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摘摘摘要要要

本論文所探討的主題是有伴奏歌唱錄音的旋律分析以及歌詞分析。

為了有效進行此分析，本論文提出一種獨特的概似模型作為方法的

核心，它巧妙地結合了聲學語音學的知識以及實際蒐集而得的資料。

此模型的基本要素是一套音色吻合度以及發聲狀態吻合度的量化評

估方式，可為任一候選基本頻率（基頻）或者候選母音／發聲狀態

進行評分。音色吻合度意指某個基頻值的諧波振幅序列所呈現之音色

與參考音色之間的相似程度，而參考音色的定義則來自一小組歌聲音

色範例。為特定基頻估算音色吻合度時，需要對所有音色範例進行基

頻的修改，本論文提出的修改方式利用聲學語音學的模型，將修改前

的聲帶波形以及共振峰頻率予以保留。此一概似模型在發聲狀態的部

份，對弦波進行偵測、追蹤以及刪減的處理，以便在估計歌聲音量的

同時，將伴奏的干擾減至最低。最後基頻或音節的估計值，是由概似

模型與事前的順序模型共同決定。在使用多個資料集進行系統測試之

前，此方法所涉及的所有數值參數均已完成最佳化，且使用的是數個

不與測試資料有任何重複的發展資料集。對照實驗顯示，音色吻合度

的使用與否，會在整體旋律正確率上面造成 13%的差距，同時也會在

平均標準化歌詞對齊誤差上面，造成 7%的差距。

關關關鍵鍵鍵詞詞詞：旋律抽取、歌詞對齊、歌聲、聲學語音學、基頻修改、聲帶

波形、共振峰頻率。
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Abstract

This dissertation addresses melodic and lyrics analysis of accompanied

singing recordings. Central to my approach are likelihood models that in-

tegrate acoustic-phonetic knowledge and real-world data. These models are

based on a timbral fitness score and a voicing fitness score evaluated for each

fundamental frequency (F0) or vowel/voicing candidate. Timbral fitness is

measured for the partial amplitudes of an F0 value, with respect to a small set

of vocal timbre examples. This F0-specific measurement of timbral fitness

depends on an acoustic-phonetic F0 modification of each timbre example,

which preserves glottal pulse shape and formant frequencies. In the voic-

ing part of the likelihood models, sinusoids are detected, tracked, and pruned

to give loudness values that minimize interference from the accompaniment.

A final F0 or syllable estimate is determined by a prior sequential model in

addition to the likelihood model. The numerical parameters involved in my

approach were optimized on several development sets from different sources

before the system was evaluated on multiple test sets separate from these de-

velopment sets. Controlled experiments show that use of the timbral fitness

score accounts for a 13% difference in overall melodic accuracy, and a 7%

difference in average normalized lyrics alignment error.

Keywords: melody extraction, lyrics alignment, singing voice, acoustic pho-

netics, F0 modification, glottal pulse shape, formant frequency.
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Chapter 1

Introduction

1.1 Motivation

Music lovers have always been faced with a large collection of music recordings or con-

cert performances for them to choose from. Whereas successful choices are possible with

a small set of metadata, disappointment recurs because the metadata only provides limited

information about the musical content. This has motivated researchers to work on systems

that index music databases by extracting such essential musical features as melodies and

chords from audio recordings. Arguably, processing such as this should mimic human

music listening and could thus enable machines to make personalized music purchase

decisions on behalf of humans.

Songs typically come with words. The lyrics of a song determine how the song is

performed in terms of phonetic articulation, and shape the timbral variations perceived

by those who listen to the performance. The rhythm in which words and syllables in the

lyrics are sung is highly variable, both within a song and between different songs—Some

syllables are short because they are assigned to a short musical note; others are long, asso-

ciated with a long note or multiple notes; and the tempo adds to the uncertainty in timing.

This variability in rhythm makes it appealing to display lyric syllables synchronously in

karaoke applications, or synchronized lyric lines or words as a visual augmentation to

song playback. Furthermore, rhythm of lyrics could be used as a feature in music infor-

mation retrieval in place of the ordinary rhythm of musical notes. Nevertheless, rhythmic

information such as this is typically lacking in commercial distributions of lyrics.

1



Figure 1.1: Intervals plotted on the time axis for the syllables in the phrase “syllable

alignment.” Vertical dotted lines mark the boundaries of these syllables. Each syllable is

composed of a nucleus in black and possibly a consonant in grey preceding or following

the nucleus.

1.2 Objective

In this dissertation, we focus on two specific tasks in the analysis of accompanied singing

audio. One task is the extraction of vocal melodies from polyphonic audio signals. A

melody is defined as a temporal process of variations in fundamental frequency (F0) that

realizes motions from one musical pitch to another; as one might expect, melodies repre-

sent one of the most significant features that can be identified by listeners from musical

pieces. Vocal melodies are of particular interest owing to the importance of vocal music in

various musical cultures. By limiting the considered musical form to the common one of

a solo singing voice accompanied by musical instruments, I propose a method for finding

the F0 of the singing voice as a function of time while taking advantage of the timbral

distinction between vocals and instruments.

The other task is automatic extraction of lyrics rhythm from accompanied singing

audio, i.e., alignment of lyrics text with the audio. The aligned textual units in the lyrics

can be syllables, words, phrases, or lines. The desired results of alignment consist of onset

and offset time positions of each aligned unit. This is illustrated in Fig. 1.1 for alignment

of lyric syllables.

2



1.3 Previous Approaches

1.3.1 Knowledge-Based Approaches

Results in psychoacoustics and musical acoustics inspired some researchers to propose

methods that to some extent either imitate human auditory processing for melodies, or

take advantage of acoustic characteristics of musical instruments and singing voice. Goto

[10] measured the dominance of each F0 candidate by its harmonic strength in mid- and

high-frequency regions and enforced temporal continuity in the F0 variations; technically,

the harmonic strength derives from fitting a mixture of harmonic-structure tone models

to the short-time audio spectrum, and the continuous F0 contours are tracked by multiple

agents. Sutton [29] exploited F0 instability and high-frequency dominance to identify

vocal F0s. Durrieu et al. [5] let the leading vocal part be represented by a source/filter

model. Dressler [4] devised an approach where the predominant melody is tracked by

an auditory streaming model that favors unstable, high-magnitude F0 contours. Hsu et

al. [13] extracted the relative extents of vibrato and tremolo from each partial as features

for classifying vocal and instrumental partials, and implemented F0 continuity by deter-

mining a sequence of tight ranges for the vocal F0. Tachibana et al. [30] used instability

in F0 and intensity as well as shortness in duration to enhance melodic components. Sala-

mon and Gómez [27] identified melodic F0s by vibrato or high magnitude. Joo et al. [17]

considered vibrato extent in constructing melody lines.

Some approaches in the lyrics alignment literature make use of musical or linguistic

knowledge. Iskandar et al. [14] set an alignment time unit to a minimum note duration

determined from the tempo of a song. Wong et al. [31] aligned tonal contours and non-

uniform rhythms in the lyrics with melodies and onsets in the audio by dynamic time

warping. Kan et al. [18] performed beat tracking and set their alignment time unit to one

beat. To locate chorus sections, they detected repeated sections with chroma features.

From a structural audio segmentation of a popular song, Lee and Cremer [20] identified

the chorus and verse sections by measuring an audio similarity between instances of the

same section type, and aligned them with manually labeled lyric sections by dynamic pro-

gramming. Fujihara et al. [9] attempted to enhance the alignment of unvoiced consonants

in the lyrics with the audio by detecting fricative sounds in their specific frequency bands.

Mauch et al. [22] addressed a closely related task, where timings in the audio signal are

estimated for paired chords and lyric words from a song book.

3



1.3.2 Data-Driven Approaches

Relatively few approaches in the melody extraction literature take advantage of data in

acoustic modeling. Ellis and Poliner [6] took a purely data-driven approach, letting the

difference between melodic and non-melodic F0s be learned by support vector machine

from a labeled set of training data. Hsu et al. [13] collected data for vocal and instru-

mental partials and trained 2 Gaussian mixture models for the 2-way classification. Joo

et al. [17] modeled the timbre of melodic source by a set of partial amplitude examples,

which is derived from k-means clustering of partial amplitude data points extracted from

monophonic audio data.

The apparent diversity in vocal timbre among singers makes it a natural choice to take

advantage of human voice data in singing voice modeling. Iskandar et al. [14] used speech

data and pop song data to build their phoneme likelihood model, and estimated the proba-

bility distribution of syllable durations from pop song data to constrain a Viterbi alignment

of lyrics. In the lyrics alignment system of Wong et al. [31], singing voice detection was

performed by a multi-layer perceptron trained with vocal and non-vocal onset data. To

train hidden Markov models for vocal segment classification in their lyrics alignment sys-

tem, Kan et al. [18] used vocal and non-vocal segment data. They also used lyric-line

duration data to estimate the prior-mean durations of phonemes in singing, which were

then used to calculate a duration estimate for each input lyric line. Mesaros and Virta-

nen [24] built phoneme likelihood models with speech and unaccompanied singing data.

In the lyrics alignment system of Fujihara et al. [9], predominant melodic source data was

extracted from popular songs to train Gaussian mixture models for vocal activity detec-

tion. They also used speech, singing, and separated singing data to build their phoneme

likelihood models. In the aforementioned approaches where both speech and singing data

is used for phoneme likelihood modeling, speech data is used in training Gaussian mixture

models before the models are adapted to a small amount of singing data.

1.3.3 Source Separation Techniques

Some existing approaches to melody extraction make use of techniques from single-

channel source separation to isolate the desired sound source from the analyzed audio.

Durrieu et al. [5] adapted non-negative matrix factorization to the decomposition of audio

spectra into a predominant pitched source and an accompaniment. In melodic compo-

nent enhancement, Tachibana et al. [30] processed instability and shortness by applying a

harmonic/percussive separation algorithm to the audio in 2 passes with different window

lengths. The first pass of this enhancement technique was adopted as a preprocessing step
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in [13].

To isolate the singing voice from the analyzed audio, use of techniques from audio

source separation is also made by some approaches to lyrics alignment. Wong et al. [31]

used the central panning of singing voice in a stereo recording to enhance the vocal sig-

nal before alignment. Mesaros and Virtanen [24] aligned lyrics with separated vocal

signals, where the separation was based on a reconstruction of accompaniment. They

performed the reconstruction by applying non-negative matrix factorization to vocal-free

time-frequency regions determined from an estimated vocal melody. The voice signal

with which Fujihara et al. [9] aligned lyrics was resynthesized from partial frequencies

and amplitudes extracted from accompanied singing according to an estimated predomi-

nant melody.

1.3.4 Comparison

For both of the tasks addressed in this dissertation, there has been no research in the liter-

ature that explores the use of physical models from acoustic phonetics. Physical models

of voice production are closely related to singing: A formant filter model of the vocal

tract can represent various vowels sung by a singer [7], and glottal pulse shape models

are relevant both to falsetto singing [28] and to personal voice quality. Although the

source/filter model is an essential element in most acoustic-phonetic models, the filter

model used in [5] is not constrained around a formant structure or specific vowel types,

and their source model represents a single fixed voice quality.

Dependence of an approach to melody extraction on acoustic phonetics would most

likely preclude its potential for instrumental melody extraction; still, I show in this dis-

sertation how acoustic-phonetic models can provide a mechanism for timbre-preserving

F0 modification of singing voice, thereby alleviating the problem of sparse pitch cov-

erage commonly encountered in data-driven approaches to singing voice modeling. In

my implementation, acoustic-phonetic F0 modification expands a small 84-sample set

of vocal timbre examples by a factor of 88. In contrast, the existing data-driven ap-

proaches [6, 13, 17] apply a supervised or unsupervised learning procedure to a large

audio data set composed of vocal and instrumental sound sources.

In each of the above-mentioned approaches that fit Gaussian-mixture phoneme mod-

els to human voice data, one attempts to eliminate the effect that an unknown vocal fun-

damental frequency (F0) has on timbre modeling, by extracting Mel-frequency cepstral

coefficients (MFCCs) as a representation of the vocal spectrum envelope. The actual qual-

ity of this representation depends on the specific distribution of vocal F0 in the analyzed
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human voice. Since singing presents a much larger vocal pitch range than does speech, it

could be difficult for the success of MFCCs in automatic speech recognition to generalize

to lyrics alignment. In contrast, the wide range of vocal F0 in singing can be handled by

a basic F0 parameter in a physical model of voice production. In this dissertation, I use

a physical model to simulate a vowel timbre at any vocal F0 estimated from the analyzed

audio, thereby circumventing pitch-blind representation of spectrum envelope.

1.4 Contribution

In the present contribution, a vocal F0 is identified at each analysis time position by its

timbral fitness, which is a partial-amplitude similarity between the F0 and a set of vocal

timbre examples. This similarity is based on a Euclidean distance between two partial-

amplitude vectors representing the observed timbre and a vocal timbre example. The

vocal timbre examples compactly represent vocal timbres of different genders, genres,

voice types, and vowel types, but do not sample the vocal pitch range whatsoever. Since

partial amplitudes are specific to an F0, each timbre example needs F0-modifying to the

F0 candidate before being compared to the observation. We perform the F0 modification

by estimating a set of acoustic-phonetic parameters (glottal breathiness, formant frequen-

cies, and distortion) from the example and subsequently resynthesizing the example from

the parameters and a new F0 value set to the candidate. Indeed, this similarity calculation

procedure effectively checks the observed partial amplitudes against the acoustic-phonetic

models used in the F0 modification. This similarity model is complemented by loudness

evaluation for F0 candidates in the complete F0 likelihood model. The evaluation of

loudness is based on detection, tracking, and pruning of sinusoids.

