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ABSTRACT

This study proposes a new two-point approximation method called two-point
piecewise adaptive approximation (TPPAA) for structural optimization. For applying
the mathematical optimization to structural design, several kinds of structural behavior,
including stress, displacement and natural frequency, are represented as explicit
functions of design variables by approximation technique. The optimum design can be
found with sequential sub-problems solved, which is known as sequential approximate
optimization (SAO). To ensure the approximation quality, structural behavior is
approximated with considering the monotonicity. Monotonic functions are available in
TPPAA when the first order derivatives of two successive design points have the same
signs since many kinds of structural behavior vary quasi-monotonically with respect to
design variables. Non-monotonic form can also be obtained when the two derivatives of
two successive design points have different signs. TPPAA adopts the piecewise
approximate functions to avoid inappropriate approximation that existing approximation
schemes would encounter. In this study, a program integrating ANSYS, AutoCAD and
Microsoft Visual C++ is developed for automated structural optimization. The
practicability of TPPAA is examined in several structural optimization problems and the
comparison of several approximation methods are also presented. Furthermore, TPPAA
is applied to optimum design of large structures, such as effective FE model

construction of PCB and design of high-accuracy measuring stage structure.

Keyword: Structural optimization, Sequential approximate optimization, Two-point

approximation method, Finite element analysis, Nonlinear programming
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Chapter 1  Introduction

In this chapter, the history of structural optimization and the development of
approximation methods are briefly introduced first. Then, the outline of the thesis is

presented.
1.1 Introduction to structural optimization

Structural optimization has been developed more than a century. The main purpose
of structural optimization is to improve the design under specific restrictions.
Conventionally, design improvement relies on the engineer’s experience with trial and
error. It costs considerable time and may not obtain the optimal result. Nowadays,
automated structural design is available with integrating well developed finite element
analysis software and optimization theory. It can find the optimum design with less
subjective judgement.

With the development of finite element method, structural analysis is no longer
limited to the theoretical derivation. However, it takes considerable time for the large
and complicate structures. In order to save the time of design process, approximation
technique is introduced.

Approximation methods converts the implicit structural functions into explicit ones
to generate the sub-problems, which can be solved with mathematical optimization. It
saves much efforts by reducing the number of repeated finite element analyses.

Local approximation schemes construct approximated functions from the response
and the sensitivities of a design point. Hence the problem with implicit structural
behavior can be transformed into a mathematical problem with explicit functions with
the approximation reliable around the design point. After solving sequential
sub-problems, the optimal solution can be found after the process converging. This

1
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technique is also known as sequential approximate optimization (SAO).

For the less finite element analyses in SAO process, the  choice of the
approximation scheme is better to depend on the characteristics of the problem. For
instance, in simple truss problems with design variables of cross section area, direct
linear approximation is the best for total weight of truss, reciprocal approximation is
more appropriate for stress and displacement. However, for the complicate cases, it is
still hard to determine the most suitable scheme. In spite of that, some principles of

approximation may be held to ensure the approximation quality for general cases.
1.2  Paper review

In 1904, Michell calculated the theoretical lower bound of the weight of truss
structures with stress constraints [1]. The theoretical derivation of ideal structures was
an important inspiration for structural optimization. After finite element method was
proposed and developed maturely, structural optimization is valid for designing
complicate structures.

In 1974, Schmit and Farshi applied approximation concepts to convert structural
behavior into explicit functions of design variables [2]. This method turned limited
information from structural analyses into simple approximate functions, and greatly
reduced the time of structural optimization process.

So far, a lot of local approximation methods have been developed. Among these
schemes, direct linear approximation is the most fundamental approach which performs
the 1st order Taylor series expansion in terms of design variables. However, most
structural characteristics are nonlinear, this method may not be reliable for therefore. To
enhance the approximation quality, some scholars proposed reciprocal approximation

method, which adopting the reciprocals of original variables as intervening variables in
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1st order Taylor series expansion [3]. This approximation method is quite suitable for
stress and displacement constraint in simple truss problems when cross-section area is
selected as design variable. However, the function value tends to infinity when the
design variable approach zero that may cause inappropriate approximation. To
overcome this problem, Haftka and Shore proposed modified reciprocal approximation
method to shift the singular point in reciprocal approximation [4]. In 1979, Starnes and
Haftka proposed conservative approximation method [5] which is also known as convex
linearization (COLIN) presented by Fleury and Braibant [6]. This method adopts either
direct linear or reciprocal approximation for each design variable, according to which
approximate function is estimated higher. In other words, conservative approximation
adopts the more conservative one between direct linear and reciprocal approximation
for every design variable. In 1987, Svanberg presented the method of moving
asymptotes (MMA), which can be regarded as the generalization of CONLIN [7].

To improve the approximation quality of single-point approximations, a lot of
approximation schemes developed subsequently with utilizing the information of
previous design point to construct approximate functions. These approximations are
classified as two-point approximations. In 1987, Haftka et al. proposed two-point
modified reciprocal approximation which has the strategy to decide the indeterminate
coefficients in modified reciprocal approximation [8]. However, this strategy is
undefined when the derivatives of two successive points have the different signs. In
1990, Fadel et al. proposed two-point exponential approximation (TPEA) [9]. TPEA
performs Taylor series expansion with exponential intervening variables. The derivative
of the previous design point is used to determine the exponent. But this approximation
lacks definition for two-point approximation when the derivatives of the variable of two

successive points have the different signs. In 1994 and 1995, Wang and Grandhi
3
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proposed a series of two-point adaptive nonlinear approximations (TANA) based on
TPEA, which enhance TPEA by matching the function value of previous design point
[10][11]. In 1994, Snyman and Stander presented spherical approximation method
(SAM) which appends a quadratic term to direct linear approximation for correcting the
function value of the previous design point [12]. In 1995, Fadel classified the
approximate functions into monotonic and non-monotonic functions [13]. It is
suggested that the selection the approximations should consider the characteristic of
monotonicity of the structural behavior. Then the mixed method is proposed named
DQA-GMMA, which adopts monotonic approximation for design variable when the
derivatives of two successive design points have the same signs, and vice versa.

In 1997, Zhang and Fleury proposed modified convex approximation (MCA) based
on CONLIN [14]. MCA increases the convexity of approximation to avoid
non-convergent process. In 1998, Xu and Grandhi proposed two-point adaptive
nonlinear approximation-3 (TANA-3), which appends a term to TPEA for additionally
matching the function value of previous design point [15]. In 2000, Xu et al. presented a
new two-point approximation approach which uses the linear combination of linear and
reciprocal approximations to match the derivatives of previous design point [16]. In
2001, Kim et al. presented two-point diagonal quadratic approximation (TDQA) based
on TPEA [17]. TDQA adds shifting level into exponential intervening variables to avoid
the singularity of the derivatives. In 1996, Chickermane and Gea proposed generalized
convex approximation (GCA) [18]. GCA uses the derivatives of two points to construct
approximate functions without lacking definition in TPEA. In 2007, Groenwold
proposed incomplete series expansion (ISE) which includes a series of approximations
[19]. ISE uses quadratic, cubic, and even higher order diagonal terms to construct the

approximate functions.
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Several approximation schemes have the approximate function convex to ensure
stability of the optimization process such as GCMMA [20][21]. In 2015, Li proposed an
adaptive quadratic approximation (AQA) which enforces the approximate functions to
be strictly convex to improve the robustness and convergence performance of the
optimization process [22]. However, this enforcement would cause inconsistency and
may lower the efficiency of optimization process.

Moreover, Chiou proposed two new convex approximation methods in 2000,
including self-adjusted convex approximation (SACA) and two-point convex
approximation (TPCA) [23]. In 2002, Chen proposed improved two-point
approximation (ITPA) which can be seen as the combination the linear-reciprocal and
TPEA [24]. In 2007, Chang proposed quasi-quadratic two-point conservative
approximation (QTCA) [25]. In 2010, Chen proposed exponential MMA (EMMA),
which makes the order of intervening variables in MMA adjustable for more flexibility
[26]. In 2012, Chen proposed a new mixed two-point approximation method which is
the combination of TPEA and GBMMA [27]. In 2013, Jiang proposed enhanced
two-point exponential approximation (ETPEA) to conquer the problem of lack of
definition in TPEA [28]. ETPEA use intervening variable which is the second order
Taylor series expansion of the original variable to deduce the new formula as the

remedy of TPEA.

1.3  Strategies of research

The approximation quality is the crucial factor for the efficiency and stability in
SAO process. This thesis presents a new approximation method, named two-point
piecewise adaptive approximation (TPPAA). TPPAA is applied to construct the

approximate functions of structural behavior such as stress, displacement and natural
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frequency for optimization problems. The strategies are as follows:

(1) Review the existing approximation schemes and discuss the merits and
defects of each method.

(2) Test some classical approximation methods in several optimization problems
and compare the approximation quality in each case.

(3) Create the 1-D plot of the approximate functions in several cases to realize the
characteristics of each approximation.

(4) The new method is developed and tested in several optimization problems to

verify its practicability.
1.4  Outline

There are six chapter in this thesis:

Chapter 1: Introduce the development of structural optimization and the existing
approximation methods briefly. After that, the research strategy of this study is
mentioned.

Chapter 2: Introduce the procedure of mathematical optimization in this study and
several existing approximation methods.

Chapter 3: Present the derivation of new approximation method developed in this
study. Also the characteristics of the new method is compared with other approximation
methods.

Chapter 4: Apply the proposed approximation method to several small scale
structures and compare the results with other approximation methods.

Chapter 5: Apply the proposed approximation method to several large scale
structures and compare the results with other approximation methods.

Chapter 6: Conclude the achievements and recommend the future work.
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Chapter 2  Application of approximation methods in

structural optimization

First, the procedure of mathematical optimization in this thesis is introduced, then
several previous approximation methods are also discussed for the development of new

approximation method.
2.1  Procedure of mathematical optimization

This section introduces the details of the mathematical optimization in sequence.
The optimization problem can be written as
Find X,
such that F (X)— min, (2.1)
subjectto g;(X)<0, i=12..,n,

where X denotes the design vector, F(Y() denotes the objective function to be
minimized, g;(X) denotes the i-th constraint, n, denotes the number of constraints.

2.1.1 Selection of design variables

The first step for optimization is defining the design variables for the problem.
With taking efficiency in consideration, an optimization problem should prevent from
having too many design variables. In order to reduce the design space, one of the
solutions is to choose the dominant variables only instead of all the possible ones.

Another way is to link the design variables, which can be expressed as

x=[T]X, (2.2)
where X denotes the basis of original design vector, X is the reduced basis, and [T]

is the connectivity matrix of design variables.
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2.1.2 Defining objective function

In this study, the mathematical optimization problem is defined to minimize the
objective function as the expression of Eq. (2.1). To deal with the maximization case,
from another point of view, the problem is turned into minimizing the negative of the
original objective function.

For the problem considering various objective functions, they are linked with

appropriate weighted coefficients. It can be written as
F(x)= 2 wF (x), (23)
i=1
where F(X) denotes the total objective function, F (X) denotes the individual

objective function and w, denotes the weighted coefficient.

2.1.3 Sensitivity analysis

Thanks to well-developed finite element method, the complicate structural analysis
is available for optimization nowadays. Besides the response magnitude of structural
behavior, the first order derivative, which also called sensitivity, is also required in the
local approximation schemes and most search direction algorithms.

