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中文摘要 

    這篇論文的目的是在三維中非等向性介質下重構可穿透與不可穿透障礙

物。我們將會示範如何利用包圍法重構對於以下兩種數學模型：非等向性的橢

圓方程以及非等向性的馬克士威方程。到目前為止，對於非等向性的數學模

型，沒有可以利用的複幾何光學解用來重構未知障礙物。因此我們將會使用另

一種特別解：震盪遞減解使用在我們的逆問題之中。 

    特別的，在這篇文章中，我們會介紹一種新的轉換法，把非等向性的馬克

士威方程轉變成一個二階線性強橢圓系統。這個方法是用來建構非等向性的馬

克士威方程的震盪遞減解。而在此篇文章的最後，我們將會討論強唯一連續性

質對於 Gevrey係數的殘留應力系統。 
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Abstract 

    The goal of this dissertation is to develop reconstruction schemes to determine 

penetrable and impenetrable obstacles in a region in 3-dimensional in an anisotropic 

background. We demonstrate the enclosure-type method for two different 

mathematical models: The anisotropic elliptic equation and the anisotropic Maxwell 

system. So far, in the anisotropic case, there are no complex geometrical optics 

solutions which we can use to reconstruct the unknown obstacles in a given medium. 

Therefore, we use another special type solution: the oscillating decaying solutions, 

which are useful in our inverse problems.  

    In particular, for the anisotropic Maxwell system model, we also introduce a new 

reduction method to transform the Maxwell system into a second order strongly 

elliptic system. This reduction method is the main tool to construct the oscillating 

decaying solutions for the anisotropic Maxwell system. In addition, we prove the 

strong unique continuation for a residual stress system with Gevrey coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 

doi:10.6342/NTU201600158



目  錄 

口試委員審定書………………………………………………………i 

誌謝……………………………………………………………………ii 

中文摘要………………………………………………………………iii 

英文摘要………………………………………………………………iv 

1  Preliminaries                                          1 

2  The enclosure method for the second order elliptic equations  4 

  2.1 Calderón's problem………...…………………………………………..……4 

   2.2 Ideas of the enclosure method………………………………………….…...6 

   2.3 Complex geometric optics solutions and related topics………………….…8 

   2.4 The enclosure-type method: Second order anisotropic elliptic equations....12 

3  The enclosure method for the Maxwell system        .     38 

   3.1 Basic properties for the Maxwell system ...……………………………......38 

   3.2 Enclosing unknown obstacles in the isotropic media ...…………………....41 

   3.3 Constructing CGO solutions …………………………………………….....42 

   3.4 Proof of Theorem 3.3 ………………………………………………………45 

   3.5 Enclosing unknown obstacles in the anisotropic media …………………....51 

   3.6 A new reduction method: From anisotropic Maxwell system to the second 

      order strongly elliptic system ………………………………………………55 

   3.7 Constructing of oscillating-decaying solutions for the anisotropic  

      Maxwell system ……………………………………………………………67 

   3.8 Proof of Theorem 3.13 ……………………………………………………..76 

4  Strong unique continuation for a residual stress system with 

Gevrey Coefficients                                   100 

v 

doi:10.6342/NTU201600158



   4.1 SUCP for the elliptic equation …………………………………………..100 

   4.2 Basic properties for the Gevrey class ……………………………………102 

   4.3 SUCP for the residual stress system with Gevrey coefficients ………….103 

   4.4 Reduction to a fourth order elliptic system ……………………………...106 

   4.5 The asymptotic behavior of u near 0 …………………………………….112 

   4.6 Proof of the main theorem.……………………………………………….113 

5  Future work                                         117 

   5.1 Fundamental solutions for the anisotropic Maxwell system …………….117 

   5.2 More Lp estimates for the anisotropic Maxwell system ………………...118 

   5.3 Strong unique continuation for the general second order elliptic system .118 

Bibliography                                           .119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 

doi:10.6342/NTU201600158



Chapter 1

Preliminaries

Inverse boundary value problem is a field of discussing the inverse problems of partial differential

equations. The inverse boundary value problems have become a popular field since A.P. Calderón

published his pioneering work “On an inverse boundary value problem” [1] in 1980s. The problem

proposed by Calderón is: “Is possible to determine the electrical conductivity of a medium by

making voltage and current measurements on its boundary ?” More specifically, for each volt-

age density on the boundary, there would be the corresponding current which can be measured

theoretically on the same periphery. In addition, the Calderón problem is also called the inverse

conductivity problem.

Under the assumptions of no sources or sinks of current in Ω, a voltage potential f at the bound-

ary ∂Ω induces a voltage potential u in Ω, which solves the Dirichlet problem for the conductivity

equation, 
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω.

Since γ is positive, there exists a unique weak solution u ∈ H1(Ω) for any boundary value f ∈

H1/2(∂Ω). One can define the Dirichlet-to-Neumann map (termed as DN map hereafter) formally

as

Λγ : f → γ
∂u

∂ν
|∂Ω.

The question is whether this DN map uniquely determines the conductivity γ in Ω. This problem

led to the development of the Electrical Impedance Tomography (EIT), an imaging method with

potential applications in medical imaging and nondestructive testing. The ideas of solving Calderón

problem is based mainly on gaining information from boundary data, which can be extended to

tackle many physical issues in the reality. The questions evolve from theoretical determinations

to practical reconstructions. For example, boundary measurements determines the information of
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unknown obstacles in a given medium.

By extending Calderón’s ideas, we not only can determine the conductivity γ from the bound-

ary information but also we can reconstruct unknown obstacles in a given subject. There are

several reconstruction methods to know the information of unknown obstacle inside a given do-

main: The enclosure method(Ikehata), the linear sampling method(Colton-Kirsch), the factoriza-

tion method(Kirsch) and the singular source method(Potthast). The enclosure method can be

applied in the following: the subject contains unknown obstacles and the conductivity is unknown

in the unknown obstacle which is different from the background. The enclosure method is not only

a theoretical detection method but also provides an algorithm to draw the unknown obstacle. In

this article, we will illustrate how to reconstruct unknown obstacles in a known background from

boundary information. We will employ a nondestructive method: “the enclosure method”, which

was first introduced by Ikehata [19].

The simplest inverse obstacle problem has the following formulation. Let u be a solution of the

conductivity equation 
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω,

where γ(x) := 1 + γDχD, where D b Ω is an unknown obstacle in Ω. By defining the DN map

ΛD : f → γ
∂u

∂ν
|∂Ω, we are able to explore the shape of D through the above reconstruction method

and the DN map ΛD. This geometrical inverse problem is quite well studied in the literature see

[24] and several methods have been proposed to solve it. In this chapter, we focus on the enclosure

method, which is initiated by Ikehata, see for examples [17, 19], and developed by many researchers

[27, 30, 44, 53, 55, 61], [26, 55] for the acoustic model, [25, 30] for the Lamé model and [27, 66] for

the Maxwell model. The testing functions used in [27, 66] are complex geometric optics (CGO)

solutions of the isotropic Maxwell’s equation. The construction of CGO solutions for isotropic

inhomogeneous Maxwell’s equations is first proposed in [51]. After that, the authors in [28] also

constructed CGO solutions for some special anisotropic Maxwell’s equations. However, there are

not yet of CGO solutions for general anisotropic Maxwell system. Besides, CGO solutions, another

kind of special solutions for anisotropic elliptic system was proposed for substitution in [48] and

[49]. They are called oscillating-decaying (OD) solutions.

This thesis is organized as follows. In Chapter 2, we first review the idea of the enclosure

method for the isotropic scalar elliptic equations and generalize such a concept to the anisotropic

scalar elliptic equations and fully examine the enclosure method including the complex geometric

optics (CGO) solutions and the indicator functional (or indicator function). Consequently, the

theoretical linkage between the enclosure method and the Calderón’s problem will be presented.

In the absence of CGO solutions for the anisotropic elliptic equation in R3, we introduce another
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special solutions called the oscillating-decaying solutions and use the Runge approximation property

to obtain our reconstruction algorithm in the anisotropic case, which primarily steams from the

enclosure method (intuitively, viewed as the enclosure-type method). In addition, the traditional

indicator function requires some modifications.

In Chapter 3, we confine the framework of the enclosure method to the isotropic Maxwell

system, which has been addressed in [66], in the similar approach of the CGO solutions and suitable

choice of the indicator function. Instead, we can define the impedance map, the counterpart for the

elliptic case (that is, the DN map). The indicator function and the reconstruction algorithm are

adjusted due to the slight differences between the impedance map and the DN map. Stretching the

result of isotropic case to the anisotropic case poses plenty of challenges. We thereby propose a new

reduction method which transforms the anisotropic Maxwell system into a second order strongly

elliptic system in R3. Further, given the relationship between the oscillating-decaying solutions

and the strongly elliptic system, we utilize the newly-proposed (reduction) method to convey such

the relation to the anisotropic Maxwell systems and, in turn, derive the representation of the

oscillating-decaying solutions of the anisotropic Maxwell system.

In the following chapter, we prove the strong unique continuation property (SUCP) for a

residual stress system with Gevrey coefficients on the basis of the SUCP for the scalar elliptic

equations with coefficients in the Gevrey class. Finally, we provide some guidelines for the future

works.
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Chapter 2

The enclosure method for second

order elliptic equations

The enclosure method is to reconstruct an unknown obstacle in a known background, which was

first introduced by Ikehata, see [17]. The main tool of this reconstruction algorithm is by the indi-

cator functional and the complex geometric optics (CGO) solutions. The idea of these tools can be

traced back to the Calderón’s pioneering work. In the following, we will show the relations between

Calderón’s work and these tools. Moreover, if the mathematical models are complicated, we need

to introduce appropriate elliptic regularity estimates (Cα estimates or Meyers’ Lp estimates), we

will discuss these details in the following sections.

2.1 Calderón’s problem

In 1980s’, Calderón published his pioneer work “On an inverse boundary value problem” [1]. His

work affected the development of the inverse boundary value problem and the inverse conductivity

problem. We will give a brief introduction about the Calderón problem how to relate to the

enclosure method.

Let us begin by giving the mathematical model. Let Ω ⊂ Rn be a bounded open subset in Rn

for n = 2, 3 with C∞ boundary. Assume that γ > 0 is a C2 function defined on Ω. Let u ∈ H1(Ω)

satisfy 
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω,

(2.1.1)

where f ∈ H1/2(∂Ω). It is well-known that (2.1.1) has a unique weak solution u ∈ H1(Ω). We can
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define the Dirichlet-to-Neumann (DN) map formally as

Λγf = γ
∂u

∂ν
|∂Ω.

More precisely, the DN map is defined weakly as

(Λγf, g)∂Ω =

ˆ
Ω

γ∇u · ∇vdx, f, g ∈ H1/2(∂Ω),

where u is the solution of (2.1.1) and v is any function in H1(Ω) with v|∂Ω = g. The pairing on

the boundary is integration with respect to the surface measure

(f, g)∂Ω =

ˆ
∂Ω

fgdS.

With the definition, we know that Λγ is a bounded linear map from H1/2(∂Ω) into H−1/2(∂Ω).

The Calderón problem (also called the inverse conductivity problem) is to determine the con-

ductivity function γ from the knowledge of the map Λγ . That is, if the measured current Λγf is

known for all boundary voltages f ∈ H1/2(∂Ω), one would like to determine the conductivity γ.

There are several aspects of this inverse problem which are interesting to both the mathematical

theory and the practical applications. When Ω ⊂ Rn for n ≥ 3, we have the following results.

1. Uniqueness. If Λγ1 = Λγ2 , we have γ1 = γ2. The result was proved by Sylvester-Uhlmann

[57] in 1987.

2. Reconstruction. Given the boundary measurements Λγ , find a procedure to reconstruct

the conductivity γ. There is a convergent algorithm which was found by Nachman [42].

