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中文摘要

本文研究由 M. Agrawal, N. Kayal and N. Saxena 提出的第一個多項式時間確定型

的質數判定演算法，經過 H. Lenstra Jr.等人的建議修改後的版本”PRIMES is in 

P”(2004)，並補充了一些原文裡證明細節。 

關鍵詞：質數; 演算法; 多項式時間; 確定型; 質數判定
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英文摘要

We take a exposition at the paper “PRIMES is in P” by M. Agrawal, N. Kayal and N. 

Saxena (2004), in which they used Lenstra's idea and made a revision of their earlier 

version. We also present some details in the proof. 

Key Words: prime number; algorithm; polynomial time; deterministic; primality test 



ON THE AKS ALGORITHM

Ying-Jen Tseng

ABSTRACT. We investigate the AKS algorithm which determines whether a number is

prime in polynomial time.

1. INTRODUCTION

In August 2002, M. Agrawal, N. Kayal and N. Saxena proposed an unconditional, de-

terministic and polynomial time primality test. It is now known as AKS test or AKS 

algorithm. Prior to then, several efficient primality test had been founded. Miller test 

(proposed in 1975, deterministic and polynomial time assuming the Extended Riemann 

Hypothesis); Rabin-Miller test(proposed in 1980, unconditional but in randomised poly-

nomial time); Soloray-Strassen test(proposed in 1977, in randomised polynomial time); 

Adleman-Pomerance-Rumely test(proposed in 1983, deterministic and in (logn)O(log loglogn)

time); Goldwasser-Kilian test(proposed in 1986, in randomised expected polynomial time); 

Atkin-Adleman-Huang test (proposed in 1992, also in randomised polynomial time).

The AKS test finally achieved the desired polynomial runtime requirement using only 

fully proved facts. It not only settled the theoretical issue of primality test but also stunned 

the world with its simplicity. Many of the previous algorithms used deeper result while 

the AKS algorithm utilised simpler tools and acquire more efficient runtime condition. 

Soon after the AKS algorithm proposed, some variant algorithms had also been founded, 

two of them are in [LEN05] and [BER03], both proving primality in better asymptotic 

running time.

In this thesis, we take a exposition at the paper “PRIMES is in P” [AKS04] by M. 

Agrawal, N. Kayal and N. Saxena (2004), in which they used Lenstra’s idea and made a
1



revision of their earlier version [AKS02]. Some of the structure and arrangement of the

content are from [RC05] and [AG05].

We begin with an observation which is the idea that the AKS algorithm is based on.

2. BASIC IDEA

We shall let Zn denote the ring Z/nZ.

Lemma 2.0.1. Let a be an integer, n be a positive integer, n ≥ 2, and (a,n) = 1. Then n

is a prime if and only if

(1) (x+a)n ≡ xn +a (mod n).

Proof. The coefficient of xi in (x+ a)n− (xn + a) is
(n

i

)
. If n is a prime, then

(n
i

)
= 0

(mod n). If n is composite and q is a prime factor of n such that qk||n, then since(
n
q

)
=

n(n−1) · · ·(n−q+1)
q!

and qk||n(n− 1) · · ·(n− q+ 1), qk can not divide
(n

q

)
, whence n can not divide

(n
q

)
. The

coefficient of xq is an−q(n
q

)
, which can not be divided by n since (a,n) = 1. So (x+a)n−

(xn +a) is not identically zero over Zn. �

The above criterion is not efficient enough to be polynomial-time: to verify (1) directly,

one needs to compute all terms of the left-hand side and the computation takes O(n) time.

A probable way of solving the problem is to modulo a polynomial f (x) on both side of

(1). In particular, if (1) is satisfied, then the congruence

(2) (x+a)n ≡ xn +a (mod xr−1,n)

will also be satisfied. If the degree r is not so large (bounded by an polynomial function

of logn), then we can check (2) quickly (in polynomial time). However, while (2) is

necessary for n to be prime, it is not sufficient. And it seems that this is the main difficulty
2



to overcome if one wants a fast algorithm that derived from criterion (1). It turns out

M. Agrawal, N. Kayal and N. Saxena managed to resolve this kind of difficulty: they

can restore the characterization by verifying (2) for every a up to a certain point, if (2) is

satisfied for all of these a, then n must be a prime power, which can be detected efficiently

from the very beginning. The degree r is also appropriately chosen to assure each (2) can

be verified in polynomial time, hence the total run time of their algorithm is polynomial

time. Now we state the algorithm as pseudo code in the next section, after which is its

correctness proof followed by analysis of time complexity.

