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ABSTRACT

With the advancement of technology, the trend to make our lives more convenient
by robot technology is unstoppable. In the future, many service robots will enter our
living environments to do all kind of tasks from pouring milk for us in our home to
serve water in restaurants. In our living environment, there are lots of transparent
objects including cups made of glass, PET bottles and glass doors. If a robot who serve
in our environment cannot recognize transparent objects, it might easily broke the
transparent objects made by glass, it might not be able to open the door made of glass, it
might bump into and broke glass windows and cause danger. As a result, we propose
algorithms that make a robot be able to recognize and estimate the pose of transparent
objects in this thesis. We emphasize on transparent object recognition because pose
estimation and manipulation for non-transparent objects are relatively mature, while
research on transparent object recognition just starts from a decade ago with a few
papers discussing this problem. If we can develop effective algorithm for recognizing
transparent object, we can take advantage of pose estimation and grasping for
non-transparent object to build a complete system for grasping transparent objects.

For recognizing transparent object, we discuss three methods in this thesis. The
first method which uses RGBD sensor to detect the transparent object is mainly used
because the result is suitable for pose estimation.

With the stored 3D model of transparent object and the silhouettes of transparent
object, we can estimate the pose by matching the model and the silhouette. Experiments
show that our method can be used to detect and estimate the pose of transparent objects.
Keywords: Service Robotics, Transparent Object Recognition, Pose Estimation, Robot

Operating System
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Chapter 1  Introduction

The main topic of this thesis is a transparent object recognition system for service
robotics. In this chapter, the motivation of the research is stated in section 1.1 and then
section 1.2 introduces the clear problem statement of the research. In section 1.3, the
related work is described so that the state-of-the-art algorithms are presented. After
showing the related work, the contributions are stated in section 1.4. Finally, in section
1.5, the overall organization of this thesis and the relationship among all chapters are

illustrated.
1.1 Motivation

Robotic technologies advances fast in the past decade, conventional industrial
robot manipulators are utilized in factory in order to replace human’s work, from the
simplest pick-and-place job to exquisite IC manufacturing. Nowadays, performance
(precision, speed, stability) of industrial robots are very good, thus make people develop
more sophisticated robots.

Recently, Softbank have launched a new social robot called “Pepper” (as shown in
Fig 1.1), which is the first humanoid robot designed to live with humans. He is able to
converse with you, recognize and react to your emotions, move and live autonomously.
However, Pepper doesn't clean, doesn't cook and doesn't have the abilities to serve as a
service robot.

Although the term "service robot" does not have a strict technical definition, The
International Federation of Robotics (IFR) has proposed a tentative definition: "A
service robot is a robot which operates semi- or fully autonomously to perform services
useful to the well-being of humans and equipment, excluding manufacturing operations.

For example, a service can do household chores and let people focus on more valuable

1



works.

Fig. 1.1 Softbank’s Pepper Robot

In such context, we are thinking, what is the ability that a service robot must have.
One of the functions that a service robot need is the ability to recognize and manipulate
transparent objects. The reason is because transparent objects are almost everywhere,
from our home and restaurants to laboratories. Some commonly seen transparent objects

are shown in Fig 1.2.

(@) (b) (c)

Fig. 1.2 Some commonly seen transparent objects
(@) PET bottle (b) cup made of glass(c) windows



If a robot who serve in our environment cannot recognize transparent objects, it
might easily broke the transparent objects made by glass, it might not be able to open
the door made of glass, it might bump into and broke glass windows and cause danger
in our environment.

As a result, we would like to explore the algorithms that make a robot be able to

recognize, even manipulate transparent objects in this thesis.

1.2  Problem statement

Transparent materials are difficult to detect due to the appearances of transparent
objects change over different backgrounds, their edges are implicit and contain strong
highlights.

Here, we gave a stricter definition of transparent object. A transparent object is the
object having the property of transmitting rays of light through its substance so that
bodies situated beyond or behind can be distinctly seen. So if we have a bottle made of
glass, but the glass has color, the bottle is not considered as transparent. An example can

be seen in Fig 1.3.

Fig. 1.3 Anon-transparent object.



1.3 Literature Review

Transparent object recognition is a difficult problem for computer vision
community for a long time, the research about this topic is not popular until 2003.

In 2003, Osadchy et al. [1] used specular highlights as a positive source of
information to recognize shiny objects. But the process required a bright light source.
McHenry et al. [2] proposed several features and characteristic of transparent object
such as color similarity, blurring, overlay consistency, texture distortion and highlights.
The method is effective to distinguish transparent objects. Although it successfully
segment transparent object, the algorithms only adapted with non-cluttered scene
without pose estimation. Fritz et al. [3] use an additive model of latent features to
learned transparent local patch appearance. It successfully detects transparency in
varying backgrounds too. However, all of the methods mentioned above gained no
knowledge about object pose, thus unable to make robot grasp.

Phillips et al. [4] provide a new idea to detect semi-transparent objects by utilizing
inverse perspective mapping. This method needs to capture more than one view and
assumes that object is on a plane. The largest error of pose estimate was about 10.4 mm.

For pose estimation, Lysenkov et al. [5] detect transparent object by using Kinect
sensor, while unknown depth information (shown as black area in depth image) is
considered as transparent object. It proposed an algorithm to calculate poses of
transparent objects. The improvement in [6] makes their algorithm be able to deal with
overlapped instances and cluttered transparent objects. Although it proposed a method
to handle pose estimation of transparent object, there are some cases that make detection
fails. As shown in Fig.1.4, some non-transparent objects that are common in a

laboratorial scene also generate unknown depth value so they would be considered as



transparent objects as well. These objects will make the method proposed by [6] fail to
detect the transparent ones. And since [6] is the newest work on recognizing transparent

objects, we improved the algorithms in [6].

(@) (b)

Fig. 1.4  Some non-transparent objects cause invalid area in depth image.
(@) Kinect RGB image (b) Kinect Depth image

1.4 Contributions

To build a service robot system with functions of recognizing, estimating the pose
and grasping transparent objects, there are three main contributions in this thesis. They
are listed as follow:

e Improve the state-of-the-art pose estimation algorithm for transparent object so that
the robot can correctly distinguish non-transparent objects which cause NaN (Not a
Number, i.e. invalid) in depth image from transparent ones

e Investigate some other algorithms for recognizing transparent objects, including
Latent Dirichlet Allocation and Regions with Convolutional Neural Network

e  System design and the implementation of pose estimation systems for robots



1.5 Thesis Organization

In chapter 2, we will discuss the system architecture, including hardware and
software. Next, in chapter 3, several techniques for detecting transparent object will be
investigated. After detecting the transparent objects in the scene, we would like to
estimate the pose of the detected objects so that they can be grasped by our robot. As a
result, pose estimation will be explained in chapter 4. With pose of transparent objects
estimated, the robot can grasp the transparent object with ease. In chapter 5, we will
describe the teach-and-play algorithm for robot grasping. And in chapter 6, we will
present some experiments about our system. Finally, we will make conclusions and state

the future work in chapter 7.



Chapter 2  System Architecture

In this chapter, the overall system is described. We use Robot Operating System
(ROS) as the tool for developing and running our algorithms. So we will introduce ROS
in section 1. As for the hardware platform, we use Personal Robot 2 (PR2), which will
be covered in section 2. In the last section, we then explain the software architecture of

a transparent object grasping robot.
2.1 Robot Operating System (ROS)

ROS [7] is a set of utilities and libraries for implementing all different kinds of
functionality on robots. In short, it is a meta operating system from WillowGarage,
which is designed for usage with distributed robot systems. It’s called a meta operating
system, because it needs another operating system to run. It’s mainly developed for
Ubuntu (a Linux distribution), but it also supports other Operating Systems like

Windows and Mac OS, but the support for them can still be considered as experimental.