Sensitivity analysis is the way to realize the variation tendency of structural
behavior with respect to design variables. In this study, backward difference method is
adopted in sensitivity analysis, which can be expressed as

ah()ﬂ(o) _ h(xo)_h(xo _Axi)
ox AX. ’ (24)

where oh(X,)/ox, denotes the sensitivity of h(X) with respect to x at X,,

A% ={000...Ax ... 0} represents that only the i-th design variable has a small

variation AX;.
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2.1.4 Treatment of constraints

In structural optimizations, there are many kinds of constraints, such as stress,
displacement, natural frequency, size, and move limit constraints. For the sake of
making the mathematical problem in the form as Eq. (2.1), and reducing the influences
of numerical difference between different constraints, the constraints should be
modified as follows.

A. Behavior constraint

To avoid the fracture of structures or large displacement which influences the

performance of structures, stress and displacement constraints are often needed in

structural optimizations. These two constraints can be expressed as

L u =
0, <0,<0;, i=12,..,n, (2.5)

gi <0, g’ >0,
where g and g’ denote the lower and upper bound of the i-th constraint

respectively, and n, denotes the number of behavior constraints. The constraints

should be treated as

910, if g,>0
g" =19 i=12,...n, (2.6)
910, ifg<0

i
where g denotes the modified constraints.
Moreover, to avoid resonance occurring, the natural frequencies of the structure are

often restricted in certain region. The constraint of frequency can be expressed as

or<g, i=12,...n, (2.7)

gr >0.

The constraints should be treated as

doi:10.6342/NTU201603300



g =10-2 i=12..n, (2:8)

L )
i

B. Size constraint
Size constraints are the limits of design variables due to material specifications,

practical demands, and so on. Size constraints can be expressed as
D-<x <D’, i=12,..,n, (2.9)
where D" and D; denote the lower and upper bounds of allowable sizes respectively,

and n, denote the number of size constraints.

C. Move limit
In the local approximation, approximation is trustable only around the current

design point. Hence move limit is introduced, which can be expressed as

AXF <A SAXY, T1=1,2,..,0, (2.10)
where Ax. denotes the variation of the i-th design variable, Ax- and Ax’ are lower

and upper bound of the variations of the i-th design variable respectively and n

denotes the number of design variables.
2.1.5 Application of approximation methods

Once the mathematical problem is defined, the optimal solution can be found by
mathematical programming. However, the relation between structural behavior and
design variables is implicit usually. Hence the approximation technique is applied to
convert the implicit behavior into explicit functions. Because the approximated
functions are constructed by current design point, the formed mathematical problem is
not exactly the same as the real problem, but reliable near the current design point. So,
to obtain the optimal solution, it requires to solve several optimization problems of
approximated functions. Each sub-problem takes the optimal solution of last iteration as

10
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the initial design. This gradual improvement process is known as sequential
approximate optimization (SAO).
2.1.6  Application of mathematical optimization

Numerical optimization method can be classified into direct and indirect methods.
Direct method such as method of feasible direction is to solve the optimization
problems without transferring the constraints. Indirect method converts the constraints
to a part of objective function, hence the constrained problems can be transferred to
unconstrained problems.

Indirect method includes interior penalty method and exterior penalty method.
When interior penalty method is adopted, the initial design must be in the feasible
domain. However, it cannot guarantee that the initial design is always in the feasible
domain in iterative process. So, exterior penalty method is adopted to deal with the
constrained problems to make the process valid with infeasible initial design in this

study. After transformation, the objective function can be expressed as

D(X,r)=F(X)+ ri< g,(x) >%,

g;(x), if g;(x)>0
0, if g,(x)<0

(2.11)
<g;(X)>= {

where ®(X,r) denotes the penalized objective function, F(X) is the objective
function, r is the penalty factor and g,(x) denotes the i-th constraint function.
2.2 Single-point approximation methods

Single-point approximation methods use the function value and derivatives of
single design point to construct the approximate function. Several existing single-point

approximation methods are compared in this section.

11
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2.2.1 Direct linear approximation

This approximation method takes the first order Taylor expansion at the current

design point. It is the most fundamental method of local approximation. If h(X)

denotes the function to be approximated, this approximation can be written as

h (X) = h(%)+i%(xi — X, (2.12)

where h (X) denotes the approximate function of direct linear approximation, X,
denotes the variable vector of current point with i-th component x, .

Since most behavior functions of general structures are nonlinear, this method may

be not reliable.
2.2.2 Reciprocal approximation

The cross-section area of beams and the thickness of plates are often selected as the
design variables, and the stress, displacement are often selected as constraints in
structural optimization problems. In this kind of problem, the relation between the
reciprocals of variables and the constraints are near linear for simple structures. Hence,
in this case, performing 1st order Taylor series expansion in terms of reciprocals of the
design variables would has the better approximation quality in comparison with direct

linear approximation, which is called reciprocal approximation method [3].

h.(X) = h()—(o)"'i%;o)(xi _Xoi)(% ' (2.13)

where h, (X) denotes the approximate function of reciprocal approximation.
However, x, =0 is the singular point in this approximation method. When the

design variable approaches to the singular point, the magnitude of the function value

and derivative tend to infinity, and the approximation quality would be affected
12
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therefore.
2.2.3 Modified reciprocal approximation

In order to conquer the defect of reciprocal approximation, Haftka proposed
modified reciprocal approximation method [4]. The singular point is shifted to enlarge

the reliable region. This approximation can be expressed as

hoe (X) = h(X)+Z (X— o.)( ki X Yo A (2.14)

| mi

where h_ (X) denotes the approximate function of modified reciprocal approximation.
The singular point is shifted from zero to —x_, . But the determination of x_. needs to
depend on experience.

2.2.4 Conservative and convex approximation

Conservative approximation selects the more conservative one between direct
linear and reciprocal approximations for each design variable [5][6]. So it can ensure
that the function value would not less than neither direct linear nor reciprocal
approximation. The idea of increasing the conservativeness is to make the solution of
approximate problem satisfies the constraints more possible. The formula can be written

as

h.(X) = h(Xo)"'z )

0i
i=1

) X, — X, )(X—Oj (2.15)
X;

where h.(X) denotes the approximate function of convex approximation method,

+

Z denotes the summation of the design variable with positive first order derivative,
i=1

and z denotes the summation of the design variable with negative first order
i=1

derivative.

13
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However, the too conservative approximation would reduce the convergence rate

and result in low efficiency to the process.
2.3  Two-point approximation

Besides using the response value and sensitivity of current design, two-point
approximation methods utilize the information of previous design point to improve
approximation quality. Several existing two-point approximation methods are compared

in this section.
2.3.1 Two-point modified reciprocal approximation

In 1987, Haftka proposed two-point modified reciprocal approximation method [8],
which gives a recommendation on determining the indeterminate coefficient in modified
reciprocal approximation method. So these two approximation methods have the same

form.

XOi + Xmi

%o Xy, (2.16)
X + Xy

n h v
htmr(x) = h(xo) +Z¥(Xi - XOi)(

where h, (X) denotes the approximate function of two-point modified reciprocal

approximation and X, denotes the variable vector of previous design point. X . is

determined by matching the previous derivative and can be derived as

X = X0i77‘_i7ilxli 7 :\/aha(x)__(l)/aha(x)_—(o)' (2.17)

Obviously, it is undefined when the two derivatives have the different signs.

Moreover, x_. is required to be a positive number to avoid the function value tending

infinity, but it is not guaranteed in this method.
2.3.2 Two-point exponential approximation

In 1990, Fadel proposed two-point exponential approximation (TPEA) [9]. It takes

14
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x” as the intervening variable for the first order Taylor series expansion.

R ()= (3)+ ST ), @19

where h,.(X) denotes the approximate function of TPEA. p; is determined by fitting

the derivative of the previous design point.

Itha(x?) / aha(x%O)] (2.19)

In (%, /%)

p =1+

However, this calculation lacks of definition under following two conditions:

3'“(*1)/5“(*0)@ or X /%, <O0. (2.20)

OX. OX

When p, cannot be calculated by matching the derivative, direct linear

approximation is adopted instead. Besides that, p, should be restricted in a specified
range p"<p <p’ to avoid inappropriate approximation and p-=-1, p’ =1 is

suggested by the author. When p, is larger than p" with calculated from Eg. (2.19),

Y is adopted, and vice versa.

pi=P
The approximate function of TPEA is always monotonic. However, non-monotonic
approximation functions are required when the two derivatives of two successive design

points have the different signs. Moreover, TPEA has the defect of singularity as

reciprocal approximation when p, <1.

2.3.3 Linear-reciprocal approximation

In 2000, Xu presented linear-reciprocal approximation method [16]. With the linear
combination of direct linear and reciprocal approximation methods, the derivative of the
previous design point is matched.

15
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h, (X) = h(xo)+§ai (% —in)+iZil:,b’i (% —in)%, (2.21)

where h, (X) denotes the approximate function of linear-reciprocal approximation. The

coefficients ¢, and g, are determined by matching the gradient of previous design

point.
oh(%;) _on(%,)
g N (2.22)
0
X,
UG (2.23)
OX,

This method implies that with utilizing the linear combination of two different
single-point approximations, a new two-point approximation method which matches the
gradient of previous design point can be created arbitrarily.

2.3.4 Incomplete series expansion

In 2007, Groenwold proposed a series of approximations named incomplete series
expansion (ISE) [19]. The fundamental idea of ISE is to approximate the Hessian matrix
by excluding the off-diagonal terms for saving the computational requirements. The

general form can be written as

hlse (X) h(X0)+Z

(x —x0,)+ZZc“|x (2.24)

j=2 i=1

where h_(X) denotes the approximate function of ISE.

The simplest approximate form of ISE family is non-spherical quadratic ISE,

which can be expressed as

XO) (Xi — Xoi +Zn:C2i |Xi = Xoi |2’ (2.25)

i=1

1 oh
e () =h(x) + 3
16
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where hy,(X) denotes the approximate function of non-spherical quadratic ISE. This

approximation method is the same as diagonal quadratic approximation (DQA) [13].

The coefficients are determined by matching the gradient of previous design point.

oh(x,) _oh(x,)
o % % (2.26)

” 2(X1i _XOi)

Another member of ISE named non-spherical cubic approximation which can
additionally match the function value of previous point with c,, =c,, i=12,...,n.
n ah v n n
hnsc (X) = h(xo) +Za(—XXO) (Xi - XOi) + CZZ|Xi = Xoi |2 + chi |Xi = Xoi |3, (2-27)
i=1 i i=1 i=1

where h__(X) denotes the approximate function of non-spherical cubic approximation.

In conclusion, ISE proposed a way to match extra information with arbitrary
approximation forms. An approximate function can fit the derivative of another point by
adding a non-spherical term and fit the extra function value by adding a spherical term.
However, all the approximation functions of ISE are the non-monotonic form. Hence it
IS not appropriate to be applied to some structural behavior since their characteristics of
monotonicity.

2.3.5 Two-point adaptive nonlinearity approximation-3

In 1998, Xu and Grandhi proposed two-point adaptive nonlinearity
approximation-3 (TANA-3) [15], which appends a correction term to TPEA for
matching the function value at previous design point.

htana3(x):h(xo)+i%%(xipi —x(ﬂ‘)+%a(2)_zn:(xip‘ -x2)?,  (2.28)

where h,..(X) denotes the approximate function of TANA-3. %g()‘()Z(xf’i —x})? is
i=1

17
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the appended correction term to TPEA, and £(X) can be expressed as

8(7(): n < n !