3. THE ALGORITHM

Input: integer n > 1.

1. If n is a perfect power, return COMPOSITE.

2. Find the least integer r such that the order of n in Z∗r exceeding log2 n.

3. If a|n for some 2≤ a≤
√

φ(r) logn, return COMPOSITE.

4. For 2≤ a≤
√

φ(r) logn, if (x+a)n 6= xn +a (mod xr−1,n), return COMPOSITE.

5. Return PRIME.

4. CORRECTNESS OF THE ALGORITHM

Theorem 1. The algorithm returns PRIME if and only if n is prime.

The proof of Theorem 1 is split into two parts: Lemma 4.0.2 and Theorem 2, dealing

with the case which returns COMPOSITE and PRIME, respectively.

Lemma 4.0.2. If the algorithm returns COMPOSITE, then n is composite.

Proof. If the algorithm returns COMPOSITE from step 1 or 3, then clearly n is composite.

Otherwise, COMPOSITE is returned from step 4, then by Theorem 1, n cannot be prime,

thus n is also composite. �
3



The case that returns PRIME requires more efforts, and it serves as the main criterion

in the algorithm. Some authors call this criterion “AKS Theorem”. Before proceeding on,

we need some lemmas.

In the rest of the context, let R denote the ring Zp[x]/(xr−1).

Lemma 4.0.3. Let p be a prime number and r be a positive integer co-prime to p. Let

T : R−→ R be defined by T ( f ) = f p. Then T is injective.

Proof. Suppose there are u,v belonging to R such that T (u) = T (v). Then

0 = T (u)−T (v) = up− vp = (u− v)p = T (u− v).

Let w = u− v. It suffices to prove w = 0. Write w = a0 +a1x+ · · ·+ar−1xr−1, so that in

R,

0 = T (w)

= wp

= (a0 +a1x+ · · ·+ar−1xr−1)p

= a0 +a1xp + · · ·+ar−1x(r−1)p.

If xip = x jp in R for some nonnegative integer i, j, then r|p(i− j), which means r|i− j due

to (r, p) = 1. Since 0,1,2, ...,r−1 are all distinct modulo r, the terms 1,xp,x2p, ...,x(r−1)p

are actually the rearrangement of 1,x,x2, ...,xr−1, and hence a0+a1xp+· · ·+ar−1x(r−1)p =

0 implies a0 = a1 = · · ·= ar−1 = 0. That is, w = 0. Therefore, T is injective. �

Let f (x)∈R denote the residue class of f (x)∈ Zp[x] and let m be a non-negative integer.

If g(x) = f (x), then g(x) = f (x)+h(x)(xr−1), hence

g(xm) = f (xm)+h(xm)(xrm−1).

Since xmr−1 is divisible by xr−1, we see that g(xm) = f (xm). In other words, the residue

class f (xm) depends only on f (x) and is independent of the choice of f (x). Hence, we
4



have a well-defined operator

Em : R−→ R, f (x) 7→ f (xm).

In particular, if p is a prime number, then since f (xp) = f (x)p for every f (x) ∈ Zp[x], we

can conclude that for every f (x) ∈ R,

f (xp) = f (x)
p
.

Theorem 2. (AKS Theorem) Suppose n is an integer with n ≥ 2, r is a positive integer

with (r,n) = 1 and the order of n in Z∗r is larger than log2 n. Moreover, assume that

(3) (x+a)n = xn +a (mod xr−1, p)

holds for integer a with 0≤ a≤
√

φ(r) logn. If n has a prime factor p>
√

φ(r) logn, then

n= pm for some positive integer m. If n has no prime factor in the interval [1,
√

φ(r) logn]

and n is not a perfect power, then n is prime.

Proof. Suppose n has a prime factor p >
√

φ(r) logn. Denote

G = {g(x) ∈ Zp[x] : g(x)n = g(xn) (mod xr−1)}.

By (3), we know that x+a ∈ G, for all 0 ≤ a ≤
√

φ(r) logn. Since G is closed under

multiplication, if each ea is a nonnegative integer, then the product

∏0≤a≤
√

φ(r) logn(x+a)ea ∈ G.

Let Ḡ⊂ R denote the set of all residue classes of f ∈ G modulo xr−1. Then

Ḡ = { f (x) ∈ R | f (xn) = f (x)
n}.

