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摘要 

 

在本文中，我們著重於分析數據資料庫之各種資料引用相關研究。我們認

為，一致性的資料引用的實作將有助於推動的數據共享與增進數據重複使用

性，因為它可被視為類比於期刊或其他出版物中的引用模式並受相關領域使用

者的認可。 

 

蛋白質資料庫（Protein Data Bank，PDB) 為一個專門儲存蛋白質及核酸之

三維結構資料的數據庫。他們大部份扮演了生物機制中關鍵的角色。這些資料

數據主要經由世界各地的結構生物學家以X 射線晶體學或NMR 光譜學實驗所

結構化而得。各個主要的科學雜誌要求科學家將自己的研究成果提交給PDB，

並以獨立識別碼(PDB IDs) 存放到PDB 供公眾免費使用，是結構生物學研究中

的重要資源。因此，PDB 是一個很好的實作對象用以進行資料引用之相關研

究。我們的研究考慮PDB ID 在本文中提及的模式與其引用至參考文獻的模式

之間的交互作用，並且藉由研究該資料引用模式來表達此兩種引用機制之間的

相對重要性。 

 

通過探索這些豐富的蛋白質結構資料和相關的引文中，我們可以從引文網

絡的觀點來研究蛋白質結構之間的關係。此外，文獻和數據引網絡的分析可以

顯示潛在的科學發展途徑，即知識和數據如何被用於推進結構生物學的發展之

過程。基於這些分析的結果，我們可以提出適當的資料引用的實作方法，用以

鏈接引用與資料兩者，以及衡量資料使用度量方式。這將有利於資料的重複使

用，並有助於實驗過程的再現性，甚至提供機器可識別之資料使用追蹤能力。 

 

 

 

 

 

 

 

 

 

vii 



viii



Abstract

In this thesis, we focus on analyzing the various of data citation to the data

repository. We think consistent practice of data citation facilitates and incen-

tivizes data sharing and reuse because it could be counted as professional

recognition for data providers as citations of journal and other types publi-

cations. The Protein Data Bank (PDB) is the worldwide repository of 3D

structures of proteins, nucleic acids and complex assemblies, most of which

play essential biological roles. The major data of PDB are the experimen-

tally determined structures of protein, and are provided by unique identifiers

(PDB IDs) and corresponding primary citations that make them easier to be

used as the referenced data. Therefore, it could be a good practice model for

data citation research. Meanwhile, our studies focus on the interplay of PDB

IDs mentions recognition and references cited of the literature, and the rela-

tive importance of these two mechanisms can be expressed by investigating

the data citation patterns. By exploring rich structures and related citations

of PDB, we can investigate the relationships between protein structures from

the viewpoint of the citation network. Moreover, the analysis of the literature

and data citation networks may demonstrate potential pathways of scientific

discovery, that is, how knowledge and data were used to advance a partic-

ular field in structural biology. Based on the results of analyses, we could

recommend data citation and provenance practices, approaches to discover

data citations, ways of linking citations and data, and data access metrics. We

hope our work will benefit the data reused, experiments reproduced, and even

ix



provide machine readability for tracing the data usage.

Keywords: Data Citation, Citation Network Analysis, Information Cas-

cade, Protein Data Bank.
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Chapter 1

Introduction

1.1 Motivation and Overview of the Thesis

1.1.1 Data Citation

We think data itself should be considered as the citable products of research and cited in

the same way as the academic paper, which have benefited from well-established bibli-

ographic infrastructure that makes them easy to cite. Consistent practice of data citation

facilitates and incentivizes data sharing and reuse because it could be counted as profes-

sional recognition for data providers as citations of journals and other types publications.

However, currently no data citation practice has been commonly agreed. It is not clear

which practice standard or policy gains the most adoption, nor is how they reflect the

impact of the data being cited.

Figure 1.1: Consistent practice of data citation facilitates data sharing.

1



In the past few years, much of the studies on data citation have been received more

attention in all disciplines of science as data become essential and ubiquitous in research.

CODATA/ITSCI Task Force onData Citation published a report on the current state of data

citation in 2013 [69]. FORCE 11 (http://www.force11.org) has its final release of Joint

Declaration of Data Citation Principles in 2014 [28], which identifies six principles as

the guideline for the design of data citation standards and can be used as a good practice

of data citation that contribute to data reuse, experiments reproduce, and even provide

machine readability for tracing the impact of data.

1.1.2 RCSB Protein Data Bank and Related Repository

In this thesis, we focus on analyzing the various of data citation to the RCSB Protein Data

Bank (PDB) and related repository. The Protein Data Bank (PDB) [11] is the worldwide

repository of experimentally determined structures of proteins, nucleic acids, and complex

assemblies, including drug-target complexes, most of which play essential biological roles

and are the prime drug-targets in various diseases.

The major data of The PDB are the experimentally determined structures of protein.

The PDB annotates structures according to standards set by the wwPDB [9] provides

unique identifiers (PDB IDs) and digital object identifiers (DOIs) that make the data are

accessible and persistence for researchers to use it as the referenced data. All journals

require a prior submission of structures to the PDB as part of the publication process.

For a PDB entry, the primary citation papers is the study of crystallography process

for a specific protein, and the primary citation should be declared when it was deposited to

repository that have it be seen as legitimate, citable products of research. Hence, the data

are easily to be given scholarly credit to all contributors to the data. All the characteristic

make the PDB be a good practice model to help us study the behaviors that how the protein

structure data being used by the researchers.

As a comparison of PDB, Uniprot is another comprehensive, high-quality and freely

accessible repository that contains the protein sequences and functional annotation infor-

mation [21]. It integrates, interprets and standardizes data from literature and numer-

2



ous resources to achieve the most comprehensive catalog possible of protein information.

Therefore, it could be another good practice model for the study of data citation, and we

will provide some comparison of similarities and differences between citations of these

two resources.

1.1.3 Transformative Research

Transformative research refers to research that shifts or disrupts established scientific

paradigms. Notable examples include the discovery of high-temperature superconduc-

tivity that disrupted the theory established 30 years ago. In Chapter 2, we will present a

data-driven approach where citation patterns of scientific papers are analyzed to quantify

how much a potential challenger idea shifts an established paradigm. The key idea is that

transformative research creates an observable disruption in the structure of citation cas-

cades. Citation cascades are chains of citations between two articles in a citation network

that can be traced back to the papers establishing some scientific paradigm. Such a dis-

ruption is visible soon after the challenger’s introduction. We define a disruption score

to quantify the disruption and develop an algorithm to compute it from a large citation

network that considers both the length of the chain and the number of paths. Identifying

potential transformative research early and accurately is important for studying the data

citation patterns. It also helps scientists identify and focus their attention on promising

emerging works.

1.2 Organization of the Thesis

For our study, the main analysis tool is the citation cascade analysis. An important aspect

is the interplay of literature and data citations, and the relative importance of these two

mechanisms to make data discoverable. The analysis of the literature and data citation

cascades demonstrates potential discovery pathways, that is, how knowledge and data

were used to advance a particular field of science.

This idea is carried out as a pilot project in bioCADDIE, an NIH BD2K (Big Data to
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Knowledge initiative) Data Discovery Index Coordination Consortium. The major aim

is to correlate various metrics of citation networks with tangible impact indicators to de-

termine empirically which metrics are more informative. Analysis of citation and data

cascades of these networks will highlight putative pathways of how data and concepts led

to high impact scientific discovery. Based on the results of these analyses, we will recom-

mend data citation and provenance practices, approaches to data citation discovery, ways

of linking citations and data, and data access metrics, for the NIH Data Discovery Index.

The rest of this thesis is organized as follows. In Chapter 2, we propose an approach

called Disruption Score for identifying the transformative research and it will benefit us

to study the data citation patterns. In Chapter 3, we focus on analyzing citations to the

PDB data repository. In Chapter 4, we present a systematic investigation of how authors

cite to individual structures and apply various network metrics to analyze different data

citation practices to PDB. Finally, Chapter 5 summarizes this thesis and presents the future

directions.
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Chapter 2

Identifying Transformative Scientific

Research

2.1 Introduction

Transformative research refers to research driven by ideas that lead to emerging concepts,

approaches, and/or new subfields of research that shifts or disrupts an established sci-

entific paradigm [70]. Thomas Kuhn’s influential book titled The Structure of Scientific

Revolutions [44] describes the progress of science as non-linear, propelled by “paradigm

shifts” in which scientists’ world-views, or paradigms, are altered dramatically by a new

discovery, theory, or methodology. Recently, governments and industry R&D depart-

ments across the world are striving to maximize their return-of-investment in research

budgets. Funding transformative research is generally agreed as an effective strategy and

has been officially placed at the top priority of funding decision by the National Science

Foundation (NSF) in the U.S. [70]. Systematically identifying transformative research ac-

curately and early is therefore more critical than ever. This also applies to scientists, who

need to constantly monitor the most recent transformative research in related fields to stay

competitive in the forefront of their respective fields. Ability to systematically identify

transformative research has numerous benefits, including helping funding agencies estab-

lish funding priorities, allowing individual scientists to better keep up with important new
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research, and translating transformative research faster into practice.

However, identifying transformative ideas is not easy. The process by which such

ideas are recognized and accepted by the scientific community is affected by a variety of

factors, including cultural and cognitive biases, such as the well-documented “Matthew

effect” [49, 50]. According to this effect, the scientific community pays disproportion-

ate attention to the ideas of already-established scientists [1, 2], making it difficult for

competing alternatives to gain attention [42]. These biases slow down the recognition

and adoption of important new ideas, resulting in significant time delay in translating new

research into new technologies and medical therapies [45, 51]. Yet, examples in which

one theory, methodology, or line of inquiry overtakes an established one abound. One

such case is the Nobel prize-winning discovery of high-temperature superconductivity in

1986 [8]. This breakthrough challenged the well-established theory of superconductiv-

ity [6], which explained how materials enter a superconducting state at low temperatures.

Scientists who have been studying superconductors shifted their attention to new mate-

rials, which were shown to lose their electrical resistance at much higher temperatures

than traditional superconductors, and, therefore, prove to be much more technologically

useful. While such shifts are easily recognized in retrospect, many years or decades later,

we claim that they are evident in citations patterns almost immediately after the paper

describing the breakthrough is published.

Given the importance of timely identification of groundbreaking research, several

studies have examined how scientific ideas are adopted by other scientists. Most of these

studies analyze citations made by scientific papers, since scientists communicate, position

their work, and allocate credit through citations. Using the number of citations, or its dis-

tribution, is an accepted way to calculate impact of a paper or a scientist [36]. However,

this method is problematic, since it takes years for the citation count to reflect the status

of a paper. Mazloumian et al. [48] argued that paradigm shifts occur because an author’s

groundbreaking paper boosts attention given to his or her other publications. The boost

establishes author’s “authority,” allowing his breakthrough to successfully compete for

attention with an established paradigm. They proposed an automatic detection of such
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boosts as a method for identifying an author’s seminal papers.

We view the process by which transformative research is recognized by the scientific

community as a competition between paradigms for the attention of the scientific com-

munity. A paradigm is a theory of a phenomenon or a research method, e.g., preparation

of materials or a new experimental technique. A paradigm is established in one or more

papers and supported in subsequent papers. The attention it receives can be measured by

the structure of the information cascade the original papers create. The cascade consists

of chains of citations that can be traced back to the original papers. We claim that trans-

formative research shifts attention of the scientific community away from the established

paradigm and that this is observable as a disruption of the growth of its citations cascade.

Disruption occurs when the challenger paradigm can explain new citations received by the

established paradigm. Our approach is general and can be applied to other domain, e.g.,

social media, where ideas compete for attention of information consumers.

(A) (B)

Figure 2.1: (A) Information disruption by a challenger in an information cascade. The
seed of an established paradigm, marked in red, creates a cascade as the seed is cited by
other papers, while a challenger, marked in blue, disrupts the cascade of the seed. (B)
Disruption of the cascade of the seed paradigm (red) by the challenger paradigm (blue)
can be visualized as the decline of Φ of the complement cascade (green).

Fig. 2.1(A) illustrates our idea. A seed (red node) represents a paper establishing some

paradigm in a field of research. The paradigm’s influence grows over time as new papers

cite it and are later cited by other papers, creating a cascade of citations that can be traced

back to the seed. A challenger (blue node) is a paper that advocates a new paradigm. It
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attracts new citations from papers shown as white nodes with blue background, leaving

the complement cascade (green nodes) containing papers in the cascade of the seed that

are not connected to the challenger. When the challenger represents a non-competing idea,

though there will be papers that cite both seed and challenger, they will not interfere with

the growth of the seed’s cascade. In contrast, a transformative challenger will disrupt the

growth of the established paradigm. Without considering the challenger, it may appear

that the established paradigm continues to prosper, as its cascade continues to grow, but

subtracting part of the cascade taken over by the challenger will reveal that the growth

of the complement cascade (green nodes) slows. In this case, the community’s attention

shifts to the challenger paradigm. We propose a method to automatically identify such

shifts.

In this chapter, we derive an error bound and empirically demonstrate the reliability of

our method against sampling fluctuation of the citation network. This is important because

complete citations information may not always be available. This property also allows us

to scale the method up to large datasets by subsampling.

We illustrate the efficacy of the proposed approach with case studies. Specifically, we

selected several highly influential papers from physics and computer science and showed

that the proposed method is better able to identify successful challengers than alternative

baselines that consider the number of citations received by the paper. Further, we demon-

strate that our method identifies challengers that are more relevant to the topic of the seed

paper than baselines. Moreover, challenger’s success is evident early on, allowing for

early detection of transformative research. While the focus of this chapter is on scientific

publications, the approach can be generalized to other areas where ideas compete to gain

attention of information consumers.

2.2 Related Work

Much of bibliometric analysis uses citations count to measure a paper’s quality or scien-

tist’s productivity [36]. Beyond simple citations count, researchers have exploredmethods

that analyze the structure of citation networks to identify important papers [19, 29] or pre-
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dict which papers will be important in the future [62].

Few works have explicitly studied transformative research or develop methods to au-

tomatically identify such research. Mazloumian et al.[48] characterized how a publication

of a landmark paper increases attention paid to author’s other papers, leading to a paradigm

shift, which may eventually be recognized with a Nobel prize. Chen [17] described the

use of a dynamic co-citation network to reveal “intellectual turning point” papers. Our

approach differs from related work in that, first, we explicitly target papers that disrupt

established works, and second, we consider cascades, which take chains of citations into

account. Next, it is well-known that citation counts decay over time even for a highly

influential work [3]. Therefore, it is important to consider its continuing influence of cas-

cades, which provide indirect exposure to the work. Ghosh and Lerman [30] developed

a function to quantify the structure of a growing cascade of information spreading in so-

cial media, which we use to measure the size of evolving cascades. Here, we propose an

efficient method that use this function to identify transformative scientific research.