Z:(Xipi _X1ipi)2 "‘Z:(Xipi _Xini)Z

" z{h(mh(mi(%}] —Xp (" XO."-)}.

(2.29)

The characteristic of the appended term is that the first order derivative equals zero

at x,, and x;. So the determination of p, is the same as in TPEA, and the same
inappropriate approximation would encounter in TANA-3.

2.4  Integrated optimization program

In this study, the automated optimization program is developed in Microsoft Visual

C++ 2015 with integrating AutoCAD 2002 and Ansys 15.0 APDL. The flow chart is

shown in Fig. 2-1. The procedure is introduced briefly as follow:

(1) Define the optimization problem including design variables, initial design,
objective function and constraints.

(2) Output “DesignVariable.lsp” for parametric modeling in AutoCAD 2002 if needed.
The model is output as “model.sat”.

(3) Output “DesignVariable.mac” for finite element analysis in Ansys 15.0 APDL. The
results are output in .txt format.

(4) Read the analysis results from .txt files. Then, the approximate functions are
constructed to form the sub-problem. The new design is obtained after the

mathematical optimization.

18
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Fig. 2-1 Flow chart of developed optimization program
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Chapter 3 The proposed approximation method

In this study, a new approximation method is proposed and named two-point
piecewise adaptive approximation (TPPAA). Many kinds of structural behavior vary
quasi-monotonically with respect to design variables. For this situation, monotonic
functions are available in TPPAA when first order derivatives of two successive design
points have the same signs. The non-monotonic form can be approximated also when
the two first order derivatives have different signs. Moreover, the piecewise
approximate functions are adopted to avoid the inappropriate approximation that the

existing methods would encounter.
3.1 Modified incomplete series expansion

The fundamental idea of the proposed approximation method is to construct an
approximate function of arbitrary order which matched the value of a point and first
order derivatives of two points. In other words, it can construct approximate functions

with arbitrarily specified nonlinearity degree, as shown in Fig. 3-1.

) / )/

Y
/Y ha(x)mesx R,
V4

/ 7

hy(x)=cx R,
_,..;_';%
7
=
1
X

- Y\

hy(x)=c xR,

|
|
|
|
|
|
|
|
|
|

|

|

|
/1
|
|
|
|
|
|
|
|
|
X,

0i
X

Fig. 3-1 Approximate functions with different orders
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To avoid confusion, before introducing TPPAA, an approximate function which is
based on ISE is discussed first. This new approximation, is named modified incomplete

series expansion (MISE), also added the shifting term x_; for more flexibility and can

be expressed as

hmise()—()zh()—(o)+zci|xi_Xmi|pi _ZRi’ (3-1)
i=1 i=1
where h . (X) denotes the approximate function of MISE, c, X, p,, R, denote the

coefficients to be determined. The differential form with respect to i-th variable is

expressed as

Onyiee (X) _ oe X = X" |
o Xi = Xini

3.2)

The essential requirement for local approximation is to fit the function value and

derivatives at X, and it can be achieved by determining ¢, and R, as follows with
arbitrary p, and X given.

From Eq. (3.2), c, can be determined by fitting the derivatives at X, .

h(%
o (XO)(XOi - Xmi)
_ o (3.3)
pi |X0i - Xmi|pi
Then, Y R isderived by fitting the function value at X, and
i=1
R=¢ |X0i - Xmi|pi (34)
can be one of the solution. Hence R, is expressed as
1 oh(%,)
R =— =X ). 3.5
i pi 8Xi (XO| ml) ( )

Because MISE is a kind of separable approximation (approximate function consists
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of several separable single-variable functions), the approximate function of one variable
is discussed for simplicity in the following discussion.

When p, >1, the approximate function is a non-monotonic function, and X_. is
the extreme point, as shown in Fig. 3-2. Hence the sign of second order derivative is

based on which side x. is with respect to x,. Fig. 3-2 shows the approximate
functions of MISE which fit a point of x, =5, h(X,)=3, oh(X,)/ox =-T.
P =2, X, =3 isgivenfor h(x) and p,=2, x,=7 isgivenfor h,(x).

40

hz(xl.):3+%‘xl—72—7

30

h(x;)

Fig. 3-2 Functions of MISE with p, >1
When p, <1, x, Iis the singular point, as shown in Fig. 3-3. The magnitude of
derivative tends to infinity when the design variable X, approaches to x . Hence it

may cause inappropriate approximation in general cases. Note that in the case of

p, =—1 x, =0, MISE is the same as reciprocal approximation in x, >0, as shown in
Eqg. (2.13). Fig. 3-3 shows the approximate functions of MISE which fit a point of

Xy =5, (%) =3, oh(%,)/ox =—T7.p, =05, x,; =3 is given for h(x) and

p, =05, x,; =7 isgivenfor h,(x).
22
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Fig. 3-3 Functions of MISE with p, <1

Though the information of current design point can be matched regardless of the

selection of p, and X, the approximate function may vary a lot with different p,

and x.. adopted as shown in Fig. 3-2 and Fig. 3-3. Hence the selection of p, and X,
IS better to match the gradient at previous design point.

The gradient of previous point can be matched with either x , or p, given, as
explained in the following.

A. Matching the gradient of previous point with given x_.

To match the gradient of previous design point with X given, p, should be

determined then. Substitute the derivative at X, into the Eq. (3.2):

o Pi
awngd& Xl (3.6)
aXi Xi — Xoni

With ¢, derived in Eq. (3.3), Eg. (3.5) can be written as

pi

ah(xl)/ah(xo) 3 (XOi _Xmi)>< ‘Xn —Xm,‘
x| () o 3.7)
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From Eq. (3.7), it is obvious that the selection of x_. should depend on the signs
of the two derivatives. When the two derivatives have the different signs, p, exists if

andonly if x_; isbetween x; and x;,and vice versa. It can be expressed as

(in —X )(x1I — X ) >0, if ah()ﬁ(o)x oh(%) >0

OX, OX 38)
(XOi - Xmi )(Xll - Xmi ) < 0’ If aha(XXO) X aha(XX1) < 0
With the condition as Eq. (3.8) satisfied, Eq. (3.7) can be rewritten as
N N Pi pi-1
8h(x1)/8h(x0)|:‘Xm—xmi‘x‘xn—Xmi‘ =% 9)
% % ‘ ‘Xi' B Xmi‘ ‘Xm =Xy, ‘pi Xoi ~ %, ‘ |
Then p, can be derived by taking the logarithm in Eq. (3.9).
In oh(x,) /oh(%,)
OX; OX;
p =1+ - (3.10)
|n Xli mi
Xoi = X

oh(x oh(X . :
Note that when a(Xo) and a(xi) have the same signs and x =0 1is
X. X.

adopted, MISE is the same as TPEA, as Eq. (2.18).

B. Matching the gradient of previous point with given p,

To fit the gradient of previous design point with given p,, x, should be

mi

determined then. Under the premise of Eqg. (3.8), Eq. (3.9) can be rewritten as

nE) 0] (5t B8 M),

%, 28 Xoi — Xmi o, X, (3.11)
_ah()?l) ah()A(O): _ X~ X " ah()4(1)><a|’](7(0)<0
X, X, X —Xu ) OX X, '

Then X, can be derived as
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Xi = Xoi — Xi = Xoi - , ah()—(l)xah(XO)>0
h(x) fon() i
" - (3.12)
- o L1
Xmi = xOi + Xli — XOi 1 ' aha(XXl) X aha(XXO) <0.
[_6h(xl)/ah(xo)inl+l a :
OX; OX;

Note that when p, =2 is adopted, MISE is the same as DQA, as Eq. (2.25).
3.2  Two-point piecewise adaptive approximation

So far, with p. given, the function value of current design and 1st derivatives of
both design points can be matched in MISE. When the derivatives of two successive
design points have the same signs, the approximate function is suggested to be

monotonic. However, if p,>1 is adopted, the approximate function is always
non-monotonic; if p, <1 is adopted, the approximate function exists singular point at

X, as shown in Fig. 3-4.

mi !

W) A\ e

I‘, pi=2 N

Fig. 3-4 Functions of MISE with different exponents
Hence the main idea of TPPAA is to use the piecewise function to overcome this

dilemma. As illustrated in Fig. 3-4, p, >1 is adopted for averting the singular point in
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X, <X;;; P; <1 is adopted for the monotonic form in X > X,;, as shown in Fig. 3-5.

With the approximate function piecewise, the approximation is more appropriate due to

the prevention of defects.

h(x) /N
—— Pi=2

RO RSy

Fig. 3-5 Piecewise approximate function of TPPAA

Similarly, when the non-monotonic form is required, p, >1 is adopted to avoid

singularity. Since the approximate function is piecewise when the monotonic form is

required, the calculation of coefficients in MISE should depend on x. Hence, TPPAA

IS expressed as
- o : (%) o
hfppaa(x):h(XO)+ZCi(Xi)|xi_Xmi(Xi)|p _zRi(Xi)1 (3.13)
i=1 i=1
where h..(X) denotes the approximate function of TPPAA. As just mentioned,

P (X ) isassigned first in TPPAA, which is expressed as

(3.14)
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where x; and x; are determined as

. for oh(%,)| _|oh(%)] . for oh(x,)[ _ |oh(%,)]
o o || ox | o o || ox | 1)
Xy = K B X = B B ,
oh(x) [on(%) oh(x)] | |oh (%))
X;, for | ‘<‘ ox ‘ X;, for | ‘>‘ ox ‘

p,; denotes the given exponent which is greater than 1 when the monotonic form is
required. p,, denotes the given exponent which is less than 1 when the monotonic
form is required. p, denotes the given exponent when the non-monotonic form is
required. In this study, p, =2, p,, =—2 and p, =2 isadopted.

Afterward, c (%), R(%). X, (%) are derived as the same way in MISE.

‘(%)= ox. VO | (3.16)

1 oh(x,) ~
R)= o) (=% (1)) (3.17)
X (%) = X 2% T , aha(x)—(l)xahﬁ(xxf’)>0
[ah(xl)/ah(xo)in(m—l . i |
wLe (3.18)
Xo (%) = X + *i — Xoi ah()—(l)xah(XO)<o
mi i 0i R B 1 ’ ax ax .
_8h(xl)/8h(x0) pi(xi)—1+1 i i
OX; OX;

One of the merit of TPPAA is that design variables are not required to be
non-negative. Moreover, TPPAA is sensitive to neither translation nor scaling of the
design variables. The comparison between TPPAA and other existing approximation

methods are listed in Table 3-1.
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Table 3-1 Comparison of two-point approximation methods

Match previous Approximate | Approximate |EXxistin
Approximation design point PP . PP A B otl g
method Function ' monotonic | non-monotonic | singular
Gradient function function point
value
TPPAA no yes yes yes no
TPEA no yes yes no yes
Two-point modified no o o o o
reciprocal y y y
Linear-reciprocal no yes no no yes
DQA no yes no yes no
TANA-3 yes yes no no yes

3.3  Moaodification for convex approximation

To make optimization process more stable, several existing approximation methods
enforce the approximate function of the i-th design variable to be convex or even strictly

convex when

(%, _Xﬁ)(ﬁh(%)_ﬁh(ﬂ)}o_

OX. OX.

(3.19)

However, this enforcement may cause inconsistency and affect the efficiency of
process. Hence in this study, the approximate function of the i-th design variable in
TPPAA is modified to be strictly convex only when

X — X < & (3.20)
where ¢ isa given positive number.