For lyrics alignment, a vocal component in the polyphonic audio is isolated accord-

ing to a vocal F0 sequence estimated from the audio. At each analysis time position, a

lyric vowel can be identified for the vocal component by a timbral fitness of the compo-

nent with respect to the vowel, which is a partial-amplitude similarity between the vocal

component and a set of timbre examples for the vowel. This similarity is based on a Eu-

clidean distance between two partial-amplitude vectors representing the observed timbre

and a vowel timbre example. For each lyric vowel, we have a set of timbre examples that

compactly represent timbres of different genders, genres, and voice types, again without

sampling the vocal pitch range whatsoever. As with vocal melody extraction, each vowel

timbre example is F0-modified to the F0 estimate before being compared to the obser-

vation. The complete vowel likelihood model includes a loudness-based component for

6



voicing detection apart from the similarity model.

In my melody extraction experiments, I verified the effectiveness of this timbral fitness

measure by fitting values of all numerical parameters to 3 labeled development sets, and

evaluating the melody extraction performance on 10 other test sets. Similarly for lyrics

alignment, I used 2 development sets and 2 test sets.

1.5 Structure of the Document

The rest of this dissertation is organized as follows. An F0 modification procedure that

underlies the proposed likelihood models is presented in Chapter 2. Algorithms (includ-

ing the likelihood models) and experiments are detailed in Chapter 3 for vocal melody

extraction and in Chapter 4 for lyrics alignment. Chapter 5 concludes the dissertation.
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Chapter 2

Acoustic-Phonetic F0 Modification of

Vocal Sinusoids

In this chapter, we consider a short-time sinusoidal representation of voiced vocal timbre

that consists of a set of sinusoids, one for each vocal partial. The objective of processing

considered here is to change the F0 of this representation while preserving the underlying

glottal pulse shape and vocal tract transfer function. To this end, we estimate the pulse

shape, formant frequencies, and distortion from the representation, and subsequently syn-

thesize a modified sinusoidal representation according to these estimates and a target F0

value, as shown in Fig. 2.1. When applied to vocal timbre examples for melody extraction

or lyrics alignment, this procedure is performed offline, with a fixed set of vocal timbre

examples modified to a fixed set of F0 values that accommodates all possible results of

vocal melody extraction. Before being used repeatedly in evaluation of timbral fitness in

my experiments, the results of offline F0 modification were human-verified in terms of

fidelity in vocal timbre.

2.1 Model of Human Voice Production

Consider the production of a voiced sound, i.e., a vowel, a nasal, an approximant, etc. In

a quasi-periodic signal representation of the sound, it is approximated by a periodic signal

within each short window, with fundamental frequency f0 (hertz) and partial amplitudes

{al}l (dB). Its production involves a glottal airflow filtered by the vocal tract and radiated

from the lips, which can be modeled as follows [7]:

al = 20log10

∣

∣

∣

∣

∣

aulK(l f0)
5

∏
n=1

Hn(l f0)

∣

∣

∣

∣

∣

+D(l f0), (2.1)
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Figure 2.1: Block diagram for the F0 modification procedure.

l = 1, ...,⌊5000/ f0⌋, (2.2)

where ul denotes the Fourier coefficient of a derivative glottal airflow model g(·) for the

lth partial, a ≥ 0 scales the glottal pulse amplitude, and K(·), Hn(·), and D(·) are defined

in Section 2.1.2. A block diagram for this model is shown in Fig. 2.2.

2.1.1 Glottal Excitation

Derivative of the glottal airflow signal, which represents the radiated glottal airflow, can

be approximated by the transformed Liljencrants-Fant model [8, 21]: For 0 ≤ t < Te,

g(t;T0,Ee,Rd) = E0eαt sin(ωgt); (2.3)

for Te ≤ t ≤ T0,

g(t;T0,Ee,Rd) =−
Ee

εTa
[e−ε(t−Te)− e−ε(T0−Te)], (2.4)

where t denotes the time in seconds, T0 denotes the fundamental period, Ee denotes the

closure excitation magnitude, Rd denotes the pulse shape parameter, and values of the

dependent variables E0, α , ωg, Te, ε , and Ta can be fully determined by the value of

(T0,Ee,Rd). Since T0 and Ee have no influence on the pulse shape, we define a space of

glottal pulse shapes by S = {Rd : 0.3 ≤ Rd ≤ 2.7}. As shown in Fig. 2.3, a greater value

of Rd corresponds to a slower exponential decay in (2.4) [21], and thus to a shorter closed

phase ({t : g(t)≈ 0}) of the glottal pulse and a breathier voice quality. Female voice and

10



Figure 2.2: Model of voice production.

falsetto voice tend to be breathier or more akin to a single-sinusoid pure tone than do male

voice and modal voice [28].

To show the invariance of this pulse shape model to F0, consider the following trans-

formation of time variable and parameters:

t̃ =
t

T0
, (2.5)

T̃e =
Te

T0
, (2.6)

α̃ = T0α, (2.7)

ω̃g = T0ωg, (2.8)

ε̃ = T0ε, (2.9)

T̃a =
Ta

T0
. (2.10)

This gives

g̃(t̃) = E0eα̃ t̃ sin(ω̃gt̃), (2.11)

for 0 ≤ t̃ < T̃e, and

g̃(t̃) =−
Ee

ε̃T̃a

[e−ε̃(t̃−T̃e)− e−ε̃(1−T̃e)], (2.12)

for T̃e ≤ t̃ ≤ 1, which describe a pulse shape invariant to T0.
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Three regression formulas are essential to derivation of the dependent variables E0, α̃ ,

ω̃g, T̃e, ε̃ , and T̃a as functions of (Ee,Rd):

Rd = (1/0.11)[0.5+1.2 · (ω̃gT̃e/π −1)][π(ω̃gT̃e/π −1)/2ω̃g + T̃a], (2.13)

T̃a = (−1+4.8Rd)/100, (2.14)

ω̃gT̃e/π −1 = (22.4+11.8Rd)/100. (2.15)

Formulas (2.14) and (2.15) can be substituted into (2.13) to give an expression for ω̃g,

which in turn gives an expression for T̃e through (2.15). From g̃(T̃e) =−Ee, we have

1− e−ε̃(1−T̃e)

ε̃T̃a

= 1, (2.16)

or equivalently, φ(ε̃) = 0, where

φ(ε̃) = ε̃T̃a −1+ e−ε̃(1−T̃e). (2.17)

Let ε̃+ = 2/T̃a and ε̃− = argminε̃ φ(ε̃). Since φ(ε̃+)> 0 and φ(ε̃−)< 0, the zero of φ(·)

can be found by the bisection method. Continuity of the derivative glottal airflow at t̃ = T̃e

is ensured by

E0 =
−Ee

eα̃T̃e sin(ω̃gT̃e)
. (2.18)

Finally, periodicity of the glottal airflow can be enforced by requiring the definite integral

of derivative airflow to vanish across a fundamental period:

∫ 1

0
g̃(t̃)dt̃ = 0. (2.19)

This leads to an equation in the unknown α̃:

ε̃T̃a[ω̃g cot(ω̃gT̃e)− ω̃ge−α̃T̃e csc(ω̃gT̃e)− α̃] = (α̃2+ ω̃2
g )[ε̃

−1+(T̃e− ε̃−1−1)(1− ε̃T̃a)],

(2.20)

which can be solved with a numerical equation solver.

2.1.2 Vocal Tract Filter

The vocal tract filter is made up of an infinite number of formants. The collective fre-

quency response of formants beyond order five can be approximated by the following

frequency response function [7]:

20 log10 K( f h) = 0.43

(

f h

500

)2

+7.1 ·10−4

(

f h

500

)4

, (2.21)
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f h ≤ 5000, (2.22)

where f h denotes frequency in hertz. Each of the lower formants can be modeled by a

continuous-time filter with a complex-conjugate pair of poles [7]:

Hn( f h) =
1

(

1−
j ·2π f h

σn + jωn

)(

1−
j ·2π f h

σn − jωn

) , (2.23)

n = 1, ...,5, (2.24)

where ωn denotes the frequency of formant n in rad/s, and σn < 0 has magnitude equal to

half the bandwidth of formant n in rad/s. A vocal tract filter for the vowel /O/ is depicted

in Fig. 2.4.

The nth formant bandwidth can be approximated as a function of the corresponding

formant frequency fn =
ωn

2π by a polynomial regression model [11]:

σn =−π(kb +
5

∑
i=1

xi f i
n)[1+0.25 · ( f0 −132)/88], (2.25)

where

kb =

{

15.8, if f0 > 500;

165, otherwise;
(2.26)

x1 =

{

8.10 ·10−2, if f0 > 500;

−0.674, otherwise;
(2.27)

x2 =

{

−9.80 ·10−5, if f0 > 500;

1.81 ·10−3, otherwise;
(2.28)

x3 =

{

5.29 ·10−8, if f0 > 500;

−4.52 ·10−6, otherwise;
(2.29)

x4 =

{

−1.07 ·10−11, if f0 > 500;

7.50 ·10−9, otherwise;
(2.30)

x5 =

{

7.92 ·10−16, if f0 > 500;

−4.70 ·10−12, otherwise.
(2.31)

In addition to models for the glottal excitation and for the oral branch of the vocal

tract, we need a mechanism for modeling the nasal branch of the vocal tract, the room

resonances in recording, and any intended or unintended distortion introduced by the

recording equipment. Our solution is an additional frequency response function, i.e., D(·)

in (2.1), that models the combination of these sources of spectral distortion. Due to the
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inherent uncertainty and complexity in the distortion, we define this frequency response

function numerically as a piecewise-linear function, which is intended as a residual in

source-filter analysis that fills the gap between the human voice recording and the analytic

part of the model.

2.2 Source-Filter Analysis

2.2.1 Formulation

The purpose of this analysis is to estimate from a set of vocal sinusoids (with fundamental

frequency f0 and partial amplitudes {al}l) the glottal pulse shape parameter Rd , formant

frequencies f = ( f1, ..., f5)
T = (ω1

2π , ...,
ω5

2π )
T (hertz), and distortion D(·) defined in Section

2.1. Estimation of Rd and f is formulated as minimization of the sum of squared distortion

values at the partials:

(R̂d, â, f̂) = argmin
(Rd ,a,f)∈S×R+×V

L

∑
l=1

d2
l (Rd,a, f), (2.32)

dl(Rd,a, f) = al −20log10

∣

∣

∣

∣

∣

aulK(l f0)
5

∏
n=1

Hn(l f0)

∣

∣

∣

∣

∣

, (2.33)

where L = ⌊5000/ f0⌋, and V specifies constraints for the formant frequencies:

V=















































f ∈ R
5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

250 ≤ f1 ≤ 1000

600 ≤ f2 ≤ 3000

1700 ≤ f3 ≤ 4100

2500 ≤ f4 ≤ 4500

3000 ≤ f5 ≤ 5500

f0 ≤ f1 ≤ f2 ≤ f3 ≤ f4 ≤ f5















































. (2.34)

Here the constraint f0 ≤ f1 simulates singers’ formant tuning behavior at high pitches

[16].

The estimate defined in (2.32) can be approximated with one of the following discrete

pulse shape values:

rk = 0.1 ·3(k+11)/12 ∈ S, k = 1, ...,25. (2.35)

For each value of k, we calculate the formant frequencies that minimize the objective in

(2.32):

(a(k), f(k)) = argmin
(a,f)∈R+×V

L

∑
l=1

d2
l (rk,a, f). (2.36)
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The final estimate is given by

(R̂d, â, f̂)≈ (rk∗ ,a
(k∗), f(k

∗)), (2.37)

k∗ = argmin
k

L

∑
l=1

d2
l (rk,a

(k), f(k)). (2.38)

The distortion D(·) is constructed as a piecewise-linear function of frequency that

interpolates the minimized distortion values {dl(rk∗ ,a
(k∗), f(k

∗))}L
l=1. Since the latter dis-

tortion values occur at partial frequencies f0,2 f0, ...,L f0, linear interpolation only de-

fines D(·) at frequencies between f0 and L f0. For the frequency intervals [0, f0) and

(L f0,5000], D(·) is defined by a constant value set to d1(rk∗ ,a
(k∗), f(k

∗)) and dL(rk∗ ,a
(k∗), f(k

∗)),

respectively.

2.2.2 Optimization

The accuracy in determining the source and filter parameters depends on how well the

objective in (2.36) is numerically minimized. To be specific, if the discrete pulse shape

value rk is closest to the truth shape value and the minimum of ∑L
l=1 d2

l (rk,a, f) is over-

estimated due to minimization being trapped in a local minimum with respect to a and f,

then rk may very likely turn out not to be selected in (2.38). My numerical experience

revealed that the best of twenty local searches for the minimum defined in (2.36), which

are initialized respectively with twenty different reference points, shows great consistency

in preserving vocal timbre after F0 modification. These reference points differ only in the

oral formant frequencies f1, f2, and f3, with numerical values taken from gender-specific

averages for ten vowels of American English [19]: i, I, E, æ, A, O, U, u, 2, and Ç. Although

each individual search is local by nature and can only be expected to give a local mini-

mum in some neighborhood of the corresponding starting point, the global minimum can

be found as long as it can be reached from one of the twenty initial points.