How information spreads in a network of information ecosystems like social media

and scientific publications has been heavily studied. Various models are available to ex-

plain and predict information diffusion [30, 46, 31, 47]. Widely spread information may

be disrupted by the presence of another piece of information that competes to gain atten-

tion from information consumers [52]. In scientific publications, information diffusion

is usually measured by counting citations, and citations-based measures, such as the h-

index [36], are widely used to evaluate the productivity of scientists. Disruptions of cita-

tion cascade growth of well-established, field-defining papers usually represent an event

of paradigm shift, breakthrough, emergence of a disruptive idea, and a successful trans-

formative research. Similarly, in social media, the flow of a dominant topic may be dis-

rupted by a challenger, which will gain attention from crosstalk information consumers,

who have been following the dominant topic but now switch their attention. A challenger

successfully disrupts the dominant topic when the challenger substitutes the attention of a

sufficient number of crosstalk information consumers.
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2.3 Materials and Methods

2.3.1 Data

We use two large citation network datasets in the empirical evaluation. One of them is

the dataset of the journals published by the American Physical Society (APS) [61],which

consists of articles published from 1893 to 2009. The APS dataset contains important

physics papers that announced a new discovery or a new technique, many of which were

recognized by the Royal Swedish Academy of Sciences with a Nobel prize, the highest

honor in physics. APS is perfect for our study because it contains many examples of suc-

cessful transformative research and recognized paradigm shifts and makes them available

for analysis.

The other dataset is theDBLP-Citation-networkV5 (DBLP) available at Arnetminer.org

[68, 65, 67, 66], which consists of two major computer science bibliographic datasets,

DBLP and ACM, covering publications from 1936 to 2011. The DBLP dataset contains

some of the important papers in computer science that describe widely used techniques

and algorithms. Table 2.1 summarizes the statistics of these datasets. The difference of

the network structure and the scale of these two datasets reflects the difference in citation

culture between these two disciplines of science.

Table 2.1: Statistics of the Test Data
dataset # paper # citations avg. degree
APS 449,667 4,710,548 20.91
pruned 115,753 1,153,967 19.02
DBLP 1,572,278 2,083,947 2.65
pruned 82,762 414,776 10.46

To reduce noise, we pruned low-citation publications as a pre-processing step. Papers

must be cited more than 10 times in APS and 5 in DBLP to be included in our evaluation.

We considered a citation to a more recent paper as an error and removed 284 from APS

and 20,418 from DBLP, respectively. In addition, we excluded 2,555 review articles from

the APS dataset that were published in Reviews of Modern Physics, since their citation

patterns are different from regular research papers [18]. Review papers never start a new

10



paradigm or become a challenger by definition and thus are not in the scope of our search.

2.3.2 Cascade

We start by defining cascades in citation networks. A citation network is essentially a

directed graphG = (V,E)where V is the set of papers andE is the set of edges indicating

citations made by papers. A link (i ← j) ∈ E denotes that paper j cites paper i, cite(j)

denotes the set of all papers that j cites and cited(i) the set of all papers that cite i. Vt

is the set of papers published at time t. We assume that if (i ← j) ∈ E and i ∈ Vt and

j ∈ Vt′ then t < t′. That is, no new paper should be cited by an older paper.

Given one or more papers S ∈ G, a cascade C is a subgraph that contains all citation

chains that end at S . The set S is called the seed or root of the cascade. The seed indirectly

exerts influence on all papers in the cascade, but influence decays with the distance to the

seed [13]. For a node j in the cascade, the cascade generating function ϕ(j) summarizes

the structure of the cascade [30], i.e., all existing citation chains. The cascade generating

function quantifies the influence of S on node j, and is defined recursively by

ϕ(j) :=


1 if j ∈ S∑

i∈cite(j) αϕ(i) otherwise,
(2.1)

where α is a constant damping factor. Fig. 2.2 shows an example cascade and the ϕ values

for its nodes. For a paper j published after T time steps (e.g., years) from the publication

of the seed, ϕ(j) can be written as follows:

ϕ(j) =
T∑

p=0

ap · αp, (2.2)

where the coefficient ap is the number of distinct paths of length p from one of the seeds

to j. The impact of α is that the smaller the value of α, the higher the penalty against long

paths. It is also possible to assign a unique αij for each link but we found that it is simpler

to assign a constant 0.5 for all links to control its impact.
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2.3.3 Cascade Disruption

Consider Fig. 2.1(A). C is the full cascade originated by the seed paper. Let C(T ) denote

the cascade originating from the challenger T . We define the complement cascade C̃ as

the subgraph of C obtained by subtracting C(T ) from C, i.e.,

C̃ := C − (C ∩ C(T )) = C \ C(T ).

By definition, references of papers in C̃ can only be traced back to the seed papers but not

the challenger. Thus, they represent the influence of S that cannot be attributed to. We

note that it is not necessary for the challenger T to be in C. The blue nodes in Fig. 2.1(A)

are the root node(s) of the intersection of C and C(T ). These nodes can be considered as

“cross-talk” between the seed and challenger paradigms.

We say that challenger T disrupts the growth of S when new papers in the cascade of

S(C) can be explained by the cascade of T (C(T )). This will result in a shrinking comple-

ment cascade C̃. Next, we present a procedure to measure disruption.

Let Ct be the set of papers in cascade C published at time t, i.e., nodes in the bottom

red box in Fig. 2.1(A). The average of the cascade function ϕ of papers in Ct is defined by

Φt(C) :=
1

|Ct|
∑
j∈Ct

ϕ(j) =
t∑

p=0

ap · αp, (2.3)

where ap is the average of the coefficient ap in Eq. (2.2) for j in Ct, and ap indicates on

average number of distinct citation chains of length p from papers published at time t to

the seeds. The variable Φt can be interpreted as an indicator of the seed papers’ influence

at time t.

Fig. 2.1(B) shows the growth of Φt(C) (red curve), Φt(C̃) (green curve), and the chal-

lenger cascade Φt(C
(T )) (blue curve). The value of Φt for both the seed (red) and chal-

lenger (blue) papers may both grow rapidly, but the growth of the complement cascade

flattens and drops once the challenger successfully shifts the attention of the community.

Otherwise, the green curve will continue to grow. In other words, successful information

disruption is associated with a declining values Φt(C̃) of the complement cascade.
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Figure 2.2: An example of Cascade and their ϕ values.

We quantify this decline by the disruption score δ(τ), which is a function of the time

interval of τ given the seed and challenger cascades. Let t0 be the publication time of the

challenger paper,

δ(τ) :=

t0+τ∑
t=t0

log
Φt(C)

Φt(C̃)

=

t0+τ∑
t=t0

(
logΦt(C)− logΦt(C̃)

)
.

The disruption score can be visualized as the area between the red and green curves in

Fig. 2.1(B) from t0 to t0 + τ . The disruption score allows us to identify and measure the

impact of the challenger paper.

When comparing candidate challengers published too long apart over time, the cascade

of the seed paper may be so different that might give unfair advantages to old challengers.

For example, the cascade of a seed paper published in 1950’s may grow many-fold from

60’s to 90’s. For a new paper to disrupt the same proportion of the cascade as an old paper

may require a much larger number of citations. The disruption score is immune from this

problem because ϕwill be smaller after 30 years as citation paths to the seed stretch. More

importantly, we consider the average, not sum. Also, the number of publications and thus
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citations to new papers grow faster in recent years and may compensate for the difference

in cascade size.

2.3.4 Computing Cascade Disruption

To obtain the disruption score, we need to compute ϕ of the nodes in the cascade. A

citation network is a directed acyclic graph if cycles are considered as errors. From Eq.

(2.1), traversing the citation network in a topological order [41] and updating ϕ values

along the way will guarantee that no backtracking is necessary to compute all ϕ values

for all nodes. Therefore, we can apply topological sorting to compute ϕ and obtain the

disruption scores. The time complexity of topological sorting is O(|VC |+|EC |), which is

linear to the sum of the number of nodes and edges in cascade C.

Cascade generating function ϕ can measure information cascades not only in citations

networks, but also in other domains, such as information diffusion in social media or influ-

ence in social networks. The method for measuring disruptions of cascade growth should,

therefore, carry over to these domains as well. This could lead to numerous other applica-

tions, such as comparing competing memes that are spreading in social media to determine

which one is attracting more attention, or which person is becoming more influential.

2.4 Evaluation

According to the classical test theory, a quantitative measure must be both valid and re-

liable. The notion is closely related to bias and variance in statistical data mining and

pattern recognition [34]. As a quantification measure of transformative research, the dis-

ruption score must be valid, in the sense that truly transformative research will be scored

higher than others, and reliable, in the sense that the score is robust against incomplete

subsampling of citation network data. In addition, computation of the score must scale

up to large citation network data. In this section, we evaluate the validity, reliability, and

scalability of the disruption score as a detector of transformative research.
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2.4.1 Validity

The disruption score is a valid indicator of paradigm shift if the score distinguishes truly

transformative research papers from the rest with high sensitivity and specificity. How-

ever, unlike well-defined data mining problems, it is difficult to create a large gold stan-

dard of truly transformative research to quantitatively assess the validity of the proposed

method. Therefore, we focus on a few well-known cases of transformative research to

evaluate our method’s validity. Section 2.5 reports detailed results of applying our method

to APS and DBLP datasets.

Consider superconductivity. The 1957 theory of superconductivity byBardeen, Cooper,

and Schriffer (BCS) [6, 5] was a dominant paradigm in this field until the discovery of

high-temperature superconductivity [8] (HTS) in 1986, an indisputable transformative re-

search accomplishment for which the authors were awarded the Nobel Prize in Physics

the next year.

Fig. 2.3(C) shows evolution of the cascade size, i.e., the number of papers in the cas-

cade, of the BCS cascade, and the HTS cascade rooted at three pioneering APS papers

in this field [76, 77, 26]. One may expect that discovery of HTS would slow down the

growth of the BCS cascade, but Fig. 2.3(C) shows otherwise. The cascade size, in terms

of the cumulative number of papers in the cascade each year, continues to grow, though at

a slower pace than HTS. HTS might surpass BCS soon, but the impact of paradigm shift

is hardly observable 20 years later if we use the cascade size as an indicator.

Fig. 2.3(A) compares the growth of the logarithms ofΦt(C
(bcs)) (red),Φt(C

(hts)) (blue)

and Φt(C̃) (green) as computed from the APS dataset. We see a pattern identical to the

one shown in Fig. 2.1(B), a vivid demonstration of cascade disruption and paradigm shift.

Moreover, the disruption starts immediately after the publication of HTS.

To test the specificity of cascade interruption, we randomly selected 30 papers pub-

lished in 1987, the same year as HTS seeds, from the APS dataset as negative controls and

plotted the growth of their cascades as shown in Fig. 2.3(B), where the blue curve shows

the means and standard deviations of the average cascades of these 30 challengers and the

green curve shows those for their complement cascades. The curves show that though the
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Figure 2.3: Cascade disruption as an indicator of paradigm shift. The growth of the loga-
rithm of average cascade function values per year for (A) superconductivity (BCS) [6, 5]
and high-temperature superconductivity (HTS) [76, 77, 26] and (B) 30 control cases pub-
lished in 1987 show no sign of cascade disruption against BCS. (C) The growth of the
size of cascades shows no sign of disruption. (D) Another example of paradigm shift is
conventional carbon nanotube [39] versus graphene [54, 55]. Unlike superconductivity,
the cascades are not as large because they were published in recent years. Therefore, no
logarithm of Φ is taken here.

growth of their cascades varies widely, the complements of the BCS cascade are hardly

disrupted, unlike the HTS papers.

Another example of transformative research is the development of graphene in 2004 [54,

55], which was considered a breakthrough both for the materials fabrication technology,

focused on carbon nanotubes [39] and as a system for studying properties of 2-dimensional

electron systems. The developers of graphene were awarded Nobel Prize in Physics in

2010. Fig. 2.3(D) shows the cascade growth and disruption in this case. Again, the disrup-

tion is observable starting in 2006, right after their publication. This is as fast as possibly
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detectable because we removed all citations between papers published in the same year.

The disruption then drops sharply in 2007, three years before their Nobel Prize award,

even though the growth of the average cascade of the graphene papers is flat.

2.4.2 Reliability

Existing datasets of citation networks are inevitably incomplete and only contain a sub-

set of all related papers and citations. It is important that the proposed disruption score

produces consistent results given different subsamples of citation network data.

Here we show that it is possible to derive a theoretic error bound of the disruption

score given a subsample of citation network data, compared to the score obtained from

the complete citation network. We observed empirically in our preliminary study that if

the average cascade function values Φt(C) > Φt(C̃), the relation will maintain when they

are estimated from a subsampled cascade, i.e., Φt(C
′) > Φt(C̃ ′). In other words, if we

observe cascade disruption in a subsampled cascade, then it is almost certain that cascade

disruption will also present in a complete cascade.

To see why this is the case, letC ′ be the subsampled cascade from the complete cascade

C with a constant node sampling ratio ρ. The citation links in C adjacent to nodes not in

C ′ are removed from C ′. Since Φ essentially is the true mean of the cascade function

values ϕ given a complete cascade C, if ϕ of the nodes in the subsampled cascade C ′ are

identical to their ϕ values in the the complete cascade C, then according to Hoeffding’s

inequality, which states that the probability that the difference of sample mean and true

mean is large is less than a formula that is roughly proportional to the exponential of the

inverse of the sample size, we can show thatΦt(C
′) ≈ Φt(C) and this is similarly the case

for the complement cascade C̃ and its subsample C̃ ′ and hence the inequality relation will

maintain.

However, the new ϕ of the nodes in the subsampled cascade C ′ will be different, be-

cause citations to the removed nodes are absent. Also, ϕ of those being cited will be
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smaller due to the removal of the unselected nodes. Therefore,

∆ϕC(j) = ϕC(j)− ϕC′(j)

= α

(∑
i∈C

ϕC(i)I(i ∈ cite(j)&i /∈ C ′)

+
∑
i∈C

∆ϕC(i)I(i ∈ cite(j)&i ∈ C ′)

)
,

and its expectation will be

E[∆ϕC(j)] ≈

αE(|cite(j)|)|C|
(
(1− ρ)E[ϕC(i)] + ρE[∆ϕC(i)]

)
, (2.4)

where |C| is the number of nodes in cascade C. This applies to the complement cascade

C̃ and its subsample C̃ ′ as well. Since Φ is the expectation of ϕ for papers published at

the same time, from the Hoeffding’s inequality and Eq. (2.4), we can conclude that with a

high probability proportional (roughly speaking) to the sampling size of the subsampled

cascade, the difference

|∆Φt(C)−∆Φt(C̃)| = |Φt(C
′)− Φt(C̃ ′)− (Φt(C)− Φt(C̃))|

will be very small. The following theorem establishes a bound for the sampling error of

the average cascades.

Theorem 1. For any strictly positive constant ε, with probability greater than

1− 2e−2ε2|C′
t|

1

4ε|C ′
t|

√
π

2|C ′
t|
− 2e−2ε2|C̃′

t|
1

4ε|C̃ ′
t|

√
π

2|C̃ ′
t|
,

if
(
Φt(C

′)− Φt(C̃ ′)
)
> 0, then

∃S > 0,
(
Φt(C)− Φt(C̃)

)
∈ (S + ε, S − ε).
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Proof. Appendix A provides a detailed proof by the Hoeffding’s inequality.

We also empirically tested the reliability of the disruption score with subsampling. We

chose the top highly cited papers in DBLP and ranked the papers in their cascades accord-

ing to their disruption scores. Next, we assessed the reliability of our method by a 5-fold

cross validation sampling test, where we divided all papers in the dataset into five subsets

and used four of them to assign the ranks. Then we used the Spearman’s rank correlation

coefficient to measure the similarity of the ordering of the top 1000 articles in the five

trials. The similarity tests show that using 80% of the data yields similar disruption scores

and similar rankings. Fig. 2.4 shows the heatmaps of correlations for two well-known

papers in the data mining community as the seeds. We also observed that the differences

between the disruption scores of the top 5 challengers computed from the cross-validation

subsamples and from the complete dataset are small and with negligible variance (data

not shown). We set τ = 4 years when computing the disruption score in all trials. Using

other highly-cited papers in DBLP gives similar results.