Fig. 2.2 ROS Logo.

Development in Robotics is slow in the past decades because people distributed
their efforts to different systems. For instance, the research team in University of Tokyo
may develop their own robots, but these robots are not compatible to Stanford's robots.
For normal people as you and me, it is even not possible to get their source codes and

provide any help to the development in robotics. In that context, making huge progress



in Robotics is quite difficult. So ROS came out, aiming at gathering people's work
together and then develop more advanced robots on top of them.

As a result, the primary goal of ROS is to support code reuse in robotics research
and development. ROS is a distributed framework of processes (as known as node) that
enables executables to be individually designed and loosely coupled at runtime. The
basic idea is shown in Fig 2.2. Each node is a process, and nodes can communicate to

each other by “ROS topic” [8] or “ROS service” [9].

Service invocation

[ETTATT T Y
"‘.l‘. .-t,..
-t e
A

Node

NS

Topic =
P Subscription

Publication

Fig. 2.2 Adiagram for basic ROS concept.

ROS has lots of great features, but there are two features must be mentioned:

e Code Reuse

ROS is open source and provides strong package management system. You can
easily build your own system by combining packages released on ROS. The example in
the next point would make this point clearer.

e  Executables can be individually designed and easily connected at runtime

This feature is explained by an example. We can imagine that if Peter is an expert
of robot navigation, he wrote a program A that can let robot go anywhere it want and
avoid obstacles smoothly. However, Peter need to use image so that the robot know how
to plan its moving trajectory (let's say the program that can process camera data be

program B). If Peter uses ROS, he can run other people's camera data processing
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program as program B, and connected program A and program B in the environment
provided by ROS. And vice versa, other people can use the first-class navigation
program provided by Peter instead of writing a poor-performance navigation program
by their own.

Being such a powerful tool, ROS can be run on many robots, as shown in Fig 2.3.

i W @ @

ABB Robotics (ROS-

Industrial)

Aldebaran Nao

. Ll,,
*,‘_' |

)

Barrett Hand

Clearpath Robotics
Husky

Cyton-Gamma

Erle-Brain

Adept MobileRobots

Pioneer family (P3DX,

P3AT, ...)

%

Allegro Hand SimLab

BipedRobin

Dcreanrarn
Clearpath Robotics
Jackal

Denso VS060

s

s =

-

Erle-Copter

Adept MobileRobots
Pioneer LX

-

m
L
AMIGO

41&\ ~
Bitcraze Crazyflie

@cvvssrare

Clearpath Robotics
Kingfisher

Dr Robot®

Dr. Robot Jaguar

Erle-Copter Ubuntu
Core special edition

Adept MobileRobots
Seekur family (Seekur,

Seekur Jr.)

= 2

AscTec Quadrotor

Bewswrare

Clearpath Robotics
Grizzly

CoroWare Corobot

i

Eddiebot

Erle-HexaCopter



Erle-Plane

Fraunhofer IPA Care-
O-bot 3

&

Intel Edison

Kinova MICO

Lizi

Motoman, Yaskawa
(ROS-Industrial)

Neobotix mpo-700

kel

Erle-Rover

£ j
a9
> 5

~

Fraunhofer IPA Care-
O-bot 4

iRobot Roomba

Kobuki

-

Maggie

Nav2

Otto Bock SensorHand
Speed

10

o

FANUC

Fanuc Robotics (ROS-
Industrial)

Gostai Jazz

Kawada Nextage / Hiro

\b

Komodo

%

Merlin miabotPro

Neobotix mp-500

PAL Robotics REEM-C

Festo Didactic
Robotino

Innok Heros

Kinova JACO

8

Lego NXT

Q

Mini-lab

Neobotix mpo-500




| " & W

REEM Robonaut 2 Robotnik Agvs Robotnik Guardian

<

AT
-

“Rototni *IRobotnik *IRobotnik —

Robotnik Modular Arm Robotnik Summit Robotnik SummitXL ROS-Industrial

i Yy 2 - :
- LA —
. -

Shadow Hand Softbank Pepper TUlip TurtleBot
217 & -
=2 %ﬂl l | v
fs é G Y -
Universal Robots Videre Erratic WheeledRobin Willow Garage PR2

(ROS-Industrial)

Xaxxon Oculus Prime

Fig. 2.3 The robots that are compatible to ROS.
Software in the ROS Ecosystem can be separated into three groups:
e language- and platform-independent tools used for building and distributing
ROS-based software;
e  ROS client library implementations such as roscpp, rospy, and roslisp;
e packages containing application-related code which uses one or more ROS

client libraries.
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ROS was originally developed in 2007 under the name switchyard by the Stanford
Artificial Intelligence Laboratory in support of the Stanford Al Robot STAIR project.

From 2008 until 2013, development was performed primarily at Willow Garage, a
robotics research institute/incubator. During that time, researchers at more than twenty
institutions collaborated with Willow Garage engineers in a federated development
model.

In February 2013, ROS stewardship transitioned to the Open Source Robotics

Foundation. And since then, OSRF is the primary maintainer of ROS.
2.2  Hardware Introduction

In this thesis, we use Willow Garage’s Personal Robot 2 (PR2) as our platform to
test our algorithm. As for the sensor, we use the Kinect mounted on PR2’s head to get

RGB and depth image for recognizing transparent objects.
2.2.1 Personal Robot 2 (PR2)

It is of a size similar to a human. PR2 is designed as a common hardware and
software platform for robot researchers. The PR2 has two 7-DOF arms with a payload
of 1.8 kilograms (4.0 Ib). Sensors include a 5-megapixel camera, a tilting laser range
finder, and an inertial measurement unit. The "texture projector” projects a pattern on
the environment to create 3D information for capture by the cameras. This approach is
also known as structured light. The head-mounted laser scanner measures distance by
time-of-flight. The two computers located in the base of the robot are 8-core servers,
each of which has 24 Gigabytes of RAM, for a total of 48 GB. The battery system

consists of 16 laptop batteries.

12



Fig. 2.4 Willow Garage’s PR2.

In June 2010, Willow Garage made two-year loans of a PR2 to 11 research teams.
Each PR2 was to include two arms, a "rich sensor suite”, a mobile base, 16 CPU cores,
and the company's free, open-source Robot Operating System (ROS) framework, which
controls the PR2 and comes with software libraries for perception, navigation, and
manipulation. The teams were to have a chance not only to program a general-purpose
robot but also to contribute their work on Willow Garage's open-source robotics
platform to a wide community of researchers. In August 2010, Willow Garage
announced that the PR2 robot was available for purchase. As for now, PR2 is an
important platform for researchers in the world to collaborate on pushing the limit of

robot technology.

13
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Fig. 25 PR2’s links.
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Fig. 2.6 PR2’s Control System.
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2.2.2 Kinect

Kinect [10] is a RGB-D sensor produced by Microsoft for the Xbox 360 game
console and Windows PCs. It enables users to control and interact with Xbox without
touching joystick or keyboard. Through gesture and speech command, Kinect becomes
an input device that can be applied for human robot interaction applications. And most
importantly, the stable 3D sensing ability makes it a popular sensor in robotics. Through
the infrared and camera mounted on Kinect (see Fig. 2.7), RGB and depth information
of the environment can be obtained, and this property supports us to implement our
transparent object recognition algorithm. And because the price of Kinect is much

cheaper than traditional 3D cameras, it is widely used in robotic systems.