For each f (x) ∈ Ḡ, denote v := f (xn/p) and w := f (x)
n/p

. Then

vp = f (xn) = f (x)
n
= wp.
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Thus, by Lemma 4.0.3, we have v = w. Let m1 and m2 be positive integers such that

f (xm1) = f (x)
m1 and f (xm2) = f (x)

m2

in R. Then there is q(x) ∈ Zp[x] satisfying

f (x)m2 = f (xm2)+q(x)(xr−1)

in Zp[x]. Substitute x with xm1 and get

f (xm1)m2 = f (xm1m2)+q(xm1)(xm1r−1)

in Zp[x]. Note that xr−1|xm1r−1, and hence in R

f (xm1m2) = f (xm1)
m2

= f (x)
m1m2

.

Define

I = {pi(n/p) j | i, j ≥ 0}.

From the above it has been shown for every m ∈ I and every g(x) ∈ G, g(x)
m
= g(xm) in

R.

Let Qr(x) be the rth cyclotomic polynomial over the finite field Zp. Then Qr(x)|xr−1

and Qr(x) factors into irreducible factors of degree Or(p) [LN86]. Let h(x) be one such

irreducible factor and let F denote Zp[x]/(h(x)), which is a finite extension of Zp. Every

element of F is the residue class of some f (x) ∈ Zp[x] and will be denoted as f̂ (x). Let

Ĝ⊂ F denote the set of all residues classes of polynomials in G modulo h(x).

Let Î be the set of all residues of numbers in I modulo r and denote t = |Î|. Obviously

φ(r)≥ t. An element f (x)∈R is the residue class of a unique f (x)∈ Zp[x] with deg f (x)<

r and we define the degree of f (x) to be that of f (x). Suppose f (x),g(x)∈G are of degree

less than t such that f̂ (x) = ĝ(x) in F. Then

f̂ (xi) = f̂ (x)i = f̂ (x)
i
= ĝ(x)

i
= ĝ(x)i = ĝ(xi)

6



in F, for all i∈ Î. Now since x̂ (the residue class of x in F) is a primitive rth root of 1, all x̂i,

i∈ Î, are distinct elements in F. Hence f (x) = g(x) in Zp[x] (otherwise h(x) = f (x)−g(x)

will have more than t roots in F). Thus, we have proved that for any two distinct elements

of degree less than t in G will map to different elements in Ĝ.

Since p>
√

φ(r) logn≥
√

t logn, the linear polynomials x,x+1, ...,x+λ , λ := [
√

t logn],

are all distinct in G. Since Zp[x] is a unique factorisation domain, for distinct sequences

e := e0, ...,eλ , the corresponding product

fe := ∏0≤a≤λ
(x+a)ea

are distinct. Because ni ∈ I, for every i = 0, ..., the number t is no less than the order of n

in Z∗r , and hence t ≥ log2 n. Therefore,

t ≥
√

t logn > λ .

To have deg fe < t, we can choose e such that either ei < t for some fixed i and e j = 0 for

all j 6= i, or each term e j = 0 or 1 and not all e j = 1. Then we can conclude that there are

at least 2λ+1 distinct fe ∈ G with deg fe < t. This implies

(4) |Ĝ| ≥ 2λ+1 > 2
√

t logn = n
√

t .

Suppose n is not a perfect power of p. Consider the subset

J := {(n/p)i p j | 0≤ i, j ≤ [
√

t]} ⊂ I.

Since n is not a power of p, J contains ([
√

t]+ 1)2 > t distinct elements. So there are at

least two numbers m1,m2 in J with m1 > m2 such that m1 = m2 (mod r). Then xm1 = xm2

(mod xr−1), and hence x̂m1 = x̂m2 . Let f̂ (x) ∈ Ĝ. Then

(5) f̂ (x)
m1

= f̂ (xm1) = f (x̂m1) = f (x̂m2) = f̂ (xm2) = f̂ (x)
m2
.