(A) (B)

Figure 2.4: Heatmaps of correlation between trials of 5-fold cross-validation for (A) “Fast
Algorithms for Mining Association Rules in Large Databases (1994)” and (B) “Induction
of Decision Trees (1986)”. “Full” is the result for the complete data, “Ex.CV fold i” is the
result of the i-th cross validation trial.

2.4.3 Scalability

We already showed that the algorithm to compute the disruption score is linear in the size

of the citation network. As the number of publications grew geometrically in recent years,
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and to apply the algorithm to even larger networks of social media, the scalability of the al-

gorithm has to improve further. One of the options is to explore subsampling. Theorem 1

and the empirical results show that the disruption score can be estimated reliably from a

subsampled citation network. This useful property allows us to further accelerate compu-

tation. With a suitable sampling, computing the disruption scores can be more efficient in

both computation time and memory space. According to our execution time statistics with

different ratios of node sampling from APS, the time drops nearly exponentially because

the number of citations decreases exponentially as the number of nodes decreases linearly:

e.g., sampling 80% of papers can save 55% of the time.

When the task is to rank a large number of candidate challengers by their disruption

scores, it is possible to avoid exhaustive pairwise comparison by reusing intermediate

results. Suppose we would like to rank 100 candidate challengers by their disruption

scores. A brute-force approach is to compute the complement cascades for each of the

candidates. By sorting these candidates in their topological order in the citation network,

the ϕ values computed for the upstream candidates can be reused for the downstream

candidates and significantly reduce the computational costs.

2.5 Results and Discussion

In previous section, we report an evaluation of our method by testing if the disruption

scores are high for known examples of transformative research when they are scored

against the representative papers of the paradigms that were disrupted. In this section,

we report a further test, where a highly cited paper is chosen and the goal is to use our

method to rank all the papers in its cascade by their disruption score and see whether the

highest scoring paper represents the best transformative research, under the condition that

the system is blind about which papers are transformative. We note that in this case, it is

possible that no challenger is sufficiently transformative against selected high cited papers

but the highest scoring ones may still hint us about which papers are emerging. Again,

since it is difficult to create a large set of the “ground truth” of transformative research, we

will not to provide a quantitative evaluation, such as measuring error rates or area-under-
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Table 2.2: Top ten challengers to the 1957 “Theory of Superconductivity” identified by
(a) proposed method and (b) baseline method.
Year Cites Title

(a) our method: sorted by disruption score
1958 14 Meissner Effect
1958 307 Random-Phase Approximation ... Superconductivity
1959 40 Evidence for Anisotropy of the Superconducting Energy...
1989 574 Phenomenology of ...Cu-O high-temperature supercon...
1987 368 Antiferromagnetism in La2CuO4−y

1987 281 Two-dimensional antiferromagnetic quantum ...
1988 149 Ba2YCu3O7: Electrodynamics of Crystals ...
1990 156 High-resolution angle-resolved photoemission ...
1988 399 Low-temperature behavior of two-dimensional quantum ...
1995 95 Momentum Dependence of the Superconducting ...

(b) baseline: sorted by cover ratio
1958 307 Random-Phase Approximation ... of Superconductivity
1958 14 Meissner Effect
1958 63 ... States in the Theory of Superconductivity...
1958 93 Paramagnetic Susceptibility in Superconductors
1958 14 Meissner Effect and Gauge Invariance
1960 246 Quasi-Particles and Gauge Invariance ... Superconductivity
1959 36 Impurity Scattering in Superconductors
1959 37 Collective Excitations in the Theory of Superconductivity
1958 119 ... Spectra of Nuclei ... the Superconducting Metallic State
1960 32 ... Solution and ... Superconducting Transition Temperature

(c) baseline: sorted by citations
1981 3191 Self-interaction correction to density-functional approx...
1996 3088 Generalized Gradient Approximation Made Simple
1980 2651 Ground State of the Electron Gas by a Stochastic Method
1976 2569 Special points for Brillouin-zone integrations
1996 2387 Efficient iterative schemes for ab initio total-energy...
1990 1951 Soft self-consistent pseudopotentials in a generalized...
1991 1950 Efficient pseudopotentials for plane-wave calculations
1975 1597 Linear methods in band theory
1992 1567 Atoms, molecules, solids, and surfaces:...
1992 1445 Accurate and simple analytic representation...

curve, but will demonstrate through several case studies that the proposed method is able

to identify examples of transformative research. We use the APS and DBLP datasets de-

scribed in Section 2.3.1 to identify examples of transformative research in physics and

computer science, respectively. We compare our method to two baselines, one of them is

to order the papers within a cascade by their popularity, i.e., the number of citations they

receive, and show that our method identifies more relevant challengers. The other, which

we called cover ratio, is the ratio of the cascade sizes of the seed and the complement

created by a candidate challenger.

2.5.1 Physics

We chose several papers with the most citations in our dataset, which came from different

subfields of physics. We identified the most disruptive challengers of these papers and

carried out quantitative analysis of their topics.
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Case Study 1 In 1957 Bardeen, Cooper and Schrieffer published a seminal paper titled

“Theory of Superconductivity” which explained the mechanism by which some metals

became perfect electrical conductors (i.e., they lost their electrical resistance) at low tem-

peratures. The authors were awarded a Nobel prize for this discovery in 1972. This paper

is one of the ten most cited papers in the APS dataset. Table 2.2 lists the ten top-ranked

challengers identified by the proposed method and the baseline. The disruption score of

challengers was computed for a ten-year period (τ = 10). Compared to the citations base-

line, both our method and the cover ratio baseline identifies papers that are relevant to the

topic of superconductivity. All ten of the top challengers identified by baseline are papers

dealing with calculations of electronic structure of materials, and include other most-cited

papers in the APS dataset. While this is a very important topic, it is only peripherally re-

lated to superconductivity, in as much as this phenomenon is a result of correlated electron

pairs.

While top-rated challengers discovered by the cover ratio baseline are on the topic

of superconductivity, only the proposed method discovered papers on high temperature

superconductivity (HTS). The discovery of HTS was an important development in the

study of superconductivity, recognized with a Nobel prize in 1987. Although the origi-

nal paper announcing the discovery is not in our dataset, presence of several other papers

on HTS among the top challengers demonstrates the efficacy of our method to identify

disruptive papers. These challengers include “Antiferromagnetism in La2CuO4−y”, “Two-

dimensional antiferromagnetic quantum spin-fluid state in La2CuO4”, “Ba2YCu3O7: Elec-

trodynamics of Crystals with High Reflectivity” and “Momentum Dependence of the Su-

perconducting Sr2CaCu2O8”.

We verify that our method identifies more relevant challengers through the analysis of

their PACS numbers. The Physics and Astronomy Classification Scheme (PACS) was in-

troduced in 1975 to allow authors to identify the field and subfields of their papers. Fig. 2.5

shows the frequency distribution of PACS categories of the 30 top-ranked challengers

(with PACS numbers) identified by our method and the citations baseline, weighted by

the score assigned to the paper by the method. We aggregated the numbers by their top-
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Figure 2.5: Distribution of PACS numbers of challenger papers identified by (A) our
method and (B) baseline method.

level category. Our method finds many more papers about “Superconductivity” (category

74) and “Magnetic properties and materials” (75) than baseline, which finds papers about

“Electronic structure of bulk materials” (71), “Quantum mechanics” (3) and “Statistical

physics” (5), while “Superconductivity” (topic 74) is 15thmost frequent topic among these

challengers. In fact, topics (71, 75, 5) are the most common PACS numbers in the entire

dataset, suggesting that baseline method picks out globally popular papers, even though it

considers only the papers in the cascade created by the seed node.

Case Study 2 We used our method to rank challengers of the most cited paper in par-

ticle physics1. This is the 1967 paper by Steven Weinberg titled “A Model of Leptons.”

This seminal work unified weak and electromagnetic interactions within a single theory of

electroweak interactions. It won its authors a Nobel prize in 1979. Table 2.3 lists the ten

challengers to this paper with highest disruption score, which was computed for τ = 10

years. The first and second challengers are papers by David Gross and Frank Wilczek,

and David Politzer respectively. These three physicists shared a Nobel prize in 2004 for

elucidating the theory of strong interactions, which along with gravity, electromagnetic,

and weak interactions forms the four fundamental forces of nature. Though these papers

received a nod from the Nobel committee 30 years after their publication, our method

identifies them as important already ten years after publication.
1http://www.slac.stanford.edu/spires/topcites/2010/alltime.shtml
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Table 2.3: Top ten challengers to the 1967 “A Model of Leptons” by Steven Weinberg
identified by (a) proposed method and (b) baseline method.

Year Cites Title
(a) our method: sorted by disruption score

1974 190 Asymptotically free gauge theories. II
1974 123 Electroproduction scaling in an ... of strong interactions
1974 309 Hierarchy of Interactions in Unified Gauge Theories
1974 696 Confinement of quarks
1973 162 New Approach to the Renormalization Group
1972 46 Spontaneous Breakdown and Hadronic Symmetries
1973 44 Unified Gauge Theories of Hadrons and Leptons
1972 208 Effects of a Neutral Intermediate Boson in Semilep...
1974 361 Experimental Observation of a Heavy Particle J
1973 59 Current Algebra and Gauge Theories. I

(b) baseline: sorted cover ratio
1971 236 Physical Processes in a Convergent Theory ...
1970 35 Spontaneous Breakdown ... Interaction Symmetry
1972 95 Renormalizable Massive Vector-Meson Theory-Perturbation ...
1972 71 Short-Distance Behavior of Quantum Electrodynamics ...
1973 742 Radiative Corrections ... Spontaneous Symmetry Breaking
1972 157 Spontaneously Broken Gauge Symmetries. I. Preliminaries
1972 109 Spontaneously Broken Gauge Symmetries. II. ...
1972 68 Approximate Symmetries and Pseudo-Goldstone Bosons
1972 94 Spontaneously Broken Gauge Symmetries. III. Equivalence
1972 58 Mixing Angle in Renormalizable Theories of ...

(c) baseline: sorted by citations
1981 3191 Self-interaction correction to density-functional ...
1996 3088 Generalized Gradient Approximation Made Simple
1996 2387 Efficient iterative schemes for ab initio total-energy ...
1990 1951 Soft self-consistent pseudopotentials in a generalized ...
1991 1950 Efficient pseudopotentials for plane-wave calculations
1992 1567 Atoms, molecules, solids, and surfaces: Applications ...
1992 1445 Accurate and simple analytic representation of the ...
1994 1430 Projector augmented-wave method
1999 1424 From ultrasoft pseudopotentials to the projector ...
1993 1345 Ab initio molecular dynamics for liquid metals

The top-ten challengers include four more papers by StevenWeinberg (3, 5, 8, and 10),

and papers by Nobel laureates Kenneth G.Wilson (paper 4 “Confinement of quarks”), and

Samuel C. Ting (paper 9 “Experimental Observation of a Heavy Particle J”). Though these

papers are on slightly different topics than the seed, they are all important works within

the particle physics community, demonstrating that our method is able to capture how the

community shifts its attention between different topics.

The cover ratio baseline, on the other hand, identifies papers on several topics of parti-

cle physics, most notably gauge symmetry breaking. This is an important research area in

theoretical particle physics, but one that generalizes to all forces. In contrast, our method

found more challengers relevant to the topic of electroweak interactions.

Of the top ten challengers identified by citations baseline, seven are the same as the

baseline challengers of the first case study. These are papers in a popular topic of using

density functional theory, or its variants, for electronic structure calculations, and are not
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Table 2.4: Top ten challengers (published after 1994) to the 1982 “Two-DimensionalMag-
netotransport in the Extreme Quantum Limit” identified by (a) proposed method and (b)
baseline method.
Year Cites Title

(a) our method: sorted by disruption score
1995 246 Spontaneous interlayer ... double-layer quantum Hall ...
2005 179 Unconventional Integer Quantum Hall Effect in Graphene
2005 65 Electric Field Modulation ... Mesoscopic Graphite
2005 178 Quantum Spin Hall Effect in Graphene
1995 199 Optically Pumped NMR Evidence ... Skyrmions GaAs ...
2005 42 Coulomb interactions and ferromagnetism ... graphene
2005 21 Disorder and interaction ... two-dimensional graphene ...
2005 14 Coexistence of sharp quasiparticle ... in graphite
2005 45 Local defects and ferromagnetism in graphene layers
2005 121 Z2 Topological Order and the Quantum Spin Hall Effect

(b) baseline: sorted by cover ratio
1995 85 Updated analysis ... baryon spectrum
1996 857 Review of Particle Physics
1995 50 ... partial-wave T matrices in a ...
1995 51 Baryon current matrix elements in a light-front framework
1995 22 Kinematic evidence for top quark pair production ...
1995 18 Search for High Mass Top Quark Production in pp ...
1995 269 Observation of the Top Quark
1995 337 Observation of Top Quark Production in p...
1995 11 ... in a three-coupled-channel, multiresonance, unitary model
1995 72 Static Response and Local Field Factor of the Electron Gas

(c) baseline: sorted by citations
1996 3088 Generalized Gradient Approximation Made Simple
1996 2387 Efficient iterative schemes for ab initio total-energy ...
1999 1424 From ultrasoft pseudopotentials to the projector ...
1998 1003 Quantum computation with quantum dots
1996 857 Review of Particle Physics
1998 845 Entanglement of Formation of an Arbitrary State of ...
1996 795 Mixed-state entanglement and quantum error correction
1998 748 Evidence for Oscillation of Atmospheric Neutrinos
1998 737 Cold Bosonic Atoms in Optical Lattices
1995 664 Double Exchange Alone Does Not Explain the Resist...

relevant to the topic of high energy physics. This case study further highlights the ability

of our method to identify important and relevant challengers.

Case Study 3 Our final study considers the fractional quantumHall effect, a phenomenon

in which the conductance of 2-dimensional electrons is quantized at certain levels. This

effect was first reported in a 1982 paper titled “Two-Dimensional Magnetotransport in the

Extreme Quantum Limit.” The discovery and explanation of this effect was recognized

with a Nobel prize in 1998. Table 2.4 shows the top ten challengers identified by our

method and baseline. Since the APS dataset ends in 2009, the disruption score for 2005

papers were computed for the four year period. To mitigate the bias that incomplete data

introduces, we show only the challengers published after 1994.

Several of the challengers with highest disruption score are about graphene, a one-

atom-thick layer of graphite, whose discovery has facilitated new investigations of the
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properties of matter and electrons confined to 2-dimensional surfaces, and resulted in a

Nobel prize in 2010. In comparison, both baseline methods identify irrelevant challengers,

including those dealing with the top quark (papers (b)6–8), calculations of electronic struc-

ture of bulkmaterials (papers (c)1–3), quantum computing (papers (c)4, 7) and high energy

physics ((b)2, (c)5, 8, 9).

