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中文ᄔ要

我們在這篇論文中探討過去一直被忽略的二維與四維時空中跡反常

作用量的邊界效應. 在引進了輔助純量場後化簡得到的局部跡反常作用
量可以被利用來推導能量動量張量的量子期望值. 雖然輔助純量場的解
中的自由度可以對應來描述物質場的不同量子態早已廣為人知,但此兩
者間的對應關係如何清楚的理解至今仍不甚清楚. 我們證明了在考慮了
跡反常作用量的邊界效應後,這個過去不清楚的對應關係被找到了. 從
此，此考慮了邊界效應的跡反常作用量將可作為一成熟獨立的工具，

用做為計算彎曲時空量子場論中重整化能量動量張量的一種選擇。同

時,我們也因此發現了跡反常作用量的額外使用限制條件,那就是跡反
常作用量只能被應用在歐拉特徵數為零的時空. 雖然在二維有邊界的時
空歐拉特徵數總是為零,但是在四維時空中卻不保證永遠成立. 最後,我
們把考慮了邊界效應的跡反常作用量應用在幾種常見的時空跟量子重

力問題以供做應用的參考例子. 藉此展示把這套方法用來計算彎曲時空
的量子效應時是如何的強效. 我們預期這套新方法可以成為一種相當有
用的工具,來研究某些有趣的量子重力問題.
這篇論文是建立 [1, 2]這兩篇工作上。其中 [1]已經被發表，而 [2]

也將在近期投稿發表。

關鍵字：量子重力;彎曲空間裡的量子場論;黑洞的量子效應,霍金
輻射,黑洞熱力學.
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Abstract

Wediscuss the boundary effect of anomaly-induced action in 2-dimensional

and 4-dimensional spacetime, which is ignored in previous studies. Anomaly-

induced action, which gives the stress tensor with the same trace as the trace

anomaly, can be represented in terms of local operators by introducing an aux-

iliary scalar field. Although the degrees of freedom of the auxiliary field can

in principle describe the quantum states of the original field, the correspon-

dence between them was unclear. We show that, by considering the boundary

effect, the missing correspondence will be restored. Therefore, from now

on, this technique has become a mature and independent tool to calculate

the renormalized stress tensor in curved spacetime. Also, we find that the

anomaly-induced action can only be used for the spacetime with zero Euler

characteristic which is in general not true in 4-dimension. As examples, we

demonstrate our formalism via several different spacetime and famous quan-

tum gravity issues to show how efficient and powerful this approach is. We

expect that our new formalism can become an useful tool to study various

interesting quantum gravity effects.

This thesis is based on the works [1, 2]. [1] is already published and [2]

is about to be submitted for publication.

Keywords: Quantum gravity; Quantum fields in curved spacetime; Quan-

tum aspects of black holes, evaporation, thermodynamics.
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Chapter 1

Conventions and Abbreviations

In this thesis, the convention for the metric signature is (− + ++). Follow this con-

vention, the Einstein equation have the form:

Rµν −
1
2

Rgµν = Tµν , (1.1)

where the stress tensor (Energy-momentum tensor) is defined by

−2√
−g

δSM [gµν ]
δgµν

= Tµν , (1.2)

where SM is the action of matter fields.

Some abbreviations are used during the calculation of conformal transformation:

σµ := ∇µσ = ∂µσ, (1.3)

σµ := gµν∇νσ, (1.4)

�σ := ∇2σ, (1.5)

(∇σ)2 := σµσµ, (1.6)

(∇σ)2N := (σµσµ)N , (1.7)
√
−gT ± .̄.. :=

√
−gT ±

√
−ḡT̄ , (1.8)

where σ is the conformal transformation parameter to be introduced in Eq.(4.95), and T

1



doi:10.6342/NTU201603464

is any arbitrary tensor. Also the abbreviation below,

h1(x)Lh2(x)± h2(x)Lh1(x) := h1(x)Lh2(x)± (h1(x)↔ h2(x)) (1.9)

has been used in Ch.(C), where L is an arbitrary differential operator and h1, h2 are arbi-

trary scalar functions. There are some other abbreviations we used as follows:

Aab := 1
2!

(Aab − Aba), (1.10)

Aabcd = 1
2!2!

(Aabcd − Abacd − Aabdc + Abadc), (1.11)

O(ε; η) := O(ε) + O(η), (1.12)

nµ∇µϕ := ∇nϕ, (1.13)

ϵ := nµnµ = ±1. (1.14)

where nµ is the unit normal vector of the boundaries of the manifolds we considered whose

norm, ϵ, is +1 and −1 for timelike and spacelike boundaries individually.

2



doi:10.6342/NTU201603464

Chapter 2

Introduction

In the absence of a complete theory of quantum gravity, quantum field theory in (classi-

cal) curved spacetimes, a well-developed semiclassical approach, has been applied widely

to study quantum corrections to general relativity [3]. In this semiclassical approach,

the quantum divergences of matter fields can be covariantly renormailzed and gives the

(one-loop) effective action. The expectation value of the stress tensor of quantum matter

fields can also be derived with this procedure. The result suggests that, even in confor-

mal field theories, a nonzero trace of stress tensor arises due to the symmetry break from

the renormalization. This nonzero trace of stress tensor is called the trace (or conformal)

anomaly [3, 5, 6].

In principle, we can obtain the expectation value of the stress tensor of quantummatter

fields in this semiclassical approach (i.e. the quantum field theory in curved spacetimes).

However, we have a practical problem; the calculation is so complicated that there is

no explicit expression of the effective stress tensor in general background spacetimes.

We need to derive the effective stress tensor individually in each spacetime that we are

interested in. Because of the complicated calculations, we usually rely on, for instance,

numerical and/or approximation approaches to get the result, even in simple common

spacetimes such as Schwarzschild spacetime [7]. One way to tackle with this problem is

using the corresponding “anomaly-induced action” [8–10].

The anomaly-induced action which is used to describe the effective action is rebuilt

from the divergent terms in the effective actionwhich leads to trace (or conformal) anomaly.

3
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Although there is no rigorous proof which shows the anomaly-induced action and the ef-

fective action from the original semiclassical approach are exactly the same. It can be

expected and has been checked in some specific cases that in two-dimensional spacetime

the anomaly-induced action can exactly describe the stress tensor of quantum field in vac-

uum state [11]. This approach has been applied widely to study the quantum stress tensor

in curved spacetimes [12, 13], black-hole physics [11–14] and cosmology [15, 16]. The

anomaly-induced action is naturally built in non-local form, and can be further localized

by introducing an additional auxiliary scalar field [17, 18].

Different solutions of the auxiliary scalar fields could describe the effects of different

quantum states of the original conformal matter field. Although there are attempts to find

the correspondence between the quantum states of the original field and the solutions of

the auxiliary scalar field, so far people have not known the general principle behind it.

Therefore, the anomaly action approach is hard to use for deriving the quantum effect

from any specific vacuum state although it can be used as an alternative way to do double

check.

In our recent work [1, 2], we take into consideration the boundary effect in the dis-

cussion of anomaly-induced action, which has been neglected in the previous works [8–

12, 19]. Our main discovery from this work is that “boundary contribution dictates the

vacuum”! After including the boundary effect, additional boundary constraints for the

auxiliary scalar field appears and it indeed recovers the missing reference between the

quantum states of the original field and the solutions of the auxiliary scalar field. In other

words, by using our modified version of anomaly-induced action, we can derive the exact

solutions for a given vacuum state by choosing the corresponding boundaries. Therefore,

the anomaly-induced action with boundary effect now really become an independent for-

malism which can be used to calculate the stress tensor for any specific vacuum state. It

thus becomes a powerful and efficient tool to calculate the stress tensor for various quan-

tum gravity problems.

Moreover, after we get the 2-dim anomaly-induced action with boundary effect, re-

cently we generalize this formalism to 4-dim. It turns out that we only need to introduce

4
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one auxiliary scalar field to get the 4-dim anomaly-induced action instead of two auxil-

iary scalar fields which is suggested by the previous researches. Also, we find that the

anomaly-induced action can only used in the spacetime with zero Euler characteristics.

Although this requirement satisfies automatically in bounded 2-dim spacetime, it is in

general not true in 4-dim spacetime. Therefore, the usage of 4-dim anomaly-induced ac-

tion is limited and we should be careful when using the 4-dim one.

The structure of this paper is organized as follows. In Ch.3, we give a short review of

general relativity. In Ch.4, we briefly review the quantum field theory in curved spacetime

and the knowledge related to trace anomaly. In Ch.5, at first, we introduce the original

2-dim anomaly-induced action. After that, based on our recent work, we propose the

modified version of 2-dim anomaly-induced action which contains boundary effect. In

Ch.6, we first derive the 4-dim anomaly-induced action without boundary contribution.

Then similarly, we rederive 4-dim anomaly-induced action with boundary effect. Finally,

we give a summary and discussion.

5
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Chapter 3

Basis of General Relativity

General Relativity (GR) is Einstein’s theory of gravitation. It is a classical theory

which does not involve with any quantum effect. The essential idea of it is straightfor-

ward: while most forces of nature are represented by a lot of kinds of matter fields defined

on spacetime, e.g. electromegnatic field , gravity is inherent in spacetime itself. In the

context of GR, rather than introducing some other additional field propagating through

spacetime, the dynamical field used to describe gravitation is the metric tensor associated

to the curvature of spacetime itself. In other word, the gravity we experience is just a man-

ifestation of the curvature of spacetime. Therefore, “Gravity is Geometry.” Follow this

insight, Einstein then introduced the field equation of the metric, the so-called Einstein

equation, to describe how other forces (matter fileds) interact with gravity. What John

Wheeler said before presicely summarizes the key spirit of GR, “spacetime tells matter

how to move; matter tells spacetime how to curve”. Einstein’s GR opens a new door to

the study of gravitation, and thus stimulates the development of many direction of Physics

research, such as black hole, cosmology and so on. In the following, wewill briefly review

the basic knowledge of GR.

3.1 The Metric

At first, assuming the spacetime used to describe our world is a 4-dimensional Rie-

mannian differentiable manifold, each point of spacetime can be labelled by a coordinate

7
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xk with k = 0, 1, 2, 3. Every Riemannian manifold is equipped with a metric tensor gµν ,

which defines the length of line elements:

ds2 = gµνdxµdxν . (3.1)

For example, in the 3-dimensional Euclidean space, the line element is ds2 = dx2 +

dy2 + dz2, the metric tensor is thus gij = diag(1, 1, 1); similarly, in the theory of special

relativity, Minkowski spacetime is assumed whose the line element is ds2 = −dt2 +dx2 +

dy2 + dz2 and the metric tensor is thus gµν = diag(−1, 1, 1, 1). In GR, arbitrary metric

is allowed, only with a few requirements, e.g. the metric tensor should be symmetric

and (usually, but not always) nondegenerate, i.e. its determinant should satisfies g =

det (gµν) ̸= 0. This allows us to define the inverse metric gµν via

gµνgνσ = δµ
σ , (3.2)

where δµ
σ is the Kronecker delta which is defined δµ

σ := diag(1, 1, 1, 1). The symmetry of

gµν implies that gµν is also symmetric. The same as in special relativity, the metric and its

inverse can be used to raise or lower indices on tensors. Given two vectors V µ and W ν ,

we can define the inner product of them by

g(V, W ) = gµνV µW ν . (3.3)

A simple common example of a nontrivial metric is as follows,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (3.4)

This metric describes an isotropic and homogeneous expanding universe. This is a special

case of a Robertson-Walker metric, which is conformally flat.

8
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3.2 Geodesics

Given a generic metric gµν for a manifold, one can define the proper time for a test

particle whose trajectory (worldline) is parameterized by λ as xµ(λ). The proper time (for

a time-like path) is defined by the functional:

τ =
∫ (
−gµν

dxµ

dλ

dxν

dλ

)1/2

dλ, (3.5)

where the integral is over the path. Take variation of the functional, one can obtain

d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0. (3.6)

which is the geodesic equation. In other words, the geodesic equation is resulted from

the extremum of the proper time. The quantity, Γµ
ρσ, is called the Christoffel symbols,

which is important in defining the connection of a metric. It is straightforward to solve

the Christoffel symbols in terms of the metric as:

Γµ
ρσ = 1

2
gµα(∂ρgσα + ∂σgρα − ∂αgρσ). (3.7)

Next, we will introduce the idea of covariant derivatives which is generalization of

partial derivatives in the flat space. An covariant derivative is an operator that reduces

to the partial derivative in flat space with inertial coordinates, but transforms as a tensor

on an arbitrary manifold. The reason for why we need covariant derivative is obvious;

equations such as energy conservation law, ∂µT µν = 0, must be generalized to curved

space in some way. To begin with, we require a covariant derivative ∇ to be a map from

(k, l) tensor to (k, l + 1) tensor which has the following tow properties: (1) Linearity:

∇(T + S) = ∇T +∇S; (2) Leibnitz rule: ∇(T ⊗ S) = (∇T ) ⊗ S + T ⊗ (∇S). If ∇

is going to obey the Leibnitz rule, it can always be written as the partial derivative plus

some linear transformation. It means that, for each direction µ, the covariant derivative

∇µ will be given by the partial derivative ∂µ plus a correction specified by a set of n× n

9
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matrices (Γµ)ρ
σ. For a vector V ν , we therefore have

∇µV ν = ∂µV ν + Γν
µρV ρ. (3.8)

Notice that in the second term the index originally on V has moved to Γ, and a new index

is summed over. If this is the expression for the covariant derivative of a vector, we should

be able to determine the transformation property of Γν
µρ by demanding that the lhs of eq.

(3.7) to be a (1,1) tensor. That is, by requiring the transformation law,

∇µ′V ν′ = ∂xµ

∂xµ′

∂xν′

∂xν
∇µV ν , (3.9)

and combine with eq.(3.1) and eq.(3.2), we can obtain the transformation rule for the

connection coefficients:

Γν′

µ′λ′ = ∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ + ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (3.10)

It should be careful that this is not a tensor transformation law because the second term

on the rhs spoils it. The connection coefficients are not the components of a tensor. They

are constructed in such a way that the combination of eq.(3.1) transforms like a tensor,

therefore the extra terms in the transformation law of the partial derivative cancels exactly

with the Γ’s. If we further demand the covariant derivative to have additional two proper-

ties: (3) it commutes with contractions: ∇µ(T λ
λρ) = (∇T )µ

λ
λρ, and (4) it reduces to the

partial derivative on scalars: ∇µϕ = ∂µϕ , one can then derive the covariant derivative of

a one-form ων by using the fact that ωλV λ is a scalar and ∇µ(ωλV λ) = ∂µ(ωλV λ) as:

∇µων = ∂µων − Γλ
µνωλ. (3.11)

Note that the covariant derivative is not unique in a manifold, i.e., given a Riemannian

manifold with a metric gµν , there are still many choices of connection coefficients which

result in well-defined covariant differentiation. However, if we require that (5) the covari-

ant derivative to be torsion-free: Γλ
µν = Γλ

νµ, and (6) metric compatible: ∇ρgµν = 0, then

10
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there is an unique covariant derivative. The unique set of connection coefficients which

satisfies conditions (1)-(6) is called the “Levi-Civita” connection. It is straightforward to

solve the Levi-Civita connection coefficients in terms of the metric tensor components as:

Γσ
µν = 1

2
gσρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (3.12)

Note that the Levi-Civita connection coefficients are exactly the same as the Christoffel

symbol (Γ’s) in the geodesic equation, eq.(3.6), that is the reason we use the same symbol

for these two coefficients.

Now we can define the directional covariant derivative of a given curve xµ(λ) to be

D

dλ
= dxµ

dλ
∇µ. (3.13)

This operator which is defined only along the path, maps a (k, l) tensor to a (k, l) tensor.

One can then define parallel transport of the tensor T along the path xµ(λ). That is, the

covariant derivative of T along the path vanishes:

(
D

dλ
T
)µ1...µk

ν1...νl
≡ dxσ

dλ
∇σT µ1...µk

ν1...νl
= 0. (3.14)

This equation is well-defined and known as the equation of parallel transport. For a vector

it takes the form
d

dλ
V µ + Γµ

σρ

dxσ

dλ
V ρ = 0. (3.15)

Consider the tangent vector of the path xµ(λ), i.e. V µ = dxµ/dλ, then if the tangent vector

is parallel transported along the curve, it should satisfy the following condition:

D

dλ

dxµ

dλ
= d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0. (3.16)

This is exactly the geodesic equation, eq.(3.6). Hence, a curve is geodesic if it parallel-

transports its own tangent vector. This property is commonly taken as the alternative

definition of a geodesics.

11
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3.3 Curvature

Roughly speaking, the concept of curvature is to measure how “non-flat” a manifold

is. In fact, parallel transport around a closed loop leaves a vector unchanged in a “flat”

manifold. However, parallel transport of a vector around a closed loop in a curved space

will lead to a rotation of the vector in general, and this rotation depends on the total cur-

vature enclosed by the loop. It would be more useful to have a local description of the

curvature at each point, which is what the Riemann curvature tensor is supposed to pro-

vide. Given two vector fields Aµ and Bν , imagine that we take parallel transport of a

vector V µ to move along the direction Aµ first, and then along Bν . After that we move

it backward along Aµ, and then Bν , to return to the starting point. This action is indeed

coordinate independent, so there must be a tensor which describe how the vector changes

after it comes back to its starting point. It will be a linear transformation on a vector, and

thus we expect that this linear map, the change of this vector, δV ρ, will depend on A, B,

and V which can be written as:

δV ρ = Rρ
σµνV σAµBν , (3.17)

where Rρ
σµν is a (1, 3) tensor known as the Riemann tensor. Recall that the covariant

derivative of a vector along a certain direction measures how much the vector changes

after parallel transport. The commutator of two covariant derivatives, then, measures the

difference between parallel transporting the vector along first direction then the other, and

the opposite ordering. Therefore, one obtains that

[∇µ,∇ν ]V ρ = Rρ
σµνV σ − T λ

µν∇λV ρ, (3.18)

= (∂µΓρ
νσ − ∂νΓρ

µσ + Γρ
µλΓλ

νσ − Γρ
νλΓλ

µσ)V σ − 2Γλ
[µν]∇λV ρ, (3.19)

where we identify the first term as the Riemann tensor,

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (3.20)

12
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and the second term as the torsion tensor,

T λ
µν = 2Γλ

[µν]. (3.21)

We can see that the Riemann tensor measures the part of the commutator of covariant

derivatives that is proportional to the vector field while the torsion tensor measures the part

that is proportional to the covariant derivative of the vector field and the second derivative

doesn’t involve at all. For the torsion-free Levi-Civita connection, the torsion tensor sim-

ply vanishes. Take the Riemann tensor as a map from three vector fields to a forth one,

we have

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (3.22)

where∇X = Xµ∇µ. Similarly, take the torsion tensor as a map from two vector fields to

a third one, we have

T (X, Y ) = ∇XY −∇Y X − [X, Y ]. (3.23)

There are some properties of the Riemann tensor. Consider Rρσµν = gρλRλ
σµν , then the

(lower-index) Riemann tensor is invariant under interchange of the first pair of indices

with the second:

Rρσµν = Rµνρσ. (3.24)

It is antisymmetric in its first and last two indices:

Rρσµν = −Rρσνµ = −Rσρµν . (3.25)

The sum of cyclic permutations of the last three indices vanishes:

Rρσµν + Rρµνσ + Rρνσµ = 0, (3.26)

which is equivalent to

Rρ[σµν] = 0. (3.27)

13
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With some effort, we can prove further

R[ρσµν] = 0. (3.28)

With these useful properties, we can check that the number of independent components

within Riemann tensor is 1
12n2(n2−1). Therefore, in four dimensions the Riemann tensor

has 20 independent components.

In addition to the algebraic symmetries, the Riemann tensor also obeys a differential

identity,

∇[λRρσ]µν = 0, (3.29)

which is the so-called Bianchi identity. Take trace of the first and third indices of the

Riemann tensor, we can define the Ricci tensor

Rµν = Rλ
µλν . (3.30)

The Ricci tensor associated with the Levi-Civita connection is automatically symmetric:

Rµν = Rνµ. Finally, the trace of the Ricci tensor is callled the Ricci scalar

R = gµνRµν = Rµ
µ. (3.31)

The Ricci tensor andRicci scalar contain all information of the trace of the Riemann tensor,

leaving us the trace-free parts. The trace free part of the Riemann tensor is called theWeyl

tensor, which is defined by

Cρσµν := Rρσµν −
2

(n− 2)
(gρ[µRν]σ − gσ[µRν]ρ) + 2

(n− 1)(n− 2)
gρ[µgν]σR. (3.32)

This complex definition is designed to make sure all possible contractions ofCρσµν vanish,

14
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while it retains the symmetry of the Riemann tensor:

Cρσµν = Cµνρσ, (3.33)

Cρσµν = C[ρσ][µν], (3.34)

Cρ[σµν] = 0. (3.35)

The Weyl tensor is only defined in three or more dimensions, and in three dimension it

vanishes identically. One of the most important property of the Weyl tensor is that it

is invariant inder conformal transformations. For this reason, it is often known as the

conformal tensor.

