

國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

三維透明物體辨識系統於服務型機器人之應用

3D Transparent Object Recognition for Service Robotics

賴柏任

Po-Jen Lai

指導教授：羅仁權 博士

Advisor: Ren C. Luo, Ph.D.

中華民國 104年 7 月

July 2015

 i

誌謝

就讀碩士班的這兩年是我人生美好的一段回憶。大三時，懵懵懂懂的我加入

現在的實驗室做專題，接觸到世界頂級的工具-ROS，開啟我對機器人的研究。如

今時光飛逝，四年的時間一轉眼就過了。感謝父母親的栽培教誨、不論原因地支

持鼓勵，讓我能夠專注於我喜愛的領域。非常感謝我敬愛的指導老師羅仁權教授，

提供我們豐富的資源以及指教，教導我們大至國際觀，小至待人處事的道理，無

論哪個環節都是一生難得的體驗。兩年的師生互動中，老師充分展現出國際級學

者的視野與風範，不僅帶領我們探索學術知識的廣度與深度，更是給予我們充分

的機會去體驗本科系以外的經驗，希望我們成為均衡發展的人才。最重要的是，

老師以身作則地積極推動台灣產業轉型，他付出的努力令我非常感動，也期許自

己，畢業只是一個過程，我對於推動台灣機器人產業的熱情與努力將不會停息。

是老師教導我，國家的未來，是由我們親手打造出來的。另外，要特別感謝献章

學長盡心盡力的教學，在 ROS 團隊的時期我學到許多一生受用的智慧。

在國立臺灣大學智慧機器人及自動化國際研究中心（NTU- iCeiRA）兩年的專

題生活及兩年研究生活中，我要感謝鐿文、俊吉、瑋隆、献章、陞祐、繼棠、金

成、詩頎、善成、博宇、玲盈、昕昳、東榕、旭佳等博班學長姊，還有博瀚、蕭

明、昀軒、瓈文、耕成、凱杰、彭熙、盛俊、宗緯、政勳、世哲、哲毅、哲瑋、

懷遠、少騁、謝浩、冠軒等碩班學長姊，以及同屆共同奮鬥的夥伴宜庭、王蕊、

立偉、智賢、相匠、照文、岳軒、昭霖、佳文、辰嘉，最後還有積極認真的學弟

妹煒森、建偉、金博、邦甫、冠志、文謙、榮育、柏宏、士紘、耕銘、建安、銘

駿及俊豪，以及助理逸偉、安甫、之琳（Katherine）、婉儀（Beryl）、中莉（Allie）、

青芳（Fine）、雯雅（Tracy）、琬怡（Wanyi）。謝謝大家支持與幫助，不分晝夜地

討論研究，同甘共苦地參加比賽，不厭其煩地幫忙雜務，真的很開心這段時間有

幸能跟各位一起經歷奮鬥，相信每個生活點滴都是一生難忘回憶。

 能完成這篇論文，我要感謝生命中的每一個人，真的非常謝謝你們。

賴柏任 謹誌

一百零四年七月

 ii

中文摘要

隨著科技的進步，讓生活變得更自動化的需求是擋不住的浪潮。屆時，將有

許多的服務型機器人會深入到人類的環境中進行各式各樣的任務，例如在家中幫

忙倒牛奶、在餐廳中幫忙端水等等。在我們的生活中，用到了許多透明的物體，

包括玻璃杯、寶特瓶、甚至是玻璃門，若機器人沒有能力辨認透明物體，將會造

成許多問題，這些問題包含機器人容易毀損玻璃杯、容易撞到玻璃門或窗戶等等，

不僅僅會造成機器人工作上的不便利、損壞的玻璃更可能造成人類的危險。因此，

在此篇論文中，我們提出了一個透明物體的姿態辨識系統，其中我們將討論的重

心放在透明物體的辨識上，輔以討論姿態辨識的模組以及抓取的模組。之所以將

重心放在透明物體的辨識上，是因為姿態辨識以及抓取的功能在非透明物體上已

經有相當成熟的研究。然而，辨識透明物體的研究是近十幾年來才漸漸發展起來，

而且論文數量相當稀少，我們若能發展出有效的透明物體辨識演算法，將場景中

透明物體所在的位置標示出來，接下來的姿態辨識和抓取的方法就可以參考適用

於非透明物體的技術了。

故關於辨識透明物體，我們討論了三種方法，第一種使用 RGBD 感測器來感

測場景、利用感測器的特性加以辨認出透明物體的所在位置。第二種及第三種方

法都使用一般的相機當作感測器，分別使用 Latent Dirichlet Analysis 以及 Deep

Learning的機器學習方法來學習辨識透明物體。雖然探討了三種方法，我們主要使

用第一種方法辨識到的透明物體輪廓當作姿態辨認模組的輸入。

於是，我們可以使用已經儲存在資料庫裡的透明物體 3D模型，配合前述方法

所找到的透明物體輪廓，可以利用配準的方式進行姿態的估計，進而得到物體姿

態的估計值。

關鍵字： 服務型機器人、透明物體辨識、姿態辨識、機器人作業系統

 iii

ABSTRACT

With the advancement of technology, the trend to make our lives more convenient

by robot technology is unstoppable. In the future, many service robots will enter our

living environments to do all kind of tasks from pouring milk for us in our home to

serve water in restaurants. In our living environment, there are lots of transparent

objects including cups made of glass, PET bottles and glass doors. If a robot who serve

in our environment cannot recognize transparent objects, it might easily broke the

transparent objects made by glass, it might not be able to open the door made of glass, it

might bump into and broke glass windows and cause danger. As a result, we propose

algorithms that make a robot be able to recognize and estimate the pose of transparent

objects in this thesis. We emphasize on transparent object recognition because pose

estimation and manipulation for non-transparent objects are relatively mature, while

research on transparent object recognition just starts from a decade ago with a few

papers discussing this problem. If we can develop effective algorithm for recognizing

transparent object, we can take advantage of pose estimation and grasping for

non-transparent object to build a complete system for grasping transparent objects.

For recognizing transparent object, we discuss three methods in this thesis. The

first method which uses RGBD sensor to detect the transparent object is mainly used

because the result is suitable for pose estimation.

With the stored 3D model of transparent object and the silhouettes of transparent

object, we can estimate the pose by matching the model and the silhouette. Experiments

show that our method can be used to detect and estimate the pose of transparent objects.

Keywords: Service Robotics, Transparent Object Recognition, Pose Estimation, Robot