The expression of the TPPAA with the modification adopted in this study can be

written as
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. (3.21)
+ZB. {8h(Xo)(Xi _Xoi)+g(xi _XOi) }’
Y OX;
where A and B, are determined as
=0, B. =1, for|x, —x;|<d
A Xoi =% (3.22)
A =1, B =0, for|x, —x;|>35

and ¢ isa given positive number.

3.4 Modification for matching function value of previous
design point

Several approximation methods do not match the function value of the previous
design point, including TPPAA. A strategy for correcting this bias may be considered,
that uses the linear combination with arbitrary two approximation methods which both
match the function value at current design point and gradients of the two successive
design points. This strategy is similar with linear-reciprocal approximation, which can

be expressed as

hnew ()d() = ahapproxl ()_() + (1_ O() happl’OXZ (X) !
_ h()?l)_happrOXZ(Xl) (323)
happroxl ( Xi) - happrox2 (7(1 )

where h,,(X) denotes the new approximate function which matches the function
value at previous design point with the linear combination of the two approximate
functions h,,..(X) and h, .. (X).

However, with the strategies which match the function value at previous design

point applied, it may cause the approximate function multimodal with respect to a
29
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design variable. Since this kind of approximate function is unreasonable for
representing structural behavior with respect to design variables in general cases, this
strategy is not adopted in this study.

The examples of the multimodal approximate functions are shown in Fig. 3-6 and
Fig. 3-7 with X, =2, h(%))=3, oh(%,)/ox =-3, x;=4, h(X)=2, ch(x)/ox =—1.
Fig. 3-6 shows the linear-reciprocal approximation with the correction term of TANA-3

appended. Fig. 3-7 shows the linear combination of TPPAA and DQA.

h(x;)

Fig. 3-6 Illustration of linear-reciprocal approximation with correction term of TANA-3

appended

() \

X;

Fig. 3-7 Hllustration of linear combination of TPPAA and DQA
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Chapter 4  Optimization of small scale structures

The performance of TPPAA is examined by several structural optimization
problems in this chapter. The comparison with previous approximation methods is also
presented. The convergence criterion adopted in this chapter is that the relative
difference of two consecutive objective function values is smaller than 0.1%. The
specifications of computer used for the examples in this chapter is Intel i7-920 2.67GHz

CPU with 4GB DDR3-1333 RAM.

4.1 2-bar truss

The 2-bar truss structure with a concentrated force acting on its top is shown in Fig.
4-1. The design data is listed in Table 4-1. The first design variable is the cross-section
area of both bars and the second one is the supporting locations. The goal of the
optimization is to minimize the total weight. This optimization problem considers sizing

design and shape design simultaneously. The analytical expression can be derived as

minimize F(X)=x1+x2,

o, =0.124 l+x§[§+ 1 ng

X (4.2)
subject to A%

o,=0.124 1+x§[§— 1 ]Sl.
Xl X1X2
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Fig. 4-1 2-bar truss structure

(w) 1

Table 4-1 Design data for 2-bar truss optimization

Stress o; <100 N > for each bar
mm
Constraints i 0.2cm*<x <4.0cm’
ize
0.lm<x,<1.6m
Move limit 0.75x* Y <x <1.25x* P =12
Initial design x, =15cm? x,=05m

Conservative approximation is adopted to construct the single-point approximate
functions for the initial design. The SAO result of TPPAA is shown in Table 4-2 and Fig.
4-2, and the comparison with previous approximation methods is shown in Table 4-3.

The CPU time of optimization process is 16 seconds. The exact solution of design

variables is (X, X,) =(1.412,0.377) and the objective function is 1.50865 (kgf).

32

doi:10.6342/NTU201603300



Table 4-2 Result of TPPAA in 2-bar optimization

X, X, Weight (kgf)
Initial design 1.500 0.500 1.6771
Iteration 1 1.386 0.375 1.4707
Iteration 2 1.413 0.375 1.5088
Optimum design 1.410 0.381 1.5086

1.900

1.700 G¢77

Weight (kgf)

2-bar truss optimization

Iteration

'S ]

Fig. 4-2 Iteration history of weight of 2-bar truss

Table 4-3 Result comparison for 2-bar truss optimization

Approximation method Iterations Weight (kgf)
TPPAA 3 1.5086
DQA 3 1.5087
TPEA 3 1.5086
Direct linear 3 1.5087
Linear-reciprocal 3 1.5086

4.2  3-bar truss optimization

The 3-bar truss structure with a concentrated force acting on it is shown in Fig. 4-3.

The design data are listed in Table 4-4. One of the design variables (x,) represents the

cross-section areas of bar 1 and bar 3, and the other one (x,) represents the

cross-section area of bar 2. The total weight of the 3-bar structure is the objective
33
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function to be minimized. In this simple case, the stress constraints can be expressed in

analytical form, thus the exact solution can be obtained for comparison. The exact

solution of design variables is (x;, x,) =(0.7887,0.4082) and that of objective function

is 26.3896 (Ib).
100in 100in |
i ¥
2 100in
\P:20000 1k
Fig. 4-3 3-bar truss structure
Table 4-4 Design data for 3-bar truss optimization
Material property E =30000 ksi, p=0.11b/in*, v=0.3
Stress —15 ksi < o, <20 ksi for each bar
i in<x.i=
Constraints Size Oin” <X, 1=12
- X.(kfl) .
Move limit S <x9 <3k =12
Initial design x =2.0in% x,=1.0in?

Conservative approximation is adopted to construct the single-point approximate
functions for the initial design. The CPU time for the optimization process is 12 seconds.
The SAO result of TPPAA is shown in Table 4-5 and Fig. 4-4. The comparison with

existing approximation methods is shown in Table 4-6.
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Table 4-5 Result of TPPAA in 3-bar truss optimization

X, X, Weight (Ib)
Initial design 2.000 1.000 66.569
Iteration 1 0.792 0.400 26.392
Optimum design 0.790 0.403 26.390

3-bar truss optimization
80
66.569
[
60
o
E 40 ¢
3 6.392 26.390
= . e
20 +
0 1 1
0 1 2
Iteration

Fig. 4-4 Iteration history of weight of 3-bar truss

Table 4-6 Result comparison for 3-bar truss optimization

Approximation method | Iterations | Weight (Ib)
TPPAA 2 26.390
DQA 2 26.390
TPEA 2 26.390
Linear-reciprocal 2 26.390
CONLIN 2 26.390

4.3  4-bar truss optimization

The 4-bar truss structure with a concentrated force acting on its top is shown in Fig.
4-5, and the design data is listed in Table 4-7. The objective function is the total weight

of the 4-bar structure with the cross-section area of each bar selected as design variable.
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Fig. 4-5 4-bar truss structure

Table 4-7 Design data for 4-bar truss optimization

Material property

E =10000 ksi, p=0.11b/in®, v=0.29

Constraints

Stress —25 ksi < 0, < 25 ksi for each bar

Size 1.0x10* in?<x, i=1,2,3,4
(kD)

'ﬂgﬁ -%E;SX9>se5ﬁk“,i:LzsA

Initial design

x =2.0in%, i=1,2,34

Direct linear approximation is adopted to construct the single-point approximate

36

functions for the initial design. The CPU time for the optimization process is 39 seconds.
Result of SAO with TPPAA is shown in Table 4-8 and Fig. 4-6 respectively. Moreover,

the comparison with previous approximation methods is shown in Table 4-9.
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Table 4-8 Result of 4-bar truss optimization

X, X, X, X, Weight (Ib)
Initial design 2.000 2.000 2.000 2.000 139.44
Iteration 1 2.451 2.190 2.243 0.308 118.35
Iteration 2 2.667 2.300 2.159 0.047 116.32
Iteration 3 2.662 2.296 2.161 0.007 115.39
Iteration 4 2.663 2.298 2.160 0.001 115.27

Optimum design 2.663 2.298 2.159 0.0002 115.25

Weight (1b)

4-bar truss optimization

139.44

115.39 115.27 115.25

Tteration

Fig. 4-6 Iteration history of weight of 4-bar truss

Table 4-9 Result comparison for 4-bar truss optimization

Approximation method Iterations Weight (1b)
TPPAA 5 115.25
DQA 5 115.25
TPEA 4 115.27*
Direct linear 5 115.25
TPEA-GBMMA [27] 4 115.28*
ETPEA1L [28] 4 115.28*

(*: premature convergence)
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4.4  6-bar truss optimization

The 6-bar truss structure with a concentrated force acting on its end is shown in Fig.
4-7. The design data is listed in Table 4-10. The objective function is the total weight of

the 6-bar structure with the cross-section area of each bar selected as design variable.

[~ 3 PY
23\\4 6
- 1 B 5 c
i) | Fx
100in I 100in
Fig. 4-7 6-bar truss structure
Table 4-10 Design data for 6-bar truss optimization
Material property E =10000 ksi, p=0.11b/in*, v=0.29
Displacement u,<20in, u, < 40 in for node A,B,C
: Size 0.5in’ <x <10in% i=12,..,6
Constraints
o X-(k_l)
Move limit 'TSXi(k) <5x*P,i=12,.,6
Initial design x. =2.0in* i=1.2,..6

The CPU time for the optimization process is 39 seconds. Conservative
approximation is adopted to construct the single-point approximate functions for the
initial design. The SAO result of TPPAA is shown in Table 4-11 and Fig. 4-8
respectively, and the comparison with previous approximation methods is shown in

Table 4-12.
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Table 4-11 Result of TPPAA in 6-bar truss optimization

X X X, X, Xs X, | Weight (Ib)
Initial design 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 106.23
Iteration 1 2.717 | 1.320 | 1.281 | 0.500 | 1.432 | 1.320 82.770
Optimum design | 2.717 | 1.320 | 1.281 | 0.500 | 1.432 | 1.320 82.770
6-bar truss optimization
12000
106.23
L
= 10000 |
:: 82.77 82.77
5 80.00 ¢ *
2
60.00 : ‘
0 1 2

[teration

Fig. 4-8 Iteration history of weight of 6-bar truss

Table 4-12 Result comparison for 6-bar truss optimization

Approximation method Iterations Weight (Ib)
TPPAA 2 82.770
DQA 2 82.770
TPEA 2 82.770
Direct linear 2 82.770

4.5  10-bar truss optimization

The weight minimization problem of 10-bar truss structure with a concentrated
force acting on its end is shown in Fig. 4-9 (a=360 in). The design data is listed in Table

4-13. The objective function is the total weight of the 10-bar structure with the

cross-section area of each bar selected as design variable.
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Fig. 4-9 10-bar truss structure
Table 4-13 Design data for 10-bar truss optimization
Material property E =10000 ksi, p=0.11b/in®, v=0.29
St —25ksi<o, <25ksi, i=12,...,8 and 10
ress 75ksi <o, <75 ksi, i =9
Constraints Size 0.1in*<x, i=12,..,10
NG
Move limit '3 <x® <3x*P i=12,.,10
Initial design x. =5.0in% i=12,..,10

The CPU time for the optimization process is 96 seconds. Conservative
approximation is adopted to construct the single-point approximate functions for the
initial design. The SAO result of TPPAA is shown in Table 4-14 and Fig. 4-10. The
comparison with previous approximation methods is shown in Table 4-15. TPAEA with
large o is also tested in this example. & is selected to be large enough so that the
convex substitute functions are always adopted for approximation. The result shows that

with too large ¢ adopted, the SAO process is stable but inefficient.
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Table 4-14 Result of TPPAA in 10-bar truss optimization