3. Stability. If Λγ1 is close to Λγ2 in a suitable sense, then γ1 and γ2 are close. In 1988,

Alessandrini [2] proved that if γj ∈ Hs(Ω) for s > n

2
+ 2, ∥γj∥Hs(Ω) ≤M and 1

M
≤ γj ≤M

(j = 1, 2). Then

∥γ1 − γ2∥L∞(Ω) ≤ ω(∥Λγ1 − Λγ2∥H1/2(∂Ω)→H−1/2(∂Ω)),

where ω(t) = C| log t|−σ for small t > 0 and C = C(Ω,M, n, s) > 0, σ = σ(n, s) ∈ (0, 1).

4. Partial data. If Γ is a subset of ∂Ω and if Λγ1f |Γ = Λγ2f |Γ for all boundary voltages f , show

that γ1 = γ2. When Ω is convex and Γ is any open subset of ∂Ω, Kenig-Sjöstrand-Uhlmann

then proved this result in [29].
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In order to deal with the Calderón problem, Calderón considered the following nonlinear map

Qγ(f) :=

ˆ
Ω

γ|∇u|2dx =

ˆ
∂Ω

Λγ(f) · fds, (2.1.2)

where ds is the standard surface measure and u solves (2.1.1) with u|∂Ω = f . Calderón proved

Qγ is analytic and the Frechet derivative of Qγ at γ0 is injective whenever γ0 is a constant, which

means the map from γ to Qγ is injective for constant conductivity γ.

Calderón’s work has made the huge influences in the inverse problems. The nonlinear map Qγ

can be widely applied to other areas of the inverse problems. For example, Qγ is also called the

indicator functional, which is useful in the enclosure method for the reconstruction of unknown

obstacles. Moreover, Calderón took a special harmonic function u = ex·(ρ+iρ⊥) to show the injec-

tivity of the linearized map, where ρ ∈ Cn with ρ · ρ⊥ = 0. In addition, we call ex·(ρ+iρ⊥) to be the

complex geometric optics (CGO) solutions and the CGO solution plays an important role in the

inverse problem, for more details, we refer readers to [60].

2.2 Ideas of the enclosure method

We give two different examples to demonstrate ideas of the enclosure method. Here is the math-

ematical setting: Let Ω ⊂ Rn, for n = 2, 3 and D b Ω be an unknown obstacle. We con-

sider the simplest case in the following: Let γ0 ≡ 1 be a given conductivity on the background

medium and γ̃(x) = γ0 + γD(x)χD = 1 + γDχD be a total conductivity defined on Ω, where

χD =


1, if x ∈ D

0, otherwise
is the characteristic function of domain D and γD(x) > 0 is a bounded func-

tion on Ω. Then we have two different conductivity equations with boundary value f ∈ H1/2(∂Ω),


∆u0 = 0 in Ω,

u0 = f on ∂Ω,

and 
∇ · (γ̃(x)∇u) = 0 in Ω,

u = f on ∂Ω,

where u0 is the voltage when D = ∅ (no unknown obstacles in Ω) and u is the voltage when

D ̸= ∅(Ω contains unknown obstacles). Then we can define the Dirchlet-to-Neumann maps: For

f ∈ H1/2(∂Ω),

Λγ0(f) = γ0
∂u0
∂ν

|∂Ω,
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and

Λγ̃(f) = γ̃
∂u

∂ν
|∂Ω,

where ν is a unit outer normal on ∂Ω. The enclosure method consists of two tools: The indicator

functional and the special solutions (CGO solutions).

First, we introduce the indicator functional and the ideas came from the nonlinear map Qγ we

have defined in the previous section (see (2.1.2)). We consider the indicator functional

E(f) :=

ˆ
∂Ω

(Λγ̃(f)− Λγ0(f)) · fdS.

If given voltage f on ∂Ω, we can regard E(f) as a difference of currents or energies corresponding

to the situations with and without D. Furthermore, due to the positivity property of the equations,

we can easily derive

E(f) ≈ C

ˆ
D

|∇u0|2dx,

where C > 0 is independent of f and u0 and recall that u0 solves ∆u0 = 0 with u0|∂Ω = f .

Second, it is not hard to see for any h > 0,

u0 = e
1
h (ρ·x+iρ⊥·x)

is a solution of the Laplace equation, where ρ, ρ⊥ ∈ Sn−1 (for n = 2, 3) and ρ · ρ⊥ = 0. Note that

the special function u0 was also appeared in [1], which was proposed by Calderón. Moreover, let

d ∈ R be arbitrary,

u0,d,h = e−
d
h e

1
h (ρ·x+iρ⊥·x)

satisfies the Laplace equation, i.e. ∆u0,d,h = 0.

We set f0,d,h = u0,d,h|∂Ω and take f0,d,h into the indicator functional E(f) = E(f0,d,h), then

we have

E(f0,d,h) ≈ C

ˆ
D

|∇u0,d,h|2dx

≈ C ′ 1

h2

ˆ
D

e
2
h (ρ·x−d)dx

for some positive constants C,C ′ independent of h. Now, we define the support function hD(ρ)

hD(ρ) := sup
x∈D

x · ρ

and let d := hD(ρ), then we have the following two situations:
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1. If x ∈ {ρ · x > d}, then we can see that

u0,d,h → ∞ as h→ 0 + .

In addition, we also have

E(f0,d,h) → ∞ as h→ 0 + .

2. If x ∈ {ρ · x < d}, then we can see that

u0,d,h → 0 as h→ 0 + .

In addition, we also have

E(f0,d,h) → 0 as h→ 0 + .

Then from the limiting behaviors of E(f0,d,h) as h tends to 0, we can conclude that if we choose

f0,d,h to be our testing boundary measurements, then the limit behavior of E(f0,d,h) will tell us

whether the level set {x · ρ = d} touches ∂D or not. By varying the direction ρ and the real value

d, we can reconstruct a convex hull for the unknown obstacle D theoretically.

Remark 2.1. We call E(f) to be the indicator functional. In fact, in [20], Ikehata called E(f0,d,h)

the indicator function.

Let us summarize the ideas of previous reconstruction procedures. First, we define the indicator

function E(f) from the DN map on the boundary. Second, we construct a sequence of special so-

lutions u0,d,h (CGO solutions) for the Laplace equation, and let f0,d,h = u0,d,h|∂Ω be the boundary

testing functions, then the limit behavior of E(f0,d,h) will tell us whether the level set {x · ρ = d}

touches ∂D or not when h tends to 0. It looks like to use the hyperplanes to enclose the unknown

obstacle D in Ω, and named the enclosure method.

2.3 Complex geometric optics solutions and related topics

Since Ikehata proposed the idea of the enclosure method, there are many applications of this

method to other physical problems. We will show how to extend the ideas to different physical

settings and related results.

Recall that the enclosure method contains two different tools: The indicator function and the

special solutions. In different mathematical problems, we can define similar indicator functions

via the Dirichlet-to-Neumann map (for the Maxwell system, we define the impedance map, it

will be seen in Chapter 3). The main problem lies on how to find a suitable sequence of testing

functions, which satisfy the specific partial differential equation. For example, we know that
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u0,d,h = e
1
h (x·ρ−d+ix·ρ⊥) solves the Laplace equation. Notice that u0,d,h are harmonic functions

with complex phases. By using the following form of solutions,

ei
1
hρ(x)(a(x) +Rh(x)),

one can construct approprate testing data with a complex phase function ρ(x) and Rh(x) ≪ a(x) as

h→ 0+. The solutions with this form are so-called the complex geometric optics (CGO) solutions,

which play an essential role in the enclosure-type method.

The results to the existence of CGO solutions for various mathematical problems and CGO

solutions are useful for the inverse boundary value problem, for example, see [56, 57, 51, 52, 18, 16,

61]. In particular, CGO solutions play an important role of the probing method in the enclosure

type method, we refer readers to [16, 17, 19, 22, 23, 43, 55, 54, 58, 61, 66].

aa

From linear phase to general phase

From Ikehata’s previous work, he used the Calderón’s harmonic function ex·(ρ+ρ⊥) to construct

the boundary testing data. The phase function x · (ρ + ρ⊥) is linear and we use it to enclose the

unknown obstacle. By using the linear phase type harmonic function, we can only reconstruct the

convex hull of the unknown obstacle. One can refer to a survey paper [21] for detailed explanation

and early development of this theory. In [54, 45, 16], the writers used the complex spherical

wave solutions to detect concave parts of the unknown obstacles. Moreover, in [61], the researchers

proposed a framework to construct the CGO solutions with general phases for some elliptic systems

in 2 dimension. This work provides more choices for the phase function of the CGO solutions in

2D. They also gave a concrete example: the CGO solutions with complex polynomial phases and

apply these CGO solutions for the conductivity equations to determine unknown obstacles with

more general shapes. This type of CGO solutions were also applied to elastic system [64] and

Helmholtz equation [43].

More results for the Helmholtz type equation
Recall that we know that e 1

h (x·ρ−d+ix·ρ⊥) are CGO solutions for various h, d ∈ R and ρ ∈ Sn−1

for n ∈ N (we only consider n = 2, 3). For more general mathematical models, we can consider the

following problem 
∇ · (γ̃(x)∇u+ k2u = 0 in Ω,

u = f on ∂Ω,

(2.3.1)
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where γ̃(x) = 1 + γDχD, for some γD > 0, γD ∈ L∞(D) and χD is the characteristic function

defined on D. For the unperturbed case, i.e. when D = ∅, we have the Helmholtz equation


∆u0 + k2u0 = 0 in Ω,

u0 = f on ∂Ω.

(2.3.2)

Now, we want to know the information of the unknown obstacle D b Ω.

In the beginning, we need to define the DN map

ΛDf :=
∂u

∂ν
|∂Ω and Λ∅f :=

∂u0
∂ν

|∂Ω,

where u and u0 are solutions of (2.3.1) and (2.3.2), respectively and ν is a unit outer normal on

∂Ω. Similarly, we can define the indicator function

E(f) :=

ˆ
∂Ω

(ΛD − Λ∅)f · fdS,

and use integration by parts many times, we will obtain the upper bound estimates and the lower

bound estimates for E(f):

E(f) ≤ C

ˆ
D

|∇u0|2dx+ k2
ˆ
Ω

|w|2dx

and

E(f) ≥ c

ˆ
D

|∇u0|2dx− k2
ˆ
Ω

|w|2dx,

where c, C are independent of u0, w and w = u− u0 is called the reflected solution satisfying


∇ · (γ̃(x)∇w) + k2w = −∇ · (γ̃(x)− 1)∇u0 in Ω,

w = 0 on ∂Ω.

(2.3.3)

For more calculation details, we refer readers to [43]. Note that the upper and lower bounds only

involve u0 and w. Our remaining task is to find appropriate estimates for
´
Ω
|w|2.

In fact, there are two different approaches for
´
Ω
|w|2dx: One is the Cα-estimates method

which was first introduced by [43] and the other is Meyers’ Lp estimates method which was first

introduced by [55]. We give a brief comparison with Cα-estimates method and Meyers’ Lp estimate

method. Note that in the following estimates, the constants C may change line to line, and they

are independent of u0 and w.

1. Cα-estimates method: This method was introduced in [43]. Recall that we have an upper
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bound for the indicator function

E(f) ≤ C

ˆ
D

|∇u0|2dx+ k2
ˆ
Ω

|w|2dx.

By (2.3.3) and the standard elliptic regularity estimates, we have

ˆ
Ω

|w|2dx ≤ C

ˆ
D

|∇u0|2dx,

then we obtain

E(f) ≤ C

ˆ
D

|∇u0|2dx.