CMOS color sensor
onemicrophone  statusLED  (for RGB imaging)
(downward facing)

three microphones
{(downward facing)

three-axis
motorized accelerometer
tilting base
IR light CMOSIR
SoIce sensor
used for 3D
depth sensing

Fig. 2.7 Microsoft’s Kinect.
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KINECT TECHNICAL SPECIFICATION

Sensor

Colour and depth-sensing lenses

Voice microphone array

Tilt motor for sensor adjustment

Field of View

Horizontal field of view: 57 degrees

Vertical field of view: 43 degrees

Physical tilt range: + 27 degrees

Depth sensor range: 1.2m - 3.5m

Data Streams

320x240 16-bit depth @ 30 frames/sec

640x480 32-bit colour@ 30 frames/sec

16-bit audio @ 16 kHz

Skeletal Tracking System

Tracks up to 6 people, including 2 active players

Tracks 20 joints per active player

Ability to map active players to Xbox LIVE Avatars

Audio System

Xbox LIVE party chat and in-game voice chat (requires
Xbox LIVE Gold Membership)

Echo cancellation system enhances voice input

Speech recognition in multiple languages

Fig. 2.8

Kinect’s technical specification.
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Chapter 3 Detection of Transparent Objects

In this chapter, we introduce three kinds of method to detect transparent objects in
color image. We introduce Grabcut-based method because it is further used for pose
estimation and grasping. However, this method requires RGBD sensor as input sensor.
We explore LDA-based method and Deep Learning-based method so that we can detect
transparent objects by using a monocular camera. This can be helpful in the case that

RGBD sensor cannot be acquired.

3.1 Grabcut-Based Method

3.1.1 Overall process of Grabcut-based method

For Grabcut-based method, we use RGB image and depth image of Kinect as the
input of algorithm. To retrieve transparent candidates from depth image, we first extract
all unknown values from input depth image. Next, we use some morphological
operation to remove some noise. Then we extract connected components as possible
regions of transparency. However, in this stage, we often have several regions that are
non-transparent. In [6], they assume transparent objects are on a table, so they extract
the table plane and rule out regions that are not on the table. On the other hand, we take
advantage of strong highlight, which is a visual cue of transparent object, to rule out
regions that does not contain highlight. We use highlight because every transparent
object contains highlight in a scene with light source. Both method works fine, but
calculating highlight is easier and efficient. After extracting the regions containing
highlight, we use each of these regions as seeds for Grabcut to segment transparent

candidates as shown in Fig 3.1.
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Color Image

Fig. 3.1 Top: The scene containing transparent objects.
Bottom: Transparent candidates in the scene.

As for the highlight, in general, transparent object reflects light such that it
produces multiple highlights on its surface. Various empirical models can be used to
count the local highlight points on a surface, such as Phong model [12], which is
commonly used in 3D computer graphics. To find the highlight, a way is to build
hypothesized 3D shape and search through a large set of candidate image highlights [1].
By binary threshold, one can detect highlight regions of transparent object, but
threshold value is hard to be determined. We then used the method described in [2] as it

is an efficient but useful method for searching highlight.
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The first step is to threshold image by value from 0 to 255, and estimate number of
perimeter pixels for each image after threshold. The slope of the curve would
significantly decrease at the value close to 255. To find the critical value of threshold,
we produce first order polynomial to fit the straight line of perimeter curve as:

P=aT +b

Variable T represents the threshold value. We fit the perimeter from threshold 255
to 0, iteratively. For each fit, we estimate the mean square error and plot another curve
of error. Finally, we compare the slope of error curve from threshold 255 to 0. When
there is a significant increase of slope, the value is the proper value of threshold. As

shown in Fig. 3.2, only highlights remain in image after threshold.

Fig 3.2 Three glasses and the detected highlights.
In summary, for retrieving transparent candidates, we improve the method of [6],
and the main difference between the previous method and ours is how we rule out
possible regions of transparency. We use highlight thus accelerate the process of

candidate retrieval.
3.1.2 Grabcut

GrabCut [13] is an iterative image segmentation technique based upon the Graph
Cut algorithm [14]. GrabCut extends Graph Cut to color images and to incomplete

trimaps. See Fig 3.3, first player and football is enclosed in a blue rectangle. Then some
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final touchups with white strokes (denoting foreground) and black strokes (denoting

background) is made. And we get a nice result from Grabcut algorithm.

Pr(&F) ‘ '\ B
Pr (& B) \/\\¥

c € Lab

Fig 3.3 Two examples of Grabcut algorithms.

Let us briefly introduce the process of Grabcut algorithm. First, user creates an
initial trimap by selecting a rectangle. Pixels inside the rectangle are marked as
unknown. Pixels outside of rectangle are marked as known background. Then computer
creates an initial image segmentation, where all unknown pixels are tentatively placed
in the foreground class and all known background pixels are placed in the background
class. Next, Gaussian Mixture Models (GMMs) are created for initial foreground and
background classes. Each pixel in the foreground class is assigned to the most likely
Gaussian component in the foreground GMM. Similarly, each pixel in the background is
assigned to the most likely background Gaussian component. The iterative part comes
now, the GMMs are thrown away and new GMMs are learned from the pixel sets

created in the previous set. A graph is built and Graph Cut is run to find a new tentative
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foreground and background classification of pixels as shown in Fig 3.4.

(a) Image with seeds.

Y

(d) Segmentation results.

)

Background Background
@ terminal @ terminal
cut
— P
Object Object
terminal terminal

(b) Graph. (c) Cut.

Fig 3.4 Anillustration of Graph cut.

The process of Graph Cut algorithm is stated as follows: the user first delineates
pixels in the background and foreground regions using a few strokes of an image brush
(Figure 3.61). These pixels then become the seeds that tie nodes in the S—T graph to the
source and sink labels S and T (Figure 3.4). Seed pixels can also be used to estimate
foreground and background region statistics (intensity or color histograms).

The capacities of the other edges in the graph are derived from the region and
boundary energy terms, i.e., pixels that are more compatible with the foreground or
background region get stronger connections to the respective source or sink; adjacent
pixels  with

greater smoothness also  get
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minimum-cut/maximum-flow problem has been solved using a polynomial time
algorithm [15], pixels on either side of the computed cut are labeled according to the
source or sink to which they remain connected.

As a result, by feeding the NaN area in depth image as seed for Grabcut algorithm,
we can crop the transparent object in the image, and thus we get our transparent
candidates. However, since some of the NaN areas in depth image might not be
transparent, we need the method stated in section 3.3 to further classify these

transparent candidates.
3.1.3 Transparent Object Classification

Some transparent candidates are non-transparent but contains highlight, so there
may be some candidates that are not transparent, such as the one in the bottom left of
Fig. 3.1. As result, we need to further evaluate if these candidates are transparent. So
algorithms to detect characteristics possessed by transparent objects are implemented
for classification.

e  Color Similarity

One of the important features of transparent object is that the color tends to be
similar on both side of the edge. Because the object is transparent, the object presents
the color of background, which is similar to the color around object.

To check if the colors on both sides are similar, we calculate the histogram of hue
in HSV color space on both sides. After retrieving transparent candidate as shown in Fig.
3.5(b), we can calculate the pixels around the candidate, and the result is shown in Fig.
3.5(c). Then we can calculate the hue histogram of pixels inside transparent candidate
and pixels around the candidate. Fig. 3.5(d) shows the histogram of the pixels inside
candidate and pixels around candidate. To compare the similarity of the two histograms,

we view these two histograms as vectors. By comparing the Euclidean distance, we are
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able to compare the similarity, if the value of distance is low, then indicate the color on

both side are similar.