Quantitative Analysis We validate quantitatively that the proposed method identifies

more relevant challengers than baseline by performing PACS number analysis of the chal-

lengers for the ten most-cited papers in the APS dataset. We compared the PACS number

distribution of the 30 top-ranked challengers identified by each method with the distribu-

tion of PACS numbers of all papers in the APS dataset (with PACS numbers). The mean

correlation of the distributions of PACS numbers of challengers of the 10 top-ranked pa-

pers identified by ourmethodwith the global PACS number distribution is 0.4611±0.0048.

The mean correlation of PACS number distribution of challengers for the 10 top-ranked

papers found by baseline with the global PACS number distribution is 0.5800 ± 0.0033.

Higher correlation of the baseline method indicates that it tends to identify challengers

on globally popular topics, compared to the proposed method, which tends to identify

challengers that are topically relevant to the seed.

2.5.2 Computer Science

We report results of two case studies of high interest to the data mining community, using

themost highly cited papers in the DBLP dataset as seeds. Due to the fast pace of computer

science research, we set τ = 4 years to compute the disruption score δ(τ).

Case Study 1 Ross Quinlan’s 1986 paper on ID3 is one of the most influential papers

in computer science that laid the foundation of the field of classifier learning. One may

expect that papers about new algorithms of classifier learning are top challengers that

transform the field, but surprisingly the results given in Table 2.5 shows that it is papers

about association rulemining. Research in association rulemining led to a whole new field

of data mining, while in comparison, new research in classifier learning is still within the
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Table 2.5: Top challengers to the 1986 “Induction of Decision Trees” paper identified by
(a) proposed method and (b) baseline method.
Year Cites Title

(a) our method: sorted by disruption score
1995 189 Discovery of Multiple-Level Association Rules ...
1995 227 An Effective Hash Based Algorithm ... Association Rules
1996 211 Sampling Large Databases for Association Rules
1995 254 An Efficient Algorithm for Mining Association Rules...
1997 191 Beyond Market Baskets: Generalizing Association Rules

(b) baseline: sorted by cover ratio
1992 53 Querying in Highly Mobile Distributed Environments
1993 33 Relevance Feedback and Inference Networks
1992 64 An Interval Classifier for Database Mining Applications
1993 143 Database Mining: A Performance Perspective
1993 1372 Mining Association Rules between Sets of Items ...

(c) baseline: sorted by citations
1994 1592 Fast Algorithms for Mining Association Rules...
1993 1372 Mining Association Rules between Sets of Items ...
2000 647 Directed diffusion: a scalable and robust ...
2002 602 Wireless sensor networks: a survey.
2000 523 Content-Based Image Retrieval at the End of ...

realm laid out by Quinlan’s ID3. In this sense, our result is more reasonable. The top

challenger is perhaps the most related to ID3 among papers on association rule mining

because a decision tree can be considered as a set of multiple-level rules. Our results are

also more reasonable than those found by both baselines. Though two association rule

mining papers appear in the top-5 lists found by the challengers, the remaining papers are

irrelevant to decision tree learning.

Case Study 2 Next, we asked what challenges association rule mining. Our seed selec-

tion is Agrawal and Srikant’s 1994 seminal paper, which is the third most-cited paper in

DBLP. The results, shown in Table 2.6, suggest that it remains dominant in data mining,

as top five challengers are all follow-up papers with relatively low disruption scores (data

not shown). Here, cover ratio baseline identifies similar challengers as those found by our

method. The citations baseline selects mostly irrelevant papers.

2.6 Summary

Transformative research shifts attention of the scientific community from the established

paradigms that represent theories and methods accepted and practiced by the community.

The degree to which the paradigm is accepted by the community is reflected in the ci-

tations received by papers that first describe it, and citations received by these papers,
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Table 2.6: Top challengers to the 1994 “Fast Algorithms for Mining Association Rules in
Large Databases” paper identified by (a) proposed method and (b) baseline method.
Year Cites Title

(a) sorted by disruption score
1995 227 An Effective Hash Based Algorithm ... Association Rules
1995 189 Discovery of Multiple-Level Association Rules...
1996 211 Sampling Large Databases for Association Rules
1995 254 An Efficient Algorithm for Mining Association Rules...
1998 170 Exploratory Mining and ... Association Rules.

(b) baseline: sorted by cover ratio
1995 227 An Effective Hash Based Algorithm ... Association Rules.
1995 189 Discovery of Multiple-Level Association Rules ...
1995 254 An Efficient Algorithm for Mining Association Rules ...
1996 211 Sampling Large Databases for Association Rules
1997 252 Dynamic Itemset Counting and Implication Rules ...

(c) baseline: sorted by citations
2000 523 Content-Based Image Retrieval at the End of the Early...
2000 492 Mining Frequent Patterns without Candidate Generation
2002 350 Optimizing search engines using clickthrough data
2002 338 Models and Issues in Data Stream Systems
2001 328 Item-based collaborative filtering recommendation...

and so on. By looking at the structure of the citations cascade, we can determine when

a new paradigm attracts attention of the scientific community. This happens when cita-

tions received by papers advancing the new paradigm can explain most of the new cita-

tions received by the old paradigm. These shifts of attention are evident soon after the

challengers’ publication, enabling early detection of transformative research. We have

proposed a method to identify transformative challengers, i.e., scientific papers that shift

attention of the community, by measuring how much they disrupt the growth of citation

cascades of papers representing the established paradigm. When applied to citations net-

works of physics and computer science papers, our method correctly identified several

examples of transformative research.

More work needs to be done to elucidate the processes that lead to shifts of attention.

We need to identify seeds which simply do not have any significant challengers. Also, we

would like to develop scalable methods that take into a account a set of seeds and a set of

challengers. Another interesting direction is to develop methods to identify which estab-

lished idea a given paper disrupts. We believe that identifying transformative research by

analyzing citations cascades will prove to be a productive line of inquiry.

28



Chapter 3

Citing the Protein Data Bank and

Related Repository

3.1 Introduction

In this Chapter, we focus on analyzing citations to the PDB data repository. We will then

investigate citations to individual structures as our next step. PDB users currently have

different choices to cite the PDB data repository. They can cite the original debut publica-

tion of the RCSB PDB published in 2000 [11] (hereinafter, “the PDB debut paper”), which

was highly cited, ranked 92 among the top 100 most-cited research of all time [71] with

12,754 citations. Alternatively, PDB users can cite one of the follow-up update papers of

PDB published in the annual Database Special Issue of Nucleic Acids Research (NAR)

from year 2002 to 2008 [74, 73, 14, 23, 43, 10, 35] and in other venues [9, 15, 32, 75, 63].

These publications describe the progress of continued enhancement and development of

PDB. Citing journal publications represents a traditional method of data citation, with the

benefit of being persistent and unambiguous. Alternatively, PDB users can cite PDB by

mentioning URLs linking to the PDB home pages on the Web in the text, like “(http:

//www.rcsb.org).” URLs are unique but not persistent. Also, URL mentions are hardly

recognized as academic accomplishment. In addition to URL mentions, data usage statis-

tics, such as download counts, is proposed to be considered to measure the impact of
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research works [58]. This chapter aims to answer the following questions:

• Does a new PDB publication by any of the wwPDBmembers attract more new cita-

tions and does a new PDB publication decrease the growth of citations and influence

of its predecessors?

• Do PDB users refer to PDB URLs more often than citing PDB publications? How

many use both? If we consider URLs and PDB publications as independent works,

do URLs decrease the growth of citations and influence of PDB publications?

• How does data usage statistics correlate to paper citations and URL mentions?

Our main analysis tool is the citation cascade analysis. Citation cascades are chains of

citations between two articles in a citation network. Citation cascades can be quantified by

a function that considers both the length of the chain and the number of paths. Previously,

we have shown that the growth of citation cascades correlate with the lasting influence of

research articles better than citation counts [29], which usually favor an old paper because

it takes long to accumulate citations for a new paper to be considered more influential

than an old one. In contrast, disruption of citation cascades of an established paradigm

can serve as an early indicator of paradigm shift [37].

One of the technical challenges is how to quantify and compare the influence of the

PDB publications and URL mentions. Our approach to quantifying influence allows us

to overcome this challenge by constructing citation cascades originated from papers with

URL mentions. In this way, influence of URL mentions and PDB publications can be

normalized and comparable, though cares must be taken in matching PMC full-text data,

where URL mentions can be observed, with the PubMed citation network data set, where

only abstracts are available.

3.2 Related Work

Data citation is receiving increasing attention in all disciplines of science as data be-

come essential and ubiquitous in research. CODATA/ITSCI Task Force on Data Cita-

tion published a report on the current state of data citation in 2013 [69]. FORCE 11
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(http://www.force11.org) has its final release of Joint Declaration of Data Citation Prin-

ciples in 2014 [28], which identifies six principles as the guideline for the design of data

citation standards and practices. A few studies have focused on automatically connecting

the citation patterns that are resident in the literature data to the biomedical databases.

BioLit [59] provided a comprehensive view on the literature data that links to biomedi-

cal databases by integrating the content of PubMed Central (PMC) with that of the PDB

repository, based on the text-mining approach. Senay [40] characterized the patterns of

how PDB entries are cited in research articles, based on analysis of the full text literature

data available from Europe PubMed Central. Aurélie [53] developed a framework that

improves links between literature data and various biomedical databases.

Much of bibliometric analysis uses traditional academic citations to measure a paper’s

quality or scientist’s productivity [36]. Beyond simple citations counts, researchers have

explored methods that analyze the structure of citation networks to identify important pa-

pers [19, 29] or predict which papers will be important in the future [62]. Moreover, Lovro

implemented a network-based statistical comparison of the citation topology for analyzing

the consistency of various bibliographic databases [64]. Our analysis method differs from

related work in that we consider cascades, which take chains of citations, into account. It

is well known that citation counts decay over time even for a highly influential work [3].

Therefore, it is important to consider its continuing influence of cascades, which provide

indirect exposure to the work. Ghosh and Lerman [30] developed a function to quantify

the structure of a growing cascade of information spreading in social media, which we use

to measure the size of evolving cascades. We have developed a preliminary approach to

quantifying transformative research with a disruption score that based on this model.

3.3 Materials and Methods

3.3.1 Paper Citation Data

The citation data used in our study were collected from MEDLINE \ PubMed database

(http://www.ncbi.nlm.nih.gov/pubmed) through the Entrez system and the XML for-
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mat files from the NLM’s FTP sever (http://www.nlm.nih.gov/bsd/licensee/access/

medline\_pubmed.html). Each record contains XML elements <CommentsCorrec-

tions>. The attribute RefType=”Cites” of the element lists references or the bibliog-

raphy of an article, from which we can obtain the citation information (see http://www.

nlm.nih.gov/bsd/licensee/elements_descriptions.html). Our data set contains totally

22,732,343 articles and 102,783,011 pairs of cited-citing relation from PubMed, obtained

in August 2015.

3.3.2 Mining URL Mentions

We extracted and counted articles containing mentions of PDB URLs from the full-text

article data available from PMC. The data is available for download from (http://www.

ncbi.nlm.nih.gov/pmc/tools/ftp/), in either NXML markup language or plain text. We

obtained 782,890 articles in NXML format as of October 2014, and 967,022 articles in

plain text format as of February 2015. Removing duplicate PMC IDs yielded a total of

972,725 articles.

We extracted mentions of URLs linking to the home pages of the wwPDB partners,

including RCSB PDB, PDBe (PDB Europe) and PDBj (PDB Japan), and wwPDB (world-

wide PDB). Table 3.1 shows the patterns that we used to extract URL mentions from the

text. URLs that link directly to a landing page of a protein structure in PDB are excluded.

These can be recognized by certain suffix patterns in the URLs, as given in Table 3.1.

Formal URL citations, that is, citing PDBs as a paper citation and listing a URL in the

bibliography section, were not considered. URLs that are DOIs (digital object identifiers)

(http://www.doi.org) [22] were not included here, either.

Table 3.1: Text patterns considered as PDB URLs.
PDB site URL Inclusion Prefix Exclusion Suffix

RCSB PDB http://rcsb.org, http://www.rcsb.org, “∗rcsb.org”, “∗pdb.org” “structureId=∗”
http://www.pdb.org

wwwPDB http://www.wwpdb.org “∗www.wwpdb.org”
PDBe http://pdbe.org, http://www.ebi.ac.uk/pdbe “∗pdbe.org”, “∗www.ebi.ac.uk/pdbe”, “/entry∗”

http://www.ebi.ac.uk/msd “∗www.ebi.ac.uk/msd”
PDBj http://pdbj.org “∗pdbj.org” “/mine∗”
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3.3.3 PDB Usage Statistics

The wwPDB provides monthly statistics of FTP, Archive and Website Downloads, and

Views for each PDB structure from 2007 to present, available at (http://www.wwpdb.

org/stats/download.php).

3.3.4 Calibrated Disruption Score

Previously, we have developed amethod for quantifying the disruption of citation cascades

of an established paradigm of scientific papers [37]. The disruption can be measured by

comparing the growth of the average ϕ over time for all papers in the cascade and the

papers in the complement of the cascade. C is the entire cascade rooted by the seed paper.

Let C(h) denote the cascade originating from the challenger, h. We define the residue

cascade, denoted by C̃ , as the complement subgraph of C obtained by subtracting C(h)

from C, i.e.,

C̃ := C − (C ∩ C(h)) = C \ C(h). (3.1)

By definition, references of papers in C̃ can only be traced back to the seed papers, and

note that it is not necessary for the challenger to be in C. Let t0 be the publication time

of the challenger paper, and Ct is the set of papers published at time t. Here, we suppose

that we could investigate the complete citation network instead of the sampling network.

The calibrated disruption score is defined as

δ(τ) := 1− 1

τ

t0+τ∑
t=t0+1

∑
j∈C̃t

ϕ(j)∑
j∈Ct

ϕ(j)
. (3.2)

The calibrated disruption score is a revision of the disruption score of Chapter 2 to normal-

ize the range between 0 and 1 and ensure that scores of challengers published in different

years are comparable when τ is set to the same value. Intuitively, a 5-year (τ = 5) cal-

ibrated disruption score greater than 0.7 amounts to a large portion of the new influence

of the seed paper is indeed due to the challenger, suggesting that its influence has been

disrupted by the challenger..
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3.4 Results and Discussion

3.4.1 Paper Citations

We start by investigating whether authors choose to cite new PDB follow-up update papers

instead of the RCSB PDB debut paper. We consider only those published before 2008 so

that for every paper we can observe the growth of its citation counts for at least five years

(up to 2013). Moreover, uniprot is another good data warehouse for the comparison of

PDB, and we will provide some studies of similarities and differences between these two

resources. Fig. 3.1(A) shows that the annual citation counts of these PDB publications are

much less than that of the highly cited PDB debut paper. The paper citation result seems

to match the well-documented Matthew effect in science, which states that the rich get

richer and the poor get poorer in terms of citations [49, 50]. The Fig. 3.1(B) show the

result of UniProt that authors cite the latest core publications more often every year than

core publications published in previous years. This is drastically different from PDB, for

which authors prefer to cite the original debut paper. This may be because authors mainly

follow the ”how to cite” instructions given by the respective data repositories.
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Figure 3.1: Citation growth of the (A) PDB and (B) UniProt debut article and their follow-
up articles.