The main problem appears on the lower bound for E(f). In [43], the authors defined a new

function

Ix0,α :=

ˆ
∂D

∣∣∣∣∂u0∂ν

∣∣∣∣ |x− x0|αdS,

for any x0 ∈ Ω, then they derived

ˆ
Ω

|w|2dx ≤ Cq,α{I2x0,α + Ix0,α∥∇u0∥Lq(D) + ∥u0∥2L2(D)}, (2.3.4)

for any α ∈ (0, 1) and q ∈ (2, 4]. The estimate (2.3.4) relies on the Cα-estimates for the elliptic

equation, which were proved in the paper [35]. In order to apply this type Cα-estimate, we

need to add regularity assumptions on the unknown obstacle D, which is ∂D ∈ C2. In

addition, we know that

u0 := e
1
h (x·ρ−d)+i

√
τ2+k2x·ρ⊥

(2.3.5)

are CGO solutions for the Helmholtz equation. Combine the lower bound of E(f), (2.3.4) and

put the CGO solutions (2.3.5) into the indicator function E(d, h) := E(f0,d,h) = E(u0,d,h|∂Ω),

then we can obtain 
E(d, h) → 0 as h→ 0+ if ω · x < hD(ρ),

E(d, h) → ∞ as h→ 0+ if ω · x > hD(ρ),

(2.3.6)

where hD(ρ) = infx∈D x · ρ is the support function we have mentioned before.

2. Meyers’ Lp-estimates method: This method was introduced in [55]. Similarly, since the upper

bound of E(f) can be obtained by the standard elliptic regularity, we only need to take care

of the lower bound of E(f). Recall that w is the reflected solution of (2.3.3), and in [39],

the author derived the following estimates (Meyers’ Lp estimates): Assume D b Ω and ∂D

is Lipschitz. For every p0 > 2, there exists a positive constant Cp0 independent of w and u0
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such that

∥w∥L2(Ω) ≤ Cp0∥u0∥W 1,p(D), (2.3.7)

for p ∈ (
6

5
, p0]. In addition, by (2.3.7), we have

E(f) ≥ c

ˆ
Ω

|∇u0|2dx− c∥u0∥2W 1,p(D).

In [55], the authors used a decomposition technique to obtain the lower bound of E(f), and

we will give details in the next chapter (section 3.4.2). Note that the key point is that we

only need ∂D is Lipschitz. In summary, we can use the Meyers’ Lp estimates to obtain the

same result (2.3.6). For more enclosure methods for the Helmholtz-type equations, we refer

readers to the survey paper [65].

From Laplacian leading term to general elliptic operator
Until now, we only considered the case when the mathematical models with the Laplacian as

the leading order term. For the leading term - Laplacian, we call this mathematical model to be

isotropic. In order to consider more general situation, we need to consider the equations or systems

with non-Laplacian leading terms and we call the case to be anisotropic. However, the anisotropy

of the non-Laplacian prevents us from constructing CGO solutions by using the standard methods.

As a result, in [48], the authors constructed another special type of solutions which is called the

oscillating-decaying (OD) solutions. The OD solutions are also useful in the inverse problems,

especially for the reconstruction problems. In two-dimensional case, we can use the isothermal

coordinates to transform a general second order elliptic equation into Laplacian type equations.

However, for three-dimensional case, we do not know how to construct CGO solutions yet, we will

use OD solutions to reconstruct the unknown obstacles. We will give all the details in the next

section.

2.4 The enclosure-type method: Second order anisotropic

elliptic equations

In this section, we develop an enclosure-type reconstruction scheme to identify penetrable obstacles

in acoustic waves with anisotropic medium in R3. The main difficulty of treating this problem

lies in the fact that there are no complex geometrical optics solutions available for the acoustic

equation with anisotropic medium in R3. Instead, we will use another type of special solutions

called oscillating-decaying solutions. Even though that oscillating-decaying solutions are defined

only on the half space, we are able to give necessary boundary inputs by the Runge approximation
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property. Moreover, since we are considering a Helmholtz-type equation, we turn to Meyers’

Lp estimate to compare the integrals coming from oscillating-decaying solutions and those from

reflected solutions.

2.4.1 Problem for the anisotropic elliptic equation

In the study of inverse problems, we are interested in the special type of solutions for elliptic

equations or systems which play an essential role since the pioneer work of Caldéron. Sylvester and

Uhlmann [57] introduced complex geometric optics (CGO) solutions to solve the inverse boundary

value problems of the conductivity equation. Based on CGO solutions, Ikehata proposed the so

called enclosure method to reconstruct the impenetrable obstacle, for more details, see [17, 20, 21].

There are many results concerning this reconstruction algorithm, such as [43, 62]. The researchers

constructed CGO-solutions with polynomial-type phase function of the Helmholtz equation ∆u+

k2u = 0 or the elliptic system with the Laplacian as the principal part.

When the medium is anisotropic, we need to consider more general elliptic equations, such as

anisotropic scalar elliptic equation in a bounded domain Ω ⊂ R3,

∇ · (A0(x)∇u) + k2u = 0, (2.4.1)

where A0(x) = (a0ij(x)), a0ij(x) = a0ji(x), and we assume the uniform ellipticity condition, that

is, for all ξ = (ξ1, ξ2, · · · ξn) ∈ Rn, λ0|ξ|2 ≤
∑

i,j a
0
ij(x)ξiξj ≤ Λ0|ξ|2 and x ∈ Ω. In two dimen-

sional case, we can transform (2.4.1) to an isotropic equation by using isothermal coordinates,

then we can apply the CGO-solutions for this case, which can be found in [58]. When Ω ⊂ R3,

we cannot directly transform (2.4.1) to an isotropic equation as we do in R2, thus we need to use

the oscillating-decaying solutions in our reconstruction algorithm. In [46], the author introduced

oscillating-decaying solutions for the conductivity equation ∇ · (γ(x)∇u) = 0 with the isotropic

conductivity.

We make the following assumptions.

1. Let Ω ⊂ R3 be a bounded C∞-smooth domain and assume that D is an unknown obstacle

with Lipschitz boundary such that D b Ω ⊂ R3 with an inhomogeneous index of refraction

subset of a larger domain Ω.

2. Let A(x) = (aij(x)) and A0(x) = (a0ij(x)) be symmetric matrices with aij(x) = a0ij(x) +

ãij(x)χD, where each a0ij(x) is bounded C∞-smooth, Ã(x) = (ãij(x)) ∈ L∞(D) is regarded

as a perturbation in the unknown obstacle D and Ã(x)ξ · ξ ≥ λ̃|ξ|2 for any ξ ∈ R3 and

x ∈ D with some λ̃ > 0. Further A(x) satisfies λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for some constants
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0 < λ ≤ Λ.

Now, let k > 0 and consider the steady state anisotropic acoustic wave equation with Dirichlet

boundary condition 
∇ · (A(x)∇u) + k2u = 0 in Ω

u = f on ∂Ω.

(2.4.2)

For the unperturbed case, we have


∇ · (A0(x)∇u0) + k2u0 = 0 in Ω

u0 = f on ∂Ω.

(2.4.3)

In this paper, we assume that k2 is not a Dirichlet eigenvalue of the operator −∇ · (A∇•) and

−∇ · (A0∇•) in Ω. It is known that for any f ∈ H1/2(∂Ω), there exists a unique solution u to

(2.4.2). We define the Dirichlet-to-Neumann map ΛD : H1/2(∂Ω) → H−1/2(∂Ω) in the anisotropic

case as the following.

Definition 2.2. ΛDf := A∇u · ν =
∑3

i.j=1 aij∂ju · νi and Λ∅f := A0∇u0 · ν =
∑3

i.j=1 aij∂ju0 · νi,

where ν = (ν1, ν2, ν3) is a unit outer normal on ∂Ω.

Inverse problem: Identify the location and the convex hull of D from the DN-map ΛD.

The domain D can also be considered as an inclusion embedded in Ω. The aim of this work

is to give a reconstruction algorithm for this problem. Note that the information on the medium

parameter Ã(x) = (ãij(x)) inside D is not known a priori.

The main tool in our reconstruction method is the oscillating-decaying solutions for the second

order anisotropic elliptic differential equations. We use the results from the paper [47] to construct

the oscillating-decaying solution. In the next section, we will construct the oscillating-decaying

solutions for anisotropic elliptic equations. Note that even if k = 0, which means the equation

is ∇ · (A(x)∇u) = 0, we do not know of any CGO-type solutions. Roughly speaking, given a

hyperplane, an oscillating-decaying solution is oscillating very rapidly along this plane and decaying

exponentially in the direction transverse to the same plane. Oscillating-decaying solutions are

special solutions with the imaginary part of the phase function non-negative. Note that the domain

of the oscillating-decaying solutions is not over the whole Ω, so we need to extend such solutions to

the whole domain. Fortunately, the Runge approximation property provides us a good approach

to extend this special solution.

In Ikehata’s work, the CGO-solutions are used to define the indicator function (see [21] for the

definition). In order to use the oscillating-decaying solutions to the inverse problem of identifying

an inclusion, we employ the Runge approximation property to redefine the indicator function. It
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was Lax [31] that first recognized the Runge approximation property is a consequence of the weak

unique continuation property. In our case, it is clear that the anisotropic elliptic equation has the

weak unique continuation property if the leading part is Lipschitz continuous. Finally, the main

theorem and reconstruction algorithm will be presented in the end of this chapter.

2.4.2 Construction of oscillating-decaying solutions

In this section, we follow the paper [47] to construct the oscillating-decaying solution in the

anisotropic elliptic equations. In our case, since we only consider a scalar elliptic equation, its

construction is simpler than that in [47]. Consider the anisotropic Helmholtz type equation

∇ · (A(x)∇u) + k2u = 0 in Ω. (2.4.4)

Note that the oscillating-decaying solutions of

∇ · (A(x)∇u) = 0 in Ω

will have the same form as the equation (2.4.4), which means the lower order term k2u will not

affect the representation of the oscillating-decaying solutions, the following are the construction

details. Now, we assume that the domain Ω is an open, bounded smooth domain in R3 and the

coefficients A(x) = (aij(x)) is a symmetric 3 × 3 matrix satisfying uniformly elliptic condition,

which means
∑3

i.j=1 aij(x)ξiξj ≥ c|ξ|2, ∀ξ = (ξ1, ξ2, ξ3) ∈ R3 for some c > 0.

Assume that

A(x) = (aij(x)) ∈ B∞(R3) = {f ∈ C∞(R3) : ∂αf ∈ L∞(R3), ∀α ∈ Z3
+}

is the anisotropic coefficients. Note that A(x) ∈ B∞ already implies that A is Lipschitz continuous

and the Lipschitz continuity property of A(x) will apply the weak unique continuation property of

(2.4.4) (see [15] for example).

We give several notations as follows. Assume that Ω ⊂ R3 is an open set with smooth boundary

and ω ∈ S2 is given. Let η ∈ S2 and ζ ∈ S2 be chosen so that {η, ζ, ω} forms an orthonormal

system of R3. We then denote x′ = (x · η, x · ζ). Let t ∈ R, Ωt(ω) = Ω ∩ {x · ω > t} and

Σt(ω) = Ω∩{x ·ω = t} be a non-empty open set. We consider a scalar function uχt,t,b,N,ω(x, τ) :=

u(x, τ) ∈ C∞(Ωt(ω)\Σt(ω)) ∩ C0(Ωt(ω)) with τ ≫ 1 satisfying:


LAu = ∇ · (A(x)∇u) + k2u = 0 in Ωt(ω)

u = eiτx·ξ{χt(x
′)Qt(x

′)b+ βχt,t,b,N,ω} on Σt(ω),

(2.4.5)
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where ξ ∈ S2 lying in the span of η and ζ and fixed χt(x
′) ∈ C∞

0 (R2) with supp(χt) ⊂ Σt(ω),

Qt(x
′) is a nonzero smooth function and 0 ̸= b ∈ C3. Moreover, βχt,b,t,N,ω(x

′, τ) is a smooth

function supported in supp(χt) satisfying:

∥βχt,b,t,N,ω(·, τ)∥L2(R2) ≤ cτ−1

for some constant c > 0. From now on, we use c, c′ and their capitals to denote general positive

constants whose values may vary from line to line. As in the paper [47], uχt,b,t,N,ω can be written

as

uχt,b,t,N,ω = wχt,b,t,N,ω + rχt,b,t,N,ω

with

wχt,b,t,N,ω = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)At(x
′)b+ γχt,b,t,N,ω(x, τ) (2.4.6)

and rχtb,t,N,ω satisfying

∥rχt,b,t,N,ω∥H1(Ωt(ω)) ≤ cτ−N−1/2, (2.4.7)

where At(·) ∈ B∞(R2) is a complex function with its real part ReAt(x
′) > 0, and γχt,b,t,N,ω is a

smooth function supported in supp(χt) satisfying

∥∂αx γχt,b,t,N,ω∥L2(Ωs(ω)) ≤ cτ |α|−3/2e−τ(s−t)a (2.4.8)

for |α| ≤ 1 and s ≥ t, where a > 0 is some constant depending on At(x
′).