Operating System

 iv

CONTENTS

口試委員會審定書 ... #

誌謝 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES .. vii

LIST OF TABLES ... x

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Problem statement .. 3

1.3 Literature Review ... 4

1.4 Contributions .. 5

1.5 Thesis Organization .. 6

Chapter 2 System Architecture ... 7

2.1 Robot Operating System (ROS) ... 7

2.2 Hardware Introduction .. 12

2.2.1 Personal Robot 2 (PR2) ... 12

2.2.2 Kinect .. 15

Chapter 3 Detection of Transparent Objects ... 17

3.1 Grabcut-Based Method ... 17

3.1.1 Overall process of Grabcut-based method .. 17

3.1.2 Grabcut .. 19

 v

3.1.3 Transparent Object Classification ... 22

3.2 LDA-Based Method.. 24

3.2.1 Gaussian Mixture Model (GMM) ... 24

3.2.2 Probabilistic Latent Semantic Analysis (pLSA) & Latent Dirichlet

Allocation (LDA) .. 26

3.2.3 LDA for transparent object detection .. 31

3.3 Deep Learning-Based Method .. 33

3.3.1 Deep Neural Network & Convolutional Neural Network 34

3.3.2 Regions with Convolutional Neural Network (R-CNN) 38

3.3.3 Selective Search .. 39

Chapter 4 Pose Estimation of Transparent Objects.. 48

4.1 Training ... 49

4.1.1 Model Construction ... 49

4.1.2 Silhouettes Generation .. 53

4.2 Testing ... 54

4.2.1 Test Silhouette Detection .. 54

4.2.2 Initial Pose Estimation .. 54

4.2.3 Pose Refinement .. 56

Chapter 5 Grasping.. 57

5.1 ROS tf for Coordinate Transform ... 57

5.2 PR2 manipulation pipeline ... 61

Chapter 6 Experiment ... 64

6.1 Experiment Setup.. 64

6.2 Detection of Transparent Objects ... 64

6.2.1 Grabcut-based Method .. 64

 vi

6.2.2 Deep Learning Based Method ... 67

6.3 Pose Estimation of transparent Objects .. 71

Chapter 7 Conclusion and Future Works .. 73

REFERENCE .. 74

Curriculum Vitae ... 78

 vii

LIST OF FIGURES

Fig. 1.1 Softbank’s Pepper Robot ...2

Fig. 1.2 Some commonly seen transparent objects ...2

Fig. 1.3 A non-transparent object ...3

Fig. 1.4 Some non-transparent objects cause NaN in depth image5

Fig. 2.1 ROS Logo ...7

Fig. 2.2 A diagram for basic ROS concept ..8

Fig. 2.3 The robots that are compatible to ROS ..9

Fig. 2.4 Willow Garage’s PR2 ...13

Fig. 2.5 PR2’s links ..14

Fig. 2.6 PR2’s Control System ...14

Fig. 2.7 Microsoft’s Kinect ..15

Fig. 2.8 Kinect’s technical specification ..16

Fig. 3.1 Top: The scene containing transparent objects. Bottom: Transparent

candidates in the scene ...18

Fig 3.2 Three glasses and the detected highlights ...19

Fig 3.3 Two examples result of Grabcut algorithms ...20

Fig 3.4 An illustration of Graph cut ..21

Fig 3.5 The result of computing color similarity ..23

Fig 3.6 An example of GMM approximation ...26

Fig. 3.7 An illustration of Singular Value Decomposition (SVD)27

Fig. 3.8 A simple word-document co-occurrence matrix ..27

Fig. 3.9 Use SVD to decompose the example word-document matrix28

Fig 3.10 A geometric view of pLSA (z1 to z3 are three latent topics)29

 viii

Fig 3.11 The method used in [3] ...31

Fig 3.12 The detection result in [3] ...32

Fig 3.13 An illustration of a single hidden layer neural network35

Fig 3.14 The difference between shallow and deep neural network36

Fig 3.15 The architecture of common convolutional neural network38

Fig 3.16 Object detection system overview ..38

Fig. 3.17 An illustration of selective search ..40

Fig. 3.18 Our input for selective search ...40

Fig 3.19 The result of selective search on our example ..40

Fig. 4.1 Flowchart of Grabcut-based pose estimation ...48

Fig. 4.2 A transparent object and its wrapped-up copy ..49

Fig. 4.3 The KinectFusion app in Windows ..50

Fig. 4.4 An illustration of the built model ...50

Fig. 4.5 The downloaded model is very sparse ..51

Fig. 4.6 Applying midpoint adding algorithm to solve for sparsity52

Fig. 4.7 Downsample the model to around 1000 points ..52

Fig. 4.8 An illustration of silhouette generation...53

Fig 4.9 An illustration of pose estimation..56

Fig 5.1 PR2’s 3D coordinate frames ...57

Fig 5.2 An example of a simple robot ...58

Fig 5.3 The relationship between laser and base of the simple robot59

Fig 5.4 The tf tree for the simple robot ...60

Fig 5.5 Interpolated IK path from pre-grasp to grasp planned for a grasp point of an

unknown object ...62

Fig 5.6 A path to get the arm to the pre-grasp position has been planned using the

 ix

motion planner and executed ..62

Fig 5.7 The interpolated IK path from pre-grasp to grasp has been executed63

Fig 5.8 The object has been lifted ...63

Fig. 6.1 PR2 robot manipulates transparent object ..64

Fig. 6.2 Five transparent objects used to test the performance of recognition65

Fig. 6.3 The original image and correct recognition result ..66

Fig. 6.4 Some of the images in test dataset ..67

Fig. 6.5 A recognition result from R-CNN ..69

Fig. 6.6 Testing result of R-CNN method ..69

Fig. 6.7 One of the results of pose estimation ..72

 x

LIST OF TABLES

Table 6.1 Recall and Precision of Grabcut-based Transparent Object Recognition67

Table 6.2 Success Rate of Pose Estimation ..72

 1

Chapter 1 Introduction

 The main topic of this thesis is a transparent object recognition system for service

robotics. In this chapter, the motivation of the research is stated in section 1.1 and then

section 1.2 introduces the clear problem statement of the research. In section 1.3, the

related work is described so that the state-of-the-art algorithms are presented. After

showing the related work, the contributions are stated in section 1.4. Finally, in section

1.5, the overall organization of this thesis and the relationship among all chapters are

illustrated.

1.1 Motivation

Robotic technologies advances fast in the past decade, conventional industrial

robot manipulators are utilized in factory in order to replace human’s work, from the

simplest pick-and-place job to exquisite IC manufacturing. Nowadays, performance

(precision, speed, stability) of industrial robots are very good, thus make people develop

more sophisticated robots.

Recently, Softbank have launched a new social robot called “Pepper” (as shown in

Fig 1.1), which is the first humanoid robot designed to live with humans. He is able to

converse with you, recognize and react to your emotions, move and live autonomously.

However, Pepper doesn't clean, doesn't cook and doesn't have the abilities to serve as a

service robot.

Although the term "service robot" does not have a strict technical definition, The

International Federation of Robotics (IFR) has proposed a tentative definition: "A

service robot is a robot which operates semi- or fully autonomously to perform services

useful to the well-being of humans and equipment, excluding manufacturing operations.

For example, a service can do household chores and let people focus on more valuable

 2

works.

In such context, we are thinking, what is the ability that a service robot must have.

One of the functions that a service robot need is the ability to recognize and manipulate

transparent objects. The reason is because transparent objects are almost everywhere,

from our home and restaurants to laboratories. Some commonly seen transparent objects

are shown in Fig 1.2.

(a) (b) (c)

Fig. 1.2 Some commonly seen transparent objects

(a) PET bottle (b) cup made of glass(c) windows

Fig. 1.1 Softbank’s Pepper Robot

 3

If a robot who serve in our environment cannot recognize transparent objects, it

might easily broke the transparent objects made by glass, it might not be able to open

the door made of glass, it might bump into and broke glass windows and cause danger

in our environment.

As a result, we would like to explore the algorithms that make a robot be able to

recognize, even manipulate transparent objects in this thesis.

1.2 Problem statement

Transparent materials are difficult to detect due to the appearances of transparent

objects change over different backgrounds, their edges are implicit and contain strong

highlights.

Here, we gave a stricter definition of transparent object. A transparent object is the

object having the property of transmitting rays of light through its substance so that

bodies situated beyond or behind can be distinctly seen. So if we have a bottle made of

glass, but the glass has color, the bottle is not considered as transparent. An example can

be seen in Fig 1.3.

Fig. 1.3 A non-transparent object.

 4

1.3 Literature Review

Transparent object recognition is a difficult problem for computer vision

community for a long time, the research about this topic is not popular until 2003.

In 2003, Osadchy et al. [1] used specular highlights as a positive source of

information to recognize shiny objects. But the process required a bright light source.

McHenry et al. [2] proposed several features and characteristic of transparent object

such as color similarity, blurring, overlay consistency, texture distortion and highlights.

The method is effective to distinguish transparent objects. Although it successfully

segment transparent object, the algorithms only adapted with non-cluttered scene

without pose estimation. Fritz et al. [3] use an additive model of latent features to

learned transparent local patch appearance. It successfully detects transparency in

varying backgrounds too. However, all of the methods mentioned above gained no

knowledge about object pose, thus unable to make robot grasp.

Phillips et al. [4] provide a new idea to detect semi-transparent objects by utilizing

inverse perspective mapping. This method needs to capture more than one view and

assumes that object is on a plane. The largest error of pose estimate was about 10.4 mm.

For pose estimation, Lysenkov et al. [5] detect transparent object by using Kinect

sensor, while unknown depth information (shown as black area in depth image) is

considered as transparent object. It proposed an algorithm to calculate poses of

transparent objects. The improvement in [6] makes their algorithm be able to deal with

overlapped instances and cluttered transparent objects. Although it proposed a method

to handle pose estimation of transparent object, there are some cases that make detection

fails. As shown in Fig.1.4, some non-transparent objects that are common in a

laboratorial scene also generate unknown depth value so they would be considered as

 5

transparent objects as well. These objects will make the method proposed by [6] fail to

detect the transparent ones. And since [6] is the newest work on recognizing transparent

objects, we improved the algorithms in [6].

1.4 Contributions

To build a service robot system with functions of recognizing, estimating the pose

and grasping transparent objects, there are three main contributions in this thesis. They

are listed as follow:

 Improve the state-of-the-art pose estimation algorithm for transparent object so that

the robot can correctly distinguish non-transparent objects which cause NaN (Not a

Number, i.e. invalid) in depth image from transparent ones

 Investigate some other algorithms for recognizing transparent objects, including

Latent Dirichlet Allocation and Regions with Convolutional Neural Network

 System design and the implementation of pose estimation systems for robots

 (a) (b)

Fig. 1.4 Some non-transparent objects cause invalid area in depth image.

(a) Kinect RGB image (b) Kinect Depth image

 6

1.5 Thesis Organization

In chapter 2, we will discuss the system architecture, including hardware and

software. Next, in chapter 3, several techniques for detecting transparent object will be

investigated. After detecting the transparent objects in the scene, we would like to

estimate the pose of the detected objects so that they can be grasped by our robot. As a

result, pose estimation will be explained in chapter 4. With pose of transparent objects

estimated, the robot can grasp the transparent object with ease. In chapter 5, we will

describe the teach-and-play algorithm for robot grasping. And in chapter 6, we will

present some experiments about our system. Finally, we will make conclusions and state

the future work in chapter 7.