Though the citation counts of the follow-up update papers are not as large as the origi-

nal debut paper, they may still disrupt the growth of the citation cascade of the PDB debut

paper if they were cited by highly influential papers. To visualize if this is the case, we plot
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two graphs similar to Fig. 2.1(B) to show the growth of the influence of the PDB debut pa-

per and the growth of the residue cascades by the seven follow-up articles published in the

Database Special Issue of NAR. Fig. 3.2(A) shows that the growth of the residue cascade

curves are close to the curve of the PDB debut paper after 5 years (τ = 5), suggesting that

the follow-up articles hardly disrupt the growth of the cascade and thus the influence of the

original PDB debut paper. Becides, we also check if the update papers disrupt the growth

of the cascade of the earlier papers among the core publications of UniProt. Fig. 3.2(B)

shows the curves of the cascade growth of NAR 2004 as the root and its follow-up papers

as challengers, and reveals that the latest core publications are more influential than core

publications published in previous years.
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Figure 3.2: Compare the growth of the (A) PDB and (B) UniProt debut paper’s cascade
with all the residue cascades created by its follow-up articles in 5 years (τ = 5). The
y-axis of both panels shows the logarithm of the annual average cascade function values
Φ, defined in Eq. 2.3.

Fig. 3.3 compares long-term disruptions of three follow-up articles published in the

same year (2003). The figure shows that the growth of these residue cascades start to

open large gaps from the black curve but these curves of the residue cascades fail to drop

downward, suggesting limited disruption to the influence of the original debut paper. Ta-

ble 3.2 shows the calibrated disruption scores of all PDB follow-up articles published

between 2002 to 2008. The first seven articles are those published in the Database Special

Issue of NAR.

The last column of Table 3.2 shows the average scores of five randomly selected arti-
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Figure 3.3: The residue cascades created by three 2003 follow-up articles.

Table 3.2: 5-year calibrated disruption scores of the PDB follow-up articles. The last
column shows the average scores of randomly selected papers published in the same issue.

Calibrated Avg of
Author Year Title Disruption Score Random 5
Westbrook 2002 The protein data bank: unifying the archive[74] 0.34 0.01
Westbrook 2003 The protein data bank and structural genomics[73] 0.35 0.00
Bourne 2004 The distribution and query systems of the RCSB Protein Data...[14] 0.32 0.00
Deshpande 2005 The RCSB Protein Data Bank: a redesigned query system and ...[23] 0.33 0.00
Kouranov 2006 The RCSB PDB information portal for structural genomics[43] 0.27 0.00
Berman 2007 The worldwide Protein Data Bank (wwPDB): ensuring a single...[10] 0.26 0.00
Henrick 2008 Remediation of the protein data bank archive[35] 0.10 0.00
Berman 2003 Announcing the worldwide Protein Data Bank.[9] 0.17 0.00
Boutselakis 2003 E-MSD: the European Bioinformatics Institute...[15] 0.39 0.00
Golovin 2004 E-MSD: an integrated data resource for...[32] 0.06 0.00
Westbrook 2005 PDBML: the representation of archival macromolecular...[75] 0.08 0.00
Standley 2008 Protein structure databases with new web...[63] 0.00 0.00

cles published in the same issue. The scores show that the follow-up articles still impact

on the influence of the original debut papers much higher than other less related articles.

We further compute the scores of the most highly cited articles in the Database Special

Issues of NAR in each year and show the results in Table 3.3. Again, none of them score

very high but three articles related to protein and thus PDB [12, 7, 4] score higher than

0.4, which is higher than the scores of any follow-up papers of PDB, suggesting that these

articles impose influence disruption to the PDB debut paper more than the PDB follow-up

papers.

3.4.2 URL Mentions

We investigate the trend that authors mention PDB URL(s) in the text as data citation

practice. Fig. 3.4(A) shows that the annual citations to the PDB debut paper are higher than

the annual counts of mentions of different PDB URLs. Note that since the annual counts
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Table 3.3: 5-year calibrated disruption scores of the most highly cited articles in the
database special issue of NAR.

Calibrated
Year Title Disruption Score
2002 Gene Expression Omnibus: NCBI gene expression and hybridization ...[24] 0.28
2003 The SWISS-PROT protein knowledgebase and its supplement TrEMBL ...[12] 0.53
2004 The Pfam protein families database. [7] 0.50
2005 The Universal Protein Resource (UniProt). [4] 0.42
2006 miRBase: microRNA sequences, targets and gene nomenclature. [33] 0.29
2007 NCBI reference sequences (RefSeq): a curated non-redundant sequence...[60] 0.39
2008 The Pfam protein families database. [27] 0.30

were obtained from full-text articles in PubMed Central, we only counted the citations

from papers in PubMed Central too for the PDB debut paper here so that the numbers are

comparable. Though the annual counts of URL mentions are low, they grow as fast as

the citations, which drop in 2013 while the counts of URL mentions continue growing.

Fig. 3.4(B) shows that the sum of the annual counts of mentions grows steadily and in

2013 surpasses the citations to the PDB debut paper in that year. The figure also shows

the annual counts of the papers that not only cite the PDB debut paper but also mention

one of the PDB URLs. Nearly all authors who cited the PDB debut paper did not mention

any PDB URL (94%), while authors who chose to directly mention the PDB URLs rarely

cite the PDB debut paper (87%). In other words, authors chose to either cite the PDB

debut paper or mention URL but rarely do both.
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Figure 3.4: (A) Annual growth of the citations to the PDB debut paper and the counts of
the different PDB URL mentions. (B) Annual growth of the citations to the PDB debut
paper (blue bar), sum of all PDB URL mentions (green bar) and the count of the articles
that not only directly cite the PDB debut paper but also mention PDB URLs (red bar).

We next consider mentioning of URL as a challenger and investigate whether it dis-
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rupts the influence of the PDB debut paper. Here, the citation cascade of the URL men-

tioning is different from a paper citation cascade only in that its roots are those papers with

PDB URL mentions. Then the cascade expands with papers citing these roots and papers

citing those citing roots and so on to constitute the citation cascade. We also consider the

seven PDB follow-up papers published in the Database Special Issue of NAR between

2002 to 2008 shown in Table 3.2 collectively as a challenger to compare their disruption

impact with the URL mentioning.

Fig. 3.5 plots the growth of the cascades of the PDB debut paper, NAR follow-up

papers, and URL mentioning, as well as the growth of the residue cascades by the follow-

up NAR papers and URL mentioning. Again, the wider the gap between the curve for

the PDB debut paper and the curve of a residue cascade, the higher the disruption of the

influence. The figure shows that the gap of the residue cascade of the NAR follow-up

papers is also taller than that of the URL mentioning, suggesting that the NAR follow-up

papers collectively pose a higher disruption impact to the PDB debut paper than the URL

mentioning, though individually, their impact is not apparent. Meanwhile, the growth

curve of the NAR follow-up papers rises faster than the curve of the URL mentioning, but

the latter is catching up rapidly after 2010.

3.4.3 Data Usage Statistics

Various data usage statistics may provide alternatives to citation counts as metrics of im-

pact of a data repository. Yet it is not clear whether these statistics and citation counts are

correlated or not. Fig. 3.6 shows that the annual counts of PDB FTP archive access and

the citations to the PDB debut paper appear highly correlated before 2013, when the count

of citations to the PDB debut paper drops, while the counts of PDB website downloads

and views and the counts of the PDBURLmentions appear highly correlated as they grow

at a similar rate. Other pairs appear uncorrelated.

We fit linear models to confirm and quantify the observed correlations. Table 3.4

shows the results of pairing data citations (including both paper citations and URL men-

tions) and data usage statistics (including bothwebsite and FTP access) as either dependent

38



2000 2002 2004 2006 2008 2010 2012 2014
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (year)

lo
g1

0(
A

ve
ra

ge
 φ

 v
al

ue
)

 

 
Cascade growth of the PDB debut paper
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Figure 3.5: Growth of the cascade of the PDB debut article (black curve), the collection of
PDB NAR update articles from 2002 to 2008, the PDB URL mentions articles, and their
corresponding residue cascades. Notice the split between the black curve and green curve,
indicating the cascade disruption.

variable or independent variable with different time frames. For example, row No. 19 in

the table shows the result of fitting the linear model:

c(t) + c(t+ 1) = w · (u(t− 1) + u(t)) + β,

where c(t) + c(t+ 1) is the sum of the counts of data citations by PDB URL mentions of

the current and next year and serves as the dependent variable in the model, u(t−1)+u(t)

is the sum of the access counts of the website downloads and views of the previous year

and this year and serves as the independent variable to predict the dependent variable, and

w and β are the model parameters that we fit from the data. We quantify the fitness of all

results with the R2 value. The results show that regardless of the settings the PDB URL

mentions and the website downloads and views are highly correlated with R2 > 0.9 (in

bold fonts). The best fit was found between the two-year sum of the counts of the website

downloads and views and the URL mentions (row No. 11). Fig. 3.7 shows the fit of these

four cases.
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Figure 3.6: The growth of citations of the PDB debut paper, PDB URL mentions, website
downloads and views, and FTP archive access from 2008 to 2013. This analysis only
considers citations and mentions available from the PubMedCentral archive.

3.5 Summary

In this study, we compare data citations to a data repository by citing original and follow-

up publications andURLmentioning by applying an approach using disruptions of citation

cascades and correlate data citations with data usage statistics for PDB, one of the most

widely used biomedical data repositories. Our findings include that

1. Authors still prefer citing the original PDB debut paper to citing follow-up papers.

2. The number of authors citing PDB by URL mentioning is growing rapidly.

3. The impact of PDB URL mentioning, however, is still lower than that of PDB

follow-up papers collectively.

4. PDB website access statistics and URL mentions are highly correlated.

5. Correlations between PDB data usage statistics and PDB paper citations are not as

high, though PDB FTP access seems to correlate with paper citations in early years.

These trends may be in part the result of the citation policy of the RCSB PDB, which

recommends the original PDB debut paper and the URL http://www.rcsb.org as the data
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Table 3.4: The correlations between PDB data citations and PDB data usage statistics by
linear modeling.

No. Dependent Variable (y) Time Frame Independent Variable (x) Time Frame R2

1 Website Downloads and Views u(t) PDB Citations c(t) 0.01
2 FTP Archive u(t) PDB Citations c(t) 0.13
3 Website Downloads and Views u(t) PDB URL Mentions c(t) 0.98
4 FTP Archive u(t) PDB URL Mentions c(t) 0.41
5 Website Downloads and Views u(t) PDB Citations c(t− 1) 0.67
6 FTP Archive u(t) PDB Citations c(t− 1) 0.13
7 Website Downloads and Views u(t) PDB URL Mentions c(t− 1) 0.97
8 FTP Archive u(t) PDB URL Mentions c(t− 1) 0.30
9 Website Downloads and Views u(t) + u(t+ 1) PDB Citations c(t) + c(t+ 1) 0.49
10 FTP Archive u(t) + u(t+ 1) PDB Citations c(t) + c(t+ 1) 0.71
11 Website Downloads and Views u(t) + u(t+ 1) PDB URL Mentions c(t) + c(t+ 1) 0.99
12 FTP Archive u(t) + u(t+ 1) PDB URL Mentions c(t) + c(t+ 1) 0.88
13 PDB Citations c(t) Website Downloads and Views u(t− 1) 0.26
14 PDB Citations c(t) FTP Archive u(t− 1) 0.08
15 PDB URL Mentions c(t) Website Downloads and Views u(t− 1) 0.91
16 PDB URL Mentions c(t) FTP Archive u(t− 1) 0.28
17 PDB Citations c(t) + c(t+ 1) Website Downloads and Views u(t− 1) + u(t) 0.26
18 PDB Citations c(t) + c(t+ 1) FTP Archive u(t− 1) + u(t) 0.55
19 PDB URL Mentions c(t) + c(t+ 1) Website Downloads and Views u(t− 1) + u(t) 0.96
20 PDB URL Mentions c(t) + c(t+ 1) FTP Archive u(t− 1) + u(t) 0.89

resource reference. Since the citation network could be pretty large and could be obtained

from different data source, the major technical challenge is to collect a complete set of

citation network. Also it can be challenging to integrate the Pubmed citation data with

the PMC full-text data for comparing the citing or mention behaviors of PDB users. The

analysis of citation trends of other biological data resources with different citation policies

will be analyzed in the future to explore this effect and to develop recommendations for

data citation practices.

Our analysis methodology is applicable to analyzing citations of Web servers as long

as a web server has primary publications that can be used as the root nodes of citation

cascades and maintains Web access logs to correlate with citation counts and/or URL

mentions.
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Figure 3.7: The plots of the fitting of linear models between the PDB URLmentions c and
the website downloads and views u, referred to by their case No.’s in Table 3.4: (A) Case
No. 3, y = u(t), and x = c(t), (B) Case No. 7, y = u(t), and x = c(t− 1), (C) Case No.
11, y = u(t) + u(t + 1), and x = c(t) + c(t + 1), (D) Case No. 19, y = c(t) + c(t + 1),
and x = u(t− 1) + u(t).
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Chapter 4

Data Citation to the Protein Data Bank

4.1 Introduction

In this chapter, we focus on analyzing the various of data citation to the temporal patterns.

An appropriate data citation will benefit the data reused, experiments reproduced, and

even provide machine readability for tracing the data usage. Temporal patterns could be

considered as the simply annual growth of data citation, or concerned with the changes

in occurrence frequency over time of keywords in research articles. We will apply this

methodology to study the temporal patterns of PDB data, it will help us to know the trends

of protein structure researches.

The major data of The Protein Data Bank (PDB) [11, 74, 73, 14, 23, 43, 10, 35] are

the experimentally determined structures of protein. The PDB provides unique identifiers

(PDB IDs) and digital object identifiers (DOIs) that make the data are accessible and per-

sistence for researchers to use it as the referenced data. For a PDB entry, the primary

citation papers is the study of crystallography process for a specific protein, and the pri-

mary citation should be declared when it was deposited to repository that have it be seen

as legitimate, citable products of research. Hence, the data are easily to be given scholarly

credit to all contributors to the data. All the characteristic make the PDB data be a good

practice model to help us study the behaviors that how the protein structure data being used

by the researchers. There are two major ways to cite these data items: citing the primary

citation paper (citation), or mention the PDB ID (mention). Although the DOI or URL of
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data are trackable, the usage of other data citation practices include URL mentions, DOI

mentions is still low, so we focus on the two major ways. We believe that if users could

mention the PDB IDs or citing the primary citation papers in the article, which can be

great benefit to both sides of data provider and repository developer.

Another aspect is to consider the co-cited relationships between articles. Co-citation

links two articles that are cited together by another article. To study the co-citation network

may help address a problem of citation counts, which usually take too long to accumulate

for a new paper to be considered more influential than an old one. Similar to the co-

citation, we also try to investigate another pattern that is the co-mention. Co-mention is

defined as the frequency with which two PDB IDs are mentioned together in a research

article. The higher co-citations or co-mentions two articles receive could assert that the

more likely they are related. Analysis of the co-citation and co-mention patterns will not

only highlight behaviors of how the PDB data being used, but also help to establish the

quantitativemethods for measuring the similarity of two PDB entries. Wewant to compare

them so that we can see how citing primary citation and PDB ID mention lead to different

results as a metric of influence.

In the previous work, we have studied PDB as a data repository [38], now we want to

study its’ data items, which are the protein structure data. We aims to answer the following

questions:

• Do PDB users mention to PDB IDs in their paper more often than citing the primary

citation papers? How many use both?