Without loss of generality, we consider the special case where t = 0, ω = e3 = (0, 0, 1) and

choose η = (1, 0, 0), ζ = (0, 1, 0). The general case can be obtained from this special case by change

of coordinates. Define L = LA and M̃ · = e−iτx′·ξ′L(eiτx
′·ξ′ ·), where x′ = (x1, x2) and ξ′ = (ξ1, ξ2)

with |ξ′| = 1, then M̃ is a differential operator. To be precise, by using ajl = alj , we calculate M̃

to be given by

M̃ = −τ2
∑
jl

ajlξjξl + 2τ
∑
jl

ajl(iξl)∂j +
∑
jl

ajl∂j∂l

+
∑
jl

(∂jajl)(iτξl) +
∑
jl

(∂jajl)∂l + k2

= −τ2
∑
jl

ajlξjξl + 2τ
∑
l

a3l(iξl)∂3 + a33∂3∂3

+2τ
∑
j ̸=3,l

ajl(iξl)∂j +
∑

j ̸=3,l ̸=3

ajl∂j∂l

+
∑
jl

(∂jajl)(iτξl) +
∑
jl

(∂jajl)∂l + k2
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with ξ3 = 0. Now, we want to solve

M̃v = 0,

which is equivalent to Mv = 0, where M = a−1
33 M̃ . Now, we use the same idea in [47], define

⟨e, f⟩ =
∑

ij aijeifj , where e = (e1, e2, e3), f = (f1, f2, f3) and denote ⟨e, f⟩0 = ⟨e, f⟩ |x3=0. Let P

be a differential operator, and we define the order of P , denoted by ord(P ), in the following sense:

∥P (e−τx3A(x′)φ(x′)∥L2(R3
+) ≤ cτord(P )−1/2,

where R3
+ = {x3 > 0}, A(x′) is a smooth complex function with its real part greater than 0 and

φ(x′) ∈ C∞
0 (R2). In this sense, similar to [47], we can see that τ , ∂3 are of order 1, ∂1, ∂2 are of

order 0 and x3 is of order -1.

Now according to this order, the principal part M2 (order 2) of M is:

M2 = −{D2
3 + 2τ ⟨e3, e3⟩−1

0 ⟨e3, ρ⟩0D3 + τ2 ⟨e3, e3⟩−1
0 ⟨ρ, ρ⟩0}

with D3 = −i∂3 and ρ = (ξ1, ξ2, 0). Note that the principal part M2 does not involve the lower

order term k2·, so we can follow all the constructions in the same procedures as in [47] and we

omit details.

2.4.3 Runge approximation property

Definition 2.3. [31] Let L be a second order elliptic operator, solutions of an equation Lu = 0 are

said to have the Runge approximation property if, whenever K and Ω are two simply connected

domains with K ⊂ Ω, any solution in K can be approximated uniformly in compact subsets of K

by a sequence of solutions which can be extended as solution to Ω.

There are many applications for the Runge approximation property in inverse problems. Similar

results for some elliptic operators can be found in [31], [37]. The following theorem is a classical

result for Runge approximation property for second order elliptic equations.

Theorem 2.4. (Runge approximation property) Let L0· = ∇(A0(x)∇·) + k2· be a second order

elliptic differential operator with A0(x) to be Lipschitz. Assume that k2 is not a Dirichlet eigenvalue

of −∇(A0(x)∇·) in Ω. Let O and Ω be two open bounded domains with smooth boundary in R3

such that O b Ω.

Let u0 ∈ H1(O) satisfy

L0u0 = 0 in O.
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Then for any compact subset K ⊂ O and any ϵ > 0, there exists U ∈ H1(Ω) satisfying

L0U = 0 in Ω,

such that

∥u0 − U∥H1(K) ≤ ϵ.

Proof. The proof is standard and it is based on the weak unique continuation property for the

anisotropic second order elliptic operator L0 and the Hahn-Banach theorem. For more details,

how to derive the Runge approximation property from the weak unique continuation, we refer

readers to [31]

It remains to use the same ideas which comes from the reflected solutions. Here we use the

useful elliptic estimates, which is called the Meyers’ Lp estimates.

2.4.4 Meyers’ Lp estimates and some identities

We need some estimates for solutions to some Dirichlet problems which will be used in next

section. Recall that, for f ∈ H1/2(∂Ω), let u and u0 be solutions to the Dirichlet problems (2.4.2)

and (2.4.3), respectively. Note that aij(x) = a0ij(x) + ãij(x)χD and we set w = u − u0, then w

satisfies the Dirichlet problem


∇ · (A(x)∇w) + k2w = −∇ · ((ÃχD)∇u0) in Ω

w = 0 on ∂Ω

(2.4.9)

where A(x) = (aij(x)), A0(x) = (a0ij(x)) and Ã(x) = (ãij(x)). Then we have some estimates for

w.

Lemma 2.5. There exists a positive constant C independent of w such that we have

∥w∥L2(Ω) ≤ C∥∇w∥Lp(Ω)

for 6

5
≤ p ≤ 2 if n = 3.

Proof. The proof follow from [55] by Freidrich’s inequality, see [38] p.258 and use a standard elliptic

regularity.

Lemma 2.6. There exists ϵ ∈ (0, 1), depending only on Ω, A0(x) = (a0ij(x)) and Ã(x) = (ãij(x))

such that

∥∇w∥Lp(Ω) ≤ C∥u0∥W 1,p(D)
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for max{2− ϵ,
6

5
} < p ≤ 2 if n = 3.

Proof. The proof is also followed from [55]. Set f := −(ÃχD)∇u0. Let w0 be a solution of


∇ · (A(x)∇w0) = ∇ · f in Ω,

w0 = 0 on ∂Ω.

(2.4.10)

The following Lp-estimate of w0, known as Meyers estimate, followed from [39], then we can get

∥∇w0∥Lp(Ω) ≤ C∥f∥Lp(Ω) (2.4.11)

for p ∈ (max{2 − ϵ,
6

5
}, 2], where ϵ ∈ (0, 1) depends on Ω, A0(x) = (a0ij(x)) and Ã(x) = (ãij(x)).

We set W := w − w0, then since w = w0 +W , we have

∥∇w∥Lp(Ω) ≤ C(∥∇w0∥Lp(Ω) + ∥∇W∥Lp(Ω)). (2.4.12)

Moreover, W satisfies 
∇ · (A(x)∇W ) + k2W = −k2w0 in Ω,

W = 0 on ∂Ω.

(2.4.13)

By the standard elliptic regularity, we have

∥W∥H1(Ω) ≤ C∥w0∥L2(Ω).

Thus, we get for p ≤ 2,

∥∇W∥Lp(Ω) ≤ C∥∇W∥L2(Ω) ≤ C∥W∥H1(Ω) ≤ C∥w0∥L2(Ω). (2.4.14)

By Sobolev embedding theorem, we get

∥w0∥L2(Ω) ≤ C∥w0∥W 1.p(Ω) (2.4.15)

for p ≥ 6

5
if n = 3. Use Poincar�e’s inequality in Lp spaces (w0|∂Ω = 0), we have

∥w0∥L2(Ω) ≤ C∥∇w0∥Lp(Ω) (2.4.16)

for p ≥ 6

5
if n = 3. Combining (2.4.11) with (2.4.12), (2.4.14) and (2.4.16), we can obtain

∥∇w∥Lp(Ω) ≤ C∥f∥Lp(Ω) ≤ C∥u0∥W 1,p(D)
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for max{2− ϵ,
6

5
} < p ≤ 2 if n = 3.

Recall the Dirichlet-to-Neumann map which we have defined in the section 1: ΛDf := A∇u · ν

and Λ∅f := A0∇u0 · ν, where ν = (ν1, ν2, ν3) is a unit outer normal on ∂Ω. We next prove some

useful identities.

Lemma 2.7.
´
∂Ω

(ΛD − Λ∅)ff̄dσ = Re
´
D
Ã∇u0 · ∇udx.

Proof. It is clear that

ˆ
∂Ω

(A∇u) · νφ̄dσ =

ˆ
Ω

∇ · (A∇uφ̄)dx

=

ˆ
Ω

∇ · (A∇u)φ̄+A∇u · ∇φdx

= −k2
ˆ
Ω

uφ̄dx+

ˆ
Ω

A∇u · ∇φdx

∀φ ∈ H1(Ω). Since u = u0 = f on ∂Ω, the left hand side of the identity has the same value

whether we take φ = u or φ = u0, and it is equal to
´
∂Ω

ΛDff̄dσ.

ˆ
∂Ω

ΛDff̄dσ = −k2
ˆ
Ω

uu0dx+

ˆ
Ω

A∇u · ∇u0dx

= −k2
ˆ
Ω

|u|2dx+

ˆ
Ω

A∇u · ∇udx.

The right hand side of the identity above is real. Hence, by taking the real part, we have

ˆ
∂Ω

ΛDff̄dσ = −k2Re
ˆ
Ω

uu0dx+ Re
ˆ
Ω

A∇u · ∇u0dx

and ˆ
∂Ω

Λ∅ff̄dσ = −k2Re
ˆ
Ω

uu0dx+ Re
ˆ
Ω

A0∇u · ∇u0dx.

Therefore, we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = Re
ˆ
Ω

(A−A0)∇u · ∇u0dx (2.4.17)

= Re
ˆ
D

Ã∇u · ∇u0dx.

The estimates in the following lemma play an important role in our reconstruction algorithm.
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Lemma 2.8. We have the following identities:

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ
Ω

A∇w · ∇wdx+ k2
ˆ
Ω

|w|2dx (2.4.18)

+

ˆ
D

Ã∇u0 · ∇u0dx,

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2
ˆ
Ω

|w|2dx (2.4.19)

+

ˆ
D

Ã∇u · ∇udx.

In particular, we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2
ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx, (2.4.20)

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c

ˆ
Ω

|∇u0|2dx− k2
ˆ
Ω

|w|2dx, (2.4.21)

where C > 0 is a constant depending on Ã(x) and c is a constant depending on A,A0 and Ã.

Proof. Multiplying the identity

∇ · (A(x)∇w) + k2w +∇ · (ÃχD∇u0) = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (A∇w)w̄dx−
ˆ
Ω

∇ · (ÃχD∇u0)w̄dx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx+

ˆ
∂Ω

(A∇w · ν)w̄dσ −
ˆ
Ω

ÃχD∇u0 · ∇wdx

+

ˆ
∂Ω

(ÃχD∇u0 · ν)w̄dσ + k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇wdx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇udx+ k2
ˆ
Ω

|w|2dx

+

ˆ
D

Ã∇u0 · ∇u0dx,

and use (2.4.17) we can obtain

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ
Ω

A∇w · ∇wdx+

ˆ
D

Ã∇u0 · ∇u0dx+ k2
ˆ
Ω

|w|2dx.
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Similarly, multiplying the identity

∇ · (ÃχD∇u) +∇ · (A0∇w) + k2w = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (ÃχD∇u)w̄dx+

ˆ
Ω

∇ · (A0∇w)w̄dx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇wdx−
ˆ
Ω

A0∇w · ∇wdx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇udx+

ˆ
D

Ã∇u · ∇u0dx+ k2
ˆ
Ω

|w|2dx

−
ˆ
Ω

A0∇w · ∇wdx,

and use (2.4.17) again, we can obtain

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2
ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u · ∇udx.

