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中文摘要  

 本研究提出兩點分段適應近似法應用於結構最佳化上。為使數學最佳化理論

能與結構設計結合，必須透過近似法將結構之行為諸如應力、位移、頻率等轉換

成以設計變數表示的顯函數。最佳解便能透過解決數個由近似函數構成的最佳化

問題得到。為確保近似品質，近似函數會考量函數的單調性來建立。由於許多結

構行為對設計變數的變化近乎單調函數，兩點分段適應近似法確保建立單調的近

似函數以確保近似品質，並在兩點微分值異號時亦能建立非單調函數以符合兩點

靈敏度值。並且此近似法採用分段函數解決過往近似法中不當近似的產生。此研

究亦整合最佳化程式、CAD 軟體與有限元素分析軟體進行自動化結構最佳設計，

並以多個結構最佳化的問題驗證本近似法於結構最佳化的實用性，並另實際應用

於電路板等效有限元素模型建立與精密檢測平台的設計之中。 

 

關鍵字：結構最佳化、連續近似最佳化、兩點近似法、有限元素分析、非線性規

劃 
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ABSTRACT 

 This study proposes a new two-point approximation method called two-point 

piecewise adaptive approximation (TPPAA) for structural optimization. For applying 

the mathematical optimization to structural design, several kinds of structural behavior, 

including stress, displacement and natural frequency, are represented as explicit 

functions of design variables by approximation technique. The optimum design can be 

found with sequential sub-problems solved, which is known as sequential approximate 

optimization (SAO). To ensure the approximation quality, structural behavior is 

approximated with considering the monotonicity. Monotonic functions are available in 

TPPAA when the first order derivatives of two successive design points have the same 

signs since many kinds of structural behavior vary quasi-monotonically with respect to 

design variables. Non-monotonic form can also be obtained when the two derivatives of 

two successive design points have different signs. TPPAA adopts the piecewise 

approximate functions to avoid inappropriate approximation that existing approximation 

schemes would encounter. In this study, a program integrating ANSYS, AutoCAD and 

Microsoft Visual C++ is developed for automated structural optimization. The 

practicability of TPPAA is examined in several structural optimization problems and the 

comparison of several approximation methods are also presented. Furthermore, TPPAA 

is applied to optimum design of large structures, such as effective FE model 

construction of PCB and design of high-accuracy measuring stage structure. 

 

Keyword: Structural optimization, Sequential approximate optimization, Two-point 

approximation method, Finite element analysis, Nonlinear programming 
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Chapter 1 Introduction 

In this chapter, the history of structural optimization and the development of 

approximation methods are briefly introduced first. Then, the outline of the thesis is 

presented. 

1.1 Introduction to structural optimization 

 Structural optimization has been developed more than a century. The main purpose 

of structural optimization is to improve the design under specific restrictions. 

Conventionally, design improvement relies on the engineer’s experience with trial and 

error. It costs considerable time and may not obtain the optimal result.  Nowadays, 

automated structural design is available with integrating well developed finite element 

analysis software and optimization theory. It can find the optimum design with less 

subjective judgement. 

With the development of finite element method, structural analysis is no longer 

limited to the theoretical derivation. However, it takes considerable time for the large 

and complicate structures. In order to save the time of design process, approximation 

technique is introduced. 

Approximation methods converts the implicit structural functions into explicit ones 

to generate the sub-problems, which can be solved with mathematical optimization. It 

saves much efforts by reducing the number of repeated finite element analyses. 

Local approximation schemes construct approximated functions from the response 

and the sensitivities of a design point. Hence the problem with implicit structural 

behavior can be transformed into a mathematical problem with explicit functions with 

the approximation reliable around the design point. After solving sequential 

sub-problems, the optimal solution can be found after the process converging. This 
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technique is also known as sequential approximate optimization (SAO). 

For the less finite element analyses in SAO process, the choice of the 

approximation scheme is better to depend on the characteristics of the problem. For 

instance, in simple truss problems with design variables of cross section area, direct 

linear approximation is the best for total weight of truss, reciprocal approximation is 

more appropriate for stress and displacement. However, for the complicate cases, it is 

still hard to determine the most suitable scheme. In spite of that, some principles of 

approximation may be held to ensure the approximation quality for general cases. 

1.2 Paper review 

In 1904, Michell calculated the theoretical lower bound of the weight of truss 

structures with stress constraints [1]. The theoretical derivation of ideal structures was 

an important inspiration for structural optimization. After finite element method was 

proposed and developed maturely, structural optimization is valid for designing 

complicate structures. 

In 1974, Schmit and Farshi applied approximation concepts to convert structural 

behavior into explicit functions of design variables [2]. This method turned limited 

information from structural analyses into simple approximate functions, and greatly 

reduced the time of structural optimization process. 

So far, a lot of local approximation methods have been developed. Among these 

schemes, direct linear approximation is the most fundamental approach which performs 

the 1st order Taylor series expansion in terms of design variables. However, most 

structural characteristics are nonlinear, this method may not be reliable for therefore. To 

enhance the approximation quality, some scholars proposed reciprocal approximation 

method, which adopting the reciprocals of original variables as intervening variables in 
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1st order Taylor series expansion [3]. This approximation method is quite suitable for 

stress and displacement constraint in simple truss problems when cross-section area is 

selected as design variable. However, the function value tends to infinity when the 

design variable approach zero that may cause inappropriate approximation. To 

overcome this problem, Haftka and Shore proposed modified reciprocal approximation 

method to shift the singular point in reciprocal approximation [4]. In 1979, Starnes and 

Haftka proposed conservative approximation method [5] which is also known as convex 

linearization (COLIN) presented by Fleury and Braibant [6]. This method adopts either 

direct linear or reciprocal approximation for each design variable, according to which 

approximate function is estimated higher. In other words, conservative approximation 

adopts the more conservative one between direct linear and reciprocal approximation 

for every design variable. In 1987, Svanberg presented the method of moving 

asymptotes (MMA), which can be regarded as the generalization of CONLIN [7]. 

To improve the approximation quality of single-point approximations, a lot of 

approximation schemes developed subsequently with utilizing the information of 

previous design point to construct approximate functions. These approximations are 

classified as two-point approximations. In 1987, Haftka et al. proposed two-point 

modified reciprocal approximation which has the strategy to decide the indeterminate 

coefficients in modified reciprocal approximation [8]. However, this strategy is 

undefined when the derivatives of two successive points have the different signs. In 

1990, Fadel et al. proposed two-point exponential approximation (TPEA) [9]. TPEA 

performs Taylor series expansion with exponential intervening variables. The derivative 

of the previous design point is used to determine the exponent. But this approximation 

lacks definition for two-point approximation when the derivatives of the variable of two 

successive points have the different signs. In 1994 and 1995, Wang and Grandhi 
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proposed a series of two-point adaptive nonlinear approximations (TANA) based on 

TPEA, which enhance TPEA by matching the function value of previous design point 

[10][11]. In 1994, Snyman and Stander presented spherical approximation method 

(SAM) which appends a quadratic term to direct linear approximation for correcting the 

function value of the previous design point [12]. In 1995, Fadel classified the 

approximate functions into monotonic and non-monotonic functions [13]. It is 

suggested that the selection the approximations should consider the characteristic of 

monotonicity of the structural behavior. Then the mixed method is proposed named 

DQA-GMMA, which adopts monotonic approximation for design variable when the 

derivatives of two successive design points have the same signs, and vice versa. 

In 1997, Zhang and Fleury proposed modified convex approximation (MCA) based 

on CONLIN [14]. MCA increases the convexity of approximation to avoid 

non-convergent process. In 1998, Xu and Grandhi proposed two-point adaptive 

nonlinear approximation-3 (TANA-3), which appends a term to TPEA for additionally 

matching the function value of previous design point [15]. In 2000, Xu et al. presented a 

new two-point approximation approach which uses the linear combination of linear and 

reciprocal approximations to match the derivatives of previous design point [16]. In 

2001, Kim et al. presented two-point diagonal quadratic approximation (TDQA) based 

on TPEA [17]. TDQA adds shifting level into exponential intervening variables to avoid 

the singularity of the derivatives. In 1996, Chickermane and Gea proposed generalized 

convex approximation (GCA) [18]. GCA uses the derivatives of two points to construct 

approximate functions without lacking definition in TPEA. In 2007, Groenwold 

proposed incomplete series expansion (ISE) which includes a series of approximations 

[19]. ISE uses quadratic, cubic, and even higher order diagonal terms to construct the 

approximate functions. 
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Several approximation schemes have the approximate function convex to ensure 

stability of the optimization process such as GCMMA [20][21]. In 2015, Li proposed an 

adaptive quadratic approximation (AQA) which enforces the approximate functions to 

be strictly convex to improve the robustness and convergence performance of the 

optimization process [22]. However, this enforcement would cause inconsistency and 

may lower the efficiency of optimization process. 

Moreover, Chiou proposed two new convex approximation methods in 2000, 

including self-adjusted convex approximation (SACA) and two-point convex 

approximation (TPCA) [23]. In 2002, Chen proposed improved two-point 

approximation (ITPA) which can be seen as the combination the linear-reciprocal and 

TPEA [24]. In 2007, Chang proposed quasi-quadratic two-point conservative 

approximation (QTCA) [25]. In 2010, Chen proposed exponential MMA (EMMA), 

which makes the order of intervening variables in MMA adjustable for more flexibility 

[26]. In 2012, Chen proposed a new mixed two-point approximation method which is 

the combination of TPEA and GBMMA [27]. In 2013, Jiang proposed enhanced 

two-point exponential approximation (ETPEA) to conquer the problem of lack of 

definition in TPEA [28]. ETPEA use intervening variable which is the second order 

Taylor series expansion of the original variable to deduce the new formula as the 

remedy of TPEA. 

1.3 Strategies of research 

 The approximation quality is the crucial factor for the efficiency and stability in 

SAO process. This thesis presents a new approximation method, named two-point 

piecewise adaptive approximation (TPPAA). TPPAA is applied to construct the 

approximate functions of structural behavior such as stress, displacement and natural 
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frequency for optimization problems. The strategies are as follows: 

(1) Review the existing approximation schemes and discuss the merits and 

defects of each method. 

(2) Test some classical approximation methods in several optimization problems 

and compare the approximation quality in each case.  

(3) Create the 1-D plot of the approximate functions in several cases to realize the 

characteristics of each approximation. 

(4) The new method is developed and tested in several optimization problems to 

verify its practicability. 

1.4 Outline 

There are six chapter in this thesis: 

Chapter 1: Introduce the development of structural optimization and the existing 

approximation methods briefly. After that, the research strategy of this study is 

mentioned. 

Chapter 2: Introduce the procedure of mathematical optimization in this study and 

several existing approximation methods. 

Chapter 3: Present the derivation of new approximation method developed in this 

study. Also the characteristics of the new method is compared with other approximation 

methods. 

Chapter 4: Apply the proposed approximation method to several small scale 

structures and compare the results with other approximation methods. 

Chapter 5: Apply the proposed approximation method to several large scale 

structures and compare the results with other approximation methods. 

Chapter 6: Conclude the achievements and recommend the future work. 
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Chapter 2 Application of approximation methods in 

structural optimization 

First, the procedure of mathematical optimization in this thesis is introduced, then 

several previous approximation methods are also discussed for the development of new 

approximation method. 

2.1 Procedure of mathematical optimization 

This section introduces the details of the mathematical optimization in sequence. 