Weight
X X, X3 Xy X5 Xg X7 Xg Xq X1 (|bg)

Initial design |5.000 |5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 2098.2
Iteration 1 | 8.404 |1.667 |8.393|2.882(3.139 | 1.667 | 6.458 | 7.557 | 2.590 | 2.294 | 1903.6
Iteration 2 | 7.556 | 0.556 | 8.578 | 3.558 | 1.046 | 0.556 | 6.420 | 6.275 | 2.898 | 0.899 | 1626.2
Iteration 3 | 7.687|0.234 |8.335|3.766 | 0.349 | 0.234 | 6.187 | 5.117 | 3.431 | 0.300 | 1507.3
Iteration 4 | 7.9300.100 |8.076 | 3.900 | 0.116 | 0.100 | 5.780 | 5.592 | 3.664 | 0.147 | 1501.0
Iteration 5 | 7.899|0.100 |8.101 |3.900 | 0.100 | 0.100 | 5.800 | 5.513 | 3.677 | 0.141 | 1497.6

Optimum design| 7.900 | 0.100 | 8.100 | 3.900 | 0.100 | 0.100 | 5.798 | 5.515 | 3.677 | 0.141 | 1497.6

[ 0-bar truss optimization

2200
[ 2098.2 —— TPPAA (large 6)
TPPAA

2000

1903.6

1800
17213

1642.8

Weight (1b)

1583.4 1555 1

1518.7 ) 1508.2 -oo.8
P i 1513.1 508.2 1504.1 15008 14994 1497.6
15218 1515.8 1510.6 1506.1 1502.4 1499.4 1497.6

i Y

1534.6

1507.3

1501 1497.6 1497.6
1400 L ! S

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

Fig. 4-10 Iteration history of weight of 10-bar truss

Table 4-15 Result comparison for 10-bar truss optimization

Approximation method Iterations Weight (Ib)
TPPAA 6 1497.6
TPPAA (large &) 20 1497.6
DQA 6 1497.6
Direct linear 7 1497.6
TPEA-GBMMA [27] 6 1497.6
ETPEAL [28] 6 1497.6

(*: different convergence criterion)
4.6  25-bar truss optimization
The 25-bar truss structure is shown in Fig. 4-11. There are 8 design variables

which are the cross-section areas of the 25 bars, as shown in Table 4-16. The load

condition and the design data are listed in Table 4-17. The total weight of 25-bar
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structure is selected as objective function for weight minimization.

Fig. 4-11 25-bar truss structure

Table 4-16 Selection of design variables of 25-bar optimization

Design
variables % X2 X3 Xs X5 Xe X Xg
Element 14,15, | 18,19, | 22,23,
number ! 234516789 | 1011 1 1213 16,17 | 20,21 | 24,25
Table 4-17 Design data for 25-bar truss optimization
Material property E =10000ksi, p=0.1lb/in®, v=0.29
Node 1 P, =1kips, P, =10kips, P, =—5kips
Node 2 P =10kips, P, =-5kips
Load case 1 4 P : P
Node 3 P, =0.5kips
Node 6 P, =0.5kips
d 5 Node 1 P, =20kips, P, =-5kips
Load case - -
Node 2 P, =—20kips, P, =—5kips
Stress —40ksi < o, < 40ksi for each bar
. Displacement u,,u,,u, <0.35 in for node 1~6
Constraint of all
members Size 0.001in’ <x <50in%*i=12,..,8
Move limit 0.25x* M <x® <0.75x" ™", i=12,...,8
Initial design x, =20in’,i=12,..,8
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The CPU time for the optimization process is 82 seconds. Conservative

approximation is adopted to construct the single-point approximate functions for the

initial design. The SAO result of TPPAA is shown in Table 4-18 and Fig. 4-12, and the

comparison with previous approximation methods is shown in Table 4-19. In this case,

the additional converge criterion is introduced that the relative difference of the design

variable in two consecutive iterations is required to be less than 1%.

Table 4-18 Result of TPPAA in 25-bar optimization

X, X, X X, Xs Xs X, Xs  [Weight (Ib)
Initial design |2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 [ 2.000 | 661.44
Iteration 1 0.500|2.013|2.829|0.500 | 0.500|0.760 | 1.740 | 2.821 | 576.42
Iteration 2 0.125(2.030|3.216 0.125|0.125|0.512 | 1.549 | 2.792 | 546.45
Iteration 3 0.031]2.053|3.051|0.0310.031|0.694 | 1.592 | 2.649 | 545.77
Iteration 4 | 0.008 | 2.025 | 2.983 | 0.008 | 0.008 | 0.685 | 1.647 | 2.668 | 544.92
Iteration 5 | 0.002 | 2.036 | 3.010 | 0.002 | 0.002 | 0.684 | 1.625 | 2.669 | 544.76
Iteration 6 0.001|2.037|3.007 {0.001 |0.001|0.685|1.626 | 2.669 | 544.73
Optimum design| 0.001 | 2.037 | 3.007 | 0.001 | 0.001 | 0.685 | 1.626 | 2.669 | 544.73
25-bar truss optimization
700
661.44
650
=
g 600 576.42
‘%ﬁ 546.45 545.77 54492 54476 54473 54473
= 550 | o . . . . .
500 1 1 | 1 | 1
0 1 2 3 4 5 6 7
Iteration

Fig. 4-12 Iteration history of weight of 25-bar truss
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Table 4-19 Result comparison for 25-bar optimization

Approximation method Iterations | Weight (Ib)
TPPAA 7 544.73
TPPAA (large o) 7 544.74
TPEA-GBMMA [27] 5 545.74*
ETPEAL [28] 5 544.78*

(*: premature convergence)

4.7  Multi-section circular beam optimization

The structure of multi-section circular beam is shown in Fig. 4-13. It consists of 10
circular beam elements with the same length. The design data are listed in Table 4-20. A
static loading is exerted at the end of this cantilever beam. Total weight is selected as
objective function for the purpose of minimizing the weight of beam structure and the

diameter D of each beam section is selected as design variables.

P=150Kips

Wl @

L=10in

Fig. 4-13 Multi-section circular beam structure

Table 4-20 Design data for multi-section circular beam optimization

Material property E =30000 ksi, p=0.11b/in®, v=0.29
Stress —1.0 Mpsi <o, <1.0 Mpsi, 1=12,...,10
Constraints (kD)
Move limit '2—5 <x® <25x*?Y i=12,.,10
Initial design x.=25in,1=12,..,10
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The CPU time for the optimization process is 70 seconds. Conservative

approximation is adopted to construct the single-point approximate functions for the

initial design. The SAO result with TPPAA is shown in Table 4-21 and Fig. 4-14. The

comparison with previous approximation methods is shown in Table 4-22.

Table 4-21 Result of TPPAA in multi-section circular beam optimization

Fig. 4-14 Iteration history of weight of multi-section circular beam

Weight
X X, X3 X, Xs X X X X | %o (Ib%
Initial design | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 2.500 | 4.9087
Iteration 1 |2.481|2.391 |2.288|2.167 | 2.025 | 1.854 | 1.646 | 1.387 | 1.054 | 1.000 | 2.8342
Iteration 2 | 2.481|2.396 | 2.304 | 2.203 | 2.093 | 1.970 | 1.831 | 1.673 | 1.512 | 1.161 | 3.1500
Iteration 3 | 2.481|2.396 | 2.304 | 2.203 | 2.093 | 1.969 | 1.828 | 1.661 | 1.457 | 1.152 | 3.1312
Oé)élsr:;l;m 2.481)2.396 | 2.304 | 2.203 | 2.093 | 1.969 | 1.828 | 1.661 | 1.451 | 1.152 | 3.1299
circular beam optimization
6 .
5
s
=4
D
QL 3.1312 3.1299
5 3 ® ®
2 1 1 1 1
0 1 2 3 4
Iteration

Table 4-22 Result comparison for multi-section circular beam optimization

Approximation method Iterations | Weight (Ib)
TPPAA 4 3.1299
TPEA 3 3.1299
CONLIN 4 3.1299
Direct linear 5 3.1300
TPEA-GBMMA [27] 3 3.1293
ETPEA1L [28] 3 3.1299
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4.8  Multi-section tube beam optimization

The structure of multi-section tube beam is shown in Fig. 4-15. It consists of 10
tubular beam elements with the same length. The design data are listed in Table 4-23.
The ratio of outer diameter D to the thickness of the tube T is constant (D/T=12). A
static loading is exerted at the end of this cantilever beam. Total weight is selected as
objective function for the purpose of minimizing the weight of beam structure and the

diameter D of each beam section is selected as design variable.

P=150kips

L=10in ‘

Fig. 4-15 Multi-section tube beam structure

Table 4-23 Design data for multi-section tube beam optimization

Material property E =30000 ksi, p=0.11b/in®, v=0.29
Stress —1.0 Mpsi <o, <1.0 Mpsi, 1=12,...,10
Constraints o x (k1)
Move limit '1—8 <x® <1.8x*? i=12,..,10
Initial design X, =3.61In,1=12,..,10

The CPU time for the optimization process is 68 seconds. Conservative
approximation is adopted to construct the single-point approximate functions for the
initial design. The SAO result of TPPAA is shown in Table 4-24 and Fig. 4-16
respectively. The comparison with previous approximation methods is shown in Table
4-25.

46

doi:10.6342/NTU201603300



Table 4-24 Result of TPPAA in multi-section tube beam optimization

Weight
X, X, Xq Xy X5 Xg X7 Xg Xq X0 (Ib%
Initial design | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.600 | 3.1102
Iteration 1 |3.016 | 2.875|2.716 | 2.536 | 2.330 | 2.092 | 2.000 | 2.000 | 2.000 | 2.000 | 1.3674
Iteration 2 | 3.090 | 2.984 | 2.869 | 2.746 | 2.611 | 2.465 | 2.285 | 2.069 | 1.777 | 1.111 | 1.4643
Iteration 3 | 3.090 | 2.984 | 2.869 | 2.744 | 2.606 | 2.453 | 2.277 | 2.069 | 1.807 | 1.454 | 1.4846
Og;;?;%m 3.090 | 2.984 | 2.869 | 2.744 | 2.606 | 2.453 | 2.277 | 2.069 | 1.807 | 1.435 | 1.4833
tube beam optimization
35 -
3.1102
=25
&b 1.4846 1.4833
= 15 o o
§ - - 4
0-5 1 1 |
0 1 2 3 4
Tteration

Fig. 4-16 Iteration history of weight of multi-section tube beam

Table 4-25 Result comparison for multi-section tube beam optimization

Approximation method Iterations | Weight (Ib)
TPPAA 4 1.4833
TPEA 3 1.4832
Linear-reciprocal 4 1.4832
Direct linear 5 1.4832
TPEA-GBMMA [27] 3 1.4831
ETPEAL [28] 3 1.4832
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4.9  Multi-section rectangular beam optimization

The structure of multi-section rectangular beam is shown in Fig. 4-17. It consists of
10 rectangular beam elements with the same length, and the design data are listed in
Table 4-26. The ratio of rectangular height H to the width W is constant (H/W=3). A
static loading is exerted at the end of this cantilever beam. Total weight is selected as
objective function for the purpose of minimizing the weight of beam structure and the
height H of each beam section is selected as the design variable.