 7

Chapter 2 System Architecture

 In this chapter, the overall system is described. We use Robot Operating System

(ROS) as the tool for developing and running our algorithms. So we will introduce ROS

in section 1. As for the hardware platform, we use Personal Robot 2 (PR2), which will

be covered in section 2. In the last section, we then explain the software architecture of

a transparent object grasping robot.

2.1 Robot Operating System (ROS)

ROS [7] is a set of utilities and libraries for implementing all different kinds of

functionality on robots. In short, it is a meta operating system from WillowGarage,

which is designed for usage with distributed robot systems. It’s called a meta operating

system, because it needs another operating system to run. It’s mainly developed for

Ubuntu (a Linux distribution), but it also supports other Operating Systems like

Windows and Mac OS, but the support for them can still be considered as experimental.

Development in Robotics is slow in the past decades because people distributed

their efforts to different systems. For instance, the research team in University of Tokyo

may develop their own robots, but these robots are not compatible to Stanford's robots.

For normal people as you and me, it is even not possible to get their source codes and

provide any help to the development in robotics. In that context, making huge progress

Fig. 2.2 ROS Logo.

 8

in Robotics is quite difficult. So ROS came out, aiming at gathering people's work

together and then develop more advanced robots on top of them.

As a result, the primary goal of ROS is to support code reuse in robotics research

and development. ROS is a distributed framework of processes (as known as node) that

enables executables to be individually designed and loosely coupled at runtime. The

basic idea is shown in Fig 2.2. Each node is a process, and nodes can communicate to

each other by “ROS topic” [8] or “ROS service” [9].

ROS has lots of great features, but there are two features must be mentioned:

 Code Reuse

ROS is open source and provides strong package management system. You can

easily build your own system by combining packages released on ROS. The example in

the next point would make this point clearer.

 Executables can be individually designed and easily connected at runtime

This feature is explained by an example. We can imagine that if Peter is an expert

of robot navigation, he wrote a program A that can let robot go anywhere it want and

avoid obstacles smoothly. However, Peter need to use image so that the robot know how

to plan its moving trajectory (let's say the program that can process camera data be

program B). If Peter uses ROS, he can run other people's camera data processing

Fig. 2.2 A diagram for basic ROS concept.

 9

program as program B, and connected program A and program B in the environment

provided by ROS. And vice versa, other people can use the first-class navigation

program provided by Peter instead of writing a poor-performance navigation program

by their own.

Being such a powerful tool, ROS can be run on many robots, as shown in Fig 2.3.

 10

 11

Fig. 2.3 The robots that are compatible to ROS.

Software in the ROS Ecosystem can be separated into three groups:

 language- and platform-independent tools used for building and distributing

ROS-based software;

 ROS client library implementations such as roscpp, rospy, and roslisp;

 packages containing application-related code which uses one or more ROS

client libraries.

 12

ROS was originally developed in 2007 under the name switchyard by the Stanford

Artificial Intelligence Laboratory in support of the Stanford AI Robot STAIR project.

From 2008 until 2013, development was performed primarily at Willow Garage, a

robotics research institute/incubator. During that time, researchers at more than twenty

institutions collaborated with Willow Garage engineers in a federated development

model.

In February 2013, ROS stewardship transitioned to the Open Source Robotics

Foundation. And since then, OSRF is the primary maintainer of ROS.

2.2 Hardware Introduction

In this thesis, we use Willow Garage’s Personal Robot 2 (PR2) as our platform to

test our algorithm. As for the sensor, we use the Kinect mounted on PR2’s head to get

RGB and depth image for recognizing transparent objects.

2.2.1 Personal Robot 2 (PR2)

It is of a size similar to a human. PR2 is designed as a common hardware and

software platform for robot researchers. The PR2 has two 7-DOF arms with a payload

of 1.8 kilograms (4.0 lb). Sensors include a 5-megapixel camera, a tilting laser range

finder, and an inertial measurement unit. The "texture projector" projects a pattern on

the environment to create 3D information for capture by the cameras. This approach is

also known as structured light. The head-mounted laser scanner measures distance by

time-of-flight. The two computers located in the base of the robot are 8-core servers,

each of which has 24 Gigabytes of RAM, for a total of 48 GB. The battery system

consists of 16 laptop batteries.

 13

In June 2010, Willow Garage made two-year loans of a PR2 to 11 research teams.

Each PR2 was to include two arms, a "rich sensor suite", a mobile base, 16 CPU cores,

and the company's free, open-source Robot Operating System (ROS) framework, which

controls the PR2 and comes with software libraries for perception, navigation, and

manipulation. The teams were to have a chance not only to program a general-purpose

robot but also to contribute their work on Willow Garage's open-source robotics

platform to a wide community of researchers. In August 2010, Willow Garage

announced that the PR2 robot was available for purchase. As for now, PR2 is an

important platform for researchers in the world to collaborate on pushing the limit of

robot technology.

Fig. 2.4 Willow Garage’s PR2.

 14

Fig. 2.6 PR2’s Control System.

Fig. 2.5 PR2’s links.

 15

2.2.2 Kinect

Kinect [10] is a RGB-D sensor produced by Microsoft for the Xbox 360 game

console and Windows PCs. It enables users to control and interact with Xbox without

touching joystick or keyboard. Through gesture and speech command, Kinect becomes

an input device that can be applied for human robot interaction applications. And most

importantly, the stable 3D sensing ability makes it a popular sensor in robotics. Through

the infrared and camera mounted on Kinect (see Fig. 2.7), RGB and depth information

of the environment can be obtained, and this property supports us to implement our

transparent object recognition algorithm. And because the price of Kinect is much

cheaper than traditional 3D cameras, it is widely used in robotic systems.

Fig. 2.7 Microsoft’s Kinect.

 16

Fig. 2.8 Kinect’s technical specification.

 17

Chapter 3 Detection of Transparent Objects

 In this chapter, we introduce three kinds of method to detect transparent objects in

color image. We introduce Grabcut-based method because it is further used for pose

estimation and grasping. However, this method requires RGBD sensor as input sensor.

We explore LDA-based method and Deep Learning-based method so that we can detect

transparent objects by using a monocular camera. This can be helpful in the case that

RGBD sensor cannot be acquired.

3.1 Grabcut-Based Method

3.1.1 Overall process of Grabcut-based method

For Grabcut-based method, we use RGB image and depth image of Kinect as the

input of algorithm. To retrieve transparent candidates from depth image, we first extract

all unknown values from input depth image. Next, we use some morphological

operation to remove some noise. Then we extract connected components as possible

regions of transparency. However, in this stage, we often have several regions that are

non-transparent. In [6], they assume transparent objects are on a table, so they extract

the table plane and rule out regions that are not on the table. On the other hand, we take

advantage of strong highlight, which is a visual cue of transparent object, to rule out

regions that does not contain highlight. We use highlight because every transparent

object contains highlight in a scene with light source. Both method works fine, but

calculating highlight is easier and efficient. After extracting the regions containing

highlight, we use each of these regions as seeds for Grabcut to segment transparent

candidates as shown in Fig 3.1.

 18

Fig. 3.1 Top: The scene containing transparent objects.

Bottom: Transparent candidates in the scene.

As for the highlight, in general, transparent object reflects light such that it

produces multiple highlights on its surface. Various empirical models can be used to

count the local highlight points on a surface, such as Phong model [12], which is

commonly used in 3D computer graphics. To find the highlight, a way is to build

hypothesized 3D shape and search through a large set of candidate image highlights [1].

By binary threshold, one can detect highlight regions of transparent object, but

threshold value is hard to be determined. We then used the method described in [2] as it

is an efficient but useful method for searching highlight.

 19

The first step is to threshold image by value from 0 to 255, and estimate number of

perimeter pixels for each image after threshold. The slope of the curve would

significantly decrease at the value close to 255. To find the critical value of threshold,

we produce first order polynomial to fit the straight line of perimeter curve as:

P aT b

Variable T represents the threshold value. We fit the perimeter from threshold 255

to 0, iteratively. For each fit, we estimate the mean square error and plot another curve

of error. Finally, we compare the slope of error curve from threshold 255 to 0. When

there is a significant increase of slope, the value is the proper value of threshold. As

shown in Fig. 3.2, only highlights remain in image after threshold.

Fig 3.2 Three glasses and the detected highlights.

In summary, for retrieving transparent candidates, we improve the method of [6],

and the main difference between the previous method and ours is how we rule out

possible regions of transparency. We use highlight thus accelerate the process of

candidate retrieval.