For the remaining part, (2.4.20) is an easy consequence of (2.4.18)

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2
ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u0 · ∇u0dx

= k2
ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx,

since Ã ∈ L∞(D).

Finally, for the lower bound, we use

A0∇w · ∇w + ÃχD∇u · ∇u = A∇u · ∇u− 2ReA0∇u · ∇u0 +A0∇u0 · ∇u0

= A(∇u− (A)−1A0∇u0) · (∇u− (A)−1A0∇u0)

+(A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ (A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ c|∇u0|2,

since A(∇u − (A)−1A0∇u0) · (∇u− (A)−1A0∇u0) ≥ 0 and note that A0 − (A0)(A)−1(A0) =

A0(A)−1(A − A0) = A0(A)−1ÃχD is a positive definite matrix by our previous assumptions in

section 1.

Before stating our main theorem, we need to estimate ∥w∥L2(Ω). Fortunately, we can use Meyers

Lp estimates to help us to overcome the difficulties (see Lemma 2.5 and Lemma 2.6). For the upper

bound of
´
∂Ω

(ΛD − Λ∅)ff̄dσ, see (2.4.19), we use ∥w∥L2(Ω) ≤ C∥u0∥W 1,p(D) for p ≤ 2. Then we
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have ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ C∥u0∥2W 1,2(D). (2.4.22)

By (2.4.21) and the Meyers Lp estimate ∥w∥L2(Ω) ≤ C∥u0∥W 1,p(D), we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c

ˆ
Ω

|∇u0|2dx− c∥u0∥2W 1,p(D). (2.4.23)

In this section, we introduce the Runge approximation property and a very useful elliptic estimate:

Meyers Lp-estimates.

2.4.5 Runge approximation property

Definition 2.9. [31] Let L be a second order elliptic operator, solutions of an equation Lu = 0 are

said to have the Runge approximation property if, whenever K and Ω are two simply connected

domains with K ⊂ Ω, any solution in K can be approximated uniformly in compact subsets of K

by a sequence of solutions in Ω.

There are many applications for Runge approximation property in inverse problems. Similar

results for some elliptic operators can be found in [31], [37]. The following theorem is a classical

result for Runge approximation property for second order elliptic equations.

Theorem 2.10. (Runge approximation property) Let L0· = ∇ · (A0(x)∇·) + k2· be a second order

elliptic differential operator with A0(x) to be Lipschitz. Assume that k2 is not a Dirichlet eigenvalue

of −∇(A0(x)∇·) in Ω. Let O and Ω be two open bounded domains with smooth boundary in R3

such that O b Ω and Ω\O is connected.

Let u0 ∈ H1(O) satisfy

L0u0 = 0 in O.

Then for any compact subset K ⊂ O and any ϵ > 0, there exists U ∈ H1(Ω) satisfying

L0U = 0 in Ω,

such that

∥u0 − U∥H1(K) ≤ ϵ.

Proof. The proof is standard and it is based on the weak unique continuation property for the

anisotropic second order elliptic operator L0 and the Hahn-Banach theorem. For more details,

how to derive the Runge approximation property from the weak unique continuation, we refer

readers to [31]
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2.4.6 Elliptic estimates and some identities

We need some estimates for solutions to some Dirichlet problems which will be used in next

section. Recall that, for f ∈ H1/2(∂Ω), let u and u0 be solutions to the Dirichlet problems (3.6.2)

and (3.6.3), respectively. Note that aij(x) = a0ij(x) + ãij(x)χD and we set w = u − u0, then w

satisfies the Dirichlet problem


∇ · (A(x)∇w) + k2w = −∇ · ((ÃχD)∇u0) in Ω

w = 0 on ∂Ω

(2.4.24)

where A(x) = (aij(x)), A0(x) = (a0ij(x)) and Ã(x) = (ãij(x)). Then in the following lemmas, we

give some estimates for w.

Lemma 2.11. There exists a positive constant C independent of w such that we have

∥w∥L2(Ω) ≤ C∥∇w∥Lp(Ω)

for 6

5
≤ p ≤ 2 if n = 3.

Proof. The proof follows from [55] by Freidrich’s inequality, see [38] p.258 and use a standard

elliptic regularity.

Lemma 2.12. There exists ϵ ∈ (0, 1), depending only on Ω, A0(x) = (a0ij(x)) and Ã(x) = (ãij(x))

such that

∥∇w∥Lp(Ω) ≤ C∥u0∥W 1,p(D)

for max{2− ϵ,
6

5
} < p ≤ 2 if n = 3.

Proof. The proof also follows from [55]. Set f := −(ÃχD)∇u0. Let w0 be a solution of


∇ · (A(x)∇w0) = ∇ · f in Ω,

w0 = 0 on ∂Ω.

(2.4.25)

The following Lp-estimate of w0, known as Meyers estimate, follows from [39],

∥∇w0∥Lp(Ω) ≤ C∥f∥Lp(Ω) (2.4.26)

for p ∈ (max{2 − ϵ,
6

5
}, 2], where ϵ ∈ (0, 1) depends on Ω, A0(x) = (a0ij(x)) and Ã(x) = (ãij(x)).

We set W := w − w0, then since w = w0 +W , we have

∥∇w∥Lp(Ω) ≤ ∥∇w0∥Lp(Ω) + ∥∇W∥Lp(Ω). (2.4.27)

24 doi:10.6342/NTU201600158



Moreover, W satisfies 
∇ · (A(x)∇W ) + k2W = −k2w0 in Ω,

W = 0 on ∂Ω.

(2.4.28)

By the standard elliptic regularity, we have

∥W∥H1(Ω) ≤ C∥w0∥L2(Ω).

Thus, we get for p ≤ 2,

∥∇W∥Lp(Ω) ≤ C∥∇W∥L2(Ω) ≤ C∥W∥H1(Ω) ≤ C∥w0∥L2(Ω). (2.4.29)

By Sobolev embedding theorem, we get

∥w0∥L2(Ω) ≤ C∥w0∥W 1.p(Ω) (2.4.30)

for p ≥ 6

5
if n = 3. Use Poincar�e’s inequality in Lp spaces (w0|∂Ω = 0), we have

∥w0∥L2(Ω) ≤ C∥∇w0∥Lp(Ω) (2.4.31)

for p ≥ 6

5
if n = 3. Combining (2.4.26) with (2.4.27), (2.4.29) and (2.4.31), we can obtain

∥∇w∥Lp(Ω) ≤ C∥f∥Lp(Ω) ≤ C∥u0∥W 1,p(D)

for max{2− ϵ,
6

5
} < p ≤ 2 if n = 3.

Recall the Dirichlet-to-Neumann map which we have defined in Section 1: ΛDf := A∇u ·ν and

Λ∅f := A0∇u0 · ν, where ν = (ν1, ν2, ν3) is a unit outer normal on ∂Ω.

We next prove some useful identities.

Lemma 2.13.
´
∂Ω

(ΛD − Λ∅)ff̄dσ = Re
´
D
Ã∇u0 · ∇udx.

Proof. It is clear that

ˆ
∂Ω

(A∇u) · νφ̄dσ =

ˆ
Ω

∇ · (A∇uφ̄)dx

=

ˆ
Ω

(∇ · (A∇u)φ̄+A∇u · ∇φ)dx

= −k2
ˆ
Ω

uφ̄dx+

ˆ
Ω

A∇u · ∇φdx

for any φ ∈ H1(Ω). Since u = u0 = f on ∂Ω, the left hand side of the identity has the same value
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whether we take φ = u or φ = u0, and it is equal to
´
∂Ω

ΛDff̄dσ. Hence we have

ˆ
∂Ω

ΛDff̄dσ = −k2
ˆ
Ω

uu0dx+

ˆ
Ω

A∇u · ∇u0dx

= −k2
ˆ
Ω

|u|2dx+

ˆ
Ω

A∇u · ∇udx.

The right hand side of the above identity is real. Hence, by taking the real part, we have

ˆ
∂Ω

ΛDff̄dσ = −k2Re
ˆ
Ω

uu0dx+ Re
ˆ
Ω

A∇u · ∇u0dx

and ˆ
∂Ω

Λ∅ff̄dσ = −k2Re
ˆ
Ω

uu0dx+ Re
ˆ
Ω

A0∇u · ∇u0dx.

Therefore, we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = Re
ˆ
Ω

(A−A0)∇u · ∇u0dx (2.4.32)

= Re
ˆ
D

Ã∇u · ∇u0dx.

The estimates in the following lemma play an important role in our reconstruction algorithm.

Lemma 2.14. We have the following identities:

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ
Ω

A∇w · ∇wdx+ k2
ˆ
Ω

|w|2dx (2.4.33)

+

ˆ
D

Ã∇u0 · ∇u0dx,

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2
ˆ
Ω

|w|2dx (2.4.34)

+

ˆ
D

Ã∇u · ∇udx.

In particular, we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2
ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx, (2.4.35)

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c

ˆ
D

|∇u0|2dx− k2
ˆ
Ω

|w|2dx, (2.4.36)

where C > 0 is a constant depending on Ã(x) and c is a constant depending on A,A0 and Ã.
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Proof. Multiplying the identity

∇ · (A(x)∇w) + k2w +∇ · (ÃχD∇u0) = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (A∇w)w̄dx+

ˆ
Ω

∇ · (ÃχD∇u0)w̄dx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx+

ˆ
∂Ω

(A∇w · ν)w̄dσ −
ˆ
Ω

ÃχD∇u0 · ∇wdx

+

ˆ
∂Ω

(ÃχD∇u0 · ν)w̄dσ + k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇wdx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇udx+ k2
ˆ
Ω

|w|2dx

+

ˆ
D

Ã∇u0 · ∇u0dx,

and use (2.4.32) we can obtain

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ
Ω

A∇w · ∇wdx+

ˆ
D

Ã∇u0 · ∇u0dx+ k2
ˆ
Ω

|w|2dx.

Similarly, multiplying the identity

∇ · (ÃχD∇u) +∇ · (A0∇w) + k2w = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (ÃχD∇u)w̄dx+

ˆ
Ω

∇ · (A0∇w)w̄dx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇wdx−
ˆ
Ω

A0∇w · ∇wdx+ k2
ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇udx+

ˆ
D

Ã∇u · ∇u0dx+ k2
ˆ
Ω

|w|2dx

−
ˆ
Ω

A0∇w · ∇wdx,

and use (2.4.32) again, we can obtain

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2
ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u · ∇udx.
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For the remaining part, (2.4.35) is an easy consequence of (2.4.33)

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2
ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u0 · ∇u0dx

= k2
ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx,

since Ã ∈ L∞(D).

Finally, for the lower bound, we use

A0∇w · ∇w + ÃχD∇u · ∇u = A∇u · ∇u− 2ReA0∇u · ∇u0 +A0∇u0 · ∇u0

= A(∇u− (A)−1A0∇u0) · (∇u− (A)−1A0∇u0)

+(A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ (A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ c|∇u0|2,

since A(∇u − (A)−1A0∇u0) · (∇u− (A)−1A0∇u0) ≥ 0 and note that A0 − (A0)(A)−1(A0) =

A0(A)−1(A − A0) = A0(A)−1ÃχD is a positive definite matrix by our previous assumptions in

section 1.