P=130kips

L=10in | w

Fig. 4-17 Multi-section rectangular beam structure

Table 4-26 Design data for multi-section rectangular beam optimization

Material property E =30000 ksi, p=0.11b/in®, v=0.29
Stress —1.0 Mpsi <o, <1.0 Mpsi, 1=12,...,10
Constraints (k-1)

Move limit ’(2—5 <x® <25x¢Y, i=1,2,...,10

Initial design x,=3.0in, 1=12,..,10

The CPU time for the optimization process is 70 seconds. Conservative
approximation is adopted for the approximation of the initial design. The SAO result of
TPPAA is shown in Table 4-27 and Fig. 4-18, and the comparison with previous

approximation methods is shown in Table 4-28.
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Table 4-27 Result of TPPAA in multi-section rectangular beam optimization

Weight
X X; X3 Xy X Xs X X X X0 (Ib)

Initial design | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.0000

Iteration1 |1.765|2.893|2.769 | 2.625 | 2.455 | 2.250 | 2.000 | 1.688 | 1.286 | 1.200 | 1.7653

Iteration 2 | 1.953 | 2.896 | 2.785 | 2.664 | 2.530 | 2.382 | 2.213 | 2.021 | 1.822 | 1.405 | 1.9532

Iteration 3 | 1.942|2.896 | 2.785|2.664 | 2.530 | 2.381 | 2.210 | 2.008 | 1.760 | 1.393 | 1.9423

Og;;ri]:;]m 1.942|2.896 | 2.785 | 2.664 | 2.530 | 2.381 | 2.210 | 2.008 | 1.754 | 1.392 | 1.9416

rectangular beam optimization

Weight (1b)

O‘S 1 1 1

Tteration

Fig. 4-18 Iteration history for multi-section rectangular beam

Table 4-28 Result of multi-section rectangular beam

Approximation method Iterations | Weight (Ib)
TPPAA 4 1.9416
TPEA 3 1.9416
Linear-reciprocal 4 1.9416
Direct linear 5 1.9416
TPEA-GBMMA [27] 3 1.9418
ETPEAL [28] 3 1.9418
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Chapter 5 Optimization of large scale structures

In this chapter, the proposed approximation scheme is applied to some large scale
structures for verifying its practicability. The natural frequency and displacement of
structures are approximated as explicit functions for structural optimization in this
chapter. The specifications of computer used for the examples in this chapter is Intel

i7-6700 3.40GHz CPU with 16GB DDR4-2133 RAM
5.1 Effective finite element model construction for PCB

Dynamic analysis is crucial in the design of PCB because vibration can affect the
life cycle of PCB [29][30]. Through FEA, it is efficient to design PCB with considering
its dynamic characteristics. However, since PCB consists of several materials, it is not
practical to construct the complicate non-homogeneous FE model. Instead, the
anisotropic homogeneous FE model is constructed according to the natural frequencies
obtained by experimental modal analysis (EMA).

Herein, the effective FE model for a glass fiber board is assumed to be the

orthotropic material. The strain-stress relation can be expressed as

R N R

E, E E
I B R 0O 0 0 |- -
£, E. E E o,
iy — _EVVZ Ei 0 0 0 Zy
.| & B K a (5.1)
7 7,
’ o o o X o of™
7y G, Ty
«llo 0 o0 o L o]

G,
o 0o o o o X
G
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The aim of this optimization problem is to find the least squared error of
frequencies between effective FE model and EMA result, hence the objective function

f(X) isexpressed as

(%) {[Wj (5.2)

where h(X) denotes the i-th frequency of approximate function with elastic constants

to be design variables, ﬁi denotes the i-th frequency of EMA result, n, denotes the

number of the measured frequencies from EMA.
5.1.1 Material property identification for orthotropic thin plate

Before constructing the effective FE model for real PCB, to test the accuracy of
this optimization program without considering the error of FEA, identifying the elastic
constants of an orthotropic plate by fitting natural frequencies from FEA is presented
first. The thin plate is a cuboid with length 70 mm, width 50 mm, and thick 1 mm, and
the coordinate is shown in Fig. 5-1. Fitting the frequencies from two boundary
conditions and is adopted herein. One is the free-free boundary condition, and the other
is fixing the surface at x=0. The material property of this thin plate is listed in Table
5-1. The element size is 2 mm with solid 45. The meshed FE model of this thin plate is

shown in Fig. 5-2, and the natural frequencies are listed in Table 5-2.

‘L}x

Fig. 5-1 CAD model of the thin plate
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Table 5-1 Material property of the thin plate

Material property

Ex 10 GPa
Ey 30 GPa
E: 25 GPa
Gxy 7 GPa
Gyz 5 GPa
Gxz 5 GPa
Vxy 0.15
Vyz 0.15
Vxz 0.15
p 5 g/cm®

Fig. 5-2 Meshed FE model of thin plate

Table 5-2 Natural frequencies of the thin plate

Free-free (Hz) Fixedat x=0 (Hz)
Mode 1 298.087 Mode 1 47.5430
Mode 2 347.715 Mode 2 194.984
Mode 3 769.697 Mode 3 296.941
Mode 4 827.398 Mode 4 637.830
Mode 5 1033.07 Mode 5 833.642
Mode 6 1257.34 Mode 6 1104.69
Mode 7 1351.69 Mode 7 1238.64

For a thin plate, only 4 of the 9 independent elastic constants in orthotropic
material affects the natural frequencies. These 4 elastic constants are selected as design
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variables for fitting the natural frequencies, as shown in Table 5-3. The design data is

shown in Table 5-4.

Table 5-3 Selection of design variables for fitting the frequencies of the thin plate

Design variable

X

X, X, X,

Elastic constant

Ex

Ey G Xy Vxy

(unit: GPa for x,~x;)

Table 5-4 Design data for fitting natural frequencies of the thin plate

Side

~1<x,<05

Constraints

Move limit

0.5x% P <x® <15x*P =123
x* P -0.05< x <x{?+0.05

Initial design

)(1=20, X2:20, X3=20, X4:O.2

The CPU time for the optimization process is 126 seconds. Direct linear

approximation is adopted to construct the single-point approximate functions for the

initial design. The result indicates that both the frequencies and elastic constants can be

fit accurately, as shown in Table 5-5 and Table 5-6. The SAO result of TPPAA is shown

in Table 5-7.
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Table 5-5 Result of natural frequencies after fitting

Free-free

After fitting (Hz) | Aim (Hz)
Mode 1 298.087 298.087
Mode 2 347.715 347.715
Mode 3 769.697 769.697
Mode 4 827.398 827.398
Mode 5 1033.07 1033.07
Mode 6 1257.34 1257.34
Mode 7 1351.69 1351.69

Fixedat x=0

After fitting (Hz) | Aim (Hz)
Mode 1 47.5430 47.5430
Mode 2 194.984 194.984
Mode 3 296.941 296.941
Mode 4 637.830 637.830
Mode 5 833.642 833.642
Mode 6 1104.69 1104.69
Mode 7 1238.64 1238.64

Elastic Aim After fitting
constant
Ex (GPa) 10 10.0000
Ey (GPa) 30 30.0000
Gxy (GPa) 7 7.0000
Vxy 0.15 0.1500

Table 5-6 Obtained elastic constants by fitting natural frequencies

Table 5-7 Result of TPPAA in elastic constants identification of the thin plate

| % | % x, o |Sduered
Initial design 20.00 | 20.00 | 20.00 | 0.200 2.5E1
Iteration 1 10.00 | 15.77 | 10.00 | 0.150 | 2.6E-1
Iteration 2 9.949 | 18.63 | 8.065 | 0.200 | 1.2E-1
Iteration 3 9.834 | 2432 | 6.892 | 0.259 | 6.7E-2
Iteration 4 9.651 | 27.48 | 6.928 | 0.209 | 4.6E-3
Iteration 5 9.992 | 29.90 | 6.989 | 0.159 | 4.1E-3
Iteration 6 10.00 | 30.00 | 7.000 | 0.150 | 4.7E-6
Iteration 7 10.00 | 30.00 | 7.000 | 0.150 | 6E-11
Iteration 8 10.00 | 30.00 | 7.000 | 0.150 | 1E-16
Optimum design | 10.00 | 30.00 | 7.000 | 0.150 | 1E-16
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5.1.2 Effective FE model construction for PCB

This glass fiber PCB is a cuboid with length 165 mm, width 115 mm, and thick
1.53 mm. The element size of meshed model is 2 mm with solid 45, as shown in Fig.
5-3. The two boundary conditions for natural frequencies and the coordinate are shown

in Fig. 5-4.

Fig. 5-3 Meshed FE model of PCB

clamped

'S

Fig. 5-4 Boundary conditions for EMA of PCB
The natural frequencies of PCB is obtained from EMA, as shown in Fig. 5-5. The

result of EMA is listed in Table 5-8
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FRF of PCB

10000

1000

Response

100

0 100 200 300 400 500
Natural frequency (Hz)
—datal —data 2

Fig. 5-5 FRF of PCB by EMA

Table 5-8 EMA result of PCB

Clamped at the long side (Hz) Clamped at the short side (Hz)
Mode 1 92.7 Mode 1 41.5
Mode 2 136 Mode 2 104
Mode 3 300 Mode 3 253
Mode 4 540 Mode 4 371
Mode 5 591
Mode 6 700

The elastic constants which affect the natural frequencies are selected as design
variables for effective FE model construction, as shown in Table 5-9. The other material

properties are list in Table 5-10. The design data is shown in Table 5-11.

Table 5-9 Selection of design variables for fitting natural frequencies of the PCB

Design variable X, X, X, X,

Elastic constant Ex Ey Gxy Vxy

(unit: GPa for x,~x;)
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Table 5-10 Material properties of PCB

Material property
E; (GPa) 20
Gy: (GPa) 7.69
Gx; (GPa) 7.69
Vyz 0.3
Vxz 0.3
p (glem®) 2

Table 5-11 Design data for effective FE model

Side -1<x,<05
Constraints o 0.8x* M <x® <1.2x*?,i=123
Move limit (k-1) © _ o(kd)
X, 7 —=0.05<x," <x, 7 +0.05
Initial design X, =15,x, =15,%X, =6.8,x, =0.1

The CPU time for the optimization process is 142 seconds. Direct linear

approximation is adopted to construct the single-point approximate functions for the

initial design. The result indicates that the frequencies of a glass fiber PCB can be fit

well that the max difference of the natural frequencies between FEA and EMA is in 4%

by orthotropic material model, as shown in Table 5-12. The SAO result with TPPAA is

shown in Table 5-13. The comparison with other approximation methods are also

presented to verify the solution as listed in Table 5-14.
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Table 5-12 Comparison of natural frequencies between effective model and EMA result

Clamped at the long side
After fitting (Hz) Aim (Hz) | Difference (%)

Mode 1 91.27 92.7 1.5
Mode 2 136.7 136 0.5
Mode 3 294.3 300 1.9
Mode 4 561.7 540 4.0
Mode 5 571.5 591 3.3
Mode 6 678.3 700 3.1

Clamped at the short side
After fitting (Hz) Aim (Hz) | Difference (%)

Mode 1 41.62 41.5 0.3
Mode 2 104.6 104 0.6
Mode 3 257.3 253 1.7
Mode 4 379.1 371 2.2

