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Abstract

We discuss the boundary effect of anomaly-induced action in 2-dimensional
and 4-dimensional spacetime, which is ignored in previous studies. Anomaly-
induced action, which gives the stress tensor with the same trace as the trace
anomaly, can be represented in terms of local operators by introducing an aux-
iliary scalar field. Although the degrees of freedom of the auxiliary field can
in principle describe the quantum states of the original field, the correspon-
dence between them was unclear. We show that, by considering the boundary
effect, the missing correspondence will be restored. Therefore, from now
on, this technique has become a mature and independent tool to calculate
the renormalized stress tensor in curved spacetime. Also, we find that the
anomaly-induced action can only be used for the spacetime with zero Euler
characteristic which is in general not true in 4-dimension. As examples, we
demonstrate our formalism via several different spacetime and famous quan-
tum gravity issues to show how efficient and powerful this approach is. We
expect that our new formalism can become an useful tool to study various
interesting quantum gravity effects.

This thesis is based on the works [1,2]. [1] is already published and [2]

is about to be submitted for publication.

Key words: Quantum gravity; Quantum fields in curved spacetime; Quan-

tum aspects of black holes, evaporation, thermodynamics.
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Chapter 1

Conventions and Abbreviations

In this thesis, the convention for the metric signature is (— + ++). Follow this con-

vention, the Einstein equation have the form:
1
R;w - §Rguu = T/,Ll/7 (11)

where the stress tensor (Energy-momentum tensor) is defined by

—2 oSy [QW]
V=g g™

=T, (1.2)

where S,/ is the action of matter fields.

Some abbreviations are used during the calculation of conformal transformation:

0, :=V,0=0,0, (1.3)
ot = g"'V 0, (1.4)
Oo := Vo, (1.5)
(Vo)? :=o,0", (1.6)
(Vo)* := (0,0")", (1.7)

V—gT + 7. :=/—¢T + /—4T, (1.8)

where o is the conformal transformation parameter to be introduced in Eq.(4.95), and T’
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is any arbitrary tensor. Also the abbreviation below,

hi(2)Lha(z) £ ho(2)Lha(2) := hi(x)Lha(z) £ (hi(z) <> ha(z)) (1.9)

has been used in Ch.(C), where £ is an arbitrary differential operator and Ay, hy are arbi-

trary scalar functions. There are some other abbreviations we used as follows:

Aap 1= 5y (Aap = Apa), (1.10)
Aﬁ?cud = 2!12!(Aabcd — Abaca — Aabde + Abade), (1.11)
O(e;n) := O(e) + O(n), (1.12)
ntV ¢ =V, 0, (1.13)
€:=n'n, = 1. (1.14)

where 1, is the unit normal vector of the boundaries of the manifolds we considered whose

norm, €, is +1 and —1 for timelike and spacelike boundaries individually.
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Chapter 2

Introduction

In the absence of a complete theory of quantum gravity, quantum field theory in (classi-
cal) curved spacetimes, a well-developed semiclassical approach, has been applied widely
to study quantum corrections to general relativity [3]. In this semiclassical approach,
the quantum divergences of matter fields can be covariantly renormailzed and gives the
(one-loop) effective action. The expectation value of the stress tensor of quantum matter
fields can also be derived with this procedure. The result suggests that, even in confor-
mal field theories, a nonzero trace of stress tensor arises due to the symmetry break from
the renormalization. This nonzero trace of stress tensor is called the trace (or conformal)
anomaly [3,5,6].

In principle, we can obtain the expectation value of the stress tensor of quantum matter
fields in this semiclassical approach (i.e. the quantum field theory in curved spacetimes).
However, we have a practical problem; the calculation is so complicated that there is
no explicit expression of the effective stress tensor in general background spacetimes.
We need to derive the effective stress tensor individually in each spacetime that we are
interested in. Because of the complicated calculations, we usually rely on, for instance,
numerical and/or approximation approaches to get the result, even in simple common
spacetimes such as Schwarzschild spacetime [7]. One way to tackle with this problem is
using the corresponding “anomaly-induced action” [8—10].

The anomaly-induced action which is used to describe the effective action is rebuilt
from the divergent terms in the effective action which leads to trace (or conformal) anomaly.

3 d0i:10.6342/NTU201603464



Although there is no rigorous proof which shows the anomaly-induced action and the ef-
fective action from the original semiclassical approach are exactly the same. It can be
expected and has been checked in some specific cases that in two-dimensional spacetime
the anomaly-induced action can exactly describe the stress tensor of quantum field in vac-
uum state [11]. This approach has been applied widely to study the quantum stress tensor
in curved spacetimes [12, 13], black-hole physics [11-14] and cosmology [15,16]. The
anomaly-induced action is naturally built in non-local form, and can be further localized

by introducing an additional auxiliary scalar field [17, 18].

Different solutions of the auxiliary scalar fields could describe the effects of different
quantum states of the original conformal matter field. Although there are attempts to find
the correspondence between the quantum states of the original field and the solutions of
the auxiliary scalar field, so far people have not known the general principle behind it.
Therefore, the anomaly action approach is hard to use for deriving the quantum effect

from any specific vacuum state although it can be used as an alternative way to do double

check.

In our recent work [1, 2], we take into consideration the boundary effect in the dis-
cussion of anomaly-induced action, which has been neglected in the previous works [8—
12,19]. Our main discovery from this work is that “boundary contribution dictates the
vacuum”! After including the boundary effect, additional boundary constraints for the
auxiliary scalar field appears and it indeed recovers the missing reference between the
quantum states of the original field and the solutions of the auxiliary scalar field. In other
words, by using our modified version of anomaly-induced action, we can derive the exact
solutions for a given vacuum state by choosing the corresponding boundaries. Therefore,
the anomaly-induced action with boundary effect now really become an independent for-
malism which can be used to calculate the stress tensor for any specific vacuum state. It
thus becomes a powerful and efficient tool to calculate the stress tensor for various quan-

tum gravity problems.

Moreover, after we get the 2-dim anomaly-induced action with boundary effect, re-
cently we generalize this formalism to 4-dim. It turns out that we only need to introduce

4 d0i:10.6342/NTU201603464



one auxiliary scalar field to get the 4-dim anomaly-induced action instead of two auxil-
iary scalar fields which is suggested by the previous researches. Also, we find that the
anomaly-induced action can only used in the spacetime with zero Euler characteristics.
Although this requirement satisfies automatically in bounded 2-dim spacetime, it is in
general not true in 4-dim spacetime. Therefore, the usage of 4-dim anomaly-induced ac-
tion is limited and we should be careful when using the 4-dim one.

The structure of this paper is organized as follows. In Ch.3, we give a short review of
general relativity. In Ch.4, we briefly review the quantum field theory in curved spacetime
and the knowledge related to trace anomaly. In Ch.5, at first, we introduce the original
2-dim anomaly-induced action. After that, based on our recent work, we propose the
modified version of 2-dim anomaly-induced action which contains boundary effect. In
Ch.6, we first derive the 4-dim anomaly-induced action without boundary contribution.
Then similarly, we rederive 4-dim anomaly-induced action with boundary effect. Finally,

we give a summary and discussion.
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Chapter 3

Basis of General Relativity

General Relativity (GR) is Einstein’s theory of gravitation. It is a classical theory
which does not involve with any quantum effect. The essential idea of it is straightfor-
ward: while most forces of nature are represented by a lot of kinds of matter fields defined
on spacetime, e.g. electromegnatic field , gravity is inherent in spacetime itself. In the
context of GR, rather than introducing some other additional field propagating through
spacetime, the dynamical field used to describe gravitation is the metric tensor associated
to the curvature of spacetime itself. In other word, the gravity we experience is just a man-
ifestation of the curvature of spacetime. Therefore, “Gravity is Geometry.” Follow this
insight, Einstein then introduced the field equation of the metric, the so-called Einstein
equation, to describe how other forces (matter fileds) interact with gravity. What John
Wheeler said before presicely summarizes the key spirit of GR, “spacetime tells matter
how to move; matter tells spacetime how to curve”. Einstein’s GR opens a new door to
the study of gravitation, and thus stimulates the development of many direction of Physics
research, such as black hole, cosmology and so on. In the following, we will briefly review

the basic knowledge of GR.

3.1 The Metric

At first, assuming the spacetime used to describe our world is a 4-dimensional Rie-
mannian differentiable manifold, each point of spacetime can be labelled by a coordinate
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2¥ with k = 0, 1, 2, 3. Every Riemannian manifold is equipped with a metric tensor G

which defines the length of line elements:

ds?® = Guvdxtdz”. 3.1)

For example, in the 3-dimensional Euclidean space, the line element is ds* = dx?* +
dy? 4 dz?, the metric tensor is thus g;; = diag(1,1,1); similarly, in the theory of special
relativity, Minkowski spacetime is assumed whose the line element is ds® = —dt* +dxz? +
dy® + dz* and the metric tensor is thus g, = diag(—1,1,1,1). In GR, arbitrary metric
is allowed, only with a few requirements, e.g. the metric tensor should be symmetric
and (usually, but not always) nondegenerate, i.e. its determinant should satisfies g =

det (g,) # 0. This allows us to define the inverse metric g*” via

9" gue = 08, (3.2)

where 6# is the Kronecker delta which is defined §* := diag(1, 1, 1, 1). The symmetry of
g, Implies that g"” is also symmetric. The same as in special relativity, the metric and its
inverse can be used to raise or lower indices on tensors. Given two vectors V# and WY,

we can define the inner product of them by

gV, W) = g, VFIW". (3.3)

A simple common example of a nontrivial metric is as follows,

ds® = —dt* + a*(t)(da® + dy* + d2?). (3.4)

This metric describes an isotropic and homogeneous expanding universe. This is a special
case of a Robertson-Walker metric, which is conformally flat.

8 d0i:10.6342/NTU201603464



3.2 Geodesics

Given a generic metric g, for a manifold, one can define the proper time for a test
particle whose trajectory (worldline) is parameterized by A as z*(\). The proper time (for

a time-like path) is defined by the functional:

: dz* dx” 1/2

where the integral is over the path. Take variation of the functional, one can obtain

A2t o dx? da”

d)\Z ‘|‘ po d)\ﬁzo (36)

which is the geodesic equation. In other words, the geodesic equation is resulted from
the extremum of the proper time. The quantity, I') , is called the Christoffel symbols,

which is important in defining the connection of a metric. It is straightforward to solve

the Christoffel symbols in terms of the metric as:

1
Lo = 59" (0p90a + Do Gpa = Dafpo). (3.7)

Next, we will introduce the idea of covariant derivatives which is generalization of
partial derivatives in the flat space. An covariant derivative is an operator that reduces
to the partial derivative in flat space with inertial coordinates, but transforms as a tensor
on an arbitrary manifold. The reason for why we need covariant derivative is obvious;
equations such as energy conservation law, 0, 7" = 0, must be generalized to curved
space in some way. To begin with, we require a covariant derivative V to be a map from
(k,1) tensor to (k,l 4 1) tensor which has the following tow properties: (1) Linearity:
V(T +S)=VT+VS; (2) Leibnitzrule: V(T ® S) = (V) @ S+ T ® (VS). If V
is going to obey the Leibnitz rule, it can always be written as the partial derivative plus
some linear transformation. It means that, for each direction p, the covariant derivative
V. will be given by the partial derivative 0, plus a correction specified by a set of n x n

9 d0i:10.6342/NTU201603464



matrices (I',)?,. For a vector V¥, we therefore have
V.V =0,V T VP, (3.8)

Notice that in the second term the index originally on V' has moved to I', and a new index
is summed over. Ifthis is the expression for the covariant derivative of a vector, we should
be able to determine the transformation property of I', | by demanding that the lhs of eq.
(3.7) to be a (1,1) tensor. That is, by requiring the transformation law,

/ l’l‘ V,
_ 028 0" G (3.9)

v = SO
Vi oxt Oav M7

and combine with eq.(3.1) and eq.(3.2), we can obtain the transformation rule for the

connection coefficients:

, Ozt 9z dx”’ ozt x> 02z”
v, =—-————Iv . 3.10
WA D’ 9N v M + OxH Oz OxrOx ( )

It should be careful that this is not a tensor transformation law because the second term
on the rhs spoils it. The connection coefficients are not the components of a tensor. They
are constructed in such a way that the combination of eq.(3.1) transforms like a tensor,
therefore the extra terms in the transformation law of the partial derivative cancels exactly
with the I"’s. If we further demand the covariant derivative to have additional two proper-
ties: (3) it commutes with contractions: V,(7?y,) = (VT),*\,, and (4) it reduces to the
partial derivative on scalars: V,¢ = 0,¢ , one can then derive the covariant derivative of
a one-form w, by using the fact that w) V> is a scalar and V,(w\V?*) = 9, (w\V?) as:

V,w, = 0w, — T wy. (3.11)

1%

Note that the covariant derivative is not unique in a manifold, i.e., given a Riemannian
manifold with a metric g,,, there are still many choices of connection coefficients which

result in well-defined covariant differentiation. However, if we require that (5) the covari-

A

ant derivative to be torsion-free: Ffw =17,

and (6) metric compatible: Vg, = 0, then

10 d0i:10.6342/NTU201603464



there is an unique covariant derivative. The unique set of connection coefficients which
satisfies conditions (1)-(6) is called the “Levi-Civita” connection. It is straightforward to

solve the Levi-Civita connection coefficients in terms of the metric tensor components as:

1
Ffw = §gop(augz/p + augup - 8pg,uz/>‘ (3.12)

Note that the Levi-Civita connection coefficients are exactly the same as the Christoffel
symbol (I"’s) in the geodesic equation, eq.(3.6), that is the reason we use the same symbol

for these two coefficients.

Now we can define the directional covariant derivative of a given curve z*(\) to be

D dxt

This operator which is defined only along the path, maps a (k, ) tensor to a (k, ) tensor.
One can then define parallel transport of the tensor 7" along the path x#(\). That is, the

covariant derivative of 7" along the path vanishes:

D\ Heh dx®
(d)\T) I dix)\vaT'ulmukm...ul = 0. (314)

This equation is well-defined and known as the equation of parallel transport. For a vector
it takes the form
d dx®

Dy e B ) 3.15
o T e gy (3.15)

Consider the tangent vector of the path z#(\), i.e. V# = dz* /d\, then if the tangent vector

is parallel transported along the curve, it should satisfy the following condition:

D dz# B A2zt u dx? dx°

D dat da’ da” _ 1
DN e T (3.16)

This is exactly the geodesic equation, eq.(3.6). Hence, a curve is geodesic if it parallel-
transports its own tangent vector. This property is commonly taken as the alternative
definition of a geodesics.

11 d0i:10.6342/NTU201603464



3.3 Curvature

Roughly speaking, the concept of curvature is to measure how “non-flat” a manifold
is. In fact, parallel transport around a closed loop leaves a vector unchanged in a “flat”
manifold. However, parallel transport of a vector around a closed loop in a curved space
will lead to a rotation of the vector in general, and this rotation depends on the total cur-
vature enclosed by the loop. It would be more useful to have a local description of the
curvature at each point, which is what the Riemann curvature tensor is supposed to pro-
vide. Given two vector fields A* and B", imagine that we take parallel transport of a
vector V* to move along the direction A first, and then along B”. After that we move
it backward along A", and then B”, to return to the starting point. This action is indeed
coordinate independent, so there must be a tensor which describe how the vector changes
after it comes back to its starting point. It will be a linear transformation on a vector, and
thus we expect that this linear map, the change of this vector, 6V'*, will depend on A, B,

and V which can be written as:
ovVP =RP,,, V7A'BY, (3.17)

where R*,,, is a (1, 3) tensor known as the Riemann tensor. Recall that the covariant
derivative of a vector along a certain direction measures how much the vector changes
after parallel transport. The commutator of two covariant derivatives, then, measures the
difference between parallel transporting the vector along first direction then the other, and

the opposite ordering. Therefore, one obtains that

V., V,JV? =R,V —T" vV, V*, (3.18)

= (0,10, — 0,10, + T4, —T0,I) )V — 21, V)V, (3.19)

2 (1]

where we identify the first term as the Riemann tensor,

R = 0,10, — 0,10, + T8I, — 0,1 (3.20)

po
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and the second term as the torsion tensor,

T = 2T, (3.21)

We can see that the Riemann tensor measures the part of the commutator of covariant
derivatives that is proportional to the vector field while the torsion tensor measures the part
that is proportional to the covariant derivative of the vector field and the second derivative
doesn’t involve at all. For the torsion-free Levi-Civita connection, the torsion tensor sim-
ply vanishes. Take the Riemann tensor as a map from three vector fields to a forth one,
we have

R(X,Y)Z =VxVyZ - VyVxZ - VixyiZ, (3.22)

where Vx = X#V . Similarly, take the torsion tensor as a map from two vector fields to

a third one, we have

T(X,Y)=VxY —VyX — [X,Y]. (3.23)

There are some properties of the Riemann tensor. Consider R, = gp,\R’\JW, then the
(lower-index) Riemann tensor is invariant under interchange of the first pair of indices
with the second:

Rpo;w - R,u,upcr- (324)

It is antisymmetric in its first and last two indices:

Rogy = —Rpovy = —Roppw- (3.25)

The sum of cyclic permutations of the last three indices vanishes:

Rpa;w + Rp;wa + Rpuau = 07 (326)

which is equivalent to

Ryfop = 0. (3.27)

13 d0i:10.6342/NTU201603464



With some effort, we can prove further
Ripoyw) = 0. (3.28)

With these useful properties, we can check that the number of independent components
within Riemann tensor is 1—12712 (n* —1). Therefore, in four dimensions the Riemann tensor

has 20 independent components.