Local search for the minimum defined in (2.36) may be achieved with any local opti-

mization technique. Here we use a simple coordinate descent algorithm, as represented in

Figure 2.5, where each (all-variable) update consists of a series of one-variable updates.

Each one-variable update minimizes the objective with respect to the updated variable

alone while fixing all the other variables. For instance, the update of formant frequency

f2 in the jth all-variable update operates on the current point

(a j, f
j

1 , f
j−1

2 , f
j−1

3 , f
j−1

4 , f
j−1

5 )T (2.39)
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by computing

f
j

2 = argmin
f2∈I(2)

L

∑
l=1

d2
l

(

rk,a
j,( f

j
1 , f2, f

j−1
3 , f

j−1
4 , f

j−1
5 )T

)

, (2.40)

I(2) = { f2 ∈ R | 600 ≤ f2 ≤ 3000, f
j

1 ≤ f2 ≤ f
j−1

3 }. (2.41)

In my implementation, the subproblem (2.40) is solved by finding a local minimum over a

100-hertz-spaced sampling of f2 around f
j−1

2 . The subproblem for updating the amplitude

a can be solved analytically, as it is equivalent to minimizing a quadratic function of a.

The final numerical solution to the problem (2.36) is refined by continuing the local search

with a 10-hertz spacing of formant frequency sampling.

2.3 Source-Filter Synthesis

With the glottal pulse shape parameter, formant frequencies, and distortion estimated from

the vocal sinusoids as R̂d , f̂, and D(·), respectively, a new set of vocal sinusoids can now be

synthesized with a target fundamental frequency f ′0. Since the pulse shape and the formant

frequencies represent the specific timbre of the original vocal sinusoids, reusing them in

the synthesis would serve the purpose of preserving the vocal timbre. The synthesis is a

straightforward application of the model of human voice production (2.1) to the following

parameter settings:

f0 = f ′0, (2.42)

Rd = R̂d, (2.43)

a = 1, (2.44)

f1 =

{

f̂1, if f̂1 ≥ f ′0;

f ′0, otherwise,
(2.45)

fn = f̂n, n = 2, ...,5, (2.46)

where (2.45) simulates formant tuning [16].
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Figure 2.3: Two glottal pulse shapes in the transformed Liljencrants-Fant model that are

specified by shape parameter values Rd = 0.43 and Rd = 1.08. (a) In the time domain. (b)

In the frequency domain.
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Figure 2.4: Frequency response of a vocal tract filter whose first five formant frequencies

are marked by dotted lines.

Figure 2.5: Each update in the local search for the minimum consists of a series of one-

variable subproblems.
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Chapter 3

Vocal Melody Extraction Based on an

F0 Likelihood Model

The outline of this chapter is as follows. The complete system is summarized in Section

3.1. Section 3.2 presents an acoustic-phonetic model of F0 likelihood, which defines

how likelihood scores of F0 candidates are evaluated for each analysis time position. A

procedure is given in Section 3.3 for constructing the vocal melody from the temporal

evolution of these likelihood scores. Experiments and results are documented in Section

3.4.

3.1 System Overview

A block diagram of the complete system is shown in Fig. 3.1. A vocal melody is extracted

from the accompanied singing signal as a vocal F0 sequence and a set of vocal rests. The

vocal F0 sequence specifies an F0 value for each and every analysis time position, where

a vocal may or may not exist. This sequence is generated by an estimation procedure that

depends on the proposed F0 likelihood model. Vocal rests are detected from the input

signal by locating particular time positions where an F0 estimate implies a low vocal

loudness level.

3.2 Acoustic-Phonetic Model of F0 Likelihood

Let X be an observed continuous random variable, Θ be an unobserved continuous random

variable, and pX |Θ(·|θ) denote the conditional density function of X given Θ = θ . Then
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Figure 3.1: Block diagram of the complete system.

the function LΘ|X(·|x), defined by

LΘ|X(θ |x) = pX |Θ(x|θ) (3.1)

and considered as a function of θ , is called the likelihood function of Θ given X = x. In

this section, I describe a model of the likelihood function of vocal F0. In this model, each

particular F0 value is associated with a sequence of partial amplitudes extracted from the

spectrum of input signal. These partial amplitudes exhibit a specific timbral quality that,

when checked against some vocal timbre examples, indicates how likely the F0 value

gives the true vocal F0. In addition, overall loudness of the partials is also taken into

account in likelihood evaluation so that low-loudness F0 values can be rejected.

Let the N-sample windowed input signal centered at time m be denoted by random N-

vector zm, and let the corresponding quantized vocal F0 be denoted by an integer random

variable wm that measures the distance of the F0 from a reference low frequency in quarter

tones. In quantizing a continuous F0 value to a discrete quarter-tone value, one produces

a quantization error of 25 cents at the maximum, which will be tolerated (with a 25-cent

margin) by an F0 accuracy measure that ignores all F0 errors below 50 cents. We model

the likelihood function of wm with a timbral fitness measure Fh(·) and a loudness measure

Fe(·):

Lwm|zm
(w|z) ∝ Fh(z,w) ·Fe(z,w). (3.2)
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Figure 3.2: Architecture of the F0 likelihood model.

This frame-wise model will give emission probabilities in a hidden Markov model [26].

Since Viterbi search is invariant to an arbitrary scaling factor applied to all the emission

probabilities, here I omit any scaling constant that would be necessary for the likelihood

model to conform with the definition of probability density function. Architecture of this

model is represented in Fig. 3.2.

3.2.1 Timbral Fitness Measure

To define the timbral fitness of F0 value w with respect to input signal z, we calculate

from z a constant-Q magnitude spectrum with quarter-tone-spaced frequency bins [2].

In an effort to simulate the dependency of human loudness perception on frequency, we

correct the magnitude spectrum according to trends in the 40-phon equal-loudness contour

(ELC) [15]:

Az
f = |[CQT{z}] f | ·10(40−κ f )/20, f ∈ I, (3.3)

where CQT{·} denotes the constant-Q transform, I denotes the set of frequency bins, f

denotes the frequency index, and κ f denotes the 40-phon ELC. Among all the frequency

bins, we focus on a set of Nh partial frequencies1 constructed from w:

Iw = {round(w+24log2 l)}Nh

l=1 ⊂ I. (3.4)

1For values of numerical parameters, see Table 3.2.
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The timbral quality exhibited by these partials is compared to Ns vocal timbre examples

to determine its similarity to vocal timbre:

F̄h(z,w) =
1

Ns

Ns

∑
i=1

exp

{

−
ch

Nh
∑
f∈Iw

∆2
i, f

}

, (3.5)

∆i, f = 20log10

Az
f

Ã
(i,w)
f

, (3.6)

where ch is a nonnegative parameter that scales the effect of magnitude deviation on the

likelihood score, and Ã
(i,w)
f denotes a scaled spectrum of the ith vocal timbre example

whose mean magnitude over the partials is aligned with the input signal to factor out

volume level of the input signal:

log10 Ã
(i,w)
f = log10 A

(i,w)
f +

1

Nh
∑

f ′∈Iw

log10

Az
f ′

A
(i,w)
f ′

. (3.7)

Here A
(i,w)
f denotes the ELC-corrected constant-Q magnitude spectrum of the ith vocal

timbre example that has been F0-modified to w with the procedure presented in Chapter

2. Note that
√

∑ f∈Iw
∆2

i, f represents the Euclidean distance between the observed partial-

amplitude vector and the ith example partial-amplitude vector, which is converted to a

similarity score by (the monotonically decreasing portion of) the Gaussian function in

(3.5). The mechanism for comparing the observed timbre to an example is depicted in

Fig. 3.3. A high value of F̄h(z,w) would always imply that w is the true vocal F0 because

its partials exhibit vocal timbre. Nevertheless, a low value of F̄h(z,w) would imply a false

F0 only when few of the partials suffer severe interference from the accompaniment. In

case that some vocal partials should be far from any formant and an unpitched percussion

instrument in the accompaniment should produce strong wide-band noise that interferes

with these partials, the resulting similarity score would still be low. Pitched instruments in

the accompaniment would do far less harm than the unpitched percussion because human

voice is highly unstable in F0 and infrequently forms a nearly harmonic interval with

a pitched instrument that cannot be resolved by my implementation of time-frequency

analysis.

We make two refinements to the basic form F̄h(·):

• Since the F0 one octave above the true vocal F0 could have a high timbral fit-

ness score calculated from the even partials, I attempt to identify the true F0 with

a threshold parameter θh and reduce the score for the wrong F0 with a discount

parameter γh < 1: If F̄h(z,w−24)> θh,

F̃h(z,w) = γh · F̄h(z,w); (3.8)
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Figure 3.3: Timbral comparison to a vocal timbre example.

otherwise,

F̃h(z,w) = F̄h(z,w). (3.9)

• To prevent the comparison in timbral fitness from being dominated by any ex-

tremely high or low fitness value, we define the timbral fitness measure2 Fh(·) by

subjecting F̃h(·) to an upper limit Uh and a lower limit Lh.

Vocal Timbre Examples

I construct the collection of Ns vocal timbre examples (Ns = 84) from 14 recordings of

about 1 minute each. The 14 recordings (from 14 singers) represent 14 distinct types of

singing voice, including 10 recordings of professional (accompanied) singing captured

from YouTube, and 4 recordings of non-professional (unaccompanied) singing from the

MIR-1K data set [12]. From each recording, 6 time positions are selected such that the

person sings 6 vowel types respectively at these time positions, and that no partial of the

vocal suffers significant interference from the accompaniment. For each of the 84 time

positions, I conduct sinusoidal analysis, manually identify the fundamental of the vocal,

and extract the frequencies and amplitudes of the vocal partials up to 5 kHz as one of the

vocal timbre examples. Although selecting qualified time positions from accompanied

singing recordings is time-consuming, these realistic recordings facilitate a collection that

ensures high performance quality and high specificity in voice type and genre.

The 14 types of singing voice are tenor (José Carreras), soprano (Kiri Te Kanawa),

baritone (Dietrich Fischer-Dieskau), mezzo-soprano (Cecilia Bartoli), pop high male voice

2For an example of timbral fitness scores calculated for F0 candidates, see Fig. 3.14.

23



(Terry Lin), pop high female voice (Stella Chang), pop low male voice (Shifeng Luo), pop

low female voice (Inn-Jae Chen), pop nasal male voice (Wakin Chau), pop nasal female

voice (Chiou-Feng Tsai), non-professional high male voice (bobon), non-professional

high female voice (annar), non-professional low male voice (davidson), and non-professional

low female voice (Ani). The “nasal” artists are well-known in Taiwan for nasalizing their

vowels significantly.

The 6 types of voiced sound are /i/, /E/, /A/, /O/, /u/, and a miscellaneous type defined

by /@/, /z
"
/, /ü

"
/, /m

"
/, /n

"
/, or /N

"
/. Each sound in the miscellaneous type does not occur in

all recordings: /@/ is absent in all 4 Taiwanese-language recordings, possibly because it

seldom occurs in the northern speech of the Taiwanese language; the syllabic nuclei /z
"
/

and /ü
"
/ are specific to languages such as Mandarin Chinese; and the nasal hummings, due

to their low loudness, are rarely used in operatic singing.

3.2.2 Loudness Measure

In an attempt to evaluate the loudness of F0 value w with respect to input signal z, we

conduct sinusoid tracking on the spectrum {Az
f } f∈I , thereby generating a binary partition

of the set of frequency bins I. A frequency bin where a sinusoid is detected is called a si-

nusoidal frequency bin, while one where no sinusoid is detected is called a non-sinusoidal

frequency bin. With this partition, we can calculate a sinusoidal power spectrum from z:

Pz
f = (Az

f )
2 ·Sz( f ), f ∈ I, (3.10)

where Sz(·) maps sinusoidal frequency bins to unity and non-sinusoidal frequency bins to

zero. Among all the frequency bins, we focus on a set of Ne partial frequencies constructed

from w:

Jw = {round(w+24log2 l)}Ne

l=1 ⊂ I. (3.11)

The loudness is evaluated by summing sinusoidal power over these partials:

F̄e(z,w) = ∑
f∈Jw

Pz
f . (3.12)

We make two refinements to the basic form F̄e(·):

• To prevent the comparison in loudness from being dominated by any extremely

high or low loudness value, we define function F̃e(·) by subjecting F̄e(·) to an upper

limit Ue and a lower limit Le.

• To scale the effect of loudness on the likelihood score, we define the loudness mea-

sure3 Fe(·) by raising F̃e(·) to the power of ce ≥ 0.

3For an example of loudness values estimated for F0 candidates, see Fig. 3.15.
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Sinusoid Detection

Here I describe a procedure for detecting sinusoids from a constant-Q magnitude spectrum

{Az
f } f∈I . A sinusoid is detected at frequency f ∈ I if the spectrum has a local maximum

at f that is sufficiently prominent:

20 log10 Az
f > θp +

1

2Na +1

f+Na

∑
f ′= f−Na

20log10 Az
f ′
, (3.13)

where θp is a nonnegative parameter that specifies a minimum degree of prominence, and

Na controls the number of frequency bins around f over which an average magnitude

level is calculated.

Sinusoid Pruning

Pruning of detected sinusoids is based on a set of sinusoidal contours on the time-frequency

plane that are produced by tracking the sinusoids over a period of time [23]. In tracking

a sinusoid from one time position to the next, we require that the frequency of sinusoid

should not change by an amount (in quarter tones) exceeding θ j, where the frequency

is estimated by quadratically interpolating the three magnitude values at and next to the

local maximum. In addition, to limit the difference in amplitude of sinusoid between the

two time positions, we require that the ratio between the two amplitude values (the lower

value divided by the higher value, on the linear scale) should exceed a parameter θg < 1.