• How is the PDB entry statistically dependent to the data citation frequency?

• For each PDB entry, how does their citation count statistically correlate to mention

count?

• What are the co-citation and co-mention patterns of the PDB entries? Are these two

kinds of patterns consistent to each other?

• If the authors clearly cite data sources will also help improve impact of their own

papers?
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In practice, we organize two of the questions as the null hypothesis statements involves the

variables, including the PDB IDs, citation count and mention count. And we apply statis-

tical hypothesis test to verify the difference of these variables. Specifically, we consider

the null hypothesis that the PDB IDs are independent of the corresponding data citation

frequencies, and the other is that citation frequencies and the mention frequencies of the

PDB entry are linearly independent. We then perform the G-test of independence and

Pearson correlation test to verify these statements. Moreover, we illustrate the analysis of

co-citation and co-mention patterns from the view of data citation network. We also try

to identify the influential studies of protein structure by previously proposed model, the

calibrated disruption score [38, 37].

4.2 Materials and Methods

4.2.1 Citation data

The citation data used in our study were collected from MEDLINE \ PubMed database

(http://www.ncbi.nlm.nih.gov/pubmed) through theXML format files from theNLM’s

FTP server (http://www.nlm.nih.gov/bsd/licensee/access/medline\_pubmed.html),

given in the XML structure of ⟨CommentsCorrections RefType=“Cites”⟩. Our data

set contains totally 22,732,343 articles and 102,783,011 pairs of cited-citing relation from

PubMed, obtained in August 2015.

4.2.2 Mention data

We extracted and counted articles containing mentions of PDB ID from the full-text arti-

cle data available from PubMed Central (PMC). The data is available for download from

(http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/), in either NXML markup language or

plain text. We obtained 1,015,179 articles in NXML format, and 1,093,980 articles in plain

text format as of August 2015. Removing duplicate PMC IDs yielded a total of 1,015,233

articles. Implementing the full-text mining will help to the statistic of the PDB IDs men-

tioned in the research articles, and it will also reflect the truly data usage. wwwPDB
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provide data download statistics, which directly measure how often the data is accessed.

However, some downloads are not reflected to actual usage. For example, they might be

performed by mirroring software. The statistic of the PDB IDs mentioned will help us to

distinguish ”legitimate” data usage from downloads count.

4.2.3 Mentions of issued PDB IDs

Each PDB entry has an unique identification code, and these codes are recorded as 4

characters in length. The first character is a numeral in the range 1-9, while the other three

characters can be mixed with either numerals or letters. Table 4.1 shows all the issued

PDB IDs presented in full-text format articles. In free text, the PDB IDs sometimes will

be confused with other abbreviations in the text mining process, i.e., false positives of

PDB IDs. For example, the PDB ID ”3AUT” will be confused with the the abbreviation

of postal code ”385 Euston Road, London, NW1 3AUT, UK”, the PDB ID ”2NO3” will

be confused with the the abbreviation of chemical formulas ”Zn(H2O)2(C5H5N3O2)2

2NO3 ..”, and the PDB ID ”3DEE” will be confused with the the abbreviation of software

”domain definitions from SCOP, CATH, DALI, 3DEE, and MMDB are ..”. In order to

solve this problem, we develop a machine learning based approach for recognizing the

PDB IDs mentioned in the research articles that incorporated with the prefix information

to minimize ambiguities, and it greatly decreasing the false positive rate of identifier.

Table 4.1: Mentions of Issued PDB IDs.
Identifier Example Machine Readable Mentions %
PDB ID PDB ID: 1STP Y 14,888 4.8
PDB DOI http://dx.doi.org/10.2210/pdb1stp/pdb Y 155 0.05

External Link Tag <ext-link .. ext-link-type=”pdb” xlink:href=”1STP”> Y 32,108 10
PDB File Name 1stp.pdb Y 895 0.03
PDB URL http://www.rcsb.org/../structureId=1stp Y, but URL may change 657 0.2

Non-standard PDB ID PDB code: 1STP, Y/N 22,081 7.1
PDB reference 1STP,

PDB accession number 1STP,
Many variations..

PDB in Context We employed the following PDB coordinates: Y/N with NLP or ML 16,726 5.4
glycogen phosphorylase , 1gpy..

Free Text We first placed S2 bound to human PI3KC; Y/N with NLP or ML 221,287 72
(3ene) into the reference coordinates..
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4.2.4 G-test of Independence

P is the set of all the entries deposited to PDB. For a PDB entry, p ∈ P , the citation

of p, cite(p) is the set of articles that citing on the primary citation of p. The mention

of p, ment(p) is the set of articles that have mentioned the ID of p anywhere in the text

area. G-test is a good method to see whether the observations of distribution fits to a

theoretical expectation. The null hypothesis is that the PDB IDs are independent of the

corresponding data citation frequencies. The observed matrix includes the data citation

frequency of each PDB entry. We let each row cells of the observed matrix be the pair

of values, (|cite(p)|, |ment(p)|). The expected matrix is constructed by random sampling

from a distribution with the given expected frequencies. We then want compute each row

cells of expected matrix, denoted as the pair of values, (excite(p), exment(p)), as the

following values,

excite(p) = (
∑
p∈P

|cite(p)|+|ment(p)|)× |cite(p)|
|cite(p)|+ |ment(p)|

× |cite(p)|∑
p∈P |cite(p)|

, (4.1)

exment(p) = (
∑
p∈P

|cite(p)|+ |ment(p)|)× |ment(p)|
|cite(p)|+ |ment(p)|

× |ment(p)|∑
p∈P |ment(p)|

,

(4.2)

which are the expected citation and expected mention of p. We define the G-test statistic,

G, as the following value,

G = 2
∑
p∈P

(|cite(p)| ln |cite(p)|
excite(p)

+ |ment(p)| ln |ment(p)|
exment(p)

). (4.3)

We use the degrees of freedom, which is the size of total PDB IDs to decide the G-test

distribution function, and we can use the function to calculate the p-value by the given G.

4.2.5 Pearson Correlation Coefficient

Pearson correlation coefficient is used to quantify the dependence of two variables. We

use the Pearson correlation coefficient for calculating the dependence between the distri-

butions of citation and mention for the whole data. The null hypothesis is that the citation
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frequencies and the mention frequencies of each p are linearly independent. We letmcite

be the value, 1
|P |
∑

p∈P |cite(p)| andmment be the value, 1
|P |
∑

p∈P |ment(p)|. We define

the Pearson correlation coefficient statistic as the following value,

∑
p∈P (|cite(p)| −mcite)(|ment(p)| −mment)√∑

p∈P (|cite(p)| −mcite)2
√∑

p∈P (|ment(p)| −mment)2
. (4.4)

The p-value here is the probability that the correlation coefficient between citation fre-

quencies and the mention frequencies were in zero, which is the null hypothesis. We can

compute the p-value by the Pearson’s correlation coefficient distribution function.

4.2.6 Co-citations/mentions between PDB Entries

The co-citation, co-cite(p1, p2) of two PDB entries p1 and p2 is the set of papers that both

citing on the primary citations of p1 and p2, it can be defined as,

co-cite(p1,p2) = cite(p1) ∩ cite(p2), (4.5)

and we call |co-cite(p1, p2)| as the co-citation degree of p1 and p2. Similarly, the co-

mention papers, co-mention set of two PDB entries p1 and p2 can be also defined as,

co-ment(p1,p2) = ment(p1) ∩ment(p2), (4.6)

and the size of co-ment(p1, p2) is the co-mention degree of p1 and p2.

4.2.7 Jaccard Index

The Jaccard Index is used to quantify the difference of the identified neighborhoods for

a PDB entry, p ∈ P , according to the corresponding co-citation or co-mention sets. The

top k ranking neighborhoods of p ordered by the co-citation degree is defined as the set,

nck(p), and the top k ranking neighborhoods of p ordered by the co-mention degree is
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defined as the set, nmk(p), then

intersectionk = nck(p) ∩ nmk(p), (4.7)

and

unionk = nck(p) ∪ nmk(p), (4.8)

and then we define the Jaccard Indexk as,

Jaccard Indexk =
∑
i∈k

intersectioni

unioni

. (4.9)

4.3 Results and Discussion

4.3.1 User Tendency to the PDB Data Citation

We start by investigating the tendency that the authors tend to cite primary citation pa-

pers or mention the PDB IDs in the text as data citation practice. Fig. 4.1(A) shows that

the annual growth to the count of entries depositing to the PDB repository. The number

grows very fast, and there are totally 110,790 entries as of 4 August 2015. Most of them

are crystalized by the X-ray diffraction. Fig. 4.1(B) shows that the annual growth of the

citation to the primary citation papers and the mention frequency of PDB data. Note that

since the annual counts were obtained from full-text articles in PubMed Central, we only

counted the citations from the papers in PubMed Central to make the numbers are com-

parable. The result of Fig. 4.1(B) shows that the growth rate of the annual counts of data

citation is higher than the growth rate of depositing PDB entries. Most of the authors tend

to directly cite on the primary citation papers of the used PDB data instead of mention the

PDB IDs in the papers.

4.3.2 Trends of Protein Structure Researches

We then investigate which kinds of PDB data are the most cited and mentioned on protein

structure researches. We list the top ten PDB entries which are sorted in the order of data
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Figure 4.1: (A) Growth of the depositions of new PDB entries. (B) Annual growth of
the citations to the PDB entries’ primary citation papers (blue bar), sum of all the PDB
IDs’ mention (green bar) and the count of the articles that not only directly cite the PDB
entries’ primary citation papers but also mention the PDB IDs (red bar).

citation and mention frequency, shown as the Table 4.2 and Table 4.3. These PDB entries

are also annotated with their properties, the category of the protein structure and the source

of organism from which the protein structure is crystalized.

Table 4.2: Top 10 PDB Entries. (Sorted by citation frequency)
PDB ID Year Citations Citation Rank Mentions Mention Rank Category Source
1AOI 1997 1527 1 31 37 DNA Binding Protein XENOPUS LAEVIS
1BL8 1998 1234 2 35 24 Membrane Protein STREPTOMYCES LIVIDANS
1F88 2000 957 3 44 16 Signaling Protein BOS TAURUS
1GC1 1998 852 4 26 57 Viral Protein; Receptor; HOMO SAPIENS; HIV 1

Immune System
1RV1 2004 747 5 11 488 Ligase HOMO SAPIENS
1FFK 2000 746 6 31 34 Ribosome HALOARCULA MARISMORTUI
2RH1 2007 682 7 124 1 Membrane Protein HOMO SAPIENS
1YSG 2005 650 8 6 1984 Apoptosis HOMO SAPIENS
2A79 2005 635 9 49 10 Membrane Protein RATTUS NORVEGICUS
1AIK 1997 561 10 12 403 Viral Protein HIV-1 M:B HXB2R

Table 4.3: Top 10 PDB Entries. (Sorted by mention frequency)
PDB ID Year Mentions Mention Rank Citations Citation Rank Category Source
2RH1 2007 124 1 682 7 Membrane Protein HOMO SAPIENS
1UBQ 1987 96 2 222 142 Chromosomal Protein HOMO SAPIENS
1KX5 2002 69 3 272 87 Structural Protein HOMO SAPIENS; XENOPUS LAEVIS
2R9R 2007 65 4 433 20 Membrane Protein RATTUS NORVEGICUS
3EML 2008 65 5 408 24 Membrane Protein; HOMO SAPIENS;

Receptor ENTEROBACTERIA PHAGE T4
1U19 2004 64 6 227 134 Signaling Protein BOS TAURUS
1K4C 2001 59 7 454 18 Membrane Protein STREPTOMYCES LIVIDANS;

MUS MUSCULUS
2VT4 2008 55 8 356 38 Receptor MELEAGRIS GALLOPAVO
2B4C 2005 55 9 289 71 Viral Protein HOMO SAPIENS;

SYNTHETIC CONSTRUCT; HIV 1
2A79 2005 49 10 635 9 Membrane Protein RATTUS NORVEGICUS

From the results of Table 4.2 and the Table 4.3, we could find that the selected top
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ten PDB entries ordered by citation frequency and mention frequency are not consistent,

although most of them are belong to the category of membrane protein and the organism

source of them are crystallized from homo sapiens. We also want to apply statistical hy-

pothesis test to verify the difference between the variables, including the PDB entry, their

corresponding citation frequency and mention frequency for the whole PDB data.

4.3.3 Statistic Test to the Data Citation

Weuse theG-test of independence to verify the hypothesis that whether the observations of

PDB IDs is dependent of the distribution of data citation. Besides, the Pearson correlation

coefficient is used for calculating the linear dependence between the citations count and

mentions count for the whole PDB entries, and try to test the hypothesis that distribution

of citation frequency are dependent of the mention frequency. We observe the p-value of

G-test of independence and Pearson correlation coefficient depend on selecting from the

front of top highly cited PDB entries to the whole PDB data, shown as Fig. 4.2(A) and

(B).

Fig. 4.2(A) shows that the p-value of G-test of independence drops to 4.28e-8 when

the selected k equals to 4, and we get the p-value closed to zero for the whole PDB data. It

indicates that the PDB IDs are dependent of the corresponding data citation frequencies.

Additionally, Fig. 4.2(B) shows that the p-value of Pearson correlation coefficient grows

in oscillation amplitude, but suddenly drops to close to zero when the selected k reaches to

135, revealing that the probability of citation frequencies and themention frequencies were

linearly independent is very low. Fig. 4.2(C) shows that growth of Pearson correlation

coefficient. The change of coefficient value is very slow, and increased to 0.48 for the

whole PDB data, suggesting that the citation frequencies and the mention frequencies are

in moderate linear relationship. We also use the Q-Q plot, which is a probability plot used

for comparing two distribution variables by plotting their quantiles against each other,

shown as Fig. 4.2(D). We could find that the distribution of data citation and mention

frequency are almost in the linear growth. It indicates that the probability distribution of

these two variables are similar to each other.
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Figure 4.2: (A) P-value of G-test of independence. (B) P-value of Pearson correlation
coefficient. (C) The growth of Pearson correlation coefficient. (D) Q-Q plot between the
distributions of citation and mention.

4.3.4 Analysis of the Co-citation/mention Patterns

Analysis of the co-citation and co-mention patterns will reveal that how the PDB data be-

ing used. We try to use the Jaccard index to quantify the difference of the identified neigh-

borhoods for a PDB entry, p, according to the corresponding co-citation or co-mention

degree. We only consider those PDB entries possess both the co-cited and co-mentioned

neighborhoods. The PDB entries will be sorted in their corresponding Jaccard index that

compares the top 3 co-cited or co-mentioned ranked selected neighborhoods, shown as

Fig. 4.3(A). The Jaccard index drop a little bit faster than linear. We normalize the area of

Fig. 4.3(A) as 1, and calculate ratio of the area under the curve, and get the value is 0.1123,

suggesting that it is inconsistent between co-citation and co-mention neighbors for most

PDB IDs.
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From the observation of the annual growth of the citation and mention to the PDB en-

tries on Fig. 4.1(B), it may suggest that the deposited time is correlated the consistency be-

tween co-citation and co-mention neighbors. Fig. 4.3(B) shows the average Jaccard index

ordered by the deposited time, and support our hypothesis.
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Figure 4.3: (A) Distribution of Jaccard index3 of PDB IDs. (B) The average
Jaccard index3 ordered by the deposited time.