An especially important form of the Bianchi identity comes from contracting twice of

the eq.(3.29):

∇µRρµ = 1
2
∇ρR. (3.36)

By combining the Einstein tensor which is defined as

Gµν = Rµν −
1
2

Rgµν , (3.37)

with the Bianchi identity, we will get

∇µGµν = 0. (3.38)

Therefore, one can expect that the Einstein tensor is related to the energy conservation law

and it will play the key role in GR.

3.4 Einstein’s Equation

Consider a (classical) field theory in which the dynamical variables are a set of fields

ϕi, with the action S which is expressed as the integral of a lagrangian L as,

S =
∫

L(ϕi,∇µϕi)
√
−gdnx. (3.39)

15
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For example, a scalar field theory ϕ in the curved spacetime can be written as

Sϕ =
∫ [
−1

2
gµν(∇µϕ)(∇νϕ)− V (ϕ)

]√
−gdnx, (3.40)

which would lead to an equation of motion

�ϕ− dV

dϕ
= 0, (3.41)

where the covariant d’Alembertian is � = gµν∇µ∇ν = ∇µ∇µ.

To construct the action for general relativity, note that the dynamical variable is now

the metric gµν . Since we know one can choose a coordinate such that the metric is in its

canonical form and its first derivatives vanish at each point, the lagrangian scalar should

contain at least second order derivatives of the metric for a non-trivial field theory. Be-

cause the Riemann tensor itself is second order derivative in the metric and the Ricci scalar

is the only independent scalar which can be constructed from the it, the simplest indepen-

dent scalar which is resulted from the metric and no higher than second in its derivatives,

is the Ricci scalar. Hilbert proposed this simplest possible choice of the lagrangian for GR

as:

SH =
∫ √
−gR dnx, (3.42)

which is known as the Hilbert action (or Einstein-Hilbert action). The equation of motion

for the Hilbert action come from variation the action with the metric. By using the facts,

gµνδgνρ = −gµνδgνρ, the trace formula,

det(M) = expTr(ln(M)), (3.43)

where M is arbitrary matrix, and the variation of the Christoffel symbol:

δΓσ
µν = −1

2
[2gλ(µ∇ν)(δgλσ)− gµαgνβ∇σ(δgαβ)], (3.44)

16
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we can obtain the variation of the Hilbert action with respect to the metric:

δSH =
∫

dnx
√
−g

[
Rµν −

1
2

gµνR
]

δgµν . (3.45)

Therefore, the equation of motion of the Hilbert action, i.e. the Einstein equation in vac-

uum, is

Rµν −
1
2

Rgµν = 0. (3.46)

We derived the Einstein equation in ”vacuum” because we only considered the gravita-

tional part inside the action without any matter contribution. To get full Einstein equation,

let’s consider

S = 1
16πG

SH + SM , (3.47)

where SM is the action for matter (fields). By varying the action with respect to the metric,

1√
−g

δS

δgµν
= 1

16πG

(
Rµν −

1
2

gµν

)
+ 1√
−g

δSM

δgµν
,

one can get the full Einstein equation:

Rµν −
1
2

gµν = Gµν = 8πG Tµν , (3.48)

where the energy-momentum tensor for matter is defined by

Tµν = − 2√
−g

δSM

δgµν
. (3.49)

Note that the conservation law ∇µTµν = 0 now is consistent with the result come from

the Bianchi identity,∇µGµν = 0.

17



doi:10.6342/NTU20160346418



doi:10.6342/NTU201603464

Chapter 4

Quantum Field Theory in Curved

Spacetime

4.1 Quantum Field Theory in Flat Space

In this section, we will review the quantum field theory in flat space briefly. At first,

for simplicity we consider scalar field in the following. The Lagrangian density of a scalar

field with mass m in D-dimensional Minkowski spacetime takes the form,

L = −1
2

ηµν∂µϕ∂νϕ− 1
2

m2ϕ2, (4.1)

which results in the well-known Klein-Gordon equation,

�ϕ−m2ϕ = 0. (4.2)

From the equation of motion above, we can solve the general solutions of ϕ. One of the

complete set of solution modes is

{uk⃗(x)|uk⃗(x) = uk⃗(t, x⃗) ∝ eik⃗⃗̇x−iωt, k ∈ R} (4.3)
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where w =
√

k2 + m2, and k := |⃗k|. If the modes satisfies

∂

∂t

uk(t, x⃗) = −iωuk(t, x⃗), ω > 0, (4.4)

it is said to be positive frequency w.r.t. t. Next, given two arbitrary scalar fields, ϕ1(x)

and ϕ1(x), we can define the inner product of them as:

(ϕ1(x), ϕ2(x)) = −i
∫
{ϕ1(x)∂tϕ

∗
2(x)− ∂tϕ1(x)ϕ∗

2(x)}dn−1x, (4.5)

:= −i
∫

Σt

{ϕ1(x)
←→
∂t ϕ∗

2(x)}dn−1x, (4.6)

where Σt is a spacelike hypersurface at instant t. By using the Klein-Gordon equation, it

can be shown that the value of the inner produce is indepedent of t. 1

Follow the definition of inner product, the solutions in (4.3) can be normalised as:

uk(x) = 1√
2ω(2π)n−1

eik⃗⃗̇x−iωt. (4.7)

This make sure solution modes are orthogonal, (uk⃗, uk⃗′) = δ(n−1)(k⃗ − k⃗′), and thus the

modes given in (4.7) now is a orthogonal complete solution set.

In the following, we will quickly go through the standard procedure of canonical quan-

tization. At first, let’s impose the equal time commutation relations:

[ϕk(t, x⃗), ϕk(t, x⃗)] = 0,

[πk(t, x⃗), πk(t, x⃗)] = 0,

[ϕk(t, x⃗), πk(t, x⃗)] = iδn−1(x⃗− x⃗′) (4.8)

where π is the canonical momentum of ϕ defined by

π = ∂L

∂(∂tϕ)
= ∂tϕ. (4.9)

1We assume here that the set {Σt|t ∈ R} is a foliation of the D-dim Minkowski space.
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Next, we can expand ϕ by the modes (4.7), and quantize this field (Second quantization)

as:

ϕ→ ϕ̂ =
∫

dn−1k âk⃗uk⃗(x) + â†
k⃗
u∗

k⃗
(x), (4.10)

where â† and â are the so-called creation and annihilation oparators. Then the equal time

commutation relations for ϕ and π are equivalent to

[
âk⃗, âk⃗′

]
= 0,[

âk⃗, â†
k⃗′

]
= 0,[

âk⃗, â†
k⃗′

]
= δn−1(k⃗ − k⃗′). (4.11)

The vacuum is thus defined by

âk⃗ |0⟩ = 0, for all k⃗, (4.12)

and the number operator is

N̂k⃗ := â†
k⃗
âk⃗. (4.13)

From the Lagrangian (4.1), we can derive the (classical) energy-momentum tensor,

Tµν [ϕ(x), ϕ(x)] = −2√
−g

δL

∂gµν
=
(
∂µϕ∂νϕ− 1

2
ηµνηλδ∂λϕ∂δϕ−

1
2

m2ϕ2ηµν

)
(4.14)

In order to consider the quantum version of Tµν , i.e. the expectation value of T̂µν , we

should promote it to the operator form2

Tµν [ϕ(x), ϕ(x′)]→ T̂µν

[
ϕ̂(x), ˆϕ(x′)

]
, (4.15)

2It is fine to set x′ = x now. However, I prefer to write it in this way here because it is convenient when
we consider the (point-splitting) renormalization in next section for curved spacetime.

21



doi:10.6342/NTU201603464

and we can then define the Hamitonian and Momentum operators as:

Ĥ ≡
∫

Σt

dn−1x T̂tt

[
ϕ̂(x), ˆϕ(x)

]
= 1

2

∫
k⃗

(
â†

k⃗
âk⃗ + âk⃗â†

k⃗

)
ω, (4.16)

P̂i ≡
∫

Σt

dn−1xT̂ti

[
ϕ̂(x), ˆϕ(x)

]
=
∫

k⃗

(
â†

k⃗
âk⃗

)
ki. (4.17)

When we try to compute the expetation value of Ĥ , P̂i, or N̂k⃗ in a specific physical

quantum state, e.g. the vacuum state we defined in Eq.(4.12), we will face the divergence

problem. The most common way people developed to tackle with this problem is the

normal ordering which is defined as

: âkâ†
k :≡ â†

kâk. (4.18)

Take Hamitonian as an example, consider the original form of Hamitoinian operator as

follows:

Ĥ =
∫

k⃗

(
â†

k⃗
âk⃗ + 1

2
)
ω ⇒ ⟨0|Ĥ|0⟩ = 0 + ∞︸︷︷︸

∝δ(0)

, (4.19)

we find there is a divergent term. However, if we regularize it by normal ordering:

: Ĥ :=
∫

k⃗

(
â†

k⃗
âk⃗

)
ω ⇒, ⟨0| : Ĥ : |0⟩ = 0 (4.20)

the divergent term vanishes and the expectation value of Hamiltonian now become zero

which coincides with our expectation for the ”vacuum” state.

4.2 Quantum Field Theory in Curved Space

At first, consider the Lagrangian density of a scalar field in a general D-dimensional

curved spacetime which in general takes the form:

L =
√
−g

1
2
{−gµν∇µϕ∇νϕ− (m2 + ξR)ϕ2} (4.21)

22



doi:10.6342/NTU201603464

which leads to the equation of motion of ϕ,

�xϕ− (m2 + ξR)ϕ = 0 (4.22)

where m is mass, ξ is the coupling constant and R is Ricci scalar. Similar to the flat case,

we can solve the field equation above and get arbitrary complete sets of solution modes.

However, the choice of solution modes in general is not unique and thus for example we

can have a solution set as

{uk⃗(x)|⃗k ∈ R3} (4.23)

or as

{vk⃗(x)|⃗k ∈ R3} (4.24)

where uk⃗(x) ̸= vk⃗(x). This is because in curved spacetime, there is in general no unique

way to define ”time” (or time-slicing). 3 Similarly, we can define a modified version of

inner product for curved spacetime as

(ϕ1, ϕ2) = −i
∫ √

γnµ{ϕ1∇µϕ2 − ϕ∗
2∇µϕ1}dn−1x (4.25)

:= −i
∫

Σt

√
γnµ{ϕ1(x)

←→∇µϕ∗
2(x)}dn−1x (4.26)

where Σt is a spacelike hypersurface corresponding to an arbitrary time-slicing (folia-

tion). By the definition of inner product, {uk⃗(x)}, {vk⃗(x)} can adjusted to the orthogonal

solution modes, i.e.

(uk⃗, uk⃗′) = δ(n−1)(k⃗ − k⃗′), (4.27)

(vk⃗, vk⃗′) = δ(n−1)(k⃗ − k⃗′). (4.28)

3Although sometimes people prefer to use timelike killing vector to define time, it is in general not
necessary. Note that a killing vector ηµ satisfies Lηgµν = 0.
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Next, in order to perform canonical quantization, we impose the similar equal time com-

mutation relations

[ϕk(x), ϕk(x)] = 0,

[πk(x), πk(x)] = 0,

[ϕk(x), πk(x)] = i√
−g

δ(n−1)(x⃗− x⃗′), (4.29)

where the canonical momentum π = ∂L
∂(∇0ϕ) =

√
−g∇0ϕ. We can choose different modes

to expand the scalar field and perform the second quantization

ϕ̂ =
∫

dn−1k âk⃗uk⃗(x) + â†
k⃗
u∗

k⃗
(x), (4.30)

or =
∫

dn−1k b̂k⃗vk⃗(x) + b̂†
k⃗
v∗

k⃗
(x), (4.31)

and get the commutation relations equivalent to (4.29) as

[
âk⃗, âk⃗′

]
= 0,

[
âk⃗, â†

k⃗′

]
= 0,

[
âk⃗, â†

k⃗′

]
= δ(n−1)(k⃗ − k⃗′), (4.32)

or
[
b̂k⃗, b̂k⃗′

]
= 0,

[
b̂k⃗, b̂†

k⃗′

]
= 0,

[
b̂k⃗, b̂†

k⃗′

]
= δ(n−1)(k⃗ − k⃗′). (4.33)

Also, the different ”vacuum” states and ”number” operators will be defined as

âk⃗ |0A⟩ = 0, for all k⃗, (4.34)

or b̂k⃗ |0B⟩ = 0, for all k⃗, (4.35)

and

N̂
(A)
k⃗

= â†
k⃗
âk⃗, (4.36)

or N̂
(B)
k⃗

= b̂†
k⃗
b̂k⃗. (4.37)

Similar to flat space, in order to consider quantum effect, we should promote the clas-
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sical stress tensor obtained from Lagrangian (4.21),

Tµν = (1− 2ξ)∇µϕ∇νϕ + (2ξ − 1
2

)gµνgλδ∇λϕ∇δϕ− 2ξϕ∇µ∇νϕ

− 2
n

ξgµνϕ�ϕ + ξ

[
Rµν −

1
2

Rgµν + 2(n− 2)
n

ξRgµν

]
ϕ2 − 2

[1
4
− (1− 1

n
)ξ
]

m2ϕ2gµν ,

(4.38)

to operator and then compute quantum expectation of it. In curved spacetime, the di-

vergent problem still exists, i.e. ⟨0|T̂µν

[ ˆϕ(x), ˆϕ(x)
]
|0⟩ = ∞, and unfortunately it turns

out that the ”normal ordering” process is unable to handle it in curved spacetime. There-

fore, during the past decades, many spent a lot effort to deal with it and developed many

regularization techniques for it, such as point-splitting regularization, Zeta function regu-

larization, or dimensional regularization and so on. Here, we will briefly introduce one of

these methods, the point-splitting regularization:

Let’s consider the two point function depend on x and x′ as follows, and take the limit

x′ → x,

lim
x′→x
⟨0|T̂µν

[ ˆϕ(x), ˆϕ(x′)
]
|0⟩ = lim

x′→x

1
ϵ
(...) + (...)︸︷︷︸

:=⟨0|T̂µν(x)|0⟩ren

, (4.39)

where x′ = (t(ϵ), x⃗(ϵ)), x = (t(0), x⃗(0)) and x, x′ should be connected by geodesic to

make all formula covariant. We can thus analyse the divergence behavior by expanding

(4.39) w.r.t. ε. By removing the divergent part and we will get the finite part which can

be used to define ⟨0|T̂µν(x)|0⟩ren as shown in (4.39). 4

4.3 Bogoliubov Transformation

As we mentioned in the last section, there in general exists no unique way to define

solution modes and thus results in different choices of â†, â, and “vacuum” states in curved

spacetime. Because each solution mode is complete set, we can thus expend one set in

4It can be checked that the renormalized stress tensor satisfies the energy conservation law, i.e.
∇µ ⟨Tµν⟩ren = 0

25



doi:10.6342/NTU201603464

terms of the other one as follows,

vk⃗(x) =
∫

k⃗′
αk⃗k⃗′uk⃗′ + βk⃗k⃗′u

∗
k⃗′ (4.40)

uk⃗(x) =
∫

k⃗′
α∗

k⃗′k⃗
vk⃗′ − βk⃗′k⃗v∗

k⃗′ . (4.41)

The transformation from one basis to another is called Bogoliubov Transformation. By

using the orthogonal property of the basis modes, the functions αk⃗k⃗′ and βk⃗k⃗′ , which are

called Bogoliubov coefficients, can be expressed as

αk⃗k⃗′ = (vk⃗, uk⃗′), (4.42)

βk⃗k⃗′ = −(vk⃗, u∗
k⃗′). (4.43)

Then, we can calculate the expectation value of the ”B” number operator, N̂ (B), in the

“A”-vacuum,

⟨0A|N̂ (B)|0A⟩ren =
∫

k⃗′
|βk⃗k⃗′|2. (4.44)

We can notice that the expectation considered above is in general nonzero, it means that

an “empty” vacuum defined by “A”-frame is not a “empty” vacuum from B-frame’s per-

spective.

4.3.1 Unruh Effect

As an example of the application of Bogoliubov transformation, we will introduce the

famous Unruh Effect in this section. At first, for simplicity lets consider a massless, min-

imal coupling scalar field in 2-dim Minkowski space. We list two different coordinates,

”inertial” frame (t, x), and Rindler frame (TR, RR) for 2-dim Minkowski space,

ds2 = −dt2 + dx2 = −dUfdVf (4.45)

= −ρ2dufdvf = −ρ2(−dTR
2 + dRR

2)
(
= −ρ2dTR

2 + dρ2
)

(4.46)
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where

Uf := t− x, Vf := t + x, (4.47)

ρ := (x2 − t2)1/2, uf := − log(−Uf ), vf := log Vf , (4.48)

TR := 1
2

(vf + uf ), RR := 1
2

(vf − uf ), (4.49)

5 The solution modes of the scalar field which satisfies the field equation,

�ϕ = 0 (4.50)

is

uk(x) = 1√
4π|⃗k|

e−ik(t−x), (4.51)

or vk(x) = 1√
4π|⃗k|

e−ik(TR−RR). (4.52)

(4.53)

As mentioned in the previous section, we can quantize the scalar field by expanding it

with different solution modes,

ϕ̂ =
∫

dk âk⃗uk⃗ + â†
k⃗
u∗

k⃗
, (4.54)

or =
∫

dk b̂k⃗vk⃗ + b̂†
k⃗
v∗

k⃗
, (4.55)

5By considering the trajectory (TR, RR = constant), xµ(τ), we can compute the acceleration of it, aµ :=
D2xµ

dτ2 = d2xµ

dτ2 . It turns out that the amplitude of acceleration along this trajectory, a ≡ √aµaµ, is constant.
Therefore, people commonly call the observer moving along this trajectory as ”constantly accelerating”
observer and the Rindler frame as the ”accelerating” frame.
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and thus define the different vacua, the so-called ”Minkowski vacuum” and ”Rindler vac-

uum”, as

âk |0M⟩ = 0, (4.56)

b̂k |0R⟩ = 0. (4.57)

We can then calculate the expectation value of the ”Rindler” number operator, N̂
(R)
k , in

the ”Minkowski” vacuum, and it results in

⟨0M |NR
k |0M⟩ ∝

1
e2π ω

a − 1
. (4.58)

This result is the same as the blackbody spectrum with a temperature

T = a

2π
. (4.59)

It means that an accelerating observer feels itself in a thermal bath in Minkowski vacuum

state, and this fact is the famous “Unruh effect”.