A sinusoid is removed if the sinusoidal contour to which it belongs has not only a du-

ration (in units of 10 ms) exceeding θd but also a width of frequency range (the difference

between the highest and lowest frequencies in quarter tones) below θr. By pruning sinu-

soids in this fashion, the procedure effectively removes some instrumental components

from the input signal in that human voice does not typically maintain a constant F0 over

a long period of time.

3.3 Vocal Melody Extraction

To estimate the vocal F0 at various time positions in the accompanied singing signal, we

consider an equally spaced sequence of M time positions at intervals of 10 milliseconds.

We assume that the vocal F0 varies continuously with time throughout the duration of

signal, and that vocal rests are short time periods during which the vocal F0 variations

continue with an extremely low loudness. This assumption could be explained by the fact

that the tension in the vocal folds varies continuously with time, even in vocal rests, and
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Figure 3.4: Block diagram for vocal melody extraction.

determines the F0 of voiced sound [32]. Even in the case of a disjunct melodic motion

across a vocal rest, vocal folds with continuous tension would require a sufficiently long

vocal rest to make preparation for the jump. With this assumption, the procedure estimates

an uninterrupted sequence of vocal F0s from the sound mixture. After the estimation,

vocal rests will be detected so as to remove the low-loudness F0s from the final vocal

melody extract, as shown in Fig. 3.4.

3.3.1 Vocal F0 Estimation

In the estimation, vocal F0 is measured as a distance in quarter tones from the frequency

of 21.205 hertz. For each time position m, vocal F0 is represented by a discrete random

variable with 88 possible values, which sample the frequency range of 80–988 hertz4 at

quarter-tone intervals: wm ∈ {46,47, ...,133}. This quantization makes it possible for us

to describe the joint distribution of the vocal F0 sequence and the accompanied singing

signal with an 88-state hidden Markov model (HMM) [26]. Once the likelihood scores of

all the F0 candidates are calculated for all the time positions according to the F0 likelihood

model presented in Section 3.2, the vocal F0 sequence can be estimated by maximizing

the posterior probability of state sequence with the Viterbi algorithm, as shown in Fig. 3.5.

The F0 sequence given by the Viterbi search can be refined by considering the pitch

range width of a singer, as shown in Fig. 3.6. We assume that this width (in quarter tones)

never exceeds a parameter Wr < 88, and construct an F0 range from the unrefined F0

4According to the New Harvard Dictionary of Music, the range from the lowest pitch of bass to the

highest pitch of soprano is E2–A5, or 82.4–880.0 hertz.
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Figure 3.5: Block diagram for vocal F0 estimation.

Figure 3.6: Block diagram for F0 selection.

sequence. The range (with width Wr) is constructed by placing its center at the median

of the unrefined F0 sequence. With the F0 range constructed, the F0 sequence is refined

by repeating the Viterbi search with all likelihood scores for F0s outside this range set to

zero.

We use a Markov chain {wm}
M
m=1 to model the vocal F0 sequence:

P(w1, ...,wM) = P(w1)P(w2|w1)P(w3|w1,w2) · · ·

P(wm|w1, ...,wm−1) · · ·

P(wM|w1, ...,wM−1) (3.14)

= P(w1)
M

∏
m=2

P(wm|wm−1). (3.15)
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The equality in (3.15) results from the Markovianity that given the previous F0 wm−1, the

current F0 wm is independent of all the earlier F0s wm−2,wm−3, ...,w1. The initial state

distribution is assumed to be uniform over all possible F0 values:

P(w1 = w) =
1

88
, ∀w ∈ {46,47, ...,133}. (3.16)

As shown in Fig. 3.7, the state transition probability distribution constrains each vocal F0

to stay within 1 quarter tone of the previous F0:

P(wm = w|wm−1 = w′) = pw′−45,w−45, (3.17)

pi, j =















































1
vp+1

, if (i, j) = (1,1),(88,88)

vp

vp+1
, if (i, j) = (1,2),(88,87)

1
2vp+1

, if 2 ≤ i = j ≤ 87

vp

2vp+1
, if 2 ≤ i ≤ 87 and j = i±1

0, otherwise,

(3.18)

where vp > 0 controls the tendency for the vocal F0 to deviate from the previous F0. When

the previous F0 is not at the boundary of the vocal pitch range, there are 3 F0 values around

the previous F0 that are assigned a nonzero probability for the current F0. When the

previous F0 is at the boundary, only the same F0 value and the neighboring value inside

the boundary are possible for the current F0. Note that this transition model simulates the

physical continuity in the temporal variations of the F0 of vocal-fold vibrations, rather

than any symbolic or music-theoretic melodic motion from one member pitch of a scale

to another. This simulation is justified by the relatively high analysis frame rate, i.e., 100

analysis time positions per second.

3.3.2 Vocal Rest Detection

We detect vocal rests as time positions where the loudness of singing voice is low. With

vocal F0 at time position m estimated as ŵm, the vocal loudness at time position m can

readily be estimated as F̄e(zm, ŵm). To derive an adaptive loudness threshold, a representa-

tive loudness value is calculated by median-filtering (with filter length Nm) the sequence of

vocal loudness values and taking the maximum of the filter output. The loudness thresh-

old is calculated by multiplying the representative loudness and a parameter θv ∈ (0,1).

In addition, we apply an upper limit Uv to the threshold.

Within true vocal rests, the estimated vocal loudness is typically low and allows ef-

fective detection of these rests. This is illustrated in Fig. 3.8, where 4 partials of the vocal
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Figure 3.7: Matrix of transition probabilities ([pi, j]i, j with vp = 2.0) used in Viterbi search.

F0 estimate in a vocal rest are plotted on top of the spectrogram of analyzed signal, and

the loudness estimated from these partials is also plotted. As we can see in the figure, the

sequence of vocal F0 estimates are constrained to form a continuous contour that connects

the true vocal F0s before and after the rest. This constraint prevents the F0 estimate from

freely reaching the loudest instrumental F0 in the vocal rest, thereby giving typically low

loudness values that characterize the vocal rests.

3.4 Experiments

3.4.1 Data Sets

The methods presented in Sections 3.2 and 3.3 are reliant on a set of numerical parame-

ters. To ascertain reasonable values for these parameters without the risk of overfitting,

I used 3 development sets: ad2004, labrosa, and mir1k_dev. Data set ad2004 is

a subset of the data used in the ISMIR 2004 Audio Description Contest (ADC 2004).

ADC 2004 in its entirety consists of 20 audio recordings, among which 8 recordings have

instrumental melodies, and the other 12 have vocal melodies. Since this work does not
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Table 3.1: Summaries for the data sets.

Data Set #Excerpts Excerpt Length (s)

ad2004 10 ~20

labrosa 9 ~30

mir1k_dev 379 4–13

mirex05 16 10–40

mirex08 4 120

mirex09 374 4–13

mir1k 253 4–13

medley1 61 13–514

medley2 44 13–385 (vocal sections only)

consider instrumental melodies, only vocal recordings are included in ad2004, includ-

ing 2 pop song excerpts, 4 song excerpts with synthesized vocal, and 4 opera excerpts.

The other 2 vocal excerpts are not included here because they contain an ensemble of

vocals. Data set labrosa consists of English popular song excerpts from the data set

prepared for polyphonic melody extraction by LabROSA, Columbia University. Data set

mir1k_dev consists of Chinese popular song excerpts with non-professional vocals and

synthetic accompaniment from the MIR-1K data set [12], covering 4 male subjects (fdps,

geniusturtle, jmzen, and Kenshin) and 4 female subjects (heyat, tammy, titon, and

yifen). Each entry in mir1k_dev is produced by adding the vocal and accompaniment

channels in the corresponding MIR-1K audio file without balance modification. Numbers

of excerpts and lengths are listed in Table 3.1 for these data sets.

To assess the generalization performance of parameter optimization, I used 10 test sets

without any overlap with the development sets: mirex05, mirex08, mirex09, mirex09+,

mirex09-, mir1k, mir1k+, mir1k-, medley1, and medley2. Each data set with the pre-

fix “mirex” refers to a full data set used in the Music Information Retrieval Evaluation

eXchange (MIREX) Audio Melody Extraction task, to the 2014 edition of which I sub-

mitted the algorithm presented in this dissertation. An exception to this is mirex05, which

is a vocal subset of the MIREX05 data set. Data set mirex08 is composed of Indian clas-

sical song excerpts. Data set mirex09 is composed of Chinese popular song excerpts

with non-professional vocals and synthetic accompaniment. Data set mirex09+ is a vari-
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ant of mirex09 with accompaniment attenuated by 5.0 dB (MIREX09 +5dB), and for

mirex09- the accompaniment is amplified by 5.0 dB (MIREX09 -5dB). Data set mir1k

is a test counterpart of mir1k_dev that covers 2 male subjects (abjones and bug) and

2 female subjects (amy and ariel). Similarly to the MIREX09 sets, data sets mir1k+

and mir1k- are balance-modified variants of mir1k. Data set medley1 is an unaltered

vocal subset of the MedleyDB data set [1], covering the genres of classical music, rock,

pop, musical theatre, singer/songwriter, and jazz. Note that excerpts in medley1 present

specific variations in the existence of vocals that are realistic on the one hand, and on

the other, deviate from what I believe would favor the use of timbral distinction between

vocals and instruments, i.e., the existence of exactly one vocal mentioned in Section 1.2.

For an opportunity to work with MedleyDB while factoring out this deviation, I derived

another data set from MedleyDB that conforms with our assumption about vocal exis-

tence, which we refer to as medley2. Not all vocal excerpts in MedleyDB are included

in medley2: Of the 61 vocal excerpts in MedleyDB, 17 are excluded because of their

use of multiple vocals. Many vocal excerpts in MedleyDB are actually full songs and

contain instrumental sections that last for tens of seconds. To ensure a roughly sustained

presence of a vocal in the machine-analyzed audio of medley2, I manually split each

such excerpt into an alternating sequence of vocal and instrumental sections. By ignoring

short instrumental sections of length below 7.5 seconds, I identified from an excerpt 6

instrumental sections at the most, and one or more vocal sections where no vocal rest is

longer than 7.5 seconds. For each split excerpt, only its vocal sections are used for the

medley2 evaluation, with a separate melody extracted from each vocal section. Stereo au-

dio in MedleyDB is converted to monaural audio by averaging the left- and right-channel

signals. Numbers of excerpts and lengths are listed in Table 3.1 for these data sets.

3.4.2 Performance Measures

In the experiments documented here, the tested system gives vocal melodies in the format

of a voicing/F0 value for each analysis time position (100 equally spaced time positions

per second). If voice is detected at a time position, the output specifies the F0 estimate for

the time position; otherwise, the output specifies that the time position is in a vocal rest.

The MIREX evaluation adopts several measures for evaluating the performance of

a melody extraction system [25]. In the first place, to determine how well the system

performs voicing detection, we use the voicing detection rate and the voicing false alarm

rate. The voicing detection rate is computed as the proportion of time positions that are

both labeled and estimated to be voiced, among all the time positions that are labeled
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voiced. The voicing false alarm rate is computed as the proportion of time positions that

are estimated to be voiced but are actually in a vocal rest, among all the time positions

that are in a vocal rest according to the reference transcription.

Second, to determine how well the system performs F0 estimation, we use the raw

pitch accuracy and the raw chroma accuracy. The raw pitch accuracy is computed as

the proportion of time positions that are labeled voiced and have F0 estimated within one

quarter tone of the true F0, among all the time positions that are labeled voiced.5 To

focus on pitch class estimation while ignoring octave errors, we compute the raw chroma

accuracy, which is computed in the same way as the raw pitch accuracy, except that the

F0 is here measured in terms of chroma, or pitch class, a quantity derived from the F0 by

wrapping the F0 into one octave.

Finally, the performance of voicing detection and F0 estimation can be measured

jointly by the overall accuracy, defined as the proportion of time positions that receive

correct voicing classification and, if voiced, an F0 estimate within one quarter tone of the

true F0, among all the time positions.

3.4.3 Results on the Development Sets

The search for optimal parameter values was performed on the development sets in 2

stages. In the first stage, errors in extracted vocal melodies were analyzed to indicate

particular parameter values that were responsible for the errors. Each error analysis was

expected to suggest an adjustment in parameter value that would eliminate the analyzed

error. Parameters were repeatedly and selectively adjusted according to such error anal-

yses until the remaining errors could no longer be explained by an inadequate parameter

value. In the second stage, parameters were further optimized by coordinate ascent in 4

cycles, with respect to a roughly 10-point sampling of each one-dimensional parameter

space. In the first cycle, one-parameter line searches were performed, each as a one-

dimensional grid search, for all the parameters in the order shown in Table 3.2. In each

line search, an overall accuracy is evaluated on the development sets for each sample

point. The sample point that gives the highest accuracy is assigned to the parameter as

an update, which may or may not equal the old parameter value. The overall accuracy is

averaged over all excerpts in each development set before being averaged among the 3 de-

velopment sets without weighting. In the second and third cycles, the same one-parameter

line searches were repeated, with increasingly more parameters receiving a stationary up-

5My implementation produces F0 estimates in estimated vocal rests to factor out voicing false negative

errors in the raw pitch accuracy.
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date. Finally in the fourth cycle with the same line searches, all the initial parameter

values, as given by the third cycle, were found to be optimal with respect to the sampling

of parameter space.