3.1.2 Grabcut

GrabCut [13] is an iterative image segmentation technique based upon the Graph

Cut algorithm [14]. GrabCut extends Graph Cut to color images and to incomplete

trimaps. See Fig 3.3, first player and football is enclosed in a blue rectangle. Then some

 20

final touchups with white strokes (denoting foreground) and black strokes (denoting

background) is made. And we get a nice result from Grabcut algorithm.

Fig 3.3 Two examples of Grabcut algorithms.

Let us briefly introduce the process of Grabcut algorithm. First, user creates an

initial trimap by selecting a rectangle. Pixels inside the rectangle are marked as

unknown. Pixels outside of rectangle are marked as known background. Then computer

creates an initial image segmentation, where all unknown pixels are tentatively placed

in the foreground class and all known background pixels are placed in the background

class. Next, Gaussian Mixture Models (GMMs) are created for initial foreground and

background classes. Each pixel in the foreground class is assigned to the most likely

Gaussian component in the foreground GMM. Similarly, each pixel in the background is

assigned to the most likely background Gaussian component. The iterative part comes

now, the GMMs are thrown away and new GMMs are learned from the pixel sets

created in the previous set. A graph is built and Graph Cut is run to find a new tentative

 21

foreground and background classification of pixels as shown in Fig 3.4.

Fig 3.4 An illustration of Graph cut.

The process of Graph Cut algorithm is stated as follows: the user first delineates

pixels in the background and foreground regions using a few strokes of an image brush

(Figure 3.61). These pixels then become the seeds that tie nodes in the S–T graph to the

source and sink labels S and T (Figure 3.4). Seed pixels can also be used to estimate

foreground and background region statistics (intensity or color histograms).

The capacities of the other edges in the graph are derived from the region and

boundary energy terms, i.e., pixels that are more compatible with the foreground or

background region get stronger connections to the respective source or sink; adjacent

pixels with greater smoothness also get stronger links. Once the

 22

minimum-cut/maximum-flow problem has been solved using a polynomial time

algorithm [15], pixels on either side of the computed cut are labeled according to the

source or sink to which they remain connected.

As a result, by feeding the NaN area in depth image as seed for Grabcut algorithm,

we can crop the transparent object in the image, and thus we get our transparent

candidates. However, since some of the NaN areas in depth image might not be

transparent, we need the method stated in section 3.3 to further classify these

transparent candidates.

3.1.3 Transparent Object Classification

Some transparent candidates are non-transparent but contains highlight, so there

may be some candidates that are not transparent, such as the one in the bottom left of

Fig. 3.1. As result, we need to further evaluate if these candidates are transparent. So

algorithms to detect characteristics possessed by transparent objects are implemented

for classification.

 Color Similarity

One of the important features of transparent object is that the color tends to be

similar on both side of the edge. Because the object is transparent, the object presents

the color of background, which is similar to the color around object.

To check if the colors on both sides are similar, we calculate the histogram of hue

in HSV color space on both sides. After retrieving transparent candidate as shown in Fig.

3.5(b), we can calculate the pixels around the candidate, and the result is shown in Fig.

3.5(c). Then we can calculate the hue histogram of pixels inside transparent candidate

and pixels around the candidate. Fig. 3.5(d) shows the histogram of the pixels inside

candidate and pixels around candidate. To compare the similarity of the two histograms,

we view these two histograms as vectors. By comparing the Euclidean distance, we are

 23

able to compare the similarity, if the value of distance is low, then indicate the color on

both side are similar.

Fig 3.5 The result of computing color similarity.

 Intensity Consistency

Except for the color similarity of transparent objects, yet another characteristic of

transparent object is that the pixel intensity around the edge is consistent. In other words,

the intensity distribution inside transparent object is constrained by the intensity

distribution outside the transparent object. So we use a mask that covers part of the edge,

which includes pixels on both side of the edge. Apparently, local standard deviation of

pixel intensity inside the mask around boundaries of transparent objects should be a

small value. Traditional segmentation methods are difficult to detect the boundaries of

transparent object. Based on the candidates retrieved, we are able to get accurate

boundaries, and find out the local standard deviation value of transparent boundaries

using dynamic mask:

 24

SD-Value =

 .

For the dynamic mask, M is the length of row, N is the length of columns, and

I(x,y) is the intensity of pixel at (x,y). As the mask moving around the boundaries of

transparent candidate, we calculate one local standard deviation at each move, C is the

total times we calculate the local standard deviation. Finally we have a SD-value, when

it is small, it indicates the candidate is possible to be transparent object.

After calculating the color similarity value and SD-value, we got two

measurements on transparent classification. A simple way to combine the two

measurements is to take average, and it works well in our scenario. Using 15 images,

we trained the classifier and get the threshold value of 0.6. That is, if a candidate’s value

is under 0.6, it is considered transparent.

3.2 LDA-Based Method

3.2.1 Gaussian Mixture Model (GMM)

Gaussian Mixture Model is the base of Latent Dirichlet Allocation, so we make a

brief introduction here for understanding LDA in section 3.2.2.

Mixture models are a type of density model which comprise a number of

component functions, usually Gaussian. These component functions are combined to

provide a multimodal density. They can be employed to model the colors of an object in

order to perform tasks such as real-time color-based tracking and segmentation [16].

These tasks may be made more robust by generating a mixture model corresponding to

 25

background colors in addition to a foreground model, and employing Baye’s theorem to

perform pixel classification. Mixture models are also amenable to effective methods for

on-line adaptation of models to cope with slowly-varying lighting conditions [17].

Mixture models are a semi-parametric alternative to non-parametric histograms [18]

(which can also be used as densities) and provide greater flexibility and precision in

modeling the underlying statistics of sample data. They are able to smooth over gaps

resulting from sparse sample data and provide tighter constraints in assigning object

membership to color-space regions. Such precision is necessary to obtain the best

results possible from color-based pixel classification for qualitative segmentation

requirements.

Once a model is generated, conditional probabilities can be computed for color

pixels. Gaussian mixture models can also be viewed as a form of generalized radial

basis function network in which each Gaussian component is a basis function or

`hidden' unit. The component priors can be viewed as weights in an output layer. Finite

mixture models have also been discussed at length elsewhere [19-24] although most of

this work has concentrated on the general studies of the properties of mixture models

rather than developing vision models for use with real data from dynamic scenes.

Let the conditional density for a pixel ξ belonging to a multi-colored object О be a

mixture with M component densities:

where a mixing parameter P(j) corresponds to the prior probability that pixel ξ was

generated by component j and where
 . Each mixture component is a

Gaussian with mean μ and covariance matrix ∑:

 26

For example, the function f(x) in Fig 3.6 can be approximate by three Gaussian

components.

Fig 3.6 An example of GMM approximation.

3.2.2 Probabilistic Latent Semantic Analysis (pLSA) & Latent Dirichlet

Allocation (LDA)

pLSA and LDA are developed to model text corpora for information retrieval,

which can be used in Google’s keyword search or natural language processing. Note

that LDA is an improved version of pLSA, so we will introduce pLSA first.

pLSA is based on LSA (Latent Semantic Analysis), also known as Latent Semantic

Indexing (LSI) literally means analyzing documents to find the underlying meaning or

concepts of those documents. If each word only meant one concept, and each concept

was only described by one word, then LSA would be easy since there is a simple

 27

mapping from words to concepts. Unfortunately, this problem is difficult because

English has different words that mean the same thing (synonyms), words with multiple

meanings, and all sorts of ambiguities that obscure the concepts to the point where even

people can have a hard time understanding.

The key concept of LSA is to form a word-document co-occurrence matrix, and by

doing singular value decomposition (SVD, as shown in Fig 3.7), it can construct the

latent semantic space for these documents. Let’s see a simple example of LSA by first

see the word-document co-occurrence matrix shown in Fig 3.8.

We can use SVD to decompose the matrix in Fig 3.8, and get the result shown in

Fig 3.9. One can observe that because the rank of the original word-document

co-occurrence matrix’s rank is 2, so there are two singular values (two topics also). And

since different kind of documents in this toy example have non-overlapped words, so

Fig. 3.8 A simple word-document co-occurrence matrix.

Fig. 3.7 An illustration of Singular Value Decomposition (SVD).

 28

the result is very good.

However, LSA has some problems that will be inconvenient for calculation. The

major problem of LSA is the bad handling of large scale information retrieval. For

example, if we have millions of documents, the word-document co-occurrence matrix

would be very huge, and computation time of SVD would be very long.

Compared to standard latent semantic analysis which stems from linear algebra and

downsizes the occurrence tables (via singular value decomposition), pLSA is based on a

mixture decomposition derived from a latent class model.

Considering observations in the form of co-occurrences (w,d) of words and

documents, pLSA models the probability of each co-occurrence as a mixture of

conditionally independent multinomial distributions:

where c is the words' topic. The first formulation is the symmetric formulation,

where w and d are both generated from the latent class c in similar ways (using the

conditional probabilities P(w|c) and P(d|c). And the second formulation is the

asymmetric formulation, where, for each document d, a latent class is chosen

conditionally to the document according to P(c|d) , and a word is then generated from

that class according to P(c|w). Although we have used words and documents in this

Fig. 3.9 Use SVD to decompose the example word-document matrix.