The optimization problem can be written as 

 

 

Find ,

such that   min,

subject to  0,   1,2..., ,i c

x

F x

g x i n



 

 (2.1) 

where x  denotes the design vector,  F x  denotes the objective function to be 

minimized,  ig x  denotes the i-th constraint, cn  denotes the number of constraints. 

2.1.1 Selection of design variables 

The first step for optimization is defining the design variables for the problem. 

With taking efficiency in consideration, an optimization problem should prevent from 

having too many design variables. In order to reduce the design space, one of the 

solutions is to choose the dominant variables only instead of all the possible ones. 

Another way is to link the design variables, which can be expressed as 

  ,x T X  (2.2) 

where X  denotes the basis of original design vector, x  is the reduced basis, and  T  

is the connectivity matrix of design variables. 
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2.1.2 Defining objective function 

In this study, the mathematical optimization problem is defined to minimize the 

objective function as the expression of Eq. (2.1). To deal with the maximization case, 

from another point of view, the problem is turned into minimizing the negative of the 

original objective function. 

For the problem considering various objective functions, they are linked with 

appropriate weighted coefficients. It can be written as 

   
1

,i i

i

F x w F x


  (2.3) 

where  F x  denotes the total objective function,  iF x  denotes the individual 

objective function and iw  denotes the weighted coefficient. 

2.1.3 Sensitivity analysis 

Thanks to well-developed finite element method, the complicate structural analysis 

is available for optimization nowadays. Besides the response magnitude of structural 

behavior, the first order derivative, which also called sensitivity, is also required in the 

local approximation schemes and most search direction algorithms. 

Sensitivity analysis is the way to realize the variation tendency of structural 

behavior with respect to design variables. In this study, backward difference method is 

adopted in sensitivity analysis, which can be expressed as 

     0 0 0
,

i

i i

h x h x h x x

x x

  


 
 (2.4) 

where  0 ih x x   denotes the sensitivity of ( )h x  with respect to ix  at 0x , 

{0 0 0 ...  ... 0}T

i ix x    represents that only the i-th design variable has a small 

variation ix . 
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2.1.4 Treatment of constraints 

In structural optimizations, there are many kinds of constraints, such as stress, 

displacement, natural frequency, size, and move limit constraints. For the sake of 

making the mathematical problem in the form as Eq. (2.1), and reducing the influences 

of numerical difference between different constraints, the constraints should be 

modified as follows. 

A. Behavior constraint 

To avoid the fracture of structures or large displacement which influences the 

performance of structures, stress and displacement constraints are often needed in 

structural optimizations. These two constraints can be expressed as 

,   1,2,..., ,

0,   0,

L U

i i i b

L U

i i

g g g i n

g g

  

 
 (2.5) 

where L

ig  and U

ig  denote the lower and upper bound of the i-th constraint 

respectively, and bn  denotes the number of behavior constraints. The constraints 

should be treated as 

1.0, if  0

    1,2,..., ,

1.0, if  0

i
iU

iM

i b

i
iL

i

g
g

g
g i n

g
g

g


 


 
  


 (2.6) 

where M

ig  denotes the modified constraints. 

Moreover, to avoid resonance occurring, the natural frequencies of the structure are 

often restricted in certain region. The constraint of frequency can be expressed as 

,   1,2,..., ,

0.

L

i i b

L

i

g g i n

g

 


 (2.7) 

The constraints should be treated as 
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1.0 ,   1,2,..., .M i
i bL

i

g
g i n

g
    (2.8) 

B. Size constraint 

Size constraints are the limits of design variables due to material specifications, 

practical demands, and so on. Size constraints can be expressed as 

,   1,2,..., ,L U

i i i sD x D i n    (2.9) 

where L

iD  and U

iD  denote the lower and upper bounds of allowable sizes respectively, 

and sn  denote the number of size constraints. 

C. Move limit 

In the local approximation, approximation is trustable only around the current 

design point. Hence move limit is introduced, which can be expressed as 

,   1,2,..., ,L U

i i ix x x i n       (2.10) 

where ix  denotes the variation of the i-th design variable, L

ix  and U

ix  are lower 

and upper bound of the variations of the i-th design variable respectively and n  

denotes the number of design variables. 

2.1.5 Application of approximation methods 

Once the mathematical problem is defined, the optimal solution can be found by 

mathematical programming. However, the relation between structural behavior and 

design variables is implicit usually. Hence the approximation technique is applied to 

convert the implicit behavior into explicit functions. Because the approximated 

functions are constructed by current design point, the formed mathematical problem is 

not exactly the same as the real problem, but reliable near the current design point. So, 

to obtain the optimal solution, it requires to solve several optimization problems of 

approximated functions. Each sub-problem takes the optimal solution of last iteration as 
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the initial design. This gradual improvement process is known as sequential 

approximate optimization (SAO). 

2.1.6 Application of mathematical optimization 

Numerical optimization method can be classified into direct and indirect methods. 

Direct method such as method of feasible direction is to solve the optimization 

problems without transferring the constraints. Indirect method converts the constraints 

to a part of objective function, hence the constrained problems can be transferred to 

unconstrained problems. 

Indirect method includes interior penalty method and exterior penalty method. 

When interior penalty method is adopted, the initial design must be in the feasible 

domain. However, it cannot guarantee that the initial design is always in the feasible 

domain in iterative process. So, exterior penalty method is adopted to deal with the 

constrained problems to make the process valid with infeasible initial design in this 

study. After transformation, the objective function can be expressed as 

2

1

( , ) ( ) ( ) ,

( ),  ( ) 0
( ) ,

0,    ( ) 0

cn

i

j

i i

i

i

x r F x r g x

g x if g x
g x

if g x



    


  




 (2.11) 

where ( , )x r  denotes the penalized objective function, ( )F x  is the objective 

function, r  is the penalty factor and ( )ig x  denotes the i-th constraint function. 

2.2 Single-point approximation methods 

Single-point approximation methods use the function value and derivatives of 

single design point to construct the approximate function. Several existing single-point 

approximation methods are compared in this section. 



doi:10.6342/NTU201603300

 

 12 

2.2.1 Direct linear approximation 

This approximation method takes the first order Taylor expansion at the current 

design point. It is the most fundamental method of local approximation. If ( )h x  

denotes the function to be approximated, this approximation can be written as 

 0

0 0

1

( ) ( ) ( ),
n

l i i

i i

h x
h x h x x x

x


  


  (2.12) 

where ( )lh x  denotes the approximate function of direct linear approximation, 0x  

denotes the variable vector of current point with i-th component 0ix . 

Since most behavior functions of general structures are nonlinear, this method may 

be not reliable. 

2.2.2 Reciprocal approximation 

The cross-section area of beams and the thickness of plates are often selected as the 

design variables, and the stress, displacement are often selected as constraints in 

structural optimization problems. In this kind of problem, the relation between the 

reciprocals of variables and the constraints are near linear for simple structures. Hence, 

in this case, performing 1st order Taylor series expansion in terms of reciprocals of the 

design variables would has the better approximation quality in comparison with direct 

linear approximation, which is called reciprocal approximation method [3]. 

 0 0
0 0

1

( ) ( ) ( )( ),
n

i
r i i

i i i

h x x
h x h x x x

x x


  


  (2.13) 

where ( )rh x  denotes the approximate function of reciprocal approximation. 

However, 0ix   is the singular point in this approximation method. When the 

design variable approaches to the singular point, the magnitude of the function value 

and derivative tend to infinity, and the approximation quality would be affected 
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therefore. 

2.2.3 Modified reciprocal approximation 

In order to conquer the defect of reciprocal approximation, Haftka proposed 

modified reciprocal approximation method [4]. The singular point is shifted to enlarge 

the reliable region. This approximation can be expressed as 

 0 0
0 0

1

( ) ( ) ( )( ),
n

i mi
mr i i

i i i mi

h x x x
h x h x x x

x x x

 
  

 
  (2.14) 

where ( )mrh x  denotes the approximate function of modified reciprocal approximation. 

The singular point is shifted from zero to mix . But the determination of mix  needs to 

depend on experience. 

2.2.4 Conservative and convex approximation 

Conservative approximation selects the more conservative one between direct 

linear and reciprocal approximations for each design variable [5][6]. So it can ensure 

that the function value would not less than neither direct linear nor reciprocal 

approximation. The idea of increasing the conservativeness is to make the solution of 

approximate problem satisfies the constraints more possible. The formula can be written 

as 

   0 0 0
0 0 0

1 1

( ) ( ) ( ) ( ) ,i
c i i i i

i ii i i

h x h x x
h x h x x x x x

x x x

 

 

   
      

   
   (2.15) 

where ( )ch x  denotes the approximate function of convex approximation method, 

1i





 denotes the summation of the design variable with positive first order derivative, 

and 
1i





 denotes the summation of the design variable with negative first order 

derivative. 
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However, the too conservative approximation would reduce the convergence rate 

and result in low efficiency to the process. 

2.3 Two-point approximation 

Besides using the response value and sensitivity of current design, two-point 

approximation methods utilize the information of previous design point to improve 

approximation quality. Several existing two-point approximation methods are compared 

in this section. 

2.3.1 Two-point modified reciprocal approximation 

In 1987, Haftka proposed two-point modified reciprocal approximation method [8], 

which gives a recommendation on determining the indeterminate coefficient in modified 

reciprocal approximation method. So these two approximation methods have the same 

form. 

 0 0
0 0

1

( ) ( ) ( )( ),
n

i mi
tmr i i

i i i mi

h x x x
h x h x x x

x x x

 
  

 
  (2.16) 

where ( )tmrh x  denotes the approximate function of two-point modified reciprocal 

approximation and 1x  denotes the variable vector of previous design point. mix  is 

determined by matching the previous derivative and can be derived as 

   1 00 1 ,   .
1

i i i
mi i

i ii

h x h xx x
x

x x






 
 

 
 (2.17) 

Obviously, it is undefined when the two derivatives have the different signs. 

Moreover, mix  is required to be a positive number to avoid the function value tending 

infinity, but it is not guaranteed in this method. 

2.3.2 Two-point exponential approximation 

In 1990, Fadel proposed two-point exponential approximation (TPEA) [9]. It takes 
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ip

ix  as the intervening variable for the first order Taylor series expansion. 

   
 

 
1

0 0
0 0

1

,
i

i i

pn
p pi

tpea i i

i i i

h x x
h x h x x x

x p






  


  (2.18) 

where ( )tpeah x  denotes the approximate function of TPEA. 
ip  is determined by fitting 

the derivative of the previous design point. 

   

 

1 0

1 0

ln

1 .
ln

i i

i

i i

h x h x

x x
p

x x

  
 

   
 (2.19) 

However, this calculation lacks of definition under following two conditions: 

   1 0

1 00   or   0.i i

i i

h x h x
x x

x x

 
 

 
 (2.20) 

When ip  cannot be calculated by matching the derivative, direct linear 

approximation is adopted instead. Besides that, ip  should be restricted in a specified 

range L U

ip p p   to avoid inappropriate approximation and 1,   1L Up p    is 

suggested by the author. When ip  is larger than Up  with calculated from Eq. (2.19), 

U

ip p  is adopted, and vice versa. 

The approximate function of TPEA is always monotonic. However, non-monotonic 

approximation functions are required when the two derivatives of two successive design 

points have the different signs. Moreover, TPEA has the defect of singularity as 

reciprocal approximation when 1ip  . 