Table 3.2 shows the overall accuracy evaluated on the development sets for various

parameter settings. Each row contains 3 parameter settings derived from the optimal

setting by assigning 3 different values to the designated parameter: The first value is the

smallest sample point, the second value is the optimal value, and the third value is the

largest sample point. As shown in Fig. 3.9, for the number of partials Nh, the accuracy

well over 0.7 for Nh = 2 suggests that the first 2 partials could play an important role

in timbral comparison, and the optimal value 6 suggests that amplitude observations for

partials above the sixth may be relatively noisy due to low partial amplitude. As shown

in Fig. 3.10, for the lower limit of loudness Le, the accuracy is close to 0.78 for all values

of Le between 4 ·10−6 and 4 ·10−5, but is close to zero for Le = 0. A nonzero lower limit

of loudness is crucial in that the posterior probability of a desired F0 sequence is zero if

it has a zero loudness value in a vocal rest. As shown in Fig. 3.11, the optimal width of

pitch range Wr = 44 is close to the typical 2-octave pitch range of a singer; however, the

accuracy for this width is only marginally higher than that for the much larger width of 60

quarter tones. This suggests that the median of the unrefined F0 sequence might not be an

adequate estimate of the true center of pitch range, and that a non-Markovian prior model

of the F0 sequence that incorporates this pitch range characteristic will be desirable if a

computationally efficient search algorithm is developed for the model.

3.4.4 Results on the Test Sets

Performance of the proposed approach is evaluated on the test data sets, as presented in

Table 3.3. For a comparative basis for performance assessment, note that many existing

approaches gave overall accuracies between 0.6 and 0.8 for mirex05 and between 0.7 and

0.8 for mirex08 and mirex09, as shown in Table 3.4. Accordingly, we are now interested

in whether the proposed approach can give overall accuracies all above 0.7 across various

data sets. It is encouraging that the overall accuracies turned out to be each above 0.7, ex-

cept for medley1, medley2, and the two strong-accompaniment data sets mirex09- and

mir1k-. Multiple vocals and long instrumental sections, which are present in medley1

but not in medley2, resulted in a 0.041 drop in raw chroma accuracy and smaller differ-

ences in the other measures, all suggesting a performance degradation. The tiny difference

0.006 in overall accuracy suggests a mixed effect of the inclusion of long instrumental

sections—Vocal F0 estimation suffered slightly while vocal rests, which are detected at

33



a rate around 80% according to voicing false alarm rate, constituted a larger proportion

in the analyzed audio. Each of the raw chroma accuracies is only slightly higher than

the corresponding raw pitch accuracy, which reveals that my method rarely gives octave

errors. The average overall accuracy over the 5 data sets mirex05, mirex08, mirex09,

mir1k, and medley1 is 0.715, which is 0.065 below the development-set average 0.780

and demonstrates a reasonable generalization performance for the determination of pa-

rameter values driven by the development sets.

As shown in Table 3.4, my approach gave overall accuracies within 0.07 of those

given by the best-performing approaches, i.e., [4], [27], and [13], for all the MIREX data

sets except mirex08. Unfortunately, given the rather limited sizes (16 and 4 excerpts)

of mirex05 and mirex08, one would not consider the comparison statistically signifi-

cant for these two sets. For each of the mirex09 variants, I calculated a p-value by the

two-sided Wilcoxon signed-rank test on the 374 pairs of overall accuracies given by an

existing approach and my approach, as listed in Table 3.5. If we consider a significance

level of 5%, 10 of the 15 mirex09 (variant) comparisons are shown to have statistical

significance. Note that the major difference between the proposed approach and the best-

performing approaches [4], [27], and [13] would be the attempt to detect the spectral

timbre of singing voice. Although the detection can be helpful for vocal melody extrac-

tion, it requires that most partials of the vocal should not suffer significant interference

from the accompaniment, so that observed vocal partial amplitudes can truthfully rep-

resent the vocal timbre. Even if the vocal loudness is high, for certain vowels such as

/i/ the partials between the first two formants can still be rather weak and susceptible to

such interference. As a result, one would not strongly expect the proposed approach to

outperform other mechanisms for vocal detection, vibrato detection in particular, which

underlies the best-performing approaches [4], [27], and [13].

3.4.5 Examples

A numerically represented vocal melody extracted from a song signal can be auralized as

a simple quasi-periodic signal that realizes the sequence of F0s and rests in the melody.

By listening to the song signal and the auralized melody, one could make a personal

assessment of the performance of extraction. By auralization, I present 25 melody ex-

traction examples, which are made up of the 25 excerpts with overall accuracies rank-

ing between the 115th and the 139th in mir1k. The examples are located at http:

//homepage.ntu.edu.tw/~d98942017/english/melody.htm.

Here I present analysis of the excerpt that gave the median overall accuracy 0.747
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in mir1k, whose spectrogram is shown in Fig. 3.12. The likelihood scores of the 88 F0

candidates are displayed in gray scale in Fig. 3.13 for a sequence of time positions, where

we can see a high-likelihood path around 102.6 ≈ 398 hertz that is consistent with the

F0 contour noticeable from Fig. 3.12. The timbral fitness scores are plotted in Fig. 3.14,

where we can see some unwanted low-magnitude, high-fitness regions apart from the

expected high-fitness path. These regions could result from leakage of vocal energy from

the spectral main lobes of harmonically modulated Hamming windows to a number of

distant side lobes, which gives a spectral trend resembling vocal timbre to non-sinusoidal

frequency bins. Sinusoidal F0 candidates are clearly identified in the loudness image

of Fig. 3.15. Vocal F0 estimation gave the F0 sequence plotted in Fig. 3.16, where F0

estimates are identical to ground-truth values for the most part. The result of vocal rest

detection is depicted in Fig. 3.17, where two short bursts of voicing errors are noticeable

around t = 1.9 and t = 3.8.

F0 and voicing errors in results for the median-accuracy excerpt shed some light on

the limitations of my approach. The F0 error around t = 2.8 results from pruning of

the vocal fundamental sinusoid due to its constant F0—Although vocal F0 is typically

unstable, stability can be observed on some occasions. The short ground-truth F0 contour

around t = 3.8, which the algorithm failed to track, is a rapid down-chirp that the sinusoid

detection procedure cannot handle. This F0 error also led to the false vocal rest at the same

time position. The ground-truth vocal rest around t = 1.9, which the algorithm failed to

detect, contains a strong bass sound whose 3rd partial is coincidentally located one half

tone below the immediately preceding vocal F0. This led the F0 estimation procedure

to track the bass partial, leaving no low-loudness interval at the vocal rest. In brief, this

analysis demonstrates that, essentially based on the typical characteristics of accompanied

singing signals, my approach is slightly sensitive to extreme cases.

3.4.6 Results of Controlled Experiments

Timbre Model

In order to assess the effect of timbral fitness measure, I repeated the medley2 experi-

ments with F0 likelihood defined by the loudness measure alone:

Lwm|zm
(w|z) ∝ Fe(z,w). (3.19)

This timbre-insensitive F0 likelihood model gave results listed in row “Timbre” in Table

3.6. For lack of timbre modeling, the performance of vocal F0 estimation is significantly

reduced with a decrease of 0.33 in raw pitch accuracy, which in turn leads to a decrease
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of 0.13 in overall accuracy. This confirms the effectiveness of the timbral fitness measure

in guiding the identification of vocal F0s.

Improvement in F0 Likelihood Model

A predecessor of the current F0 likelihood model is derived from a white Gaussian model

of accompaniment signal [3], with the likelihood defined by spectral comparison of the

accompanied singing signal with vocal timbre examples for the F0 candidate. The full-

spectrum comparison performed by the previous model virtually combines timbral fitness

evaluation and loudness evaluation without a weighting. In contrast, the current model

carries out timbral comparison with respect to partial amplitudes and scales the effect of

timbre and loudness with the parameters ch and ce. With a proper weighting, selection of

high-loudness instrumental F0s can be avoided in vocal F0 estimation.

In an attempt to determine the practical effect of this model improvement, I repeated

the medley2 experiments with F0 likelihood evaluated by the previous model, giving

results listed in row “New Likelihood” in Table 3.6. The improvement is confirmed by a

difference of 0.11 in overall accuracy.

Transformed Liljencrants-Fant Model

In the F0 modification of vocal timbre examples, we implement an invariance in the glot-

tal pulse shape, which is represented by the transformed Liljencrants-Fant model with a

parameter (Rd) value estimated from the original example. To evaluate the effect of this

specific model of glottal excitation, I repeated the medley2 experiments with the (radi-

ated) glottal excitation modeled in the conventional way by a fixed spectrum envelope [7]:

UR( f h) =
f h/100

1+( f h/100)2
. (3.20)

Note that an F0-invariant pulse shape implies F0-invariant amplitude ratios among the

partials and thus a spectrum envelope that stretches along the frequency axis as the F0

increases. The repeated experiments gave results listed in row “LF Model” in Table

3.6. The difference of 0.13 in raw pitch accuracy confirms the advantage of transformed

Liljencrants-Fant model in modeling vocal timbre.

Diversity Among Vocal Timbre Examples

The vocal timbre examples are collected with diversity in gender, genre, voice type, and

vowel type. In an effort to evaluate the separate effect of these diversity factors, I repeated

36



the medley2 experiments with 4 subsets of the vocal timbre examples where one of these

diversity factors has been eliminated. The 7-singer male-only (42-example) subset gave

results listed in row “Gender” in Table 3.6. Labeled “Genre” are results for the 4-singer

opera-only (24-example) subset. The row labeled “Voice Type” is for the 36-example

high-voice-only subset, which consists of the tenor, the soprano, and the other 4 high-

voice singers. Results obtained with the 14 examples of vowel /A/ are found in the row

titled “Vowel Type.”

Comparison of these 4 rows of results to the full-feature results reveals that none of

these diversity factors is associated with a drop larger than 0.05 in overall accuracy or raw

pitch accuracy. This suggests that for the purpose of distinguishing vocal timbre from

instrumental timbre, it is not necessary for the collection of vocal timbre examples to

capture all the 4 diversity factors, and that the current 4-factor collection is sufficiently

diverse for the purpose. For example, a sound of vowel /u/ can be much closer in timbre

to an example of vowel /A/ than is an instrumental sound to any example of vowel /A/, so

that the 14 examples of vowel /A/ are sufficient for this application.

For the purpose of evaluating the composite effect of diversity factors, I repeated

the medley2 experiments with two subsets of the vocal timbre examples where 3 or 4

diversity factors have been eliminated. With the 6 tenor examples only, the repeated

experiments gave results listed in row “Singer” in Table 3.6, which show that elimination

of the 3 singer diversity factors lowers the raw pitch accuracy by 0.04. When only one

vocal timbre example (tenor’s /A/) is used, lack of diversity results in a decrease of 0.27

in raw pitch accuracy, as shown in the row labeled “Diversity.” This extremely biased

representation of vocal timbre leads to accuracies slightly higher than those obtained with

timbre entirely ignored. This confirms the significance of diversity in representing vocal

timbre.

Loudness Model

To see the effect of loudness measure, I repeated the medley2 experiments with F0 like-

lihood defined by the timbral fitness measure alone:

Lwm|zm
(w|z) ∝ Fh(z,w). (3.21)

This loudness-insensitive F0 likelihood model gave results listed in row “Loudness” in

Table 3.6, where lack of loudness modeling brought about a dramatic drop in raw pitch

accuracy. Many of the numerous incorrect F0 estimates are associated with low loudness

and high timbral fitness that could result from leakage of vocal energy from spectral main
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lobes of harmonically modulated Hamming windows to a number of distant side lobes.

This confirms the need for the loudness measure in guiding the identification of vocal F0s.

F0 Prior Modeling

To test the effect of prior modeling of vocal F0 sequence, I repeated the medley2 exper-

iments with the vocal F0 sequence estimated by maximizing the F0 likelihood separately

for each time position. This frame-wise maximum-likelihood approach to vocal F0 esti-

mation yielded results listed in row “Prior Model” in Tabel 3.6, where lack of prior mod-

eling caused a 0.20 reduction in raw pitch accuracy. This confirms the need for smoothing

likelihood-based predictions in fulfillment of the continuity constraint in vocal F0.
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Figure 3.8: A vocal rest. (a) Spectrogram of analyzed signal overlaid with partial fre-

quency contours (dotted lines) of the estimated vocal F0 in the vocal rest. Tick labels on

the color bar are expressed in the unit of linear-scale signal magnitude. The frequency is

measured as a distance from 21.205 hertz in quarter tones. (b) Estimated vocal loudness

in the unit of linear-scale signal power. Some visible instrumental sinusoids crossed by

the plotted partials have been pruned in loudness calculation.
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Table 3.2: Optimal and extreme parameter settings and the resulting overall accuracies

evaluated on the development sets. In each ordered pair, the first entry gives a parameter

value and the second entry gives an accuracy. The reader can refer to Sections 3.2 and 3.3

for the units of parameter values.