(a) RGB image (b) Transparent candidate

Vol

(c) Pixels around candidate (d) Hue histograms

Fig 3.5 The result of computing color similarity.

e Intensity Consistency

Except for the color similarity of transparent objects, yet another characteristic of
transparent object is that the pixel intensity around the edge is consistent. In other words,
the intensity distribution inside transparent object is constrained by the intensity
distribution outside the transparent object. So we use a mask that covers part of the edge,
which includes pixels on both side of the edge. Apparently, local standard deviation of
pixel intensity inside the mask around boundaries of transparent objects should be a
small value. Traditional segmentation methods are difficult to detect the boundaries of
transparent object. Based on the candidates retrieved, we are able to get accurate
boundaries, and find out the local standard deviation value of transparent boundaries

using dynamic mask:
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For the dynamic mask, M is the length of row, N is the length of columns, and
I(x,y) is the intensity of pixel at (x,y). As the mask moving around the boundaries of
transparent candidate, we calculate one local standard deviation at each move, C is the
total times we calculate the local standard deviation. Finally we have a SD-value, when
it is small, it indicates the candidate is possible to be transparent object.

After calculating the color similarity value and SD-value, we got two
measurements on transparent classification. A simple way to combine the two
measurements is to take average, and it works well in our scenario. Using 15 images,
we trained the classifier and get the threshold value of 0.6. That is, if a candidate’s value

is under 0.6, it is considered transparent.

3.2 LDA-Based Method

3.2.1 Gaussian Mixture Model (GMM)

Gaussian Mixture Model is the base of Latent Dirichlet Allocation, so we make a
brief introduction here for understanding LDA in section 3.2.2.

Mixture models are a type of density model which comprise a number of
component functions, usually Gaussian. These component functions are combined to
provide a multimodal density. They can be employed to model the colors of an object in
order to perform tasks such as real-time color-based tracking and segmentation [16].

These tasks may be made more robust by generating a mixture model corresponding to
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background colors in addition to a foreground model, and employing Baye’s theorem to
perform pixel classification. Mixture models are also amenable to effective methods for
on-line adaptation of models to cope with slowly-varying lighting conditions [17].

Mixture models are a semi-parametric alternative to non-parametric histograms [18]
(which can also be used as densities) and provide greater flexibility and precision in
modeling the underlying statistics of sample data. They are able to smooth over gaps
resulting from sparse sample data and provide tighter constraints in assigning object
membership to color-space regions. Such precision is necessary to obtain the best
results possible from color-based pixel classification for qualitative segmentation
requirements.

Once a model is generated, conditional probabilities can be computed for color
pixels. Gaussian mixture models can also be viewed as a form of generalized radial
basis function network in which each Gaussian component is a basis function or
“hidden' unit. The component priors can be viewed as weights in an output layer. Finite
mixture models have also been discussed at length elsewhere [19-24] although most of
this work has concentrated on the general studies of the properties of mixture models
rather than developing vision models for use with real data from dynamic scenes.

Let the conditional density for a pixel & belonging to a multi-colored object O be a

mixture with M component densities:

M
pEI0) = > pEINPG)

)

where a mixing parameter P(j) corresponds to the prior probability that pixel & was
generated by component j and where Z}‘ilp(zlj) = 1. Each mixture component is a

Gaussian with mean p and covariance matrix ) :
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For example, the function f(x) in Fig 3.6 can be approximate by three Gaussian

components.
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Fig 3.6  Anexample of GMM approximation.

3.2.2 Probabilistic Latent Semantic Analysis (pLSA) & Latent Dirichlet

Allocation (LDA)

pLSA and LDA are developed to model text corpora for information retrieval,
which can be used in Google’s keyword search or natural language processing. Note
that LDA is an improved version of pLSA, so we will introduce pLSA first.

pLSA is based on LSA (Latent Semantic Analysis), also known as Latent Semantic
Indexing (LSI) literally means analyzing documents to find the underlying meaning or
concepts of those documents. If each word only meant one concept, and each concept

was only described by one word, then LSA would be easy since there is a simple
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mapping from words to concepts. Unfortunately, this problem is difficult because
English has different words that mean the same thing (synonyms), words with multiple
meanings, and all sorts of ambiguities that obscure the concepts to the point where even
people can have a hard time understanding.

The key concept of LSA is to form a word-document co-occurrence matrix, and by
doing singular value decomposition (SVD, as shown in Fig 3.7), it can construct the
latent semantic space for these documents. Let’s see a simple example of LSA by first

see the word-document co-occurrence matrix shown in Fig 3.8.

dl d2 ........ d] *  sssissese dN dl dz -------- dJ .......... dN
Wi T Wy - :
1 54 |
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Fig. 3.7 An illustration of Singular Value Decomposition (SVD).

termm | data information retrieval bram lung

document

CS5-TR1 1 1 1 0 0
CS-TR2 2 2 2 0 0
CS-TR3 1 1 1 0 0
CS-TR4 i} G} 5 0 0
MED-TER1 0 0 0 2 2
MED-TRZ 0 0 0 J 3
MED-TR3 0 0 0 1 1

Fig. 3.8 Asimple word-document co-occurrence matrix.

We can use SVD to decompose the matrix in Fig 3.8, and get the result shown in
Fig 3.9. One can observe that because the rank of the original word-document
co-occurrence matrix’s rank is 2, so there are two singular values (two topics also). And

since different kind of documents in this toy example have non-overlapped words, so
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the result is very good.
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Fig. 3.9 Use SVD to decompose the example word-document matrix.

However, LSA has some problems that will be inconvenient for calculation. The
major problem of LSA is the bad handling of large scale information retrieval. For
example, if we have millions of documents, the word-document co-occurrence matrix
would be very huge, and computation time of SVD would be very long.

Compared to standard latent semantic analysis which stems from linear algebra and
downsizes the occurrence tables (via singular value decomposition), pLSA is based on a
mixture decomposition derived from a latent class model.

Considering observations in the form of co-occurrences (w,d) of words and
documents, pLSA models the probability of each co-occurrence as a mixture of

conditionally independent multinomial distributions:
P(w,d) = Z P(O)P(d|c)P(wlc) = P(d) Z P(c|d)P(w|c)
C C

where ¢ is the words' topic. The first formulation is the symmetric formulation,
where w and d are both generated from the latent class ¢ in similar ways (using the
conditional probabilities P(w|c) and P(d|c). And the second formulation is the
asymmetric formulation, where, for each document d, a latent class is chosen
conditionally to the document according to P(c|d) , and a word is then generated from
that class according to P(cjw). Although we have used words and documents in this
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example, the co-occurrence of any couple of discrete variables may be modeled in
exactly the same way. As a result, the number of parameters is equal to cd+cw. The
number of parameters grows linearly with the number of documents. These parameters

are learned using the EM algorithm.

————————————————————————————————————————

embedding
simplex

spanned
sub-simplex P(w|d)

Fig 3.10 A geometric view of pLSA (z; to z3 are three latent topics).

In Fig 3.10, P(w]z;1)~ P(w|z3) can be viewed as three vector spanning a linear space
to describe the real document and word P(w|d).

Based on pLSA, LDA is a more powerful model to discover the latent topic of
documents. Let us consider a simple example, suppose you have the following set of
sentences:

*  Aservice robot should be able to grasp transparent objects.

* | don’t care if a service robot can recognize transparent objects or not, | just

want it to cook for me.

e  Taiwan needs to develop robotic industry.