2.3.3 Linear-reciprocal approximation 

In 2000, Xu presented linear-reciprocal approximation method [16]. With the linear 

combination of direct linear and reciprocal approximation methods, the derivative of the 

previous design point is matched. 
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        0
0 0 0

1 1

,
n n

i
lr i i i i i i

i i i

x
h x h x x x x x

x
 

 

       (2.21) 

where ( )lrh x  denotes the approximate function of linear-reciprocal approximation. The 

coefficients 
i  and 

i  are determined by matching the gradient of previous design 

point. 

   0 1

2

0

1

,

1

i i
i

i

i

h x h x

x x

x

x



 


 


 
  
 

 (2.22) 

 0
.i i

i

h x

x
 


 


 (2.23) 

This method implies that with utilizing the linear combination of two different 

single-point approximations, a new two-point approximation method which matches the 

gradient of previous design point can be created arbitrarily. 

2.3.4 Incomplete series expansion 

In 2007, Groenwold proposed a series of approximations named incomplete series 

expansion (ISE) [19]. The fundamental idea of ISE is to approximate the Hessian matrix 

by excluding the off-diagonal terms for saving the computational requirements. The 

general form can be written as 

 0

0 0 0

1 2 1

( ) ( ) ( ) ,
pn n

j

ise i i ji i i

i j ii

h x
h x h x x x c x x

x  


    


   (2.24) 

where ( )iseh x  denotes the approximate function of ISE. 

The simplest approximate form of ISE family is non-spherical quadratic ISE, 

which can be expressed as 

  20

2 0 0 2 0

1 1

( ) ( ) ( ) ,
n n

i i i i i

i ii

h x
h x h x x x c x x

x


 


    


   (2.25) 
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where 2 ( )h x  denotes the approximate function of non-spherical quadratic ISE. This 

approximation method is the same as diagonal quadratic approximation (DQA) [13]. 

The coefficients are determined by matching the gradient of previous design point. 

   

 

1 0

2

1 0

.
2

i i
i

i i

h x h x

x x
c

x x

 


 




 (2.26) 

Another member of ISE named non-spherical cubic approximation which can 

additionally match the function value of previous point with 2 2 ,  1,2,...,ic c i n  . 

  2 30

0 0 2 0 3 0

1 1 1

( ) ( ) ( ) ,
n n n

nsc i i i i i i i

i i ii

h x
h x h x x x c x x c x x

x  


      


    (2.27) 

where ( )nsch x  denotes the approximate function of non-spherical cubic approximation. 

In conclusion, ISE proposed a way to match extra information with arbitrary 

approximation forms. An approximate function can fit the derivative of another point by 

adding a non-spherical term and fit the extra function value by adding a spherical term. 

However, all the approximation functions of ISE are the non-monotonic form. Hence it 

is not appropriate to be applied to some structural behavior since their characteristics of 

monotonicity. 

2.3.5 Two-point adaptive nonlinearity approximation-3 

In 1998, Xu and Grandhi proposed two-point adaptive nonlinearity 

approximation-3 (TANA-3) [15], which appends a correction term to TPEA for 

matching the function value at previous design point. 

 
  1

0 20
tana3 0 0 0

1 1

1
( ) ( ) ( ) ( ) ( ) ,

2

i

i i i i

pn n
p p p pi
i i i i

i ii i

h x x
h x h x x x x x x

x p




 


    


   (2.28) 

where tana3( )h x  denotes the approximate function of TANA-3. 2

0

1

1
( ) ( )

2
i i

n
p p

i i

i

x x x


  is 
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the appended correction term to TPEA, and ( )x  can be expressed as 

0

2 2

1 0

1 1

1

0
1 0 1 0

1

( ) ,

( ) ( )

2 ( ) ( ) ( ) .

i i i i

i

i i

n n
p p p p

i i i i

i i

pn
p pi

i i

i i ix

K
x

x x x x

xh
K h x h x x x

x p



 








  



   
      

    

 



 (2.29) 

 The characteristic of the appended term is that the first order derivative equals zero 

at 0ix  and 1ix . So the determination of ip  is the same as in TPEA, and the same 

inappropriate approximation would encounter in TANA-3. 

2.4 Integrated optimization program 

In this study, the automated optimization program is developed in Microsoft Visual 

C++ 2015 with integrating AutoCAD 2002 and Ansys 15.0 APDL. The flow chart is 

shown in Fig. 2-1. The procedure is introduced briefly as follow: 

(1) Define the optimization problem including design variables, initial design, 

objective function and constraints. 

(2) Output “DesignVariable.lsp” for parametric modeling in AutoCAD 2002 if needed. 

The model is output as “model.sat”. 

(3) Output “DesignVariable.mac” for finite element analysis in Ansys 15.0 APDL. The 

results are output in .txt format. 

(4) Read the analysis results from .txt files. Then, the approximate functions are 

constructed to form the sub-problem. The new design is obtained after the 

mathematical optimization. 
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Fig. 2-1 Flow chart of developed optimization program 
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Chapter 3 The proposed approximation method 

In this study, a new approximation method is proposed and named two-point 

piecewise adaptive approximation (TPPAA). Many kinds of structural behavior vary 

quasi-monotonically with respect to design variables. For this situation, monotonic 

functions are available in TPPAA when first order derivatives of two successive design 

points have the same signs. The non-monotonic form can be approximated also when 

the two first order derivatives have different signs. Moreover, the piecewise 

approximate functions are adopted to avoid the inappropriate approximation that the 

existing methods would encounter. 

3.1 Modified incomplete series expansion 

The fundamental idea of the proposed approximation method is to construct an 

approximate function of arbitrary order which matched the value of a point and first 

order derivatives of two points. In other words, it can construct approximate functions 

with arbitrarily specified nonlinearity degree, as shown in Fig. 3-1. 

 

Fig. 3-1 Approximate functions with different orders 
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To avoid confusion, before introducing TPPAA, an approximate function which is 

based on ISE is discussed first. This new approximation, is named modified incomplete 

series expansion (MISE), also added the shifting term mix  for more flexibility and can 

be expressed as 

   0

1 1

,i

n n
p

mise i i mi i

i i

h x h x c x x R
 

      (3.1) 

where ( )miseh x  denotes the approximate function of MISE, ,  ,  ,  i mi i ic x p R  denote the 

coefficients to be determined. The differential form with respect to i-th variable is 

expressed as 

 
.

ip

i mimise

i i

i i mi

x xh x
p c

x x x




 
 (3.2) 

The essential requirement for local approximation is to fit the function value and 

derivatives at 0x  and it can be achieved by determining ic  and iR  as follows with 

arbitrary ip  and mix  given. 

From Eq. (3.2), ic  can be determined by fitting the derivatives at 0x . 

 
 0

0

0

.
i

i mi

i
i p

i i mi

h x
x x

x
c

p x x









 (3.3) 

Then, 
1

n

i

i

R


  is derived by fitting the function value at 0x  and 

0

ip

i i i miR c x x   (3.4) 

can be one of the solution. Hence iR  is expressed as 

 
 0

0

1
.i i mi

i i

h x
R x x

p x


 


 (3.5) 

Because MISE is a kind of separable approximation (approximate function consists 
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of several separable single-variable functions), the approximate function of one variable 

is discussed for simplicity in the following discussion. 

When 1ip  , the approximate function is a non-monotonic function, and mix  is 

the extreme point, as shown in Fig. 3-2. Hence the sign of second order derivative is 

based on which side mix  is with respect to 0ix . Fig. 3-2 shows the approximate 

functions of MISE which fit a point of    0 0 05,  3,  7.i ix h x h x x       

2,  3i mip x   is given for  1 ih x  and 2,  7i mip x   is given for  2 .ih x   

 

Fig. 3-2 Functions of MISE with 1ip   

When 1ip  , mix  is the singular point, as shown in Fig. 3-3. The magnitude of 

derivative tends to infinity when the design variable ix  approaches to mix . Hence it 

may cause inappropriate approximation in general cases. Note that in the case of 

1,  0i mip x   , MISE is the same as reciprocal approximation in 0ix  , as shown in 

Eq. (2.13). Fig. 3-3 shows the approximate functions of MISE which fit a point of 

   0 0 05,  3,  7. 0.5,  3i i i mix h x h x x p x         is given for  1 ih x  and 

0.5,  7i mip x   is given for  2 .ih x  
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Fig. 3-3 Functions of MISE with 1ip   

Though the information of current design point can be matched regardless of the 

selection of ip  and mix , the approximate function may vary a lot with different ip  

and mix  adopted as shown in Fig. 3-2 and Fig. 3-3. Hence the selection of ip  and mix  

is better to match the gradient at previous design point. 

The gradient of previous point can be matched with either mix  or ip  given, as 

explained in the following. 

A. Matching the gradient of previous point with given mix  

To match the gradient of previous design point with mix  given, ip  should be 

determined then. Substitute the derivative at 1x  into the Eq. (3.2): 

  11

1

.

ip

i mi

i i

i i mi

x xh x
p c

x x x




 
 (3.6) 

With ic  derived in Eq. (3.3), Eq. (3.5) can be written as 

     
 

0 11 0

1 0

.

i

i i

i

i i

p

i m i m

p

i i i m i m

x x x xh x h x

x x x x x x

  
 

   
 (3.7) 
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From Eq. (3.7), it is obvious that the selection of mix  should depend on the signs 

of the two derivatives. When the two derivatives have the different signs, ip  exists if 

and only if mix  is between 0ix  and 1ix , and vice versa. It can be expressed as 

  
   

  
   

0 1

0 1

0 1

0 1

0,  if 0

0,  if 0.

i i

i i

i m i m

i i

i m i m

i i

h x h x
x x x x

x x

h x h x
x x x x

x x

 
    

 


      
  

 (3.8) 

With the condition as Eq. (3.8) satisfied, Eq. (3.7) can be rewritten as 

   
1

0 1 11 0

01 0

.

i i

i i i

i

ii
i

p p

i m i m i m

p

i i i mi m i m

x x x x x xh x h x

x x x xx x x x



   
  

   
 (3.9) 

Then ip  can be derived by taking the logarithm in Eq. (3.9). 

   1 0

1

0

ln

1 .

ln

i i

i

i mi

i mi

h x h x

x x
p

x x

x x

 

 
 





 (3.10) 

 Note that when 
 0

i

h x

x




 and 

 1

i

h x

x




 have the same signs and 0mix   is 

adopted, MISE is the same as TPEA, as Eq. (2.18). 

B. Matching the gradient of previous point with given ip  

To fit the gradient of previous design point with given ip , mix  should be 

determined then. Under the premise of Eq. (3.8), Eq. (3.9) can be rewritten as 

       

       

-1

1 01 0 1

0

-1

1 01 0 1

0

,  0

,  0.

i

i

p

i mi

i i i mi i i

p

i mi

i i i mi i i

h x h xh x h x x x

x x x x x x

h x h xh x h x x x

x x x x x x

     
    

      


    
     

     

 (3.11) 

Then mix  can be derived as 
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   
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



  
   

    
  

   


     
  

  
     

 (3.12) 

Note that when 2ip   is adopted, MISE is the same as DQA, as Eq. (2.25). 

3.2 Two-point piecewise adaptive approximation 

So far, with ip  given, the function value of current design and 1st derivatives of 

both design points can be matched in MISE. When the derivatives of two successive 

design points have the same signs, the approximate function is suggested to be 

monotonic. However, if 1ip   is adopted, the approximate function is always 

non-monotonic; if 1ip   is adopted, the approximate function exists singular point at 

mix , as shown in Fig. 3-4. 