Param. Smallest Value Optimal Value Largest Value

Nh (2, 0.750) (6, 0.780) (12, 0.772)

ch (0.005, 0.742) (0.019, 0.780) (0.025, 0.766)

ce (0.15, 0.768) (0.55, 0.780) (1.15, 0.776)

Uh (0.05, 0.750) (0.15, 0.780) (0.5, 0.776)

Lh (0.01, 0.776) (0.02, 0.780) (0.11, 0.651)

Ue (4 ·10−5, 0.734) (0.00164, 0.780) (0.00164, 0.780)

Le (0, 0.006) (4 ·10−5, 0.78) (4 ·10−5, 0.78)

vp (0.05, 0.730) (2.0, 0.780) (10, 0.571)

Na (1, 0.000) (7, 0.780) (10, 0.780)

θp (0, 0.738) (12.0, 0.780) (20.0, 0.600)

θr (0.1, 0.712) (0.7, 0.780) (2.1, 0.631)

θ j (0.5, 0.759) (1.5, 0.780) (1.5, 0.780)

θg (0.05, 0.769) (0.45, 0.780) (0.75, 0.723)

θd (1, 0.776) (7, 0.780) (21, 0.762)

Ne (2, 0.708) (4, 0.780) (8, 0.772)

θh (0.07, 0.774) (0.19, 0.780) (0.39, 0.761)

γh (0.05, 0.772) (0.35, 0.780) (0.95, 0.764)

Nm (1, 0.762) (35, 0.780) (280, 0.768)

Uv (0, 0.631) (1.2 ·10−4, 0.78) (2 ·10−4, 0.779)

θv (5 ·10−4, 0.726) (0.02, 0.780) (1.0, 0.697)

Wr (24, 0.750) (44, 0.780) (60, 0.776)
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Figure 3.9: Overall accuracy evaluated on the development sets for sample points of Nh.

The vertical dotted line marks the optimal parameter value.
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Figure 3.10: Overall accuracy evaluated on the development sets for sample points of Le.

The vertical dotted line marks the optimal parameter value.
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Figure 3.11: Overall accuracy evaluated on the development sets for sample points of Wr.

The vertical dotted line marks the optimal parameter value.

0 1 2 3 4 5 6
2

2.5

3

3.5

4

Time (sec)

lo
g
1
0
(F

re
q

u
en

cy
 i

n
 H

z)

0.02

0.04

0.06

0.08

0.1

Figure 3.12: Spectrogram of the median-accuracy excerpt in mir1k.
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Table 3.3: Results of performance evaluation on the test sets. OA = Overall Accuracy;

RPA = Raw Pitch Accuracy; RCA = Raw Chroma Accuracy; VDR = Voicing Detection

Rate; VFAR = Voicing False Alarm Rate.

Data Set OA RPA RCA VDR VFAR

mirex05 0.703 0.727 0.767 0.751 0.144

mirex08 0.710 0.853 0.856 0.737 0.119

mirex09 0.739 0.785 0.797 0.791 0.197

mirex09+ 0.817 0.850 0.857 0.816 0.086

mirex09- 0.594 0.629 0.660 0.738 0.336

mir1k 0.741 0.816 0.825 0.813 0.246

mir1k+ 0.824 0.886 0.891 0.815 0.100

mir1k- 0.584 0.648 0.670 0.801 0.425

medley1 0.684 0.689 0.715 0.715 0.223

medley2 0.690 0.728 0.756 0.742 0.206
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Figure 3.13: Likelihood scores of F0 candidates for the median-accuracy excerpt in

mir1k.
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Table 3.4: Performance comparison with several state-of-the-art approaches by overall

accuracy. The approaches are sorted by the mirex05 accuracy in descending order. Some

approaches were evaluated before some data sets were created; therefore, results are not

available for some approach-data pairs. M5 = mirex05; M8 = mirex08; M9 = mirex09;

M9+ = mirex09+; M9- = mirex09-.

Work M5 M8 M9 M9+ M9-

[4] 0.770 0.807 0.682 0.784 0.517

[27] 0.734 0.844 0.781 0.852 0.611

[13] 0.718 0.768 0.762 0.834 0.629

This Dissertation 0.703 0.710 0.739 0.817 0.594

[17] 0.693 0.710 0.739 0.827 0.536

[29] 0.673 – – – –

[5] 0.667 0.750 – – –

[6] 0.650 – – – –

[30] 0.628 0.715 0.742 0.817 0.623

Table 3.5: Results (p-values) of two-sided Wilcoxon signed-rank tests for the performance

comparison with several state-of-the-art approaches with respect to the mirex09 variants.

For lack of per-track results in MIREX 2009, the p-values cannot be calculated for [4].

Data Set [27] [13] [30] [17]

mirex09 0.000 0.000 0.145 0.760

mirex09+ 0.000 0.000 0.049 0.001

mirex09- 0.001 0.000 0.000 0.000
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Figure 3.14: Timbral fitness scores of F0 candidates for the median-accuracy excerpt in

mir1k.
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Figure 3.15: Loudness values of F0 candidates for the median-accuracy excerpt in mir1k.
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Figure 3.16: Vocal F0 sequence estimated from the median-accuracy excerpt in mir1k.

Dotted vertical lines mark the boundaries of ground-truth vocal rests represented by 0-

hertz F0 values.
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Figure 3.17: Result of vocal rest detection for the median-accuracy excerpt in mir1k.

Vocal rests are depicted in black, both for the ground truth (G) and for the estimate (E).
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Table 3.6: Results of experiments conducted on medley2 with an algorithmic feature re-

moved from the proposed approach. OA = Overall Accuracy; RPA = Raw Pitch Accuracy;

RCA = Raw Chroma Accuracy; VDR = Voicing Detection Rate; VFAR = Voicing False

Alarm Rate.

Removed Feature OA RPA RCA VDR VFAR

None 0.690 0.728 0.756 0.742 0.206

Timbre 0.560 0.402 0.479 0.591 0.138

New Likelihood 0.585 0.581 0.628 0.666 0.236

LF Model 0.636 0.603 0.651 0.697 0.190

Gender 0.694 0.735 0.761 0.741 0.207

Genre 0.705 0.757 0.770 0.739 0.202

Voice Type 0.668 0.680 0.722 0.735 0.203

Vowel Type 0.701 0.746 0.765 0.738 0.203

Singer 0.667 0.688 0.716 0.730 0.204

Diversity 0.576 0.459 0.518 0.659 0.185

Loudness 0.233 0.037 0.064 0.467 0.457

Prior Model 0.578 0.530 0.614 0.802 0.288
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Chapter 4

Lyrics Alignment Based on a Vowel

Likelihood Model

This chapter is outlined as follows. An overview is presented in Section 4.1 for the com-

plete alignment system. Section 4.2 is dedicated to an acoustic-phonetic model of vowel

likelihood, which defines how likelihood scores of vowel candidates are evaluated for

each analysis time position. Described in Section 4.3 is an algorithm for lyrics alignment

based on the vowel likelihood model. Experiments and results are documented in Section

4.4.

4.1 System Overview

A block diagram of the complete system is shown in Fig. 4.1. With the lyrics regarded

as an alternating sequence of syllables and vocal rests, we construct an alignment of

lyrics as a syllabic position sequence, which specifies a syllabic position (initial rest,

first syllable, rest following first syllable, second syllable, rest following second syllable,

etc.) for each and every analysis time position in the accompanied singing signal. This

sequence is generated by an estimation procedure that 1) extracts partial amplitudes from

the audio spectrum according to an F0 estimate produced by the vocal melody extractor

presented in Chapter 3, 2) evaluates likelihood scores for syllabic position candidates with

the proposed vowel likelihood model, and 3) uses sequential constraints among the lyric

syllables to select a syllabic position for each time position. Note that whereas vocal F0

is undefined within vocal rests, the melody extractor gives an F0 estimate for every time

position.
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Figure 4.1: Block diagram of the complete system.

4.2 Acoustic-Phonetic Model of Vowel Likelihood

In this section, we consider the likelihood function1 of vowel type given the input signal

at an analysis time position, for which a computational model is presented. In this model,

the observation is represented by a sequence of partial amplitudes extracted from the spec-

trum of input signal according to a vocal F0 estimate. These partial amplitudes exhibit a

specific timbral quality that, when checked against timbre examples of a vowel hypothe-

sis, indicates how likely the vowel hypothesis gives the true vowel type. In addition, the

overall loudness of the partials is also taken into account in likelihood evaluation so that

vocal rests can be distinguished from vowels. Note that many approaches to automatic

speech recognition or lyrics alignment are based on phoneme likelihood, i.e., likelihood

function of one of the vowels and consonants. In this work, vowel likelihood is sufficient

because I let each lyric syllable be approximated by its nucleus, a decision based on the

fact that lyric syllables are typically prolonged in musical notes by extending their nuclei

instead of their consonant margins, leaving all lyric consonants relatively short in singing.

As with a typical phoneme likelihood model where a phoneme can be a short pause, here

the vowel type can be either a specific vowel or a vocal rest.

Let the N-sample windowed input signal centered at time m be denoted by random

1See Section 3.2 for the definition of likelihood function.
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Figure 4.2: Architecture of the vowel likelihood model.

N-vector zm, the corresponding vocal F0 be denoted by an integer random variable wm ∈

{46,47, ...,133} that measures the distance of the F0 from a reference low frequency

(21.205 hertz) in quarter tones, and the corresponding vowel type be denoted by a discrete

random variable vm. We model the likelihood function of vm with a timbral fitness measure

Fh(·) and a voicing fitness measure Fe(·):

Lvm|zm,wm
(v|z,w) ∝ Fh(z,w,v) ·Fe(z,w,v). (4.1)

This frame-wise model will give emission probabilities in a hidden Markov model [26].

Since Viterbi search is invariant to an arbitrary scaling factor applied to all the emission

probabilities, here I omit any scaling constant that would be necessary for the likelihood

model to conform with the definition of probability density function. Architecture of this

model is represented in Fig. 4.2.

4.2.1 Timbral Fitness Measure

To define the timbral fitness of vowel hypothesis v with respect to input signal z and vocal

F0 estimate w, we calculate from z a constant-Q magnitude spectrum with quarter-tone-

spaced frequency bins [2]. In an effort to simulate the dependency of human loudness

perception on frequency, we correct the magnitude spectrum according to trends in the

40-phon equal-loudness contour (ELC) [15]:

Az
f = |[CQT{z}] f | ·10(40−κ f )/20, f ∈ I, (4.2)
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where CQT{·} denotes the constant-Q transform, I denotes the set of frequency bins, f

denotes the frequency index, and κ f denotes the 40-phon ELC. Among all the frequency

bins, we focus on a set of Nh partial frequencies2 constructed from w:

Iw = {round(w+24log2 l)}Nh

l=1 ⊂ I. (4.3)

The timbral quality exhibited by these partials is compared to Ns timbre examples of

vowel v to give a timbral fitness score:

Fh(z,w,v) =
1

Ns

Ns

∑
i=1

exp

{

−
ch

Nh
∑
f∈Iw

∆2
i, f

}

, (4.4)

∆i, f = 20log10

Az
f

Ã
(v,i,w)
f

, (4.5)

where ch is a nonnegative parameter that scales the effect that magnitude deviation has on

the likelihood score, and Ã
(v,i,w)
f denotes a scaled spectrum of the ith timbre example for

vowel v whose mean magnitude over the partials is aligned with the input signal to factor

out volume level of the input signal:

log10

Ã
(v,i,w)
f

A
(v,i,w)
f

=
1

Nh
∑

f ′∈Iw

log10

Az
f ′

A
(v,i,w)
f ′

. (4.6)

Here A
(v,i,w)
f denotes the ELC-corrected constant-Q magnitude spectrum of the ith timbre

example for vowel v that has been F0-modified to w with the procedure presented in

Chapter 2. The mechanism for comparing the observed timbre to an example is depicted

in Fig. 4.3.

In the case where hypothesis v is a vocal rest, we need a timbral fitness score that

measures how well the observed partial amplitudes fit our expectation for a vocal rest. At

a vocal rest, what the melody extractor gives in addition to an expected symbol for the

rest, is a frequency w that does not typically match any vocal or instrumental F0. Such an

F0 estimate often results in partial frequencies at non-sinusoidal, low-magnitude positions

in the spectrum. In consequence, we assume that any timbre is possible for these partials:

Fh(z,w,v) = 1 (4.7)

whenever v is a vocal rest. Obviously, vocal rests cannot be recognized with the timbral

fitness score alone; rather, detection of vocal rests relies on the voicing fitness measure.

2For values of numerical parameters, see Table 4.2.
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Figure 4.3: Timbral comparison to a vowel timbre example.

Vowel Timbre Examples

I collected timbre examples for 6 vowel types: /i/, /E/, /A/, /O/, /u/, and /@/. Since apparently

many vowels are not included in this set, we are in fact dividing all possible vowels into

the 6 categories with a set of rules for categorical mapping. For my experiments on songs

with English lyrics, I map each lyric diphthong to its first component vowel, each lyric /æ/

to /E/, and each lyric /2/ to /@/. Here the diphthong mapping is based on the singing practice

of gliding toward the end of note, ignoring the typically short ending component vowel.

Similarly, for Chinese lyrics, I map each lyric falling diphthong to its first component

vowel, each lyric /y/ to /i/, and each lyric /1/ to /@/.

For each of the 6 vowel types, I construct a collection of Ns timbre examples (Ns = 14)

from 14 recordings of about 1 minute each. The 14 recordings (from 14 singers and shared

among the 6 vowel types) represent 14 distinct types of singing voice, including 10 record-

ings of professional (accompanied) singing captured from YouTube, and 4 recordings of

non-professional (unaccompanied) singing from the MIR-1K data set [12]. From each

recording, a time position is selected such that the person sings the vowel type at the

time position, and that no partial of the vocal suffers significant interference from the ac-

companiment. For each of the 14 time positions, I conduct sinusoidal analysis, manually

identify the fundamental of the vocal, and extract the frequencies and amplitudes of the

vocal partials up to 5 kHz as one of the timbre examples for the vowel type.