In addition to the algebraic symmetries, the Riemann tensor also obeys a differential
identity,
VinRpojuw = 0, (3.29)

which is the so-called Bianchi identity. Take trace of the first and third indices of the
Riemann tensor, we can define the Ricci tensor

R, = R\ (3.30)

The Ricci tensor associated with the Levi-Civita connection is automatically symmetric:

R,, = R,,. Finally, the trace of the Ricci tensor is callled the Ricci scalar
R=g¢"R,, = R",. (3.31)

The Ricci tensor and Ricci scalar contain all information of the trace of the Riemann tensor,
leaving us the trace-free parts. The trace free part of the Riemann tensor is called the Weyl

tensor, which is defined by

2 2
Crop = Rpopw — m@p[uRv}U — Golulp) + (n—1)(n—2

>gp[ugy]UR. (3.32)

This complex definition is designed to make sure all possible contractions of C,,,,,, vanish,
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while it retains the symmetry of the Riemann tensor:

Cpauu = C;Wpaa (333)
Coopr = Cloojun); (3:34)
Colou) = 0. (3.35)

The Weyl tensor is only defined in three or more dimensions, and in three dimension it
vanishes identically. One of the most important property of the Weyl tensor is that it
is invariant inder conformal transformations. For this reason, it is often known as the
conformal tensor.

An especially important form of the Bianchi identity comes from contracting twice of
the €q.(3.29):
1
VIR, = §VPR. (3.36)

By combining the Einstein tensor which is defined as
G =R, — ;ng, (3.37)
with the Bianchi identity, we will get
VG, = 0. (3.38)
Therefore, one can expect that the Einstein tensor is related to the energy conservation law

and 1t will play the key role in GR.

3.4 Einstein’s Equation

Consider a (classical) field theory in which the dynamical variables are a set of fields

®;, with the action S which is expressed as the integral of a lagrangian £ as,

S = [ £(63, Vo)V =gd"x. (3.39)
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For example, a scalar field theory ¢ in the curved spacetime can be written as

So= [ [-59"(9.0)(%.0) - V(0)] V=g (3.40)

which would lead to an equation of motion

O — ‘fl‘; =0, (3.41)

where the covariant d’Alembertian is 1 = ¢**'V ,V, = V#V,.

To construct the action for general relativity, note that the dynamical variable is now
the metric g,,,. Since we know one can choose a coordinate such that the metric is in its
canonical form and its first derivatives vanish at each point, the lagrangian scalar should
contain at least second order derivatives of the metric for a non-trivial field theory. Be-
cause the Riemann tensor itself is second order derivative in the metric and the Ricci scalar
is the only independent scalar which can be constructed from the it, the simplest indepen-
dent scalar which is resulted from the metric and no higher than second in its derivatives,
is the Ricci scalar. Hilbert proposed this simplest possible choice of the lagrangian for GR

as:

Sy = / J=gRd"z, (3.42)

which is known as the Hilbert action (or Einstein-Hilbert action). The equation of motion
for the Hilbert action come from variation the action with the metric. By using the facts,

9" 0Gu, = — 909”7, the trace formula,
det(M) = exp Tr(ln(M)), (3.43)
where M is arbitrary matrix, and the variation of the Christoffel symbol:

1
ory, = —5[29A<Nu>(59”’) — GuagusV (6g°7)], (3.44)
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we can obtain the variation of the Hilbert action with respect to the metric:

|
58y = / d"e/=g {RW _ ZQWR} 5gh. (3.45)

Therefore, the equation of motion of the Hilbert action, i.e. the Einstein equation in vac-
uum, is

1
Ry = 5 Ry = 0. (3.46)

We derived the Einstein equation in ”vacuum” because we only considered the gravita-
tional part inside the action without any matter contribution. To get full Einstein equation,

let’s consider
1

5= 1ena

Su + Swu, (3.47)

where S is the action for matter (fields). By varying the action with respect to the metric,

1(55_1(R 1)+1(55M
V—gdog 160G\ o Imv V=g dghv’
one can get the full Einstein equation:
1
R, — 5w = G, =8rG1T,,, (3.48)

where the energy-momentum tensor for matter is defined by

2 0SSy
T, = = 22M 4
" =g ogi (3.49)

Note that the conservation law V#T),, = 0 now is consistent with the result come from

the Bianchi identity, V*G,, = 0.
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Chapter 4

Quantum Field Theory in Curved

Spacetime

4.1 Quantum Field Theory in Flat Space

In this section, we will review the quantum field theory in flat space briefly. At first,
for simplicity we consider scalar field in the following. The Lagrangian density of a scalar

field with mass m in D-dimensional Minkowski spacetime takes the form,
& = —;nﬂ” 00,0 — ;m2gb2, (4.1)
which results in the well-known Klein-Gordon equation,
O¢ — m2¢ = 0. (4.2)

From the equation of motion above, we can solve the general solutions of ¢. One of the

complete set of solution modes is

{ug(@)|ug(x) = ug(t, 7) oc 7k € R} (4.3)
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where w = k2 + m?2, and k := |k|. If the modes satisfies

guk(t’f) = _iwuk(ta f)> w >0, (4.4)
t

it is said to be positive frequency w.r.t. t. Next, given two arbitrary scalar fields, ¢, (z)

and ¢, (x), we can define the inner product of them as:

(61(2), 6a(x)) = =i [{61()0003(x) — D ()63 )}z, 4.5)
=i [ {o1@) 9 03(x)}a ', (4.6)

where ¥, is a spacelike hypersurface at instant t. By using the Klein-Gordon equation, it

can be shown that the value of the inner produce is indepedent of t. !

Follow the definition of inner product, the solutions in (4.3) can be normalised as:

1 o
up (1) = —————eF . 4.7)
2w (2m)n1

This make sure solution modes are orthogonal, (ug,uz) = 0 (=1 (k — k'), and thus the

modes given in (4.7) now is a orthogonal complete solution set.

In the following, we will quickly go through the standard procedure of canonical quan-

tization. At first, let’s impose the equal time commutation relations:

[¢k(t’ f)» ¢k(ta f)] = O,
[Wk(tﬂ f)ﬂrk(t’f)] =0,

[¢k(t7 f)a ﬂ-k(ta f)] = Zénil(f - fl) (48)

where 7 is the canonical momentum of ¢ defined by

0.¢
9(0r9)

= 0,0 (4.9)

m =

'We assume here that the set {3;|t € R} is a foliation of the D-dim Minkowski space.
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Next, we can expand ¢ by the modes (4.7), and quantize this field (Second quantization)

as:
b — b= /d"—lk dgup(e) + alui(x), (4.10)

where a' and 4 are the so-called creation and annihilation oparators. Then the equal time

commutation relations for ¢ and 7 are equivalent to

a0z, =0,
g, 4| = 0,
g, ab,| =" (k = K). (4.11)
The vacuum is thus defined by
iz |0) = 0, forall k, (4.12)
and the number operator is
N; = alag. (4.13)

From the Lagrangian (4.1), we can derive the (classical) energy-momentum tensor,

2 5%

THV [¢(I>v ¢($)] = ﬁ@g“" - (au¢au¢ - ;Uwﬁmﬁwﬁ&sqﬁ - ;m2¢277/w) (414)

In order to consider the quantum version of 7),,, i.e. the expectation value of TW,, we

should promote it to the operator form?

A A

T [6(2), 6(@")] = Ty [9(2), ()], (4.15)

’It is fine to set 2/ = 2 now. However, I prefer to write it in this way here because it is convenient when
we consider the (point-splitting) renormalization in next section for curved spacetime.
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and we can then define the Hamitonian and Momentum operators as:

= A" T (), 0(2)] = ; (kg + agal)w, (4.16)
Pi= 5 @l [6(2), o(v)] = /k(“;i%)k (4.17)

When we try to compute the expetation value of H, B, or N ¢ In a specific physical
quantum state, e.g. the vacuum state we defined in Eq.(4.12), we will face the divergence
problem. The most common way people developed to tackle with this problem is the

normal ordering which is defined as

akay,. (4.18)

: dk&L :

Take Hamitonian as an example, consider the original form of Hamitoinian operator as

follows:

ﬁ:[(agag+§)w;» (O1]0) =0+ o0 . (4.19)

. L AT A 0T —
cH = /E(ak»ak>w = (0] : H:10) =0 (4.20)

the divergent term vanishes and the expectation value of Hamiltonian now become zero

which coincides with our expectation for the ”vacuum” state.

4.2 Quantum Field Theory in Curved Space

At first, consider the Lagrangian density of a scalar field in a general D-dimensional

curved spacetime which in general takes the form:

# = VG {4 Vb6 — (2 + ER)F) @21
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which leads to the equation of motion of ¢,
0,0 — (m* +ER)p =0 (4.22)

where m is mass, ¢ is the coupling constant and R is Ricci scalar. Similar to the flat case,
we can solve the field equation above and get arbitrary complete sets of solution modes.
However, the choice of solution modes in general is not unique and thus for example we

can have a solution set as

{ug(z)|k € R} (4.23)
or as

{vp(2)|k € R*} (4.24)

where uz(x) # vg(x). This is because in curved spacetime, there is in general no unique
way to define “time” (or time-slicing). 3 Similarly, we can define a modified version of

inner product for curved spacetime as

(61:62) = =i [ V" {1V = 63V,01}d" 1 (429)
=i [ Vi (o1 @)V03 ()} (4.26)

where 3, is a spacelike hypersurface corresponding to an arbitrary time-slicing (folia-
tion). By the definition of inner product, {uz(x)}, {vi(z)} can adjusted to the orthogonal

solution modes, 1.e.

—

(up, ug) = 6"V (k — ), (4.27)

(v, vg) = 8@V (k — k). (4.28)

3 Although sometimes people prefer to use timelike killing vector to define time, it is in general not
necessary. Note that a killing vector n* satisfies £,g,,, = 0.
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Next, in order to perform canonical quantization, we impose the similar equal time com-

mutation relations

[0r(2), dr(x)] = 0,
(7 (), T ()] = 0,

(Gu(), m ()] = \/i__g(S(”‘”(f ), (4.29)

. o 0. o .
where the canonical momentum 7 = B =V gVoo. We can choose different modes

to expand the scalar field and perform the second quantization

= / "k dpug(e) + abui(a), (4.30)

or = / &k bug(e) + bloi (o), (4.31)
and get the commutation relations equivalent to (4.29) as

ar,an| =0, |az,al | =0, ag,al | =0 V(k—F), (4.32)
kk k k f

g
w) =0, [bg B | = 0, [bg, L] = 6"V (k = ). (4.33)

Also, the different ”vacuum” states and “number” operators will be defined as

i [04) = 0, forall &, (4.34)
or BE |0g) =0, forall E, (4.35)
and
VY = alay, (4.36)
or Nt = blh. (4.37)

Similar to flat space, in order to consider quantum effect, we should promote the clas-
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sical stress tensor obtained from Lagrangian (4.21),

T = (1= 26)V,6V,0 + (26 — )90 Va0 V50 — 266V,V,0

ey ¢ 21— 0 el

2 1
- E&Q#VQSDQS +€ [Ruu - gRgm/ + 4

(4.38)

to operator and then compute quantum expectation of it. In curved spacetime, the di-
vergent problem still exists, i.e. (0|7}, [gb(Ax), gb(Aa:)} |0) = oo, and unfortunately it turns
out that the "normal ordering” process is unable to handle it in curved spacetime. There-
fore, during the past decades, many spent a lot effort to deal with it and developed many
regularization techniques for it, such as point-splitting regularization, Zeta function regu-
larization, or dimensional regularization and so on. Here, we will briefly introduce one of
these methods, the point-splitting regularization:

Let’s consider the two point function depend on x and x’ as follows, and take the limit

¥ — x,

lim (07}, [6(z), ¢(2/)] 0) = lim 1(...)+ ) (4.39)

T’ —x ' —x €
=(0|T}ur (2)[0)

ren

where 2/ = (t(¢), Z(¢)),x = (¢(0),Z(0)) and x, 2’ should be connected by geodesic to
make all formula covariant. We can thus analyse the divergence behavior by expanding
(4.39) w.r.t. €. By removing the divergent part and we will get the finite part which can

be used to define <0\TA,W(33) |0),.,, as shown in (4.39). *

Te

4.3 Bogoliubov Transformation

As we mentioned in the last section, there in general exists no unique way to define
solution modes and thus results in different choices of a', 4, and “vacuum” states in curved

spacetime. Because each solution mode is complete set, we can thus expend one set in

It can be checked that the renormalized stress tensor satisfies the energy conservation law, i.e.
Ve (T, ., =0

TeEN
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terms of the other one as follows,

vg() = /k g + By, (4.40)

u,;(m) = /13’ Oé;%,EU];, — BE,,;’UZ,. (4.41)

The transformation from one basis to another is called Bogoliubov Transformation. By
using the orthogonal property of the basis modes, the functions «y;, and [;7,, which are

called Bogoliubov coefficients, can be expressed as

o= (vg, ug), (4.42)

= _(UE7 uz,) (443)

Then, we can calculate the expectation value of the ” B number operator, N (B)_ in the

“A”-vacuum,

AN ®0y) = /k B 2. (4.44)

We can notice that the expectation considered above is in general nonzero, it means that
an “empty”’ vacuum defined by “A”-frame is not a “empty” vacuum from B-frame’s per-

spective.

4.3.1 Unruh Effect

As an example of the application of Bogoliubov transformation, we will introduce the
famous Unruh Effect in this section. At first, for simplicity lets consider a massless, min-
imal coupling scalar field in 2-dim Minkowski space. We list two different coordinates,

“inertial” frame (¢, ), and Rindler frame (7, Rr) for 2-dim Minkowski space,

ds* = —dt* +dx* = —dUzdV; (4.45)
= —pdugdvy = —p*(=dTy’ + dRy’) (= —p*dTs* + dp*)  (4.46)
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where

Up=t—z,  Vi=t+uw, (4.47)

p = (3;'2 — t2)1/2’ Up = — log(—Uf), vy :=log Vy, (4.48)
1 1

Tr = §(Uf +uy), Rp:= §(Uf —uy), (4.49)

3 The solution modes of the scalar field which satisfies the field equation,

Op=0 (4.50)
is
1 )
up(z) = ——=e"Ht-2), (4.51)
A7 |k|
1 )
or vy (z) = ———=e HIr"ER) (4.52)
47 |k|
(4.53)

As mentioned in the previous section, we can quantize the scalar field by expanding it

with different solution modes,

é:/ﬂwwww@g (4.54)

or = /dk IS,;U,; + [S/T;UZ’ (4.55)

3 By considering the trajectory (T'r, Rr = constant), z*(7), we can compute the acceleration of it, a* :=

2 2 . . . . .
deg’ =d dfﬁ . It turns out that the amplitude of accel.eranon along thls. trajectory, a = /afa,, is cons‘Fant.
Therefore, people commonly call the observer moving along this trajectory as “constantly accelerating”

observer and the Rindler frame as the “accelerating” frame.
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and thus define the different vacua, the so-called ”Minkowski vacuum’ and ”Rindler vac-

uum’, as

a [0ar) =0, (4.56)

b [0R) = 0. (4.57)

We can then calculate the expectation value of the “Rindler” number operator, N ,gR), in

the ”Minkowski” vacuum, and it results in

1
(Oa|NF[0y) X~ (4.58)
eTa — 1

This result is the same as the blackbody spectrum with a temperature

T=_—. (4.59)

It means that an accelerating observer feels itself in a thermal bath in Minkowski vacuum

state, and this fact is the famous “Unruh effect”.

4.3.2 Hawking Radiation

Similarly, let’s consider the two-dimensional Schwarzschild spacetime in three differ-

ent frames, (¢,7*), (Ty, Ry) and (Ty, Ry ):

2M 2M 2M 2M
ds> = —(1—"2)dt* + (1 — =) 'dr? = (1 — =) (=dt* + dr**) = —(1 — —— |6l
T T T T
oM3 . oM?
= MW avay = - e~ 20 (—dTy” + dRy?) (4.61)
T r
M2 1 t—r M 1 t—r
_ B (g~ )b U = 87’<2§\4 )RS (—dT)? + AR, (462)
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where

,
= 2M In(— — 1 =t—r" = * 4,
r r+ n(2M ), ui=t-—r", vi=1t41r, : (4.63)
—u v 1
U:= —e®r, V= e, Ty := i(V +U), Ry = §(V — Ul4.64)
1 1
TU = 5(11 + U), RU = 5(’0 — U) (465)

We can then quantize the scalar field by using the solution modes corresponding to the

three frames,

Qg = dk agug + &2“2 = /0 dk {Age_ik“ + A%e—iku + B@Ee—ikv I é;e—ikv} 7
(4.66)
or = [ dh b+ Bl (4.67)
or = [ dk gy + s (4.68)
where
1 —ik(t—r*)
u(z) = oy e : (4.69)
s
1 .
vg(x) = | |E| e_lk(TH—RH)’ (4.70)
7r
1 .
Sk(x) = 4|E|6_lk(TU_RU)‘ (471)
T
and thus define the three vacua, Boulware, Hartle-Hawing and Unruh vacua:
ax 05) =0, (4.72)
b0} = 0, (4.73)
& 10u) = 0. (4.74)
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From the similar calculation,

1

e8TMw _ 1’

(H|ATA|H) = (U|ATA|U) (4.75)

we find that when Hartle-Hawing(or Unruh) vacuum is considered, for ”’static” observer,

there is an thermal radiation emitting to outside from black with a temperature

1

= _— 4.76
SmtM ( )

which is the so-called Hawing temperature. One of the alternative way to realize Hawking
radiation is by computing the expectation value for stress tensor in Unruh vacuum state,

and the result is

1 7M2_M 1 — M -
O U), = | T T s (1= %) 4.77)
T e ()T (-7 (2 4 i)

Note that the 7}, is nonzero and thus Hawking radiation indeed takes energy out from

black hole continuously.