4.3.2 Hawking Radiation

Similarly, let’s consider the two-dimensional Schwarzschild spacetime in three differ-

ent frames, (t, r∗), (TH , RH) and (TU , RU):

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 = (1− 2M

r
)(−dt2 + dr∗2) = −(1− 2M

r
)dudv(4.60)

= −32M3

r
e− r

2M dUdV = −32M3

r
e− r

2M (−dTH
2 + dRH

2) (4.61)

= −8M2

r
( r

2M
− 1)

1
2 e

t−r
2M dUdv = 8M

r
( r

2M
− 1)

1
2 e

t−r
2M (−dTU

2 + dRU
2), (4.62)
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where

r∗ := r + 2M ln( r

2M
− 1), u := t− r∗, v := t + r∗, (4.63)

U := −e
−u
4M , V := e

v
4M , TH := 1

2
(V + U), RH := 1

2
(V − U),(4.64)

TU := 1
2

(v + U), RU := 1
2

(v − U). (4.65)

We can then quantize the scalar field by using the solution modes corresponding to the

three frames,

ϕ̂ =
∫ ∞

−∞
dk âk⃗uk⃗ + â†

k⃗
u∗

k⃗
≡
∫ ∞

0
dk

{
Âk⃗e−iku + Â†

k⃗
e−iku + B̂k⃗e−ikv + B̂†

k⃗
e−ikv

}
,

(4.66)

or =
∫

dk b̂k⃗vk⃗ + b̂†
k⃗
v∗

k⃗
, (4.67)

or =
∫

dk ĉk⃗sk⃗ + ĉ†
k⃗
s∗

k⃗
, (4.68)

where

uk(x) = 1√
4π|⃗k|

e−ik(t−r∗), (4.69)

vk(x) = 1√
4π|⃗k|

e−ik(TH−RH), (4.70)

sk(x) = 1√
4π|⃗k|

e−ik(TU −RU ). (4.71)

and thus define the three vacua, Boulware, Hartle-Hawing and Unruh vacua:

âk |0B⟩ = 0, (4.72)

b̂k |0H⟩ = 0, (4.73)

ĉk |0U⟩ = 0. (4.74)
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From the similar calculation,

⟨H|Â†Â|H⟩ = ⟨U |Â†Â|U⟩ ∝ 1
e8πMω − 1

, (4.75)

we find that when Hartle-Hawing(or Unruh) vacuum is considered, for ”static” observer,

there is an thermal radiation emitting to outside from black with a temperature

T = 1
8πM

(4.76)

which is the so-called Hawing temperature. One of the alternative way to realize Hawking

radiation is by computing the expectation value for stress tensor in Unruh vacuum state,

and the result is

⟨U |T̂µν |U⟩ren = 1
24π

 1
32M2 + 7M2

r4 − 4M
r3 − 1

32M2

(
1− 2M

r

)−1

− 1
32M2

(
1− 2M

r

)−1 (
1− 2M

r

)−2 (−M2

r4 + 1
32M2

)
 .(4.77)

Note that the Ttr is nonzero and thus Hawking radiation indeed takes energy out from

black hole continuously. 6

4.4 TheAnalysis of theQuantumDivergent Behavior through

Path-integralQuantization andOne-loopEffectiveAc-

tion

Start with the lagrangian of the scalar field I introduced previously:

Lcl = −1
2
∇µϕ∇µϕ− 1

2
(m2 + ξR)ϕ2, (4.79)

6For 4-dim case,although the calculation is much more complicated. However a similar result can also
be obtained as [20]

⟨U |T̂µν |U⟩ ∝
1

4πr2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 . (4.78)
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and we can then obtain the one-loop effective action from it by path-integral 7

e−Seff :=
∫

[Dϕ]e−Scl[ϕ] (4.80)

which can lead to the expectation value of T̂µν

−2√
−g

δSeff [gµν ]
δgµν

=

⟨
out, 0

∣∣∣ T̂µν

∣∣∣ 0, in
⟩

⟨out, 0 | 0, in⟩
(4.81)

where

Seff ≡
∫

dnx
√
−gLeff (x). (4.82)

The effective lagrangian including the one-loop contribution for this scalar field can be

derived as [3]

Leff (x) = i

2
lim
x→x′

∫ ∞

m2
dm′2GDS

F (x, x′; m′2), (4.83)

where GDS
F is the DeWitt-Schwinger representation of the Feynman propagator GF which

provides a way to expand GF (x, x′). By the DeWitt-Schwinger expansion, this effective

Lagrangian can be expressed as

Leff (x)
eq.(6.41) in [3]
≈ 1

2(4π)n/2

∞∑
j=0

aj(x)mn−2jΓ(j − n

2
), (4.84)

7In [3], the author use Weff instead of Seff we used here.
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where n is the dimension, aj’s are geometric quantities which is written in : 8

a0(x) = 1, (4.85)

a1(x) = (1
6
− ξ)R, (4.86)

a2(x) = 1
2

(1
6
− ξ)2R2 + 1

180
(RµναβRµναβ −RµνRµν) + 1

6
(1
5
− ξ)�R

ξ= 1
6= 1

120
(−1

3
E + F + 2

3
�R) (4.87)

. . . ,

where E and F are the the Gauss-Bonnet term and the square (contraction) of Weyl tensor

which are defined as:

E : = RµναβRµναβ − 4RµνRµν + R2, (4.88)

F : = RµναβRµναβ − 2RµνRµν + 1
3

R2 (4.89)

= CµναβCµναβ. (4.90)

9

The gamma function Γ(j − n/2) within the effective Lagrangian diverges when its

argument is naught or a negative integer, and thus when considering it in even dimension,

some counter terms should be introduced to renormalize these divergent parts which will

result in trace anomaly. We will explain it in the following sections. From now on, let

us focus on conformal scalar field theory and continue to analyse the divergence part of

Seff , i.e. Sdiv for later use. In 2-dim, the first two terms of Seff are divergent which can

8Note that the coefficient of �R in a2 here differ from [3] by a minus sign.
9Only in exactly 4-dimensional spacetime, the definition of F, eq.(4.89) is equal to eq.(4.90). When we

deal with Sdiv in 4+ϵ dimensional spacetime by dimensional regularization, like in eq.(4.102) later, what we
should use to describe F is eq.(4.89) instead of eq.(4.90). That is because RµναβRµναβ−2RµνRµν + 1

3 R2

is only equal to CµναβCµναβ up to leading order in (4 + ϵ)-dimensional spacetime.
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be derived as:

Ldiv(x) = lim
n→2

1
2(4π)n/2 mn−2[m2Γ(−n

2
)a0(x) + m0Γ(1− n

2
)a1(x)],

= lim
n→2

1
2(4π)

mn−2[m2[ 2
n− 2

+ (γ − 1) + O(n− 2)]a0(x) + m0[− 2
n− 2

− γ + O(n− 2)]a1(x)],

m→0,ξ=0,(4.92)=========== lim
n→2

(− 1
24π

R

n− 2
− γR

48π
) (4.91)

where γ is Euler-Mascheroni constant which appears from the following expansion of

Gamma function near pole,


Γ(−n

2
) = 2

n− 2
+ (γ − 1) + O(n− 2),

Γ(1− n

2
) = − 2

n− 2
− γ + O(n− 2).

(4.92)

Similarly, in 4-dim, the first three terms of Seff are divergent and it can be derived as:

Ldiv(x) = lim
n→4

1
2(4π)n/2 mn−4[m4Γ(−n

2
)a0(x) + m2Γ(1− n

2
)a1(x) + m0Γ(2− n

2
)a2(x)],

m→0,ξ= 1
6 ,(4.94)

=========== lim
n→4

mn−4(− 1
16π2

a2(x)
n− 4

− γa2(x)
32π2 ), (4.93)

where we used the expansion near the pole n = 4 as follows:



Γ(−n

2
) = − 1

n− 4
+ (3

4
− γ

2
) + O(n− 4),

Γ(1− n

2
) = 2

n− 4
+ (γ − 1) + O(n− 4),

Γ(2− n

2
) = − 2

n− 4
− γ + O(n− 4).

(4.94)
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4.5 Traceless Stress Tensor in Conformal Invariant The-

ory

Let’s introduce the definition of conformal transformation: 10


gµν(x)→ ḡµν(x) = e−2σ(x)gµν(x) = Ω−2(x)gµν ,

gµν(x)→ ḡµν(x) = e2σ(x)gµν(x) = Ω2(x)gµν ,

(4.95)

which lead to the relations

⇒ δḡµν ≡ (Ω + δΩ)2(x)gµν − Ω2(x)gµν = 2ḡµνΩ−1δΩ
δΩ
Ω =δσ
= 2ḡµνδσ. (4.96)

By considering the infinitesimal conformal transformation of an action as follows:

S[ḡµν(x)] = S[gµν(x)] +
∫

dnx
δS[ḡµν ]
δḡαβ

δḡαβ(x),

= S[gµν(x)] +
∫

dnx
δS[ḡµν ]
δḡαβ

2ḡαβδσ,

= S[gµν(x)]−
∫

dnx
√
−ḡT λ

λ [ḡµν(x)]δσ, (4.97)

we can then get a relation between the variation of action and the trace of stress tensor:

⇒ T λ
λ [ḡµν ] = −1√

−ḡ

δS[ḡµν ]
δσ

= −Ω√
−ḡ

δS[ḡµν ]
δΩ

, (4.98)

⇒ T λ
λ [gµν ] = −1√

−g

δS[ḡµν ]
δσ

|σ=0 = −Ω√
−g

δS[ḡµν ]
δΩ

|Ω=1. (4.99)

Therefore, when the theory we are interested in is conformal invariant, i.e. δS[ḡµν ]
δσ
|σ=0 = 0,

the corresponding stress tensor would be traceless.

10The definition of σ here differs from the convention used in [3] by a minus sign.
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4.6 Trace (Conformal) Anomaly due to Renormalization

In order to renormalize the effective Lagrangian, we need to introduce the correspond-

ing counter terms to cancel the divergent parts. The renormalized effective Lagrangian is

defined as Lren := Leff−Lct = Leff−Ldiv, 11 where Lct is the Lagrangian of the counter

terms. After renormalization, the renormalized Lagrangian Lren can be used to derived

the renormalized stress tensor ⟨Tµν⟩ren, and by the calculation below,

⟨
T λ

λ

⟩
ren

= −2√
−g

gµν δSren

δgµν
= −2√
−g

gµν δ(Seff − Sdiv)
δgµν

ξ=ξ(n)= +2√
−g

gµν δSdiv

δgµν
= −

⟨
T λ

λ

⟩
div

,

(4.100)

we find that the trace of
⟨
T λ

λ

⟩
ren

is equal to −
⟨
T λ

λ

⟩
div
, because in a conformal theory,

Seff is conformal invariant. In the remaining part of this section, we will continue to

show that in 2-dim and 4-dim,
⟨
T λ

λ

⟩
div

is actually nonzero! Therefore, although start from

a (classical) conformal theory, the quantum effect actually breaks conformal symmetry

and results in a nonzero trace of renormalized stress tensor which is the so-called trace

(conformal) anomaly.

In the previous section, (4.4), we already get the divergence part of effective action in

2-dim,

Sdiv[g] (4.91)= − 1
4π

lim
n→2

∫
d2x
√
−ga1(x)

n− 2
= − 1

24π
lim
n→2

∫
d2x
√
−gR

n− 2
, (4.101)

and in 4-dim,

Sdiv[g] (4.93)= − 1
(4π)2 lim

n→4

∫
d4x
√
−ga2(x)

n− 4
= − 1

16π2 lim
n→4

∫
d4x
√
−g[ 1

120(−1
3 E + F + 2

3�R)]
n− 4

.

(4.102)

According to eq.(4.99), we can now derive the trace anomaly due to the divergent part of

11In fact, Lct can differ from Ldiv by some finite terms, and it results in additional contribution in the
(lhs of) semiclassical Einstein equation. However, we will ignore the possible differences in the discussion
of this thesis.
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effective action 12. By the result derived in Sec.(A.2), we have the relation

1√
−g

δ

δσ

∫
dnx
√
−gR|σ=0 = −(n− 2)R (4.103)

and thus get the trace anomaly in 2-dim:

⟨
T λ

λ

⟩
div

= − R

24π
= −a1(x)

4π
,

⇒
⟨
T λ

λ

⟩
ren

= + R

24π
= +a1(x)

4π
. (4.104)

Similarly, in 4-dim, by using those relations

1√
−g

δ

δσ

∫
dnx
√
−gF |σ=0 = 2√

−g
gµν δ

δgµν

∫
dnx
√
−gF |σ=0 = −(n− 4)(F + 2

3
�R),

(4.105)
1√
−g

δ

δσ

∫
dnx
√
−gE|σ=0 = 2√

−g
gµν δ

δgµν

∫
dnx
√
−gE|σ=0 = −(n− 4)E, (4.106)

13 we thus get the trace anomaly in 4-dim:

⟨
T λ

λ

⟩
div

= −1
(4π)2

1
120

(−1
3

E + F + 2
3
�R) = −a2(x)

16π2 ,

⇒
⟨
T λ

λ

⟩
ren

= +a2(x)
16π2 . (4.107)

It can further be proved that trace anomaly in any even dimension (n = 2k, k ∈ N) is:

⟨
T λ

λ

⟩
ren

= −1√
−g

δSren[gµν ]
δσ

|σ=0 = − −1√
−g

δSdiv[gµν ]
δσ

|σ=0 = −
⟨
T λ

λ

⟩
div

= +ak(x)
(4π)k

.

(4.108)

12It mentions in eq.(6.107)(6.108) of [3] or eq.(3.36) of [4]
13We correct an error appear in [3]. The first result we get here is−ε(F + 2

3�R) instead of−ε(F− 2
3�R)

in [3].

36



doi:10.6342/NTU201603464

4.7 TheEffectiveAction forConformal FieldswithBound-

ary

Due to conformal symmetry, the action for conformal scalar field with boundary con-

tribution (for Neumann boundary condition) should be written as

Scl[g] = −1
2

∫
M

dnx
√
−g

[
∇µϕ∇µϕ + ξ(n)Rϕ2

]
−
∫

Σ
dn−1x

√
−γξ(n)Kϕ2. (4.109)

From the variation of this action, we can show the boundary condition needed for ϕ is

[nµ∇µ − 2ξ(n)K] ϕ = 0. (4.110)

The effective action of quantum fields with various boundary conditions have been stud-

ied a lot in the previous works [21–23]. From the results, we know that Sdiv for 2-dim

conformal scalar field with Neumann boundary condition (same as Dirichlet boundary

condition) is

Sdiv[g] = −1
24π

∫
M d2x

√
−gR + 2ϵ

∫
Σ d1x

√
−γK

n− 2
, (4.111)

which will be used to derive the 2-dim anomaly-induced action in Ch.5.

Also, Sdiv for 4-dim conformal fields with different spins and boundary conditions is

Sdiv[g] =
∫
M d4x

√
−g

[
b′E + b(F + 2

3�R)
]

+ ϵ
∫

Σ d3x
√
−γ

[
b′EB − 2

3bnµ∇µR + 8bj1 + q2j2
]

n− 4
,

=
∫
M d4x

√
−g [b′E + bF ] + ϵ

∫
Σ d3x

√
−γ

[
b′EB + 8bj1 + q2j2

]
n− 4

, (4.112)
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where

EB = −4(RK − 2Rabγ
abK + 2RacbdnanbKcd − 2

3
K3 + 2KK2 −

4
3

K3), (4.113)

j1 = CabcdnancKbd, (4.114)

j2 = K3 −KK2 + 2
9

K3, (4.115)

K2 = KabK
ab, (4.116)

K3 = K b
a K c

b K a
c . (4.117)

j1 and j2 are conformal invariant scalar curvatures and the coefficients b, b′, q2 depend on

the number of matter fields with different spin and boundary conditions as:

b = − 1
16π2

[ 1
120

(NR
S + ND

S ) + 1
20

Nm
F + 1

10
(Na

V + N r
V )
]

, (4.118)

b′ = 1
16π2

[ 1
360

(NR
S + ND

S ) + 11
360

Nm
F + 31

180
(Na

V + N r
V )
]

, (4.119)

q2 = 1
16π2

[ 2
35

NR
S + 2

45
ND

S + 2
7

Nm
F + 16

35
(Na

V + N r
V )
]

, (4.120)

where NR
S , ND

S , Nm
F , Na

V , and N r
V are the number of fields with different spin and bound-

ary conditions (B.C.): S (spin-0), F (spin-1
2 ), V (spin-0), R (Robin B.C.), D (Dirichlet

B.C.), m (mixed B.C.), a (absolute B.C.), r (relative B.C.).

Notice that the numerator of Eq.(4.111), and Eq.(4.112) are in fact conformal invariant.

However, by multiplying it with the infinite term 1
ε

:= 1/(n− 2) for 2-dim (or 1/(n− 4)

for 4-dim), the Sdiv is no long a conformal invariant term and thus remove it will break

conformal symmetry. That is indeed the essence of conformal anomaly and the formalism

we propose in this thesis is surrounded with it.
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Chapter 5

2-dimensional Anomaly-induced Action

On a curved spacetime, the conformal anomaly appears through the renormalization

of the stress tensor. The expectation value of the stress tensor diverges even for the linear

field theory1 and the renormalization is required. The counter terms represented by geo-

metric forms are introduced for the renormalization and, in even-dimansional spacetime,

the anomalous contribution appears in the gravitational equation. This contribution vio-

lates the conformal symmetry even if the original action for the fields possesses the sym-

metry, and thus it is called the conformal (or trace) anomaly [3, 5, 6]. Anomaly-induced

action, the action rebuilt from this anomalous contribution, is written by the nonlocal and

geometric functions and can be further expressed in a local form by introducing scalar

fields. The local form of anomaly-induced action is a useful formalism to calculate the

stress tensor of various vacua and thermal states. Therefore it can be applicable to the

fields such as cosmology, black hole physics and so on.

In this chapter, we will first briefly review the idea of the effective local action for

the 2-dim trace anomaly [12, 17]. Next, in our work based on the published paper [1],

we will further propose the new version of the anomaly-induced action which is corrected

by the boundary effect. It turns out that the choice of vacuum state is naturally linked

1This divergence appears even in the flat spacetime, which is the vacuum energy. In a theory without
gravity we can just ignore it, because it is coupled only with gravity. In a gravitational theory, however, since
it can be the source of gravity, we need to renormalize it. Usually, we assume that the renormalized vacuum
energy is tiny, which might explain the acceleration of the Universe. Nevertheless, there is no natural reason
for its smallness, which is the well-known cosmological constant problem. This issue is beyond the scope
of this paper and we will not dwell on it further.
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to the boundary effect (constraint). By taking the boundary effect into consideration, the

modified anomaly-induced action really become an independent formalism to derive stress

tensor for specific vacuum states whereas the original one cannot. Therefore, the modified

anomaly-induced action become more very powerful and efficient formalism to derive

stress tensor of vacuum and thermal states than the original anomaly action. Finally, we

will apply our new formalism to rederive various well-known problems to demonstrate

the powerful utility of this formalism.

5.1 2-dimensional Anomaly-inducedActionwithout Bound-

ary

In this section, we will review the derivation of the 2-dim anomaly-induced action [12,

17]. We start with the derivation of the non-local action for this anomalous contribution.

The Wess-Zumino (WZ) action is useful for this derivation, which is defined as

ΓWZ [ḡ, σ] := S[ḡ]− S[g], (5.1)

with

ḡµν := exp(−2σ)gµν . (5.2)

Due to the conformal symmetry, before introducing counter terms, the action is confor-

mally invariant, i.e. we have Seff [ḡ] = Seff [g]. This makes the relation of the renormal-

ized WZ action to that for the counter terms as

ΓWZ [ḡ, σ] = Sren[ḡ]− Sren[g]

=
[
Seff [ḡ]− Seff [g]

]
−
[
Sct[ḡ]− Sct[g]

]
= 0−

[
Sct[ḡ]− Sct[g]

]
. (5.3)
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From the WZ action we could read the form of the renormalized action Sren. However,

the renormalized action derived from the WZ action has ambiguity; adding conformally

invariant terms Sconf to the obtained action Sren, the new action Sren +Sconf still gives the

same WZ action. Meanwhile, all information of the trace anomaly is definitely included

in Sren, and thus the renormalized action that we can read from the WZ action is called

the anomaly-induced action Sanom, i.e.

ΓWZ [ḡ, σ] = Sanom[ḡ]− Sanom[g]. (5.4)

As introduced in Sec.(4.4), the divergent parts of the effective Lagrangian for a confor-

mally coupled scalar field in two-dimensional spacetime, is written as

Sct = −1
24π

lim
n→2

∫
d2x
√
−g

R

(n− 2)
. (5.5)

As mentioned above, the effective action is conformal invariant. However, this counter

term designed in 2 + ε dimension is not conformal invariant (even for n→ 2)! Therefore

after renormalization, the renormalised action is no longer conformal invariant and results

in a nonzero trace of energy-momentum tensor [3]. Substituting this counter term into eq.

(5.3), we can derive the WZ action as

ΓWZ [ḡ, σ] = 1
24π

lim
n→2

[
∫

d2x
√
−ḡR̄−

∫
d2x
√
−gR

n− 2
]

(A.19)= − 1
24π

∫
d2x
√
−ḡ[σR̄− σ�̄σ]

= 1
96π

∫
d2x

∫
d2x′√−ḡ

√
−ḡ′R̄(x)D̄2(x, x′)R̄(x′)

− 1
96π

∫
d2x

∫
d2x′√−g

√
−g′R(x)D2(x, x′)R(x′).(5.6)

From eq.(5.4) and eq.(5.6), we can now write down

Sanom[g] = 1
96π

∫
d2x

∫
d2x′√−g

√
−g′R(x)D2(x, x′)R(x′), (5.7)
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where D2 is the inverse operator of D’Alembert operator, i.e.

�D2(x, x′) = −δ(x− x′)√
−g

. (5.8)

In the last equality of eq.(5.6), we have imposed the symmetric condition of D2, i.e.

D2(x, x′) = D2(x′, x), and used the relations:

2
√
−g�σ = 2

√
−ḡ�̄σ =

√
−ḡR̄−

√
−gR, (5.9)

⇒ σ(x) ≡ 1
2

∫
d2x′D2(x, x′)(

√
−g′R′ −

√
−ḡ′R̄′) (5.10)

which is obtained in Sec.(A.1.2).

This non-local anomaly-induced action can be localized by introducing a real scalar

field φ which is defined as

φ(x) :=
∫

d2x′D2(x, x′)R(x′). (5.11)

Operating this auxiliary scalar field by the D’Alembert operator, we can obtain its field

equation as follows:2

�φ = −R. (5.12)

Now the localized version of the anomaly-induced action (5.7) can be expressed in terms

of the auxiliary scalar field φ as

Sanom[g, φ] = −1
96π

∫
d2x
√
−g[gµν∇µφ∇νφ− 2φR]. (5.13)

2Although the definition (5.11) seems equivalent to (5.12), for the derivation of eq.(5.11) from eq.(5.12)
we need the double integrations. Therefore eq.(5.11) has the information of eq.(5.12) and two integration
constants, i.e. using a specific inverse function D2 is indeed equivalent to choosing a specific particular
solution for eq.(5.12) here. Meanwhile, within the previous works for four-dimensional case [17, 18], in
order to derive the localized anomaly action, two auxiliary scalar fields which should share the same green
function (inverse operator) analogous to D2 should be introduced. However, according to our recent work
[2] which will be introduced in Sec.6, we find that introducing only one auxiliary scalar field is enough to
construct the localized Sanom in 4-dim.
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We can check that eq.(5.12) can also be obtained by varying this action w.r.t. φ, and thus it

is consistent with the action above (5.7). Also this action is reduced to the anomaly action

(5.7) after substituting eq.(5.11), and thus it gives the same dynamics as the non-local

action (5.7). The corresponding stress tensor can be obtained by the variation w.r.t. the

metric gµν , and its explicit form is

Tanom
µν := − 2√

−g

δSanom

δgµν
(5.14)

= −1
24π

[(Rµν −
1
2

Rgµν)φ−∇µ∇νφ + gµν�φ− 1
2

(∇µφ)(∇νφ) + 1
4

gµν(∇αφ)(∇αφ)].