 

Fig. 3-4 Functions of MISE with different exponents 

 Hence the main idea of TPPAA is to use the piecewise function to overcome this 

dilemma. As illustrated in Fig. 3-4, 1ip   is adopted for averting the singular point in 
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0i ix x ; 1ip   is adopted for the monotonic form in 0i ix x , as shown in Fig. 3-5. 

With the approximate function piecewise, the approximation is more appropriate due to 

the prevention of defects. 

 

Fig. 3-5 Piecewise approximate function of TPPAA 

Similarly, when the non-monotonic form is required, 1ip   is adopted to avoid 

singularity. Since the approximate function is piecewise when the monotonic form is 

required, the calculation of coefficients in MISE should depend on ix . Hence, TPPAA 

is expressed as 

       
 

 0

1 1

,
i i

n n
p x

tppaa i i i mi i i i

i i

h x h x c x x x x R x
 

      (3.13) 

where ( )tpaeah x  denotes the approximate function of TPPAA. As just mentioned, 

 i ip x  is assigned first in TPPAA, which is expressed as 

   

     
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else         1,
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x x x x p x p

x x x x p x p

p x p

 
 

 
        
 

      


 



 (3.14) 
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where pix  and qix  are determined as 

   

   

   
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h x h x h x h x
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  

    
  

    
      

 (3.15) 

1ip  denotes the given exponent which is greater than 1 when the monotonic form is 

required. 2ip  denotes the given exponent which is less than 1 when the monotonic 

form is required. 3ip  denotes the given exponent when the non-monotonic form is 

required. In this study, 1 2ip  , 2 2ip    and 3 2ip   is adopted. 

Afterward,      ,  ,  i i i i mi ic x R x x x  are derived as the same way in MISE. 
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 (3.16) 
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   
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  

  
     

 (3.18) 

 One of the merit of TPPAA is that design variables are not required to be 

non-negative. Moreover, TPPAA is sensitive to neither translation nor scaling of the 

design variables. The comparison between TPPAA and other existing approximation 

methods are listed in Table 3-1. 
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Table 3-1 Comparison of two-point approximation methods 

Approximation 

method 

Match previous 

design point 
Approximate 

monotonic 

function 

Approximate 

non-monotonic 

function 

Existing 

singular 

point 
Function 

value 
Gradient 

TPPAA no yes yes yes no 

TPEA no yes yes no yes 

Two-point modified 

reciprocal 
no yes yes no yes 

Linear-reciprocal no yes no no yes 

DQA no yes no yes no 

TANA-3 yes yes no no yes 

 

3.3 Modification for convex approximation 

To make optimization process more stable, several existing approximation methods 

enforce the approximate function of the i-th design variable to be convex or even strictly 

convex when 

 
   0 1

0 1 0.i i

i i

h x h x
x x

x x

  
   

  

 (3.19) 

However, this enforcement may cause inconsistency and affect the efficiency of 

process. Hence in this study, the approximate function of the i-th design variable in 

TPPAA is modified to be strictly convex only when 

0 1i ix x    (3.20) 

where   is a given positive number. 

The expression of the TPPAA with the modification adopted in this study can be 

written as 
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 (3.21)  

where iA  and iB  are determined as 

0 1

0 1

0,  1,   for

1,  0,   for

i i i i

i i i i

A B x x

A B x x





    


   
 (3.22) 

and   is a given positive number. 

 

3.4 Modification for matching function value of previous 

design point 

Several approximation methods do not match the function value of the previous 

design point, including TPPAA. A strategy for correcting this bias may be considered, 

that uses the linear combination with arbitrary two approximation methods which both 

match the function value at current design point and gradients of the two successive 

design points. This strategy is similar with linear-reciprocal approximation, which can 

be expressed as 

       

   

   

1 2

1 2 1

1 1 2 1

1 ,

,

new approx approx

approx

approx approx

h x h x h x

h x h x

h x h x

 



  






 (3.23) 

where  newh x  denotes the new approximate function which matches the function 

value at previous design point with the linear combination of the two approximate 

functions  1approxh x  and  2approxh x . 

 However, with the strategies which match the function value at previous design 

point applied, it may cause the approximate function multimodal with respect to a 
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design variable. Since this kind of approximate function is unreasonable for 

representing structural behavior with respect to design variables in general cases, this 

strategy is not adopted in this study. 

The examples of the multimodal approximate functions are shown in Fig. 3-6 and 

Fig. 3-7 with        0 0 0 1 1 12,  3,  3,  =4, 2,  1.i i i ix h x h x x x h x h x x             

Fig. 3-6 shows the linear-reciprocal approximation with the correction term of TANA-3 

appended. Fig. 3-7 shows the linear combination of TPPAA and DQA. 

 

Fig. 3-6 Illustration of linear-reciprocal approximation with correction term of TANA-3 

appended 

 

Fig. 3-7 Illustration of linear combination of TPPAA and DQA 
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Chapter 4 Optimization of small scale structures 

The performance of TPPAA is examined by several structural optimization 

problems in this chapter. The comparison with previous approximation methods is also 

presented. The convergence criterion adopted in this chapter is that the relative 

difference of two consecutive objective function values is smaller than 0.1%. The 

specifications of computer used for the examples in this chapter is Intel i7-920 2.67GHz 

CPU with 4GB DDR3-1333 RAM. 

4.1 2-bar truss 

The 2-bar truss structure with a concentrated force acting on its top is shown in Fig. 

4-1. The design data is listed in Table 4-1. The first design variable is the cross-section 

area of both bars and the second one is the supporting locations. The goal of the 

optimization is to minimize the total weight. This optimization problem considers sizing 

design and shape design simultaneously. The analytical expression can be derived as 

  2

1 2

2

1 2

1 1 2

2

2 2

1 1 2

minimize  1 ,

8 1
0.124 1 1

subject to  
8 1

0.124 1 1.

F x x x

x
x x x

x
x x x





 

  
     

  


 
    

 

 (4.1) 
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Fig. 4-1 2-bar truss structure 

 

Table 4-1 Design data for 2-bar truss optimization 

Constraints 

Stress 
2

100  for each bari

N

mm
   

Size 

2 2

1

2

0.2 cm 4.0 cm

0.1 m 1.6 m

x

x

 

 
 

Move limit 
( 1) ( ) ( 1)0.75 1.25 ,  1,2k k k

i i ix x x i     

Initial design 
2

1 21.5 cm ,  0.5 mx x   

 

Conservative approximation is adopted to construct the single-point approximate 

functions for the initial design. The SAO result of TPPAA is shown in Table 4-2 and Fig. 

4-2, and the comparison with previous approximation methods is shown in Table 4-3. 

The CPU time of optimization process is 16 seconds. The exact solution of design 

variables is 1 2( , ) (1.412,0.377)x x   and the objective function is 1.50865 (kgf). 
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Table 4-2 Result of TPPAA in 2-bar optimization 

 1x  2x  Weight (kgf) 

Initial design 1.500 0.500 1.6771 

Iteration 1 1.386 0.375 1.4707 

Iteration 2 1.413 0.375 1.5088 

Optimum design 1.410 0.381 1.5086 

 

 

Fig. 4-2 Iteration history of weight of 2-bar truss 

 

Table 4-3 Result comparison for 2-bar truss optimization 

Approximation method Iterations Weight (kgf) 

TPPAA 3 1.5086 

DQA 3 1.5087 

TPEA 3 1.5086 

Direct linear 3 1.5087 

Linear-reciprocal 3 1.5086 

 

4.2 3-bar truss optimization 

The 3-bar truss structure with a concentrated force acting on it is shown in Fig. 4-3. 

The design data are listed in Table 4-4. One of the design variables 1( )x  represents the 

cross-section areas of bar 1 and bar 3, and the other one 2( )x  represents the 

cross-section area of bar 2. The total weight of the 3-bar structure is the objective 
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function to be minimized. In this simple case, the stress constraints can be expressed in 

analytical form, thus the exact solution can be obtained for comparison. The exact 

solution of design variables is 1 2( , ) (0.7887,0.4082)x x   and that of objective function 

is 26.3896 (lb). 

 

 

Fig. 4-3 3-bar truss structure 

 

Table 4-4 Design data for 3-bar truss optimization 

Material property 330000 ,  0.1 / ,  0.3E ksi lb in     

Constraints 

Stress 15 20  for each bariksi ksi    

Size 
20 ,  1,2iin x i   

Move limit 
( 1)

( ) ( 1)3 ,  1,2
3

k
k ki

i i

x
x x i


    

Initial design 
2 2

1 22.0 ,  1.0 x in x in   

 

Conservative approximation is adopted to construct the single-point approximate 

functions for the initial design. The CPU time for the optimization process is 12 seconds. 

The SAO result of TPPAA is shown in Table 4-5 and Fig. 4-4. The comparison with 

existing approximation methods is shown in Table 4-6. 
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Table 4-5 Result of TPPAA in 3-bar truss optimization 

 1x  2x  Weight (lb) 

Initial design 2.000 1.000 66.569 

Iteration 1 0.792 0.400 26.392 

Optimum design 0.790 0.403 26.390 

 

 

Fig. 4-4 Iteration history of weight of 3-bar truss 

 

Table 4-6 Result comparison for 3-bar truss optimization 

Approximation method Iterations Weight (lb) 

TPPAA 2 26.390 

DQA 2 26.390 

TPEA 2 26.390 

Linear-reciprocal 2 26.390 

CONLIN 2 26.390 

 

4.3 4-bar truss optimization 

The 4-bar truss structure with a concentrated force acting on its top is shown in Fig. 

4-5, and the design data is listed in Table 4-7. The objective function is the total weight 

of the 4-bar structure with the cross-section area of each bar selected as design variable. 
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Fig. 4-5 4-bar truss structure 

 

Table 4-7 Design data for 4-bar truss optimization 

Material property 310000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Stress 25 25  for each bariksi ksi    

Size 
4 21.0 10  ,  1,2,3,4iin x i    

Move 

limit 

( 1)
( ) ( 1)6.5 ,  1,2,3,4

6.5

k
k ki

i i

x
x x i


    

Initial design 
22.0 ,  1,2,3,4ix in i   

 

Direct linear approximation is adopted to construct the single-point approximate 

functions for the initial design. The CPU time for the optimization process is 39 seconds. 

Result of SAO with TPPAA is shown in Table 4-8 and Fig. 4-6 respectively. Moreover, 

the comparison with previous approximation methods is shown in Table 4-9. 
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Table 4-8 Result of 4-bar truss optimization 

 1x  
2x  

3x  
4x  Weight (lb) 

Initial design 2.000 2.000 2.000 2.000 139.44 

Iteration 1 2.451 2.190 2.243 0.308 118.35 

Iteration 2 2.667 2.300 2.159 0.047 116.32 

Iteration 3 2.662 2.296 2.161 0.007 115.39 

Iteration 4 2.663 2.298 2.160 0.001 115.27 

Optimum design 2.663 2.298 2.159 0.0002 115.25 

 

 

Fig. 4-6 Iteration history of weight of 4-bar truss 

Table 4-9 Result comparison for 4-bar truss optimization 

Approximation method Iterations Weight (lb) 

TPPAA 5 115.25 

DQA 5 115.25 

TPEA 4 115.27* 

Direct linear 5 115.25 

TPEA-GBMMA [27] 4 115.28* 

ETPEA1 [28] 4 115.28* 

         (*: premature convergence) 
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4.4 6-bar truss optimization 

 The 6-bar truss structure with a concentrated force acting on its end is shown in Fig. 