4.4 The Analysis of the Quantum Divergent Behavior through
Path-integral Quantization and One-loop Effective Ac-
tion

Start with the lagrangian of the scalar field I introduced previously:

Loy = —;vwvuqs — ;(mQ + ER) P, (4.79)

SFor 4-dim case,although the calculation is much more complicated. However a similar result can also
be obtained as [20]

1 -1 00
. 1 1 00

UL < =50 o o o (4.78)
0 0 00
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and we can then obtain the one-loop effective action from it by path-integral ’

o=Sers — /[D¢]e—scz[¢]

which can lead to the expectation value of TAW

—2 6Seff[g/“/] o <OUt70’T#y O,ZTL>
V=g dg®  {out,0]0,in)

where

Seff = /d"x\/—gLeff(x).

(4.80)

(4.81)

(4.82)

The effective lagrangian including the one-loop contribution for this scalar field can be

derived as [3]

Les(x) = /m dm”*GP5(z, 2’y m™),

l\')\@

(4.83)

where G£5 is the DeWitt-Schwinger representation of the Feynman propagator G- which

provides a way to expand G r(x,z’). By the DeWitt-Schwinger expansion, this effective

Lagrangian can be expressed as

-(6. i mh— 7’l
Leff(x) ~ 47’(’ n/g Zaj QJF )7

DO |

"In [3], the author use Weyy instead of S ¢y we used here.
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where n is the dimension, a;’s are geometric quantities which is written in :

aofr) = 1, (4.85)
1
a(e) = (; — R, (4.86)
1.1 2 P2 1 praf Hv 11
az(2) = 5 (5 = R+ 10 (Ruap B = Ry BY) + (5 — DR
=t 1 -1 2
=5 . (C p+F+i0R 4.87
120( 3 th 3 ) ( )

where E and F are the the Gauss-Bonnet term and the square (contraction) of Weyl tensor

which are defined as:

E: = RasR" — 4R, R"™ + R?, (4.88)
1

F: = RuasR"™ —2R,, R"™ + gR? (4.89)

Cluvap O P (4.90)

The gamma function I'(j — n/2) within the effective Lagrangian diverges when its
argument is naught or a negative integer, and thus when considering it in even dimension,
some counter terms should be introduced to renormalize these divergent parts which will
result in trace anomaly. We will explain it in the following sections. From now on, let
us focus on conformal scalar field theory and continue to analyse the divergence part of

Seff, 1.€. Sa;p for later use. In 2-dim, the first two terms of S, ;s are divergent which can

8Note that the coefficient of (IR in as here differ from [3] by a minus sign.

°Only in exactly 4-dimensional spacetime, the definition of F, eq.(4.89) is equal to eq.(4.90). When we
deal with Sy;, in 4+ ¢ dimensional spacetime by dimensional regularization, like in eq.(4.102) later, what we
should use to describe F' is eq.(4.89) instead of eq.(4.90). That is because R0z Rrveb _ 2R, R* + %RQ
is only equal to C,q 5CH2B up to leading order in (4 + €)-dimensional spacetime.
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be derived as:

. 1 e n n
de(.’ll') = 7111_% Wm Z[mQF(—§)CLU($) + mor(l — 5)@1(.’17)],

: 1 _ap op 2 0
= lim ——m" — — Sl —9

lim 2(47T)m [m [n — * (v = 1)+ O(n = 2)]ag(x) + m’[——— ] + O(n — 2)]a; ()],
m—0,6=0,(4.92) .. 1 R YR
" — — 491

Sy e R 491)

where v 1s Euler-Mascheroni constant which appears from the following expansion of

Gamma function near pole,

(D)= 2ot (= 1)+0(m~2)
r(1—”):—ni2—7+0(n—2).

(4.92)

Similarly, in 4-dim, the first three terms of S, are divergent and it can be derived as:

. 1
Lo = 108 5 gyre

m—0,6=1,(4.94) ey 1 as(x) _yag(x))

m"_4[m41"(—g)a0($) +mPr(1 — g)al(x) +m0(2 — g)@(x)],

1 - 4.
ot T 16m2n—4 3202 (4:53)
where we used the expansion near the pole n = 4 as follows:
n 1 3 v
N—=)=- - —=)+0(n—-4
n 2
Nl——-)= -1 —4 4.94
(1-2)= - +(-1)+0(n-14), (4.94)
n 2
rgc—-=-)=———- —4).
2-35)=———7+0n-49
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4.5 'Traceless Stress Tensor in Conformal Invariant The-

ory

Let’s introduce the definition of conformal transformation: '°

9u(@) = G (2) = 727Dy (2) = Q@) g,

9" (1) = () = g (1) = () gy,

(4.95)

which lead to the relations

(19}

S=do
= 09" = (V4 6Q)*(2) g — Q*(2) g = 25" Q160 °=" 25" 0. (4.96)
By considering the infinitesimal conformal transformation of an action as follows:

Sguule)] = Slgulo)] + [ a2l ),

059,
S[gu(x +/d" Sg" e /L2 DY

= Slgwla)] - [ d”w_ T3 (G (@))60 (4.97)

we can then get a relation between the variation of action and the trace of stress tensor:

_ —1 68[gw] = 65[guw]

A _ mvlo M

= T3 [0w] = = de V=5 o (4.98)
—1 305[g,] —Q 0S[G,u]

= T3 [guw] = 50“ Iazoz—\/__g 69" lo=1. (4.99)

2

. .. . . R i
Therefore, when the theory we are interested in is conformal invariant, i.e. % lo=0 = 0,

the corresponding stress tensor would be traceless.

10The definition of o here differs from the convention used in [3] by a minus sign.
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4.6 Trace (Conformal) Anomaly due to Renormalization

In order to renormalize the effective Lagrangian, we need to introduce the correspond-
ing counter terms to cancel the divergent parts. The renormalized effective Lagrangian is
definedas Lyen, := Lesf — Let = Lepp — Laiv, ' Where L is the Lagrangian of the counter
terms. After renormalization, the renormalized Lagrangian L., can be used to derived

the renormalized stress tensor (7),,,) e, and by the calculation below,

-2 657”67’1 -2 5(Seff - Sdiv) £=¢£(n) +2 5Sdiv A
TA = HY = Hy = _— 'u'lli _ — T
< )‘>ren 1/—gg 5gMV 1/—gg 69“” 1/—gg 59#” < /\>div7
(4.100)

we find that the trace of <T§> is equal to — <T§> , because in a conformal theory,

ren di

Sefs 18 conformal invariant. In the remaining part of this section, we will continue to

show that in 2-dim and 4-dim, <T§\>d is actually nonzero! Therefore, although start from
v

a (classical) conformal theory, the quantum effect actually breaks conformal symmetry

and results in a nonzero trace of renormalized stress tensor which is the so-called trace

(conformal) anomaly.

In the previous section, (4.4), we already get the divergence part of effective action in

2-dim,

@ony 1 . [dPzy/—=gay(z) 1 [d’z\/—gR
Sainlg] "= _E}LI—% n—2 __247T7111—>r% n—2 (4.101)

and in 4-dim,

Sunlg) 4 Ly JdeVgaa(e) 1 Ay gl (54 F 4 S0R)]
" (47T)2 n—4 n— 4 1671’2 n—4 n — 4 .

(4.102)

According to eq.(4.99), we can now derive the trace anomaly due to the divergent part of

"n fact, L., can differ from L4;,, by some finite terms, and it results in additional contribution in the
(Ihs of) semiclassical Einstein equation. However, we will ignore the possible differences in the discussion
of this thesis.
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effective action !2. By the result derived in Sec.(A.2), we have the relation

5
\/1__950 /d”:c\/—_gR]UZO — (n—-2)R (4.103)

and thus get the trace anomaly in 2-dim:

C2Um 4x ]

R ap(x)
=(T7) = = . 4.104
< )‘>ren +247T + 47T ( O )

Similarly, in 4-dim, by using those relations

1 96 2 ) 2
—_ | d" —gF|g—0 = " /dn —gF|o=0 = —(n —4)(F 7|:|R7
Tgie | TRV = 7 g [ 5Vl =~ = (7 4 50R)

(4.105)
Lo /d”x\/ E| 2 g O /d” V=GE| (n—4)E, (4.106)
~_ - o=0 — Ty — o=0 — — - y .
V=900 VA T P
13 we thus get the trace anomaly in 4-dim:
-1 1 -1 2 as(x)
Y =———(—FE+F+Z0R) =—
< ’\>dw (47)2 120( 3 T 3 R) 1672’
A _, a2(z)
= (1) =+ oy (4.107)

It can further be proved that trace anomaly in any even dimension (n = 2k, k € N) is:

T /=g o ‘”=°:_\/——g 5o

<T>f‘> —1 6Sren(9u] -1 (5de[guv]’ = _< )\> ak ()
ren o= div

Maiw — T (4
(4.108)

121t mentions in eq.(6.107)(6.108) of [3] or eq.(3.36) of [4]
13We correct an error appear in [3]. The first result we get here is —(F + %DR) instead of —¢(F — %DR)
in [3].
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4.7 The Effective Action for Conformal Fields with Bound-

ary

Due to conformal symmetry, the action for conformal scalar field with boundary con-

tribution (for Neumann boundary condition) should be written as
Sald) = —5 [ d"ev=g [VH6V,0+ €00 RS — [y THEmK SR (4109)
From the variation of this action, we can show the boundary condition needed for ¢ is
NtV , —2¢(n)K] ¢ = 0. (4.110)

The effective action of quantum fields with various boundary conditions have been stud-
ied a lot in the previous works [21-23]. From the results, we know that Sy, for 2-dim
conformal scalar field with Neumann boundary condition (same as Dirichlet boundary

condition) is

—1 [y d?x/=gR + 2¢ [x d'z\/—7K

S [g] - 247 n— 2

4.111)

which will be used to derive the 2-dim anomaly-induced action in Ch.5.

Also, Sy, for 4-dim conformal fields with different spins and boundary conditions is
Sl hed'zy/=g [V'E +b(F + 20R)| + € fy dxy/= [VE — 20V, R + 8bji + 232
div|d] = )
n—4

S d'e/=g[VE 4+ bF) + ¢ [s, &>z /= [b/EB + 8bj1 + C_I2j2}
N n—4 ’

(4.112)
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where

2. 4
EP = ~4(RK — 2R/ K + 2R epqnn" K — §K5 + 2K K, — §K3)> (4.113)

j1 = Capeann° K", (4.114)
j2=K3—KK2+§K3, (4.115)
Ky = Ky K, (4.116)
K3 =K KK (4.117)

j1 and j, are conformal invariant scalar curvatures and the coefficients b, b, ¢; depend on

the number of matter fields with different spin and boundary conditions as:

_ 1 I & o L1 )
"= "o [120(NS +Ns) + 5 NE + 1O(NV+NV)} : (4.118)
1 1 11 31
b,:[ N§ + Ng') + oo N+ (N + Ny } 4.11
1672 360( s +Ng)+ 360" F + 180( v+ NV ( 9)
1 2 2 2 16
= Tom |35 s T pVs T NF g (VP N } 4.120
qz 1672 |:35 S + 45 S + 7 F + 35( V—|— V) , ( )

where N g, N b? , N, Ny, and IVy; are the number of fields with different spin and bound-
ary conditions (B.C.): S (spin-0), F’ (spin-%), V' (spin-0), R (Robin B.C.), D (Dirichlet
B.C.), m (mixed B.C.), a (absolute B.C.), r (relative B.C.).

Notice that the numerator of Eq.(4.111), and Eq.(4.112) are in fact conformal invariant.
However, by multiplying it with the infinite term £ := 1/(n — 2) for 2-dim (or 1/(n — 4)
for 4-dim), the Sy;, is no long a conformal invariant term and thus remove it will break
conformal symmetry. That is indeed the essence of conformal anomaly and the formalism

we propose in this thesis is surrounded with it.
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Chapter 5

2-dimensional Anomaly-induced Action

On a curved spacetime, the conformal anomaly appears through the renormalization
of the stress tensor. The expectation value of the stress tensor diverges even for the linear
field theory! and the renormalization is required. The counter terms represented by geo-
metric forms are introduced for the renormalization and, in even-dimansional spacetime,
the anomalous contribution appears in the gravitational equation. This contribution vio-
lates the conformal symmetry even if the original action for the fields possesses the sym-
metry, and thus it is called the conformal (or trace) anomaly [3, 5, 6]. Anomaly-induced
action, the action rebuilt from this anomalous contribution, is written by the nonlocal and
geometric functions and can be further expressed in a local form by introducing scalar
fields. The local form of anomaly-induced action is a useful formalism to calculate the
stress tensor of various vacua and thermal states. Therefore it can be applicable to the
fields such as cosmology, black hole physics and so on.

In this chapter, we will first briefly review the idea of the effective local action for
the 2-dim trace anomaly [12,17]. Next, in our work based on the published paper [1],
we will further propose the new version of the anomaly-induced action which is corrected

by the boundary effect. It turns out that the choice of vacuum state is naturally linked

I'This divergence appears even in the flat spacetime, which is the vacuum energy. In a theory without
gravity we can just ignore it, because it is coupled only with gravity. In a gravitational theory, however, since
it can be the source of gravity, we need to renormalize it. Usually, we assume that the renormalized vacuum
energy is tiny, which might explain the acceleration of the Universe. Nevertheless, there is no natural reason
for its smallness, which is the well-known cosmological constant problem. This issue is beyond the scope
of this paper and we will not dwell on it further.
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to the boundary effect (constraint). By taking the boundary effect into consideration, the
modified anomaly-induced action really become an independent formalism to derive stress
tensor for specific vacuum states whereas the original one cannot. Therefore, the modified
anomaly-induced action become more very powerful and efficient formalism to derive
stress tensor of vacuum and thermal states than the original anomaly action. Finally, we
will apply our new formalism to rederive various well-known problems to demonstrate

the powerful utility of this formalism.

5.1 2-dimensional Anomaly-induced Action without Bound-

ary

In this section, we will review the derivation of the 2-dim anomaly-induced action [12,
17]. We start with the derivation of the non-local action for this anomalous contribution.

The Wess-Zumino (WZ) action is useful for this derivation, which is defined as
Puzlg, 0] := Slgl = Slyl; (5.1)
with
Guw = exp(—20)g,.. (5.2)

Due to the conformal symmetry, before introducing counter terms, the action is confor-
mally invariant, i.e. we have Scs¢[g] = Serf[g]. This makes the relation of the renormal-

ized WZ action to that for the counter terms as

FWZ[@U] = Sren[g} - Sren{g]
= [Sersla) = Serslgl]~[Surla) — Sailol]
= 0~ [Salg] — Salg]]- (53)
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From the WZ action we could read the form of the renormalized action S,.,,. However,
the renormalized action derived from the WZ action has ambiguity; adding conformally
invariant terms S,y s to the obtained action S,.,,, the new action S, +Seons still gives the
same WZ action. Meanwhile, all information of the trace anomaly is definitely included
in S,.,, and thus the renormalized action that we can read from the WZ action is called

the anomaly-induced action S,,,,m, 1.€.

FVVZ[Q) U] = Sanom[g] - Sanom[g]' (54)

As introduced in Sec.(4.4), the divergent parts of the effective Lagrangian for a confor-

mally coupled scalar field in two-dimensional spacetime, is written as

Sy = —— hm d?

247r n—2

e ) (5.5)

As mentioned above, the effective action is conformal invariant. However, this counter
term designed in 2 + ¢ dimension is not conformal invariant (even for n — 2)! Therefore
after renormalization, the renormalised action is no longer conformal invariant and results
in a nonzero trace of energy-momentum tensor [3]. Substituting this counter term into eq.
(5.3), we can derive the WZ action as

Ly [ dx\/—gR — [ d*z/—gR

247 nlg[ n—2

(A19) 1 e -
= 17247r /d zv/—gloR — o00]
_ 2 2,0 /= | oD > AN Yo,
= % /d x/d '/ —g\/—g R(z)Da(x,z")R(z")
1 2 2,0 [ v / /
%—ﬂ/d x/d '/ —g\/—9g R(z)Dy(x, z") R(2")(5.6)

]

PWZ[Q? U] =

From eq.(5.4) and eq.(5.6), we can now write down

Sunemld] = g [ @ [ @'V~ R@)Dola, ) R(), (57)
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where D, is the inverse operator of D’ Alembert operator, i.e.

5(x—x’)'

ODy(z,2") = — Ner

(5.8)

In the last equality of eq.(5.6), we have imposed the symmetric condition of D, i.e.