(5.15)

This trace obtained from the stress tensor above consists with thewell-known trace anomaly,

gµνTanom
µν = −1

24π
�φ = 1

24π
R. (5.16)

Therefore, it is concluded that scalar field action (5.13) describes the anomalous contri-

bution.

5.2 2-dimensional Anomaly-induced action with Bound-

aries

In this section, we will propose the modified anomaly-induced action with boundary

effect which is based on our published work [1]. We introduce the surface terms (i.e. the

boundary effect) into anomaly action, which was ignored in the previous works [8–12,19],

and find a natural relation between the quantum states of the original scalar field and

boundary constraint of the auxiliary scalar field. Also, it turns out that the boundary effect

is important not only for bounded spacetimes but also for unbounded ones. For a spacetime

with a boundary, e.g. a horizon, the surface term fixes the boundary condition on the

boundary. Meanwhile, for an unbounded spacetime, the surface term constrains on the

asymptotic behavior at the (spatial) infinity.
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5.2.1 Operator-Modified Method

In this section, we will review the way we developed in the work [1] to include the

boundary effect in anomaly-induced action, which we call operator-modified method in

this thesis.

At first, let’s consider the boundary part of action of the conformally coupled scalar

filed. Due to conformal symmetry, the actionwith boundary contribution should bewritten

as

Scl[g] = −1
2

∫
M

dnx
√
−g

[
∇µϕ∇µϕ + (m2 + ξR)ϕ2

]
− ϵ

∫
Σ

dn−1x
√
−ϵγξKϕ2, (5.17)

From variation of this action, we can show the boundary condition needed for ϕ is Neu-

mann boundary condition, i.e. nµ∇µϕ = 0. The divergent part of effective action includ-

ing the boundary contribution corresponding to Neumann boundary condition or Dirichlet

boundary condition is derived in [21,22]. Therefore in order to renormalize the divergent

effective action with boundary contribution via dimensional regularization, in additional

to eq.(5.5) we should introduce the associated boundary term. The overall counter term

in 2-dim thus now has the following form:

Sct[g] := −1
24π

lim
n→2

∫
M d2x

√
−gR + 2ϵ

∫
Σ d1x

√
−ϵγK

n− 2
, (5.18)

where M is two-dimensional spacetime and Σ is the timelike boundary. We indeed need

to take only timelike boundaries into consideration. That is because in the standard way

to derive classical equation of motion, we take the variation of the action while fixing

the initial and final states. Even if the surface terms on the spacelike boundaries (i.e. the

initial and final hypersurfaces) are introduced, the final form of the stress tensor derived

by the variation of the action would not be affected. We thus ignore the contribution of

spacelike boundaries in the following. The boundary term in the numerator is the Gibbons-

Hawking term [24, 25] and thus the numerator overall is a conformal invariant term in

two-dimension. However, in a way similar to the previous case without boundary, the

counter term introduced here is defined in 2 + ε dimension and is not conformal invariant
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which is the origin of conformal anomaly.

For the convenience in the later discussion, we introduce an arbitrary scalar function

f(x) which is unity on the boundary and arbitrary elsewhere, i.e.

f(x) = 1, x ∈ Σ. (5.19)

Using this scalar function, we rewrite the action of the counter terms in

Sct[g] = −1
24π

lim
n→2

∫
d2x
√
−gR + 2ϵ

∫
d1x
√
−ϵγfK

n− 2
. (5.20)

As in eq.(5.6), the corresponding WZ action can be shown as the form [26]:

ΓWZ [ḡ, σ] = 1
24π

lim
n→2

[ (
∫

d2x
√
−ḡR̄ + 2ϵ

∫
d1x
√
−γ̄K̄)− (

∫
d2x
√
−gR + 2ϵ

∫
d1x
√
−ϵγK)

n− 2
]

(A.19),(A.22)= − 1
24π
{
∫

d2x
√
−ḡ[σR̄− σ�̄σ] + ϵ

∫
d1x(
√
−ϵγσK +

√
−ϵγ̄σK̄)}

=: Sanom[ḡ]− Sanom[g]. (5.21)

From Sec.(A.1.2), by expanding the conformal transformation of R and K to the first

order in ε (:= n− 2), we will have the following relations:


[√
−gR−

√
−ḡR̄

]
= −2

√
−g�σ + O(ε) = −

[√
−g�σ + .̄..

]
+ O(ε)[√

−ϵγK −
√
−ϵγ̄K̄

]
=
√
−ϵγnµσµ + O(ε) = 1

2
[√
−ϵγnµσµ + .̄..

]
+ O(ε)

(5.22)

and it results in:

{√
−g [R + 2∇a(fnaK)]− .̄..

}
= −2

√
−g(�σ −∇afnanb∇bσ) + O(ε)

= −[
√
−g(�−∇afnanb∇b)σ + .̄..] + O(ε). (5.23)

Here, nµ is the unit normal vector on boundary and does not need to be fixed elsewhere.

From above relation, we realize that the D’Alembert operator, �, which is the unique

2-dim conformal invariant operator for the case without boundary should be modified to a

new hermitian(self-adjoint) and conformal invariant operator for the case with boundary,
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Lf
2 , which can be naturally constructed as: 3

Lf
2 := (−� +∇µfnµnν∇ν). (5.24)

We thus have a relation analogous to eq.(5.9) 4

2
√
−gLf

2σ = 2
√
−ḡL̄f

2σ =
√
−g[R + 2∇µ(nµfK)]−

√
−ḡ[R̄ + 2∇̄µ(n̄µfK̄)].

(5.25)

Using the relation (5.25), we can read the non-local anomaly-induced action from eq.

(5.21)

Sanom[g] = 1
96π

∫ d2x
∫

d2x′√−g
√
−g′(R(x) + 2∇µ(nµfK))Df (x, x′)

·(R(x′) + 2∇′µ(n′
µf ′K ′))− 4

∫
d2x
√
−gfK2

.

(5.26)

Here, Df is the symmetric inverse operator of Lf
2 , which is defined by

Lf
2Df

2 (x, x′) = −δ(x− x′)√
−g

, Df
2 (x, x′) = Df

2 (x′, x). (5.27)

As the derivation of the local anomaly-induced action in the previous section, we will

introduce a real auxiliary scalar field φ which is defined by

φ :=
∫

d2x′√−gDf (x, x′)[R′ + 2∇′

µ(n′µf ′K ′)]. (5.28)

Operating Lf
2 to this equation, we have

Lf
2φ = R + 2∇µ(nµfK). (5.29)

3Proved in Sec.(A.1.2) and Sec.(C.1).
4�σ ̸= ∇nn∇σ, but

∫
M

�σ = ϵ
∫

∂M
nµ∇µσ =

∫
∂M

(nµnµ)︸ ︷︷ ︸
=ϵ

(nν∇νσ) = ϵ
∫

M
∇µnµnν∇νσ.
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Similar to the action (5.13), again the localized version of the anomaly-induced action

(5.26) can be expressed in terms of the auxiliary scalar field φ as

Sanom[g, φ] = −1
96π

{∫
d2x
√
−g[φLf

2φ− 2φ(R(x) + 2∇µ(nµfK))]− 4
∫

d2x
√
−gfK2

}
(5.30)

= −1
96π

{∫
d2x
√
−g(−φ�φ− 2φR) +

∫
d1x
√

γ(φnµ∇µφ− 4φK)

+
∫

d2x
√
−gf [(nµ∇µφ)(−nν∇νφ + 4K)− 4K2]

}
, (5.31)

this action gives eq. (5.29) and, by substituting eq. (5.29) into it, this action indeed reduce

to the non-local action (5.26). Therefore, this is the localized anomaly action we want.

Recall that f is an arbitrary function except that it should be unity on the boundary. In

the following, we will choose f to approach step function to grasp the boundary effect. In

order to tackle with this explicitly, let us condider the following f function:

fδ(λ) :=


1
2 [cos(λπ

δ
) + 1], (0 < λ ≤ δ)

0, (λ ≥ δ)
(5.32)

where λ is the affine parameter5 for the geodesic orthogonal to the boundary, and δ is a

positive constant. By taking the limit δ → 0, the anomaly-induced action (5.31) becomes

Sanom[g, φ] δ→0→ −1
96π
{
∫

d2x
√
−g(−φ�φ− 2φR) +

∫
d1x
√
−ϵγ(φnµ∇µφ− 4φK)}.

(5.33)

It turns out that we have exactly the same action as the previous one (5.13) expect for the

additional boundary terms. The boundary terms have no additional contribution on the

stress tensor except on the boundary, and thus the obtained stress tensor in the bulk,M, is

still the same as that one obtained from the case without the boundary term. Meanwhile,

the boundary terms affect the boundary condition for the scalar field φ. Equation (5.29)

5We set the affine parameter λ to be zero on the boundary.
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can be rewritten in

−�φ + (nµ∇µfδ)(nν∇νφ) + fδ∇µnµ(nν∇νφ) = R + 2(nµ∇µfδ)K + 2fδ∇µnµK.

(5.34)

Taking the limit δ → 0, we find the equations for φ

�φ = −R, (5.35)

with the boundary conditions6

nν∇νφ = 2K, x ∈ Σ. (5.36)

This means that there is the additional boundary constraint on φ which was not taken into

consideration in the previous works.

5.2.2 Green’s Function-Modified Method

Instead of the operator-modified method we just showed in the previous section, in this

section, we will propose another equivalent method, which we call the “Green’s Function-

Modified Method”, to derive anomaly-induced action with boundary effect. It turns out

that the Green’s function-modified method is easier to generalise to 4-dimensional case

than operator-modified method.

At first, lets consider the identity

∫
M

d2x
√
−g[u(x)�v(x)− v(x)�u(x)] = ϵ

∫
Σ

d1x
√
−ϵγ[u(x)∇nv(x)− v(x)∇nu(x)],

(5.37)

where u(x) and v(x) are arbitrary scalar functions, also � and its boundary-associated

6These equations can be also obtained from the action (5.33) directly. Note that because −nν∇νfδ

becomes Dirac delta function in the limit δ → 0, the terms proportion to it in the lhs and rhs of eq.(5.34)
should be balanced.
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operator∇n are conformally invariant operators which satisfies


�u = e−2σ�̄u,

∇nu = e−σ∇̄nu.

(5.38)

The Green’s function, i.e. the inverse operator, of D’Alembert operator is defined by


�G(x, x′) = −δ(2)(x, x′)√

−g
,

∇nG(x, x′) = w(x),
(5.39)

where w(x) is an arbitrary function which should satisfy7

ϵ
∫

Σ
d1x
√
−ϵγw(x) = −1. (5.40)

From eq.(5.22), we know that in 2-dimensional spacetime the conformal transforma-

tion parameter σ must satisfy the following two differential equations:


�σ = −1

2
√
−g

[√
−gR−

√
−ḡR̄

]
,

∇nσ = 1√
−ϵγ

[√
−ϵγK −

√
−ϵγ̄K̄

]
.

(5.41)

By using eq.(5.37) and eq.(5.41), we can expresses σ in terms of G(x, x′) as:

σ(x) =
∫
M

d2x′G(x′, x)
{1

2
[
√
−g′R′ −

√
−ḡ′R̄′]

}
+ ϵ

∫
Σ

d1x′G(x′, x)[
√
−ϵγ′K ′ −

√
−ϵγ̄′K̄ ′]

+ ⟨σ⟩w(x) , (5.42)

where ⟨u(x)⟩w(x) := −ϵ
∫

Σ d1x′√−ϵγ′w(x′)u(x′) for any scalar function u(x).

Similar to the last section, we will introduce a real auxiliary scalar field φ which is

defined by

φ(x) =
∫
M

d2x′
√
−g′G(x′, x)R′ + 2ϵ

∫
Σ

d1x′
√
−ϵγ′G(x′, x)K ′ + ⟨φ⟩w(x) . (5.43)

7In order to guarantee
∫
M

d2x�G(x, x′) = ϵ
∫

Σ d1x
√
−ϵγ∇nG(x, x′).
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Note that by this definition, the scalar fieldφ automatically satisfies the following equation

of motion and boundary condition:


�φ = −R,

nν∇νφ = 2K, x ∈ Σ,

(5.44)

which are exactly the same as eq.(5.35) and eq.(5.36). Togetherwith the relationG(x, x′) =

Ḡ(x, x′) which is resulted from the conformal symmetry of � and ∇n, i.e. eq.(5.38), σ

can thus be expressed in terms of φ as

σ(x) = 1
2

[φ(x)− φ̄(x)]. (5.45)

In the setting of two-manifolds with boundary, the D,Alembert operator and its boundary

associated operator,∇n are related to a ”cocycle” functional F which is defined by

F[u(x)] :=
∫
M

d2x
√
−g[u�u + Ru] + ϵ

∫
Σ

d1x
√
−ϵγ[−u∇nu + 2Ku], (5.46)

where u(x) is an arbitrary scalar function. It can be checked that this functional F satisfies

the following ”cocycle” condition

F[σ + u] = F̄[u]. (5.47)

Next, with the help of the cocycle functional F, the WZ action can be derived as fol-
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lows:

ΓWZ [ḡ, σ] = 1
24π

lim
n→2

[ (
∫

d2x
√
−ḡR̄ + 2ϵ

∫
d1x
√
−γ̄K̄)− (

∫
d2x
√
−gR + 2ϵ

∫
d1x
√
−ϵγK)

n− 2
]

= − 1
24π

[1
2

∫
d2x(
√
−gR +

√
−ḡR̄)σ + ϵ

∫
d1x(
√
−ϵγK +

√
−ϵγ̄K̄)σ

]
= − 1

24π

[∫
d2x
√
−g(σR + σ�σ) + ϵ

∫
d1x
√
−ϵγ(−σ∇nσ + 2σK)

]
= − 1

24π
F[σ]

= − 1
24π

(F[1
2

φ]− F̄[1
2

φ̄])

=: Sanom[ḡ]− Sanom[g], (5.48)

where we have used eq.(5.45) and eq.(5.47) to get the last second equality. Therefore, we

can immediately read the anomaly-induced action from eq.(5.48) as

Sanom[g, φ] = 1
24π

F[1
2

φ]

= 1
96π
{
∫

d2x
√
−g(φ�φ + 2φR) +

∫
d1x
√
−ϵγ(−φnµ∇µφ + 4φK)}.

(5.49)

Note that this result is exactly the same as eq.(5.33). Therefore, we proved that the Green-

function modified method gives the same result as the operator-modified method. Also,

by the Green-function modified method, we don’t need to assume the symmetric property

of Green’s function in the derivation of the anomaly action. In the next chapter, we will

see that this alternative approach is much easier to generalize to 4-dimensional case.

One more remark is that by adding up the lhs and rhs of (5.44) respectively, we will

have

∫
M

d2x
√
−g�ϕ−

∫
Σ

d1x
√
−γ∇nϕ = 0, (5.50)∫

M
d2x
√
−gR +

∫
Σ

d1x
√
−γ2K = χ2[M], (5.51)

where χ2[M] is the Euler-characteristic of the bounded 2-dim manifold M and we have

used the 2-dim Gauss–Bonnet theorem to get the second equality. In order to make sure
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the two relations satisfy at the same time, we must have the following equality:

∫
M

d2x
√
−gR +

∫
Σ

d1x
√
−γ2K = χ2[M] = 0. (5.52)

It means that the anomaly-induced action can only be used in the spacetime with zero

Euler-characteristics. Although this requirement satisfies automatically in bounded 2-dim

spacetime, later we will find that it is important for 4-dim generalization.

5.3 Applications

Since we have construct the anomaly-induced action with boundary effect, in the fol-

lowing, we will apply this formalism to several examples. Then we can appreciate how

powerful and efficient this formalism is when one need to solve the expectation of stress

tensor of quantum vacuum and thermal states.

5.3.1 General Analysis for 2-dimensional Spacetime

Since any two-dimensional spacetime can be described by the conformally-flat metric,

in this section, we first apply our result to conformal flat spacetime and then use the result

to analyse several common 2-dimensional spacetimes, which are the flat, 2-dimensional

Schwarzschild, and de Sitter spacetimes.

Any metric of 2-dimensional spacetime can be written in the conformal flat form:

ds2 = F (t, r)(−dt2 + dr2). (5.53)

We consider the case in which the boundaries exist on r = r1 and r = r2 = r1 + L(> r1).

The normal vector on the boundary is written in

nµ =
(

0, F − 1
2

)
. (5.54)
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The Ricci scalar and extrinsic curvature on the boundary are, respectively,

R = F −1(−∂2
t ln F + ∂2

r ln F ), (5.55)

K = 1
2

F − 3
2 ∂rF. (5.56)

With the metric (5.53), eq. (5.35) can be rewritten as

F −1(−∂2
t φ + ∂2

r φ) = F −1(−∂2
t ln F + ∂2

r ln F ). (5.57)

A particular solution of this equation is ln F (=: φp), and thus the general solution for φ

is derived as

φ = φp + φh, (5.58)

φh := A1r + A2t + A3 + A0rt +
∫ ∞

−∞
dω[c±(ω)eiωte±iωr] +

∫ ∞

−∞
dω[d±(ω)eωte±ωr],

(5.59)

where φh is the homogeneous solution satisfying �φh = 0. A0, A1, A2, A3 are real

constants, c±(ω) are constant functions satisfy c±(ω) = c∗
±(−ω), and d±(ω) are real func-

tions.

The boundary equation (5.36) becomes

F − 1
2 ∂rφ = F − 3

2 ∂rF. (5.60)

With this boundary condition, the solution (5.58) is constrained as

φ = φp + φ0, (5.61)

φ0 := A2t + A3 +
∞∑

n=−∞
cn cos(ωnr)eiωnt, (5.62)

where ωn = πn
L
, n ∈ N, cn are constants satisfy cn = c∗

−n.
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The stress tensor of the trace anomaly (5.15) can be transformed as

Tanom
µν [φ = φp + φ0; gµν ] = T φp

µν + T φ0
µν , (5.63)

T φp
µν := 1

24π
[gµν�φp + 1

4
gµν(∇αφp)(∇αφp)− 1

2
(∇µφp)(∇νφp)−∇µ∇νφp],

(5.64)

T φ0
µν := 1

24π
[1
4

gµν(∇αφ0)(∇αφ0)−
1
2

(∇µφ0)(∇νφ0)− ∂µ∂νφ0]. (5.65)

Note that there is no coupling term between φp and φ0, i.e. Tµν can be separated into φp

part and φ0 part. As we will see later, φp part indeed describes the vacuum polarization,

whileφ0 part seems related to the excitations. Since allφ’s in the stress tensor have at least

one derivative, A3 does not affect the stress tensor. Therefore, without loss of generality,

hearinafter we set A3 to be naught. Furthermore, if we restrict φ0 to be A2t, the φ0 part of

stress tensor (T φ0
µν ) would become stationary. 8 This contribution is expected to be that of

the thermal state.

5.3.2 Conformal Vacuum Solutions

As mentioned in the previous sections, people expected that the different solutions

of auxiliary scalar field corresponds to different choices of quantum states of the origi-

nal conformal scalar field. Therefore, we should also expect that the general solutions

of it contain the information of all choices of vacuum states. In the following, we will

quickly show that the general solutions, Eq.(5.61) indeed contains all information of all

(conformal) vacuum states.

At first, by comparing (t, x) with another general conformal transformed coordinate

(w, s) as: 9

ds2 = F1(t, x)(−dt2 + dx2) = F2(w, s)(−dw2 + ds2), (5.66)

8T
φp
µν might not be stationary in general because of time dependence of F (t, r).

9If another coordinate (w, s) introduced here exists or not is nontrivial. We prove the existence of it in
Ch.B. According to this prove, it also means that there is no unique conformal vacuum for 2-dim spacetime.
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where F2 := F1 · c2, and the expression of c2 is given in (B.19). According to the result

from last section, by considering the (t, x) frame, we obtain the general particular and

homogeneous solutions written as


φ1

p = ln F1,

φ1
0 = A2t +

∑
n

cn cos(nπx)einπt,
(5.67)

and by considering the (w, s) frame, we get another solutions as


φ2

p = ln F2 = ln F1 + ln c2,

φ2
0 = B2w +

∑
n

dn cos(nπs)einπw.
(5.68)

By using Taylor expansion of ln c2 and Eq.(B.18), it can be shown that φ1
0 + φ1

p is indeed

equal to φ2
0 + φ2

p. Therefore, the two expression of the solutions of φ are equivalent.

Also, because φ1
p = ln F1 corresponds to the conformal vacuum based on (t, x) frame

and φ2
p = ln F2 corresponds to the conformal vacuum based on (w, s) frame, we now

understand the general solution Eq.(5.61) indeed includes (and only includes) the infor-

mation of all (conformal) vacuum states.