29



Taiwan’s economy is stagnant and need a new industry such as robotics to
make economic growth.
If we can develop a service robot capable of grasping transparent objects, we

can help the robot industry in Taiwan.

Given these sentences and asked for 2 topics, LDA might produce something like

Sentences 1 and 2: 100% Topic A

Sentences 3 and 4: 100% Topic B

Sentence 5: 60% Topic A and 40% Topic B.

Topic A: 40% service robot, 25% grasp, 25% transparent object, 5% cook, ...
(at which point, we could interpret topic A to be about service robot)

Topic B: 40% Taiwan, 30% industry, 20% robotic, ... (at which point, we

could interpret topic B to be about Taiwan’s economy)

LDA perform this discovery by representing documents as mixtures of topics that

spit out words with certain probabilities. It assumes that documents are produced in the

following fashion: when writing each document, you

Decide on the number of words N the document will have (say, according to a

Poisson distribution).

Choose a topic mixture for the document (according to a Dirichlet distribution

over a fixed set of K topics). For example, assuming that we have the two

service robot and Taiwan’s economy topics above, you might choose the

document to consist of 1/3 service robot and 2/3 Taiwan’s economy.

Generate each word in the document by:

B First picking a topic (according to the multinomial distribution that you
sampled above; for example, you might pick the service robot topic with

1/3 probability and the Taiwan’s economy topic with 2/3 probability).
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B Using the topic to generate the word itself (according to the topic’s
multinomial distribution). For example, if we selected the Service robot
topic, we might generate the word “service robot” with 40% probability,
“grasp” with 25% probability, and so on.

Assuming this generative model for a collection of documents, LDA then tries to
backtrack from the documents to find a set of topics that are likely to have generated the
collection.

3.2.3 LDA for transparent object detection

In [3], they proposed to discover latent topics which are characteristic of particular
transparent patches and quantize the SIFT space into transparent visual words according
to the latent topic dimensions. We did not further improve their method, but for
completeness of this thesis, we will briefly introduce how they employ LDA to discover

the visual word of transparent objects for transparent object recognition.

traditional approach:

oF M 3 <
g oo B | @y

-;—L our approach:

i . AFMW A
threshold)
plz|P)

Fig 3.11 The method used in [3].
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As can be seen in the left of Fig 3.11, there are images of a transparent object in
different environments. A point on the object is highlighted in each image, and the local

orientation edge energy map is shown. While the background dominates the local patch,
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there is a latent structure that is discriminative of the object. The model proposed in [3]
finds local transparent structure by applying a latent factor model (e.g., LDA) before a
quantization step. In contrast to previous approaches that applied such models to a
quantized visual word model, they apply them directly to the SIFT representation, and
then quantize the resulting model into descriptors according to the learned topic
distribution.

This is because local transparent patch appearance can be understood as a
combination of different processes that involve illuminants in the scene, overall 3D
structure, as well as the geometry and material properties of the transparent object.
Many of these phenomena can be approximated with an additive image formation
model, subject to certain deformations. The detailed method of employing LDA to
recognize the visual word of transparent objects will not be stated here, but the result is

shown in Fig 3.12.

Fig 3.12 The detection result in [3].
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3.3 Deep Learning-Based Method

Deep Learning is the hottest trend now in Al and Machine Learning. It is a branch
of machine learning based on a set of algorithms that attempt to model high-level
abstractions in data by using model architectures, with complex structures or otherwise,
composed of multiple non-linear transformations.

Deep learning is part of a broader family of machine learning methods based on
learning representations of data. An observation (e.g., an image) can be represented in
many ways such as a vector of intensity values per pixel, or in a more abstract way as a
set of edges, regions of particular shape, etc. Some representations make it easier to
learn tasks (e.g., face recognition or facial expression recognition) from examples. One
of the promises of deep learning is replacing handcrafted features with efficient
algorithms for unsupervised or semi-supervised feature learning and hierarchical feature
extraction.

Research in this area attempts to make better representations and create models to
learn these representations from large-scale unlabeled data. Some of the representations
are inspired by advances in neuroscience and are loosely based on interpretation of
information processing and communication patterns in a nervous system, such as neural
coding which attempts to define a relationship between the stimulus and the neuronal
responses and the relationship among the electrical activity of the neurons in the brain.

Various deep learning architectures such as deep neural networks, convolutional
deep neural networks, deep belief networks and recurrent neural networks have been
applied to field of computer vision where they have been shown to produce
state-of-the-art results on various tasks.

As a result, we would like to explore the possibility to use this technique on
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recognizing transparent objects.
3.3.1 Deep Neural Network & Convolutional Neural Network

Deep neural network is special group of neural network. So before introducing
deep neural network, we should address the definition of a neural network.

Neural Network is a family of statistical learning models inspired by biological
neural networks (the central nervous systems of animals, in particular the brain) and are
used to estimate or approximate functions that can depend on a large number of inputs
and are generally unknown. Since the real function is unknown, neural network takes a
big amount of pairs of input and corresponding output to automatically learn the
relationship between the given inputs and outputs. This is possible because artificial
neural networks are generally presented as systems of interconnected "neurons™ which
send messages to each other. And the connections have numeric weights that can be
tuned based on experience, making neural nets adaptive to inputs so that it is capable of
learning.

For example, a neural network for handwriting recognition is defined by a set of
input neurons which may be activated by the pixels of an input image. After being
weighted and transformed by a function (determined by the network’s designer), the
activations of these neurons are then passed on to other neurons. This process is
repeated until finally, an output neuron is activated. This determines which character
was read. An illustration of a single hidden layer neural network is presented in Fig

3.13.
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Fig 3.13 An illustration of a single hidden layer neural network.

As shown in Fig 3.13, the first layer has input neurons which send data via
synapses to the hidden layer of neurons, and then via more synapses to the third layer of
output neurons. More complex systems will have more layers of neurons, some having
increased layers of input neurons and output neurons. The synapses store parameters
called "weights" that manipulate the data in the calculations.

As for the learning process, training a neural network model essentially means
selecting one model from the set of allowed models that minimizes the cost criterion.
There are numerous algorithms available for training neural network models; most of
them can be viewed as a straightforward application of optimization theory and
statistical estimation.

Note that most of the algorithms used in training artificial neural networks employ
some form of gradient descent, using back-propagation to compute the actual gradients.

This is done by simply taking the derivative of the cost function with respect to the
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network parameters and then changing those parameters in a gradient-related direction.
And since the gradient direction equals the direction of increasing the value of cost
function, the optimization process would take the direction inverse to the gradient
direction to find the parameters that minimize the cost function.

Now we know the definition of neural networks, we can now introduce the
difference between common neural network and deep neural network. Usually, the
common neural network has only one or two hidden layers. While deep neural network
has more hidden layers than common neural network, or referred to be shallow neural

network in Fig 3.14. Note that the H1 in Fig 3.14 means hidden layer 1.

Shallow Deep

Fig 3.14 The difference between shallow and deep neural network.
In deeper ANNS, each “layer” (i.e., HI, H2, etc) learns to extract important features
about the layer before. This is not unlike the brain, especially when it comes to vision.

The eye converts light energy into electrical energy that the brain uses for
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communication via photoreceptors in the retina. This information is then passed through
different layers of in the brain. The first layer in the visual system is primary visual
cortex (V1). V1 is most famous for extracting oriented edges in your visual world, but it
does a lot more than that of which we won’t explain in this thesis. This information is
then passed onto different layers throughout the visual system. But it’s important to
keep in mind that biological nervous systems are substantially more complicated than
ANNSs. In short summary, deep neural networks are neural networks that contain more
hidden layers. However, fully connected deep neural network does not take advantage
of the spatial information in image. As a result, for image-related tasks such as image
classification, image captioning and video recognition, convolutional neural network is
a better choice.