Dy(x,2") = Dy(2', x), and used the relations:

2y/—g0o = 2v/~g00 = V=gR — /~gR, (5.9)

= o(z) = ; [ &4 Dofe,a) (=g B /=g ) (5.10)

which is obtained in Sec.(A.1.2).
This non-local anomaly-induced action can be localized by introducing a real scalar

field ¢ which is defined as

o(x) = /d2I/D2(I7I/)R<I’/). (5.11)

Operating this auxiliary scalar field by the D’ Alembert operator, we can obtain its field

equation as follows:2
Op = —R. (5.12)

Now the localized version of the anomaly-induced action (5.7) can be expressed in terms

of the auxiliary scalar field ¢ as

-1
Sanom|g, ¢] = % / *x/=g[g"™'V .oV, — 2¢R). (5.13)

2 Although the definition (5.11) seems equivalent to (5.12), for the derivation of eq.(5.11) from eq.(5.12)
we need the double integrations. Therefore eq.(5.11) has the information of eq.(5.12) and two integration
constants, i.e. using a specific inverse function D, is indeed equivalent to choosing a specific particular
solution for eq.(5.12) here. Meanwhile, within the previous works for four-dimensional case [17, 18], in
order to derive the localized anomaly action, two auxiliary scalar fields which should share the same green
function (inverse operator) analogous to D should be introduced. However, according to our recent work
[2] which will be introduced in Sec.6, we find that introducing only one auxiliary scalar field is enough to
construct the localized S0, in 4-dim.
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We can check that eq.(5.12) can also be obtained by varying this action w.r.t. ¢, and thus it
is consistent with the action above (5.7). Also this action is reduced to the anomaly action
(5.7) after substituting eq.(5.11), and thus it gives the same dynamics as the non-local
action (5.7). The corresponding stress tensor can be obtained by the variation w.r.t. the

metric g,,,,, and its explicit form is

2 48,
Tanom P — anom 5.14
224 /—_g 6g,UfV ( )
= %[(R'uy - §Rguu)90 - V,.Vyp+ g,Ue — §(V“¢)(V,,gp) + ng/(vagp)(v ©)].
(5.15)

This trace obtained from the stress tensor above consists with the well-known trace anomaly,

1 1
S I o P - 5.16
9 S 24r " " 2Un (5.16)

Therefore, it is concluded that scalar field action (5.13) describes the anomalous contri-

bution.

5.2 2-dimensional Anomaly-induced action with Bound-

aries

In this section, we will propose the modified anomaly-induced action with boundary
effect which is based on our published work [1]. We introduce the surface terms (i.e. the
boundary effect) into anomaly action, which was ignored in the previous works [8—12,19],
and find a natural relation between the quantum states of the original scalar field and
boundary constraint of the auxiliary scalar field. Also, it turns out that the boundary effect
is important not only for bounded spacetimes but also for unbounded ones. For a spacetime
with a boundary, e.g. a horizon, the surface term fixes the boundary condition on the
boundary. Meanwhile, for an unbounded spacetime, the surface term constrains on the
asymptotic behavior at the (spatial) infinity.
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5.2.1 Operator-Modified Method

In this section, we will review the way we developed in the work [1] to include the
boundary effect in anomaly-induced action, which we call operator-modified method in
this thesis.

At first, let’s consider the boundary part of action of the conformally coupled scalar
filed. Due to conformal symmetry, the action with boundary contribution should be written

as

1
Sulg = =3 [ d"ev/=g [V*oV,0+ (m® + ER)¢] — € [ & ay=eEK e (5.17)

From variation of this action, we can show the boundary condition needed for ¢ is Neu-
mann boundary condition, i.e. n*V ¢ = 0. The divergent part of effective action includ-
ing the boundary contribution corresponding to Neumann boundary condition or Dirichlet
boundary condition is derived in [21,22]. Therefore in order to renormalize the divergent
effective action with boundary contribution via dimensional regularization, in additional
to eq.(5.5) we should introduce the associated boundary term. The overall counter term

in 2-dim thus now has the following form:

-1 200 /— 2 lo/—evK
Sulg] = —L i P LBV ZgR T2y ey K (5.18)
24 ns n—2

where M is two-dimensional spacetime and X is the timelike boundary. We indeed need
to take only timelike boundaries into consideration. That is because in the standard way
to derive classical equation of motion, we take the variation of the action while fixing
the initial and final states. Even if the surface terms on the spacelike boundaries (i.e. the
initial and final hypersurfaces) are introduced, the final form of the stress tensor derived
by the variation of the action would not be affected. We thus ignore the contribution of
spacelike boundaries in the following. The boundary term in the numerator is the Gibbons-
Hawking term [24, 25] and thus the numerator overall is a conformal invariant term in
two-dimension. However, in a way similar to the previous case without boundary, the
counter term introduced here is defined in 2 + ¢ dimension and is not conformal invariant
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which is the origin of conformal anomaly.

For the convenience in the later discussion, we introduce an arbitrary scalar function

f(z) which is unity on the boundary and arbitrary elsewhere, i.e.
flz) =1, x € X. (5.19)

Using this scalar function, we rewrite the action of the counter terms in

_ 2. = 1, —
Sulg] = 1 lim Jd*x\/—gR + 2¢ [ d"xy/ eny. (5.20)
241 n—2 n—2

As in eq.(5.6), the corresponding WZ action can be shown as the form [26]:

I ([ d®x/—gR + 2¢ [ d'x/—K) — ([ d®>x/—gR + 2¢ [ d'z\/—e7yK)
Twzlg, o] lim [

]

o 247 n—2 n—2

. ) 1 _ _ N
(4.19),(A.22) —%{/ d*x\/—gloR — oo] + E/dl.ilf(\/—e’}/O'K +V—eyoK)}
= Sanom[g] - Sanom[g]' (521)

From Sec.(A.1.2), by expanding the conformal transformation of R and K to the first

order in € (:= n — 2), we will have the following relations:

[V=9R — vV=gR| = —2y/=g00 + O(c) = — |V=g0o + .| + O(e)

(5.22)
[V=AK — V=K = VEamte, +0(e) = 5 [V=amta, + ] +0()

and it results in:

{V=g[R+2Va(fn"K)] - =} = —2¢/=g(0o = Vafn'n"Vyo) + O(c)
= —[v=9(0 = Vofn n*Vy)o + 2]+ O(e). (5.23)

Here, n* is the unit normal vector on boundary and does not need to be fixed elsewhere.

From above relation, we realize that the D’ Alembert operator, [, which is the unique
2-dim conformal invariant operator for the case without boundary should be modified to a
new hermitian(self-adjoint) and conformal invariant operator for the case with boundary,
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L}, which can be naturally constructed as: >
L} .= (=0 + V*fn,n, V). (5.24)
We thus have a relation analogous to eq.(5.9) *

2v/—gLjo = 2v/=glio = V=g[R + 2V*(n,f K)] — V=3[R + 2V ,(i* [ K)].
(5.25)

Using the relation (5.25), we can read the non-local anomaly-induced action from eq.

(5.21)

Sa,nom g 96 [/d2 /d2l’,\/_r +2V'LL nufK))Df(x ZE)

(R(z") +2V*(n), f'K")) — 4 / d*z\/—g fK2] .

(5.26)
Here, Dy is the symmetric inverse operator of L3, which is defined by
o(x —a
O N ) 527

As the derivation of the local anomaly-induced action in the previous section, we will

introduce a real auxiliary scalar field ¢ which is defined by

Q= /d2x'\/—ng(:U, )[R + ZV;L(n'“f’K’)]. (5.28)
Operating Lg to this equation, we have

Lip =R+ 2V¥*(n,fK). (5.29)

3Proved in Sec.(A.1.2) and Sec.(C.1).
‘0o # VnnVo,but [, 0o =€ [, n*V,o = [, (nunt) (n"Vyo) =€ [,, Vn#n’V,o.
——

=€
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Similar to the action (5.13), again the localized version of the anomaly-induced action

(5.26) can be expressed in terms of the auxiliary scalar field ¢ as

Sl 7] = oo { [ @ov=aleLio - 26(R@) + 29", fK))] — 4 [ Pay=gfK?}
(5.30)

= 9_6; {/ d*zv/=g(—¢Op — 2¢R) + / d'z /Y (o, V"o — 4pK)
+ [ @y =g l(n, T ) (0, T + 4K) - 4K2]} , (5.31)

this action gives eq. (5.29) and, by substituting eq. (5.29) into it, this action indeed reduce

to the non-local action (5.26). Therefore, this is the localized anomaly action we want.

Recall that f is an arbitrary function except that it should be unity on the boundary. In
the following, we will choose f to approach step function to grasp the boundary effect. In

order to tackle with this explicitly, let us condider the following f function:
1
fs(N) =4 2 (5.32)

where ) is the affine parameter’ for the geodesic orthogonal to the boundary, and ¢ is a

positive constant. By taking the limit § — 0, the anomaly-induced action (5.31) becomes

5 —1
Sanom9, ¢ 30@{/ d*z/=g(—¢0p — 20R) + /dlﬂfx/—ev(wuv"w —4pK)}.

(5.33)

It turns out that we have exactly the same action as the previous one (5.13) expect for the
additional boundary terms. The boundary terms have no additional contribution on the
stress tensor except on the boundary, and thus the obtained stress tensor in the bulk, M, is
still the same as that one obtained from the case without the boundary term. Meanwhile,

the boundary terms affect the boundary condition for the scalar field . Equation (5.29)

SWe set the affine parameter \ to be zero on the boundary.
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can be rewritten in

~Op + (Y, f5)(0V,0) + fV i (nV,0) = R+ 20V, f3) K + 25V K,

(5.34)
Taking the limit 6 — 0, we find the equations for ¢
Op = —R, (5.35)
with the boundary conditions®
n"V,p = 2K, T € X. (5.36)

This means that there is the additional boundary constraint on (¢ which was not taken into

consideration in the previous works.

5.2.2 Green’s Function-Modified Method

Instead of the operator-modified method we just showed in the previous section, in this
section, we will propose another equivalent method, which we call the “Green’s Function-
Modified Method”, to derive anomaly-induced action with boundary effect. It turns out
that the Green’s function-modified method is easier to generalise to 4-dimensional case

than operator-modified method.

At first, lets consider the identity

/M /=g [u(x)To(@) — v(z)Tu(z)] = € /E d /= [u(z)Vo(z) — v(2)Vou(z)],
(5.37)

where u(x) and v(x) are arbitrary scalar functions, also (J and its boundary-associated

These equations can be also obtained from the action (5.33) directly. Note that because —n"V,, fs
becomes Dirac delta function in the limit 6 — 0, the terms proportion to it in the lhs and rhs of eq.(5.34)
should be balanced.
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operator V,, are conformally invariant operators which satisfies

Ou = e 270,
B (5.38)
V,u=¢e °V,u.

The Green’s function, i.e. the inverse operator, of D’ Alembert operator is defined by

V=9 (5.39)
V.G(z,2') = w(x),

where w(z) is an arbitrary function which should satisfy’
e/ d'z/—eyw(z) = —1. (5.40)
s

From eq.(5.22), we know that in 2-dimensional spacetime the conformal transforma-

tion parameter o must satisfy the following two differential equations:

—1 _
Oo = V—gR —/=gR/|,

| ] s
VnO' = ﬁ {\/ —6")/K — —E"_)/K] .

By using eq.(5.37) and eq.(5.41), we can expresses o in terms of G(z, 2’) as:

o(z) :/Mdzx/G(x/,x) {;[HR/ — \/TQ'R/]} + G/Edlx’G(x/,x)[ —eyK' — \/—eY K]

+ (0 ey (5.42)

where (u(2)),,(,) = —€ s d'z'y/—ey'w(a")u(a’) for any scalar function u(x).

Similar to the last section, we will introduce a real auxiliary scalar field ¢ which is

defined by

_ 2,/ / / / 1. / / /
() —/Md '\ —g'G(z',x)R + 26/2(1 '\ ey G (@, o) K + () ) - (543)

"In order to guarantee [, d*200G (z,2') = € [, d' /=y VG (x,2/).
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Note that by this definition, the scalar field ¢ automatically satisfies the following equation

of motion and boundary condition:

e = —R,
(5.44)

n"V,p = 2K, x € X,

which are exactly the same as eq.(5.35) and eq.(5.36). Together with the relation G(x, 2') =

G(z,2") which is resulted from the conformal symmetry of (J and V,,, i.e. eq.(5.38), ¢

can thus be expressed in terms of ¢ as

o(x) = 5lp(z) — ()], (5.45)

In the setting of two-manifolds with boundary, the D,Alembert operator and its boundary

associated operator, V,, are related to a ”cocycle” functional I which is defined by

Flu(zx)] = /M d*xv/—g[ulu + Ru] + 6/2 d'vv/—ey[—uV,u + 2Ku), (5.46)

where u(x) is an arbitrary scalar function. It can be checked that this functional J satisfies

the following “cocycle” condition

Flo + u] = Flul. (5.47)

Next, with the help of the cocycle functional F, the WZ action can be derived as fol-
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lows:

1 _m[( [ Px/=gR + 2¢ [ d'a/—K) — (| d*x/—gR + 2¢ [ d'z\/=e7K)

247 n—2 n—2
1 711 — >
=5 {Q/de(\/_—gR +vV—=gR)o + e/dlx(\/—evK + x/—eﬁK)a]
T

b 2 = 1, }
sy {/dx\/ g(aR—i—UDU)—i—e/dm ey(—oV,o +20K)

]

1
= Y o]
o I L)
= Sanom[g] - Sanom[.Q]? (548)

where we have used eq.(5.45) and eq.(5.47) to get the last second equality. Therefore, we

can immediately read the anomaly-induced action from eq.(5.48) as

1 1
Sanom[ga 90] = %ﬂ?ﬁ]
1
= @{/ d*z/=g(pOp + 20R) + /dlx\/—ev(—gpnMV“go +49K)}.

(5.49)

Note that this result is exactly the same as eq.(5.33). Therefore, we proved that the Green-
function modified method gives the same result as the operator-modified method. Also,
by the Green-function modified method, we don’t need to assume the symmetric property
of Green’s function in the derivation of the anomaly action. In the next chapter, we will

see that this alternative approach is much easier to generalize to 4-dimensional case.

One more remark is that by adding up the lhs and rhs of (5.44) respectively, we will

have

/ /=g — / d'2\/ =7V, = 0, (5.50)
M JX
/M &2/ —gR + //S d o/ =72 = o [M], (5.51)

where x2[M] is the Euler-characteristic of the bounded 2-dim manifold M and we have
used the 2-dim Gauss—Bonnet theorem to get the second equality. In order to make sure
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the two relations satisfy at the same time, we must have the following equality:

/M &/ —gR + /E d'2/ 72K = xo[M] = 0. (5.52)

It means that the anomaly-induced action can only be used in the spacetime with zero
Euler-characteristics. Although this requirement satisfies automatically in bounded 2-dim

spacetime, later we will find that it is important for 4-dim generalization.

5.3 Applications

Since we have construct the anomaly-induced action with boundary effect, in the fol-
lowing, we will apply this formalism to several examples. Then we can appreciate how
powerful and efficient this formalism is when one need to solve the expectation of stress

tensor of quantum vacuum and thermal states.

5.3.1 General Analysis for 2-dimensional Spacetime

Since any two-dimensional spacetime can be described by the conformally-flat metric,
in this section, we first apply our result to conformal flat spacetime and then use the result
to analyse several common 2-dimensional spacetimes, which are the flat, 2-dimensional

Schwarzschild, and de Sitter spacetimes.

Any metric of 2-dimensional spacetime can be written in the conformal flat form:
ds® = F(t,r)(—dt* + dr?). (5.53)

We consider the case in which the boundaries exist on r = ry and r = ro = r; + L(> r1).

The normal vector on the boundary is written in

it — ( 0. F4 ) (5.54)
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The Ricci scalar and extrinsic curvature on the boundary are, respectively,

=0 F +0’InF), (5.55)

F29,F. (5.56)

With the metric (5.53), eq. (5.35) can be rewritten as
F Y =020+ %)= F (=0} InF +9’InF). (5.57)

A particular solution of this equation is In F'(=: ¢,), and thus the general solution for ¢

1s derived as

P = p+ P, (5.58)
op = Ayr + Aot + Az + Agrt + / dwles (w)e™ e 4 / dwlds(w)e“ e,

(5.59)

where ¢, is the homogeneous solution satisfying Ly, = 0. Ay, Ay, As, A3 are real
constants, ¢4 (w) are constant functions satisfy ¢4 (w) = ¢ (—w), and d4 (w) are real func-

tions.

The boundary equation (5.36) becomes
F20,p = F20,F. (5.60)

With this boundary condition, the solution (5.58) is constrained as

® = pp + Yo, (5.61)
o= Aot + A3+ > ¢y cos(w,r)e™?, (5.62)
where w, = 7, n € N, ¢, are constants satisfy ¢, = ¢* .
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The stress tensor of the trace anomaly (5.15) can be transformed as

T [0 = @p + wo; 9] = T2 + T/, (5.63)
1 1 . 1
T;f;f = %[glﬂ/l:'(pp + ZQW(VOA%)(V ©p) — §(vu¢p)(vv90p) — V.V,
(5.64)
T2 = [ 0, (Vo) (V00) — 2(F,00) (Vo) — D (5.65)
W g g Y e PR v uev

Note that there is no coupling term between ¢, and ¢y, i.e. T}, can be separated into
part and ¢, part. As we will see later, o, part indeed describes the vacuum polarization,
while g part seems related to the excitations. Since all ¢’s in the stress tensor have at least
one derivative, A3 does not affect the stress tensor. Therefore, without loss of generality,
hearinafter we set A3 to be naught. Furthermore, if we restrict (g to be Ast, the ¢, part of
stress tensor (7)7?) would become stationary. 8 This contribution is expected to be that of

the thermal state.