4-7. The design data is listed in Table 4-10. The objective function is the total weight of 

the 6-bar structure with the cross-section area of each bar selected as design variable. 

 

Fig. 4-7 6-bar truss structure  

Table 4-10 Design data for 6-bar truss optimization 

Material property 310000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Displacement 20 ,  40  for node A,B,Cx yu in u in   

Size 
2 20.5 10 ,  1,2,...,6iin x in i    

Move limit 
( 1)

( ) ( 1)5 ,  1,2,...,6
5

k
k ki

i i

x
x x i


    

Initial design 
22.0 ,  1,2,...,6ix in i   

 

 The CPU time for the optimization process is 39 seconds. Conservative 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The SAO result of TPPAA is shown in Table 4-11 and Fig. 4-8 

respectively, and the comparison with previous approximation methods is shown in 

Table 4-12. 
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Table 4-11 Result of TPPAA in 6-bar truss optimization 

 1x  2x  3x  4x  5x  6x  Weight (lb) 

Initial design 2.000 2.000 2.000 2.000 2.000 2.000 106.23 

Iteration 1 2.717 1.320 1.281 0.500 1.432 1.320 82.770 

Optimum design 2.717 1.320 1.281 0.500 1.432 1.320 82.770 

 

 

Fig. 4-8 Iteration history of weight of 6-bar truss 

Table 4-12 Result comparison for 6-bar truss optimization 

Approximation method Iterations Weight (lb) 

TPPAA 2 82.770 

DQA 2 82.770 

TPEA 2 82.770 

Direct linear 2 82.770 

 

4.5 10-bar truss optimization 

The weight minimization problem of 10-bar truss structure with a concentrated 

force acting on its end is shown in Fig. 4-9 (a=360 in). The design data is listed in Table 

4-13. The objective function is the total weight of the 10-bar structure with the 

cross-section area of each bar selected as design variable. 
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1 2 

3 4 

5 6 

7 8 9 10 

a=360in 

=360in 

a 

a 

P=100kips P=100kips 
 

Fig. 4-9 10-bar truss structure 

 

Table 4-13 Design data for 10-bar truss optimization 

Material property 310000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Stress 
25 25 ,  1,2,...,8  10iksi ksi i and     

75 75 ,  9iksi ksi i     

Size 
20.1 ,  1,2,...,10iin x i   

Move limit 
( 1)

( ) ( 1)3 ,  1,2,...,10
3

k
k ki

i i

x
x x i


    

Initial design 
25.0 ,  1,2,...,10ix in i   

 

The CPU time for the optimization process is 96 seconds. Conservative 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The SAO result of TPPAA is shown in Table 4-14 and Fig. 4-10. The 

comparison with previous approximation methods is shown in Table 4-15. TPAEA with 

large   is also tested in this example.   is selected to be large enough so that the 

convex substitute functions are always adopted for approximation. The result shows that 

with too large   adopted, the SAO process is stable but inefficient. 
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Table 4-14 Result of TPPAA in 10-bar truss optimization 

 1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Weight 

(lb) 

Initial design 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 2098.2 

Iteration 1 8.404 1.667 8.393 2.882 3.139 1.667 6.458 7.557 2.590 2.294 1903.6 

Iteration 2 7.556 0.556 8.578 3.558 1.046 0.556 6.420 6.275 2.898 0.899 1626.2 

Iteration 3 7.687 0.234 8.335 3.766 0.349 0.234 6.187 5.117 3.431 0.300 1507.3 

Iteration 4 7.930 0.100 8.076 3.900 0.116 0.100 5.780 5.592 3.664 0.147 1501.0 

Iteration 5 7.899 0.100 8.101 3.900 0.100 0.100 5.800 5.513 3.677 0.141 1497.6 

Optimum design 7.900 0.100 8.100 3.900 0.100 0.100 5.798 5.515 3.677 0.141 1497.6 

 

 

Fig. 4-10 Iteration history of weight of 10-bar truss 

Table 4-15 Result comparison for 10-bar truss optimization 

Approximation method Iterations Weight (lb) 

TPPAA 6 1497.6 

TPPAA ( large  ) 20 1497.6 

DQA 6 1497.6 

Direct linear 7 1497.6 

TPEA-GBMMA [27] 6 1497.6 

ETPEA1 [28] 6 1497.6 

         (*: different convergence criterion) 

4.6 25-bar truss optimization 

The 25-bar truss structure is shown in Fig. 4-11. There are 8 design variables 

which are the cross-section areas of the 25 bars, as shown in Table 4-16. The load 

condition and the design data are listed in Table 4-17. The total weight of 25-bar 
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structure is selected as objective function for weight minimization. 

 

Fig. 4-11 25-bar truss structure 

Table 4-16 Selection of design variables of 25-bar optimization 

Design 

variables 1x  2x  3x  4x  5x  6x  7x  8x  

Element 

number 
1 2,3,4,5 6,7,8,9 10,11 12,13 

14,15, 

16,17 

18,19, 

20,21 

22,23, 

24,25 

 

Table 4-17 Design data for 25-bar truss optimization 

Material property 310000 ,  0.1 / ,  0.29E ksi lb in     

Load case 1 

Node 1 1 ,  10 ,  5x y zP kips P kips P kips   
 

Node 2 10 ,  5y zP kips P kips  
 

Node 3 0.5xP kips
 

Node 6 0.5xP kips
 

Load case 2 
Node 1 20 ,  5y zP kips P kips  

 

Node 2 20 ,  5y zP kips P kips   
 

Constraint of all 

members 

Stress 40 40  for each bariksi ksi  
 

Displacement , , 0.35  for node 1~6x y zu u u in
 

Size 
2 20.001 50 , 1,2,...,8iin x in i    

Move limit 
( 1) ( ) ( 1)0.25 0.75 ,  1,2,...,8k k k

i i ix x x i     

Initial design 
22.0 ,  1,2,...,8ix in i   
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The CPU time for the optimization process is 82 seconds. Conservative 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The SAO result of TPPAA is shown in Table 4-18 and Fig. 4-12, and the 

comparison with previous approximation methods is shown in Table 4-19. In this case, 

the additional converge criterion is introduced that the relative difference of the design 

variable in two consecutive iterations is required to be less than 1%. 

 

Table 4-18 Result of TPPAA in 25-bar optimization 

 1x  2x  3x  4x  5x  6x  7x  8x  Weight (lb) 

Initial design 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 661.44 

Iteration 1 0.500 2.013 2.829 0.500 0.500 0.760 1.740 2.821 576.42 

Iteration 2 0.125 2.030 3.216 0.125 0.125 0.512 1.549 2.792 546.45 

Iteration 3 0.031 2.053 3.051 0.031 0.031 0.694 1.592 2.649 545.77 

Iteration 4 0.008 2.025 2.983 0.008 0.008 0.685 1.647 2.668 544.92 

Iteration 5 0.002 2.036 3.010 0.002 0.002 0.684 1.625 2.669 544.76 

Iteration 6 0.001 2.037 3.007 0.001 0.001 0.685 1.626 2.669 544.73 

Optimum design 0.001 2.037 3.007 0.001 0.001 0.685 1.626 2.669 544.73 

 

 

 

Fig. 4-12 Iteration history of weight of 25-bar truss 
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Table 4-19 Result comparison for 25-bar optimization 

Approximation method Iterations Weight (lb) 

TPPAA 7 544.73 

TPPAA ( large  ) 7 544.74 

TPEA-GBMMA [27] 5 545.74* 

ETPEA1 [28] 5 544.78* 

         (*: premature convergence) 

 

4.7 Multi-section circular beam optimization 

The structure of multi-section circular beam is shown in Fig. 4-13. It consists of 10 

circular beam elements with the same length. The design data are listed in Table 4-20. A 

static loading is exerted at the end of this cantilever beam. Total weight is selected as 

objective function for the purpose of minimizing the weight of beam structure and the 

diameter D of each beam section is selected as design variables. 

L=10in

P=150kips

D

 

Fig. 4-13 Multi-section circular beam structure 

 

Table 4-20 Design data for multi-section circular beam optimization 

Material property 330000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Stress 1.0 1.0 Mp ,  1,2,...,10iMpsi si i     

Move limit 
( 1)

( ) ( 1)2.5 ,  1,2,...,10
2.5

k
k ki

i i

x
x x i


    

Initial design 2.5 ,  1,2,...,10ix in i   
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The CPU time for the optimization process is 70 seconds. Conservative 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The SAO result with TPPAA is shown in Table 4-21 and Fig. 4-14. The 

comparison with previous approximation methods is shown in Table 4-22. 

 

Table 4-21 Result of TPPAA in multi-section circular beam optimization 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  
Weight 

(lb) 

Initial design 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 4.9087 

Iteration 1 2.481 2.391 2.288 2.167 2.025 1.854 1.646 1.387 1.054 1.000 2.8342 

Iteration 2 2.481 2.396 2.304 2.203 2.093 1.970 1.831 1.673 1.512 1.161 3.1500 

Iteration 3 2.481 2.396 2.304 2.203 2.093 1.969 1.828 1.661 1.457 1.152 3.1312 

Optimum 

design 
2.481 2.396 2.304 2.203 2.093 1.969 1.828 1.661 1.451 1.152 3.1299 

 

 

Fig. 4-14 Iteration history of weight of multi-section circular beam 

 Table 4-22 Result comparison for multi-section circular beam optimization 

Approximation method Iterations Weight (lb) 

TPPAA 4 3.1299 

TPEA 3 3.1299 

CONLIN 4 3.1299 

Direct linear 5 3.1300 

TPEA-GBMMA [27] 3 3.1293 

ETPEA1 [28] 3 3.1299 
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4.8 Multi-section tube beam optimization 

The structure of multi-section tube beam is shown in Fig. 4-15. It consists of 10 

tubular beam elements with the same length. The design data are listed in Table 4-23. 

The ratio of outer diameter D to the thickness of the tube T is constant (D/T=12). A 

static loading is exerted at the end of this cantilever beam. Total weight is selected as 

objective function for the purpose of minimizing the weight of beam structure and the 

diameter D of each beam section is selected as design variable. 

L=10in

P=150kips

D

T

 

Fig. 4-15 Multi-section tube beam structure 

Table 4-23 Design data for multi-section tube beam optimization 

Material property 330000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Stress 1.0 1.0 Mp ,  1,2,...,10iMpsi si i     

Move limit 
( 1)

( ) ( 1)1.8 ,  1,2,...,10
1.8

k
k ki

i i

x
x x i


    

Initial design 3.6 ,  1,2,...,10ix in i   

 

The CPU time for the optimization process is 68 seconds. Conservative 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The SAO result of TPPAA is shown in Table 4-24 and Fig. 4-16 

respectively. The comparison with previous approximation methods is shown in Table 

4-25. 
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Table 4-24 Result of TPPAA in multi-section tube beam optimization 

 1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Weight 

(lb) 

Initial design 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.1102 

Iteration 1 3.016 2.875 2.716 2.536 2.330 2.092 2.000 2.000 2.000 2.000 1.3674 

Iteration 2 3.090 2.984 2.869 2.746 2.611 2.465 2.285 2.069 1.777 1.111 1.4643 

Iteration 3 3.090 2.984 2.869 2.744 2.606 2.453 2.277 2.069 1.807 1.454 1.4846 

Optimum 

design 
3.090 2.984 2.869 2.744 2.606 2.453 2.277 2.069 1.807 1.435 1.4833 

 

 

Fig. 4-16 Iteration history of weight of multi-section tube beam 

 

Table 4-25 Result comparison for multi-section tube beam optimization 

Approximation method Iterations Weight (lb) 

TPPAA 4 1.4833 

TPEA 3 1.4832 

Linear-reciprocal 4 1.4832 

Direct linear 5 1.4832 

TPEA-GBMMA [27] 3 1.4831 

ETPEA1 [28] 3 1.4832 
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4.9 Multi-section rectangular beam optimization 

The structure of multi-section rectangular beam is shown in Fig. 4-17. It consists of 

10 rectangular beam elements with the same length, and the design data are listed in 

Table 4-26. The ratio of rectangular height H to the width W is constant (H/W=3). A 

static loading is exerted at the end of this cantilever beam. Total weight is selected as 

objective function for the purpose of minimizing the weight of beam structure and the 

height H of each beam section is selected as the design variable. 