Applying Lemma 3.3 to (2.4.35),

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ C∥u0∥2W 1,2(D). (2.4.37)

By (2.4.36) and the Meyers Lp estimate ∥w∥L2(Ω) ≤ C∥u0∥W 1,p(D), we have

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c

ˆ
D

|∇u0|2dx− c∥u0∥2W 1,p(D). (2.4.38)

2.4.7 Detecting the convex hull of the unknown obstacle

We give the reconstruction algorithm in the following.

Main result
Recall that we have constructed the oscillating-decaying solutions in section 2, and note that

this solution can not be defined on the whole domain, that is, the oscillating-decaying solutions

uχt,b,t,N,ω(x, τ) only defined on Ωt(ω) ( Ω. Nevertheless, with the help of the Runge approximation

property, we can only determine the convex hull of the unknown obstacle D byΛDf for infinitely

many f .

We define B to be an open ball in R3 such that Ω ⊂ B. Assume that Ω̃ ⊂ R3 is an open smooth
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domain with B ⊂ Ω̃. As in the section 2, set ω ∈ S2 and {η, ζ, ω} forms an orthonormal basis of

R3. Suppose t0 = infx∈D x · ω = x0 · ω, where x0 = x0(ω) ∈ ∂D. For any t ≤ t0 and ϵ > 0 small

enough, we can construct

uχt−ϵ,b,t−ϵ,N,ω = χt−ϵ(x
′)Qt−ϵ(x

′)eiτx·ξe−τ(x·ω−(t−ϵ))At−ϵ(x
′)b+ γχt−ϵ,b,t−ϵ,N,ω

+rχt−ϵ,b,t−ϵ,N,ω

to be the oscillating-decaying solution for ∇·(A0(x)∇·)+k2· in Bt−ϵ(ω) = B∩{x ·ω > t−ϵ}, where

χt−ϵ(x
′) ∈ C∞

0 (R2) and b ∈ C. Note that in section 2, we have assumed the leading coefficient

A0(x) ∈ B∞(R3). Similarly, we have the oscillating-decaying solution

uχt,b,t,N,ω(x, τ) = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)At(x
′)b+ γχt,b,t,N,ω(x, τ) + rχt,b,t,N,ω

for LA0 in Bt(ω). In fact, for any τ , uχt−ϵ,b,t−ϵ,N,ω(x, τ) → uχt,b,t,N,ω(x, τ) in an appropriate sense

as ϵ → 0. For details, we refer readers to consult all the details and results in [47], and we list

consequences in the following.

χt−ϵ(x
′)Qt−ϵ(x

′)eiτx·ξe−τ(x·ω−(t−ϵ))At−ϵ(x
′)b→ χt(x

′)Qte
iτx·ξe−τ(x·ω−t)At(x

′)b

in H2(Bt(ω)) as ϵ tends to 0,

γχt−ϵ,b,t−ϵ,N,ω → γχt,b,t,N,ω

in H2(Bt(ω)) as ϵ tends to 0, and finally,

rχt−ϵ,b,t−ϵ,N,ω → rχt,b,t,N,ω

in H1(Bt(ω)) as ϵ tends to 0.

Obviously, Bt−ϵ(ω) is a convex set and Ωt(ω) ⊂ Bt−ϵ(ω) for all t ≤ t0. By using the Runge

approximation property, we can see that there exists a sequence of functions ũϵ,j , j = 1, 2, · · · ,

such that

ũϵ,j → uχt−ϵ,b,t−ϵ,N,ω in H1(Ωt(ω)),

where ũϵ,j ∈ H1(Ω̃) satisfy LA0 ũϵ,j = 0 in Ω̃ for all ϵ, j. Define the indicator function I(τ, χt, b, t, ω)

by the formula:

I(τ, χt, b, t, ω) = lim
ϵ→0

lim
j→∞

ˆ
∂Ω

(ΛD − Λ∅)fϵ,jfϵ,jdσ,

where fϵ,j = ũϵ,j |∂Ω.

Now the characterization of the convex hull of D is based on the following theorem:
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Theorem 2.15. (1) If t < t0, then for any χt ∈ C∞
0 (R2) and b ∈ C3, we have

lim sup
τ→∞

|I(τ, χt, b, t, ω)| = 0.

(2) If t = t0, then for any χt0 ∈ C∞
0 (R2) with x′0 = (x0 · η, x0 · ζ) being an interior point of

supp(χt0) and 0 ̸= b ∈ C, we have

lim inf
τ→∞

|I(τ, χt0 , b, t0, ω)| > 0.

Proof. First of all, note that we have a sequence of functions {ũϵ,j} satisfies the equation ∇ ·

(A0∇u) + k2u = 0 in Ω, as in the beginning of the section 3, let wϵ,j = u− ũϵ,j , then wϵ,j satisfies

the Dirichlet problem


∇ · (A(x)∇wϵ,j) + k2wϵ,j = −∇ · (ÃχD∇ũϵ,j) in Ω,

wϵ,j = 0 on ∂Ω.

So we can apply (2.4.22) directly, which means

ˆ
∂Ω

(ΛD − Λ∅)fϵ,jfϵ,jdσ ≤ C∥ũϵ,j∥2H1(D) with fϵ,j = ũϵ,j |∂Ω,

where the last inequality obtained by the H�older’s inequality.

By the Runge approximation property we have

ũϵ,j → uχt−ϵ,b,t−ϵ,N,ω in H1(Bt(ω))

as j → ∞ and we know that the obstacle D ⊂ Bt(ω), so we have

∥ũϵ,j − uχt−ϵ,b,t−ϵ,N,ω∥H1(D) → 0

as j → ∞ for all ϵ > 0. Moreover, we know that uχt−ϵ,b,t−ϵ,N,ω → uχt,b,t,N,ω as ϵ→ 0 in H1(Bt(ω)),

which implies

∥ũϵ,j − uχt,b,t,N,ω∥H1(D) → 0

as ϵ→ 0, j → ∞. Now by the definition of I(τ, χt, b, t, ω), we have

I(τ, χt, b, t, ω) ≤ C∥uχt,b,t,N,ω∥2H1(D).

Now if t < t0, we substitute uχt,b,t,N,ω = wχt,b,t,N,ω + rχt,b,t,N,ω with wχt,b,t,N,ω being described
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by (3.7.9) into

I(τ, χt, b, t, ω) ≤ C(

ˆ
D

|uχt,b,t,N,ω|2dx+

ˆ
D

|∇uχt,b,t,N,ω|2dx)

and use estimates (2.4.7), (2.4.8) to obtain that

|I(τ, χt, b, t, ω)| ≤ Cτ−2N−1

which finishes

lim sup
τ→∞

|I(τ, χt, b, t, ω)| = 0.

For the second part, as inequality (2.4.39), we use (2.4.23), then the similar argument follows.

It is easy to get

I(τ, χt, b, t, ω) ≥ c

ˆ
D

|∇uχt,b,t,N,ω|2dx− c∥uχt,b,t,N,ω∥2W 1,p(D), (2.4.39)

For p ∈ (max{2− ϵ,
6

5
}, 2]. For the remaining part, we need some extra estimates in the following

section.

2.4.8 End of the proof of Theorem 2.15

For further estimate of the lower bound, we need to introduce the sets Dj,δ ⊂ D, Dδ ⊂ D as

follows. Recall that hD(ω) = infx∈D x · ω and t0 = hD(ω) = x0 · ω for some x0 ∈ ∂D. For

any α ∈ ∂D ∩ {x · ρ = hD(ω)} := K, define B(α, δ) = {x ∈ R3; |x − α| < δ} (δ > 0). Note

K ⊂ ∪α∈KB(α, δ) and K is compact, so there exists α1, · · · , αm ∈ K such that K ⊂ ∪m
j=1B(αj , δ).

Thus, we define

Dj,δ := D ∩B(αj , δ) and Dδ := ∪m
j=1Dj,δ.

It is easy to see that ˆ
D\Dδ

e−pτ(x·ω−t0)At0 (x
′)bdx = O(e−paδτ ),

because At0(x
′) ∈ B∞(R2) is bounded and its real part strictly greater than 0, so ∃a > 0 such that

ReAt0(x
′) ≥ a > 0 on D\Dδ. Let αj ∈ K, by rotation and translation, we may assume αj = 0

and the vector αj − x0 = −x0 is parallel to e3 = (0, 0, 1). Therefore, we consider the change of

coordinates near each αj as follows:


y′ = x′

y3 = x · ω − t0,
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where x = (x1, x2, x3) = (x′, x3) and y = (y1, y2, y3) = (y′, y3). Denote the parametrization of ∂D

near αj by lj(y′), then we have the following estimates.

Lemma 2.16. For q ≤ 2, we have

ˆ
D

|uχt0 ,b,t0,N,ω|qdx ≤ cτ−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ−1e−qaδτ )

+O(e−qaτ ) +O(τ−3) +O(τ−2N−1), (2.4.40)

ˆ
D

|uχt0 ,b,t0,N,ω|2dx ≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2aδτ )

+O(τ−3) +O(τ−2N−1), (2.4.41)

ˆ
D

|∇uχt0 ,b,t0,N,ω|qdx ≤ Cτ q−1
m∑
j=1

¨
|y′|<δ

e−qaτlj(y
′)dy′ +O(τ−1e−aqδτ )

+O(e−qaτ ) +O(τ−1) +O(τ−2N−1), (2.4.42)

and

ˆ
D

|∇uχt0 ,b,t0,N,ω|2dx ≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2δaτ )

+O(τ−1) +O(τ−2N−1). (2.4.43)

Proof. We follow the argument in [55]. We only prove (2.4.40) and (2.4.41) and the proof of (2.4.42)

and (2.4.43) are similar arguments.

For (2.4.40):
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ˆ
D

|uχt0 ,b,t0,N,ω|qdx ≤ C

ˆ
D

e−qaτ(x·ω−t0)dx+ Cq

ˆ
D

|γχt0 ,b,t0,N,ω|qdx

+Cq

ˆ
D

|rχt0 ,b,t0,N,ω|qdx

≤ C

ˆ
Dδ

e−qaτ(x·ω−t0)dx+ C

ˆ
D\Dδ

e−qaτ(x·ω−t0)dx

+C

ˆ
D

|γχt0
,b,t0,N,ω|2dx+ C

ˆ
D

|rχt0
,b,t0,N,ω|2dx

≤ C
m∑
j=1

¨
|y′|<δ

dy′
ˆ δ

lj(y′)

e−qaτy3dy3 + Ce−qaδτ

+C∥γχt0 ,b,t0,N,ω∥2L2(D) + C∥rχt0 ,b,t0,N,ω∥2H1(D)

≤ Cτ−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ − C

q
τ−1e−qaδτ

+Ce−qaδτ + Cτ−3 + Cτ−2N−1

note that D ⊂ Ωt0(ω), which proves (2.4.39).

For (2.4.41):

ˆ
D

|uχt0 ,b,t0,N.ω|2dx ≥ C

ˆ
D

e−2aτ(x·ω−t0)dx− C∥γχt0 ,b,t0,N,ω∥2L2(Ωt0 (ω))

−C∥rχt0 ,b,t0,N,ω∥2H1(Ωt0 (ω))

≥ C

ˆ
Dδ

e−2aτ(x·ω−t0)dx− Cτ−3 − Cτ−2N−1

= Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − C

2
τ−1e−2aδτ

−Cτ−3 − Cτ−2N−1.

Recall that we have (2.4.39), the lower bound of I(τ, χt0 , b, t0, ω), so we want to compare the or-

der (in τ) of ∥uχt0 ,b,t0,N,ω∥L2(D), ∥∇uχt0 ,b,t0,N,ω∥L2(D), ∥uχt0 ,b,t0,N,ω∥Lp(D) and ∥∇uχt0 ,b,t0,N,ω∥Lp(D).