5.3.2 Conformal Vacuum Solutions

As mentioned in the previous sections, people expected that the different solutions
of auxiliary scalar field corresponds to different choices of quantum states of the origi-
nal conformal scalar field. Therefore, we should also expect that the general solutions
of it contain the information of all choices of vacuum states. In the following, we will
quickly show that the general solutions, Eq.(5.61) indeed contains all information of all
(conformal) vacuum states.

At first, by comparing (¢, x) with another general conformal transformed coordinate

(w, s) as: °

ds® = Fy(t,2)(—dt* + do?) = Fy(w, s)(—dw? 4 ds?), (5.66)

87,72 might not be stationary in general because of time dependence of F'(¢, ).
°If another coordinate (w, s) introduced here exists or not is nontrivial. We prove the existence of it in
Ch.B. According to this prove, it also means that there is no unique conformal vacuum for 2-dim spacetime.
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where F,, := [ - ¢?, and the expression of ¢? is given in (B.19). According to the result
from last section, by considering the (¢, z) frame, we obtain the general particular and

homogeneous solutions written as

gp}o =InF},
' (5.67)
¢ = Ast + > ¢, cos(nmz)e™™,
and by considering the (w, s) frame, we get another solutions as
3012) =InF,=InF +nd,
(5.68)

0o = Bow + Y _ d, cos(nms)e™ ™.

By using Taylor expansion of In ¢? and Eq.(B.18), it can be shown that o, + 9011? is indeed
equal to 2 + cpf,. Therefore, the two expression of the solutions of ( are equivalent.
Also, because o, = In F} corresponds to the conformal vacuum based on (¢, z) frame
and 9012) = In F}, corresponds to the conformal vacuum based on (w, s) frame, we now
understand the general solution Eq.(5.61) indeed includes (and only includes) the infor-

mation of all (conformal) vacuum states.

Minkowski (Flat) Spacetime

By using the result from the general analysis for 2-dim spacetime, we can immediately
get the solution of stress tensor for any given metric. Let us first consider the Minkowski
spacetime. There are two famous vacua of Minkowski spacetime; the Minkowski vacuum
(which based on the Cartesian coordinate) and the Rindler vacuum. The vacuum based
on the Cartesian coordinate is defined in the full region of Minkowski spacetime (see
FIG. 5.1), and thus we expect that the boundaries exist at two spatial infinities. Meanwhile,
the Rindler vacuum is defined in the Rindler wedge (see FIG. 5.2). One boundary exists on
the Rindler horizon and the other is at the spatial infinity. Moreover, in order to compare
with the Unruh vacuum of the two-dimensional Schwarzschild spacetime that we will
discuss later, we consider another vacuum of Minkowski spacetime, which we call the
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Unruh-like vacuum. This is just the analog of the Unruh vacuum in the two-dimensional
Schwarzschild spacetime; one of the boundaries is the white hole horizon, and the other
is spatial infinity. The corresponding region is the sum set of the Rindler patch and the
future Milne patch (see FIG. 5.3).

To describe each region, we write the Minkowski metric in various forms:

ds* = —dt* +dz® = —dUzdV; (5.69)

= —pdugdvy = —p*(=dTy’ + dRg*) (= —p*dTs* + dp*)  (5.70)

= —VidUpdvy = Vi(—dTy* + dRy?), (5.71)
where

Up =t —u, Vi=t+u, (5.72)

p = (z* —tH)Y?, uy = —log(—Uy), wvy:=logVy, (5.73)
1 1

Th = E(vf + Uf), Rp = 5(’0]0 — Uf), (5.74)
1 1

Ty = i(vf + Uf), Ry = §(Uf - Uf) (5.75)

The metric forms (5.69), (5.70) and (5.71) describe the regions of whole, Rindler patch and
the sum set of the Rindler patch and the future Milne patch of Minkowski spacetime. They
are corresponding to the Minkowski vacuum, Rindler vacuum and Unruh-like vacuum

respectively.

Minkowski Vacuum

The Minkowski vacuum is the lowest energy state defined in whole of Minkowski
spacetime. Therefore, we consider coordinate (5.69) with boundaries at x = x4 and take
the limit z,. — +o0.

From eq.(5.61), the general solution can be written in

o= Ast + /dw c(w) coslwr]e™". (5.76)
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The stationary stress tensor can be obtained be setting ¢(w) = 0 as

AQ
1 [ % 0 . :

T, = Y g 2 in (¢, z) coordinate. (5.77)

4

As Ay =0, T, becomes the same as that of the Minkowski vacuum, i.e. all components

become zero. Meanwhile, A, characterizes the temperature of the thermal equilibrium

state.

Rindler Vacuum

The Rindler patch is described by the metric (5.70). We consider the case where bound-

aries exist at R = R. and take the limit R+ — 4-0c0. Then the solution for ¢ becomes
@ =2Rp+ ATr + /dw c(w) cos[wRp|e™ T, (5.78)

The stationary stress tensor (with respect to the Rindler time) is realized if ¢(w) = 0, and

the corresponding stress tensor is:

I S 0 : :
T, = Y , in (Tr, Rr) coordinate, (5.79)
m I
) (A3—4)(22+12) (A3—4)at
N T o Ok - -
Y (3ot)er  (3-a)(e24e%) in (¢, z) coordinate. (5.80)
T 2(22—12)? 4(x2—12)?

For A; = 0, the result is the same as that corresponding to the Rindler vacuum state, and A,
characterizes the temperature of the “thermal equilibrium state” based on the Rindler vac-
uum. The condition A, = 2 gives the same result as that corresponding to the Minkowski
vacuum state, and thus the vacuum of the Cartesian coordinate is a thermal state based on
the Rindler vacuum. This is consistent with the Unruh effect; the Rindler observer feels

the thermal radiation in the Minkowski vacuum state.
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Figure 5.1: Region correspond-
ing to the Minkowski vacuum:
The (¢, z) coordinate covers the
whole Minkowski spacetime
where ¢t = constant and = con-
stant curves are drawn in dashed
and dotted lines respectively.

Figure 5.3: Region correspond-
ing to the Unruh-like vacuum:
The (Ty, Ry) coordinate cov-
ers a half of Minkowski space-
time where 1y = constant and
Ry = constant curves are drawn
in dashed and dotted lines re-
spectively.
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Figure 5.2: Region correspond-
ing to the Rindler vacuum: The
(Tr, Rr) coordinate covers
only one quarter of Minkowski
spacetime  (Rindler wedge)
where Tr = constant and Rp =
constant curves are drawn
in dashed and dotted lines
respectively.
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Unruh-like Vacuum

In the Schwarzchild black hole spacetime, we are sometimes interested in the vacuum
state defined in the sum set of the outer region and the future trapped region, which gives
the Unruh state. To see the correspondence between the Minkowski spacetime and the
two-dimensional Schwarzschild spacetime that we will discuss later, it is useful to consider
the corresponding situation. That is, we consider the sum set of the Rindler patch and the
future Milne patch, which is described by the metric (5.71). The boundaries are set at

Ry = R4 and we take the limit R, — 4o00. Then the solution for ¢ becomes
e =In(t+z) + ATy + /dw c(w) cos[wRy e V. (5.81)

The stress tensor of the thermal state is expected to be obtained with the condition ¢(w) =

0:
T I R
_ 2 T 2 . )
Tw = —— in (Ty, Ry) coordinate, (5.82)
247 1 1y A2
2 2 T
) —44+A3((z+)2+1)  —4-A3((a+t)2-1)
- 8(z+t)? 8(w+t)2 . .
= ar | —ead(wrorot)  —aead(eroe) in (¢, z) coordinate(5.83)
8(z+t)? 8(z+t)?

The terms depending on A, appear in the diagonal part in (7, Ryy) coordinate, and it is
traceless. This implies that its energy flows along Jr,,, and thus, a thermal gas comoves
along Jr,,. The case with Ay = 0 is expected to be the vacuum state of the region that
we consider. The stress tensor has the off-diagonal term in (¢, x) coordinate. This means
that we have energy flow in the vacuum state, which is corresponding to the Hawking

radiation in the Unruh state of the black hole spacetimes.

2-dimensional Schwarzschild Spacetime

The vacuum polarization in the black hole spacetime is one of the major interests
in the quantum field theory on curved spacetimes. As a simplified toy model, the two-
dimensional Schwarzschild spacetime is often invoked, where one considers the same
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metric as the time and radial components of the four-dimensional Schwarzschild space-

time. This geometry is not a solution of a gravity theory,!® but it is fixed by hand. The

artificial spacetime is enough for the discussion of the renormalized stress tensor. The

causal structure in this two-dimensional Schwarzschild spacetime is the same as that in the

four-dimensional Schwarzschild spacetime, and thus qualitatively we can expect that sim-

ilar features of the vacuum polarization, such as the Hawking radiation, appear. Here, we

study the vacuum polarization of the three familiar states; the Boulware, Hartle-Hawing

and Unruh states.

In order to describe the corresponding regions to the three states, we write the two-

dimensional Schwarzschild spacetime in various descriptions:

2M oM oM
= (1= T+ (1 - o) = (1 - T )(—df? + dr
d 2 1 d 2 1 ld 2 1 d 2 d *2
T T T
2M 32M3
= —(1— ="—)dudv = — e 2mdUdV
T T
32M3
_ e 2 (—dTy? + dRy?)
"
82 t—r 8M t=r
=~ (gyg ~ ViR dUd = S5 (g 1)

where

A
2M

U .= —eﬁ, V::eﬁ,

r* =1+ 2M In( 1), u:i==t-—r"
1 1
Ty = §(V+U), Ry = i(V_U)’

1 1
TU = §(U+U)7 RU = i(U—U)

vi=t+r",

(5.84)

(5.85)

(—dTy® + dRy?), (5.86)

(5.87)

(5.88)

(5.89)

The coordinates (5.84), (5.85) and (5.86) describe the outside of the black hole (see FIG. 5.5),

whole spacetime (see FIG. 5.4) and the sum set of the outside and the future trapped region

(see FIG. 5.6), and they are corresponding to the Boulware, Hartle-Hawking and Unruh

states, respectively. Comparing these coordinates (5.84), (5.85), (5.86) and the transfor-

mations (5.87), (5.88), (5.89) with those of the Minkowski spacetime (5.69), (5.70), (5.71),

1%Tn two dimensional spacetime, general relativity is not well-defined.
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(5.72), (5.74) and (5.75), we can read the analog of the Boulware, Hartle-Hawing and Un-
ruh vacua to the Rindler, Minkowski and Unruh-like vacua in the Minkowski spacetime,

respectively.

Hartle-Hawking Vacuum

The energy momentum tensor of the Hartle-Hawking state [27, 28] is defined in the
whole spacetime, which is regular even at horizons and infinity, and thus state can be
defined everywhere. Therefore, the metric (5.85) is the corresponding metric, which is
regular everywhere. We set the boundaries at R; = R. and take the limit R — +o0.

Then the general solution (5.58) can be written in

2M 1 .
o=In(l-—)— mr* + ATy + /dw c(w) cos[wRy)e™ . (5.90)
r

Stationary stress tensor (in (7, Ry)-coordinate sense) is achieved if ¢(w) vanishes, and

it becomes
1. 64M* . [(48M* 16M3®  4M?\ _ . ) o A2
Tryry %[— 1 © M —|—< i + 3 + 2 >e M (RH + Ty ) +T]7
(5.91)
1 64M* . [48M* 16M3  AMZ\ ., o Ao’
TRHRH %[ 7”4 e 2M + ( 7”4 + 7”3 + ’]"2 )e M (RH _'_TH ) + T]?
(5.92)
—~1 [96M* 32M°®  8M?*\ _ .
TTHRH - TRHTH = U < A + 3 -+ 2 )e M (THRH), (593)

in (T, Ry ) coordinate, and
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1 [TM? 4AM 1 Ay?
[ - + +
24w rt r3 1602 64M?2

1 2MN\ 2 [ 1 M? Ay? 2M\ 72
T, = 1- -+ —==(1-= Yo e
247r[< r ) <16M2 r4>+64M2< r ) (7 Ti?)]

(5.95)

(Ru® +T?)), (5.94)

1A 2MN\ !
Ty = Trt_24ﬂ_[32M2<1_ ’I") (THRH)]7 (596)

in (¢, ) coordinate.

For A, = 0, the energy density is constant for the Killing observer (whose trajec-
tory is tangent to 0;) outside the black hole, and the stress tensor is the same as that of
the Hartle-Hawking vacuum state. A, characterizes the thermal excitation based on the

Hartle-Hawking vacuum.

Boulware Vacuum

The Boulware vacuum [29] has the same asymptotic behavior as the Minkowski vac-
uum, while the stress tensor diverges on the horizon. Thus, the state (and the quantum
theory) is defined only outside the horizons. The metric (5.84) is the corresponding one.
We set the boundaries at v* = r% and take the limit 77 — Zoo. The form of general

solution (5.58) becomes
2M .
p=1In(1——)+ Ast + /dw c(w) cos[wr*]e™". (5.97)
r

Imposing the stationary condition of the stress tensor, ¢(w) should vanishes and the stress
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Figure 5.4: Region correspond-
ing to the Hartle-Hawking
vacuum: The (7w, Rpg) co-
ordinate covers the whole
two-dimentional Schwarzschild
spacetime where Ty = constant
and Ry = constant curves are
drawn in dashed and dotted lines

respectively.
i+

Figure 5.6: Region corre-
sponding to the Unruh vacuum:
The (Ty,Ry) coordinate cov-
ers a half of two-dimentional
Schwarzschild spacetime where
Ty = constant and Ry = con-
stant curves are drawn in dashed
and dotted lines respectively.

63

Figure 5.5: Region correspond-
ing to the Boulware vacuum:
The (t,r) coordinate covers
one quarter of two-dimentional
Schwarzschild spacetime where
t = constant and r = constant
curves are drawn in dashed and
dotted lines respectively.
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tensor is derived as

—AMr+7M? + A2 0
1 rd 4 . -
Tw = —— in (¢,r*) coordinate, (5.98)
247 0 M2 A2
rd 4
—4Mr 2 A2
| [ e 4 0 . .
= — in (¢,7) coordinate.
24 0 oM Agr?
r2(r—2M)2 4(r—2M)2

(5.99)

For A; = 0, the energy density has the minimum value, which corresponds to the Boul-
ware vacuum state. A, characterizes the temperature of the thermal equilibrium state based
on the Boulware vacuum. Similar to the relation between the Minkowski and Rindler
vacua, for Ay, = £1/(2M), the resulting stress tensor is the same as that of the Hartle-
Hawking vacuum state. That is, Hartle-Hawking vacuum state is a thermal equilibrium

state on Boulware vacuum.

Unruh Vacuum

In the Unruh vacuum state [30], we take the Minkowski vacuum state at the past null
infinity, while the stress tensor is regular on the black hole horizon but not on white hole
horizon. We can extend the state to the inside of the black hole but not of the white hole.
Therefore, the corresponding region is the sum of the outside of horizon and inside of
black hole, which is described with the metric (5.86). We set the boundaries at Ry = Ry

and take the limit R — Foco. Then, the general solution is written in

2M 1 .
p=In1——)+ m(t — )+ ATy + /dw c(w) cos|wRyle™™.  (5.100)
r

The stationary stress tensor (in (7, Ryy) sense) is obtained if ¢(w) vanishes and it is written
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as

1 1 302 3 = [ T
TTUTU:% |:7"4 <—MT + §M — 16M e 4M m — 1

2
9 t=r r 2 2 Ay
+20M 2 (2M - 1) (r? +4M7 + 12M )> + 4] , (5.101)
1 ]_ 3 2 g t=r T
TRURU:% |:7’4 <—M7" —+ §M -+ 16 M eam A/ m —1
2
2 o (T 2 2 As
+20M2e (2M 1) (r? +4M7 + 12M )) += ] : (5.102)

M .
Trype=Trote = 5 (—2r+3M — 2e% (r — 2M) (r* + 4Mr + 12M?)),

(5.103)
in (Ty, Ry) coordinate, and
1 1 TM?  AMY A r—2M .-
Ty = — 1 2 5.104
t 247r[<32M2+ i r3>+ 8 < MRERIVE 6M>]’ (104

7 _1[(1_2M)2 M 1Y A (1_2M)2+<1_QM)1 )
Y/ r r4 3202 8 r r 32M3 ’

(5.105)
1 1 M\ A2 2MN\ ! o
Ty =T = 5[~ e P N - |
=T =5 32M2( r) 3 << 7"> 2" )

(5.106)

in (¢, r) coordinate.
The lowest energy state with respect to (77, Ry )-coordinate is realized for A, = 0,
and then the stress tensor is the same as that of Unruh vacuum state. A, describes the

thermal excitation for the Unruh observer (whose trajectory is tangent to Jr,,).

de Sitter Spacetime

Here, we consider the stress tensor in de Sitter spacetime. In cosmology, de Sit-
ter spacetime approximately describes the beginning part of the Universe, i.e. inflation.
Meanwhile, de Sitter spacetime has the maximal symmetry, and thus has intriguing fea-
tures. Therefore, de Sitter spacetime is interesting in both phenomenological and theoret-
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Figure 5.7: Region correspond-
ing to Bunch-Davies vacuum:
The (ts,rf) coordinate covers a
half of de Sitter spacetime where
ty = constant and ry = constant
curves are drawn in dashed and
dotted lines respectively.

ical viewpoints.