 29

example, the co-occurrence of any couple of discrete variables may be modeled in

exactly the same way. As a result, the number of parameters is equal to cd+cw. The

number of parameters grows linearly with the number of documents. These parameters

are learned using the EM algorithm.

Fig 3.10 A geometric view of pLSA (z1 to z3 are three latent topics).

In Fig 3.10, P(w|z1)~ P(w|z3) can be viewed as three vector spanning a linear space

to describe the real document and word P(w|d).

Based on pLSA, LDA is a more powerful model to discover the latent topic of

documents. Let us consider a simple example, suppose you have the following set of

sentences:

 A service robot should be able to grasp transparent objects.

 I don’t care if a service robot can recognize transparent objects or not, I just

want it to cook for me.

 Taiwan needs to develop robotic industry.

 30

 Taiwan’s economy is stagnant and need a new industry such as robotics to

make economic growth.

 If we can develop a service robot capable of grasping transparent objects, we

can help the robot industry in Taiwan.

Given these sentences and asked for 2 topics, LDA might produce something like

 Sentences 1 and 2: 100% Topic A

 Sentences 3 and 4: 100% Topic B

 Sentence 5: 60% Topic A and 40% Topic B.

 Topic A: 40% service robot, 25% grasp, 25% transparent object, 5% cook, …

(at which point, we could interpret topic A to be about service robot)

 Topic B: 40% Taiwan, 30% industry, 20% robotic, ... (at which point, we

could interpret topic B to be about Taiwan’s economy)

LDA perform this discovery by representing documents as mixtures of topics that

spit out words with certain probabilities. It assumes that documents are produced in the

following fashion: when writing each document, you

 Decide on the number of words N the document will have (say, according to a

Poisson distribution).

 Choose a topic mixture for the document (according to a Dirichlet distribution

over a fixed set of K topics). For example, assuming that we have the two

service robot and Taiwan’s economy topics above, you might choose the

document to consist of 1/3 service robot and 2/3 Taiwan’s economy.

 Generate each word in the document by:

 First picking a topic (according to the multinomial distribution that you

sampled above; for example, you might pick the service robot topic with

1/3 probability and the Taiwan’s economy topic with 2/3 probability).

 31

 Using the topic to generate the word itself (according to the topic’s

multinomial distribution). For example, if we selected the Service robot

topic, we might generate the word “service robot” with 40% probability,

“grasp” with 25% probability, and so on.

Assuming this generative model for a collection of documents, LDA then tries to

backtrack from the documents to find a set of topics that are likely to have generated the

collection.

3.2.3 LDA for transparent object detection

In [3], they proposed to discover latent topics which are characteristic of particular

transparent patches and quantize the SIFT space into transparent visual words according

to the latent topic dimensions. We did not further improve their method, but for

completeness of this thesis, we will briefly introduce how they employ LDA to discover

the visual word of transparent objects for transparent object recognition.

Fig 3.11 The method used in [3].

As can be seen in the left of Fig 3.11, there are images of a transparent object in

different environments. A point on the object is highlighted in each image, and the local

orientation edge energy map is shown. While the background dominates the local patch,

 32

there is a latent structure that is discriminative of the object. The model proposed in [3]

finds local transparent structure by applying a latent factor model (e.g., LDA) before a

quantization step. In contrast to previous approaches that applied such models to a

quantized visual word model, they apply them directly to the SIFT representation, and

then quantize the resulting model into descriptors according to the learned topic

distribution.

This is because local transparent patch appearance can be understood as a

combination of different processes that involve illuminants in the scene, overall 3D

structure, as well as the geometry and material properties of the transparent object.

Many of these phenomena can be approximated with an additive image formation

model, subject to certain deformations. The detailed method of employing LDA to

recognize the visual word of transparent objects will not be stated here, but the result is

shown in Fig 3.12.

Fig 3.12 The detection result in [3].

 33

3.3 Deep Learning-Based Method

Deep Learning is the hottest trend now in AI and Machine Learning. It is a branch

of machine learning based on a set of algorithms that attempt to model high-level

abstractions in data by using model architectures, with complex structures or otherwise,

composed of multiple non-linear transformations.

Deep learning is part of a broader family of machine learning methods based on

learning representations of data. An observation (e.g., an image) can be represented in

many ways such as a vector of intensity values per pixel, or in a more abstract way as a

set of edges, regions of particular shape, etc. Some representations make it easier to

learn tasks (e.g., face recognition or facial expression recognition) from examples. One

of the promises of deep learning is replacing handcrafted features with efficient

algorithms for unsupervised or semi-supervised feature learning and hierarchical feature

extraction.

Research in this area attempts to make better representations and create models to

learn these representations from large-scale unlabeled data. Some of the representations

are inspired by advances in neuroscience and are loosely based on interpretation of

information processing and communication patterns in a nervous system, such as neural

coding which attempts to define a relationship between the stimulus and the neuronal

responses and the relationship among the electrical activity of the neurons in the brain.

Various deep learning architectures such as deep neural networks, convolutional

deep neural networks, deep belief networks and recurrent neural networks have been

applied to field of computer vision where they have been shown to produce

state-of-the-art results on various tasks.

As a result, we would like to explore the possibility to use this technique on

 34

recognizing transparent objects.

3.3.1 Deep Neural Network & Convolutional Neural Network

Deep neural network is special group of neural network. So before introducing

deep neural network, we should address the definition of a neural network.

Neural Network is a family of statistical learning models inspired by biological

neural networks (the central nervous systems of animals, in particular the brain) and are

used to estimate or approximate functions that can depend on a large number of inputs

and are generally unknown. Since the real function is unknown, neural network takes a

big amount of pairs of input and corresponding output to automatically learn the

relationship between the given inputs and outputs. This is possible because artificial

neural networks are generally presented as systems of interconnected "neurons" which

send messages to each other. And the connections have numeric weights that can be

tuned based on experience, making neural nets adaptive to inputs so that it is capable of

learning.

For example, a neural network for handwriting recognition is defined by a set of

input neurons which may be activated by the pixels of an input image. After being

weighted and transformed by a function (determined by the network's designer), the

activations of these neurons are then passed on to other neurons. This process is

repeated until finally, an output neuron is activated. This determines which character

was read. An illustration of a single hidden layer neural network is presented in Fig

3.13.

 35

Fig 3.13 An illustration of a single hidden layer neural network.

As shown in Fig 3.13, the first layer has input neurons which send data via

synapses to the hidden layer of neurons, and then via more synapses to the third layer of

output neurons. More complex systems will have more layers of neurons, some having

increased layers of input neurons and output neurons. The synapses store parameters

called "weights" that manipulate the data in the calculations.

As for the learning process, training a neural network model essentially means

selecting one model from the set of allowed models that minimizes the cost criterion.

There are numerous algorithms available for training neural network models; most of

them can be viewed as a straightforward application of optimization theory and

statistical estimation.

Note that most of the algorithms used in training artificial neural networks employ

some form of gradient descent, using back-propagation to compute the actual gradients.

This is done by simply taking the derivative of the cost function with respect to the

 36

network parameters and then changing those parameters in a gradient-related direction.

And since the gradient direction equals the direction of increasing the value of cost

function, the optimization process would take the direction inverse to the gradient

direction to find the parameters that minimize the cost function.

Now we know the definition of neural networks, we can now introduce the

difference between common neural network and deep neural network. Usually, the

common neural network has only one or two hidden layers. While deep neural network

has more hidden layers than common neural network, or referred to be shallow neural

network in Fig 3.14. Note that the H1 in Fig 3.14 means hidden layer 1.

Fig 3.14 The difference between shallow and deep neural network.

In deeper ANNs, each “layer” (i.e., H1, H2, etc) learns to extract important features

about the layer before. This is not unlike the brain, especially when it comes to vision.

The eye converts light energy into electrical energy that the brain uses for

 37

communication via photoreceptors in the retina. This information is then passed through

different layers of in the brain. The first layer in the visual system is primary visual

cortex (V1). V1 is most famous for extracting oriented edges in your visual world, but it

does a lot more than that of which we won’t explain in this thesis. This information is

then passed onto different layers throughout the visual system. But it’s important to

keep in mind that biological nervous systems are substantially more complicated than

ANNs. In short summary, deep neural networks are neural networks that contain more

hidden layers. However, fully connected deep neural network does not take advantage

of the spatial information in image. As a result, for image-related tasks such as image

classification, image captioning and video recognition, convolutional neural network is

a better choice.