Lemma 2.17. For max{2− ϵ,
6

5
} < p ≤ 2, we have the estimates as follows:

∥∇uχt0 ,b,t0,N,ω∥2L2(D)

∥uχt0 ,b,t0,N,ω∥2L2(D)

≥ Cτ2,
∥uχt0 ,b,t0,N,ω∥2Lp(D)

∥uχt0 ,b,t0,N,ω∥2L2(D)

≥ Cτ1−
2
p

and
∥∇uχt0 ,b,t0,N,ω∥2Lp(D)

∥uχt0 ,b,t0,N,ω∥2L2(D)

≥ Cτ3−
2
p

for τ ≫ 1.

Proof. The idea of the proof comes from [55], but here we still need to deal with the γχt0 ,b,t0,N,ω
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and rχt0 ,b,t0,N,ω in D ⊂ Ωt0(ω). Note that if ∂D is Lipschitz, in our parametrization lj(y
′), we

have lj(y′) ≤ C|y′|. Hence,

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ ≥ C

m∑
j=1

¨
|y′|<δ

e−2acτ |y′|dy′

≥ Cτ−1
m∑
j=1

¨
|y′|<τδ

e−2|y′|dy′

= O(τ−1).

For simplicity, we denote u0 := uχt0 ,b,t0,N,ω in the following calculations. Using Lemma 2.16, we

obtain ´
D
|∇u0|2dx´

D
|u0|2dx

≥ C
τ
∑m

j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2aδτ ) +O(τ−1) +O(τ−2N−1)

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≥ Cτ2
1 + O(τ−2e−2aδτ )+O(τ−2)+O(τ−2N−2)∑m

j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

= O(τ2)

as τ ≫ 1, where

lim
τ→∞

O(τ−2e−2aδτ ) +O(τ−2) +O(τ−2N−2)∑m
j=1

˜
|y′|<δ

e−2aτlj(y′)dy′
= 0

and

lim
τ→∞

O(e−2aδτ ) +O(τ−2) +O(τ−2N )∑m
j=1

˜
|y′|<δ

e−2aτlj(y′)dy′
= 0.

Now, by using the Hölder’s inequality with the exponent q = 2

p
≥ 1, we have

m∑
j=1

¨
|y′|<δ

e−paτlj(y
′)dy′ ≤ C(

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′)

p
2 .

Hence we use Lemma 2.16 again, we have

(
´
D
|u0|pdx)

2
p´

D
|u0|2dx
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≤ C
τ−

2
p (
∑m

j=1

˜
|y′|<δ

e−paτlj(y
′)dy′)

2
p +O(τ−

2
p e−2aδτ ) +O(e−2aτ )

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

+
O(τ−

6
p ) +O(τ

−4N−2
p )

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≤ Cτ−
2
p+1

∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′ +O(e−2aδτ ) +O(e−2aττ

2
p )∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(e−2aδτ ) +O(τ−2) +O(τ−2N )

+
O(τ−

4
p ) +O(τ

−4N
p )

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

= τ−
2
p+1

1 + O(e−2aδτ )+O(e−2aττ
2
p )+O(τ

− 4
p )+O(τ

−4N
p )∑m

j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

= O(τ−
2
p+1)

as τ ≫ 1 and
(
´
D
|∇u0|pdx)

2
p´

D
|u0|2dx

≤ C
τ (p−1) 2

p (
∑m

j=1

˜
|y′|<δ

e−paτlj(y
′)dy′)

2
p +O(τ−

2
p e−2aδτ ) +O(e−2aτ )

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

+C
O(τ−

2
p ) +O(τ

−4N−2
p )

τ−1
∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≤ Cτ3−
2
p

∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2aδτ ) +O(e−2aττ

2
p−1)∑m

j=1

˜
|y′|<δ

e−2aτlj(y′)dy′ +O(e−2aδτ ) +O(τ−2) +O(τ−2N )

+C
O(τ−1) +O(τ

−4N
p −1)

+O(τ−
2
p ) +O(τ

−4N−2
p )

≤ Cτ3−
2
p

1 + O(τ−1e−2aδτ )+O(e−2aττ
2
p
−1

)+O(τ−1)+O(τ
−4N

p
−1

)∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

= O(τ3−
2
p )

35 doi:10.6342/NTU201600158



as τ ≫ 1. By (2.4.39) and above estimates, we have

I(τ, χt, b, t, ω)

∥uχt,b,t,N,ω∥2L2(D)

≥ Cτ2 − Cτ1−
2
p − Cτ3−

2
p

≥ Cτ2

for τ ≫ 1. On the other hand, for ∥uχt,b,t,N,ω∥L2(D), we have

ˆ
D

|uχt,b,t,N,ω|2dx ≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτ |y′|dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

≥ Cτ−2
m∑
j=1

¨
|y′|<τδ

e−2a|y′|dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

= O(τ−2).

Therefore, we have

I(τ, χt, b, hD(ρ), ω) ≥ Cτ2∥uχt,b,t,N,ω∥2L2(D) ≥ C > 0

for τ ≫ 1.

In view of Theorem 2.15 and Lemma 2.16, we can give an algorithm for reconstructing the

convex hull of an inclusion D by the Dirichlet-to-Neumann map ΛD as long as A(x) and D satisfy

the described conditions.

The Reconstruction algorithm.

1. Give ω ∈ S2 and choose η, ζ, ξ ∈ S2 so that {η, ζ, ξ} forms a basis of R3 and ξ lies in the

span of η and ζ;

2. Choose a starting t such that Ω ⊂ {x · ω ≥ t};

3. Choose a ball B such that the center of B lies on {x · ω = s} for some s < t and Ω ⊂ Bt(ω)

and take 0 ̸= b ∈ C;

4. Choose χt ∈ C∞
0 (R2) such that χt > 0 in Σt(ω) and χt = 0 on ∂Σt(ω);

5. Construct the oscillating-decaying solution uχt−ϵ,b,t−ϵ,N,ω in Bt−ϵ(ω) with χt−ϵ = χt and the

approximation sequence ũϵ,j in Ω̃;
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6. Compute the indicator function I(τ, χt, b, t, ω) which is determined by boundary measure-

ments;

7. If I(τ, χt, b, t, ω) → 0 as τ → ∞, then choose t′ > t and repeat (iv), (v), (vi);

8. If I(τ, χt, b, t, ω) 9 0 for some χt′ , then t′ = t0 = hD(ω);

9. Varying ω ∈ S2 and repeat (i) to (viii), we can determine the convex hull of D.
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Chapter 3

The enclosure method for the

Maxwell system

We have finished to introduce the enclosure-type method for the isotropic or anisotropic second

order elliptic equations. Now, our goal in this chapter is to give more enclosure methods for the

isotropic or anisotropic Maxwell system model. Similar to Chapter 2, we handle the problem of

reconstructing interfaces using complex geometric optics (CGO) solutions for the isotropic Maxwell

system and using the oscillating-decaying (OD) solutions for the anisotropic Maxwell system. We

develop an enclosure-type reconstruction scheme to identify penetrable and impenetrable obstacles

in electromagnetic field with isotropic or anisotropic medium in R3. For the penetrable case,

we model the interface by the jump discontinuity of the magnetic permeability µ. The main

tool is based on the global Lp estimate for the curl of the solutions of the Maxwell system with

discontinuous coefficients. For the impenetrable case, the main tool is based on the potential theory

in a suitable Sobolev space, and we will give more detailed descriptions in the following.

Before stating our inverse problem, we give basic properties which will be used in the enclosure-

type method for the Maxwell system.

3.1 Basic properties for the Maxwell system

The Maxwell system contains the following properties which will be used in our inverse problem.

For more details, we refer readers to [27, 40].

3.1.1 Well-posedness and Lp estimate for the Maxwell system

In the following, we would list the eigenvalue property and well-posedness results of the following

problem: let Ω ⊂ R3 and K b Ω,
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∇× E = ikµH in Ω \K

∇×H = −ikϵE + J in Ω \K

ν × E = f on ∂Ω

ν ×H = g on ∂K,

(3.1.1)

where µ, ϵ are symmetric and positive definite matrix-valued functions. More precisely, we assume

there exist constants µ0, µ1, λ0,Λ0 > 0 such that


µ0I ≤ µ(x) ≤ µ1I,

λ0I ≤ ϵ(x) ≤ Λ0I.

(3.1.2)

These well-posedness for the isotropic Maxwell systems can be found in Theorem 4.18 and 4.19 of

[41]. However, we have the same result under our assumption (3.1.2) following the arguments in

[41]. Let

X =
{
u ∈ H(curl; Ω \K)|ν × u = 0 on ∂Ω and uT ∈ L2 (∂K)

3 on ∂K
}
.

Definition 3.1. We say (E,H) or E is a weak solution of (3.1.1) if E ∈ X and satisfies

⟨
µ−1∇× E,∇× ϕ

⟩
Ω\K − k2 ⟨γE, ϕ⟩Ω\K = ⟨ikJ, ϕ⟩Ω\K −

⟨
µ−1g, ϕT

⟩
∂K

, ∀ϕ ∈ X, (3.1.3)

and ν × E = f on ∂Ω, where ϕT = (ν × ϕ) × ν and ⟨·, ·⟩ denotes the standard Hermitian inner

product of L2 space. Moreover, if (3.1.3) fails to have a unique solution, then k is called an

eigenvalue or a resonance of (3.1.1).

Lemma 3.2. There is an infinite discrete set Σ of eigenvalue kj > 0, j = 1, 2, . . . and corresponding

eigenfunctions Ej ∈ H0(curl; Ω), Ej ̸= 0, such that (3.1.3) holds with J = 0 and f = g = 0 is

satisfied.

From the above lemma, we have the following theorem.

Theorem 3.3. For k /∈ Σ, there exists a unique weak solution (E,H) ∈ H(curl; Ω\K) ×

H(curl; Ω\K) of (3.1.1) given any f ∈ H−1/2(Div; ∂Ω), g ∈ H−1/2(Div; ∂K) and J ∈ H−1(Ω\K).

The solution satisfies

∥E∥L2(Ω\K) + ∥H∥L2(Ω\K) ≤ C(∥f∥H−1/2(Div;∂Ω) + ∥g∥H−1/2(Div;∂K) + ∥J∥H−1(Ω\K))
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for some constant C > 0, where

H−1/2 (Div; Γ) :=

{
f ∈ H−1/2 (Γ)

3

∣∣∣∣ ν · f = 0, ∇∂Ω · f ∈ H−1/2 (Γ)

}
,

Γ = ∂Ω or ∂K.

In the following, we state the Lp theory for the anisotropic Maxwell’s system. For this purpose,

we define a bilinear form

BA(E,F ) :=

ˆ
Ω

(A(x)∇× E(x)) · (∇× F (x))dx+M

ˆ
Ω

E(x) · F (x)dx

for all E ∈ H1,q
0 (curl,Ω) and F ∈ H1,q′

0 (curl,Ω) with 1

q
+

1

q′
= 1. We only state Lp estimate in

the following theorem, but we do not prove the theorem. For more details, we refer readers to read

[27].

Theorem 3.4. [27] Let Ω be a a smooth domain. Suppose that A = A(x) is a real symmetric

matrix with smooth entries and satisfies the uniform elliptic condition

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2, for all ξ ∈ R3,

for some constants 0 < λ ≤ Λ < ∞. Assume q is some number satisfying 2 ≤ q < ∞. Under the

condition

inf
∥F∥1,q′=1

sup
∥E∥1,q=1

|BAE,F )| ≥
1

K
> 0

the Maxwell’s systems of the equations

∇× (A∇× E) + E = ∇× f + g

is uniquely solvable in H1,q′

0 (curl,Ω) for each g ∈ Lq′(Ω) and f ∈ Lq′(Ω) and the weak solution

satisfies

∥E∥Lq′ (Ω) + ∥∇ × E∥Lq′ (Ω) ≤ K{∥f∥Lq′ (Ω) + ∥g∥Lq′ (Ω)},

where K is a positive constant depending on p.