Figure 5.8: Region of the static
chart: The (ts,75) coordinate
covers one quarter of de Sitter
spacetime where ¢, = constant
and r, = constant curves are
drawn in dashed and dotted lines
respectively.

In de Sitter spacetime, two vacua, the vacuum of the static chart and the Bunch-Davies

vacuum, are often discussed. We describe de Sitter spacetime with two different coordi-

nates,
ds* = —(1—H*2)dt + (1 — H*r2)'dr? = (1 — H?r2)(—dt2 + dr?}5.107)
= _dt; + €2Htfd7~]% = HTn?(_an + dr]%), (5.108)
where
tanh ™ (Hr,)
= 5.109
TS H ) ( )
1
o HE — — — 11— 22
rei=re 7, n = tf.fts—l—QHlog{H (1 Hrs)},

(5.110)

and “s” and “f” mean the static and flat slicing charts, respectively. The vacua with the

coordinates (5.107) and (5.108) are corresponding to the vacuum of the static chart and

the Bunch-Davies vacuum, respectively.
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Bunch-Davies Vacuum

The vacuum state of the flat chart (5.108) is the so-called Bunch-Davies state [31].
The flat chart (5.108) describes the region shown in FIG. 5.7. We set the boundaries at

ry = r+ and take the limit r. — Zoo. Then, the general solution (5.58) becomes
o =—2In(Hn)+ A + /dw c(w) cos|wr ]e™". (5.111)

The stationary stress tensor with respect to the conformal time 7 is obtained for ¢(w) = 0

as
1 _H? 4 Af p—2H1; 0
Tw = — : , in (ts,rs) coordinate, (5.112)
247T O €2HtfH2 + %
[ e 0 SN A
247T 0 62HtfH2 + ATS 247T 0 7772 + ATS
in (7, r¢) coordinate. (5.113)

The lowest energy state is realized for Ay = 0, and then the stress tensor becomes the
same as that of Bunch-Davies vacuum. A, describes the thermal state with respect to the

conformal time 0,,.

Static Vacuum

The static chart (5.107) describes the region shown in FIG. 5.8. We set boundary at

rs = r4 and take the limit 7. = f00. Then the general solution (5.58) becomes
0 =1In(1 — H*r?) + Agt, + / dw c(w) cosfwr?]e™’s. (5.114)

The stationary stress tensor with respect to the Killing direction 0;, is obtained for
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¢(w) =0, and it is derived as

| [ —2H? 4 HY24 A 0 _ ) _
Ty = S0 P in (ts, %) coordinate,
0 L e
(5.115)
| [ 2 HYR A 0 . ,
= — in (ts,rs) coordinate. (5.116)
247 0 —H4r2+A32/4
C(-H3)?

Imposing A; = 0, the minimum energy state is realized and the stress tensor becomes
the same as that of the vacuum state in static chart. A, describes the thermal excitation
on the static chart. For A, = +2H, the resulting stress tensor is the same as that of the
Bunch-Davies vacuum state. That is, Bunch-Davies vacuum state is a thermal equilibrium

state based on static vacuum.

5.3.3 Dynamical Casimir effect

In the following, let’s consider the one moving mirror problem in flat spacetime. In
this problem, there exists two boundaries + = 0 and x = L(t) in flat space. Next let
us introduce “conformal-flat” coordinate (w, s) where the corresponding boundaries are

s=0ands =1,

r=0&s=0,

(5.117)
r=0&s=0.
Also the corresponding line element is
ds? = —dt* + dz* = —dudv = — f () g (v)dudv
= f'(w—5)g (w+ s)(—dw? + ds?), (5.118)

=F(w,s) or F(u,v)

|
I

g
|

V)

t—z=u=f(u)=flw-s)

where and
t+z=v=gv)=g(w+s)

S
I
S
T
®
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Because there exists only one d.o.f., i.e. L(t) in this problem, we can thus find a

function R '? satisfy f = g = R~!. For later convenience, we also define a function ),

d 1
Qu) = =R () = TR (5.119)
and then
,d,.  R'(R'()
MR €1 (0)
Q" L LU (5.120)

T di2¢” R® RV

After the set up for this problem, we can now immediately calculate the solution of ¢ for

this spacetime (5.118):

© = p + ¥o, (5.121)

where

¢p = I F = 1,Q(u) + 1,Q(0). (5.122)

©p 1s responsible for the vacuum solution and by substituting it into the stress tensor for-

mula below
12 1 o' 1
24T = 9Dy + EQWV&‘PPV Yp — §vu¢pvu@p — V. Vipy, (5.123)
'The mapping of these functions: f,g, R~! : g — z ‘R: 1; — g

12Be careful that the R here is not Ricci scalar, we choose R to keep the convention the same as the
previous works.
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we can get the renormalised stress tensor in (@, v) frame as:

Ty = h(w),
Ty7 = h(v), (5.124)
TS =T =0,
and in (u,v) frame as:
Tgr = (R'(u))*Taa = h(u),
=\ Tgr = (R (v)*Tos = h(v), (5.125)

$Yp — T'¥Pp —
Tuvp_Tvup_O’

where!?
A P v Fuy  3[Q ()] = 2Q(0)Q" (u)
i) = 5pl@” 200" 7] S0P
-4
3 R 3R? R" 3 R R 1, 3R, R"
§(R’2)2 B (ﬁ ng) = _i(ng)z + R’ = R2 [_i(R/ )2 + R ] (5126)

Finally by using the formalism we develop, we get the same result from dynamical

Casimir problem as the works before [32,33].

BThe R'2 below means [R (R™())]?.
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Chapter 6

4-dimensional Anomaly-induced Action

Although we have proposed the 2-dim anomaly-induced action and applies it to inves-
tigate some physical issues, it can only be treated as a toy model used to mimic our real
world which is (at least) 4-dimensional spacetime. Therefore, in order to investigate the
real physics in our world, we need to generalize the anomaly-induced action method to
4-dim spacetime.

In this chapter, we will first derive the 4-dim anomaly-induced action without bound-
ary effect. Although the 4-dim anomaly-induced action (without boundary effect) has
been widely used before, the result we proposed here slightly differs from what in the
previous works [9, 10, 12] in several aspects: First, it turns out that introducing one aux-
iliary scalar field is already sufficient to obtain the local anomaly-induced action instead
of two. Second, we restore the missing d.o.f of the conformally invariant terms which has
been ignored before back to the anomaly-induced action. Finally the stress tensor from the
4-dim anomaly-induced action is slightly revised and it thus results in the correct 4-dim
trace anomaly whereas the result from the literature before seems to be problematic.

In the next section, we will derive the 4-dim anomaly-induced action with bound-
ary effect based on the “Green’ s function-modified method”. It turns out that by using
this method, it is much easier to generalize the anomaly-induced action to 4-dim than
“operator-modified method”. Also, we learned from our final result that by this method,
it is not necessary to require Green’s function to be symmetric in order to obtain the 4-
dim anomaly-induced action and the 4-dim anomaly-induced action must be limited to the
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spacetime with zero Euler characteristic.

6.1 4-dimensional Anomaly-induced Action Without Bound-

ary Effect

Same as 2-dim case, in order to derive 4-dim S,,,..,, We start with the counter terms

for 4-dim case which is introduced by Eq.(4.102),

1 lim I d4x\/—g[ﬁlo(%E + F — %DR)]

Siinlg) = 75— lim " , (6.1)
hedizy/=g [V'E + b(F + 30R)|
= lim . (6.2)
n—4 n—4

Similar to 2-dim case, the effective action as(x) for conformal scalar field is conformal
invariant !. However, this counter term designed in 4 + ¢ dimension is not conformal
invariant. Therefore after dimensional-regularization, the renormalised action is no longer
conformal invariant and results in a nonzero trace of stress tensor, i.e. trace anomaly.

Substituting this counter term into eq.(5.3), we can derive the WZ action as

—g |bF +V (E+ 20R)| — -
FWZ[g;U] — d4${ [ ( 3 )} }

M £

2
= [ d'z{= {\/—g [bF + 0 (E + DR)} - } o
M 2 3
(-2 [V=gR* = =] +c|v=gF - -] (6.3)
813 :

where ¢ is an arbitrary constant. > From eq.(A.38), we can get the following relation:

V=g |pr v (B-20R)| - o} =20 (vegaio + ) = V=500, 64

where A, := [0? + 2R"V,V, — 2RO + £(V*R)V, is the unique 4th-order conformal

! Although the last term —%DR in as is not conformal invariant, we will ignore it because in this section
we neglect all boundary contributions.

2Because [\/—gF — .=.] = 0+ O(e), it leads to an additional d.o.f to add the last term with an arbitrary
coefficient.
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invariant differential operator in 4-dim spacetime. Then, we can define Dy(x,z’), the

inverse operator of A4, which satisfies

6§ (z — )

A4D4(17,ZL'/) = \/_—g )

(6.5)

and thus express o in terms of Dy(z, z') as

_ lel)l/d4x’D4(x,x’) {\/—_g {bF + <E - ng)] - —} . (6.6)

By substituting eq.(6.6) into eq.(6.3) and imposing the symmetric condition of Dy, 1.e.

Dy(x,2") = Dy(2', x), we will get

T, = 81b [t [ {\/—_g {bF Y <E _ ng)J +b} Dy
{H[bF’+b’(E’—§D/R’)—H /d“l 7 (V=gR? - .)—i—c(\/—_gF—...)].

(6.7)

From eq.(5.4) and eq.(6.7), we can now write down the nonlocal anomaly-induced

action:

S =~ e = 0 (5 J0) o o (5~ )
+ / d'ay/—g [Hb, CF}' (6.8)

This non-local anomaly-induced action can be localized by introducing a real auxiliary

scalar field ¢ which is defined as
2
- /d4x\/_—g{—<pA4go+2 [bF+b’ (E _ 353)] go}. 6.9)

Operating this auxiliary scalar field by the A4 operator, we can obtain its field equation as
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follows:
0
Ao = bF + b <E _ BDR) | (6.10)

Now the localized version of the anomaly-induced action, e€q.(6.8), can be expressed in

terms of the auxiliary scalar field ¢ as

Sanom - 8b/ /d437\/ { QOA4§0 + 2[bF + b/(E — *DR } + /d4I\/ [b+ b — CF] .

(6.11)

We can check that eq.(6.10) can also be obtained by varying this local action w.r.t. ¢,
and thus it is consistent with the action, eq.(6.8). After substituting eq.(6.9) into it, this
action is reduced to the anomaly action, eq.(6.8), and thus it gives the same dynamics as

the non-local action.

The corresponding stress tensor can be obtained by varying the localized action w.r.t.

the metric g,,,,, and its explicit form is

b+

anom —2 5Sanom
To ™" g; ) -

== g W (2Aab + 4b' Bay + 40Cap) —

Dab + 2CE(zb7

(6.12)
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where Ay, Bay, Cap, Doy and E,;, are defined as

Aulgie] = \/1__95“‘1 x\/g_ggfb—s@&@)]

= g+ (O9) — RUVeo)(Vap) + 3 Rg (Vo) (Vap) — SOH(Vep) ()]}

+2(V@e)(Voyp) + 4R (Viyp) (Vep) = 2V [(VaVip) (V)]

2 2 2
= 3(Vap)(Vep) R = 2 (Vep) (Vo) Rap + SVaVi[(Vep) (Vo) (6.13)
1 §[d*z(E—20R)y 2 o d
Bulgi¢] = Ner 54 : = +3 VoVl + 405 Ve Vap
. 8 4 2
+4R,VyVep — S Rallp — 2RV, Vip + 3 (VR) Viyp
1
~ 3 {20%p + 6R“'V.Vap — 4ROp + (V°R)Vep}, (6.14)
1 6 [d*aF
Cab[g; (,0] = \/_—g f(sgab d = 4vcvd (Ccabdcp) + 2Cf(:oLbd-RCd(z@ (615)
1 4 [d'zR? 1 )
Dab[g} = \/__g 5 = —§gabR + (QR)Rab — VbVa(2R) + gabD(QR),
(6.16)
1 6 [d%aF
Eab[g] = \/_—g{sgab = 4vcvd (Ccabd) + QCcabdRCd' (617)
By checking the trace of each component
A% =0, (6.18)
(6. 2
BY = —2A,p G0 o [bF Y (E - BDRH , (6.19)
C*=0 (6.20)
D® = 60R, (6.21)
E° =0, (6.22)

we will see that the trace of the stress tensor is exactly the 4-dim trace anomaly:

; 2 ;
g T — [bF v (E - 3DR)] — b+ ¥)OR=- {b <F + SDR> + b’E] .

(6.23)

75 d0i:10.6342/NTU201603464



6.2 4-dimensional Anomaly-induced Action With Bound-

ary Effect Based on Green’s Function-Modified Method

Because it is much easier to generalize the Green’s function-modified method to 4-
dim case, in this section, we will derive the 4-dim anomaly-induced action with boundary

effect by this way. At first, Similar to the 2-dim case, lets consider the identity [34]:

/M d*z/—g(uA v — vA4u)

—¢ /E /ey {(ubgv — vAz) — (Vo) (Do) — (Vo) (D))}

= —e/zd?’w\/—_ev{[(Bou)(Bzv) + (B1u)(Bov)] — [u <> 0]}

te /E de\/—_E’y{{ — 2D, [u(KD* — KD, )] + im [wKD ] — 2D, (uD"V,v)
2D, [(Vu)DH0)] } —{u o) }

~ e /Z dz/=ev {[(Bou) (Bsv) + (Byu)(Bow)] — [u 4 v]} | (6.24)

where u and v are arbitrary scalar functions, also A4 and its boundary-associated operators,

B;, 7 = 0 ~ 3 [34] are conformal invariant operators which are defined by

Bou = u, (6.25)
Biu = V,u, (6.26)
2
BQU = (D — 2@2 — §€Kvn)u, (627)
1
Bsu = |—(V,0+2n,G"'V, + ngn) —2D,(KD" — K" D,)
2
+§®“(K®H) —2D*V, | u. (6.28)

There conformal invariant operators satisfy the following relations

Ayo = e 7 Ayo, (6.29)

B.oc = e “B,. (6.30)

76 d0i:10.6342/NTU201603464



Note that we have ignored the 2-dimensional boundary terms to get the last line of eq.

(6.24).

Similar to 2-dim case, the Green’s function, i.e. the inverse operator, of A4 is now

defined by
W (z, 2)
NGz, 2" = ’ (6.31)
Clne) =705
B3G(z,2') = w(x) (6.32)
B,G(x, ') (6.33)
B.G(z, ) (6.34)
where w(z) is an arbitrary function which should satisfies
e/ P/ —eyw(z) = —1. (6.35)
o

It can be shown that in 4-dim spacetime the conformal transformation parameter ¢ and

these conformal invariant operators is related to the following four equations:

Ao = Eg — e " Eg, (6.36)

B,o =T, —e T, (6.37)

where Fg * and T}, i = 1 ~ 3 [34] are defined by

1 9

Fo = ;(F - -OR) (6.38)
K

RS (6.39)
11 1 | 1 1 1

n—tr tr v lrilae o Mo Ly 6.40

R R DA TS gt = eltnn + ggek7 — ek, (6.40)

1 9 9

Ts := Z(EB + gVnR) - 5321(. (6.41)

3In order to guarantee [, d*zA,G(z,2') = € [, d*z/=eyBsG(z,2').
4The E¢ defined here is indeed the @) curvature [35-38] which is associated to the A, operator.
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By using eq.(6.24) and eq.(6.37), we can expresses o in terms of G(z, z') as:

o(x) = /M d'a\[—g' Gl w) ANy’ + € /2 &' \[—ev [~(ByG (!, 2)) (B)o')
+G (2, 2)(Byo') — (ByG(a', 2))(Blo’) + (BIG(2', 2)) (Byo')] (6.42)
- /M &2/ Gl x)\—g Bl — /=7 Eb] + (o),
e [ {G =Ty = e T — [/=er (BYG( ) T]

T BLG a)T] +y =y (B G )Ty — |7/ (B G’ )T |
(6.43)

where (u(2)),,(,) = —€ J5 @*2'\/—ey'w(a")u(a’) for any scalar function u(x).

Similar to the 2-dimensional case, we introduce a real auxiliary scalar field  which

is defined by

da) = [ d'a\[—g G ) By + (9),, (6.44)

te /E P\ [—ey (G, )T — (BLG(a!, a))T! + (BLG (', 2))Ty]  (6.45)

Note that by the definition above, the scalar field ¢ automatically satisfies the following
equation of motion and boundary condition:
Aysp = Eg,

(6.46)
Bip=T, z€Xi=1~3.