A Convolutional Neural Network (CNN) is comprised of one or more

convolutional layers (often with a subsampling step) and then followed by one or more

fully connected layers as in a standard multilayer neural network. The architecture of a

CNN is designed to take advantage of the 2D structure of an input image (or other 2D

input such as a speech signal). This is achieved with local connections and tied weights

followed by some form of pooling which results in translation invariant features.

Another benefit of CNNs is that they are easier to train and have many fewer parameters

than fully connected networks with the same number of hidden units. A common

architecture of CNN is shown in Fig 3.15.

 38

Fig 3.15 The architecture of common convolutional neural network.

3.3.2 Regions with Convolutional Neural Network (R-CNN)

Although CNN is very powerful in image classification task, it cannot handle tasks

like object detection and segmentation. It is because CNN take the whole image as input

and does not deal with the local patches of image. As a result, R-CNN [29] is proposed

to deal with the problem mentioned above.

The overall process of R-CNN is shown in Fig 3.16:

Fig 3.16 Object detection system overview.

R-CNN solve the CNN localization problem by operating within the “recognition

using regions” paradigm [30], which has been successful for both object detection [31]

and semantic segmentation [32].

For feature extraction, R-CNN extracts a 4096-dimensional feature vector from

each region proposal using the Caffe [33] implementation of the CNN described by

 39

Krizhevsky et al. [34]. Features are computed by forward propagating a

mean-subtracted 227 × 227 RGB image through five convolutional layers and two fully

connected layers. In order to compute features for a region proposal, we must first

convert the image data in that region into a form that is compatible with the CNN (its

architecture requires inputs of a fixed 227 × 227 pixel size). Of the many possible

transformations of our arbitrary-shaped regions, R-CNN uses the simplest. Regardless

of the size or aspect ratio of the candidate region, it warp all pixels in a tight bounding

box around it to the required size. Prior to warping, the tight bounding box is dilated so

that at the warped size there are exactly p pixels of warped image context around the

original box (p = 16).

At test time, R-CNN generates around 2000 category-independent region proposals

for the input image, extracts a fixed-length feature vector from each proposal using a

CNN, and then classifies each region with category-specific linear SVMs. We use a

simple technique (affine image warping) to compute a fixed-size CNN input from each

region proposal, regardless of the region’s shape.

3.3.3 Selective Search

The first problem in the testing stage is to select the candidate regions for scoring,

the techniques used in R-CNN is selective search [31]. Selective search addresses the

problem of generating possible object locations for use in object recognition. They

introduce selective search which combines the strength of both an exhaustive search and

segmentation. Like segmentation, they use the image structure to guide the sampling

process. Like exhaustive search, the paper aim to capture all possible object locations.

By using selective search, we don’t need to exhaustively enumerate all possible regions

for scoring.

 40

Fig. 3.17 An illustration of selective search.

Since we are interested in using this method on recognizing transparent objects, we

have to test if selective search can crop transparent object or not. We use Fig 3.18 as

input to selective search and get the result in Fig 3.19.

Fig. 3.18 Our input for selective search.

 41

 42

 43

 44

 45

 46

Fig 3.19 The result of selective search on our example.

As shown in Fig 3.19, some proposals (in red rectangle) are good, although there

 47

are still many regions that are not transparent, the result is good enough for transparent

object detection. The experiment of detection with R-CNN is presented in section 6.2.2.

 48

Chapter 4 Pose Estimation of Transparent Objects

In this chapter we introduce the algorithm for pose estimation. The overall process

is shown in Fig 4.1. Our algorithm is template-based method, so it needs a predefined

3D model of the transparent object we want to detect. As a result, we divide the process

into two separated stages – training stage and testing stage. In training stage, the goal is

to prepare 3D model of transparent objects and store some useful information in a

database for matching the model in the image containing transparent objects. In testing

stage, the information stored in the database will be used to estimate the pose of

transparent objects. The two stages will be explained in this chapter.

Fig. 4.1 Flowchart of Grabcut-based pose estimation.

 49

4.1 Training

4.1.1 Model Construction

This algorithm needs a predefined 3D model of the transparent object you want to

detect. So you need to provide your model, either by using KinectFusion to construct

one or downloading from web.

If we want to use KinectFusion to reconstruct the model, we should first make the

transparent object non-transparent. This can be done by paint the object or wrap some

paper on it, as shown in Fig 4.2.

After we have the non-transparent copy of object, we can put this the

non-transparent copy on top of a table, and use KinectFusion provided in Windows

operating system for construction. (See Fig 4.3)

Fig. 4.2 A transparent object and its wrapped-up copy.

 50

One of the constructed models is shown in Fig 4.4. Due to the imperfection of

KinectFusion, the model’s surface is not very smooth. As a result, we’ll introduce

another way of model construction by downloading model from web.

Fig. 4.4 An illustration of the built model.

Fig. 4.3 The KinectFusion app in Windows.

 51

We use a model of test tube as example to introduce how download a model from

the web. The first step is to download a PLY model. However, this model is not suitable

for silhouettes generation because the point is too sparse. The model can be visualized

in Meshlab, as shown in Fig 4.5.

The reason that the sparse model is not suitable for silhouette generation is stated

in the bottom of section 4.1.2.

To solve the sparsity, one can use the points adding function provided in Meshlab

(Filters -> Remeshing, simplification and reconstruction -> Subdivision surfaces:

Midpoint). The result is shown in Fig. 4.6.

Fig. 4.5 The downloaded model is very sparse.

 52

Fig. 4.6 Applying midpoint adding algorithm to solve for sparsity.

However, the point added model usually contains too many points. One can down

sample the model to around 1000 vertices by sub-sampling function provided in

Meshlab (Filters->Sampling->Mesh Elements Subsampling). The result of

sub-sampling is shown in Fig 4.7.

Fig. 4.7 Downsample the model to around 1000 points.

 53

If the 3D model contains too many point, it will cause the huge memory usage and

computation power during runtime. Normally, after adding midpoint, the model

contains around 200,000 points, this will consume around more than 8 GB memory

space during runtime, and the hardware of general laptop cannot handle that. By an

empirical study, we found that a 3D model should contain around 1000 points.

Now the model is almost ready, and one needs not forget that to scale the model to

the same size as the real transparent object. This is important because the pose

estimation algorithm estimate the pose of transparent object by fitting the model in the

test image. And this can be done by using the scaling function in Meshlab (Filters ->

Normals, Curvatures and Orientation -> Transform: Scale).

4.1.2 Silhouettes Generation

Once we have the model, the training algorithm will rotate the 3D model in

different viewpoint, and store the silhouette of each viewpoint in database. (The

silhouettes are different in different viewpoints, as shown in Fig 4.8) This is because in

testing stage, the test silhouette (the silhouette in the scene) can be matched to the

silhouettes in database (training silhouettes). The best match provide hint about the pose

of test silhouette.

Fig 4.8 An illustration of silhouette generation.

 54

The sparse model is not suitable for silhouette generation is because when turning

the model in different viewpoint, the sparse model might contain very few points on lots

of silhouettes. This make pose estimation fail because many training silhouettes cannot

be used to match the test silhouette.

4.2 Testing

4.2.1 Test Silhouette Detection

In testing stage, first the depth map from Kinect is used to search the candidate

region of transparency. The idea is that transparent object cause NaN in depth map

(black region in depth map), so the NaN regions in depth map can be candidates of

transparency. As described in section 3.1, once the candidate regions are fetched,

GrabCut is used to crop them.

However, some of the candidates might not be transparent, so we use a transparent

classification algorithm to further classify between the transparent candidates and get

test silhouettes.

4.2.2 Initial Pose Estimation

The test silhouette is now at hand. As mentioned earlier in section 4.1, we build the

model and store many silhouettes of different Rx, Ry. To determine the pose in the test

image, first we want to find the translation and Rz for each silhouette in the database.

After finding the geometric relationship between the silhouette in the test image and

each of the silhouettes in database, we use Chamfer Distance [24] to evaluate which

relationship best fits to the measured silhouette.

So firstly, we would like to find the translation and Rz for each silhouette in the

database. To do that, a two-dimensional similarity transform between train and test

silhouettes should be estimated. This can be estimated by Procrustes Analysis [25]. This

 55

2D shape matching algorithm includes three steps－centering, scaling and rotation. 2D

translation is estimated by centering (aligning centroids):

, where n is the number of points in a silhouette.

Next, scaling is to align the scatters of the points in train and test silhouettes:

, then the rotation can be estimated using 2D-2D ICP [26].

Now we can proceed to compute Rz and 3D translation which maps the point of

the stored 3D model to the location in the test image. However, as mentioned in [6],

there is no such transform under the perspective camera model. So the weak perspective

projection model [27] is used. This model assumes all points of the 3D model have the

same depth. As a result, the point on the model should be put into the right hand side of:

where K is the matrix of intrinsic parameters, S is the similarity transformation

obtained from Procrustes Analysis. Note that the equation should be solved for all x and

y simultaneously. And

After calibration and Procrustes Analysis, we have S and K. So we can solve the

translation and Rz for each training silhouette. If a training silhouette match well to the

testing silhouette, we can get some plausible pose for further pose refinement.