Minkowski (Flat) Spacetime

By using the result from the general analysis for 2-dim spacetime, we can immediately

get the solution of stress tensor for any given metric. Let us first consider the Minkowski

spacetime. There are two famous vacua of Minkowski spacetime; the Minkowski vacuum

(which based on the Cartesian coordinate) and the Rindler vacuum. The vacuum based

on the Cartesian coordinate is defined in the full region of Minkowski spacetime (see

FIG. 5.1), and thus we expect that the boundaries exist at two spatial infinities. Meanwhile,

the Rindler vacuum is defined in the Rindler wedge (see FIG. 5.2). One boundary exists on

the Rindler horizon and the other is at the spatial infinity. Moreover, in order to compare

with the Unruh vacuum of the two-dimensional Schwarzschild spacetime that we will

discuss later, we consider another vacuum of Minkowski spacetime, which we call the
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Unruh-like vacuum. This is just the analog of the Unruh vacuum in the two-dimensional

Schwarzschild spacetime; one of the boundaries is the white hole horizon, and the other

is spatial infinity. The corresponding region is the sum set of the Rindler patch and the

future Milne patch (see FIG. 5.3).

To describe each region, we write the Minkowski metric in various forms:

ds2 = −dt2 + dx2 = −dUfdVf (5.69)

= −ρ2dufdvf = −ρ2(−dTR
2 + dRR

2)
(
= −ρ2dTR

2 + dρ2
)

(5.70)

= −VfdUfdvf = Vf (−dTU
2 + dRU

2), (5.71)

where

Uf := t− x, Vf := t + x, (5.72)

ρ := (x2 − t2)1/2, uf := − log(−Uf ), vf := log Vf , (5.73)

TR := 1
2

(vf + uf ), RR := 1
2

(vf − uf ), (5.74)

TU := 1
2

(vf + Uf ), RU := 1
2

(vf − Uf ). (5.75)

Themetric forms (5.69), (5.70) and (5.71) describe the regions of whole, Rindler patch and

the sum set of the Rindler patch and the futureMilne patch of Minkowski spacetime. They

are corresponding to the Minkowski vacuum, Rindler vacuum and Unruh-like vacuum

respectively.

Minkowski Vacuum

The Minkowski vacuum is the lowest energy state defined in whole of Minkowski

spacetime. Therefore, we consider coordinate (5.69) with boundaries at x = x± and take

the limit x± → ±∞.

From eq.(5.61), the general solution can be written in

φ = A2t +
∫

dω c(ω) cos[ωx]eiωt. (5.76)
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The stationary stress tensor can be obtained be setting c(ω) = 0 as

Tµν = 1
24π


A2

2
4 0

0 A2
2

4

 in (t, x) coordinate. (5.77)

As A2 = 0, Tµν becomes the same as that of the Minkowski vacuum, i.e. all components

become zero. Meanwhile, A2 characterizes the temperature of the thermal equilibrium

state.

Rindler Vacuum

TheRindler patch is described by themetric (5.70). We consider the casewhere bound-

aries exist at RR = R± and take the limit R± → ±∞. Then the solution for φ becomes

φ = 2RR + A2TR +
∫

dω c(ω) cos[ωRR]eiωTR . (5.78)

The stationary stress tensor (with respect to the Rindler time) is realized if c(ω) = 0, and

the corresponding stress tensor is:

Tµν = 1
24π

 −1 + A2
2

4 0

0 −1 + A2
2

4

 in (TR, RR) coordinate, (5.79)

= 1
24π


(A2

2−4)(x2+t2)
4(x2−t2)2 −(A2

2−4)xt

2(x2−t2)2

−(A2
2−4)xt

2(x2−t2)2
(A2

2−4)(x2+t2)
4(x2−t2)2

 in (t, x) coordinate. (5.80)

ForA2 = 0, the result is the same as that corresponding to the Rindler vacuum state, andA2

characterizes the temperature of the “thermal equilibrium state” based on the Rindler vac-

uum. The condition A2 = 2 gives the same result as that corresponding to the Minkowski

vacuum state, and thus the vacuum of the Cartesian coordinate is a thermal state based on

the Rindler vacuum. This is consistent with the Unruh effect; the Rindler observer feels

the thermal radiation in the Minkowski vacuum state.
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Figure 5.1: Region correspond-
ing to the Minkowski vacuum:
The (t, x) coordinate covers the
whole Minkowski spacetime
where t = constant and r = con-
stant curves are drawn in dashed
and dotted lines respectively.

Figure 5.2: Region correspond-
ing to the Rindler vacuum: The
(TR, RR) coordinate covers
only one quarter of Minkowski
spacetime (Rindler wedge)
where TR = constant and RR =
constant curves are drawn
in dashed and dotted lines
respectively.

Figure 5.3: Region correspond-
ing to the Unruh-like vacuum:
The (TU , RU) coordinate cov-
ers a half of Minkowski space-
time where TU = constant and
RU = constant curves are drawn
in dashed and dotted lines re-
spectively.
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Unruh-like Vacuum

In the Schwarzchild black hole spacetime, we are sometimes interested in the vacuum

state defined in the sum set of the outer region and the future trapped region, which gives

the Unruh state. To see the correspondence between the Minkowski spacetime and the

two-dimensional Schwarzschild spacetime that wewill discuss later, it is useful to consider

the corresponding situation. That is, we consider the sum set of the Rindler patch and the

future Milne patch, which is described by the metric (5.71). The boundaries are set at

RU = R± and we take the limit R± → ±∞. Then the solution for φ becomes

φ = ln(t + x) + A2TU +
∫

dω c(ω) cos[ωRU ]eiωTU . (5.81)

The stress tensor of the thermal state is expected to be obtained with the condition c(ω) =

0:

Tµν = 1
24π

 −1
2 + A2

2
4 −1

2

−1
2 −1

2 + A2
2

4

 in (TU , RU) coordinate, (5.82)

= 1
24π


−4+A2

2((x+t)2+1)
8(x+t)2

−4−A2
2((x+t)2−1)
8(x+t)2

−4−A2
2((x+t)2−1)
8(x+t)2

−4+A2
2((x+t)2+1)
8(x+t)2

 in (t, x) coordinate.(5.83)

The terms depending on A2 appear in the diagonal part in (TU , RU) coordinate, and it is

traceless. This implies that its energy flows along ∂TU
, and thus, a thermal gas comoves

along ∂TU
. The case with A2 = 0 is expected to be the vacuum state of the region that

we consider. The stress tensor has the off-diagonal term in (t, x) coordinate. This means

that we have energy flow in the vacuum state, which is corresponding to the Hawking

radiation in the Unruh state of the black hole spacetimes.

2-dimensional Schwarzschild Spacetime

The vacuum polarization in the black hole spacetime is one of the major interests

in the quantum field theory on curved spacetimes. As a simplified toy model, the two-

dimensional Schwarzschild spacetime is often invoked, where one considers the same
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metric as the time and radial components of the four-dimensional Schwarzschild space-

time. This geometry is not a solution of a gravity theory,10 but it is fixed by hand. The

artificial spacetime is enough for the discussion of the renormalized stress tensor. The

causal structure in this two-dimensional Schwarzschild spacetime is the same as that in the

four-dimensional Schwarzschild spacetime, and thus qualitatively we can expect that sim-

ilar features of the vacuum polarization, such as the Hawking radiation, appear. Here, we

study the vacuum polarization of the three familiar states; the Boulware, Hartle-Hawing

and Unruh states.

In order to describe the corresponding regions to the three states, we write the two-

dimensional Schwarzschild spacetime in various descriptions:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 = (1− 2M

r
)(−dt2 + dr∗2) (5.84)

= −(1− 2M

r
)dudv = −32M3

r
e− r

2M dUdV

= −32M3

r
e− r

2M (−dTH
2 + dRH

2) (5.85)

= −8M2

r
( r

2M
− 1)

1
2 e

t−r
2M dUdv = 8M

r
( r

2M
− 1)

1
2 e

t−r
2M (−dTU

2 + dRU
2), (5.86)

where

r∗ := r + 2M ln( r

2M
− 1), u := t− r∗, v := t + r∗, (5.87)

U := −e
−u
4M , V := e

v
4M ,

TH := 1
2

(V + U), RH := 1
2

(V − U), (5.88)

TU := 1
2

(v + U), RU := 1
2

(v − U). (5.89)

The coordinates (5.84), (5.85) and (5.86) describe the outside of the black hole (see FIG. 5.5),

whole spacetime (see FIG. 5.4) and the sum set of the outside and the future trapped region

(see FIG. 5.6), and they are corresponding to the Boulware, Hartle-Hawking and Unruh

states, respectively. Comparing these coordinates (5.84), (5.85), (5.86) and the transfor-

mations (5.87), (5.88), (5.89) with those of theMinkowski spacetime (5.69), (5.70), (5.71),

10In two dimensional spacetime, general relativity is not well-defined.
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(5.72), (5.74) and (5.75), we can read the analog of the Boulware, Hartle-Hawing and Un-

ruh vacua to the Rindler, Minkowski and Unruh-like vacua in the Minkowski spacetime,

respectively.

Hartle-Hawking Vacuum

The energy momentum tensor of the Hartle-Hawking state [27, 28] is defined in the

whole spacetime, which is regular even at horizons and infinity, and thus state can be

defined everywhere. Therefore, the metric (5.85) is the corresponding metric, which is

regular everywhere. We set the boundaries at RH = R± and take the limit R± → ±∞.

Then the general solution (5.58) can be written in

φ = ln(1− 2M

r
)− 1

2M
r∗ + A2TH +

∫
dω c(ω) cos[ωRH ]eiωTH . (5.90)

Stationary stress tensor (in (TH , RH)-coordinate sense) is achieved if c(ω) vanishes, and

it becomes

TTHTH
= 1

24π
[−64M4

r4 e− r
2M +

(
48M4

r4 + 16M3

r3 + 4M2

r2

)
e− r

M

(
RH

2 + TH
2
)

+ A2
2

4
],

(5.91)

TRHRH
= 1

24π
[64M4

r4 e− r
2M +

(
48M4

r4 + 16M3

r3 + 4M2

r2

)
e− r

M

(
RH

2 + TH
2
)

+ A2
2

4
],

(5.92)

TTHRH
= TRHTH

= −1
24π

(
96M4

r4 + 32M3

r3 + 8M2

r2

)
e− r

M (THRH) , (5.93)

in (TH , RH) coordinate, and
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Ttt = 1
24π

[
(

7M2

r4 −
4M

r3 + 1
16M2

)
+ A2

2

64M2

(
RH

2 + TH
2
)
], (5.94)

Trr = 1
24π

[
(

1− 2M

r

)−2 ( 1
16M2 −

M2

r4

)
+ A2

2

64M2

(
1− 2M

r

)−2 (
RH

2 + TH
2
)
],

(5.95)

Ttr = Trt = 1
24π

[ A2
2

32M2

(
1− 2M

r

)−1
(THRH)], (5.96)

in (t, r) coordinate.

For A2 = 0, the energy density is constant for the Killing observer (whose trajec-

tory is tangent to ∂t) outside the black hole, and the stress tensor is the same as that of

the Hartle-Hawking vacuum state. A2 characterizes the thermal excitation based on the

Hartle-Hawking vacuum.

Boulware Vacuum

The Boulware vacuum [29] has the same asymptotic behavior as the Minkowski vac-

uum, while the stress tensor diverges on the horizon. Thus, the state (and the quantum

theory) is defined only outside the horizons. The metric (5.84) is the corresponding one.

We set the boundaries at r∗ = r∗
± and take the limit r∗

± → ±∞. The form of general

solution (5.58) becomes

φ = ln(1− 2M

r
) + A2t +

∫
dω c(ω) cos[ωr∗]eiωt. (5.97)

Imposing the stationary condition of the stress tensor, c(ω) should vanishes and the stress
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Figure 5.4: Region correspond-
ing to the Hartle-Hawking
vacuum: The (TH , RH) co-
ordinate covers the whole
two-dimentional Schwarzschild
spacetime where TH = constant
and RH = constant curves are
drawn in dashed and dotted lines
respectively.

Figure 5.5: Region correspond-
ing to the Boulware vacuum:
The (t, r) coordinate covers
one quarter of two-dimentional
Schwarzschild spacetime where
t = constant and r = constant
curves are drawn in dashed and
dotted lines respectively.

Figure 5.6: Region corre-
sponding to the Unruh vacuum:
The (TU , RU) coordinate cov-
ers a half of two-dimentional
Schwarzschild spacetime where
TU = constant and RU = con-
stant curves are drawn in dashed
and dotted lines respectively.
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tensor is derived as

Tµν = 1
24π

 −4Mr+7M2

r4 + A2
2

4 0

0 −M2

r4 + A2
2

4

 in (t, r∗) coordinate, (5.98)

= 1
24π

 −4Mr+7M2

r4 + A2
2

4 0

0 − M2

r2(r−2M)2 + A2
2r2

4(r−2M)2

 in (t, r) coordinate.

(5.99)

For A2 = 0, the energy density has the minimum value, which corresponds to the Boul-

ware vacuum state. A2 characterizes the temperature of the thermal equilibrium state based

on the Boulware vacuum. Similar to the relation between the Minkowski and Rindler

vacua, for A2 = ±1/(2M), the resulting stress tensor is the same as that of the Hartle-

Hawking vacuum state. That is, Hartle-Hawking vacuum state is a thermal equilibrium

state on Boulware vacuum.

Unruh Vacuum

In the Unruh vacuum state [30], we take the Minkowski vacuum state at the past null

infinity, while the stress tensor is regular on the black hole horizon but not on white hole

horizon. We can extend the state to the inside of the black hole but not of the white hole.

Therefore, the corresponding region is the sum of the outside of horizon and inside of

black hole, which is described with the metric (5.86). We set the boundaries at RU = R±

and take the limit R± → ±∞. Then, the general solution is written in

φ = ln(1− 2M

r
) + 1

4M
(t− r∗) + A2TU +

∫
dω c(ω) cos[ωRU ]eiωTU . (5.100)

The stationary stress tensor (in (TU ,RU ) sense) is obtained if c(ω) vanishes and it is written
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as

TTU TU
= 1

24π

[ 1
r4

(
−Mr + 3

2
M2 − 16M3e

t−r
4M

√
r

2M
− 1

+2M2e
t−r
2M

(
r

2M
− 1

) (
r2 + 4Mr + 12M2

))
+ A2

2

4

]
, (5.101)

TRU RU
= 1

24π

[ 1
r4

(
−Mr + 3

2
M2 + 16M3e

t−r
4M

√
r

2M
− 1

+2M2e
t−r
2M

(
r

2M
− 1

) (
r2 + 4Mr + 12M2

))
+ A2

2

4

]
, (5.102)

TTU RU
=TRU TU

= M

48πr4

(
−2r + 3M − 2e

t−r
2M (r − 2M)

(
r2 + 4Mr + 12M2

))
,

(5.103)

in (TU , RU) coordinate, and

Ttt = 1
24π

[
(

1
32M2 + 7M2

r4 −
4M

r3

)
+ A2

2

8

(
1 + r − 2M

32M3 e
r−t
2M

)
], (5.104)

Trr = 1
24π

[
(

1− 2M

r

)−2 (−M2

r4 + 1
32M2

)
+ A2

2

8

((
1− 2M

r

)−2
+
(

1− 2M

r

)−1 r

32M3 e
r−t
2M

)
],

(5.105)

Ttr = Trt = 1
24π

[− 1
32M2

(
1− 2M

r

)−1
+ A2

2

8

((
1− 2M

r

)−1
− r

32M3 e
r−t
2M

)
],

(5.106)

in (t, r) coordinate.

The lowest energy state with respect to (TU , RU)-coordinate is realized for A2 = 0,

and then the stress tensor is the same as that of Unruh vacuum state. A2 describes the

thermal excitation for the Unruh observer (whose trajectory is tangent to ∂TU
).

de Sitter Spacetime

Here, we consider the stress tensor in de Sitter spacetime. In cosmology, de Sit-

ter spacetime approximately describes the beginning part of the Universe, i.e. inflation.

Meanwhile, de Sitter spacetime has the maximal symmetry, and thus has intriguing fea-

tures. Therefore, de Sitter spacetime is interesting in both phenomenological and theoret-
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Figure 5.7: Region correspond-
ing to Bunch-Davies vacuum:
The (tf , rf ) coordinate covers a
half of de Sitter spacetime where
tf = constant and rf = constant
curves are drawn in dashed and
dotted lines respectively.

Figure 5.8: Region of the static
chart: The (ts, rs) coordinate
covers one quarter of de Sitter
spacetime where ts = constant
and rs = constant curves are
drawn in dashed and dotted lines
respectively.

ical viewpoints.

In de Sitter spacetime, two vacua, the vacuum of the static chart and the Bunch-Davies

vacuum, are often discussed. We describe de Sitter spacetime with two different coordi-

nates,

ds2 = −(1−H2r2
s)dt2

s + (1−H2r2
s)−1dr2

s = (1−H2r2
s)(−dt2

s + dr2∗
s )(5.107)

= −dt2
f + e2Htf dr2

f = 1
H2η2 (−dη2 + dr2

f ), (5.108)

where

r∗
s := tanh−1(Hrs)

H
, (5.109)

rf := re−Htf , η := −e−Htf

H
, tf := ts + 1

2H
log

[
H−1

(
1−H2r2

s

)]
,

(5.110)

and “s” and “f” mean the static and flat slicing charts, respectively. The vacua with the

coordinates (5.107) and (5.108) are corresponding to the vacuum of the static chart and

the Bunch-Davies vacuum, respectively.
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Bunch-Davies Vacuum

The vacuum state of the flat chart (5.108) is the so-called Bunch-Davies state [31].

The flat chart (5.108) describes the region shown in FIG. 5.7. We set the boundaries at

rf = r± and take the limit r± → ±∞. Then, the general solution (5.58) becomes

φ = −2 ln(Hη) + A2η +
∫

dω c(ω) cos[ωrf ]eiωη. (5.111)

The stationary stress tensor with respect to the conformal time η is obtained for c(ω) = 0

as

Tµν = 1
24π

 −H2 + A2
2

4 e−2Htf 0

0 e2Htf H2 + A2
2

4

 in (tf , rf ) coordinate, (5.112)

= 1
24π

 −e2Htf H2 + A2
2

4 0

0 e2Htf H2 + A2
2

4

 = 1
24π

 −η−2 + A2
2

4 0

0 η−2 + A2
2

4


in (η, rf ) coordinate. (5.113)

The lowest energy state is realized for A2 = 0, and then the stress tensor becomes the

same as that of Bunch-Davies vacuum. A2 describes the thermal state with respect to the

conformal time ∂η.

Static Vacuum

The static chart (5.107) describes the region shown in FIG. 5.8. We set boundary at

rs = r± and take the limit r± = ±∞. Then the general solution (5.58) becomes

φ = ln(1−H2r2
s) + A2ts +

∫
dω c(ω) cos[ωr∗

s ]eiωts . (5.114)

The stationary stress tensor with respect to the Killing direction ∂ts is obtained for
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c(ω) = 0, and it is derived as

Tµν = 1
24π

 −2H2 + H4r2
s + A2

2
4 0

0 −H4r2
s + A2

2
4

 in (ts, r∗
s) coordinate,

(5.115)

= 1
24π

 −2H2 + H4r2
s + A2

2
4 0

0 −H4r2
s+A2

2/4
(1−H2r2

s)2

 in (ts, rs) coordinate. (5.116)

Imposing A2 = 0, the minimum energy state is realized and the stress tensor becomes

the same as that of the vacuum state in static chart. A2 describes the thermal excitation

on the static chart. For A2 = ±2H , the resulting stress tensor is the same as that of the

Bunch-Davies vacuum state. That is, Bunch-Davies vacuum state is a thermal equilibrium

state based on static vacuum.

5.3.3 Dynamical Casimir effect

In the following, let’s consider the one moving mirror problem in flat spacetime. In

this problem, there exists two boundaries x = 0 and x = L(t) in flat space. Next let

us introduce “conformal-flat” coordinate (w, s) where the corresponding boundaries are

s = 0 and s = 1,


x = 0⇔ s = 0,

x = 0⇔ s = 0.

(5.117)

Also the corresponding line element is

ds2 = −dt2 + dx2 = −dudv = −f
′(ū)g′(v̄)dūdv̄

= f
′(w − s)g′(w + s)︸ ︷︷ ︸

≡F (w,s) or F (ū,v̄)

(−dw2 + ds2), (5.118)

where


t− x = u = f(ū) = f(w − s)

t + x = v = g(v̄) = g(w + s)
and


ū = w − s

v̄ = w + s
.
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11

Because there exists only one d.o.f., i.e. L(t) in this problem, we can thus find a

function R 12 satisfy f = g = R−1. For later convenience, we also define a function Q,

Q(ū) ≡ d

dū
R−1(ū) = 1

R′ [R−1(ū)]
, (5.119)

and then

Q
′ = d

dū
Q = −R

′′(R−1(ū))
R′3(R−1(ū))

,

Q
′′ = d2

dū2 Q = 3R
′′2

R′3 −
R

′′′

R′4 . (5.120)

After the set up for this problem, we can now immediately calculate the solution of φ for

this spacetime (5.118):

φ = φp + φ0, (5.121)

where

φp = lnF = lnQ(ū) + lnQ(v̄). (5.122)

φp is responsible for the vacuum solution and by substituting it into the stress tensor for-

mula below

24πT φp
µν = gµν�φp + 1

4
gµν∇αφp∇αφp −

1
2
∇µφp∇νφp −∇µ∇νφp, (5.123)

11The mapping of these functions: f, g, R−1 : ū
v̄
→ u

v
; R : u

v
→ ū

v̄
.