Together with the relation G(z, ') = G(z, 2") which is resulted from the conformal sym-

metry of A4 and B;, i.e. €q.(6.30), o can thus be expressed in terms of ¢ as

o(x) = () — p(2). (6.47)

In the setting of 4-manifolds with boundary, A, and its boundary associated operators,
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B,, are related to two “cocycle” functionals, & and G, which are defined by

= / d*r/=glulu — 2Equ] + e/ P/ —ey[uBgu — 2T5u
M s

+ (Vu)Bau — 2T5(Byu)], (6.48)
Glu(z)] := 6/2d3x\/—_€y[(B1u)(B2u) — T5(Byu) — T1(Bau)], (6.49)

where u(z) is an arbitrary scalar function. It can be checked that these functionals,  and

g, satisfy the following “cocycle” condition:

Flo + u] = Flu), (6.50)

S[o + u] = Flu]. (6.51)

Next, with the help of these cocycle functionals, the first part of the WZ action can be

derived as follows:

e d'aly/=GE — V=GE] + e Jy d*a[ =V E" — /A EP]

5
*6/ &’z —4[y/=eyD (KD"o — K" D, o) + 7]}
+ 6/ d3 4v/=eyD (KD o — KM D,o) + .| + 2[\/—eyD (0 KD*o

—oK"D,o)— ]+ 7[\/:9 (cD'K — KDV o) + 7]}
+ [ ate {— (V=GR — 7]+ ;[\/—_g(E - ng) + :.]a}
[ d%{;[\/—_ey(EB + gvnR - i@?K) +olo+ ;l[\/—_evKﬁga +7)

- ;[\/_—evRVna b ] = V= (Vo) (Vo) + ]+ ge[\/—_e'y(VU)?’ + :.]} (6.52)

~ _118 [ dtaly=gR® - 2] - 2570] + 4[o]

€ /E & {—3[\/—_67[(]% _o]- ée[\/—_ew(?’ . :.]} (6.53)
— {[-2?@5] 456 / d'a[/—gR? — - /d3 e KR+8816K3)} [-.]}
=: Sinom|T: ?] = Sanoml9: #1, (6.54)
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where

8 K3,

A - _ 4 2 3
Sanom[ ]_23.[ ] 49 /dx\/_R —|—/d{13\/_ KR—|—81

(6.55)

Also, we have used eq.(6.47) ,eq.(6.51) and ignored 2-dimensional boundary terms to get
the last second line. The remaining parts of the WZ action are easies to derive and they

satisfy the following relations:
1 4 _
f/ d*z[/—gF — ]

—/d4{ \/_F+\/_F)a+—[\/_R2 —]—[\/—_gRgb—:.}}
- / d%{(\/—_gm—:.wrm[\/—_gRQ—:.}—[\/—_gRgb—:.}}

= Sanom|9; @) = Sanoml9; 1. (6.56)
7/ Pzl —evej — 7
—/d3 { Ve + D)o {\/—_ev(iK“bRab%—ien 'R bK—?iKR) ”
_ / & { —evejip— 1) — [\/—_efy(le“bRab—kien P R K — %KR) H
= Sanom|9 ) = Sanom|9: 1. (6.57)
7/ dx[v/—evejy — 7
_/d3 { V—ev€js + )0+z1))e V=KV ,0 + 7]

——e V=K Vo + 7 - ie V=7 (Vao)® + ‘}}
= [ { Narr )0+6[\/—_67(;7K3—;KK2) —H
—/d3 { NP .)+e[\/—_67(247[(3—;KK2) —”
=: Sanom G ) = Sanoml9: ], (6.58)
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SaB;Lom / d4l’\, ng + 158R2 sz)7 (659)
1 1
Stnoml; @] = —€ /Z d*z/—ey _j1<p ( 46K“”R b+ 4naan WK — %eKR)
(6.60)
4 1
Sgwm 9; = _6/ d*x —€&y .]2@ + (27K3 — gKKQ) . (6.61)

Then, from eq.(4.112) and the result above, we can immediately read the anomaly-induced

action as

FVVZ[§70] = de[g] - Sd’i’U[ ] b/anom[ ] + bS{ﬁLom[ ] Sbsgwm[ ] + QQScleLom[ ]
(6.62)

Similar to the 2-dim case, we have one more remark here. By adding up the lhs and

rhs of (6.46) respectively, we will have

/ Ao/ =g A + / &/~ By = 0, (6.63)
M ¥
| dev=gEq + [ d'ay=Ts = xuM], (6.64)

where y4[M] is the Euler-characteristic of the bounded 4-dim manifold M and we have
used the 4-dim Gauss—Bonnet theorem to get the second equality. In order to make sure

the two relations satisfy at the same time, we must have the following equality:

/M d'zy/—gEq + /E &/ 7Ty = xa[M] = 0, (6.65)

It means that the anomaly-induced action can only be used in the spacetime with zero
Euler-characteristics. Unlike to the 2-dim spacetime, this requirement is in general not
true in 4-dim spacetime. Therefore, the usage of 4-dim anomaly-induced action is limited

and we should be careful when using the 4-dim version of the anomaly-induced action.
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Chapter 7

Conclusion

In this thesis, we have derived the anomaly-induced action with the boundary effect for
2-dim and 4-dim cases by restoring the corresponding boundary terms to the Lagrangian
for the counter terms. Although the boundary action seems not to alter the stress tensor in
the region within boundary after including the boundary effect, there are indeed additional
boundary constraints for the auxiliary field . Therefore, even though the functional form
of the stress tensor is the same as that without the boundary effect, due to the additional
constraints, the solution of stress-tensor is restricted. The most important discovery from it
is that the correspondence between the quantum states of the original field and the solutions
of the auxiliary scalar field is naturally restored due to this boundary constraint. Therefore,
the anomaly-induced action with boundary effect can be used to derive the stress tensor for
any specific vacuum state. This fact has not been noticed before and it would significantly
increase the capability of this formalism.

Moreover, by analyzing the field equation and boundary constraint of ¢, we find that
the anomaly-induced action can only be used in the spacetime with zero Euler character-
istics. Although this requirement is satisfied automatically in bounded 2-dim spacetime,
it is in general not the case in 4-dim spacetime. Therefore, one must be careful about
the topological structure of spacetime when using the anomaly-induced action in 4-dim
spacetime.

There also exists some other new features in our result. By using the Green’s function-
modified method to derive the anomaly-induced action, we find that it is indeed not nec-
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essary to assume the symmetric Green’s function. That means the formalism that has been
widely used is in fact a limited version with a redundant requirement (symmetric Green’s
function). In addition, although two auxiliary scalar fields have been introduced to get
the localised 4-dim anomaly-induced action in the previous works [9, 10, 12], it turns out
that introducing only one auxiliary scalar field is already sufficient to obtain the 4-dim
anomaly-induced action. We correct this mistake in our recent work [2] and thus the right
formula which we obtained differs slightly from the form found in the previous literature
(even when no boundary effect is involved).

As examples, we have applied our result to several familiar spacetimes (flat, two-
dimensional Schwarzchild, and de Sitter spacetimes), and rederive various well-known
quantum gravity phenomena (the dynamical Casimir effect, Unruh effect, and Hawking
temperature). Although these are already well-known knowledge, by using our result to
rederive these problems again, we can appreciate how efficient the formalism is.

Now since we know the correct relation between quantum states of the original field
and the solution of the auxiliary field, we can deal with the quantum effects on curved
spacetime as the classical dynamics of the auxiliary field ¢. It can be expected that by us-
ing the classical anomaly-induced action, many important quantum gravity issues maybe
investigated more easily. For instances, it will be interesting to apply our method to the
extremal black hole which is indeed a manifold with zero Euler characteristic. Another
interesting direction is to study the backreaction problems in semi-classical approaches
without bothering with complicated calculations arisen from the renormalization scheme.
In summary, we expect that the anomaly-induced action in 4-dim spacetime would be
a powerful tool to investigate various physically interesting semi-classical problems in
cosmology, semi-classical physics on black hole spacetime, and so on. We leave these

interesting explorations as future works.
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Appendix A

Conformal Transformation (CT) and

Some Useful Relations

The conformal transformation, which abbreviated as CT in the following, is defined

by:

Gu(@) = €727 g, () A

g () = > g ().

The relation for the normal vector of boundaries after conformal transformation is

defined as follows:

Ng = Ng€
(A.2)
ﬁa — naeo
and thus the norm of n and n are the same, i.c.
Nafp g™ = nagnpg®® = £1 =: ¢, (A3)

where the sign of the spacelike (timelike) normal vector n is +(—) and thus corresponds

to timelike(spacelike) boundary.
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A.1 Conformal Transformation of Geometrical Quanti-

ties

From the definition of CT (A.1), we can derive the following CT relations:

CT of determinant of metric:

V=g ="V, (A4)

CT of Christoffel symbols:

1 T —CA = —CA = —cA =
Loy = 596)\(8&%)\ + Ohgra — ONgab) = L% + G2 G000 + G 0ra0b — G Gab0

= fgb + O-b(sg + O-a(sg - O-dgaigab; (AS)

CT of Riemann tensor:

R%q = Rgcd — gdbﬁcﬁa(f -+ gcb?d@“a —+ (Sgﬁc?b()’ — 53?5?1,0
+ 5?0’1,0’61 — 5?@&1(60’)2 — (5’agcb6'd

— 04004+ 65Ger(V0)? + G Goae (A.6)

= 6_QU}%abcd = Rabcd - gdb@c@ag + gcbﬁd@ag + gadﬁc@ba - gac@b@da

+ §ac5b5d - §Cb5a5d - gadC_Tc&b + gbda-aa-c - (gacgbd + gadgbc)(vo-)Q

= Rabcd - 4§ac?b?dg + §a66b6d - 2§ac§bd(?g)2 (A7)
H— | H | H]

= 62U}T)Labcd = Rabcd + 4gacvbvd0 + Gac0b0d — ancgbd(vg)2 (Ag)
H— | H | H]
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CT of Ricci tensor:

Rapy = Rap — Gun(V?0) + (D = 2)[0405 — Vo Vo = §ur(Vo)’] (A9)
= Ray = Rap + gap(00) 4+ (D — 2)VoVyo + (D — 2)0,05 — (D — 2)gap(Vo)?

(A.10)
— Rob — gaa/ gbb’ Ry

= e'7 g™ g [Ra’b/ + gary (Bo) + (D = 2)VuVyo + (D = 2)oyoy — (D — 2)ga/b/(VJ)2}

= e [R™Y + g""(0o) + (D = 2)V*' V"0 + (D = 2)0” 0" — (D — 2)g"" (Vo)?]

(A.11)
CT of Ricci scalar:
eR=R—2(D—1)(0o) — (D —1)(D —2)(Vo)? (A.12)
=e¢ ¥ R=R+2(D—-1)(00) - (D—-1)(D-2)(Vo)? (A.13)
The CT of tensors associated with boundaries:
vy =Py (A.14)

Vet = Oany — T6ne = 0,(e77) — (TSm0 + 0005 + 0405 — 045 Gar) (€77

= €7 (Vo — Opita + 047 Gapie) (A.15)

K =Ky = 4""Vany = (72797 (Vo — 0piig + 0ag“Gapiic) = ¢ °[K + (D — 1)o,n"]
(A.16)

]7 d0i:10.6342/NTU201603464



A.1.1 The CT Relations Used for Solving 2-dimensional S,,,,:

Derive \/—gR — /—gR:

4 —p P27 /=GR —2(D — 1)0o — (D — 1)(D — 2)0,0"] (A.17)

=v=g[R—2(1 +¢&)0o — (1 +¢)e6,0" +coR — 2(1 + €)ec0o — (1 + ¢)e*05,5"]

(A.18)
= [V/—gR — V=gR] = —2y/=g00 + ey/—g[o R + 2000 — 200 + (Vo)?|
—[v/=¢0o + 7] + 8{5[\/—_gR + 2]o + [V=goOo — 7]
=0(¢)
~ V900 + 7] + 5 [VT9(V0) ~ o))
=0(e)
— _[y=g00+ ] +e {;[\/—_gR + 2o — [V=g0o + :.]} (A.19)

Derive /—/ K — \/—K:

(4.16) VAK = P27 /SIK 4 (D — 1)0,n"]

= VK + (1 4+ &)o,n"] +elo K + (1 +¢)oo,n"]} (A.20)

= VK ~ VAK] =3[V 77V00 + 7] (A21)
+e ;[\/—_yK + 2)o+ ;[\/—_7Vna + 7] = ; [V/=y0V,0 — 7]
=0(¢e)
(A.22)
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A.1.2 Conformally Invariant Differential Operator Associated to the

2-dimensional S,,,,,,

By considering the equalities due to the CT of Ricci scalar R bellow,

V=R~ V=gR
(A.18) —vV/=g{-2(1+¢)0o + [~ (1 + €)5,0" + o R — 2(1 + €)o0o — (1 + £)e05,5"]}

"= /=5(200) = v/—g(200) (A.23)

we can find the conformally invariant operator, [1, which is naturally related to Ricci scalar

in 2-dimentional manifold.

Similarly, by considering the CT of Ricci scalar R together with the related boundary

term 2K, the Gibsson-Hawking term as follows,

V=9[R +2V*(n, )] = /=g R + 20,(v=gn" K) = =g R + 20,(NV—yn"K)
= V=g[R — 200] + 20,[Nn/= (K + 0,0")]
= V=9[R — 200] + 20, [N/ =(K + 0,i")]
= V=3[R — 200] + 20,[v/—gn*"(K + 0,n")]
= V=9[R — 200] + 2¢/=gV [0 (K + 0,7")]
= V=9[R + 2V, " K| — 2¢/=§[0o — V,i"%,], (A.24)

we can naturally find a conformally invariant boundary-associated operator L, which sat-

isfies the following relation:

= 2v/—gLyo = 2/—g[-0o + V,1"n*V 0] = /=g[R + 2V*(n,K)| — V=9[R + 2V ,(n"K)],
(A.25)
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where we used /—gV ,V* = 0,(/—gV*) and

N =~g/vV— )
= N = Ne°. (A.26)

N =Va/VTA

during the derivation above.

A.1.3 The relations used for solving 4-dim S,,,,,,,:

The relations used in Sec.(A.1.4) for solving 4-dim S0,
(B1): Calculate \/—gR™Rpeq — /—GR™*Rapeq:

B 2Rt — R 4+ 46,5V, 40 + 8, 0304 — 26,56, (V o)’
= | =1 ]

= 2 R 4R = R yRop™ + 4RV V0 + 4R" 0,0, — 2R(V0)? (A.27)

where we used R R ;.q = R™R.q in the last equality.
e

= (V=gv=7)2 R4R% = /=g "2 7[R Ry q + ARV o Voo + 4Ray000y — 2R(Vo)?]

:1——50

—GelT VT IRWAR yoq — ARV o VG + ARG 45y — 2R(V5)?

—1+§50

(A.28)

= V=R Rapea = V=GR Rapea = —4(R""Va Vo + =) = A(R" 00, — ) + 2[R(Vo)* =
1
" E{Q(RadeR“deg + )+ 2[R*(V,Vio)o — L]+ 2(R™ 0,000 + ) — [R(Vo)?0 — ‘]}
(A.29)
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(B2): Calculate \/—gR®Rq — /—GR™ Ryy:

(A.9) = L 5a =
= (V=9 V=9 )*R; R,
S~—~— ~~~
v/—ge—De €20 (Rb+...)
_ (%)0’ ab . ab . ab o . 2
=+/—ge [R*”Ry + ROo + (D — 2)R*V,Vyo + (D — 2)R%0,0, — (D — 2)R(Vo)?]
:1—%80’

_ — - (M)O' pabn DM~ o pab o pab D, 2
=+v/—ge' 2 IR”Ry, — ROo — (D — 2)R®V Vo + (D — 2)R%0,0, — (D — 2)R(Vo)“]
:1—&—%60

(A.30)
= —gRabRab — —gfi“bﬁab
= —(ROo + ROo) — 2(R™V,Vyo + ) — 2(R™ 040, — =) — 2[R(V0o)* — 7]

1 1
+ 8{2(R“bRabcr + .0+ i[R(DO')O' — 2]+ [R®(V,Vyo)o — ] + (R%0,000 + 7.)

—[R(Vo)?o + ] = [R®(V,Vy0) + 7] = [R™040, — 2] + [R(Vo)? — :.]} (A.31)

(B3): Calculate \/—gR? — \/—gR?*:

= (V=9v—=§)2RR = =g 2 )°[R* +2(D — 1) Rdo — (D — 1) (D — 2) R(V)?]

B ———— ——— ——
=l—-3e0 3+e 3+e 2+e
— =g Eep2 _N\Pr BT )2
=+v—-ge'" 2 IR*—2(D—1)R0o — (D —1)(D — 2)R(Vo)?]
:1+%ea
(A.32)

= /—gR* — \/—gR* = —6(R0Oc + ROo) + 6[R(Vo)?* — R(Vo)?]
+ 5{;(]%20 + R?0) + 3[R(0o)o — R(Oo)o] — 3[R(Vo)?*o + R(Vo)?s] — 2[R0o + ROo]

+5[R(Vo)* — R(Vo)?]} (A.33)

(B4): Calculate \/—gJR — \/—gR:
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At first, by considering conformal transformation of IR,

V=9OR = 8,(vV/=gV*R) = 0,(e®"P7/=gV"R) = \/=gV,[e* "7V R]
= V=gV [e® P17V (R — 2(D — 1)0o — (D — 1)(D — 2)(Vo)?)]
P =gV [e e v [ (R - 2(3 + 2)0o — (3+2)(2+2)(Vo)?)]]
= V=gVa{e > {V" [¥[R + 600 — 6(Vo)?]| — (c0)V* [e*[R + 600 — 6(Vo)?]
+eV* [e*[200 — 5(Vo)?)|}}

- \/—_gva{[vaR + 600 —6V(Vo)?] + (2V°0)[R + 600 — 6(Vo)?]