A Convolutional Neural Network (CNN) is comprised of one or more
convolutional layers (often with a subsampling step) and then followed by one or more
fully connected layers as in a standard multilayer neural network. The architecture of a
CNN is designed to take advantage of the 2D structure of an input image (or other 2D
input such as a speech signal). This is achieved with local connections and tied weights
followed by some form of pooling which results in translation invariant features.
Another benefit of CNNs is that they are easier to train and have many fewer parameters
than fully connected networks with the same number of hidden units. A common

architecture of CNN is shown in Fig 3.15.
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Fig 3.15 The architecture of common convolutional neural network.
3.3.2 Regions with Convolutional Neural Network (R-CNN)
Although CNN is very powerful in image classification task, it cannot handle tasks
like object detection and segmentation. It is because CNN take the whole image as input
and does not deal with the local patches of image. As a result, R-CNN [29] is proposed

to deal with the problem mentioned above.

The overall process of R-CNN is shown in Fig 3.16:

R-CNN: Regions with CNN features

e 5| warped region ﬂlaeroplane‘? no. |
M : p :
‘3 —— ->| person? yes. |
- CNNN :
: 7 40N tvmonitor? no. |
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Fig 3.16 Object detection system overview.

R-CNN solve the CNN localization problem by operating within the “recognition
using regions” paradigm [30], which has been successful for both object detection [31]
and semantic segmentation [32].

For feature extraction, R-CNN extracts a 4096-dimensional feature vector from

each region proposal using the Caffe [33] implementation of the CNN described by
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Krizhevsky et al. [34]. Features are computed by forward propagating a
mean-subtracted 227 x 227 RGB image through five convolutional layers and two fully
connected layers. In order to compute features for a region proposal, we must first
convert the image data in that region into a form that is compatible with the CNN (its
architecture requires inputs of a fixed 227 x 227 pixel size). Of the many possible
transformations of our arbitrary-shaped regions, R-CNN uses the simplest. Regardless
of the size or aspect ratio of the candidate region, it warp all pixels in a tight bounding
box around it to the required size. Prior to warping, the tight bounding box is dilated so
that at the warped size there are exactly p pixels of warped image context around the
original box (p = 16).

At test time, R-CNN generates around 2000 category-independent region proposals
for the input image, extracts a fixed-length feature vector from each proposal using a
CNN, and then classifies each region with category-specific linear SVMs. We use a
simple technique (affine image warping) to compute a fixed-size CNN input from each

region proposal, regardless of the region’s shape.
3.3.3 Selective Search

The first problem in the testing stage is to select the candidate regions for scoring,
the techniques used in R-CNN is selective search [31]. Selective search addresses the
problem of generating possible object locations for use in object recognition. They
introduce selective search which combines the strength of both an exhaustive search and
segmentation. Like segmentation, they use the image structure to guide the sampling
process. Like exhaustive search, the paper aim to capture all possible object locations.
By using selective search, we don’t need to exhaustively enumerate all possible regions

for scoring.
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Fig. 3.17 An illustration of selective search.
Since we are interested in using this method on recognizing transparent objects, we
have to test if selective search can crop transparent object or not. We use Fig 3.18 as

input to selective search and get the result in Fig 3.19.

Fig. 3.18 Our input for selective search.
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Fig 3.19 The result of selective search on our example.

As shown in Fig 3.19, some proposals (in red rectangle) are good, although there
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are still many regions that are not transparent, the result is good enough for transparent

object detection. The experiment of detection with R-CNN is presented in section 6.2.2.
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Chapter 4 Pose Estimation of Transparent Objects

In this chapter we introduce the algorithm for pose estimation. The overall process
Is shown in Fig 4.1. Our algorithm is template-based method, so it needs a predefined
3D model of the transparent object we want to detect. As a result, we divide the process
into two separated stages — training stage and testing stage. In training stage, the goal is
to prepare 3D model of transparent objects and store some useful information in a
database for matching the model in the image containing transparent objects. In testing
stage, the information stored in the database will be used to estimate the pose of

transparent objects. The two stages will be explained in this chapter.

Training Stage

Build Object Model by
Kinect Fusion

Compute Silhouette and
Surface model

Input Kinect RGB Extract unknown “ Extract connected
image and depth | TR > Denoising > components
image P i
A4
Tran nt object Gabent Remove components
Pose estimation < : c!:g:irfiecan%;ec B SeQTeriitoonig % without hi lt)ﬂi ht
RGB image Ll

Fig. 4.1 Flowchart of Grabcut-based pose estimation.
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4.1 Training

4.1.1 Model Construction

This algorithm needs a predefined 3D model of the transparent object you want to
detect. So you need to provide your model, either by using KinectFusion to construct
one or downloading from web.

If we want to use KinectFusion to reconstruct the model, we should first make the
transparent object non-transparent. This can be done by paint the object or wrap some

paper on it, as shown in Fig 4.2.

Fig. 4.2 Atransparent object and its wrapped-up copy.

After we have the non-transparent copy of object, we can put this the
non-transparent copy on top of a table, and use KinectFusion provided in Windows

operating system for construction. (See Fig 4.3)
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Fig. 4.3 The KinectFusion app in Windows.

One of the constructed models is shown in Fig 4.4. Due to the imperfection of
KinectFusion, the model’s surface is not very smooth. As a result, we’ll introduce

another way of model construction by downloading model from web.

D MeshLab v1.3.0 - [Project_1]

Ny g awy QP « @& S EEMOg” X~ 268

Fig. 4.4 An illustration of the built model.
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We use a model of test tube as example to introduce how download a model from
the web. The first step is to download a PLY model. However, this model is not suitable
for silhouettes generation because the point is too sparse. The model can be visualized
in Meshlab, as shown in Fig 4.5.

The reason that the sparse model is not suitable for silhouette generation is stated

in the bottom of section 4.1.2.

b v1.3.0 - [Project_1] =) = | = 4) 20220 % ROSfuerte {8

G RPD « MG S EAMAOT X~ ogeEp

Fig. 4.5 The downloaded model is very sparse.

To solve the sparsity, one can use the points adding function provided in Meshlab
(Filters -> Remeshing, simplification and reconstruction -> Subdivision surfaces:

Midpoint). The result is shown in Fig. 4.6.
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Subdivision Surfaces: Midpoint ®

Apply a plain subdivision scheme where every edge is splitted on
its midpoint

Iterations 3

worldunit  percon(0... 1.70726)

Edge Threshold (abs and %) Goi7ors B 1000 &

("] Affect only selected faces

Default | Help

Close Apply I\

FOV: 60
FPS: 825.0

Fig. 4.6 Applying midpoint adding algorithm to solve for sparsity.
However, the point added model usually contains too many points. One can down
sample the model to around 1000 vertices by sub-sampling function provided in
Meshlab  (Filters->Sampling->Mesh  Elements  Subsampling). The result of

sub-sampling is shown in Fig 4.7.

p v1.3.0 - [Project_1] J = o) 20:27 2 ROSfuerte 3

N o= OEpsnd v QPN « aEE S EEMEAT - X~ oges

Fig. 4.7 Downsample the model to around 1000 points.
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If the 3D model contains too many point, it will cause the huge memory usage and
computation power during runtime. Normally, after adding midpoint, the model
contains around 200,000 points, this will consume around more than 8 GB memory
space during runtime, and the hardware of general laptop cannot handle that. By an
empirical study, we found that a 3D model should contain around 1000 points.