 56

4.2.3 Pose Refinement

We have silhouette and surface edges from provided 3D point cloud model, and

they should be aligned with the test silhouette and canny edges in the test image. This is

a problem of 3D-2D registration and we use a robust variant of Levenberg-Marquardt

Iterative Closest Point (LM-ICP [28]) to solve it. The result of this algorithm is the

refined pose.

Fig 4.9 An illustration of pose estimation.

 57

Chapter 5 Grasping

Although we have not implemented the grasping function yet, we still survey for

the grasping function so that the whole pipeline proposed in this thesis can be complete

for a service robot to manipulate transparent objects. Since the estimated pose of

transparent objects is in RGBD sensor’s coordinate, so we need to transform the pose to

gripper’s coordinate frame to let robot grasp. This can be done by ROS tf introduced in

section 5.1. Also, there is a manipulation pipeline in ROS that can be used for

manipulating objects, which will be covered in section 5.2.

5.1 ROS tf for Coordinate Transform

A robotic system typically has many 3D coordinate frames that change over time,

such as a world frame, base frame, gripper frame, head frame, etc. (See Fig 5.1) tf keeps

track of all these frames over time, and it can operate in a distributed system. This

means all the information about the coordinate frames of a robot is available to all ROS

components on any computer in the system.

Fig 5.1 PR2’s 3D coordinate frames.

 58

Many ROS packages require the transform tree of a robot to be published using the

tf software library. At an abstract level, a transform tree defines offsets in terms of both

translation and rotation between different coordinate frames. To make this more

concrete, consider the example of a simple robot that has a mobile base with a single

laser mounted on top of it, as shown in Fig 5.2. In referring to the robot let's define two

coordinate frames: one corresponding to the center point of the base of the robot and

one for the center point of the laser that is mounted on top of the base. Let's also give

them names for easy reference. We'll call the coordinate frame attached to the mobile

base "base_link" (for navigation, its important that this be placed at the rotational center

of the robot) and we'll call the coordinate frame attached to the laser "base_laser."

Fig 5.2 An example of a simple robot.

At this point, let's assume that we have some data from the laser in the form of

distances from the laser's center point. In other words, we have some data in the

"base_laser" coordinate frame. Now suppose we want to take this data and use it to help

the mobile base avoid obstacles in the world. To do this successfully, we need a way of

transforming the laser scan we've received from the "base_laser" frame to the

"base_link" frame. In essence, we need to define a relationship between the "base_laser"

 59

and "base_link" coordinate frames.

In defining this relationship, assume we know that the laser is mounted 10cm

forward and 20cm above the center point of the mobile base shown in Fig 5.3. This

gives us a translational offset that relates the "base_link" frame to the "base_laser"

frame. Specifically, we know that to get data from the "base_link" frame to the

"base_laser" frame we must apply a translation of (x: 0.1m, y: 0.0m, z: 0.2m), and to get

data from the "base_laser" frame to the "base_link" frame we must apply the opposite

translation (x: -0.1m, y: 0.0m, z: -0.20m).

Fig 5.3 The relationship between laser and base of the simple robot.

We could choose to manage this relationship ourselves, meaning storing and

applying the appropriate translations between the frames when necessary, but this

becomes a real pain as the number of coordinate frames increase. Luckily, however, we

don't have to do this work ourselves. Instead we'll define the relationship between

"base_link" and "base_laser" once using tf and let it manage the transformation between

the two coordinate frames for us.

To define and store the relationship between the "base_link" and "base_laser"

frames using tf, we need to add them to a transform tree. Conceptually, each node in the

 60

transform tree corresponds to a coordinate frame and each edge corresponds to the

transform that needs to be applied to move from the current node to its child. Tf uses a

tree structure to guarantee that there is only a single traversal that links any two

coordinate frames together, and assumes that all edges in the tree are directed from

parent to child nodes.

To create a transform tree for our simple example, we'll create two nodes, one for

the "base_link" coordinate frame and one for the "base_laser" coordinate frame. To

create the edge between them, we first need to decide which node will be the parent and

which will be the child. Remember, this distinction is important because tf assumes that

all transforms move from parent to child. Let's choose the "base_link" coordinate frame

as the parent because as other pieces/sensors are added to the robot, it will make the

most sense for them to relate to the "base_laser" frame by traversing through the

"base_link" frame. This means the transform associated with the edge connecting

"base_link" and "base_laser" should be (x: 0.1m, y: 0.0m, z: 0.2m). With this transform

tree set up, converting the laser scan received in the "base_laser" frame to the

"base_link" frame is as simple as making a call to the tf library. Our robot can use this

information to reason about laser scans in the "base_link" frame and safely plan around

obstacles in its environment.

Fig 5.4 The tf tree for the simple robot.

 61

5.2 PR2 manipulation pipeline

Object manipulator [35] provides the core-functionality for pick and place tasks,

implemented in a robot-independent way. The object manipulator assumes a number of

actions and services are available for it to call. For the PR2 robot equipped with a

gripper, default implementations are available for all of these.

Chronologically, the process of grasping an object goes through the following

stages:

 the target object is identified in sensor data from the environment

 a set of possible grasp points are generated for that object

 a collision map of the environment is built based on sensor data

 a feasible grasp point (no collisions with the environment) is selected from the

list

 a collision-free path is generated and executed, taking the arm from its current

configuration to a pre-grasp position for the desired grasp point

 the final path from pre-grasp to grasp is executed

 the gripper is closed on the object and tactile sensors are used to detect

presence or absence of the object in the gripper

 the object is lifted from the table

We can identify the transparent objects by the algorithms stated in the previous

sections. And the detailed description on other modules can be found in [35]. So we just

present an example from [35] in Fig 5.5 to Fig 5.8.

 62

Fig 5.5 Interpolated IK path from pre-grasp to grasp planned for a grasp point of an

unknown object.

Fig 5.6 A path to get the arm to the pre-grasp position has been planned using the

motion planner and executed.

 63

Fig 5.7 The interpolated IK path from pre-grasp to grasp has been executed.

Fig 5.8 The object has been lifted.

 64

Chapter 6 Experiment

6.1 Experiment Setup

As shown in Fig.6.1, we put the transparent objects on the table in front of PR2 for

recognition and pose estimation.

6.2 Detection of Transparent Objects

In this section, we present the experiment on transparent object detection

6.2.1 Grabcut-based Method

Here we test the performance of the transparent candidate recognition, and

compare the result with the method proposed in [6]. The inputs of this test are RGB and

depth images, and output is the marked regions that are considered as transparent

Fig. 6.1 PR2 robot manipulates transparent object.

 65

objects. In this test, we use recall and precision to evaluate the performance. Recall is

the ratio of the number of correctly retrieved transparent object over the number of all

transparent objects should be retrieved. Precision is the ratio of the number of correctly

retrieved transparent object over the number of all retrieved. So in the ideal case, one

can expect that the output regions are always transparent objects (100% precision) and

all transparent objects in the scene are all retrieved (100% recall).

We randomly put 5 transparent objects as shown in Fig.6.2 (2 different kinds of

glass goblets, beaker, graduate cylinder, test tube) and other non-transparent objects that

will cause unknown depth value in the scene. Then we test if our transparent candidate

retrieving module can correctly retrieve the transparent ones. In Fig.6.3, the green

silhouette means the algorithm think that region is transparent. If the green silhouette

contains the region that is a non-transparent object, we view it as error.

Fig. 6.2 Five transparent objects used to test the performance of recognition.

 66

In the test, the total retrieved candidates are over 200. The result is shown in table

6.1. As can be seen in table 6.1, recalls of both methods are similar, which means if

there are transparent objects in the scene, both method can retrieved them in most cases.

However, our method outperforms the previous method on precision since our method

better rules out non-transparent regions which have unknown value in the depth image.

Since the method in [6] is not focusing on tackling this problem, so the result can be

Fig. 6.3 The original image and the correct recognition result.

 67

expected.

6.2.2 Deep Learning Based Method

To test if our algorithm can detect transparent objects in color image, we use the

test dataset used in [3], which contains 14 images. These images are taken in a normal

house scenario, with different lighting conditions and occlusions. Three of them are

shown in Fig 6.4. Note that this experiment is not related to the PR2 and the experiment

setup stated in section 6.1.

Table 6.1 Recall and Precision of Grabcut-based Transparent Object Recognition

Method Recall Precision

Method in

[6]

86.11% 38.24%

our method
86.11% 93.93%

 68

Fig. 6.4 Some of the images in test dataset.

As can be seen in Fig. 6.5, the red rectangle contains a transparent object and the

label is beaker. Although there is a blue rectangle recognized, the label is axe, so it is not

related to transparent object. Note that R-CNN can actually recognize multiple objects

in the scene instead of recognize transparent object only.