The 14 types of singing voice are tenor, soprano, baritone, mezzo-soprano, pop high

male voice, pop high female voice, pop low male voice, pop low female voice, pop nasal

male voice, pop nasal female voice, non-professional high male voice, non-professional

high female voice, non-professional low male voice, and non-professional low female
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voice. For further details on these timbre examples, see Section 3.2.1.

4.2.2 Voicing Fitness Measure

In an attempt to distinguish a vowel from a vocal rest, we estimate the loudness of singing

voice from input signal z and vocal F0 estimate w. A high vocal loudness would indicate

a vowel, while a low vocal loudness would indicate a vocal rest. To estimate the loud-

ness, we conduct sinusoid tracking on the spectrum {Az
f } f∈I , thereby generating a binary

partition of the set of frequency bins I. A frequency bin where a sinusoid is detected is

called a sinusoidal frequency bin, whereas one where no sinusoid is detected is called a

non-sinusoidal frequency bin. With this partition, we can calculate a sinusoidal power

spectrum from z:

Pz
f = (Az

f )
2 ·Sz( f ), f ∈ I, (4.8)

where Sz(·) maps sinusoidal frequency bins to unity and non-sinusoidal frequency bins to

zero. Among all the frequency bins, we focus on a set of Ne partial frequencies constructed

from w:

Jw = {round(w+24log2 l)}Ne

l=1 ⊂ I. (4.9)

The loudness is evaluated by summing sinusoidal power over these partials:

Λe(z,w) = ∑
f∈Jw

Pz
f . (4.10)

Overestimation of vocal loudness can occur when a vocal F0 estimate coincides with an

instrumental F0 at a vocal rest. This is alleviated by the sinusoid tracking procedure,

where many instrumental sinusoid contours are removed for their almost constant fre-

quency (see Section 3.2.2).

A voicing fitness score is calculated to measure the fitness of hypothesis v in terms of

presence of singing voice. This score can now be defined by comparing the vocal loudness

estimate Λe(z,w) to a reference loudness level chosen for the hypothesis: If v is a vowel,

Fe(z,w,v) = exp

{

−
(λe −λs)

2

2σ2
s

}

; (4.11)

otherwise,

Fe(z,w,v) = exp

{

−
(λe −λr)

2

2σ2
r

}

. (4.12)

Here, λs (dB) denotes an adaptive loudness level for a vowel, which is calculated by

median-filtering (with filter length specified by Nm) the vocal loudness estimate Λe(z,w)

across all analysis time positions and taking the maximum of the filter output. By median
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Figure 4.4: Block diagram for syllabic position estimation.

filtering, the procedure rejects spikes in the loudness variations. With the reference level

for a vowel defined, that for a vocal rest, denoted by λr, is then determined by subtracting

a dynamic range ρd (dB) from λs. In (4.11) and (4.12), λe (dB) denotes a smoothed,

compressed vocal loudness estimate. The initial loudness estimate Λe(z,w) is compressed

with a lower limit of λr and an upper limit of λs. After that, the loudness is median-filtered

across all analysis time positions (with filter length Nv) to smooth out any isolated, brief

loudness dips resulting from F0 estimation errors. The effect loudness deviation has on

the likelihood score is scaled by nonnegative parameters σs and σr.

4.3 Syllabic Position Estimation

As the first step in aligning lyric syllables with audio, the lyrics text is processed to gen-

erate a list of syllabic position candidates. Estimation of syllabic position is performed

on a grid of 100 time positions per second. At each time position, likelihood scores are

evaluated for all the candidates with the proposed vowel likelihood model. Last, a syl-

labic position is selected for each time position according to the likelihood scores and the

sequential relation among syllabic positions. This is depicted in Fig. 4.4.

4.3.1 Lyrics Preprocessing

To convert the sequence of words in each lyric line into a sequence of vowels, each word is

looked up in a digital pronunciation dictionary, thereby converting the word sequence into

a sequence of phonemes. Next, consonants are removed from the phoneme sequence, and
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each vowel is mapped to one of the 6 vowel types, /i/, /E/, /A/, /O/, /u/, and /@/. When multi-

ple pronunciations are available in the dictionary for a syllable, all vowel variants are kept

for the syllable. My implementation of the lyrics preprocessor can process North Ameri-

can English and Standard Chinese. The English dictionary used is the CMU Pronouncing

Dictionary. For Chinese lyrics, a 72,647-word dictionary is used for maximum-matching

word segmentation and pronunciation lookup.

To generate a complete set of syllabic position candidates for lyrics alignment, we cre-

ate a unique candidate for each element in the vowel sequence. For a syllable with vowel

variants, a unique candidate is created for each variant, with multiple variant candidates

sharing the same syllabic position. Unique candidates are also declared for vocal rests

between every two neighboring elements in the vowel sequence, before the first vowel,

and after the last vowel. For instance, for a lyrics text file consisting of 50 syllables, at

least 101 syllabic position candidates should be created. The resulting set of candidates

is denoted by C = {1,2, ...,Nc}, where each candidate is represented by a positive integer

and Nc denotes the number of candidates. Each syllabic position s ∈C is associated with

a syllable index ns, which locates s as the nsth syllable in the lyrics or the vocal rest fol-

lowing the nsth syllable. A zero syllable index ns = 0 indicates that s is the initial vocal

rest. Each syllabic position s ∈C is also associated with a vowel type v(s) ∈ {0,1, ...,6}.

A zero vowel type v(s) = 0 indicates that s is a vocal rest.

4.3.2 Likelihood Evaluation

Selection of a syllabic position for an analysis time position is based on likelihood eval-

uation performed over all syllabic position candidates for the same time position. The

proposed vowel likelihood model yields 7 likelihood scores respectively for the 7 vowel

types: /i/, /E/, /A/, /O/, /u/, /@/, and vocal rest. Each syllabic position candidate is assigned

one of the 7 scores according to its vowel type. Notice that with this likelihood evalua-

tion scheme, many candidates can share the same likelihood score because they have the

same vowel type, a fact that reveals the importance of selecting syllables jointly over all

analysis time positions with sequential relation taken into account.

In the implementation, likelihood scores for the first and last analysis time positions

are defined in a way that directly ensures proper syllabic positions for these two time

positions. Since the audio should start with the initial vocal rest or the first syllable,

all other candidates are assigned a zero score for the first time position. Similarly, all

candidates are assigned a zero score for the last time position, except for the final vocal

rest and the last syllable.
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4.3.3 Syllable Selection

To estimate the evolution of syllabic position in the singing voice, we let the joint prob-

ability distribution for the unobserved and observed signals, i.e., the syllabic position

evolution and the accompanied singing audio, be represented by a hidden Markov model

(HMM) [26]. In this HMM, likelihood scores of syllabic position candidates are defined

as in Section 4.3.2, and state transition probabilities among the candidates encode the se-

quential relation among syllabic positions. With this probabilistic model, the estimation

can be achieved by maximizing the posterior probability of state sequence with the Viterbi

algorithm.

The evolution of syllabic position is modeled with a Markov chain {sm}
M
m=1, where M

denotes the number of analysis time positions:

P(s1, ...,sM) = P(s1)P(s2|s1)P(s3|s1,s2) · · ·

P(sm|s1, ...,sm−1) · · ·

P(sM|s1, ...,sM−1) (4.13)

= P(s1)
M

∏
m=2

P(sm|sm−1). (4.14)

The equality in (4.14) results from the Markovianity that given the previous syllabic po-

sition sm−1, the current syllabic position sm is independent of all the earlier syllabic posi-

tions sm−2,sm−3, ...,s1. A uniform initial state distribution can be assumed here because a

proper syllabic position at the first time position has been guaranteed by likelihood scores:

P(s1 = s) =
1

Nc

, ∀s ∈C. (4.15)

The conditional probability P(sm|sm−1) considers a particular syllabic position given for

the previous time position, and defines the probabilities of all possible syllabic positions

for the current time position. We derive specific values for these probabilities from the fact

that syllabic positions must be visited in the same order as they appear in the lyrics. Since

only a continuation of the same syllabic position or a transition to a succeeding syllabic

position is allowed, we assign zero probabilities to all the other syllabic positions. First,

consider the case where sm−1 is a vowel, i.e., v(sm−1) 6= 0. In this case, a probability of

0.5 is assigned to the continuation, and the remaining probability of 0.5 is distributed

among several eligible successors. If nsm−1
points to the end of a lyric line, the only

eligible successor is the vocal rest immediately following sm−1, which is expected to last

relatively long; otherwise, we make the vocal rest optional, with the rest taking 0.25 and

all vowel variants for the next syllable uniformly sharing the remaining 0.25. Second,
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Table 4.1: Summaries for the data sets.

Data Set #Excerpts Excerpt Length (s)

ad2004 9 ~20

labrosa 9 ~30

poly_100 100 9–49

slam 130 9–52

consider the case where sm−1 is a vocal rest, i.e., v(sm−1) = 0. Again, if this is at a line

break, we use a parameter Pc < 0.5 to control the tendency for this rest to last longer

than vocal rests within a lyric line, assigning a probability of 1−Pc to the continuation;

otherwise, the continuation has probability 0.5. The remaining probability is again shared

uniformly among vowel variants of the (nsm−1
+1)th syllable.

4.4 Experiments

4.4.1 Data Sets

In Sections 4.2 and 4.3, the vowel likelihood model and the procedure for syllabic position

estimation have been defined with a set of numerical parameters, whose values need to be

determined empirically. To select appropriate values for these parameters, I considered

their effect on alignment performace by carrying out alignment experiments on 2 devel-

opment sets: ad2004 and labrosa. Data set ad2004 is adapted from the data used

for audio melody extraction in the ISMIR 2004 Audio Description Contest (ADC 2004).

ADC 2004 in its entirety consists of 20 audio recordings with melody annotations, among

which 8 recordings are fully instrumental, and the other 12 are accompanied singing. For

lyrics alignment, only recordings with words are included in ad2004, including 4 pop

song excerpts, 2 song excerpts with synthesized vocal, and 3 opera excerpts3. Melody

annotations are replaced with syllable onset and offset annotations and vowel-sequence

transcriptions, the latter serving as a substitute for lyrics lacking in this data set. I intend

to produce syllable-level annotations to make full use of this small data set. Data set

labrosa is similarly adapted from a data set created for polyphonic melody extraction by

3Two excluded vocal excerpts (daisy3 and daisy4) do not have words. Another vocal excerpt

(opera_male3) was excluded for its excessive difficulty, featuring an exaggerated loudness contrast in

singing.
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LabROSA, Columbia University, consisting of English popular song excerpts. Numbers

of excerpts and lengths are listed in Table 4.1 for these data sets.

To assess the generalization performance of parameter optimization, I used 2 test sets

without any overlap with the development sets: poly_100 and slam. Data set poly_100

was created by Mesaros and Virtanen [24], composed of excerpts extracted from 17 En-

glish popular songs (8 female artists and 9 male artists), their lyrics, and lyric-line onset

and offset annotations. A total of 4–8 excerpts are extracted from each song, with each

excerpt capturing a complete structural section in a song, such as a chorus and a verse.

From a collection of 20 Chinese popular songs (10 female artists and 10 male artists), I

derived a similar data set slam with 3–9 excerpts extracted from each song. For this data

set, I produced onset and offset annotations for a smaller unit of alignment, a lyric phrase.

Chinese lyric phrases are separated by spaces or line breaks, and each lyric line consists

of one or more lyric phrases. Numbers of excerpts and lengths are listed in Table 4.1 for

these data sets.

4.4.2 Performance Measures

In the experiments documented here, a textual unit for alignment is specified for each

alignment task, which can be a lyric syllable, a lyric word, a lyric phrase, or a lyric

line. Onset and offset time estimates are extracted for the sequence of aligned units from

the evolution of syllabic position given by the tested system. The extraction proceeds

by finding onsets and offsets for syllables before identifying specific syllabic onsets and

offsets that correspond to boundaries of the aligned units.

To measure the overall performance of a tested system in aligning lyrics of an excerpt

with its audio, we calculate the average absolute alignment error and the average nor-

malized alignment error. The average absolute alignment error is computed by taking

the average of distances (in seconds) of all the onset and offset estimates from ground-

truth annotations. When each of these distances is normalized by the true duration of the

aligned unit, the normalized distance represents an alignment error as a proportion in the

true duration. An upper limit of unity can be further applied to the normalized distance

to avoid discriminating among any excessive distances. We calculate the average of such

normalized, limited distances to give the average normalized alignment error.

Alignment of a textual unit with audio attempts to determine the position and duration

of the unit as measured on the time axis of audio. To focus performance measurement on

one of these two factors, we calculate the average normalized position error and the av-

erage relative duration error. With the position of a unit defined by the midpoint between
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onset and offset, the average normalized position error is computed by taking the average

of, again, normalized and limited distances of all the position estimates from ground-truth

values. The same calculation applied to the duration gives the average relative duration

error.

4.4.3 Results on the Development Sets

The search for optimal parameter values was performed on the development sets in 2

stages. In the first stage, errors in syllable alignments, as indicated by particular sylla-

bles aligned with excessive absolute errors, were analyzed to isolate particular parameter

values that were responsible for the errors. Each error analysis was expected to suggest

an adjustment in parameter value that would eliminate the analyzed error. Parameters

were repeatedly and selectively adjusted according to such error analyses until the re-

maining errors could no longer be explained by an inadequate parameter value. In the

second stage, the average absolute alignment error was further minimized by coordinate

descent in 3 cycles, with respect to a roughly 10-point sampling of each one-dimensional

parameter space. In the first cycle, one-parameter line searches were performed, each

as a one-dimensional grid search, for all the parameters in the order shown in Table 4.2.