Now the model is almost ready, and one needs not forget that to scale the model to
the same size as the real transparent object. This is important because the pose
estimation algorithm estimate the pose of transparent object by fitting the model in the
test image. And this can be done by using the scaling function in Meshlab (Filters ->
Normals, Curvatures and Orientation -> Transform: Scale).

4.1.2 Silhouettes Generation

Once we have the model, the training algorithm will rotate the 3D model in
different viewpoint, and store the silhouette of each viewpoint in database. (The
silhouettes are different in different viewpoints, as shown in Fig 4.8) This is because in
testing stage, the test silhouette (the silhouette in the scene) can be matched to the

silhouettes in database (training silhouettes). The best match provide hint about the pose

i

of test silhouette.

silhouette

Fig 4.8 Anillustration of silhouette generation.
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The sparse model is not suitable for silhouette generation is because when turning
the model in different viewpoint, the sparse model might contain very few points on lots
of silhouettes. This make pose estimation fail because many training silhouettes cannot

be used to match the test silhouette.

4.2  Testing

4.2.1 Test Silhouette Detection

In testing stage, first the depth map from Kinect is used to search the candidate
region of transparency. The idea is that transparent object cause NaN in depth map
(black region in depth map), so the NaN regions in depth map can be candidates of
transparency. As described in section 3.1, once the candidate regions are fetched,
GrabCut is used to crop them.

However, some of the candidates might not be transparent, so we use a transparent
classification algorithm to further classify between the transparent candidates and get
test silhouettes.

4.2.2 Initial Pose Estimation

The test silhouette is now at hand. As mentioned earlier in section 4.1, we build the
model and store many silhouettes of different Rx, Ry. To determine the pose in the test
image, first we want to find the translation and Rz for each silhouette in the database.
After finding the geometric relationship between the silhouette in the test image and
each of the silhouettes in database, we use Chamfer Distance [24] to evaluate which
relationship best fits to the measured silhouette.

So firstly, we would like to find the translation and Rz for each silhouette in the
database. To do that, a two-dimensional similarity transform between train and test

silhouettes should be estimated. This can be estimated by Procrustes Analysis [25]. This
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2D shape matching algorithm includes three steps— centering, scaling and rotation. 2D

translation is estimated by centering (aligning centroids):
n
o 1
&y = HZ(Xi'Yi)
i=1

, where n is the number of points in a silhouette.

Next, scaling is to align the scatters of the points in train and test silhouettes:

n

1
s= |- 16 =02+ 61 - )7

i=1
, then the rotation can be estimated using 2D-2D ICP [26].
Now we can proceed to compute Rz and 3D translation which maps the point of
the stored 3D model to the location in the test image. However, as mentioned in [6],
there is no such transform under the perspective camera model. So the weak perspective
projection model [27] is used. This model assumes all points of the 3D model have the

same depth. As a result, the point on the model should be put into the right hand side of:

1 X 1
—SK|y| = K

r r 0t
Z+tZ 21 22 y

0 0 1 t

I‘11 I‘12 0 tX]
Z

=N X

where K is the matrix of intrinsic parameters, S is the similarity transformation
obtained from Procrustes Analysis. Note that the equation should be solved for all x and

y simultaneously. And

1"11 1‘12 O tX

[Rz tl=|ry 1 0 Yy

0 0 1 ¢
After calibration and Procrustes Analysis, we have S and K. So we can solve the
translation and Rz for each training silhouette. If a training silhouette match well to the

testing silhouette, we can get some plausible pose for further pose refinement.
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4.2.3 Pose Refinement

We have silhouette and surface edges from provided 3D point cloud model, and
they should be aligned with the test silhouette and canny edges in the test image. This is
a problem of 3D-2D registration and we use a robust variant of Levenberg-Marquardt
Iterative Closest Point (LM-ICP [28]) to solve it. The result of this algorithm is the

refined pose.

Training silhouette (3D) Testing silhouette
N
{ ;I ) e '“H\\
— fk -);I
R}il g R‘j.'l RxE? R\'E
) X
:SK V] =-= K l':l r:: 0 ty z
A ] 2 S O :
Apply
Rz, Tx,Tv. Tz
TN 77N
I'k ;'I I"-K J"I
— —

Fig4.9 Anillustration of pose estimation.
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Chapter 5 Grasping

Although we have not implemented the grasping function yet, we still survey for
the grasping function so that the whole pipeline proposed in this thesis can be complete
for a service robot to manipulate transparent objects. Since the estimated pose of
transparent objects is in RGBD sensor’s coordinate, so we need to transform the pose to
gripper’s coordinate frame to let robot grasp. This can be done by ROS tf introduced in
section 5.1. Also, there is a manipulation pipeline in ROS that can be used for

manipulating objects, which will be covered in section 5.2.
5.1 ROS tf for Coordinate Transform

A robotic system typically has many 3D coordinate frames that change over time,
such as a world frame, base frame, gripper frame, head frame, etc. (See Fig 5.1) tf keeps
track of all these frames over time, and it can operate in a distributed system. This
means all the information about the coordinate frames of a robot is available to all ROS

components on any computer in the system.

Fig5.1 PR2’s 3D coordinate frames.
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Many ROS packages require the transform tree of a robot to be published using the
tf software library. At an abstract level, a transform tree defines offsets in terms of both
translation and rotation between different coordinate frames. To make this more
concrete, consider the example of a simple robot that has a mobile base with a single
laser mounted on top of it, as shown in Fig 5.2. In referring to the robot let's define two
coordinate frames: one corresponding to the center point of the base of the robot and
one for the center point of the laser that is mounted on top of the base. Let's also give
them names for easy reference. We'll call the coordinate frame attached to the mobile
base "base_link™ (for navigation, its important that this be placed at the rotational center

of the robot) and we'll call the coordinate frame attached to the laser "base_laser."

base laser

base link

Fig5.2 Anexample of a simple robot.

At this point, let's assume that we have some data from the laser in the form of
distances from the laser's center point. In other words, we have some data in the
"base_laser" coordinate frame. Now suppose we want to take this data and use it to help
the mobile base avoid obstacles in the world. To do this successfully, we need a way of
transforming the laser scan we've received from the "base laser” frame to the

"base_link" frame. In essence, we need to define a relationship between the "base_laser"
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and "base_link" coordinate frames.

In defining this relationship, assume we know that the laser is mounted 10cm
forward and 20cm above the center point of the mobile base shown in Fig 5.3. This
gives us a translational offset that relates the "base link™ frame to the "base laser"”
frame. Specifically, we know that to get data from the "base link" frame to the
"base_laser" frame we must apply a translation of (x: 0.1m, y: 0.0m, z: 0.2m), and to get
data from the "base_laser" frame to the "base_link™ frame we must apply the opposite

translation (x: -0.1m, y: 0.0m, z: -0.20m).

20cm
10cm -

Fig 5.3 The relationship between laser and base of the simple robot.

We could choose to manage this relationship ourselves, meaning storing and
applying the appropriate translations between the frames when necessary, but this
becomes a real pain as the number of coordinate frames increase. Luckily, however, we
don't have to do this work ourselves. Instead we'll define the relationship between
"base_link" and "base_laser" once using tf and let it manage the transformation between
the two coordinate frames for us.

To define and store the relationship between the "base_link" and "base laser"

frames using tf, we need to add them to a transform tree. Conceptually, each node in the
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transform tree corresponds to a coordinate frame and each edge corresponds to the
transform that needs to be applied to move from the current node to its child. Tf uses a
tree structure to guarantee that there is only a single traversal that links any two
coordinate frames together, and assumes that all edges in the tree are directed from
parent to child nodes.