Table 5-13 SAO result with TPPAA for PCB FE model construction

RN

Initial design 15.00 | 15.00 | 6.818 0.100 | 2.4E-1
Iteration 1 18.00 | 18.00 | 7.683 0.150 | 7.9E-2
Iteration 2 21.60 | 21.60 | 6.600 0.200 1.4E-2
Iteration 3 23.99 | 21.76 | 6.061 0.250 | 5.4E-3
Iteration 4 23.71 | 21.33 | 6.039 0.300 | 5.2E-3
Iteration 5 2351 | 21.05 | 6.030 0.325 5.1E-3
Iteration 6 23.51 | 21.04 | 6.029 0.326 5.1E-3
Optimum design | 23.50 | 21.04 | 6.029 0.326 5.1E-3

Table 5-14 Result comparison with different approximation methods

Apprrnoeilrggtlon X, X, X, X, |Squared error| lteration
TPPAA 23.50 | 21.04 | 6.029 | 0.326 5.1E-3 7
DQA 23.50 | 21.04 | 6.029 | 0.326 5.1E-3 7
Direct linear 23.50 | 21.04 | 6.029 | 0.326 5.1E-3 8
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5.2  Optimization of high-accuracy measuring stage

Recently, since the semiconductor is developed to be smaller, faster, lower power
consuming and higher circuit-density, the demand for precision positioning technique
increases rapidly. Herein, the optimization of measuring stage for wafer inspection is
presented, as shown in Fig. 5-6 which minimizes the weight and ensures positioning
accuracy against the structure deformation caused by static loading and vibration at the

same time.

wafer chuck

mirror

linear stage

Fig. 5-6 High-accuracy measuring stage for wafer inspection

5.2.1 Optimization of gantry

The selection of design variables of gantry is shown in Fig. 5-7. The element size
of meshed FE model is 40 mm with hexahedral solid 95. The bottom of the gantry is

fixed in FEA as shown in Fig. 5-8. The material properties are shown in Table 5-15.
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QDS

(unit: mm)

Fig. 5-7 Selection of design variables for gantry

R tixed at bottom

Fig. 5-8 Boundary condition of gantry in FEA

Table 5-15 Material property of gantry

Material Granite
E (GPa) 60
v 0.3
p (g/cm®) 2.66
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The goal of this optimization problem is to minimize the weight of the gantry with

considering the restriction of the maximum displacement under self-weight loading and

1% natural frequency. The design data is shown in Table 5-16.

Table 5-16 Design data of gantry optimization

Size

550 < X, <800
100 < X, < 220
250 < X, < 500
100 < X, < 400

Constraints

Move limit

0.7x% P <x® <1.3x*P i=1,234

Behavior

Case A

Max displacement < 3 um

Case B

1% frequency > 220 Hz

Case C

Max displacement <3 um
1% frequency > 220 Hz

Initial design

x, =700, x, =200, x, =270, X, =250

The SAO result with TPPAA is shown in Table 5-17, Table 5-18, Table 5-19 and

Fig. 5-9. The CPU time is 74 seconds in case A, 254 seconds in case B and 133 seconds

in case C. Direct linear approximation is adopted to construct the single-point

approximate functions for the initial design. The comparison of results with different

approximation methods is shown in Table 5-20, Table 5-21 and Table 5-22.

Table 5-17 Result of TPPAA for gantry optimization in case A

X X, X Xy weight (kgf)
Initial design 700.0 | 200.0 | 270.0 | 250.0 594.8
Iteration 1 550.0 | 220.0 | 250.0 | 243.7 530.8
Iteration 2 550.0 | 220.0 | 250.0 | 240.0 526.3
Optimum design | 550.0 | 220.0 | 250.0 | 240.1 526.6
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Table 5-18 Result of TPPAA for gantry optimization in case B

X X, X3 Xy weight (kgf)
Initial design 700.0 | 200.0 | 270.0 | 250.0 594.8
Iteration 1 636.1 | 220.0 | 250.0 | 175.0 478.8
Iteration 2 583.1 | 220.0 | 250.0 | 122.5 397.4
Iteration 3 550.0 | 217.5 | 250.0 | 101.7 358.1
Iteration 4 550.0 | 216.7 | 250.0 | 1054 361.7
Optimum design | 550.0 | 216.8 | 250.0 | 105.6 362.1

Table 5-19 Result of TPPAA for gantry optimization in case C

X, X, X, X, weight (kgf)
Initial design 700.0 | 200.0 | 270.0 | 250.0 594.8
Iteration 1 707.5 | 220.0 | 250.0 | 229.0 568.5
Iteration 2 696.0 | 220.0 | 250.0 | 225.9 560.7
Optimum design | 695.8 | 220.0 | 250.0 | 225.9 560.7

594.8
600

500

450

Weight (kg)

568.5
550 530.8

Optimization of gantry

560.7

526.3

560.7

526.6

478.8

—e—case A

397.4

358.2

-

3

Iteration

case B

361.7

case C

362.1

Fig. 5-9 Iteration history of weight of gantry

62

doi:10.6342/NTU201603300



Table 5-20 Result comparison of gantry optimization in case A

Apprrnoe)ilhrggtlon X, X, X, X, V\(Ii:\%]t ma(i(u?]l)sp. Iteration
TPPAA 550.0 | 220.0 | 250.0 | 240.1 | 526.6 3.00 3
TPEA 550.0 | 220.0 | 250.0 | 240.1 | 526.5 3.00 3
Direct linear | 550.0 | 220.0 | 250.0 | 240.0 | 526.4 3.00 3

Table 5-21 Result comparison of gantry optimization in case B

Approximation weight | 1 N.F. | 2" N.F. :
method ol s LK gy | (Hz) | (g | teraton
TPPAA 550.0 | 216.8 | 250.0 | 105.6 | 362.1 220 220 5
TPEA 550.0 | 216.8 | 250.0 | 105.6 | 362.0 | 220 220 5
DQA 550.0 | 216.8 | 250.0 | 105.6 | 362.1 220 220 5

Direct linear |550.0|216.8|250.0|105.7 | 362.1 220 220 5
Table 5-22 Result comparison of gantry optimization in case C
Approximation weight | 1 N.F. |max disp. .
method X, X, X, X, (kaf) (H2) (um) Iteration

TPPAA 695.8 | 220.0 | 250.0 | 225.9 | 560.7 220 3.00 3

TPEA 695.7 | 220.0 | 250.0 | 225.9 | 560.7 220 3.00 3

Direct linear | 695.9 | 220.0 | 250.0 | 225.9 | 560.8 220 3.00 3

5.2.2 Optimization of modified gantry

The selection of design variables of the modified gantry is shown in Fig. 5-10. The

element size of meshed model is 40 mm with solid 186 tetrahedral and hexahedral

element mixed as shown in Fig. 5-11. The boundary condition and the material property

remain the same as original gantry.
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Q09

(unit: mm)
Fig. 5-10 Selection of design variables for modified gantry

Fig. 5-11 Meshed FE model of modified gantry

The goal of this optimization problem is to minimize the weight of the gantry with
considering the restriction of the maximum displacement under self-weight loading and

1% natural frequency. The design data is shown in Table 5-23.
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Table 5-23 Design data of modified gantry optimization

550 < x, <800
100 < X, < 220
250 < x, <500
100 < x, <400
100 < X, < 250
100 < X, <300
550 < x, <800
100 < x, < 200
250 < x, <500
50 < x, < 400
100 < x, < 250
100 < X, <300
Move limit 0.85x* P <x® <1.15x*P, i=12,...,6

Max displacement < 3 um
1% natural frequency > 220 Hz
Max displacement < 3 um
1% natural frequency > 235 Hz

X, =700, x, =200, x, =270,
X, =250, x; =200, X, =250
X, =720, x, =190, x, = 270,
X, =210, X, =200, x; =250

Case A

Size

Constraints
Case B

Case A
Behavior

Case B

Case A
Initial design

Case B

The SAO result with TPPAA is shown in Table 5-24, Table 5-25, Fig. 5-12 and Fig.
5-13. The CPU time is 700 seconds in case A and 804 seconds in case B. Direct linear
approximation is adopted to construct the single-point approximate functions for the
initial design in both cases. The comparison of results with different approximation

methods is shown in Table 5-26 and Table 5-27.
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Table 5-24 Result of TPPAA for modified gantry optimization in case A

X, X, X, X, X Xs V\(Iﬁlggfl;t

Initial design 700.0 | 200.0 | 270.0 | 250.0 | 200.0 | 250.0 616.0
Iteration 1 595.0 | 174.2 | 250.0 | 212.5 | 230.0 | 286.2 481.9
Iteration 2 550.0 | 181.0 | 250.0 | 180.6 | 250.0 | 300.0 442.0
Iteration 3 550.0 | 191.8 | 250.0 | 153.5 | 239.1 | 300.0 419.9
Iteration 4 550.0 | 198.9 | 250.0 | 130.5 | 203.2 | 300.0 395.4
Iteration 5 550.0 | 204.4 | 250.0 | 110.9 | 172.7 | 300.0 374.1
Iteration 6 550.0 | 205.6 | 250.0 | 100.0 | 146.8 | 300.0 359.3
Iteration 7 550.0 | 205.2 | 250.0 | 100.0 | 138.8 | 300.0 357.9
Optimum design | 550.0 | 205.2 | 250.0 | 100.0 | 138.7 | 300.0 357.9

Table 5-25 Result of TPPAA for modified gantry optimization in case B

X, X, X, X, Xs Xq V\(Iig;t

Initial design 720.0 | 190.0 | 270.0 | 210.0 | 200.0 | 250.0 556.9
Iteration 1 612.0 | 199.0 | 250.0 | 17/8.,5 | 170.0 | 287.5 468.1
Iteration 2 614.2 | 200.0 | 250.0 | 151.7 | 195.5 | 300.0 442.1
Iteration 3 673.0 | 200.0 | 250.0 | 129.0 | 208.8 | 300.0 435.9
Iteration 4 718.1 | 200.0 | 250.0 | 109.6 | 198.9 | 300.0 426.2
Iteration 5 712.1 | 200.0 | 250.0 | 93.18 | 169.0 | 300.0 400.4
Iteration 6 721.7 | 200.0 | 250.0 | 79.20 | 176.9 | 300.0 387.9
Iteration 7 729.7 | 200.0 | 250.0 | 72.95 | 196.3 | 300.0 385.7
Optimum design | 726.9 | 200.0 | 250.0 | 73.36 | 199.8 | 300.0 385.8

Optimization of modified gantry case A

481.9

442

r2

4199
395.4
374.1

4

359.3

5

Iteration

3579

357.9

Fig. 5-12 Iteration history of weight of modified gantry in case A
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Optimization of modified gantry case B
650

600
556.9

N
h
(=]

500

468.1

Weight (kg)

442.1 4359 4269

400.4
387.9 3857 3858 3858

Tteration

Fig. 5-13 Iteration history of weight of modified gantry in case B

Table 5-26 Result comparison of modified gantry optimization in case A

i i . max
Approximation weight 1tNE | )
method % %2 X Xy X5 Xg ko) | (Hz) ?SE) Iteration

TPPAA  |550.0{205.2|250.0{100.0|138.7|300.0{ 357.9| 220 | 3.00 8
TPEA 550.0]205.2/250.0{100.0/138.7|300.0| 357.9| 220 | 3.00
DQA 550.0]205.2/250.0{100.0/138.6|300.0| 357.9| 220 | 3.00 8

oo

Table 5-27 Result comparison of modified gantry optimization in case B

i i . max
Approximation weight 1tNE. | _
method % X, X3 Xy X5 Xg kaf) | (Hz) ? LI;{:) Iteration

TPPAA  726.9/200.0{250.0| 73.4 |199.8|300.0{385.8| 235 | 3.00 9
TPEA 726.41200.0/250.0| 73.7 |1198.5/300.0|385.8 | 235 | 3.00 10
CONLIN ]726.3|200.0|250.0| 73.8 |198.1/300.0/385.8| 235 | 3.00 10

5.2.3 Optimization of y-stage

The simplified parametric CAD model of y-stage for optimization is shown in Fig.
5-14. The thickness of each plate is selected as design variable, as shown in Fig. 5-15.
The element type of meshed model is solid 186 with tetrahedral and hexahedral

elements mixed as shown in Fig. 5-16. In FEA, the bottom of the linear stage is fixed.
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The material property are listed in Table 5-28.

plate

wafer chuck

linear stage

Fig. 5-14 Simplified parametric CAD model of y-stage

(unit: mm)
Fig. 5-15 Selection of design variable for y-stage

Fig. 5-16 Meshed model of y-stage
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Table 5-28 Material property of y-stage

Component plate mirror wafer chuck linear stage
Material invar zerodur aluminum alloy|aluminum alloy
E (GPa) 150 91 303 68

v 0.3 0.24 0.21 0.33
p (g/cm?®) 8 2.53 3.72 3.59

The goal of this optimization problem is to minimize the weight of the y-stage with
considering the restriction of the maximum displacement under self-weight loading and
1% natural frequency. The design data is shown in Table 5-29.