 

Fig. 4-17 Multi-section rectangular beam structure 

 

Table 4-26 Design data for multi-section rectangular beam optimization 

Material property 330000 ,  0.1 / ,  0.29E ksi lb in     

Constraints 

Stress 1.0 1.0 Mp ,  1,2,...,10iMpsi si i     

Move limit 
( 1)

( ) ( 1)2.5 ,  1,2,...,10
2.5

k
k ki

i i

x
x x i


    

Initial design 3.0 ,  1,2,...,10ix in i   

 

The CPU time for the optimization process is 70 seconds. Conservative 

approximation is adopted for the approximation of the initial design. The SAO result of 

TPPAA is shown in Table 4-27 and Fig. 4-18, and the comparison with previous 

approximation methods is shown in Table 4-28. 
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Table 4-27 Result of TPPAA in multi-section rectangular beam optimization 

 1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Weight 

(lb) 

Initial design 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.0000 

Iteration 1 1.765 2.893 2.769 2.625 2.455 2.250 2.000 1.688 1.286 1.200 1.7653 

Iteration 2 1.953 2.896 2.785 2.664 2.530 2.382 2.213 2.021 1.822 1.405 1.9532 

Iteration 3 1.942 2.896 2.785 2.664 2.530 2.381 2.210 2.008 1.760 1.393 1.9423 

Optimum 

design 
1.942 2.896 2.785 2.664 2.530 2.381 2.210 2.008 1.754 1.392 1.9416 

 

 

 

Fig. 4-18 Iteration history for multi-section rectangular beam 

 

Table 4-28 Result of multi-section rectangular beam 

Approximation method Iterations Weight (lb) 

TPPAA 4 1.9416 

TPEA 3 1.9416 

Linear-reciprocal 4 1.9416 

Direct linear 5 1.9416 

TPEA-GBMMA [27] 3 1.9418 

ETPEA1 [28] 3 1.9418 
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Chapter 5 Optimization of large scale structures 

In this chapter, the proposed approximation scheme is applied to some large scale 

structures for verifying its practicability. The natural frequency and displacement of 

structures are approximated as explicit functions for structural optimization in this 

chapter. The specifications of computer used for the examples in this chapter is Intel 

i7-6700 3.40GHz CPU with 16GB DDR4-2133 RAM 

5.1 Effective finite element model construction for PCB 

Dynamic analysis is crucial in the design of PCB because vibration can affect the 

life cycle of PCB [29][30]. Through FEA, it is efficient to design PCB with considering 

its dynamic characteristics. However, since PCB consists of several materials, it is not 

practical to construct the complicate non-homogeneous FE model. Instead, the 

anisotropic homogeneous FE model is constructed according to the natural frequencies 

obtained by experimental modal analysis (EMA). 

Herein, the effective FE model for a glass fiber board is assumed to be the 

orthotropic material. The strain-stress relation can be expressed as 

1
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The aim of this optimization problem is to find the least squared error of 

frequencies between effective FE model and EMA result, hence the objective function 

( )f x  is expressed as 

2

1

( )
( )

fn

i i

i i

h x h
f x

h

 
  

 
  (5.2) 

where ( )ih x  denotes the i-th frequency of approximate function with elastic constants 

to be design variables, ih  denotes the i-th frequency of EMA result, fn  denotes the 

number of the measured frequencies from EMA. 

5.1.1 Material property identification for orthotropic thin plate 

Before constructing the effective FE model for real PCB, to test the accuracy of 

this optimization program without considering the error of FEA, identifying the elastic 

constants of an orthotropic plate by fitting natural frequencies from FEA is presented 

first. The thin plate is a cuboid with length 70 mm, width 50 mm, and thick 1 mm, and 

the coordinate is shown in Fig. 5-1. Fitting the frequencies from two boundary 

conditions and is adopted herein. One is the free-free boundary condition, and the other 

is fixing the surface at =0x . The material property of this thin plate is listed in Table 

5-1. The element size is 2 mm with solid 45. The meshed FE model of this thin plate is 

shown in Fig. 5-2, and the natural frequencies are listed in Table 5-2. 

 

Fig. 5-1 CAD model of the thin plate 
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Table 5-1 Material property of the thin plate 

Material property 

Ex 10 GPa 

Ey 30 GPa 

Ez 25 GPa 

Gxy 7 GPa 

Gyz 5 GPa 

Gxz 5 GPa 

νxy 0.15 

νyz 0.15 

νxz 0.15 

ρ 5 g/cm3 

 

 

Fig. 5-2 Meshed FE model of thin plate 

Table 5-2 Natural frequencies of the thin plate 

Free-free (Hz) Fixed at 0x   (Hz) 

Mode 1 298.087  Mode 1 47.5430 

Mode 2 347.715  Mode 2 194.984 

Mode 3 769.697  Mode 3 296.941 

Mode 4 827.398  Mode 4 637.830 

Mode 5 1033.07  Mode 5 833.642 

Mode 6 1257.34 Mode 6 1104.69 

Mode 7 1351.69 Mode 7 1238.64 

 

For a thin plate, only 4 of the 9 independent elastic constants in orthotropic 

material affects the natural frequencies. These 4 elastic constants are selected as design 
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variables for fitting the natural frequencies, as shown in Table 5-3. The design data is 

shown in Table 5-4. 

 

Table 5-3 Selection of design variables for fitting the frequencies of the thin plate 

Design variable 1x  
2x  3x  4x  

Elastic constant Ex Ey Gxy νxy 

(unit: GPa for 1x ~ 3x ) 

 

Table 5-4 Design data for fitting natural frequencies of the thin plate 

Constraints 

Side 41 0.5x    

Move limit 

( 1) ( ) ( 1)0.5 1.5 ,  1,2,3k k k

i i ix x x i     
( 1) ( ) ( 1)

4 4 40.05 0.05k k kx x x      

Initial design 1 2 3 420,  20,  20,  0.2x x x x     

 

The CPU time for the optimization process is 126 seconds. Direct linear 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The result indicates that both the frequencies and elastic constants can be 

fit accurately, as shown in Table 5-5 and Table 5-6. The SAO result of TPPAA is shown 

in Table 5-7. 
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Table 5-5 Result of natural frequencies after fitting 

Free-free 

 After fitting (Hz) Aim (Hz) 

Mode 1 298.087 298.087  

Mode 2 347.715 347.715  

Mode 3 769.697 769.697  

Mode 4 827.398 827.398  

Mode 5 1033.07 1033.07  

Mode 6 1257.34 1257.34 

Mode 7 1351.69 1351.69 

Fixed at 0x   

 After fitting (Hz) Aim (Hz) 

Mode 1 47.5430 47.5430 

Mode 2 194.984 194.984 

Mode 3 296.941 296.941 

Mode 4 637.830 637.830 

Mode 5 833.642 833.642 

Mode 6 1104.69 1104.69 

Mode 7 1238.64 1238.64 

 

Table 5-6 Obtained elastic constants by fitting natural frequencies  

Elastic 

constant 
Aim After fitting 

Ex (GPa) 10 10.0000 

Ey (GPa) 30 30.0000 

Gxy (GPa) 7 7.0000 

νxy 0.15 0.1500 

 

Table 5-7 Result of TPPAA in elastic constants identification of the thin plate 

 1x  2x  3x  4x  
Squared 

error 

Initial design 20.00 20.00 20.00 0.200 2.5E1 

Iteration 1 10.00 15.77 10.00 0.150 2.6E-1 

Iteration 2 9.949 18.63 8.065 0.200 1.2E-1 

Iteration 3 9.834 24.32 6.892 0.259 6.7E-2 

Iteration 4 9.651 27.48 6.928 0.209 4.6E-3 

Iteration 5 9.992 29.90 6.989 0.159 4.1E-3 

Iteration 6 10.00 30.00 7.000 0.150 4.7E-6 

Iteration 7 10.00 30.00 7.000 0.150 6E-11 

Iteration 8 10.00 30.00 7.000 0.150 1E-16 

Optimum design 10.00 30.00 7.000 0.150 1E-16 
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5.1.2 Effective FE model construction for PCB 

This glass fiber PCB is a cuboid with length 165 mm, width 115 mm, and thick 

1.53 mm. The element size of meshed model is 2 mm with solid 45, as shown in Fig. 

5-3. The two boundary conditions for natural frequencies and the coordinate are shown 

in Fig. 5-4. 

 

Fig. 5-3 Meshed FE model of PCB 

 

Fig. 5-4 Boundary conditions for EMA of PCB 

The natural frequencies of PCB is obtained from EMA, as shown in Fig. 5-5. The 

result of EMA is listed in Table 5-8 
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Fig. 5-5 FRF of PCB by EMA 

Table 5-8 EMA result of PCB 

Clamped at the long side (Hz) Clamped at the short side (Hz) 

Mode 1 92.7 Mode 1 41.5 

Mode 2 136  Mode 2 104 

Mode 3 300 Mode 3 253 

Mode 4 540  Mode 4 371 

Mode 5 591  
 

Mode 6 700 

 

The elastic constants which affect the natural frequencies are selected as design 

variables for effective FE model construction, as shown in Table 5-9. The other material 

properties are list in Table 5-10. The design data is shown in Table 5-11. 