We then try to analysis of the co-citation/mention patterns to PDB categories. We

denote the set of PDB categories as Cat, and a PDB entry p will be classified into at least

one category, cat ∈ Cat. The top highly cited category of PDB data is selected according

to the order of average citations, which can be calculated by,

AverageCitation(cat) =
1

|p ∈ cat|
∑
p∈cat

∥cite(p)∥, (4.10)

Table 4.4 shows the selected five category of protein structure. The co-citation set and the

co-mention set of two categories cat1 and cat2 are defined as,
∪

p1∈cat1,p2∈cat2 co-cite(p1, p2),

and
∪

p1∈cat1,p2∈cat2 co-ment(p1, p2). The co-citation degree and co-mention degree are

the length of co-citation set and co-mention set separately. Fig. 4.4(A) and (B) shows the

results of co-citation degree and co-mention degree among the selected five categories.

The value of heatmap is defined as the normalized co-citation or co-mention degree be-

tween pairs of categories. Analysis of the co-citation and co-mention patterns will help to

highlight behaviors of how the PDB data being used across the different categories of pro-

tein structure. We could find the receptor, membrane protein and viral protein are highly
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co-cited and co-mentioned to each other. The results of these two figure are very similar.

However the scale of the co-citation degree is large than the co-mention degree. In the

Table 4.4, the order of average citation consistent with the order of the average mention.

Table 4.4: Highly cited category of PDB data.
Category PDB IDs count Total citations Average citation Total mentions Average mention
Receptor 102 5115 50.15 403 3.95
Ribosome 142 6825 48.06 364 2.56

Membrane Protein 640 21475 33.55 1467 2.29
Gene Regulation 208 6752 32.46 462 2.22
Viral Protein 849 27452 32.33 1530 1.80

Figure 4.4: Heatmap of (A) co-citation degree between top cited categories of PDB
IDs.(B) co-mention degree between top cited categories of PDB IDs.

4.3.5 Identification of the Influential PDB Entries

Based on the co-citation and co-mentionmetrics, we could list the co-cited and co-mentioned

studies of protein structure for the entries of PDB repository. A citation cascade is con-

structed by a series of citations between two articles. In Previous chapter, we have de-

veloped a method that can be used to quantify the disruption of citation cascades of an

established paradigm, and it can serve as an early indicator of paradigm shift [38, 37].

Intuitively, a 5-year (τ = 5) calibrated disruption score greater than 0.7 amounts to a

large portion of the new influence of the seed paper is indeed due to the challenger, sug-

gesting that its influence has been disrupted by the challenger. In this section, it can be

implemented on all the pairs of PDB entries’ primary citation papers to identify related

influential study of PDB entries. We take two of the highly cited PDB entries, 1AIK [16]
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and 1F88 [57] from the two major PDB categories, membrane protein and viral protein

for examples. Glycoprotein 41 (gp41) is a well-known subunit of the envelope protein

complex of retroviruses, and the primary citation paper of 1AIK is the pioneer protein

structure study of gp41. In order to identify the influential succeeding PDB entries, Ta-

ble 4.5 and Table 4.6 list all the related PDB entries as the co-cited and co-mentioned

neighborhoods for 1AIK. We could find all of them are related to the viral protein, im-

mune system or inhibitor and most of them are crystalized from the HIV-1. Based on the

results of calibrated disruption score, PDB entry 1ENV [72] is identified as the influen-

tial one to 1AIK. The study of 1ENV provide a X-ray crystallography to determine the

structure of gp41 ectodomain. On the other hand, the primary citation paper of 1F88 is an

important study of crystal structure of G protein-coupled receptor. Table 4.7 and Table 4.8

list all the related PDB entries as the co-cited and co-mentioned neighborhoods for 1F88.

Most of the identified co-cited and co-mentioned neighborhoods are the same, and are

belong to signaling or membrane protein. However, the source organism from where they

are crystalized are diverse. Based on the results of calibrated disruption score, 1L9H [56]

is identified as the influential one to 1F88, it is the same authors’ consequent study to the

primary citation paper of 1F88. PDB entry 2RH1 [20] is identified as the second influ-

ential one. It is consistent to the development of G protein-coupled receptor researches,

the work of 2R4R, 2R4S [25] is the first time to successful crystallized the G protein-

coupled receptor structure from homo sapiens, however, there was immediately another

higher resolution of same crystal structure, 2RH1 that delivered by the same authors.

Table 4.5: Co-cited neighbor entries of the PDB entry-1AIK
co-citation Calibrated

PDB ID Year degree disruption score Category Source
1ENV 1997 412 0.74 Viral Protein SACCHAROMYCES CEREVISIAE
1SZT 1997 178 0.43 Viral Protein HIV 1
1GC1 1998 163 0.48 Viral Protein HOMO SAPIENS; HIV 1
1HTM 1994 109 0.29 Viral Protein UBPU-608

2EZO,2EZQ,2EZP,2EZS,2EZR 1998 99 0.43 Viral Protein SIMIAN IMMUNODEFICIENCY VIRUS
2Q7C,2Q3I,2Q5U 1999 69 0.38 Viral Protein HIV 1

1CZQ 1999 69 0.38 Viral Protein; SACCHAROMYCES CEREVISIAE; HIV 1
Inhibitor ;SYNTHETIC CONSTRUCT

1MOF 1996 68 0.46 Viral Protein MOLONEY MURINE LEUKEMIA VIRUS
1EBO 1998 54 0.45 Viral Protein EBOLA VIRUS SP.
2BF1 2005 53 0.32 Viral Protein SIMIAN IMMUNODEFICIENCY VIRUS
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Table 4.6: Co-mentioned neighbor entries of the PDB entry-1AIK
co-mention Calibrated

PDB ID Year degree disruption score Category Source
1ENV 1997 3 0.74 Viral Protein SACCHAROMYCES CEREVISIAE
1F23 2001 2 0.16 Viral Protein HIV 1
1GC1 1998 2 0.48 Viral Protein HOMO SAPIENS; HIV 1
2NY7 2007 2 0.37 Viral Protein HIV 1; HOMO SAPIENS
3DNN 2008 2 0.35 Viral Protein; Immune System HIV-1 M:B-HXB2R
2B4C 2005 2 0.28 Viral Protein; Immune System HIV 1;

HOMO SAPIENS; SYNTHETIC CONSTRUCT
3NGB 2010 2 0.21 Viral Protein; Immune System HIV 1; HOMO SAPIENS
3MA9 2010 2 0.07 Immune System HIV 1; HOMO SAPIENS
3MAC 2010 2 0.07 Immune System HIV 1; HOMO SAPIENS
2X7R 2010 2 0.05 Viral Protein HIV 1 LW12.3 ISOLATE

Table 4.7: Co-cited neighbor entries of the PDB entry-1F88
co-citation Calibrated

PDB ID Year degree disruption score Category Source
2RH1 2007 313 0.41 Membrane Protein HOMO SAPIENS; ENTEROBACTERIA PHAGE T4

2R4R,2R4S 2007 222 0.34 Signaling Protein HOMO SAPIENS; MUS MUSCULUS
3EML 2008 217 0.33 Membrane Protein; Receptor HOMO SAPIENS; ENTEROBACTERIA PHAGE T4
2VT4 2008 210 0.33 Receptor MELEAGRIS GALLOPAVO
3DQB 2008 166 0.37 Signaling Protein BOS TAURUS; SYNTHETIC CONSTRUCT
3CAP 2008 155 0.31 Signaling Protein BOS TAURUS
1U19 2004 153 0.32 Signaling Protein BOS TAURUS
1GZM 2004 136 0.34 Signaling Protein BOS TAURUS

3OE0,3OE9,3OE8 2010 125 0.13 Signaling Protein HOMO SAPIENS; ENTEROBACTERIA PHAGE T4
,3OE6,3ODU ; SYNTHETIC CONSTRUCT
2I36,2I37,2I35 2006 107 0.38 Membrane Protein BOS TAURUS

Table 4.8: Co-mentioned neighbor entries of the PDB entry-1F88
co-mention Calibrated

PDB ID Year degree disruption score Category Source
2RH1 2007 10 0.41 Membrane Protein HOMO SAPIENS; ENTEROBACTERIA PHAGE T4
3EML 2008 8 0.33 Membrane Protein; Receptor HOMO SAPIENS; ENTEROBACTERIA PHAGE T4
1GZM 2004 7 0.34 Signaling Protein BOS TAURUS
2VT4 2008 8 0.33 Receptor MELEAGRIS GALLOPAVO
1U19 2004 7 0.32 Signaling Protein BOS TAURUS
3CAP 2008 7 0.31 Signaling Protein BOS TAURUS
3ODU 2010 7 0.13 Signaling Protein HOMO SAPIENS; ENTEROBACTERIA PHAGE T4
3PBL 2010 6 0.12 Hydrolase HOMO SAPIENS, ENTEROBACTERIA PHAGE T4
1L9H 2002 5 0.44 Signaling Protein BOS TAURUS
3NY9 2010 5 0.10 Membrane Protein HOMO SAPIENS; ENTEROBACTERIA PHAGE T4

4.3.6 If the Authors Clearly Cite Data Sources Will Also Help Im-

prove Impact of Their Own Papers?

Based on the results of Pearson correlation coefficient, we could find that the growth of

citation and mention frequency are in moderate linear relationship. It may suggest that

the PDB users are encouraged to do the clear data mention in their papers will also help

to increasing the citation. However, we should point out the problem that do we need to

suggest authors that clearly citing data sources help improve impact of their own papers.

We try to answer this question through dividing the PDB entries’ citing or ID mention-

ing articles into some groups. For a PDB entry, p ∈ P , a specific journal j of published
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year t, those papers citing to p’s primary citation is denoted as citejt(p) and those papers

mentioning p’s is denotedmentjt(p). We consider five journals that all related the protein

structure researches, including PLOS Pathogens (PLoS Pathog.), Acta Crystallographica

Section D (Acta Crystallogr. D), The Journal of Biological Chemistry (J. Biol. Chem.),

BMC Structural Biology (BMC Struct. Biol.), and Nature Structural and Molecular Biol-

ogy (Nat. Struct. Mol. Biol.). The papers are divided into as the following four patterns

for further discussion.

Figure 4.5: Venn Diagram of the selected papers.

• Pattern 1 papers: Those PDB ID mentioning articles that also cites to the corre-

sponding PDB primary citation, which is denoted as the set,mentjt(p) ∩ citejt(p),

p ∈ P .

• Pattern 2 papers: Those PDB ID mentioning articles that do not cite to the corre-

sponding PDBprimary citation, which is denoted as the set,mentjt(p)\(mentjt(p)∩

citejt(p)), p ∈ P .

• Pattern 3 papers: Those articles citing to the PDB entries’ primary citation, but do

not mention the corresponding PDB ID, which is denoted as the set, citejt(p) \

(mentjt(p) ∩ citejt(p)), p ∈ P .

• Baseline papers: Those articles do not cite any of the PDB entries’ primary citation,

nor mention the PDB IDs, which is denoted as the set, Jt \ (mentjt(p)∪ citejt(p)),

Jt is the set of articles of the corresponding journal published at time t and p ∈ P .
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The difference of citations between pattern i articles of p, ptni(p), and the pattern j

articles of p, ptnj(p) is given by,

diff(p) =
1

∥ptni(p)∥
∑

k∈ptni(p)

∥cite(k)∥ − 1

∥ptnj(p)∥
∑

k∈ptnj(p)

∥cite(k)∥, (4.11)

then we summarized the difference results for a subset, P ′ ⊂ P , where the element p ∈ P ′

both contains pattern i and pattern j articles, and the difference can be calculated by,

diff(P ′) =
1

|P ′|
∑
p∈P ′

diff(p). (4.12)

Fig. 4.6 help us to know that if the authors both clearly citing the data sources and mention

the IDs of used data will get more citations than those only citing the data sources or

mention the IDs, all the pairs from pattern 1 papers to pattern 3 papers are considered to

answer this question. However, the result shows that it is not clear if the authors clearly

citing data sources or mention the IDs of used data on the papers will help improve impact

of their own papers. Moreover, Fig. 4.7 answer the question that if the authors both clearly

citing the PDB data or mention the PDB IDs will get more citations than those papers nor

citing PDB data or mention the PDB IDs. In comparison with baseline papers, the results

of PLoS Pathog. and Nat. Struct. Mol. Biol. show that those authors citing PDB primary

citation papers or mention the PDB IDs have more citations.

4.4 Summary

In this chapter, we consider the issues surrounding the various of data citation to the PDB

data. These analyses offer insights into the investigating of data citation behavior patterns

of the users and help us to know the trends of protein structure researches. And this under-

standing can then hopefully help us to figure out what the properties of protein structure

be studied as the popular research topics over the past decade. Our findings include that

1. The user prefer to only cite the primary citation of PDB data, instead of mentioning

the IDs of PDB data.
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Figure 4.6: The difference of two pattern articles in (A) Case 1: Both mention & citing
(pattern 1) vs. Only mention (pattern 2), (B) Case 2: Both mention & citing (pattern 1) vs.
Only citing (pattern 3), and (C) Case 3: Only mention (pattern 2) vs. Only citing (pattern
3).

2. The PDB entries are dependent of their data citation frequencies.

3. The citation frequencies and the mention frequencies are in moderate linear rela-

tionship.

4. A comparison of co-citation and co-mention shows that the similar protein structures

researches tend to potentially be clustered together.

Additionally, we do a complete data usage study to the PDB repository that incorporated

with the co-citation/mention metrics and the disruption quantization, that will mature the

process for helping PDB users to find out those concerned and needed protein structure

data, and will also help to facilitate data sharing and reusing. Finally, we believe that if

users could cite the data and mention the IDs (or DOIs) in the article, that can be benefit
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Figure 4.7: The difference of two pattern articles in (A) Case 4: Both mention & citing
(pattern 1) vs. Nor mention & citing (baseline), (B) Case 5: Only mention (pattern 2) vs.
Nor mention & citing (baseline), and (C) Case 6: Only citing (pattern 3) vs. Nor mention
& citing (baseline).

to both sides of data provider and repository developer.
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Chapter 5

Summaries and Future Work

5.1 Summary of the results

Encouraging the practice of data citation that contributes to data reused, experiments re-

produced, and provide machine readability for tracing the data usage, and make the data

are easily to be given scholarly credit to all contributors to the data. Moreover, it help to

be sufficiently flexible to accommodate the variant data interpretability among different

database. In this thesis, we studied the data citation patterns of the PDB repository. From

the results of these analyses, we recommended data citation and provenance practices,

approaches to discover data citations, ways of linking citations and data, and data access

metrics. Here, we summarize our analytical methodology and review the results.

In Chapter 2, we proposed a method to identify transformative challengers by mea-

suring how much they disrupt the growth of citation cascades of papers representing the

established paradigm. We studied citations records of physics and computer science pa-

pers. Our method can efficiently calculate the disruption score of challenger papers in

these large citation datasets. For each case study, our method found challengers that were

more relevant to the seed and more important, as judged by later citation by the Nobel

prize committee.

In Chapter 3, we applied an approach using disruptions of citation cascades and cor-

relate data citations with data usage statistics to compare the citations to PDB repository

by citing original and followup publications and URLmentioning. From the experimental
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results, it revealed that the traditional academic citations is still not sufficient. Especially,

we could find that the authors often mention the PDBURL, instead of citing on these PDB

publications. They are certainly the latent PDB repository’s users, but will not be reflected

on the academic citations. Therefore, it will result in an underestimation of the impact of

PDB.