Table 5-29 Design data of y-stage optimization

Size 3<x <30, 1=12,...,5
Move limit 0.7x% P <x® <1.3x*? i=12,..5
Constraints Case A Max displacement < 3 um
Behavior Case B 1% natural frequency > 250 Hz
Max displacement < 3 um
Case C 1% natural frequency > 250 Hz
Initial design x. =10, i=12,..,5

The SAO result with TPPAA is shown in Table 5-30, Table 5-31, Table 5-32 and
Fig. 5-17. The CPU time is 493 seconds in case A, 1224 seconds in case B and 1230
seconds in case C. Direct linear approximation is adopted to construct the single-point
approximate functions for the initial design. The comparison of results with different
approximation methods is shown in Table 5-33, Table 5-34 and Table 5-35. To examine
the optimization result, TPAEA with large & is also taken in these cases. ¢ is
selected to be large enough so that the convex substitute functions are always adopted

for approximation. With larger ¢ adopted, SAO process can be more stable.
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Table 5-30 Result of TPPAA for y-stage optimization in case A

X, X, X, X, Xs  |weight (kgf)
Initial design 10.00 | 10.00 | 10.00 | 10.00 | 10.00 28.59
Iteration 1 7.000 | 7.000 | 10.79 | 7.000 | 7.000 23.15
Iteration 2 4900 | 4900 | 11.35 | 4.900 | 4.900 19.44
Iteration 3 3.454 | 3.431 | 11.38 | 5171 | 3.863 17.14
Iteration 4 3.000 | 3.000 | 11.33 | 5.168 | 3.000 16.26
Optimum design | 3.000 | 3.000 | 11.34 | 5.170 | 3.000 16.26

Table 5-31 Result of TPPAA for y-stage optimization in case B

X, X, X, X, Xs  |weight (kgf)

Initial design 10.00 | 10.00 | 10.00 | 10.00 | 10.00 28.59
Iteration 1 7.000 | 7.000 | 9.168 | 7.000 | 7.000 21.60
Iteration 2 4900 | 4900 | 8552 | 4.900 | 4.900 16.83
Iteration 3 3.430 | 3.814 | 8.438 | 3.567 | 3.432 14.05
Iteration 4 3.000 | 3.874 | 7.858 | 4.504 | 3.000 13.22
Iteration 5 3.000 | 3.871 | 8.209 | 4.252 | 3.037 13.49
Iteration 6 3.000 | 3.875 | 8.175 | 4.243 | 3.028 13.46
Optimum design 3.000 | 3.869 | 8.180 | 4.242 | 3.017 13.46

Table 5-32 Result of TPPAA for y-stage optimization in case C

X, X, X, X, Xs  |weight (kgf)
Initial design 10.00 | 10.00 | 10.00 | 10.00 | 10.00 28.59
Iteration 1 7.000 | 7.000 | 10.79 | 7.000 | 7.000 23.15
Iteration 2 4900 | 4.900 | 11.35 | 4.900 | 4.900 19.44
Iteration 3 3.430 | 4.094 | 1155 | 4.943 | 4.084 17.52
Iteration 4 3.000 | 3.712 | 11.45 | 4.882 | 3.000 16.58
Optimum design | 3.000 | 3.724 | 11.44 | 4.882 | 3.000 16.58
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Fig. 5-17 Iteration history of weight of y-stage

Table 5-33 Result comparison of y-stage optimization in case A

Approximation X X X X X weight | max disp.
method ! 2 3 4 > (kgf) (um)
TPPAA 3.000{3.000(11.34|5.170|3.000| 16.26 3.00

Direct linear * |3.000|3.000{11.35|5.120/3.000| 16.26 3.00

TPPAA (large ¢') [3.000|3.000(11.39|4.997|3.000| 16.27 3.00

(*: different move limit)

Table 5-34 Result comparison of y-stage optimization in case B

Approximation “ “ . o | weight| 1% N.F. 2" N.F.
method Xl % X S g | Hz) | (Hz)
TPPAA 3.000|3.8698.180|4.242|3.017 | 13.46 250 250

TPPAA (large 6) |3.000(3.877|8.194 |4.071|3.000| 13.43 250 250
Table 5-35 Result comparison of y-stage optimization in case C
N . 1%t | max
Approximation X X X X X weight NE. | di | .
method 9 ) 5 4 5 K .F. | disp. |Iteration
KN (Ha) | (um)
TPPAA 3.000|3.724|11.44|4.882|3.000 | 16.58 | 250 | 3.00 5
TPEA 3.000|3.725|11.33|5.181|3.001 | 16.56 | 250 | 3.00 9
TPPAA (large &) [3.000|3.725|11.33|5.221|3.000 | 16.56 | 250 | 3.00 9
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Chapter 6  Conclusion and suggestion

This study proposes a new two-point approximation method named two-point
piecewise adaptive approximation (TPPAA). Several structural optimization examples
are also presented and show the applicability of this new approximation method. The

conclusions and suggestions are listed in this chapter.
6.1 Conclusion

The conclusions of this thesis are expressed as follows:

(1) As a two-point approximation scheme, TPPAA satisfies the function value at
the current design point and the gradients at the both design points. To ensure
the approximation quality, TPPAA constructs the approximate function in
monotonic form when the first order derivatives of two successive design
points have the same signs, and vice versa. Moreover, when the monotonic
form is required, the piecewise function is constructed to avoid the
inappropriate approximation that the existing approximation methods may
cause.

(2) To verify the practicability of TPPAA, a C++ program for structural
optimization integrating CAD software, FEA software, approximation theory,
and mathematical optimization method is developed.

(3) The performance of TPPAA is examined in several small scale structures and
compared with other approximation methods. The result indicates that the

structure optimization process is efficient by using TPPAA.
6.2  Suggestion

Here are two suggestions for further studies relevant to this research.

(1) Several studies have proposed some strategies for the determination of move limit
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for each design variable according to specific information such as sensitivity.
However, in this study, all the design variables have the same strategy of move
limit which does not depend on any information. The improved strategies should
be studied and applied to the SAO to make the process more stable.

(2) In this study, the approximation methods are only applied to represent the stress,
displacement in linear static analysis and natural frequency. The approximation

methods can be tested further with other kinds of structural behavior.
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Appendix: User manual of integrated optimization

program

The optimization program for this research is developed in Microsoft Visual Studio
2015 with integrating AutoCAD and ANSYS. The instructions of this program are

shown in this appendix.

A.1 Program setting

Important program settings are shown as follows. (Take 3-bar truss optimization as

the example)

(a) Setting the path of AutoCAD and ANSYS (main.cpp)

/I path of AutoCAD

acad_bat("D:\\Autodesk\AutoCAD 2015\\acad.exe™);

/Il path of ANSYS

ansys_bat("D:\VANSY SInc\\Ww150\ANSY S\\bin\\winx64\\ansys150.exe");

(b) Defining the optimization problem (main.cpp)

/1 set the number of the total functions and design variables respectively
DesignPoint point0(1 + 3, 2);

/I initial design vector

point0 ={ 2,1 };

/I number of behavior constriants

Constraint design_constraint(point0.num_func - 1);

/I upper bound and lower bound of each behavior constraint
design_constraint.make_behavior({ { -15.0,20.0 },{ -15.0,20.0 },{-15.0,20.0 } });

(c) Selecting of the algorithms (main.cpp)

/I Choose the approximation and optimization methods
Approximation* pApprox1 = new ConvexLinear;
Approximation* pApprox2 = new TPPAA(2, -2, 0.001, 0.001);
ConstraintElimination* pCE = new ExteriorPenalty3(10, 1);
SearchDirection* pSD = new BFGS;

RangeFinder* pRF = new RangeFinderl;
MinimumLocator* pML = new GoldenSection;
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(d) Integration with AutoCAD and ANSYS (main.cpp)

/I Whether modeling by AutoCAD
bool run_cad = false;
/I the .1sp file name and the drawing function name for AutoCAD
if (run_cad) // Lisp file name and the function name
autocad_fileout(point0, "drawplate.lsp”, "plate");
/I the .mac file name for ANSYS
ansys_fileout(point0, "TS03.MAC");

(e) Constraint treatment (main.cpp)

for (inti = 0; i < point0.num_func - 1; i++) {
if (point0.value.component[i + 1] >=0.0)
treat.value.component[i + 1] /=design_constraint.behavior[i].second.component[0];
else
treat.value.component[i + 1] /= design_constraint.behavior[i].first.component[0];
treat.value[i + 1] -= 1.0;

for (int j = 0; j < point0.num_var; j++) {
if (point0.value.component[i + 1] >=0.0)
treat.sensitivity[i + 1][j] /= design_constraint.behavior[i].second.component[0];
else
treat.sensitivity[i + 1][j] /= design_constraint.behavior[i].first.component[0];

(f) Move limit (main.cpp)

/I move limit definition
for (inti=0; i < point0.num_var; i++)
move_limit[i] = { point0.variable.component[i] / 3.0 , pointQ.variable.component[i] * 3.0 };

(9) Defining the explicit objective function (Approximation.h)

#define explicit_objective {\
if (index_func_nf==0) {\
value = 20 * sgrt(2) * x(0) + 10 * x(1);\
return *this;\
n
}
#define explicit_objective_gradient {\
if (index_func_nf==0){\
grad(0) = 20 * sqrt(2);\
grad(1) = 10.0,\
return *this;\
n
}
#endif
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A.2 Operation step

Operation steps of the program are listed in the following and shown in Fig. A-1.
(1) Open “ThreeBarTruss.vcxproj”.
(2) Open “main.cpp”.
(3) Set the program as in section A-1.
(4) Press “Ctrl+F5”.

(5) The result is recorded in “result.txt”

+
<9>:|

ThreeBarTruss.
vExXproj

result b

t

Ctrl+F5

Fig. A-1 Operation steps of the optimization program
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