12Be careful that the R here is not Ricci scalar, we choose R to keep the convention the same as the
previous works.
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we can get the renormalised stress tensor in (ū, v̄) frame as:


T

φp

ūū = h̄(ū),

T
φp

v̄v̄ = h̄(v̄),

T
φp

ūv̄ = T
φp

v̄ū = 0,

(5.124)

and in (u, v) frame as:

⇒


T φp

uu = (R′(u))2Tūū = h(u),

T φp
vv = (R′(v))2Tv̄v̄ = h(v),

T φp
uv = T φp

vu = 0,

. (5.125)

where13

h̄(ū) ≡ 1
2Q2 [Q′2 − 2QQ

′′ Fu

F︸︷︷︸
= Q

′

Q

] = 3[Q′(ū)]2 − 2Q(ū)Q′′(ū)
2[Q(ū)]2

= 3
2

( R
′′

R′2 )2 − (3R
′′2

R′4 −
R

′′′

R′3 ) = −3
2

( R
′′

R′2 )2 + R
′′′

R′3 = 1
R′2 [−3

2
(R

′′

R′ )2 + R
′′′

R′ ]. (5.126)

Finally by using the formalism we develop, we get the same result from dynamical

Casimir problem as the works before [32, 33].

13The R
′2 below means [R′(R−1(ū))]2.
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Chapter 6

4-dimensional Anomaly-induced Action

Although we have proposed the 2-dim anomaly-induced action and applies it to inves-

tigate some physical issues, it can only be treated as a toy model used to mimic our real

world which is (at least) 4-dimensional spacetime. Therefore, in order to investigate the

real physics in our world, we need to generalize the anomaly-induced action method to

4-dim spacetime.

In this chapter, we will first derive the 4-dim anomaly-induced action without bound-

ary effect. Although the 4-dim anomaly-induced action (without boundary effect) has

been widely used before, the result we proposed here slightly differs from what in the

previous works [9, 10, 12] in several aspects: First, it turns out that introducing one aux-

iliary scalar field is already sufficient to obtain the local anomaly-induced action instead

of two. Second, we restore the missing d.o.f of the conformally invariant terms which has

been ignored before back to the anomaly-induced action. Finally the stress tensor from the

4-dim anomaly-induced action is slightly revised and it thus results in the correct 4-dim

trace anomaly whereas the result from the literature before seems to be problematic.

In the next section, we will derive the 4-dim anomaly-induced action with bound-

ary effect based on the “Green’s function-modified method”. It turns out that by using

this method, it is much easier to generalize the anomaly-induced action to 4-dim than

“operator-modified method”. Also, we learned from our final result that by this method,

it is not necessary to require Green’s function to be symmetric in order to obtain the 4-

dim anomaly-induced action and the 4-dim anomaly-induced action must be limited to the
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spacetime with zero Euler characteristic.

6.1 4-dimensional Anomaly-inducedActionWithout Bound-

ary Effect

Same as 2-dim case, in order to derive 4-dim Sanom, we start with the counter terms

for 4-dim case which is introduced by Eq.(4.102),

Sdiv[g] = − 1
16π2 lim

n→4

∫
M d4x

√
−g[ 1

120(−1
3 E + F − 2

3�R)]
n− 4

, (6.1)

= lim
n→4

∫
M d4x

√
−g

[
b′E + b(F + 2

3�R)
]

n− 4
. (6.2)

Similar to 2-dim case, the effective action a2(x) for conformal scalar field is conformal

invariant 1. However, this counter term designed in 4 + ε dimension is not conformal

invariant. Therefore after dimensional-regularization, the renormalised action is no longer

conformal invariant and results in a nonzero trace of stress tensor, i.e. trace anomaly.

Substituting this counter term into eq.(5.3), we can derive the WZ action as

ΓWZ [ḡ, σ] =
∫

M
d4x

{√
−g

[
bF + b′

(
E + 2

3�R
)]
− .̄..

}
ε

=
∫

M
d4x

1
2

{√
−g

[
bF + b′

(
E + 2

3
�R

)]
+ .̄..

}
σ

+
(
− b

18
− b′

18

) [√
−gR2 − .̄..

]
+ c

[√
−gF − .̄..

] (6.3)

where c is an arbitrary constant. 2 From eq.(A.38), we can get the following relation:

{√
−g

[
bF + b′

(
E − 2

3
�R

)]
− .̄..

}
= 2b′

(√
−g∆4σ + .̄..

)
= 4b′√−g∆4σ, (6.4)

where ∆4 := �2 + 2Rµν∇µ∇ν − 2
3R� + 1

3(∇µR)∇µ is the unique 4th-order conformal

1Although the last term−2
3�R in a2 is not conformal invariant, we will ignore it because in this section

we neglect all boundary contributions.
2Because [

√
−gF − .̄..] = 0 + O(ε), it leads to an additional d.o.f to add the last term with an arbitrary

coefficient.
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invariant differential operator in 4-dim spacetime. Then, we can define D4(x, x′), the

inverse operator of ∆4, which satisfies

∆4D4(x, x′) = δ(4) (x− x′)√
−g

, (6.5)

and thus express σ in terms of D4(x, x′) as

σ = 1
4b′

∫
d4x′D4(x, x′)

{√
−g

[
bF + b′

(
E − 2

3
�R

)]
− .̄..

}
. (6.6)

By substituting eq.(6.6) into eq.(6.3) and imposing the symmetric condition of D4, i.e.

D4(x, x′) = D4(x′, x), we will get

Γωz = 1
8b′

∫
d4x

∫
d4x′

{√
−g

[
bF + b′

(
E − 2

3
�R

)]
+ .̄..

}
D4{√

−g′
[
bF ′ + b′

(
E ′ − 2

3
�′R′

)
− .̄..

]}
+
∫

d4x

[
−b + b′

18
(√
−gR2 − .̄..

)
+ c

(√
−gF − .̄..

)]
.

(6.7)

From eq.(5.4) and eq.(6.7), we can now write down the nonlocal anomaly-induced

action:

Sanom =− 1
8b′

∫
d4x

∫
d4x′√−g

[
bF + b′

(
E − 2

3
�R

)]
D4

√
−g′

[
bF ′ + b′

(
E ′ − 2

3
�′R′

)]
+
∫

d4x
√
−g

[
b + b′

18
R2 − cF

]
. (6.8)

This non-local anomaly-induced action can be localized by introducing a real auxiliary

scalar field φ which is defined as

φ (x) ≡
∫

d4x
√
−g

{
−φ∆4φ + 2

[
bF + b′

(
E − 2

3
�R

)]
φ
}

. (6.9)

Operating this auxiliary scalar field by the ∆4 operator, we can obtain its field equation as
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follows:

∆4φ = bF + b′
(

E − 2
3
�R

)
. (6.10)

Now the localized version of the anomaly-induced action, eq.(6.8), can be expressed in

terms of the auxiliary scalar field φ as

Sanom = − 1
8b′

∫
d4x
√
−g{−φ∆4φ + 2[bF + b′(E − 2

3
�R)]φ}+

∫
d4x
√
−g

[
b + b′

18
R2 − cF

]
.

(6.11)

We can check that eq.(6.10) can also be obtained by varying this local action w.r.t. φ,

and thus it is consistent with the action, eq.(6.8). After substituting eq.(6.9) into it, this

action is reduced to the anomaly action, eq.(6.8), and thus it gives the same dynamics as

the non-local action.

The corresponding stress tensor can be obtained by varying the localized action w.r.t.

the metric gµν , and its explicit form is

T anom
ab [g; φ] := −2√

−g

δSanom

δgab
= 1

8b′ (2Aab + 4b′Bab + 4bCab)−
b + b′

9
Dab + 2cEab,

(6.12)
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where Aab, Bab, Cab, Dab and Eab are defined as

Aab[g; φ] := 1√
−g

δ[
∫

d4x
√
−g(−φ∆4φ)]
δgab

= gab{+
1
2

(�φ)2 −Rcd(∇cφ)(∇dφ) + 1
3

Rgcd(∇cφ)(∇dφ)− 1
6
�[(∇cφ)(∇cφ)]}

+ 2(∇(a�φ)(∇b)φ) + 4Rc
(a(∇b)φ)(∇cφ)− 2∇c[(∇a∇bφ)(∇cφ)]

− 2
3

(∇aφ)(∇bφ)R− 2
3

(∇cφ)(∇cφ)Rab + 2
3
∇a∇b[(∇cφ)(∇cφ)], (6.13)

Bab[g; φ] := 1√
−g

δ
∫

d4x(E − 2
3�R)φ

δgab
= +2

3
∇a∇b�φ + 4C c d

a b ∇c∇dφ

+ 4Rc
(a∇b)∇cφ−

8
3

Rab�φ− 4
3

R∇a∇bφ + 2
3
(
∇(aR

)
∇b)φ

− 1
3

gab

{
2�2φ + 6Rcd∇c∇dφ− 4R�φ + (∇cR)∇cφ

}
, (6.14)

Cab[g; φ] := 1√
−g

δ
∫

d4xFφ

δgab
= 4∇c∇d (Ccabdφ) + 2CcabdRcdφ, (6.15)

Dab[g] := 1√
−g

δ
∫

d4xR2

δgab
= −1

2
gabR

2 + (2R)Rab −∇b∇a(2R) + gab�(2R),

(6.16)

Eab[g] := 1√
−g

δ
∫

d4xF

δgab
= 4∇c∇d (Ccabd) + 2CcabdRcd. (6.17)

By checking the trace of each component

Aa
a = 0, (6.18)

Ba
a = −2∆4φ

Eq.(6.10)= −2
[
bF + b′

(
E − 2

3
�R

)]
, (6.19)

Ca
a = 0 (6.20)

Da
a = 6�R, (6.21)

Ea
a = 0, (6.22)

we will see that the trace of the stress tensor is exactly the 4-dim trace anomaly:

gµνT anom
µν = −

[
bF + b′

(
E − 2

3
�R

)]
− 2

3
(b + b′)�R = −

[
b
(

F + 2
3
�R

)
+ b′E

]
.

(6.23)
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6.2 4-dimensional Anomaly-inducedActionWithBound-

aryEffect Based onGreen’s Function-ModifiedMethod

Because it is much easier to generalize the Green’s function-modified method to 4-

dim case, in this section, we will derive the 4-dim anomaly-induced action with boundary

effect by this way. At first, Similar to the 2-dim case, lets consider the identity [34]:

∫
M

d4x
√
−g(u∆4v − v∆4u)

= ϵ
∫

Σ
d3x
√
−ϵγ {(u∆3v − v∆3u)− [(∇nu)(�v)− (∇nv)(�u)]}

= −ϵ
∫

Σ
d3x
√
−ϵγ {[(B0u)(B3v) + (B1u)(B2v)]− [u↔ v]}

+ ϵ
∫

Σ
d3x
√
−ϵγ

{{
− 2Dµ [u(KDµ −KµνDν)v] + 2

3
Dµ [uKDµv]− 2Dµ(uDµ∇nv)

− 2Dµ [(∇nu)Dµv]
}
− {u↔ v}

}

≈ −ϵ
∫

Σ
d3x
√
−ϵγ {[(B0u)(B3v) + (B1u)(B2v)]− [u↔ v]} , (6.24)

where u and v are arbitrary scalar functions, also∆4 and its boundary-associated operators,

Bi, i = 0 ∼ 3 [34] are conformal invariant operators which are defined by

B0u := u, (6.25)

B1u := ∇nu, (6.26)

B2u := (�− 2D2 − 2
3

ϵK∇n)u, (6.27)

B3u :=
[
−(∇n� + 2nµGµν∇ν + 1

3
R∇n)− 2Dµ(KDµ −KµνDν)

+2
3
Dµ(KDµ)− 2D2∇n

]
u. (6.28)

There conformal invariant operators satisfy the following relations

∆4σ = e−4σ∆̄4σ, (6.29)

Biσ = e−iσB̄i. (6.30)
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Note that we have ignored the 2-dimensional boundary terms to get the last line of eq.

(6.24).

Similar to 2-dim case, the Green’s function, i.e. the inverse operator, of ∆4 is now

defined by

∆4G(x, x′) = δ(4)(x, x′)√
−g

(6.31)

B3G(x, x′) = w(x) (6.32)

B2G(x, x′) (6.33)

B1G(x, x′) (6.34)

where w(x) is an arbitrary function which should satisfies3

ϵ
∫

Σ
d3x
√
−ϵγw(x) = −1. (6.35)

It can be shown that in 4-dim spacetime the conformal transformation parameter σ and

these conformal invariant operators is related to the following four equations:

∆4σ = EQ − e−4σĒQ, (6.36)

Biσ = Ti − e−iσT̄i, (6.37)

where EQ
4 and Ti, i = 1 ∼ 3 [34] are defined by

EQ := 1
4

(E − 2
3
�R), (6.38)

T1 := K

3
, (6.39)

T2 := 1
4

γR− 1
2

ϵRnn + 1
12

R + 1
18

ϵK2 = 1
3

R− ϵRnn + 11
36

ϵK2 − 1
4

ϵK2, (6.40)

T3 := 1
4

(EB + 2
3
∇nR)− 2

3
D2K. (6.41)

3In order to guarantee
∫
M

d4x∆4G(x, x′) = ϵ
∫

Σ d3x
√
−ϵγB3G(x, x′).

4The EQ defined here is indeed the Q curvature [35–38] which is associated to the ∆4 operator.
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By using eq.(6.24) and eq.(6.37), we can expresses σ in terms of G(x, x′) as:

σ(x) =
∫
M

d4x′
√
−g′G(x′, x)∆′

4σ
′ + ϵ

∫
Σ

d3x′
√
−ϵγ′ [−(B′

3G(x′, x))(B′
0σ

′)

+G(x′, x)(B′
3σ

′)− (B′
2G(x′, x))(B′

1σ
′) + (B′

1G(x′, x))(B′
2σ

′)] (6.42)

=
∫
M

d4x′G(x′, x)[
√
−g′E ′

Q −
√
−ḡ′Ē ′

Q] + ⟨σ⟩w

+ ϵ
∫

Σ
d3x′

{
G(x′, x)[

√
−ϵγ′T ′

3 −
√

ϵγ̄′T̄ ′
3] − [

√
−ϵγ′(B′

2G(x′, x))T ′
1

−
√

ϵγ̄′(B̄′
2G(x′, x))T̄ ′

1] +[
√
−ϵγ′(B′

1G(x′, x))T ′
2 −

√
ϵγ̄′(B̄′

1G(x′, x))T̄ ′
2]
}
(6.43)

where ⟨u(x)⟩w(x) := −ϵ
∫

Σ d3x′√−ϵγ′w(x′)u(x′) for any scalar function u(x).

Similar to the 2-dimensional case, we introduce a real auxiliary scalar field φ which

is defined by

ϕ(x) :=
∫
M

d4x′
√
−g′G(x′, x)E ′

Q + ⟨ϕ⟩w (6.44)

+ ϵ
∫

Σ
d3x′

√
−ϵγ′ [G(x′, x)T ′

3 − (B′
2G(x′, x))T ′

1 + (B′
1G(x′, x))T2] (6.45)

Note that by the definition above, the scalar field φ automatically satisfies the following

equation of motion and boundary condition:


∆4ϕ = EQ,

Biϕ = Ti, x ∈ Σ, i = 1 ∼ 3.

(6.46)

Together with the relation G(x, x′) = Ḡ(x, x′) which is resulted from the conformal sym-

metry of ∆4 and Bi, i.e. eq.(6.30), σ can thus be expressed in terms of φ as

σ(x) = φ(x)− φ̄(x). (6.47)

In the setting of 4-manifolds with boundary, ∆4 and its boundary associated operators,
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Bi, are related to two ”cocycle” functionals, F and G, which are defined by

F[u(x)] :=
∫
M

d4x
√
−g[u∆4u− 2EQu] + ϵ

∫
Σ

d3x
√
−ϵγ[uB3u− 2T3u

+ (∇nu)B2u− 2T2(B1u)], (6.48)

G[u(x)] := ϵ
∫

Σ
d3x
√
−ϵγ[(B1u)(B2u)− T2(B1u)− T1(B2u)], (6.49)

where u(x) is an arbitrary scalar function. It can be checked that these functionals, F and

G, satisfy the following ”cocycle” condition:

F[σ + u] = F̄[u], (6.50)

G[σ + u] = F̄[u]. (6.51)

Next, with the help of these cocycle functionals, the first part of the WZ action can be

derived as follows:

∫
M d4x[

√
−gE −

√
−ḡĒ] + ϵ

∫
Σ d3x[

√
−ϵγEB −

√
ϵγ̄ĒB]

ε

= 1
ε

ϵ
∫

Σ
d3x

{
−4[
√
−ϵγDµ(KDµσ −KµνDνσ) + .̄..]

}
+ ϵ

∫
Σ

d3x
{
− 4[
√
−ϵγDµ(KDµσ −KµνDνσ) + .̄..] + 2[

√
−ϵγDµ(σKDµσ

− σKµνDνσ)− .̄..] + 4
3

[
√
−ϵγDµ(σDµK −KDµσ) + .̄..]

}
+
∫
M

d4x
{
− 1

18
[
√
−gR2 − .̄..] + 1

2
[
√
−g(E − 2

3
�R) + .̄..]σ

}
+ ϵ

∫
Σ

d3x

{
1
2

[
√
−ϵγ(EB + 2

3
∇nR− 8

3
D2K) + .̄..]σ + 4

3
[
√
−ϵγKD2σ + .̄..]

− 1
3

[
√
−ϵγR∇nσ + .̄..]− [

√
−ϵγ(∇nσ)(∇σ)2 + .̄..] + 2

3
ϵ[
√
−ϵγ(∇σ)3 + .̄..]

}
(6.52)

≈ − 1
18

∫
M

d4x[
√
−gR2 − .̄..]− 2F[σ] + 4G[σ]

+ ϵ
∫

Σ
d3x

{
−2

9
[
√
−ϵγKR− .̄..]− 8

81
ϵ[
√
−ϵγK3 − .̄..]

}
(6.53)

=
{[
−2F[ϕ] + 4G[ϕ]− 1

18

∫
M

d4x[
√
−gR2 − .̄..]− ϵ

∫
Σ

d3x
√
−ϵγ(2

9
KR + 8

81
ϵK3)

]
− [.̄..]

}
=: S̄A

anom[ḡ; φ̄]− SA
anom[g; φ], (6.54)
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where

SA
anom[g, φ] = 2F[φ]− 4G[φ] + 1

18

∫
M

d4x
√
−gR2 +

∫
Σ

d3x
√
−γ(2

9
KR + 8

81
K3),

(6.55)

Also, we have used eq.(6.47) ,eq.(6.51) and ignored 2-dimensional boundary terms to get

the last second line. The remaining parts of the WZ action are easies to derive and they

satisfy the following relations:

1
ε

∫
M

d4x[
√
−gF − .̄..]

=
∫
M

d4x
{1

2
(
√
−gF +

√
−ḡF̄ )σ + 5

18
[√
−gR2 − .̄..

]
−
[√
−gR2

ab − .̄..
]}

=
∫
M

d4x
{

(
√
−gFφ− .̄..) + 5

18
[√
−gR2 − .̄..

]
−
[√
−gR2

ab − .̄..
]}

=: S̄B
anom[ḡ; φ̄]− SB

anom[g; φ], (6.56)
1
ε

∫
Σ

d3x[
√
−ϵγϵj1 − .̄..]

=
∫

Σ
d3x

{1
2

(
√
−ϵγϵj1 + .̄..)σ −

[√
−ϵγ(1

4
KabRab + 1

4
ϵnanbRabK −

5
36

KR)− .̄..
]}

=
∫

Σ
d3x

{
(
√
−ϵγϵj1φ− .̄..)−

[√
−ϵγ(1

4
KabRab + 1

4
ϵnanbRabK −

5
36

KR)− .̄..
]}

=: S̄C
anom[ḡ; φ̄]− SC

anom[g; φ], (6.57)
1
ε

∫
Σ

d3x[
√
−ϵγϵj2 − .̄..]

=
∫

Σ
d3x

{1
2

(
√
−ϵγϵj2 + .̄..)σ + 1

3
ϵ
[√
−ϵγK2∇nσ + .̄..

]
−1

2
ϵ
[√
−ϵγK2∇nσ + .̄..

]
− 1

4
ϵ
[√
−ϵγ(∇nσ)3 + .̄..