In Chapter 4, we addressed the issues surrounding the various of data citation and

access metrics to the PDB data. Meanwhile, our studies focus on the interplay of PDB IDs

mentions recognition and references cited of the literature, and the relative importance of

these two mechanisms can be expressed by investigating the data citation patterns. We

believe that if users could cite the data and mention the IDs (or DOIs) in the article, that

can be great benefit to both sides of data provider and repository developer. However,

the results reveal that authors increasingly choose to only cite the primary citation of PDB

data instead of mentioning the IDs of PDB data. This chapter described a general approach

for visualizing the trend of how authors use PDB data and offered insights into the data

citation behavior patterns of the users.

5.2 Limitations

Although our framework tried to reflect scholarly impact in the broader sense, our model

often have been limited by accessibility to and scalability of data. By contrast, altmetrics

probably take a broad view of visibility in comparison to scholar citation metrics. Sev-

eral social media platforms have been proposed as alternatively sources for measuring

the impact of altmetrics on scholarly publications, such as search engine (like Google)

query counts, social media mentions (mentioned in Twitter, Facebook, or Github) that of-

ten provide free access to usage data through corresponding APIs, hence, data collection

is relatively easier and less cost. In response, more and more electronic journals have

turned to altmetrics, which providing citations or mentions count in specific social media

services. However, these kinds of citations or mentions tend to increase explosively in

the short term that against the characteristic of our framework. Moveover, the coverage

of all the social media sources seems to be low except for Twitter, so it is not clear if it is
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suitable to be useful in practice.

Another limitation is that the text and citation data in PubMed Centeral is far from

complete, missing important journals like Nature, though according to the theory of power

law network this might not affect the conclusions too much.

5.3 Future directions

In the future, we will try to analyze the characteristics of all kinds of PDB related ci-

tation networks to see how the data and citations influenced or enabled groundbreaking

research and development of drugs. This analysis will use the drug and drug target map-

ping between the RCSB PDB and DrugBank. The purpose here is to correlate various

access metrics with tangible impact indicators to determine empirically which metrics are

more informative. Analysis of citation and data cascades of these networks will highlight

putative pathways of how data and concepts led to the discovery of drug candidates.
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Appendix A

Estimation of the Subsampling Error of

Disruption Score

For any strictly positive constant ε, with probability greater than 1−2e−2ε2|C′
t| 1
4ε|C′

t|

√
π

2|C′
t|
−

2e−2ε2|C̃′
t| 1

4ε|C̃′
t|

√
π

2|C̃′
t|
, if

(
Φt(C

′) − Φt(C̃ ′)
)
> 0 then ∃S > 0,

(
Φt(C) − Φt(C̃)

)
∈

(S + ε, S − ε). We divide the proof into the following two parts.

• part 1. Prove that let S =
(
Ej∼C′

t
[ϕC(j)]− E

j∼C̃′
t
[ϕC(j)]

)
, we have

(
Φt(C

′)− Φt(C̃ ′)
)
=
(
Ej∼C′

t
[ϕC′(j)]− E

j∼C̃′
t
[ϕC′(j)]

)
> 0 =⇒ S > 0. (A.1)

• Part 2. Prove

Pr
(∣∣∣S − (Ej∼Ct [ϕC(j)]− Ej∼C̃t

[ϕC(j)]
)∣∣∣ > ε

)
< 2e−2ε2|C′

t|
1

4ε|C ′
t|

√
π

2|C ′
t|
+ 2e−2ε2|C̃′

t|
1

4ε|C̃ ′
t|

√
π

2|C̃ ′
t|
.

Proof of Part 1.

(
Ej∼C′

t
[ϕC′(j)]− E

j∼C̃′
t
[ϕC′(j)]

)
> 0 =⇒

(
Ej∼C′

t
[ϕC(j)]− E

j∼C̃′
t
[ϕC(j)]

)
> 0 (A.2)

Let the difference between the new ϕ of the nodes in the subsampled cascade C ′ and
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the original ϕ as the following,

∆ϕC(j) = ϕC(j)− ϕC′(j)

= α

(∑
i∈C

ϕC(i)I(i ∈ cite(j)&i /∈ C ′) +
∑
i∈C

∆ϕC(i)I(i ∈ cite(j)&i ∈ C ′)

)
,

and its expectation is

E[∆ϕC(j)] ≈ αE(|cite(j)|)
(
(1− ρ)|C|E[ϕC(i)] + ρ|C|E[∆ϕC(i)]

)
, (A.3)

where ρ ≡ |C′|
|C| is the sampling rate. From Eq. (A.3), we can conclude that,

E[∆ϕC(j)] > E[∆ϕC(i)],∀i ∈ cite(j). (A.4)

Furthermore, for those nodes j ∈ C1 at the initial time t = 1, it is held that

∆ϕC1(j) ≥ 0. (A.5)

From (A.4) and (A.5), we have

E[∆ϕC(j)] ≥ 0, ∀j ∈ C, (A.6)

and the main statement (A.1) can be proved by

(
Ej∼C′

t
[ϕC(j)]− E

j∼C̃′
t
[ϕC(j)]

)
= αE[|cite(j)|]|C ′

t|E[ϕC(i)]− αE[|cite(j)|]|C̃ ′
t|E[ϕC(i)]

= αE[|cite(j)|](|C ′
t| − |C̃ ′

t|)E[ϕC(i)]

= αE[|cite(j)|](|C ′
t| − |C̃ ′

t|)E[ϕC′
t
(i) + ∆ϕC(i)]

= αE[|cite(j)|](|C ′
t| − |C̃ ′

t|)(E[ϕC′
t
(i)] + E[∆ϕC(i)])

= αE[|cite(j)|](|C ′
t| − |C̃ ′

t|)E[ϕC′
t
(i)] + αE[|cite(j)|](|Ct| − |C̃ ′

t|)E[∆ϕC(i)]

=
(
Ej∼C′

t
[ϕC′

t
(i)]− E

j∼C̃′
t
[ϕC′

t
(i)]
)
+ αE[|cite(j)|](|Ct| − |C̃ ′

t|)E[∆ϕC(i)].

(A.7)
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Due to (A.6) and (A.7), if
(
Ej∼C′

t
[ϕC′

t
(i)] − E

j∼C̃′
t
[ϕC′

t
(i)]
)
is positive,

(
Ej∼C′

t
[ϕC(j)] −

E
j∼C̃′

t
[ϕC(j)]

)
will be positive, too. Consequently,

(
Ej∼C′

t
[ϕC′(j)]− E

j∼C̃′
t
[ϕC′(j)]

)
> 0 =⇒

(
Ej∼C′

t
[ϕC(j)]− E

j∼C̃′
t
[ϕC(j)]

)
> 0.

Proof of Part 2. Our goal is to show that
(
Ej∼C′

t
[ϕC(j)]−Ej∼C̃′

t
[ϕC(j)]

)
≃
(
Ej∼Ct [ϕC(j)]−

Ej∼C̃t
[ϕC(j)]

)
with a probability higher than 1− q, or more precisely,

Pr
(∣∣(Ej∼Ct [ϕC(j)]−Ej∼C̃t

[ϕC(j)])− (Ej∼C′
t
[ϕC(j)]−E

j∼C̃′
t
[ϕC(j)])

∣∣ > ε) < q. (A.8)

The proof is to derive q.

To simplify the notations, letA ≡ Ej∼Ct [ϕC(j)]−Ej∼C′
t
[ϕC(j)] andB ≡ Ej∼C̃t

[ϕC(j)]−

E
j∼C̃′

t
[ϕC(j)]. The probability in Inequality (A.8) can be rewritten as

Pr(|A−B| > ε) = Pr
(
((A−B) > ε) ∨ (−(A−B) > ε)

)
= Pr((A−B) > ε) + Pr(−(A−B) > ε)− Pr

(
((A−B) > ε) ∧ (−(A−B) > ε)

)
= Pr((A−B) > ε) + Pr(−(A−B) > ε)

< q.

Since the derivations are similar, we only provide that of Pr((A−B) > ε). The derivation

will involve Hoeffding’s inequality. Since C ′ is a random sample of C, from Hoeffding’s

inequality,

Pr(
(
Ej∼Ct [ϕC(j)]− Ej∼C′

t
[ϕC(j)]

)
> ε) < e−2ε2|C′

t|. (A.9)

Decomposing the convolution of the density functions of A and B, we have

Pr((A−B) > ε) =

∫
A−B>ε

fA(x) · fB(y)dxdy

=

∫ ∞

0

∫ ∞

ε+y

fA(x) · fB(y)dxdy +
∫ 0

−∞

∫ ∞

ε+y

fA(x) · fB(y)dxdy,

(A.10)
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where f(·) is the probability density function. The first term in (A.10) is

∫ ∞

0

∫ ∞

ε+y

fA(x) · fB(y)dxdy =

∫ ∞

0

fB(y)

∫ ∞

ε+y

fA(x)dxdy

=

∫ ∞

0

fB(y) Pr(A > ε+ y)dy

(Based on Inequality (A.9))

<

∫ ∞

0

fB(y)e
−2(ε+y)2|C′

t|dy

<

∫ ∞

0

fB(y)dy

∫ ∞

0

2e−2(ε+y)2|C′
t|dy

(By Cauchy-Schwarz inequality)

= Pr(B > 0)

∫ ∞

0

e−2(ε+y)2|C′
t|dy

< e0 ·
∫ ∞

0

e−2(ε+y)2|C′
t|dy

< 1 ·
∫ ∞

0

e−2(ε+y)2|C′
t|dy

= e−2ε2|C′
t|
∫ ∞

0

e−4εy|C′
t|e−2y2|C′

t|dy

< e−2ε2|C′
t|
∫ ∞

0

e−4εy|C′
t|dy

∫ ∞

0

e−2y2|C′
t|dy

(By Cauchy-Schwarz inequality)

= e−2ε2|C′
t|

1

4ε|C ′
t|

√
π

2|C ′
t|
. (By Gaussian integral)

(A.11)

It is symmetric for the second term:

∫ 0

−∞

∫ ∞

ε+y

fA(x) · fB(y)dxdy < e−2ε2|C′
t|

1

4ε|C ′
t|

√
π

2|C ′
t|
. (A.12)

Combining (A.11) and (A.12), we have

Pr(A−B > ε) < 2e−2ε2|C′
t|

1

4ε|C ′
t|

√
π

2|C ′
t|

(A.13)

Similarly, it holds that

Pr(−(A−B) > ε) < 2e−2ε2|C̃′
t|

1

4ε|C̃ ′
t|

√
π

2|C̃ ′
t|
. (A.14)
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From (A.13) and (A.14), the lower bound q of the probability in (A.8) is

2e−2ε2|C′
t|

1

2ε|C ′
t|

√
π

2|C ′
t|
+ 2e−2ε2|C̃′

t|
1

2ε|C̃ ′
t|

√
π

2|C̃ ′
t|
.
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Appendix B

Model-based Approximation for

Cascade Generating Function

Computation of the disruption scores must be efficient given ever-growing number of

biomedical sciences papers and citations. One challenge of the proposed approach is that

the computation of the cascade structure and pairwise comparison can be intractable. We

have several strategies to accelerate the computation. One strategy is to avoid exhaustive

pairwise comparison by reusing intermediate results. Suppose we would like to rank 100

candidate challengers by their disruption scores. A brute-force approach is to compute the

residue cascades for each of the candidates. By sorting these candidates in their topological

order in the citation network, the ϕ values computed for the upstream candidates can be

reused for the downstream candidates and significantly reduce the computational costs.

Another strategy is by approximation, where we can take advantage of the fact that

citations decay exponentially over time to estimate the size of cascades. Computing av-

erage cascade Φ can be intractable. A brute-force algorithm to compute Φ is to traverse

the citation network and update ϕ for each node visited by a topological sorting algorithm.

Such an exhaustive search algorithm slows down as the size of the citation network in-

creases exponentially in recent years. Arbesman [3] shows that, for any paper, the longer

away from the citing paper, the less likely that the paper will be cited, and the decay is

approximately exponential. Also, modern papers cite more often and the average cita-
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tions increase each year. The result suggests that it is possible to model the citation counts

accurately and we will take advantage of that to derive an approximation algorithm to ac-

celerate the computation of cascade overtaking. We now present accurate approximation

algorithms scalable to very large scale citation networks by taking advantage of properties

of Φ.

It has been suggested that citation counts of papers decay exponentially over time and

the rate of decay can be estimated accurately. We plotted the curves of the annual average

citation count of the papers in the APS citation network dataset as shown in Fig. B.1, which

shows that the longer away from the citing paper, the less likely that the paper will be cited,

and the decay is approximately exponential. Also, modern papers cite more often and the

average citations increase each year. The plot suggests that it is possible to model the

citation counts accurately and we will take advantage of that to derive an approximation

algorithm to accelerate the computation of cascade overtaking.

Given a cascade C, We model the number of citations by a function ΓC(t, τ), the

average citations from papers published in time t to papers published τ time steps (i.e.,

year, in this case) early. ΓC(t, τ) can be estimated and presented as a data point on a curve

in the plot.

Figure B.1: Average citations of papers in the APS citation network dataset. Each curve
is for the papers published in one year from 1970 (darkest) to 2009 (brightest). The curve
plots the change of the average citations to the past years. The horizontal-axis indicates
how many year from the publication time t.

Consider the problem of computing Φ. If we consider paper j ∈ Ct as a random

variable, then Φt(C) is by definition the expectation of ϕ(j). The number of citations
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from j to papers published in time t− τ will also be a random variable and its expectation

will be ΓC(t, τ). Then the expected contribution of these citations to ϕ(j)will be ΓC(t, τ)·

α · Φt−τ (C) approximately. Fig. B.2 illustrates this idea.

Figure B.2: Estimating average cascade function values Φ by modeling citation counts Γ.

Therefore, we can derive an approximation of Φ as follows:

Φt(C) = Ej∼Ct [ϕ(j)]

= Ej∼Ct

 t∑
τ=1

α
∑

i∈Ct−τ

I[i ∈ cite(j)]ϕ(i)


=

t∑
τ=1

α
(
Ei∼Ct−τ [

∑
I[i ∈ cite(j)]]Ei∼Ct−τ [ϕ(i)] + covi∼Ct−τ [

∑
I[i ∈ cite(j)], ϕ(i)]

)
(B.1)

≈
t∑

τ=1

αΓC(t, τ)Φt−τ (C). (B.2)

We note that I[s] is the identity function that returns 1 if the parameter s is true and

0 otherwise. The difference between the approximation (B.2) and (B.1) is the sum of the

covariance terms in (B.1). These terms are zero under the assumption that the cascade

function value ϕ of a paper, which depends on how many papers it cites, and how often it

is cited in the future, are uncorrelated. The assumption is reasonable and can be confirmed

empirically. Therefore, we expect that the approximation error will be negligible.

Compared to an exhaustive search algorithm, computing Φt(C) using Eq. (B.2) re-

duced the complexity from exponential to quadratic. Since the equation is defined recur-

sively, there are plenty of room to optimize its implementation. The preprocessing step
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that estimates Γ requires to visit each node once and therefore its time complexity is linear

to the size of the citation network.
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