—1204(VaVba)
+e{ = o[V'R+6V"Oo — 6V*(Vo)’] — 0(2V"0)[R + 600 — 6(Vo)?]

+ [2VOo — 5V4(Vo)?] + (2V%0)[200 — 5(%)2]}} (A.34)
we then can get

v—¢OR — /—gOR
= V=gV {-6VO0 + 120,V*V’0 — 20°R — 120°00o + 120%(Vo)?}

+ 5\/—gva{ +oVR+ 60V Oo — 60V (Vo) + 200°R + 1200°0o — 1200%(Vo)?

= V=gV {-3[VOo + =] — [6"R + ] — 3[c*(Vo)* + ]}
+ e\/—_gva{:s[o—abvavba + 2] = 3[oc"To + 2] + ;[O'VGR + 2] = [VOo+ 7] — Z[J“(VU)2 + .T.]}.
(A.35)

A.1.4 Conformal transformation for the derivation of 4-dim S,,,,,,,

In this section, we will show the conformal transformation of the Gauss-Bonet term (E)
and the Weyl square term (F) , and thus construct the unique conformal invariant operator,

A, (without boundary) and 4 (with boundary)
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Comformal transformation of Gauss-Bonet term(FE):

A.33),(A.31),(A.29)

V—9E — V=GE = /=g(R* — AR™Roy + R Ropoa) — v/ —5(=)

=4[/ =gV (G?Vyo) + ] — 2[/—gV(o.0’ay) + 7]

+ g{;[(E _ §DR> + o 118[32 ] — AV (0a050") + 7]+ 2/ =gV (0oaotey) — 7]

FAGVAGV0) + 2] — 2 [VGH(Tyo)e] — 2] - ; Ve (Roy) + o] + ; V[0 R)o] + 2]}

(A.36)

Comformal transformation of Weyl-Square term(F'):

_ 1 . : .
VEGF = VTGF = Vg5 R = 2R Ry + B Ryyg) — v/=5(2) WA

_ 5{;(}7 b o — 118[32 _o]- ;[Va(aaabab) + ]} (A37)

Comformal transformation of £/ — %DR:

V=9(E ~ 20R) - ]
= 4[\/—gV(G?®Vyo) + 7] + g[\/—_gva(aaR) + 2]+ 2[V=g0 + 2]+ O(e)
TGP + 2V (G0 + ;Va(aaR)] LI+ 00)

=2[V—gA40 + 2]+ O(e) (A.38)

where Ay := (*4+2R"V,V,—2RO+5(V*)V .. Therefore, a (exactly) 4-dim conformal

invariant (withour boundary) operator A, can naturally be found.

Similar to 2-dim, by considering the conformal transformation of E together with its

corresponding boundary term EZ, we can have:

{[ [ dtev=(p - ng) — [ day= (Va(n“EB) - ;Van“nbeR)] _ -}
= 2[/ d*r/—g(Ago — APo) + 7]+ O(e)
=9 / '/ —gLso + 2] + O(e) (A.39)
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where Ly := Ay — AP and

AP = { [VananbeD + 0OV, n*ntV, — (Van“nbvb)z]
1
+2 [Van'n’ G5V, + VaGin'n®V, — Van'n'GyennV,| + 3 (Van"Rn"V4)}

(A.40)

A.2 Derivation of Trace anomaly from Sy,

Derive the 2-dim trace anomaly:

. 1
(419

\/__g[\/—_g}? —/—=gR] = —0cR+ V,[...] + O(c%;¢)

2 0 (4999 1 90
= =" [ "o =gRlmy Y =2 [ &y =GRl = (D - 2R
=l 59“”/ v/ =gRlo=0 550 ) CEVIBlm0=—(D=2)

(A.41)
where e = n — 2.

Derive the 4-dim trace anomaly:

VR~ VR

“B) 19R00 + O(0% ) = 1200R + V,[Ro® — oV°R] + O(c?;¢)

= 1200R + V,[...] + O(c%¢)

2 ) (a99) 1 0
pv d" Ry = ——— /d” —gR?|,_o = 120R
= = 59“”/ V=g R =0 50 ) TV =0

(A.42)

j__QW——gEQ Vet
(A36) —€

_g{;[\/—_g(E’ ~ 20R) + 2o — S [VTIR — 2]} + Vil ] 4+ 0(0% <)

2 12
= —{(£ - gDR)O' + 1—80DR} + Va|..] + O(0% ) = —e0FE + V,[..] + O(c%;€%)
2 0 (499) 1 ¢
=g [ o=l Y == [ d'ay =GBl = —cB (A43
= _gg §gl“// v/ =gF|s=0 =560 v/ —gFl|s=o 5 ( )
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fg[Fgﬁ NS
(43 _— \/_ 2[\/_F + o — 118[\/_—932 T 4 eVl + 002 )
\/_ : L /=g + Tlo + gaDR}} 4 eVl + 0(0% )
= \/2__gg“”(ﬂy /d"x\/—_nggzo (499 \/1_—g(;i /d":v\/—_gF]UZO — _e(F 1+ ng)
(A.44)

where e = n — 4.
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Appendix B

There is no unique conformal vacuum

for 1 + 1 dim, bounded spacetime

WLOG we start with a flat spacetime covered by the ”Minkowski” coordinate (¢, x)
which is bounded by 2 timelike hyperspace z = 0 and x = 1. Next we first assume that

there exists another conformally related, orthogonal coordinate (w, s) satisfies
—dt?* + dz* = A (w, s)(—dw? + ds?) (B.1)

and we require the two boundaries in this frame now are correspondingto s = O0and s = 1

individually, that means:

r=0&s=0
(B.2)

r=1s=1

Let us consider (¢, z) in terms of (w, s) as:

t =t(w,s) B.3)

r = z(w,s)
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and thus the boundaries conditions becomes:

z(w,0) =0
magga) | 7 0) =0 (B.4)
z(w,1) =1
By substituting the coordinate transformation relations
dt = Optdw + O,tds
(B.5)

dx = O tdw + Osxds

into line element and compare the result with the assumption Eq.(B.1) in the beginning,

we get
— dt* + d2?
= [~ (0wt)? + (Owx)?Jdw® + [—(0st)* + (052)?]|ds® + 2(— 0yt st + Dyywdsx)dwds
= A (w, s)(—dw® + ds?) (B.6)

and thus the constraints:

— (Owt)? + (0wx)? = (05t)* — (Ds2)* (B.7)

OwtOst = Oy (B.8)
From Eq.(B.7) and Eq.(B.8), we can derive the following relations:

Eq.(B.7) P4EY _(9,6)2 +(0p2)? = (0,)% — (9s2)?

=(5: wz)?
= -0 4 100 = (01)" (0,27
= [_(asx)g + (8875)2](81055)2 = [(ast)Q - (65:L‘)2](63t)2
SOHZGDIE0 (5 1) — +(D,t) (B.9)
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= = =" 41 B.1
MECYEY, Nive
Oyt = £0sx
= (B.11)
Oyt = F0,t
= 021 = £0,0,t = (£)? 022 = (02 — %)z =0 (B.12)
~——

=1

Finally, we can write down the general expression for x:
= 7= / dk B (k)e*setiks 1 / diDs (e e + Agws + Ays + Ayw + Az (B.13)

and then by using boundary condition

x(w,O):0:>A2:A3:O

(B.14)
r(w,1)=1=A,=1,4=0
we can get the solution of x in terms of (w, s)
=2r=5+ i ay, sin(nms)e™™ | (B.15)
where a,, = —a” ..
By substitute the solution into Eq.(B.11), we can derive the relation:
0w =1+, ay - n7 - cos(nmws)e™™ = +9,,t (B.16)
Ol = 3, Q- inm - sin(nmws)e™™ = £0,t
and thus get the solution of ¢ as
t=ty+w+ Y =idncos(nms)e™™, (B.17)

where WLOG we consider (+) case.
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Finally, we find the general solutions of (¢, z) in terms of (w, s):

inmTw

T=5+y 2 a,sin(nws)e
(nms) (B.18)

t=s4+32 _ —ia,cos(nrs)e™™

n=—oo

Therefore, we concluded that for the bounded flat spacetime, there exists infinite choices
of orthogonal coordinate and thus infinite choices of conformal vacua! !

Substitute Eq.(B.18) in to the line element,

—dt* 4+ dz® = [(0yt)* — (0pz)?](—dw?® + ds?)

=[(14 ) an - nmcos(nrs)e™™)? — (3 ay - int - sin(nws)e™™)?)(—dw?® + ds”)

n n

=c2(w,s)

(B.19)

we can solve ¢? in terms of (w, ).

! According to this, we can easily generalise our result here to any 1 + 1 dim conformally flat spacetime.
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Appendix C

Hermitian Property of the Conformal

Invariant Operator Lg and LZI

C.1 Proof of Hermitian Operator L%

In this section, we will show that after taking boundary into consideration, L£ s a
hermitian operator which is an important property during the derivation of Sy,
Recall the definition: L} := O — OB/, where 08/ := V, fnn’V,.

WLOG we will assume n%n, = 1 through the following derivation:

/ &2z/—g (hOg — gOh) = / &/ =gV (WG — gV°h) = / d'z\/7n (hV4g — gVbh)
M M oM

_ 1 b b _ 2 a, b a, b

= [ daaf (nan®) n® (hV,g — gVsh) = /Md v/ =gV (fn"n’hVsg) — Va (fn'n’gVsh)

= / d22\/—ghV o frnPVyg + f (Vah) nn® (Vyg) — gVafnn®Viyh — f (Vag) n®n® (Vyh)
M

= / d*z\/—g (hvafn“nbg — gVafn“nbeh> (C.1)
M
Therefore, we know that

/A d'a/=g (hLig — gLih)
_ / &z/—g (hOg — gOh) — / @21/ =g (hVofr®ntg — gV fron"Vyh) = 0
M M
(C.2)
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and thus show that Lg 1s a Hermitian operator.

C.2 Proof of Hermitian operator LZ;

In this section, we will show that with boundary, Lf; is a hermitian operator. The

operator L is defined as L] := Ay — A}/, where

1
Ayi= 02 42V, (GV,) + Va4 (RV?), (C.3)

and the operator A} 7 is defined as:
ABS [va e n,0 + OV 0V, — (V, fnanbvb)z}

1
+ 2 [Vafn“anIfVC + VangnanVC — Vafn“anbcncndVd} + 3 (VafnaRnbe>}

(C.4)

Let us prove Lf: is a hermitian operator step by step by considering following operators:

(I): Now let show (12 — [V fnnVO+0V fanV — (V fnnV)?] is a Hermitian operator:
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/ d'zy/—g [WTPg — gOPH]

= / d'z/=g [V (hV*Og) — (h <+ g)] = {V.[(V*h) Og] - (h ¢ )} + [(Oh) (Dg) — (h > g)]
= | day7 {[nhV"Bg = (h < g)] = [, (V°R) (Og) = (b > g}

= | ey {f (nan®) [0*hVi0g — (h e 9)] = f (nan®) [n* (Vi) Og — (b ¢+ g)] |

= /M d'oy/=g{[Va (fnn’hV,0g) — Va (frtnb (Veh) (O9)| — (b 9)}

— /M A4/ gl [V o frontVsOg + (Vah) fronPVOg — (Veh) frin®VyOg

- (Vafn“nbvbh> (Og)]l = (h <> g)}

=(C.11)

— /M d*zv/—g{ [hVafn“nbeDg —(h < g)} - [(Vafn“nbvbh> (chncndvdg) —(h g)}

— [g0 (Vefnn?Vah) = (h ¢ g)] + [gVafnn'Va (VefnniVah) — (h ¢ g)]}

— /M d*zv/—g{ [hvafn“nbeDg —(h+ g)} + {hD (chncndvdg) — (h + g)}

— {hV fnn’V, (V fncndvdg) — (h < g)}}

- / d'ay/=g {h [V fnn" V0 + OV frn'V, — Vo fn'n"Vy (Vefnn'Va)| g — (h ¢ g))

(C.5)

where we used the following relations:

hPg =V, (hV*Og) — (V.h) (V*Og) = V, (hV*Og) — V, [(V*h) Og] + (Oh) (Dg)
(C.6)

(na ) bvbh
1

/M d4x\/—_gva {(nanbvbh) (chncndvdg)] /a de\/_

(vc fncndvdg)

_ /M d'zV, [(V'h) (Vefnn?Vag)| = /M d'zy/=g (Oh) (VefnnVag) + (V'h) (Vefnn'Vag)
(C.7)
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/M d*/=gV, [n“nbhvb (chncndvdgﬂ = /BM d*x\/7 (nan®) n’hV, (chncndvdg)
- / d'a/ =gV, [hV" (Vo fnn?Vag)|
M

= /M d'zy/=g [(Vsh) V* (Vefnn?Vag) + hO (V. fnn'Vag)] (C.8)

/M d*z/—g (Vafn“nbvbh) (chncndvdg>
= /M d*z/—g {Va {f (n“nbvbh> (chncndvdg)} —f (n“nbvbh> V. (chncndvdg>}
— /M d*z/—gV, [(n“nbvbh) (chncndvdg)} - /M d*z/—gV, [fn“nbhvb (chncndvdg)}

(O [ 1oy =g[(Oh) (Ve frneniVag) +(Voh) Vo (VefnendVag)]  ‘ZV [ diey=g[(Veh) VP (Ve fnenV ig)+h0(VefnendV ag)]

n /M a2/ =ghV o fnn"V, (Vo fren'Vag) (C.9)

| diev=g[(@) (VefrnVag),
D[ diay=g (Vufn'nVih) (Vefnn'Vag) = hVafn'n'Vy (Vefnn'Vag)

(C.10)

(Vafn“nbvbh> (dg) (1)

/M d'zy/=g {(Vafn"n*Vih) (Vefnn'Vag) + g0 (Vafnn"Voh) = gVafnn'Vy (Vefnn'Vah)} .

(C.11)

Therefore, we have shown that

/M /=g {h [0 = [V frnVO + OV fanV — (VfnnV)3] g — (h < g)} =0

(C.12)

104 d0i:10.6342/NTU201603464



and thus [ — [V fnnVO 4 OV fanV — (V.fanV)?] is a Hermitian operator.

(I1): Next consider the operator V,GV, — (V fnnGV +V fGnnV — V. fanGnnV):

By calculating

/M do/=g WV, (GUVhg)  —(heg)| = /M d'ry/ =g [Vo (hG"Vyg) — (h 5 g)]

T (hG ) (Vah)G(V1)

= [ dayq [(nahG*¥ag) — (h 5 g)] "2 /6 B/ [(nahGPVeg) — (h > g)]

= | a7 [nan®) nhGiVeg - (h 4 g)] / d'zy/ =g [V (fren’hGiV.g) — (h ¢ g)]
D[ day=g{[hV. (' GiV.g) — (h 4 9)] = [V (FGinn"Tuh) = (b g)]

+ [gVafntnt Grenn®™ ah — (h < g)] + [f (Vag) n*n® (Vah) (n'Ghen®) — (h 4> g)]}

= / d'zy/=g [(hVafn'n’ GV og + V4 fGEn'nV g — hV o fr*n Ghen®n?Vag) — (h ¢ g)]

(C.13)

where we used the following relations:

/M d*z\/—gV. {(Vah) fn“angg}
_ /8 _de 7 (nan) fne (Vah) nin' Gig = / d'a/ =gV o [fn'n® (Vuh) n"n’ Greg]

_ /M d'2y/=g [(Vag) (Vah) frénn’Gyn® + gV 4 fn®n Grnn®V ,h] (C.14)

/M d'z/=g (fr'n’hG5V .q)

_ /M d'zy/=g { hV, (fnn’GiVeg) + (Vah) (fnn’G5V.g)
=[,, dov=g{Ve[(Vah) fronbGig|—gV e[ fGentne(Vah)| }
(14 / d*z/—g{hV, (fnaangvcg> + (Vag) (Vah) frnnn’Gyen® + gV afnn°Gp.n’n®V h
M

— gV [fGin*n® (Vuh)|} (C.15)
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Therefore, we know that

/ d2x\/_ [V GV, — (VfanGV + V fGnnV — annGnnV)} g— (e g)} =20
(C.16)

and thus V,GV, — (VfnnGV + V fGnnV — V fanGnnV) is a Hermitian operator.
(IIT): Similarly, by calculating

| d'av=g|  WV.(BV) =gV (RVB)| = [ d'oy=g (V. (hRV"g) = (h ¢ g)

=V4(hRVeg)—R(Vah)(Vag)

= Pz [nthng —(h+ g)} = /8M NG [(nan“) n’hRV,g — (h < g)}

oM
= / d*z/—g Va (fn“anthg) —(h < g)
M
=hV o fn®*RnbVyg+ f(Vah)n®Rnb(Vyg)
- /M d'a/=g [hV o fn*Rn*Vyg — (h < g)] (C.17)

we can find that V,RV? — [V, fn®RnbV,)] is a hermitian operator

By combining the results from (I), (II), (IIT) above, we proved that Lf: is a hermitian

operator.
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