 

Table 5-9 Selection of design variables for fitting natural frequencies of the PCB  

Design variable 1x  2x  3x  4x  

Elastic constant Ex Ey Gxy νxy 

(unit: GPa for 1x ~ 3x ) 
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Table 5-10 Material properties of PCB 

Material property 

Ez (GPa) 20 

Gyz (GPa) 7.69 

Gxz (GPa) 7.69 

νyz 0.3 

νxz 0.3 

ρ (g/cm3) 2 

 

 

Table 5-11 Design data for effective FE model 

Constraints 

Side 41 0.5x    

Move limit 

( 1) ( ) ( 1)0.8 1.2 ,  1,2,3k k k

i i ix x x i     
( 1) ( ) ( 1)

4 4 40.05 0.05k k kx x x      

Initial design 1 2 3 415, 15, 6.8, 0.1x x x x     

 

The CPU time for the optimization process is 142 seconds. Direct linear 

approximation is adopted to construct the single-point approximate functions for the 

initial design. The result indicates that the frequencies of a glass fiber PCB can be fit 

well that the max difference of the natural frequencies between FEA and EMA is in 4% 

by orthotropic material model, as shown in Table 5-12. The SAO result with TPPAA is 

shown in Table 5-13. The comparison with other approximation methods are also 

presented to verify the solution as listed in Table 5-14. 
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Table 5-12 Comparison of natural frequencies between effective model and EMA result 

Clamped at the long side 

 After fitting (Hz) Aim (Hz) Difference (%) 

Mode 1 91.27 92.7 1.5 

Mode 2 136.7 136  0.5 

Mode 3 294.3 300 1.9 

Mode 4 561.7 540  4.0 

Mode 5 571.5 591  3.3 

Mode 6 678.3 700 3.1 

Clamped at the short side 

 After fitting (Hz) Aim (Hz) Difference (%) 

Mode 1 41.62 41.5 0.3 

Mode 2 104.6 104 0.6 

Mode 3 257.3 253 1.7 

Mode 4 379.1 371 2.2 

 

 

Table 5-13 SAO result with TPPAA for PCB FE model construction 

 1x  2x  3x  4x  
Squared 

error 

Initial design 15.00 15.00 6.818 0.100 2.4E-1 

Iteration 1 18.00 18.00 7.683 0.150 7.9E-2 

Iteration 2 21.60 21.60 6.600 0.200 1.4E-2 

Iteration 3 23.99 21.76 6.061 0.250 5.4E-3 

Iteration 4 23.71 21.33 6.039 0.300 5.2E-3 

Iteration 5 23.51 21.05 6.030 0.325 5.1E-3 

Iteration 6 23.51 21.04 6.029 0.326 5.1E-3 

Optimum design 23.50 21.04 6.029 0.326 5.1E-3 

 

 

Table 5-14 Result comparison with different approximation methods 

Approximation 

method 1x  2x  3x  4x  Squared error Iteration 

TPPAA 23.50 21.04 6.029 0.326 5.1E-3 7 

DQA 23.50 21.04 6.029 0.326 5.1E-3 7 

Direct linear 23.50 21.04 6.029 0.326 5.1E-3 8 
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5.2 Optimization of high-accuracy measuring stage  

Recently, since the semiconductor is developed to be smaller, faster, lower power 

consuming and higher circuit-density, the demand for precision positioning technique 

increases rapidly. Herein, the optimization of measuring stage for wafer inspection is 

presented, as shown in Fig. 5-6 which minimizes the weight and ensures positioning 

accuracy against the structure deformation caused by static loading and vibration at the 

same time. 

 

Fig. 5-6 High-accuracy measuring stage for wafer inspection 

 

5.2.1 Optimization of gantry 

The selection of design variables of gantry is shown in Fig. 5-7. The element size 

of meshed FE model is 40 mm with hexahedral solid 95. The bottom of the gantry is 

fixed in FEA as shown in Fig. 5-8. The material properties are shown in Table 5-15. 
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(unit: mm) 

Fig. 5-7 Selection of design variables for gantry 

 

Fig. 5-8 Boundary condition of gantry in FEA 

Table 5-15 Material property of gantry 

Material Granite 

E (GPa) 60 

ν 0.3 

ρ (g/cm3) 2.66 
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The goal of this optimization problem is to minimize the weight of the gantry with 

considering the restriction of the maximum displacement under self-weight loading and 

1st natural frequency. The design data is shown in Table 5-16. 

 

Table 5-16 Design data of gantry optimization 

Constraints 

Size 

1550 800x   

2100 220x   

3250 500x   

4100 400x   

Move limit 
( 1) ( ) ( 1)0.7 1.3 ,  1,2,3,4k k k

i i ix x x i     

Behavior 

Case A Max displacement < 3 μm 

Case B 1st frequency > 220 Hz 

Case C 
Max displacement < 3 μm 

1st frequency > 220 Hz 

Initial design 1 2 3 4700,  200,  270,  250x x x x     

 

 

The SAO result with TPPAA is shown in Table 5-17, Table 5-18, Table 5-19 and 

Fig. 5-9. The CPU time is 74 seconds in case A, 254 seconds in case B and 133 seconds 

in case C. Direct linear approximation is adopted to construct the single-point 

approximate functions for the initial design. The comparison of results with different 

approximation methods is shown in Table 5-20, Table 5-21 and Table 5-22. 

 

Table 5-17 Result of TPPAA for gantry optimization in case A 

 1x  2x  3x  4x  weight (kgf) 

Initial design 700.0 200.0 270.0 250.0 594.8 

Iteration 1 550.0 220.0 250.0 243.7 530.8 

Iteration 2 550.0 220.0 250.0 240.0 526.3 

Optimum design 550.0 220.0 250.0 240.1 526.6 
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Table 5-18 Result of TPPAA for gantry optimization in case B 

 1x  2x  3x  4x  weight (kgf) 

Initial design 700.0 200.0 270.0 250.0 594.8 

Iteration 1 636.1 220.0 250.0 175.0 478.8 

Iteration 2 583.1 220.0 250.0 122.5 397.4 

Iteration 3 550.0 217.5 250.0 101.7 358.1 

Iteration 4 550.0 216.7 250.0 105.4 361.7 

Optimum design 550.0 216.8 250.0 105.6 362.1 

 

Table 5-19 Result of TPPAA for gantry optimization in case C 

 1x  2x  3x  4x  weight (kgf) 

Initial design 700.0 200.0 270.0 250.0 594.8 

Iteration 1 707.5 220.0 250.0 229.0 568.5 

Iteration 2 696.0 220.0 250.0 225.9 560.7 

Optimum design 695.8 220.0 250.0 225.9 560.7 

 

 

 

Fig. 5-9 Iteration history of weight of gantry 
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Table 5-20 Result comparison of gantry optimization in case A 

Approximation 

method 1x  2x  3x  4x  
weight 

(kgf) 

max disp. 

(μm) 
Iteration 

TPPAA 550.0 220.0 250.0 240.1 526.6 3.00 3 

TPEA 550.0 220.0 250.0 240.1 526.5 3.00 3 

Direct linear 550.0 220.0 250.0 240.0 526.4 3.00 3 

 

Table 5-21 Result comparison of gantry optimization in case B 

Approximation 

method 1x  2x  3x  4x  
weight 

(kgf) 

1st N.F. 

(Hz) 

2nd N.F. 

(Hz) 
Iteration 

TPPAA 550.0 216.8 250.0 105.6 362.1 220 220 5 

TPEA 550.0 216.8 250.0 105.6 362.0 220 220 5 

DQA 550.0 216.8 250.0 105.6 362.1 220 220 5 

Direct linear 550.0 216.8 250.0 105.7 362.1 220 220 5 

 

Table 5-22 Result comparison of gantry optimization in case C 

Approximation 

method 1x  2x  3x  4x  
weight 

(kgf) 

1st N.F. 

(Hz) 

max disp. 

(μm) 
Iteration 

TPPAA 695.8 220.0 250.0 225.9 560.7 220 3.00 3 

TPEA 695.7 220.0 250.0 225.9 560.7 220 3.00 3 

Direct linear 695.9 220.0 250.0 225.9 560.8 220 3.00 3 

 

 

5.2.2 Optimization of modified gantry 

The selection of design variables of the modified gantry is shown in Fig. 5-10. The 

element size of meshed model is 40 mm with solid 186 tetrahedral and hexahedral 

element mixed as shown in Fig. 5-11. The boundary condition and the material property 

remain the same as original gantry. 
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(unit: mm) 

Fig. 5-10 Selection of design variables for modified gantry 

. 

 

Fig. 5-11 Meshed FE model of modified gantry 

 

The goal of this optimization problem is to minimize the weight of the gantry with 

considering the restriction of the maximum displacement under self-weight loading and 

1st natural frequency. The design data is shown in Table 5-23. 
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Table 5-23 Design data of modified gantry optimization 

Constraints 

Size 

Case A 

1550 800x   

2100 220x   

3250 500x   

4100 400x   

5100 250x   

6100 300x   

Case B 

1550 800x   

2100 200x   

3250 500x   

450 400x   

5100 250x   

6100 300x   

Move limit 
( 1) ( ) ( 1)0.85 1.15 ,  1,2,...,6k k k

i i ix x x i     

Behavior 

Case A 
Max displacement < 3 μm 

1st natural frequency > 220 Hz 

Case B 
Max displacement < 3 μm 

1st natural frequency > 235 Hz 

Initial design 

Case A 
1 2 3

4 5 6

700,  200,  270,  

250,  200,  250

x x x

x x x

  

  
 

Case B 
1 2 3

4 5 6

720,  190,  270,  

210,  200,  250

x x x

x x x

  

  
 

 

The SAO result with TPPAA is shown in Table 5-24, Table 5-25, Fig. 5-12 and Fig. 

5-13. The CPU time is 700 seconds in case A and 804 seconds in case B. Direct linear 

approximation is adopted to construct the single-point approximate functions for the 

initial design in both cases. The comparison of results with different approximation 

methods is shown in Table 5-26 and Table 5-27. 
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Table 5-24 Result of TPPAA for modified gantry optimization in case A 

 1x  2x  3x  4x  5x  6x  
weight 

(kgf) 

Initial design 700.0 200.0 270.0 250.0 200.0 250.0 616.0 

Iteration 1 595.0 174.2 250.0 212.5 230.0 286.2 481.9 

Iteration 2 550.0 181.0 250.0 180.6 250.0 300.0 442.0 

Iteration 3 550.0 191.8 250.0 153.5 239.1 300.0 419.9 

Iteration 4 550.0 198.9 250.0 130.5 203.2 300.0 395.4 

Iteration 5 550.0 204.4 250.0 110.9 172.7 300.0 374.1 

Iteration 6 550.0 205.6 250.0 100.0 146.8 300.0 359.3 

Iteration 7 550.0 205.2 250.0 100.0 138.8 300.0 357.9 

Optimum design 550.0 205.2 250.0 100.0 138.7 300.0 357.9 

 

Table 5-25 Result of TPPAA for modified gantry optimization in case B 

 1x  2x  3x  4x  5x
 6x

 
weight 

(kgf) 

Initial design 720.0 190.0 270.0 210.0 200.0 250.0 556.9 

Iteration 1 612.0 199.0 250.0 178.5 170.0 287.5 468.1 

Iteration 2 614.2 200.0 250.0 151.7 195.5 300.0 442.1 

Iteration 3 673.0 200.0 250.0 129.0 208.8 300.0 435.9 

Iteration 4 718.1 200.0 250.0 109.6 198.9 300.0 426.2 

Iteration 5 712.1 200.0 250.0 93.18 169.0 300.0 400.4 

Iteration 6 721.7 200.0 250.0 79.20 176.9 300.0 387.9 

Iteration 7 729.7 200.0 250.0 72.95 196.3 300.0 385.7 

Optimum design 726.9 200.0 250.0 73.36 199.8 300.0 385.8 

 

 

Fig. 5-12 Iteration history of weight of modified gantry in case A 
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Fig. 5-13 Iteration history of weight of modified gantry in case B 

Table 5-26 Result comparison of modified gantry optimization in case A 

Approximation 

method 1x  2x  3x  4x  5x
 6x

 
weight 

(kgf) 

1st N.F. 

(Hz) 

max 

disp. 

(μm) 

Iteration 

TPPAA 550.0 205.2 250.0 100.0 138.7 300.0 357.9 220 3.00 8 

TPEA 550.0 205.2 250.0 100.0 138.7 300.0 357.9 220 3.00 8 

DQA 550.0 205.2 250.0 100.0 138.6 300.0 357.9 220 3.00 8 

 

Table 5-27 Result comparison of modified gantry optimization in case B 

Approximation 

method 1x  2x  3x  4x  5x
 6x

 
weight 

(kgf) 

1st N.F. 

(Hz) 

max 

disp. 