7



It follows that f̂ (x)m1 = f̂ (x)m2 in F. Hence every f̂ (x) ∈ Ĝ is a root of the equation

Y m1−Y m2 = 0 in F. Again, because the number of roots of a polynomial in any extension

of the field which its coefficients lie can not exceed its degree, we have |Ĝ| ≤m1. Clearly

m1 ≤ (n/p · p)[
√

t] ≤ n
√

t ,

hence |Ĝ| ≤ m1 ≤ n
√

t , a contradiction to (4). Therefore n is a power of p. It is clear

now that if n has no prime factor p ≤
√

φ(r) logn and n is not a perfect power, then n is

prime. �

5. TIME COMPLEXITY ANALYSIS

We use the notation Õ(t(n)) for O(t(n) ∗ poly(log t(n))), where t(n) is some function

of n. Note that we can perform addition, multiplication and division operations between

two m bits number in time Õ(m) [vzGG99]. Operations on two degree d polynomials

with coefficients at most m bits can be done in time Õ(dm) in a similar way [vzGG99]. In

the following, we compute the runtime bound in terms of n and r in the algorithm.

Theorem 3. The asymptotic time complexity of the algorithm is Õ(r3/2 log3 n).

Proof. The first step of the algorithm can be done with checking every possible exponent

in Õ(log3 n) time.

Step 2 can be done by trying successive numbers r that is coprime to n, and test if

nk 6= 1 (mod r) for every k≤ log2 n. For a particular r, this can be done in Õ(logr log2 n),

so it will take Õ(r log2 n) time.

The time taken for step 3 is Õ(r1/2 log2 n). In step 4, we have to verify about
√

φ(r) logn

equations. To verify each equation, one needs logn multiplications of degree r polyno-

mials with coefficient of size O(logn), hence each equation can be verified in Õ(r log2 n).

The total time taken for step 4 is therefore Õ(r3/2 log3 n).
8



Summing the above, we get the total time complexity of the algorithm: Õ(r3/2log3n).

�

Up to this point, we have seen that the time needed for the algorithm is Õ(r3/2 log3 n).

Only if r is bounded by a polynomial of logn can the algorithm be in polynomial runtime

overall. Indeed, this is the case, and we prove this in Theorem 4 using Lemma 5.0.4.

Lemma 5.0.4. Let LCM(m) denote the lcm of first m numbers. For m≥ 7: LCM(m)≥ 2m.

I heard the following proof from Dr. Yi-Chih Chiu, who was a post doctor research

fellow at National Taiwan University when I worked on this thesis, and he mainly used

the approach as in [Nai82], with more direct arguments.

Proof. We first prove that n(n+1)
(2n+1

n

)
|LCM(2n+1). This is true because

LCM(2n+1) = ∏
pr≤2n+1<pr+1

pr,

while the exponent of p in the prime factorisation of
(2n+1

n

)
equals

∑
i≥1

([(2n+1)/pi]− [n/pi]− [(n+1)/pi])≤ r

if pr ≤ 2n+1< pr+1 as each term is 0 or 1. When pa||n or pa||(n+1), we can improve the

upper bound of the above summation by r−a. Hence, the divisibility property follows.

As a consequence, LCM(2n + 1) ≥ n(n + 1)
(2n+1

n

)
= n(2n + 1)

(2n
n

)
≥ n · 22n. This

shows LCM(m)≥ 2m for odd m≥ 3. The case of even m follows from the crude estimation

LCM(m)≥ LCM(m−1). �

Theorem 4. Let n ≥ 3. In step 2, the integer r can be found with r ≤
⌈
log5 n

⌉
+ 1 or n

will be verified composite in this step.

Proof. Since n≥ 3, so m≥
⌈
log5 n

⌉
> 10 and by Lemma 5.0.4,

(6) LCM(m)≥ 2m.
9



Let r0 be the least number that does not divide the product

Q :=
blog2 nc

∏
i=1

(ni−1)< nlog4 n = 2log5 n.

If l is a prime number and lb‖LCM(r0−1), then lb≤ r0−1, and hence lb |Q. This implies

LCM(r0−1)≤ Q < 2log5 n.

then we must have

r0 ≤
⌈

log5 n
⌉
+1,

for otherwise, r0−1≥
⌈
log5 n

⌉
+1, hence by (6),

LCM(r0−1)≥ 2dlog5 ne+1 > 2log5 n

a contradiction to the above inequality.

Now, if (r0,n)> 1 then n is composite; otherwise, (r0,n) = 1 and Or0(n)> log2 n.

�

From theorems above, the time complexity of the algorithm is Õ(r3/2 log3 n)= Õ(log21/2 n).

Using a deep result from analytic number theory in [Fo85], one can show that r may ac-

tually be chosen with r = O(log3 n), and thus getting a more tight but ineffective bound

of the runtime: Õ(log7.5 n).
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