]}
=
∫

Σ
d3x

{1
2

(
√
−ϵγϵj2 + .̄..)σ + ϵ

[√
−ϵγ( 4

27
K3 − 1

3
KK2)− .̄..

]}
=
∫

Σ
d3x

{
(
√
−ϵγϵj2φ− .̄..) + ϵ

[√
−ϵγ( 4

27
K3 − 1

3
KK2)− .̄..

]}
=: S̄D

anom[ḡ; φ̄]− SD
anom[g; φ], (6.58)
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where

SB
anom[g; φ] := −

∫
M

d4x
√
−g(Fφ + 5

18
R2 −R2

ab), (6.59)

SC
anom[g; φ] := −ϵ

∫
Σ

d3x
√
−ϵγ

[
j1φ− (1

4
ϵKabRab + 1

4
nanbRabK −

5
36

ϵKR)
]

,

(6.60)

SD
anom[g; φ] := −ϵ

∫
Σ

d3x
√
−ϵγ

[
j2φ + ( 4

27
K3 − 1

3
KK2)

]
. (6.61)

Then, from eq.(4.112) and the result above, we can immediately read the anomaly-induced

action as

ΓWZ [ḡ, σ] = Sdiv[g]− Sdiv[ḡ] = b′SA
anom[g] + bSB

anom[g] + 8bSC
anom[g] + q2S

D
anom[g].

(6.62)

Similar to the 2-dim case, we have one more remark here. By adding up the lhs and

rhs of (6.46) respectively, we will have

∫
M

d4x
√
−g∆4ϕ +

∫
Σ

d3x
√
−γB3ϕ = 0, (6.63)∫

M
d4x
√
−gEQ +

∫
Σ

d3x
√
−γT3 = χ4[M], (6.64)

where χ4[M] is the Euler-characteristic of the bounded 4-dim manifold M and we have

used the 4-dim Gauss–Bonnet theorem to get the second equality. In order to make sure

the two relations satisfy at the same time, we must have the following equality:

∫
M

d4x
√
−gEQ +

∫
Σ

d3x
√
−γT3 = χ4[M] = 0. (6.65)

It means that the anomaly-induced action can only be used in the spacetime with zero

Euler-characteristics. Unlike to the 2-dim spacetime, this requirement is in general not

true in 4-dim spacetime. Therefore, the usage of 4-dim anomaly-induced action is limited

and we should be careful when using the 4-dim version of the anomaly-induced action.
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Chapter 7

Conclusion

In this thesis, we have derived the anomaly-induced action with the boundary effect for

2-dim and 4-dim cases by restoring the corresponding boundary terms to the Lagrangian

for the counter terms. Although the boundary action seems not to alter the stress tensor in

the region within boundary after including the boundary effect, there are indeed additional

boundary constraints for the auxiliary field φ. Therefore, even though the functional form

of the stress tensor is the same as that without the boundary effect, due to the additional

constraints, the solution of stress-tensor is restricted. Themost important discovery from it

is that the correspondence between the quantum states of the original field and the solutions

of the auxiliary scalar field is naturally restored due to this boundary constraint. Therefore,

the anomaly-induced action with boundary effect can be used to derive the stress tensor for

any specific vacuum state. This fact has not been noticed before and it would significantly

increase the capability of this formalism.

Moreover, by analyzing the field equation and boundary constraint of φ, we find that

the anomaly-induced action can only be used in the spacetime with zero Euler character-

istics. Although this requirement is satisfied automatically in bounded 2-dim spacetime,

it is in general not the case in 4-dim spacetime. Therefore, one must be careful about

the topological structure of spacetime when using the anomaly-induced action in 4-dim

spacetime.

There also exists some other new features in our result. By using the Green’s function-

modified method to derive the anomaly-induced action, we find that it is indeed not nec-
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essary to assume the symmetric Green’s function. That means the formalism that has been

widely used is in fact a limited version with a redundant requirement (symmetric Green’s

function). In addition, although two auxiliary scalar fields have been introduced to get

the localised 4-dim anomaly-induced action in the previous works [9, 10, 12], it turns out

that introducing only one auxiliary scalar field is already sufficient to obtain the 4-dim

anomaly-induced action. We correct this mistake in our recent work [2] and thus the right

formula which we obtained differs slightly from the form found in the previous literature

(even when no boundary effect is involved).

As examples, we have applied our result to several familiar spacetimes (flat, two-

dimensional Schwarzchild, and de Sitter spacetimes), and rederive various well-known

quantum gravity phenomena (the dynamical Casimir effect, Unruh effect, and Hawking

temperature). Although these are already well-known knowledge, by using our result to

rederive these problems again, we can appreciate how efficient the formalism is.

Now since we know the correct relation between quantum states of the original field

and the solution of the auxiliary field, we can deal with the quantum effects on curved

spacetime as the classical dynamics of the auxiliary field φ. It can be expected that by us-

ing the classical anomaly-induced action, many important quantum gravity issues maybe

investigated more easily. For instances, it will be interesting to apply our method to the

extremal black hole which is indeed a manifold with zero Euler characteristic. Another

interesting direction is to study the backreaction problems in semi-classical approaches

without bothering with complicated calculations arisen from the renormalization scheme.

In summary, we expect that the anomaly-induced action in 4-dim spacetime would be

a powerful tool to investigate various physically interesting semi-classical problems in

cosmology, semi-classical physics on black hole spacetime, and so on. We leave these

interesting explorations as future works.
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Appendix A

Conformal Transformation (CT) and

Some Useful Relations

The conformal transformation, which abbreviated as CT in the following, is defined

by:


ḡµν(x) = e−2σ(x)gµν(x)

ḡµν(x) = e2σ(x)gµν(x).
(A.1)

The relation for the normal vector of boundaries after conformal transformation is

defined as follows:


n̄a = nae−σ

n̄a = naeσ

(A.2)

and thus the norm of n and n̄ are the same, i.e.

n̄an̄bḡ
ab = nanbg

ab = ±1 =: ϵ, (A.3)

where the sign of the spacelike (timelike) normal vector n is +(−) and thus corresponds

to timelike(spacelike) boundary.
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A.1 Conformal Transformation of Geometrical Quanti-

ties

From the definition of CT (A.1), we can derive the following CT relations:

CT of determinant of metric:

√
−g = eDσ

√
−ḡ, (A.4)

CT of Christoffel symbols:

Γc
ab = 1

2
gcλ(∂agbλ + ∂bgλa − ∂λgab) = Γ̄c

ab + ḡcλḡbλσa + ḡcλḡλaσb − ḡcλḡabσλ

= Γ̄c
ab + σbδ

c
a + σaδc

b − σdḡcdḡab, (A.5)

CT of Riemann tensor:

Ra
bcd = R̄a

bcd − ḡdb∇̄c∇̄aσ + ḡcb∇̄d∇̄aσ + δa
d∇̄c∇̄bσ − δa

c ∇̄b∇̄bσ

+ δa
c σbσd − δa

c ḡbd(∇̄σ)2 − σ̄aḡcbσ̄d

− δa
dσcσd + δa

d ḡcb(∇̄σ)2 + σ̄aḡbdσ̄c (A.6)

⇒ e−2σRabcd = R̄abcd − ḡdb∇̄c∇̄aσ + ḡcb∇̄d∇̄aσ + ḡad∇̄c∇̄bσ − ḡac∇̄b∇̄dσ

+ ḡacσ̄bσ̄d − ḡcbσ̄aσ̄d − ḡadσ̄cσ̄b + ḡbdσ̄aσ̄c − (ḡacḡbd + ḡadḡbc)(∇̄σ)2

= R̄abcd − 4ḡac∇̄b∇̄dσ + ḡacσ̄bσ̄d − 2ḡacḡbd(∇̄σ)2 (A.7)

⇒ e2σR̄abcd = Rabcd + 4gac∇b∇dσ + gacσbσd − 2gacgbd(∇σ)2 (A.8)
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CT of Ricci tensor:

Rab = R̄ab − ḡab(∇̄2σ) + (D − 2)[σaσb − ∇̄a∇̄bσ − ḡab(∇̄σ)2] (A.9)

⇒ R̄ab = Rab + gab(�σ) + (D − 2)∇a∇bσ + (D − 2)σaσb − (D − 2)gab(∇σ)2

(A.10)

⇒ R̄ab = ḡaa′
ḡbb′

R̄a′b′

= e4σgaa′
gbb′ [

Ra′b′ + ga′b′(�σ) + (D − 2)∇a′∇b′σ + (D − 2)σa′σb′ − (D − 2)ga′b′(∇σ)2
]

= e4σ
[
Ra′b′ + ga′b′(�σ) + (D − 2)∇a′∇b′

σ + (D − 2)σa′
σb′ − (D − 2)ga′b′(∇σ)2

]
(A.11)

CT of Ricci scalar:

e2σR = R̄− 2(D − 1)(�̄σ)− (D − 1)(D − 2)(∇̄σ)2 (A.12)

⇒ e−2σR̄ = R + 2(D − 1)(�σ)− (D − 1)(D − 2)(∇σ)2 (A.13)

The CT of tensors associated with boundaries:

√
−γ = e(D−1)σ√−γ̄ (A.14)

∇anb = ∂anb − Γc
abnc = ∂a(eσn̄b)− (Γ̄c

abnc + σbδ
c
a + σaδc

b − σdḡcdḡab)(eσn̄c)

= eσ(∇̄an̄b − σbn̄a + σdḡcdḡabn̄c) (A.15)

K = γabKab = γab∇anb = (e−2σγ̄ab)eσ(∇̄an̄b − σbn̄a + σdḡcdḡabn̄c) = e−σ[K̄ + (D − 1)σan̄a]

(A.16)
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A.1.1 The CT Relations Used for Solving 2-dimensional Sanom:

Derive
√
−gR−

√
−ḡR̄:

(A.12)⇒
√
−gR = e(D−2)σ√−ḡ[R̄− 2(D − 1)�̄σ − (D − 1)(D − 2)σµσµ] (A.17)

=
√
−ḡ[R̄− 2(1 + ε)�̄σ − (1 + ε)εσ̄µσ̄µ + εσR̄− 2(1 + ε)εσ�̄σ − (1 + ε)ε2σσ̄µσ̄µ]

(A.18)

⇒ [
√
−gR−

√
−ḡR̄] = −2

√
−g�σ + ε

√
−g[σR + 2σ�σ − 2�σ + (∇σ)2]

= −[
√
−g�σ + .̄..] + ε{1

2
[
√
−gR + .̄..]σ + [

√
−gσ�σ − .̄..]︸ ︷︷ ︸

=O(ε)

− [
√
−g�σ + .̄..] + 1

2
[
√
−g(∇σ)2 − .̄..]︸ ︷︷ ︸

=O(ε)

}

= −[
√
−g�σ + .̄..] + ε

{1
2

[
√
−gR + .̄..]σ − [

√
−g�σ + .̄..]

}
(A.19)

Derive
√
−γK −

√
−γ̄K̄:

(A.16)⇒
√
−γK = e(D−2)σ√−γ̄[K̄ + (D − 1)σan̄a]

=
√
−γ̄{[K̄ + (1 + ε)σan̄a] + ε[σK̄ + (1 + ε)σσan̄a]} (A.20)

⇒ [
√
−γK −

√
−γ̄K̄] =1

2
[
√
−γ∇nσ + .̄..] (A.21)

+ ε


1
2

[
√
−γK + .̄..]σ + 1

2
[
√
−γ∇nσ + .̄..]− 1

2
[
√
−γσ∇nσ − .̄..]︸ ︷︷ ︸

=O(ε)


(A.22)
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A.1.2 Conformally Invariant Differential Operator Associated to the

2-dimensional Sanom

By considering the equalities due to the CT of Ricci scalar R bellow,

√
−ḡR̄−

√
−gR

(A.18)= −
√
−ḡ{−2(1 + ε)�̄σ + ε[−(1 + ε)σ̄µσ̄µ + σR̄− 2(1 + ε)σ�̄σ − (1 + ε)εσσ̄µσ̄µ]}

n=2=
√
−ḡ(2�̄σ) =

√
−g(2�σ) (A.23)

we can find the conformally invariant operator,�, which is naturally related to Ricci scalar

in 2-dimentional manifold.

Similarly, by considering the CT of Ricci scalar R together with the related boundary

term 2K, the Gibsson-Hawking term as follows,

√
−g[R + 2∇µ(nµK)] =

√
−gR + 2∂µ(

√
−gnµK) =

√
−gR + 2∂µ(N

√
−γnµK)

=
√
−ḡ[R̄− 2�̄σ] + 2∂µ[Nnµ

√
−γ̄(K̄ + σan̄a)]

=
√
−ḡ[R̄− 2�̄σ] + 2∂µ[N̄ n̄µ

√
−γ̄(K̄ + σan̄a)]

=
√
−ḡ[R̄− 2�̄σ] + 2∂µ[

√
−ḡn̄µ(K̄ + σan̄a)]

=
√
−ḡ[R̄− 2�̄σ] + 2

√
−ḡ∇̄µ[n̄µ(K̄ + σan̄a)]

=
√
−ḡ[R̄ + 2∇̄µn̄µK̄]− 2

√
−ḡ[�̄σ − ∇̄µn̄µn̄aσa], (A.24)

we can naturally find a conformally invariant boundary-associated operator L2 which sat-

isfies the following relation:

⇒ 2
√
−ḡL̄2σ := 2

√
−ḡ[−�̄σ + ∇̄µn̄µn̄a∇̄ασ] =

√
−g[R + 2∇µ(nµK)]−

√
−ḡ[R̄ + 2∇̄µ(n̄µK̄)],

(A.25)
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where we used
√
−g∇µV µ = ∂µ(

√
−gV µ) and


N =

√
−g/
√
−γ

N̄ =
√
−ḡ/
√
−γ̄

⇒ N = N̄eσ. (A.26)

during the derivation above.

A.1.3 The relations used for solving 4-dim Sanom:

The relations used in Sec.(A.1.4) for solving 4-dim Sanom:

(B1): Calculate
√
−gRabcdRabcd −

√
−ḡR̄abcdR̄abcd:

(A.8)⇒ e2σR̄cd
ab = Rab

cd + 4δa
c∇b∇dσ + δa

cσbσd − 2δa
cδb

d(∇σ)2

⇒ e2σRab
cdR̄cd

ab = Rab
cdRab

cd + 4Rµν∇µ∇νσ + 4Rµνσµσν − 2R(∇σ)2 (A.27)

where we used RabcdRabcd = RabcdRabcd in the last equality.

⇒ (
√
−g
√
−ḡ)

1
2 Rab

cdR̄cd
ab =

√
−g e( 4−D

2 )σ︸ ︷︷ ︸
=1− 1

2 εσ

[RabcdRabcd + 4Rab∇a∇bσ + 4Rabσaσb − 2R(∇σ)2]

=
√
−ḡ e( D−4

2 )σ︸ ︷︷ ︸
=1+ 1

2 εσ

[R̄abcdR̄abcd − 4R̄ab∇̄a∇̄bσ̄ + 4R̄abσ̄aσ̄b − 2R̄(∇̄σ̄)2]

(A.28)

⇒
√
−gRabcdRabcd −

√
−ḡR̄abcdR̄abcd = −4(Rab∇a∇bσ + .̄..)− 4(Rabσaσb − .̄..) + 2[R(∇σ)2 − .̄..]

+ ε

{
1
2

(RabcdRabcdσ + .̄..) + 2[Rab(∇a∇bσ)σ − .̄..] + 2(Rabσaσbσ + .̄..)− [R(∇σ)2σ − .̄..]
}

(A.29)
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(B2): Calculate
√
−gRabRab −

√
−ḡR̄abR̄ab:

(A.9)⇒ (
√
−g

√
−ḡ︸ ︷︷ ︸√

−ge−Dσ

)
1
2 Ra

b R̄b
a︸︷︷︸

e2σ(Rb
a+...)

=
√
−g e( 4−D

2 )σ︸ ︷︷ ︸
=1− 1

2 εσ

[RabRab + R�σ + (D − 2)Rab∇a∇bσ + (D − 2)Rabσaσb − (D − 2)R(∇σ)2]

=
√
−ḡ e( D−4

2 )σ︸ ︷︷ ︸
=1+ 1

2 εσ

[R̄abR̄ab − R̄�̄σ − (D − 2)R̄ab∇a∇bσ + (D − 2)R̄abσaσb − (D − 2)R̄(∇̄σ)2]

(A.30)

⇒
√
−gRabRab −

√
−ḡR̄abR̄ab

= −(R�σ + R̄�̄σ)− 2(Rab∇a∇bσ + .̄..)− 2(Rabσaσb − .̄..)− 2[R(∇σ)2 − .̄..]

+ ε

{
1
2

(RabRabσ + .̄..) + 1
2

[R(�σ)σ − .̄..] + [Rab(∇a∇bσ)σ − .̄..] + (Rabσaσbσ + .̄..)

− [R(∇σ)2σ + .̄..]− [Rab(∇a∇bσ) + .̄..]− [Rabσaσb − .̄..] + [R(∇σ)2 − .̄..]
}

(A.31)

(B3): Calculate
√
−gR2 −

√
−ḡR̄2:

⇒ (
√
−g
√
−ḡ)

1
2 RR̄ =

√
−g e( 4−D

2 )σ︸ ︷︷ ︸
=1− 1

2 εσ

[R2 + 2 (D − 1)︸ ︷︷ ︸
3+ε

R�σ − (D − 1)︸ ︷︷ ︸
3+ε

(D − 2)︸ ︷︷ ︸
2+ε

R(∇σ)2]

=
√
−ḡ e( D−4

2 )σ︸ ︷︷ ︸
=1+ 1

2 εσ

[R̄2 − 2(D − 1)R̄�̄σ − (D − 1)(D − 2)R̄(∇̄σ)2]

(A.32)

⇒
√
−gR2 −

√
−ḡR̄2 = −6(R�σ + R̄�̄σ) + 6[R(∇σ)2 − R̄(∇̄σ)2]

+ ε{1
2

(R2σ + R̄2σ) + 3[R(�σ)σ − R̄(�̄σ)σ]− 3[R(∇σ)2σ + R̄(∇̄σ)2σ]− 2[R�σ + R̄�̄σ]

+ 5[R(∇σ)2 − R̄(∇̄σ)2]} (A.33)

(B4): Calculate
√
−g�R−

√
−ḡ�̄R̄:
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At first, by considering conformal transformation of �R,

√
−ḡ�̄R̄ = ∂a(

√
−ḡ∇̄aR̄) = ∂a(e(2−D)σ√−g∇aR̄) =

√
−g∇a[e(2−D)σ∇aR̄]

=
√
−g∇a

[
e(2−D)σ∇a[e2σ(R− 2(D − 1)�σ − (D − 1)(D − 2)(∇σ)2)]

]
D=4+ε=

√
−g∇a

[
e−2σe−εσ∇a

[
[e2σ

(
R− 2(3 + ε)�σ − (3 + ε)(2 + ε)(∇σ)2

)]]
=
√
−g∇a{e−2σ{∇a

[
e2σ[R + 6�σ − 6(∇σ)2]

]
− (εσ)∇a

[
e2σ[R + 6�σ − 6(∇σ)2]

]
+ ε∇a

[
e2σ[2�σ − 5(∇σ)2]

]
}}

=
√
−g∇a

{
[∇aR + 6∇a�σ−6∇a(∇σ)2︸ ︷︷ ︸

−12σb(∇a∇bσ)

] + (2∇aσ)[R + 6�σ − 6(∇σ)2]

+ ε
{
− σ[∇aR + 6∇a�σ − 6∇a(∇σ)2]− σ(2∇aσ)[R + 6�σ − 6(∇σ)2]

+ [2∇a�σ − 5∇a(∇σ)2] + (2∇aσ)[2�σ − 5(∇σ)2]
}}

(A.34)

we then can get

√
−g�R−

√
−ḡ�̄R̄

=
√
−g∇a{−6∇a�σ + 12σb∇a∇bσ − 2σaR− 12σa�σ + 12σa(∇σ)2}

+ ε
√
−g∇a

{
+ σ∇aR + 6σ∇a�σ − 6σ∇a(∇σ)2 + 2σσaR + 12σσa�σ − 12σσa(∇σ)2

= ...

=
√
−g∇a{−3[∇a�σ + .̄..]− [σaR + .̄..]− 3[σa(∇σ)2 + .̄..]}

+ ε
√
−g∇a

{
3[σσb∇a∇bσ + .̄..]− 3[σσa�σ + .̄..] + 1

2
[σ∇aR + .̄..]− [∇a�σ + .̄..]− 5

2
[σa(∇σ)2 + .̄..]

}
.

(A.35)

A.1.4 Conformal transformation for the derivation of 4-dim Sanom

In this section, wewill show the conformal transformation of the Gauss-Bonet term (E)

and the Weyl square term (F) , and thus construct the unique conformal invariant operator,

∆4 (without boundary) and 4 (with boundary)
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Comformal transformation of Gauss-Bonet term(E):

√
−gE −

√
−ḡĒ =

√
−g(R2 − 4RabRab + RabcdRabcd)−

√
−ḡ(.̄..) (A.33),(A.31),(A.29)= ...

= 4[
√
−g∇a(Gab∇bσ) + .̄..]− 2[

√
−g∇a(σaσbσb) + .̄..]