To create a transform tree for our simple example, we'll create two nodes, one for
the "base_link" coordinate frame and one for the "base laser" coordinate frame. To
create the edge between them, we first need to decide which node will be the parent and
which will be the child. Remember, this distinction is important because tf assumes that
all transforms move from parent to child. Let's choose the "base_link" coordinate frame
as the parent because as other pieces/sensors are added to the robot, it will make the
most sense for them to relate to the "base laser" frame by traversing through the
"base_link" frame. This means the transform associated with the edge connecting
"base_link™ and "base_laser" should be (x: 0.1m, y: 0.0m, z: 0.2m). With this transform
tree set up, converting the laser scan received in the "base_laser” frame to the
"base_link" frame is as simple as making a call to the tf library. Our robot can use this
information to reason about laser scans in the "base_link™ frame and safely plan around

obstacles in its environment.

: | (0.4, 0.0, 0.2)

(0.3, 0.0, 0.0)

.......................................

base_laser child

Fig5.4 The tf tree for the simple robot.
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5.2 PR2 manipulation pipeline

Object manipulator [35] provides the core-functionality for pick and place tasks,
implemented in a robot-independent way. The object manipulator assumes a number of
actions and services are available for it to call. For the PR2 robot equipped with a
gripper, default implementations are available for all of these.

Chronologically, the process of grasping an object goes through the following
stages:

*  the target object is identified in sensor data from the environment

* aset of possible grasp points are generated for that object

e acollision map of the environment is built based on sensor data

» afeasible grasp point (no collisions with the environment) is selected from the

list

* acollision-free path is generated and executed, taking the arm from its current

configuration to a pre-grasp position for the desired grasp point

* the final path from pre-grasp to grasp is executed

e the gripper is closed on the object and tactile sensors are used to detect

presence or absence of the object in the gripper

e the object is lifted from the table

We can identify the transparent objects by the algorithms stated in the previous
sections. And the detailed description on other modules can be found in [35]. So we just

present an example from [35] in Fig 5.5 to Fig 5.8.
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Fig 5.5 Interpolated IK path from pre-grasp to grasp planned for a grasp point of an

unknown object.

Fig5.6 A path to get the arm to the pre-grasp position has been planned using the

motion planner and executed.
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Fig 5.7 The interpolated IK path from pre-grasp to grasp has been executed.

Fig 5.8 The object has been lifted.
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Chapter 6 Experiment

6.1 Experiment Setup

As shown in Fig.6.1, we put the transparent objects on the table in front of PR2 for

recognition and pose estimation.

EL LEPN L L L L

‘ 1018 Robaot Competition /

IRRBANNSANES -8 '

‘:15520.000

Fig. 6.1 PR2 robot manipulates transparent object.

6.2  Detection of Transparent Objects

In this section, we present the experiment on transparent object detection
6.2.1 Grabcut-based Method

Here we test the performance of the transparent candidate recognition, and
compare the result with the method proposed in [6]. The inputs of this test are RGB and
depth images, and output is the marked regions that are considered as transparent
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objects. In this test, we use recall and precision to evaluate the performance. Recall is
the ratio of the number of correctly retrieved transparent object over the number of all
transparent objects should be retrieved. Precision is the ratio of the number of correctly
retrieved transparent object over the number of all retrieved. So in the ideal case, one
can expect that the output regions are always transparent objects (100% precision) and
all transparent objects in the scene are all retrieved (100% recall).

We randomly put 5 transparent objects as shown in Fig.6.2 (2 different kinds of
glass goblets, beaker, graduate cylinder, test tube) and other non-transparent objects that
will cause unknown depth value in the scene. Then we test if our transparent candidate
retrieving module can correctly retrieve the transparent ones. In Fig.6.3, the green
silhouette means the algorithm think that region is transparent. If the green silhouette

contains the region that is a non-transparent object, we view it as error.

Fig. 6.2 Five transparent objects used to test the performance of recognition.
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Fig. 6.3 The original image and the correct recognition result.

In the test, the total retrieved candidates are over 200. The result is shown in table
6.1. As can be seen in table 6.1, recalls of both methods are similar, which means if
there are transparent objects in the scene, both method can retrieved them in most cases.
However, our method outperforms the previous method on precision since our method
better rules out non-transparent regions which have unknown value in the depth image.

Since the method in [6] is not focusing on tackling this problem, so the result can be
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expected.

Table 6.1 Recall and Precision of Grabcut-based Transparent Object Recognition

Method Recall Precision
Method in 86.11% 38.24%
[6]
our method 86.11% 93.93%

6.2.2 Deep Learning Based Method

To test if our algorithm can detect transparent objects in color image, we use the
test dataset used in [3], which contains 14 images. These images are taken in a normal
house scenario, with different lighting conditions and occlusions. Three of them are
shown in Fig 6.4. Note that this experiment is not related to the PR2 and the experiment

setup stated in section 6.1.
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Fig. 6.4 Some of the images in test dataset.

As can be seen in Fig. 6.5, the red rectangle contains a transparent object and the
label is beaker. Although there is a blue rectangle recognized, the label is axe, so it is not
related to transparent object. Note that R-CNN can actually recognize multiple objects

in the scene instead of recognize transparent object only.
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Fig. 6.5 Arecognition result from R-CNN.

The results are shown in Fig. 6.6. In Fig. 6.6, we only show rectangles contains
beaker. As can be seen, in most of the cases, transparent object can be detected in red
rectangle. The result shows that R-CNN can be used to recognize transparent objects in

color image.

69



70



Fig. 6.6 Testing result of R-CNN method.

6.3 Pose Estimation of transparent Objects

We evaluate the pose estimation module on transparent equipment. Since we want
to apply pose estimation in a real bio-laboratory application, so it is essential to test the
work space of pose estimation module. There is no need to further evaluate the accuracy
due to the evaluation is already done in [6]. In this test, we use three transparent objects,
beaker, graduate cylinder and test tube to verify. Since we predefined the grasp pose of
these objects, so we evaluate the correctness of pose estimation by checking if PR2 can

correctly grasp the recognized objects. One of the correct results is shown in Fig 6.7.
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Fig. 6.7 One of the results of pose estimation.

The result is shown in table 6.2. We found that if the object is placed closely to the
robot, the success rate would be very high. But if object is placed a little bit far from the
robot, the success rate would drop quickly. The main reason is that Kinect is mounted
on PR2’s head, so the distance from Kinect to object is longer than the distance from
robot to object. Once the distance exceeds the limitation of Kinect, there’ll be lots of
unknown value on the depth image, thus interfere the process of transparent candidate
retrieval. Though the limitation of workspace is an issue to be further investigated, in a
normal bio-laboratory application, the transparent equipment wouldn’t be placed far

from the manipulator so that he or she can manipulate equipment without moving.

Table 6.2 Success Rate of Pose Estimation

Distance Success rate

D <0.5m 87.32%
0.5m < D < 0.9m 28.65%

09m<D 0%
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Chapter 7 Conclusion and Future Works

Conclusions

In conclusion, we have investigated the algorithms for recognizing and estimating
the pose of transparent objects in the scene. We improved the key functions of
recognition of transparent equipment to deal with non-transparent objects that cause
unknown value in Kinect depth image. These objects are very possible to be falsely
recognized as transparent by previous method, but our method can deal with this
problem properly.

Apart from the recognition and pose estimation, we also discuss the manipulation
of a service robot to grasp transparent objects, making the whole thesis more complete.
Future Work

Future work includes integrating more function module such as navigation and
grasping. Also, grasping point estimation for fragile transparent objects is an important

topic to be further investigated.
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