Since we want 

to apply pose estimation in a real bio-laboratory application, so it is essential to test the 

work space of pose estimation module. There is no need to further evaluate the accuracy 

due to the evaluation is already done in [6]. In this test, we use three transparent objects, 

beaker, graduate cylinder and test tube to verify. Since we predefined the grasp pose of 

these objects, so we evaluate the correctness of pose estimation by checking if PR2 can 

correctly grasp the recognized objects. One of the correct results is shown in Fig 6.7. 
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The result is shown in table 6.2. We found that if the object is placed closely to the 

robot, the success rate would be very high. But if object is placed a little bit far from the 

robot, the success rate would drop quickly. The main reason is that Kinect is mounted 

on PR2’s head, so the distance from Kinect to object is longer than the distance from 

robot to object. Once the distance exceeds the limitation of Kinect, there’ll be lots of 

unknown value on the depth image, thus interfere the process of transparent candidate 

retrieval. Though the limitation of workspace is an issue to be further investigated, in a 

normal bio-laboratory application, the transparent equipment wouldn’t be placed far 

from the manipulator so that he or she can manipulate equipment without moving. 

 

 

Table 6.2 Success Rate of Pose Estimation 

Distance Success rate 

D < 0.5m 
87.32% 

0.5m < D < 0.9m 
28.65% 

0.9m < D 
0% 

 

 

Fig. 6.7 One of the results of pose estimation. 
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Chapter 7 Conclusion and Future Works 

Conclusions 

In conclusion, we have investigated the algorithms for recognizing and estimating 

the pose of transparent objects in the scene. We improved the key functions of 

recognition of transparent equipment to deal with non-transparent objects that cause 

unknown value in Kinect depth image. These objects are very possible to be falsely 

recognized as transparent by previous method, but our method can deal with this 

problem properly. 

Apart from the recognition and pose estimation, we also discuss the manipulation 

of a service robot to grasp transparent objects, making the whole thesis more complete. 

Future Work 

Future work includes integrating more function module such as navigation and 

grasping. Also, grasping point estimation for fragile transparent objects is an important 

topic to be further investigated. 
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