In each line search, an average absolute alignment error is evaluated on the development

sets for each sample point. The sample point that gives the lowest error is assigned to the

parameter as an update, which may or may not equal the old parameter value. The aver-

age absolute alignment error is averaged over all excerpts in each development set before

being averaged between the 2 development sets without weighting. In the second cycle,

the same one-parameter line searches were repeated, with more parameters receiving a

stationary update. Finally in the third cycle with the same line searches, all the initial

parameter values, as given by the second cycle, were found to be optimal with respect to

the sampling of parameter space.

The results of parameter optimization are presented in Table 4.2, where optimal set-

tings are compared to extreme settings with average absolute alignment errors given by

syllable alignment experiments conducted on the development sets. Each row contains

3 parameter settings derived from the optimal setting by assigning 3 different values to

the designated parameter: The first value is the smallest sample point, the second value is

the optimal value, and the third value is the largest sample point. As shown in Fig. 4.5,

the limited effect that changes in Pc have on the error, suggests that the assumed relative

lengthiness of vocal rests at line breaks may not be sufficiently consistent in practice to

deserve a special transition probability assignment.
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Figure 4.5: Average absolute alignment error evaluated on the development sets for sam-

ple points of Pc. The vertical dotted line marks the optimal parameter value.

4.4.4 Results on the Test Sets

Performance of the proposed approach is evaluated on the test data sets, as presented in

Table 4.3. The absolute alignment error is around one second for both sets. Since many

Chinese lyric lines in slam contain only one phrase, line-level alignment with poly_100

and phrase-level alignment with slam would not be expected to give dissimilar absolute

errors. The normalized alignment error is below 0.3 for both sets. For an onset or offset, a

normalized alignment error of 0.3 means an absolute error equal to 30% the true duration

of aligned unit, but does not indicate a specific error in estimation of position or duration:

If errors of 0.3 are in the same direction for onset and offset, the position error will be

0.3, and the duration error will be zero; otherwise, the position error will be zero, and

the duration error will be 0.6. Results in normalized position and relative duration errors

indicate that errors associated with these two types of estimation are in fact below or close

to 0.3 on average for both data sets.

As shown in Table 4.4, my approach gave an average absolute alignment error slightly

lower than those given by variant approaches of Mesaros and Virtanen [24] in experiments

conducted on poly_100. Their approach to lyrics alignment linearly adapts several (3, 8,
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Figure 4.6: Lyric position sequence estimated from the excerpt with the 50th lowest av-

erage normalized alignment error in poly_100. The initial vocal rest is represented by

position 1, the first line is represented by position 2, the vocal rest following the first line

is represented by position 3, and so on. In other words, odd positions represent vocal rests

at line breaks, whereas even positions represent lyric lines.

or 22) categories of speech phoneme likelihood models to a small amount of singing data,

with all the models in a category sharing the same linear transformation. This comparison

shows that, if my approach does not significantly outperform their approach, these two

approaches could be considered comparable in performance.

4.4.5 Example

To gain insight into my test results, consider the excerpt in poly_100 for which the result-

ing average normalized alignment error was 0.197, which is the 50th lowest error among

all the 100 error values and serves as a median item that could represent the entire data

set. As shown in Fig. 4.6, the estimated evolution of lyric position adequately matched

the true evolution at all 6 lyric lines except the third line, where the transition to vocal

rest occurred prematurely. Inspection of its spectrogram shown in Fig. 4.7 reveals that

the third line is sung (from t = 7.7 s to t = 9.3 s) with a relatively low loudness, which

led my algorithm to treat the segment of signal as a vocal rest. Many instances of low
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Figure 4.7: Spectrogram of the excerpt with the 50th lowest average normalized alignment

error in poly_100.

estimated vocal loudness actually indicate vocal rests that separate adjacent lyric sylla-

bles or lyric lines; as a result, my approach is inevitably confused by soft singing in some

circumstances.

4.4.6 Results of Controlled Experiments

Timbre Model

In order to assess the effect of timbral fitness measure, I repeated the poly_100 experi-

ments with vowel likelihood defined by the voicing fitness measure alone:

Lvm|zm,wm
(v|z,w) ∝ Fe(z,w,v). (4.16)

This timbre-insensitive likelihood model gave results listed in Table 4.5 on row “Timbre.”

For lack of timbre modeling, the normalized alignment error grows by 0.07, which con-

firms the effectiveness of timbral fitness measure in identifying lyric vowels. Moreover,

this result reveals that lyrics alignment based solely on estimating the loudness or voicing

of singing voice, not performing any phonemic discrimination, could adequately estimate

line-level evolution of lyric position. As an example of timbre-blind alignment, an evolu-

tion of lyric position is displayed in Fig. 4.8, which is estimated without the timbre model
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Figure 4.8: Lyric position sequence estimated without the timbre model, from the excerpt

with the 50th lowest average normalized alignment error in poly_100. For the definition

of lyric position, see the caption of Fig. 4.6.

from the same excerpt considered in Section 4.4.5. In this example, the impact of timbre

model removal is far above the average, giving a normalized alignment error of 0.772 and

a clear deviation from the true evolution in Fig. 4.8.

Transformed Liljencrants-Fant Model

In the F0 modification of vowel timbre examples, we implement an invariance in the

glottal pulse shape, which is represented by the transformed Liljencrants-Fant model with

a parameter (Rd) value estimated from the original example. To evaluate the effect of

this specific model of glottal excitation, I repeated the poly_100 experiments with the

(radiated) glottal excitation modeled in the conventional way by a fixed spectrum envelope

[7]:

UR( f h) =
f h/100

1+( f h/100)2
. (4.17)

Note that an F0-invariant pulse shape implies F0-invariant amplitude ratios among the

partials and thus a spectrum envelope that stretches along the frequency axis as the F0

increases. The repeated experiments gave results listed in Table 4.5 on row “LF Model.”

The difference of 0.027 in average normalized alignment error confirms the advantage of
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transformed Liljencrants-Fant model in modeling vowel timbre.

Diversity Among Vowel Timbre Examples

In Section 4.2.1, vowel timbre examples are collected with diversity in gender, genre, and

voice type. In an effort to evaluate the separate effect of these diversity factors, I repeated

the poly_100 experiments 3 times, each time using a timbre example subset where one

of these diversity factors has been eliminated. The 7-singer male-only (7-example) subset

gave results listed in Table 4.5 on row “Gender.” Labeled “Genre” are results for the 4-

singer opera-only (4-example) subset. The row labeled “Voice Type” is for the 6-example

high-voice-only subset, which consists of the tenor, the soprano, and the other 4 high-

voice singers. Removal of each diversity factor is found to raise the normalized alignment

error by an amount between 0.015 and 0.026, which exhibits the benefit of including these

factors in timbre example collection. For the purpose of evaluating the composite effect

of diversity factors, I repeated the poly_100 experiments with only one tenor example

for each vowel type, giving results listed in Table 4.5 on row “Diversity.” This shows

not only that complete lack of diversity results in an increase of 0.046 in normalized

alignment error, but that even with this single-example timbral comparison, a reduction

in error still exists (0.023) from the timbre-blind approach.

Voicing Model

To see the effect of voicing fitness measure, I repeated the poly_100 experiments with

vowel likelihood defined by the timbral fitness measure alone:

Lvm|zm,wm
(v|z,w) ∝ Fh(z,w,v). (4.18)

This loudness-insensitive vowel likelihood model gave results listed in Table 4.5 on row

“Voicing,” where lack of a voicing model brought about a dramatic rise in average normal-

ized alignment error. My parameter optimization efforts made on the development sets

determined that, in order to minimize alignment errors, the alignment should predomi-

nantly depend on voicing clues provided by the variations in estimated vocal loudness,

which is made evident by this result.
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Table 4.2: Optimal and extreme parameter settings and the resulting average absolute

alignment errors evaluated on the development sets. In each ordered pair, the first entry

gives a parameter value and the second entry gives an error in seconds. The reader is

referred to Sections 4.2 and 4.3 for the units of parameter values. Some of the listed

parameters are defined in Section 3.2.2 for sinusoid tracking.

Param. Smallest Value Optimal Value Largest Value

Pc (0.05, 0.453) (0.2, 0.448) (0.5, 0.487)

ρd (9.0, 2.492) (27.0, 0.448) (36.0, 0.965)

σs (0.1, 2.304) (0.4, 0.448) (1.0, 1.142)

σr (0.1, 1.384) (0.4, 0.448) (1.0, 1.329)

ch (0.003, 0.522) (0.023, 0.448) (0.043, 0.468)

Nh (5, 0.660) (10, 0.448) (15, 0.497)

Nm (1, 0.931) (35, 0.448) (280, 1.065)

Nv (10, 0.699) (22, 0.448) (30, 0.546)

Na (2, 1.656) (7, 0.448) (10, 0.475)

θp (0.0, 0.795) (12.0, 0.448) (20.0, 1.196)

θr (0.1, 0.833) (0.9, 0.448) (2.1, 0.945)

θ j (0.5, 0.484) (1.0, 0.448) (1.5, 0.484)

θg (0.002, 0.448) (0.1, 0.448) (0.5, 0.700)

θd (1, 0.540) (9, 0.448) (21, 0.498)

Ne (6, 0.532) (14, 0.448) (16, 0.474)

Table 4.3: Results of performance evaluation on poly_100 and slam. AA = Average

Absolute Alignment Error; NA = Average Normalized Alignment Error; NP = Average

Normalized Position Error; RD = Average Relative Duration Error.

Data Set AA NA NP RD

poly_100 0.897 s 0.251 0.229 0.306

slam 1.069 s 0.295 0.260 0.327
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Table 4.4: Performance comparison with variants of the approach of Mesaros and Virta-

nen [24] by average absolute alignment errors evaluated on poly_100. The approaches

are sorted by error in ascending order.

Approach Error

This Dissertation 0.90 s

[24], 8-Class Adaptation 0.94 s

[24], 3-Class Adaptation 0.97 s

[24], 22-Class Adaptation 1.07 s

Table 4.5: Results of experiments conducted on poly_100 with an algorithmic feature

removed from the proposed approach. AA = Average Absolute Alignment Error; NA =

Average Normalized Alignment Error; NP = Average Normalized Position Error; RD =

Average Relative Duration Error.

Removed Feature AA NA NP RD

None 0.897 s 0.251 0.229 0.306

Timbre 1.198 s 0.320 0.301 0.385

LF Model 1.012 s 0.278 0.253 0.328

Gender 0.979 s 0.269 0.253 0.320

Genre 0.993 s 0.266 0.244 0.334

Voice Type 1.032 s 0.277 0.256 0.338

Diversity 1.103 s 0.297 0.281 0.334

Voicing 9.929 s 0.885 0.898 0.979
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Chapter 5

Conclusions

5.1 Contribution

An approach to vocal melody extraction has been presented, which is based on a novel

model of F0 likelihood. The F0 likelihood model is built upon a set of vocal timbre

examples for the F0 candidate that are generated by F0-modifying a small set of singing

voice samples. The F0 modification is achieved by source-filter analysis and synthesis

with state-of-the-art models from the field of acoustic phonetics.

The proposed approach to vocal melody extraction has been tested extensively both to

evaluate its performance and to investigate the significance of various algorithmic features

in the approach. My approach achieved an overall accuracy in the range between 70% and

75% for various data sets, in which range one also finds many state-of-the-art accuracies

according to the annual MIREX evaluation. With a series of controlled experiments, we

verified that timbral discrimination in the F0 likelihood model is effective as a mecha-

nism for guiding F0 estimation away from instrumental F0s. Even so, discrimination in

loudness and prior modeling of vocal F0 are indispensable for vocal F0 estimation.

In addition, an approach to lyrics alignment with audio has been presented, which is

based on a novel model of vowel likelihood. The vowel likelihood model is built upon

a set of vowel timbre examples for the F0 estimate that are generated by F0-modifying a

small set of singing voice samples. The proposed method has been evaluated in multiple

experiments, not only to test its efficacy, but to look into the importance of various algo-

rithmic features in the method. For two data sets alike, which are collected from different

sources and contain lyrics of different languages, my approach achieved an average nor-

malized alignment error below 0.3 and an average absolute alignment error around one

second. A state-of-the-art approach was previously evaluated on one of the two data sets,
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also giving an absolute error around one second. With a series of controlled experiments,

we verified that timbral discrimination in the vowel likelihood model is effective as a

mechanism for rendering the alignment phonetically sensitive. Still, voicing modeling

based on estimation of vocal loudness is indispensable for lyrics alignment.

5.2 Further Work

This work demonstrates how acoustic-phonetic models lend themselves to distinguish-

ing human voice from instrumental sound, and distinguishing different vowel sounds. It

would be intriguing to further inquire application of acoustic-phonetic models to other

aspects of singing voice in the future. An example would be the personal timbre that

characterizes one’s singing, which can be represented with acoustic-phonetic models in

an approach to singer recognition.

The task of vocal melody extraction has been approached in this work in the single-

vocal scenario. It would definitely be interesting to consider in the future the multiple-

vocal case, e.g., melody extraction from a recording of a piano-accompanied mixed-voice

four-part choral performance. To that end, one could perform a four-voice version of

vocal F0 estimation and select the F0 sequence that exhibits the strongest melodic quality,

such as conjunct melodic motion and high loudness.
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