+ ε{1
2

[(E − 2
3
�R) + .̄..]σ − 1

18
[R2 − .̄..]− 4[∇a(σaσbσ

b) + .̄..] + 2[
√
−g∇a(σσaσbσb)− .̄..]

+ 4[
√
−g∇a(Gab∇bσ) + .̄..]− 2

[
∇a[Gab(∇bσ)σ]− .̄..

]
− 1

3
[∇a(Rσa) + .̄..] + 1

3
[∇a[(∂aR)σ] + .̄..]}

(A.36)

Comformal transformation of Weyl-Square term(F ):

√
−gF −

√
−ḡF̄ =

√
−g(1

3
R2 − 2RabRab + RabcdRabcd)−

√
−ḡ(.̄..) (A.33),(A.31),(A.29)= ...

= ε

{
1
2

(F + .̄..)σ − 1
18

[R2 − .̄..]− 1
2

[∇a(σaσbσ
b) + .̄..]

}
(A.37)

Comformal transformation of E − 2
3�R:

[
√
−g(E − 2

3
�R)− .̄..]

= 4[
√
−g∇a(Gab∇bσ) + .̄..] + 2

3
[
√
−g∇a(σaR) + .̄..] + 2[

√
−g�2σ + .̄..] + O(ε)

= 2{
√
−g[�2σ + 2∇a(Gab∇bσ) + 1

3
∇a(σaR)] + [.̄..]}+ O(ε)

= 2[
√
−g∆4σ + .̄..] + O(ε) (A.38)

where∆4 := �2+2Rµν∇µ∇ν− 2
3R�+ 1

3(∇µ)∇µ. Therefore, a (exactly) 4-dim conformal

invariant (withour boundary) operator ∆4 can naturally be found.

Similar to 2-dim, by considering the conformal transformation of E together with its

corresponding boundary term EB, we can have:

{[∫
d4x
√
−g(E − 2

3
�R)−

∫
d3x
√
−γ

(
∇a(naEB)− 2

3
∇ananb∇bR

)]
− .̄..

}
= 2[

∫
d4x
√
−g(∆4σ −∆B

4 σ) + .̄..] + O(ε)

:= 2[
∫

d4x
√
−gL4σ + .̄..] + O(ε) (A.39)
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where L4 := ∆4 −∆B
4 and

∆B
4 := {

[
∇ananb∇b� + �∇ananb∇b −

(
∇ananb∇b

)2
]

+ 2
[
∇ananbGc

b∇c +∇aGa
bnbnc∇c −∇ananbGbcn

cnd∇d

]
+ 1

3
(
∇anaRnb∇b

)
}

(A.40)

A.2 Derivation of Trace anomaly from Sdiv

Derive the 2-dim trace anomaly:

(A.19)⇒ 1√
−g

[
√
−ḡR̄−

√
−gR] = −σεR +∇a[...] + O(σ2; ε)

⇒ 2√
−g

gµν δ

δgµν

∫
dnx
√
−gR|σ=0

(4.99)= 1√
−g

δ

δσ

∫
dnx
√
−gR|σ=0 = −(D − 2)R

(A.41)

where ε = n− 2.

Derive the 4-dim trace anomaly:

1√
−g

[
√
−ḡR̄2 −

√
−gR2]

(A.33)= 12R�σ + O(σ2; ε) = 12σ�R +∇a[Rσa − σ∇aR] + O(σ2; ε)

= 12σ�R +∇a[...] + O(σ2; ε)

⇒ 2√
−g

gµν δ

δgµν

∫
dnx
√
−gR2|σ=0

(4.99)= 1√
−g

δ

δσ

∫
dnx
√
−gR2|σ=0 = 12�R

(A.42)

1√
−g

[
√
−ḡĒ2 −

√
−gE2]

(A.36)= −ε√
−g
{1

2
[
√
−g(E − 2

3
�R) + .̄..]σ − 1

18
[
√
−gR2 − .̄..]}+∇a[...] + O(σ2; ε2)

= −ε{(E − 2
3
�R)σ + 12

18
σ�R}+∇a[...] + O(σ2; ε2) = −εσE +∇a[...] + O(σ2; ε2)

⇒ 2√
−g

gµν δ

δgµν

∫
dnx
√
−gE|σ=0

(4.99)= 1√
−g

δ

δσ

∫
dnx
√
−gE|σ=0 = −εE (A.43)
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1√
−g

[
√
−ḡF̄ −

√
−gF ]

(A.37)= −ε√
−g
{1

2
[
√
−gF + .̄..]σ − 1

18
[
√
−gR2 − .̄..]}+ ε∇a[...] + O(σ2; ε2)

= −ε√
−g
{1

2
[
√
−gF + .̄..]σ + 12

18
σ�R}}+ ε∇a[...] + O(σ2; ε2)

⇒ 2√
−g

gµν δ

δgµν

∫
dnx
√
−gF |σ=0

(4.99)= 1√
−g

δ

δσ

∫
dnx
√
−gF |σ=0 = −ε(F + 2

3
�R)

(A.44)

where ε = n− 4.
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Appendix B

There is no unique conformal vacuum

for 1 + 1 dim, bounded spacetime

WLOG we start with a flat spacetime covered by the ”Minkowski” coordinate (t, x)

which is bounded by 2 timelike hyperspace x = 0 and x = 1. Next we first assume that

there exists another conformally related, orthogonal coordinate (w, s) satisfies

−dt2 + dx2 = c2(w, s)(−dw2 + ds2) (B.1)

and we require the two boundaries in this frame now are corresponding to s = 0 and s = 1

individually, that means:


x = 0⇔ s = 0

x = 1⇔ s = 1
(B.2)

Let us consider (t, x) in terms of (w, s) as:


t = t(w, s)

x = x(w, s)
, (B.3)
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and thus the boundaries conditions becomes:

Eq.(B.2)⇒


x(w, 0) = 0

x(w, 1) = 1
. (B.4)

By substituting the coordinate transformation relations


dt = ∂wtdw + ∂stds

dx = ∂xtdw + ∂sxds
(B.5)

into line element and compare the result with the assumption Eq.(B.1) in the beginning,

we get

− dt2 + dx2

= [−(∂wt)2 + (∂wx)2]dw2 + [−(∂st)2 + (∂sx)2]ds2 + 2(−∂wt∂st + ∂wx∂sx)dwds

= c2(w, s)(−dw2 + ds2) (B.6)

and thus the constraints:

− (∂wt)2 + (∂wx)2 = (∂st)2 − (∂sx)2 (B.7)

∂wt∂st = ∂wx (B.8)

From Eq.(B.7) and Eq.(B.8), we can derive the following relations:

Eq.(B.7) Eq.(B.8)⇒ −(∂wt)2︸ ︷︷ ︸
=( ∂sx

∂st
∂wx)2

+(∂wx)2 = (∂st)2 − (∂sx)2

⇒ [−(∂sx

∂st
)2 + 1](∂wx)2 = (∂st)2 − (∂sx)2

⇒ [−(∂sx)2 + (∂st)2](∂wx)2 = [(∂st)2 − (∂sx)2](∂st)2

as((∂st)2−(∂sx)2)̸=0=⇒ (∂sx) = ±(∂st) (B.9)
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Eq.(B.8)⇒ ∂wt

∂st
= ∂wx

∂st

Eq.(B.9)= ±1 (B.10)

⇒


∂wt = ±∂sx

∂wx = ±∂st
(B.11)

⇒ ∂2
wx = ±∂w∂st = (±)2︸ ︷︷ ︸

=1

∂2
wx⇒ (∂2

w − ∂2
s )x = 0 (B.12)

Finally, we can write down the general expression for x:

⇒ x =
∫

dkB±(k)eikse±iks +
∫

dlD±(l)elwe±ls + A0ws + A1s + A2w + A3 (B.13)

and then by using boundary condition


x(w, 0) = 0⇒ A2 = A3 = 0

x(w, 1) = 1⇒ A1 = 1, A0 = 0
(B.14)

we can get the solution of x in terms of (w, s)

⇒ x = s +
∞∑

n=−∞
αn sin(nπs)einπw, (B.15)

where αn = −α∗
−n.

By substitute the solution into Eq.(B.11), we can derive the relation:


∂sx = 1 +∑

n αn · nπ · cos(nπs)einπw = ±∂wt

∂wx = ∑
n αn · inπ · sin(nπs)einπw = ±∂st

(B.16)

and thus get the solution of t as

t = t0 + w +
∑

n

= idn cos(nπs)einπw, (B.17)

where WLOG we consider (+) case.
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Finally, we find the general solutions of (t, x) in terms of (w, s):


x = s +∑∞

n=−∞ αn sin(nπs)einπw

t = s +∑∞
n=−∞−iαn cos(nπs)einπw

. (B.18)

Therefore, we concluded that for the bounded flat spacetime, there exists infinite choices

of orthogonal coordinate and thus infinite choices of conformal vacua! 1

Substitute Eq.(B.18) in to the line element,

−dt2 + dx2 = [(∂wt)2 − (∂wx)2](−dw2 + ds2)

= [(1 +
∑

n

αn · nπ cos(nπs)einπw)2 − (
∑

n

αn · inπ · sin(nπs)einπw)2

︸ ︷︷ ︸
≡c2(w,s)

](−dw2 + ds2)

(B.19)

we can solve c2 in terms of (w, s).

1According to this, we can easily generalise our result here to any 1 + 1 dim conformally flat spacetime.
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Appendix C

Hermitian Property of the Conformal

Invariant Operator L
f
2 and L

f
4

C.1 Proof of Hermitian Operator Lf
2

In this section, we will show that after taking boundary into consideration, Lf
2 is a

hermitian operator which is an important property during the derivation of Sanom.

Recall the definition: Lf
2 := �−�Bf , where �Bf := ∇afnanb∇b.

WLOG we will assume nana = 1 through the following derivation:

∫
M

d2x
√
−g (h�g − g�h) =

∫
M

d2x
√
−g∇a (h∇ag − g∇ah) =

∫
∂M

d1x
√

γnb (h∇bg − g∇bh)

=
∫

∂M
d1x
√

γf
(
nanb

)
nb (h∇bg − g∇bh) =

∫
M

d2x
√
−g∇a

(
fnanbh∇bg

)
−∇a

(
fnanbg∇bh

)
=
∫

M
d2x
√
−gh∇afnanb∇bg + f (∇ah) nanb (∇bg)− g∇afnanb∇bh− f (∇ag) nanb (∇bh)

=
∫

M
d2x
√
−g

(
h∇afnanbg − g∇afnanb∇bh

)
(C.1)

Therefore, we know that

∫
M

d2x
√
−g

(
hLf

2g − gLf
2h
)

=
∫

M
d2x
√
−g (h�g − g�h)−

∫
M

d2x
√
−g

(
h∇afnanbg − g∇afnanb∇bh

)
= 0

(C.2)
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and thus show that Lf
2 is a Hermitian operator.

C.2 Proof of Hermitian operator Lf
4

In this section, we will show that with boundary, Lf
4 is a hermitian operator. The

operator Lf
4 is defined as Lf

4 := ∆4 −∆Bf
4 , where

∆4 := �2

...(I)
+ 2∇a

(
Gab∇b

)
...(II)

+ 1
3
∇a (R∇a)

...(III)
, (C.3)

and the operator ∆Bf
4 is defined as:

∆Bf
4 := {

[
∇afnanb∇b� + �∇afnanb∇b −

(
∇afnanb∇b

)2
]

+ 2
[
∇afnanbGc

b∇c +∇afGa
bnbnc∇c −∇afnanbGbcn

cnd∇d

]
+ 1

3
(
∇afnaRnb∇b

)
}

(C.4)

Let us prove Lf
4 is a hermitian operator step by step by considering following operators:

(I): Now let show�2−[∇fnn∇�+�∇fnn∇−(∇fnn∇)2] is a Hermitian operator:
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∫
M

d4x
√
−g

[
h�2g − g�2h

]
(C.6)=

∫
M

d4x
√
−g [∇a (h∇a�g)− (h↔ g)]− {∇a [(∇ah)�g]− (h↔ g)}+ [(�h) (�g)− (h↔ g)]

=
∫

∂M
d3x
√

γ {[nah∇a�g − (h↔ g)]− [na (∇ah) (�g)− (h↔ g)]}

=
∫

∂M
d3x
√

γ
{
f (nana)

[
nbh∇b�g − (h↔ g)

]
− f (nana)

[
nb (∇bh)�g − (h↔ g)

]}
=
∫

M
d4x
√
−g

{[
∇a

(
fnanbh∇b�g

)
−∇a (fnanb (∇bh) (�g))

]
− (h↔ g)

}
=
∫

M
d4x
√
−g{[h∇afnanb∇b�g + (∇ah) fnanb∇b�g − (∇ah) fnanb∇b�g

−
(
∇afnanb∇bh

)
(�g)︸ ︷︷ ︸

=(C.11)

]− (h↔ g)}

=
∫

M
d4x
√
−g{

[
h∇afnanb∇b�g − (h↔ g)

]
−
[(
∇afnanb∇bh

) (
∇cfncnd∇dg

)
− (h↔ g)

]
−
[
g�

(
∇cfncnd∇dh

)
− (h↔ g)

]
+
[
g∇afnanb∇d

(
∇cfncnd∇dh

)
− (h↔ g)

]
}

=
∫

M
d4x
√
−g{

[
h∇afnanb∇b�g − (h↔ g)

]
+
[
h�

(
∇cfncnd∇dg

)
− (h↔ g)

]
−
[
h∇afnanb∇b

(
∇cfncnd∇dg

)
− (h↔ g)

]
}

=
∫

M
d4x
√
−g

{
h
[
∇afnanb∇b� + �∇cfncnd∇d −∇afnanb∇b

(
∇cfncnd∇d

)]
g − (h↔ g)

}
(C.5)

where we used the following relations:

h�2g = ∇a (h∇a�g)− (∇ah) (∇a�g) = ∇a (h∇a�g)−∇a [(∇ah)�g] + (�h) (�g)

(C.6)

∫
M

d4x
√
−g∇a

[(
nanb∇bh

) (
∇cfncnd∇dg

)]
=
∫

∂M
d3x
√

γ

(nana)︸ ︷︷ ︸
=1

nb∇bh

 (∇cfncnd∇dg
)

=
∫

M
d4x∇b

[(
∇bh

) (
∇cfncnd∇dg

)]
=
∫

M
d4x
√
−g (�h)

(
∇cfncnd∇dg

)
+
(
∇bh

) (
∇cfncnd∇dg

)
(C.7)
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∫
M

d4√−g∇a

[
nanbh∇b

(
∇cfncnd∇dg

)]
=
∫

∂M
d3x
√

γ (nana) nbh∇b

(
∇cfncnd∇dg

)
=
∫

M
d4x
√
−g∇b

[
h∇b

(
∇cfncnd∇dg

)]
=
∫

M
d4x
√
−g

[
(∇bh)∇b

(
∇cfncnd∇dg

)
+ h�

(
∇cfncnd∇dg

)]
(C.8)

∫
M

d4x
√
−g

(
∇afnanb∇bh

) (
∇cfncnd∇dg

)
=
∫

M
d4x
√
−g

{
∇a

[
f
(
nanb∇bh

) (
∇cfncnd∇dg

)]
− f

(
nanb∇bh

)
∇a

(
∇cfncnd∇dg

)}
=

∫
M

d4x
√
−g∇a

[(
nanb∇bh

) (
∇cfncnd∇dg

)]
︸ ︷︷ ︸

(C.7)
=
∫

M
d4x

√
−g[(�h)(∇cfncnd∇dg)+(∇bh)∇b(∇cfncnd∇dg)]

−
∫

M
d4x
√
−g∇a

[
fnanbh∇b

(
∇cfncnd∇dg

)]
︸ ︷︷ ︸

(C.8)
=
∫

M
d4x

√
−g[(∇bh)∇b(∇cfncnd∇dg)+h�(∇cfncnd∇dg)]

+
∫

M
d4x
√
−gh∇afnanb∇b

(
∇cfncnd∇dg

)
(C.9)

∫
M

d4x
√
−g

[
(�h)

(
∇cfncnd∇dg

)]
(C.7)=

∫
M

d4x
√
−g

(
∇afnanb∇bh

) (
∇cfncnd∇dg

)
− h∇afnanb∇b

(
∇cfncnd∇dg

)
(C.10)

(
∇afnanb∇bh

)
(�g) (C.11)=∫

M
d4x
√
−g

{(
∇afnanb∇bh

) (
∇cfncnd∇dg

)
+ g�

(
∇afnanb∇bh

)
− g∇afnanb∇b

(
∇cfncnd∇dh

)}
.

(C.11)

Therefore, we have shown that

∫
M

d2x
√
−g

{
h
[
�2 − [∇fnn∇� + �∇fnn∇− (∇fnn∇)2]

]
g − (h↔ g)

}
= 0

(C.12)
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and thus �2 − [∇fnn∇� + �∇fnn∇− (∇fnn∇)2] is a Hermitian operator.

(II): Next consider the operator∇aGab∇b−(∇fnnG∇+∇fGnn∇−∇fnnGnn∇):

By calculating

∫
M

d4x
√
−g

 h∇a

(
Gab∇bg

)
︸ ︷︷ ︸

=∇a(hGab∇bg)−(∇ah)Gab(∇bg)

− (h↔ g)

 =
∫

M
d4x
√
−g

[
∇a

(
hGab∇bg

)
− (h↔ g)

]

=
∫

∂M
d3x
√

γ
[(

nahGab∇bg
)
− (h↔ g)

]
a→b→c=

∫
∂M

d3x
√

γ
[(

nahGbc∇cg
)
− (h↔ g)

]
=
∫

∂M
d3x
√

γ
[
(nana) nbhGc

b∇cg − (h↔ g)
]

=
∫

M
d4x
√
−g

[
∇a

(
fnanbhGc

b∇cg
)
− (h↔ g)

]
(C.15)=

∫
M

d4x
√
−g{

[
h∇a

(
fnanbGc

b∇cg
)
− (h↔ g)

]
−
[
g∇c

(
fGc

bn
bna∇ah

)
− (h↔ g)

]
+
[
g∇afnanbGbcn

cnd∇dh− (h↔ g)
]

+
[
f (∇ag) nand (∇dh)

(
nbGbcn

c
)
− (h↔ g)

]
}

=
∫

M
d4x
√
−g

[(
h∇afnanbGc

b∇cg + h∇afGa
bnbnc∇cg − h∇afnanbGbcn

cnd∇dg
)
− (h↔ g)

]
(C.13)

where we used the following relations:

∫
M

d4x
√
−g∇c

[
(∇ah) fnanbGc

bg
]

=
∫

∂M
d3x
√

γ
(
ndnd

)
fnc (∇ah) nanbGc

bg =
∫

M
d4x
√
−g∇d

[
fndnc (∇ah) nanbGbcg

]
=
∫

M
d4x
√
−g

[
(∇dg) (∇ah) fnandnbGbcn

c + g∇dfndncGbcn
bna∇ah

]
(C.14)

∫
M

d4x
√
−g

(
fnanbhGc

b∇cg
)

=
∫

M
d4x
√
−g

h∇a

(
fnanbGc

b∇cg
)

+ (∇ah)
(
fnanbGc

b∇cg
)

︸ ︷︷ ︸
=
∫

M
d4x

√
−g{∇c[(∇ah)fnanbGc

b
g]−g∇c[fGc

b
nbna(∇ah)]}


(C.14)=

∫
M

d4x
√
−g{h∇a

(
fnanbGc

b∇cg
)

+ (∇dg) (∇ah) fnandnbGbcn
c + g∇dfndncGbcn

bna∇ah

− g∇c

[
fGc

bn
bna (∇ah)

]
} (C.15)

105



doi:10.6342/NTU201603464

Therefore, we know that

∫
M

d2x
√
−g

{
h
[
∇aGab∇b − (∇fnnG∇+∇fGnn∇−∇fnnGnn∇)

]
g − (h↔ g)

}
= 0

(C.16)

and thus ∇aGab∇b − (∇fnnG∇+∇fGnn∇−∇fnnGnn∇) is a Hermitian operator.

(III): Similarly, by calculating

∫
M

d4x
√
−g

 h∇a (R∇ag)︸ ︷︷ ︸
=∇a(hR∇ag)−R(∇ah)(∇ag)

−g∇a (R∇ah)

 =
∫

M
d4x
√
−g [∇a (hR∇ag)− (h↔ g)]

=
∫

∂M
d3x
√

γ
[
nbhR∇bg − (h↔ g)

]
=
∫

∂M
d3x
√

γ
[
(nana) nbhR∇bg − (h↔ g)

]

=
∫

M
d4x
√
−g

 ∇a

(
fnanbRh∇bg

)
︸ ︷︷ ︸

=h∇afnaRnb∇bg+f(∇ah)naRnb(∇bg)

− (h↔ g)


=
∫

M
d4x
√
−g

[
h∇afnaRnb∇bg − (h↔ g)

]
, (C.17)

we can find that ∇aR∇a − [∇afnaRnb∇b] is a hermitian operator

By combining the results from (I), (II), (III) above, we proved that Lf
4 is a hermitian

operator.
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