 69

The results are shown in Fig. 6.6. In Fig. 6.6, we only show rectangles contains

beaker. As can be seen, in most of the cases, transparent object can be detected in red

rectangle. The result shows that R-CNN can be used to recognize transparent objects in

color image.

Fig. 6.5 A recognition result from R-CNN.

 70

 71

Fig. 6.6 Testing result of R-CNN method.

6.3 Pose Estimation of transparent Objects

We evaluate the pose estimation module on transparent equipment. Since we want

to apply pose estimation in a real bio-laboratory application, so it is essential to test the

work space of pose estimation module. There is no need to further evaluate the accuracy

due to the evaluation is already done in [6]. In this test, we use three transparent objects,

beaker, graduate cylinder and test tube to verify. Since we predefined the grasp pose of

these objects, so we evaluate the correctness of pose estimation by checking if PR2 can

correctly grasp the recognized objects. One of the correct results is shown in Fig 6.7.

 72

The result is shown in table 6.2. We found that if the object is placed closely to the

robot, the success rate would be very high. But if object is placed a little bit far from the

robot, the success rate would drop quickly. The main reason is that Kinect is mounted

on PR2’s head, so the distance from Kinect to object is longer than the distance from

robot to object. Once the distance exceeds the limitation of Kinect, there’ll be lots of

unknown value on the depth image, thus interfere the process of transparent candidate

retrieval. Though the limitation of workspace is an issue to be further investigated, in a

normal bio-laboratory application, the transparent equipment wouldn’t be placed far

from the manipulator so that he or she can manipulate equipment without moving.

Table 6.2 Success Rate of Pose Estimation

Distance Success rate

D < 0.5m
87.32%

0.5m < D < 0.9m
28.65%

0.9m < D
0%

Fig. 6.7 One of the results of pose estimation.

 73

Chapter 7 Conclusion and Future Works

Conclusions

In conclusion, we have investigated the algorithms for recognizing and estimating

the pose of transparent objects in the scene. We improved the key functions of

recognition of transparent equipment to deal with non-transparent objects that cause

unknown value in Kinect depth image. These objects are very possible to be falsely

recognized as transparent by previous method, but our method can deal with this

problem properly.

Apart from the recognition and pose estimation, we also discuss the manipulation

of a service robot to grasp transparent objects, making the whole thesis more complete.

Future Work

Future work includes integrating more function module such as navigation and

grasping. Also, grasping point estimation for fragile transparent objects is an important

topic to be further investigated.

 74

REFERENCE

[1] M. Osadchy, D. Jacobs, and R. Ramamoorthi, "Using specularities for

recognition," in Computer Vision, 2003. Proceedings. Ninth IEEE International

Conference on, 2003, pp. 1512-1519.

[2] K. McHenry, J. Ponce, and D. Forsyth, "Finding glass," in Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,

2005, pp. 973-979.

[3] M. Fritz, G. Bradski, S. Karayev, T. Darrell, and M. J. Black, "An additive latent

feature model for transparent object recognition," in Advances in Neural

Information Processing Systems, 2009, pp. 558-566.

[4] C. J. Phillips, K. G. Derpanis, and K. Daniilidis, "A novel stereoscopic cue for

figure-ground segregation of semi-transparent objects," in Computer Vision

Workshops (ICCV Workshops), 2011 IEEE International Conference on, 2011, pp.

1100-1107.

[5] I. Lysenkov, V. Eruhimov, and G. Bradski, "Recognition and pose estimation of

rigid transparent objects with a kinect sensor," Robotics, p. 273, 2013.

[6] I. Lysenkov and V. Rabaud, "Pose estimation of rigid transparent objects in

transparent clutter," in Robotics and Automation (ICRA), 2013 IEEE International

Conference on, 2013, pp. 162-169.

[7] ROS.org, http://www.ros.org/ [Online; accessed 30-July-2015].

[8] Understanding ROS Topics,

http://wiki.ros.org/action/fullsearch/ROS/Tutorials/UnderstandingTopics [Online;

accessed 30-July-2015].

[9] Understanding ROS Services and Parameters,

http://www.ros.org/
http://wiki.ros.org/action/fullsearch/ROS/Tutorials/UnderstandingTopics

 75

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams[Online; accessed

30-July-2015].

[10] Smisek, Jan, Michal Jancosek, and Tomas Pajdla. "3D with Kinect." Consumer

Depth Cameras for Computer Vision. Springer London, 2013. 3-25.

[11] Meshlab, http://meshlab.sourceforge.net/ [Online; accessed 30-July-2015].

[12] B. Tuong-Phong, "Illumination for computer-generated images," University of

Utah, pp. 29-51, 1973.

[13] Rother, Carsten, Vladimir Kolmogorov, and Andrew Blake. "Grabcut: Interactive

foreground extraction using iterated graph cuts." ACM Transactions on Graphics

(TOG) 23.3 (2004): 309-314.

[14] Boykov, Yuri, Olga Veksler, and Ramin Zabih. "Fast approximate energy

minimization via graph cuts." Pattern Analysis and Machine Intelligence, IEEE

Transactions on 23.11 (2001): 1222-1239.

[15] Goldberg, Andrew V., and Robert E. Tarjan. "A new approach to the

maximum-flow problem." Journal of the ACM (JACM) 35.4 (1988): 921-940.

[16] Y. Raja, S. McKenna, and S. Gong, ``Segmentation and tracking using color

mixture models,'' in Asian Conference on Computer Vision, Hong Kong, January

1998.

[17] S. McKenna, Y. Raja, and S. Gong, ``Object tracking using adaptive color mixture

models,'' in Advances in Color Machine Vision, ACCV Spec. Sess., Hong Kong,

January 1998.

[18] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,

1995.

[19] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and Applications

to Clustering, Marcel Dekker Inc., New York, 1988.

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://meshlab.sourceforge.net/

 76

[20] C. E. Priebe, ``Adaptive mixtures,'' J. Amer. Stat. Assoc., vol. 89, no. 427, pp.

796-806, 1994.

[21] C. E. Priebe and D. J. Marchette, ``Adaptive mixtures: Recursive nonparametric

pattern recognition,'' Pattern Recognition, vol. 24, no. 12, pp. 1197-1209, 1991.

[22] C. E. Priebe and D. J. Marchette, ``Adaptive mixture density estimation,'' Pattern

Recognition, vol. 26, no. 5, pp. 771-785, 1993.

[23] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis of Finite

Mixture Distributions, John Wiley, New York, 1985.

[24] G. Borgefors, "Hierarchical chamfer matching: A parametric edge matching

algorithm," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

10, pp. 849-865, 1988.

[25] I. L. Dryden and K. V. Mardia, Statistical shape analysis vol. 4: Wiley Chichester,

1998.

[26] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in

Robotics-DL tentative, 1992, pp. 586-606.

[27] R. Hartley and A. Zisserman, Multiple view geometry in computer vision:

Cambridge university press, 2003.

[28] A. W. Fitzgibbon, "Robust registration of 2D and 3D point sets," Image and

Vision Computing, vol. 21, pp. 1145-1153, 2003.

[29] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and

semantic segmentation." Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on. IEEE, 2014.

[30] C. Gu, J. J. Lim, P. Arbelaez, and J. Malik. Recognition using regions. In CVPR,

2009.

[31] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for

 77

object recognition. IJCV, 2013.

[32] J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using

constrained parametric min-cuts. TPAMI, 2012.

[33] Y. Jia. Caffe: An open source convolutional architecture for fast feature

embedding. http://caffe.berkeleyvision.org/, 2013.

[34] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep

convolutional neural networks. In NIPS, 2012.

[35] ROS Object manipulator, http://wiki.ros.org/object_manipulator [Online; accessed

30-July-2015].

http://caffe.berkeleyvision.org/
http://wiki.ros.org/object_manipulator

 78

Curriculum Vitae

姓名：賴柏任

學歷：

1. 民國 104年 國立台灣大學電機工程學研究所畢業

2. 民國 102年 國立台灣大學電機工程學系畢業

3. 民國 98年 國立新竹科學工業園區實驗高級中學畢業

發表著作：

1. Luo, Ren C., Po-Jen Lai, and Vincent Ee Wei Sen. "Transparent Object

Recognition and Retrieval for Robotic Bio-Laboratory Automation Applications."

Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference

on. IEEE, 2015. (accepted)

2. Luo, Ren C., Wai Un Chan, and Po-Jen Lai. "Intelligent robot photographer: Help

people taking pictures using their own camera." System Integration (SII), 2014

IEEE/SICE International Symposium on. IEEE, 2014.

榮譽事蹟：

民國 104年 參加「2015智慧型機器人產品創意競賽」獲 國產機器人組冠軍

民國 103年 參加「2014智慧型機器人產品創意競賽」獲 國產機器人組冠軍