(μm) 

Iteration 

TPPAA 726.9 200.0 250.0 73.4 199.8 300.0 385.8 235 3.00 9 

TPEA 726.4 200.0 250.0 73.7 198.5 300.0 385.8 235 3.00 10 

CONLIN 726.3 200.0 250.0 73.8 198.1 300.0 385.8 235 3.00 10 

 

5.2.3 Optimization of y-stage 

The simplified parametric CAD model of y-stage for optimization is shown in Fig. 

5-14. The thickness of each plate is selected as design variable, as shown in Fig. 5-15. 

The element type of meshed model is solid 186 with tetrahedral and hexahedral 

elements mixed as shown in Fig. 5-16. In FEA, the bottom of the linear stage is fixed. 



doi:10.6342/NTU201603300

 

 68 

The material property are listed in Table 5-28. 

 

Fig. 5-14 Simplified parametric CAD model of y-stage 

 

(unit: mm) 

Fig. 5-15 Selection of design variable for y-stage 

 

Fig. 5-16 Meshed model of y-stage 
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Table 5-28 Material property of y-stage 

Component plate mirror wafer chuck linear stage 

Material  invar zerodur aluminum alloy  aluminum alloy 

E (GPa) 150 91 303 68  

ν 0.3 0.24 0.21 0.33 

ρ (g/cm3) 8  2.53 3.72 3.59 

 

The goal of this optimization problem is to minimize the weight of the y-stage with 

considering the restriction of the maximum displacement under self-weight loading and 

1st natural frequency. The design data is shown in Table 5-29. 

Table 5-29 Design data of y-stage optimization 

Constraints 

Size 3 30,   1,2,...,5ix i    

Move limit 
( 1) ( ) ( 1)0.7 1.3 ,  1,2,...,5k k k

i i ix x x i     

Behavior 

Case A Max displacement < 3 μm 

Case B 1st natural frequency > 250 Hz 

Case C 
Max displacement < 3 μm 

1st natural frequency > 250 Hz 

Initial design 10,   1,2,...,5ix i   

 

The SAO result with TPPAA is shown in Table 5-30, Table 5-31, Table 5-32 and 

Fig. 5-17. The CPU time is 493 seconds in case A, 1224 seconds in case B and 1230 

seconds in case C. Direct linear approximation is adopted to construct the single-point 

approximate functions for the initial design. The comparison of results with different 

approximation methods is shown in Table 5-33, Table 5-34 and Table 5-35. To examine 

the optimization result, TPAEA with large   is also taken in these cases.   is 

selected to be large enough so that the convex substitute functions are always adopted 

for approximation. With larger   adopted, SAO process can be more stable. 
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Table 5-30 Result of TPPAA for y-stage optimization in case A 

 1x  
2x  

3x  
4x  

5x
 weight (kgf) 

Initial design 10.00 10.00 10.00 10.00 10.00 28.59 

Iteration 1 7.000 7.000 10.79 7.000 7.000 23.15 

Iteration 2 4.900 4.900 11.35 4.900 4.900 19.44 

Iteration 3 3.454 3.431 11.38 5.171 3.863 17.14 

Iteration 4 3.000 3.000 11.33 5.168 3.000 16.26 

Optimum design 3.000 3.000 11.34 5.170 3.000 16.26 

 

Table 5-31 Result of TPPAA for y-stage optimization in case B 

 1x  2x  3x  4x  5x
 weight (kgf) 

Initial design 10.00 10.00 10.00 10.00 10.00 28.59 

Iteration 1 7.000 7.000 9.168 7.000 7.000 21.60 

Iteration 2 4.900 4.900 8.552 4.900 4.900 16.83 

Iteration 3 3.430 3.814 8.438 3.567 3.432 14.05 

Iteration 4 3.000 3.874 7.858 4.504 3.000 13.22 

Iteration 5 3.000 3.871 8.209 4.252 3.037 13.49 

Iteration 6 3.000 3.875 8.175 4.243 3.028 13.46 

Optimum design 3.000 3.869 8.180 4.242 3.017 13.46 

 

Table 5-32 Result of TPPAA for y-stage optimization in case C 

 1x  2x  3x  4x  5x
 weight (kgf) 

Initial design 10.00 10.00 10.00 10.00 10.00 28.59 

Iteration 1 7.000 7.000 10.79 7.000 7.000 23.15 

Iteration 2 4.900 4.900 11.35 4.900 4.900 19.44 

Iteration 3 3.430 4.094 11.55 4.943 4.084 17.52 

Iteration 4 3.000 3.712 11.45 4.882 3.000 16.58 

Optimum design 3.000 3.724 11.44 4.882 3.000 16.58 
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Fig. 5-17 Iteration history of weight of y-stage 

Table 5-33 Result comparison of y-stage optimization in case A 

Approximation 

method 1x  2x  3x  4x  5x
 

weight 

(kgf) 

max disp. 

(μm) 

TPPAA 3.000 3.000 11.34 5.170 3.000 16.26 3.00 

Direct linear * 3.000 3.000 11.35 5.120 3.000 16.26 3.00 

TPPAA ( large  ) 3.000 3.000 11.39 4.997 3.000 16.27 3.00 

 (*: different move limit) 

Table 5-34 Result comparison of y-stage optimization in case B 

Approximation 

method 1x  2x  3x  4x  5x
 

weight 

(kgf) 

1st N.F. 

(Hz) 

2nd N.F. 

(Hz) 

TPPAA 3.000 3.869 8.180 4.242 3.017 13.46 250 250 

TPPAA ( large  ) 3.000 3.877 8.194 4.071 3.000 13.43 250 250 

 

Table 5-35 Result comparison of y-stage optimization in case C 

Approximation 

method 1x  2x  3x  4x  5x
 

weight 

(kgf) 

1st 

N.F. 

(Hz) 

max 

disp. 

(μm) 

Iteration 

TPPAA 3.000 3.724 11.44 4.882 3.000 16.58 250 3.00 5 

TPEA 3.000 3.725 11.33 5.181 3.001 16.56 250 3.00 9 

TPPAA ( large  ) 3.000 3.725 11.33 5.221 3.000 16.56 250 3.00 9 
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Chapter 6 Conclusion and suggestion 

This study proposes a new two-point approximation method named two-point 

piecewise adaptive approximation (TPPAA). Several structural optimization examples 

are also presented and show the applicability of this new approximation method. The 

conclusions and suggestions are listed in this chapter. 

6.1 Conclusion 

The conclusions of this thesis are expressed as follows: 

(1) As a two-point approximation scheme, TPPAA satisfies the function value at 

the current design point and the gradients at the both design points. To ensure 

the approximation quality, TPPAA constructs the approximate function in 

monotonic form when the first order derivatives of two successive design 

points have the same signs, and vice versa. Moreover, when the monotonic 

form is required, the piecewise function is constructed to avoid the 

inappropriate approximation that the existing approximation methods may 

cause. 

(2) To verify the practicability of TPPAA, a C++ program for structural 

optimization integrating CAD software, FEA software, approximation theory, 

and mathematical optimization method is developed. 

(3) The performance of TPPAA is examined in several small scale structures and 

compared with other approximation methods. The result indicates that the 

structure optimization process is efficient by using TPPAA. 

6.2 Suggestion 

Here are two suggestions for further studies relevant to this research. 

(1) Several studies have proposed some strategies for the determination of move limit 
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for each design variable according to specific information such as sensitivity. 

However, in this study, all the design variables have the same strategy of move 

limit which does not depend on any information. The improved strategies should 

be studied and applied to the SAO to make the process more stable. 

(2) In this study, the approximation methods are only applied to represent the stress, 

displacement in linear static analysis and natural frequency. The approximation 

methods can be tested further with other kinds of structural behavior. 
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Appendix: User manual of integrated optimization 

program 

The optimization program for this research is developed in Microsoft Visual Studio 

2015 with integrating AutoCAD and ANSYS. The instructions of this program are 

shown in this appendix. 

A.1 Program setting 

 Important program settings are shown as follows. (Take 3-bar truss optimization as 

the example) 

 

(a) Setting the path of AutoCAD and ANSYS (main.cpp) 

// path of AutoCAD 

acad_bat("D:\\Autodesk\\AutoCAD 2015\\acad.exe"); 

// path of ANSYS 

ansys_bat("D:\\ANSYSInc\\v150\\ANSYS\\bin\\winx64\\ansys150.exe"); 

 

(b) Defining the optimization problem (main.cpp) 

// set the number of the total functions and design variables respectively 

DesignPoint point0(1 + 3, 2); 

// initial design vector 

point0 = { 2,1 }; 

// number of behavior constriants 

Constraint design_constraint(point0.num_func - 1); 

// upper bound and lower bound of each behavior constraint 

design_constraint.make_behavior({ { -15.0,20.0 },{ -15.0,20.0 },{ -15.0,20.0 } }); 

 

 

(c) Selecting of the algorithms (main.cpp) 

// Choose the approximation and optimization methods 

 Approximation* pApprox1 = new ConvexLinear; 

 Approximation* pApprox2 = new TPPAA(2, -2, 0.001, 0.001);  

ConstraintElimination* pCE = new ExteriorPenalty3(10, 1); 

 SearchDirection* pSD = new BFGS; 

 RangeFinder* pRF = new RangeFinder1; 

 MinimumLocator* pML = new GoldenSection; 
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(d) Integration with AutoCAD and ANSYS (main.cpp) 

// Whether modeling by AutoCAD 

 bool run_cad = false; 

 // the .lsp file name and the drawing function name for AutoCAD 

 if (run_cad) // Lisp file name and the function name 

  autocad_fileout(point0, "drawplate.lsp", "plate"); 

    // the .mac file name for ANSYS 

 ansys_fileout(point0, "TS03.MAC"); 

 

(e) Constraint treatment (main.cpp) 

for (int i = 0; i < point0.num_func - 1; i++) { 

 if (point0.value.component[i + 1] >= 0.0) 

  treat.value.component[i + 1] /=design_constraint.behavior[i].second.component[0]; 

 else 

  treat.value.component[i + 1] /= design_constraint.behavior[i].first.component[0]; 

 treat.value[i + 1] -= 1.0; 

 

for (int j = 0; j < point0.num_var; j++) { 

     if (point0.value.component[i + 1] >= 0.0) 

     treat.sensitivity[i + 1][j] /= design_constraint.behavior[i].second.component[0]; 

  else 

   treat.sensitivity[i + 1][j] /= design_constraint.behavior[i].first.component[0]; 

} 

} 

 

(f) Move limit (main.cpp) 

// move limit definition 

for (int i = 0; i < point0.num_var; i++) 

move_limit[i] = { point0.variable.component[i] / 3.0 , point0.variable.component[i] * 3.0 }; 

 

(g) Defining the explicit objective function (Approximation.h) 

#define explicit_objective {\ 

if (index_func_nf == 0) {\ 

 value = 20 * sqrt(2) * x(0) + 10 * x(1);\ 

 return *this;\ 

}\ 

} 

#define explicit_objective_gradient {\ 

if (index_func_nf==0){\ 

 grad(0) = 20 * sqrt(2);\ 

 grad(1) = 10.0;\ 

 return *this;\ 

}\ 

} 

#endif 
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A.2 Operation step 

Operation steps of the program are listed in the following and shown in Fig. A-1. 

(1) Open “ThreeBarTruss.vcxproj”. 

(2) Open “main.cpp”. 

(3) Set the program as in section A-1. 

(4) Press “Ctrl+F5”. 

(5) The result is recorded in “result.txt” 

 

 

 

Fig. A-1 Operation steps of the optimization program 
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