We end up this section with the following lemma on the embedding related to the Sobolev-Besov

spaces, for more details, see [40] or property 5 in the appendix of [27].

Lemma 3.5. Let u ∈ Lp(D) such that ∇ · u ∈ Lp(D) and ∇ × u ∈ Lp(D). If ν × u ∈ Lp(∂D),

then also ν · u ∈ Lp(∂D) for p ∈ (1,∞). If in addition 1 < p ≤ 2, then u ∈ Bp,2
1
p

(D) and we have
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the estimate

∥u∥Bp,2
1
p

(D) ≤ C{∥u∥Lp(D) + ∥curlu∥Lp(D) + ∥∇ · u∥Lp(D) + ∥ν × u∥Lp(∂D)}

where the Sobolev-Besov space Bp,q
α (D) := [Lp(D),W 1,p(D)]α,q is obtained by real interpolation for

1 < p, q <∞ and 0 < α < 1.

3.2 Enclosing unknown obstacles in the isotropic media

Let Ω ⊂ R3 be a bounded domain with a smooth boundary, and assume that R3\Ω is connected. Let

D b Ω be with Lipschitz boundary and the connected complement in R3\D. We are concerned with

the electromagnetic wave propagation in an isotropic medium in R3 with the electric permittivity

ϵ > 0 and the magnetic permeability µ > 0. We also assume that ϵ ∈ W 1,∞(Ω) with ϵ ≡ 1 in

Ω\D and µ(x) = 1 − µD(x)χD to be a measurable function with µD(x) ∈ L∞(D) and χD is the

characteristic function defined on D.

For the penetrable (inclusion) case, we consider the boundary value problem of finding the

electromagnetic fields E and H satisfying


∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

ν × E = f on ∂Ω,

(3.2.1)

where ν is a unit outer normal on ∂Ω, ∇× denotes the curl in R3 and × is the standard cross product

in R3. For the impenetrable (cavity) case, we consider the following boundary value problem



∇× E − ikH = 0 in Ω\D,

∇×H + ikE = 0 in Ω\D,

ν × E = f on ∂Ω,

ν ×H = 0 on ∂D,

(3.2.2)

where ν is a unit outer normal on ∂Ω ∪ ∂D. In these two boundary value problems problems, we

assume that the wave number k is not an eigenvalue for the spectral problems (3.2.1) and (3.2.2),

respectively. Then by using results in [40, 41], we know that (3.2.1) and (3.2.2) are well-posed in

the spaces H(curl,Ω) and H(curl,Ω\D), respectively, where

H(curl,Ω) := {u ∈ (L2(Ω))3|∇ × u ∈ (L2(Ω))3}.
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It is similar to the elliptic case, we can the “Dirichlet-to-Neumann” type map in the Maxwell

system, we call the map to be the impedance map.

Impedance map: We define the impedance map ΛD : TH− 1
2 (∂Ω) → TH− 1

2 (∂Ω) by

ΛD(ν × E|∂Ω) = (ν ×H|∂Ω),

where TH− 1
2 (∂Ω) := {f ∈ H− 1

2 (∂Ω)|ν · f = 0}. We denote by Λ∅ the impedance map for the

domain without an obstacle.

Proposition 3.6. There exists a reconstruction framework to determine the convex hull of the

unknown obstacle D from the information of the impedance map ΛD.

The previous Proposition is similar to the elliptic reconstruction. Recall that the enclosure

method contains two tools: One is special solutions (CGO solutions) and the other is the indicator

function. If we can find these two tools, then we can prove the Proposition 3.6. We first introduce

how to construct CGO solutions for the isotropic Maxwell system.

3.3 Constructing CGO solutions

Our goal is to construct CGO solutions for the isotropic Maxwell system


∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

(3.3.1)

where µ and ϵ are smooth positive scalar functions. The ideas for constructing CGO solutions

is to transform the isotropic Maxwell system into a Schrödinger type equation, which was first

introduced by [51]. Moreover, in [66], the author used the reduction technique to construct CGO

solutions for the isotropic Maxwell system, let me give a brief introduction in the following.

aa

Reduction algorithm: From Maxwell to Schrödinger

First, we define the (zero) scalar fields Φ and Ψ by

Φ =
i

k
∇ · (ϵE), Ψ =

i

k
∇ · (µH).

Then the Maxwell system is equivalent to

∇× E − 1

ϵ
∇(

1

µ
Ψ)− ikµH = 0, ∇×H +

1

µ
∇(

1

ϵ
Φ) + ikϵE = 0.
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If we set X = (φ, e, h, ψ)T with e = ϵ1/2E, h = µ1/2H, φ =
1

ϵµ1/2
Φ and ψ =

1

ϵ1/2µ
Ψ. Then we

have

(P (i∇)− λ+ V )X = 0 in Ω,

where

P (i∇) =



0 ∇· 0 0

∇ 0 ∇× 0

0 −∇× 0 ∇

0 0 ∇· 0


and

V = (λ− κ)I8 +





0 ∇· 0 0

∇ 0 −∇× 0

0 ∇× 0 ∇

0 0 ∇· 0


D


D−1,

where D = diag(µ1/2, ϵ1/2I3, µ
1/2I3, ϵ

1/2), κ = k(ϵµ)1/2 and λ = k(ϵ0µ0)
1/2. The most important

property of this operator is that we can reduce a isotropic Maxwell system to a Schrödinger matrix

equation by

(P (i∇)− λ+ V )(P (i∇) + λ− V T ) = −(∆ + ω2)I8 +Q,

where

Q = V P (i∇)− P (i∇)V T + ω(V + V T )− V V T

is a zeroth order matrix multiplier. If we define X = (P (i∇) + λ− V T )Y , then Y satisfies

(−∆− λ2 +Q)Y = 0 in Ω. (3.3.2)

It is well-known that we can find CGO solutions for Schrödinger equation. By using the Faddeev

kernel and the Sommerfeld’s radiations conditions, one can ensure that if Y satisfies the Schrödinger

equation (3.3.2), then (E,H) will satisfy the isotropic Maxwell system (3.3.1). For more details,

we refer readers to [51]. Let ρ, ρ⊥ ∈ S2, given θ, η ∈ C3 of the form

η :=
1

|ζ|
(−(ζ · a)ζ − kζ × b+ k2a) and θ :=

1

|ζ|
(kζ × a− (ζ · b)ζ + k2b)
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where ζ = −iτω +
√
τ2 + k2ω⊥ and a ∈ R3, b ∈ C3. Then the authors constructed the CGO

solutions in the following form:


E0 = ηeτ(x·ρ−t)+i

√
τ2+k2x·ρ⊥

,

H0 = θeτ(x·ρ−t)+i
√
τ2+k2x·ρ⊥

,

with (E0,H0) satisfies 
∇× E0 − ikH0 = 0 in Ω,

∇×H0 + ikE0 = 0 in Ω.

(3.3.3)

For the application on the reconstruction, we need to use two different types CGO solutions:

1. For the penetrable case, we choose a ⊥ ρ, a ⊥ ρ⊥ and b = ζ̂ with ζ̂ =
ζ

|ζ|
such that η = O(1)

and θ = O(τ) for all τ ≫ 1..

2. For the impenetrable case, we choose b ⊥ ρ, b ⊥ ρ⊥ and a =
√
2ρ⊥ such that η = O(τ) and

θ = O(1) for all τ ≫ 1..

Indicator function for the Maxwell system
Recall that ΛD : ν ×E|∂Ω → ν ×H|∂Ω is the impedance map for the Maxwell system, then we

can define the indicator function in the following.

Definition 3.7. For ρ ∈ S2, τ > 0 and t > 0, we define the indicator function

Iρ(τ, t) := ikτ

ˆ
∂Ω

(ν × E0) · ((ΛD − Λ∅)(ν × E0)× ν)dS,

where E0 is the CGO solution of the Maxwell system given above.

Similarly, we can define the support function

hD(ρ) := sup
x∈D

x · ρ,

then we have the following result.

Theorem 3.8. Let ρ ∈ S2. For the penetrable (or impenetrable) obstacle case, we have the

following characterization of hD(ρ).


limτ→∞ |Iρ(τ, t)| = 0 when t > hD(ρ),

lim infτ→∞ |Iρ(τ, hD(ρ))| > 0,

limτ→∞ |Iρ(τ, t)| = 0 when t < hD(ρ).
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The theorem shows that we can reconstruct the convex hull of the unknown obstacle D from

the impedance map ΛD, combining with CGO solutions and the indicator function, we can give a

reconstruction algorithm of D.

3.4 Proof of the Theorem 3.3

3.4.1 Penetrable Case

We give key points of proof for the penetrable case of theorem 4.3. For more details, we refer

readers to [27] First, we give the proof for the penetrable case. Recall that the model of the

penetrable problem is 
∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

ν × E = f on ∂Ω,

and CGO solutions of (3.2.1) are


E0 = ηeτ(x·ρ−t)+i

√
τ2+k2x·ρ⊥

,

H0 = θeτ(x·ρ−t)+i
√
τ2+k2x·ρ⊥

.

where η = O(1) and θ = O(τ) for all τ ≫ 1. Let Ẽ := E − E0 be the reflected solution, where E

satisfies (3.2.1) and E0 satisfies (3.3.3). Ẽ satisfies the (zero) boundary value problem


∇× (

1

µ(x)
∇× Ẽ)− k2ϵ(x)Ẽ = −∇× (

1

µ(x)
− 1)∇× E0 + k2(ϵ(x)− 1)E0 in Ω,

ν × Ẽ = 0 on ∂Ω.

We state the following useful estimates without any proofs, all proofs can be found in [27].

Lemma 3.9. For 1− µ(x) > 0, we have

−τ−1Iρ(τ, t) ≥
ˆ
D

(1− µ(x))|∇ × E0|2dx− k2
ˆ
Ω

|Ẽ(x)|2dx− k2
ˆ
D

(ϵ(x)− 1)|E0(x)|2dx.

For µ(x)− 1 > 0, we have

τ−1Iρ(τ, t) ≥
ˆ
D

(1− 1

µ(x)
)|∇ × E0|2dx− k2

ˆ
Ω

ϵ(x)|Ẽ(x)|2dx+ k2
ˆ
D

(ϵ(x)− 1)|E0(x)|2dx.

Similar to the elliptic case, there is no need to worry about the upper bound of the indicator

function τ−1Iρ(τ, t). The difficulty is to estimates the lower order term Ẽ(x). In fact, we have the
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following key Lp estimates.

Proposition 3.10. Suppose that Ω is a C1 domain and D b Ω. Then there exists a constant

C > 0 independent of Ẽ and E0 such that we have

ˆ
Ω

|Ẽ|2dx ≤ C{
(ˆ

D

|∇ × E0|p
)2/p

+

ˆ
D

|E0|2dx},

for all p ∈ (
4

3
, 2].

Remark 3.11. Note that there is no need to assume the regularity on D, we only need ∂D is

Lipschitz.

In view of the lower bound, we need to introduce the sets Dj,δ ⊂ D, Dδ ⊂ D in the following.

Recall that hD(ρ) = supx∈D x · ρ and t0 = hD(ρ) = x0 · ρ for some x0 ∈ ∂D. ∀α ∈ ∂D ∩ {x · ρ =

hD(ρ)} := K, define B(α, δ) = {x ∈ R3; |x − α| < δ} (δ > 0). Note K ⊂ ∪α∈KB(α, δ) and K is

compact, so there exists α1, · · · , αm ∈ K such that K ⊂ ∪m
j=1B(αj , δ). Thus, we define

Dj,δ := D ∩B(αj , δ) and Dδ := ∪m
j=1Dj,δ.

It is easy to see that ˆ
D\Dδ

e−pτ(hD(ρ)−x·ρ)dx = O(e−pcτ ) as τ → ∞,

where c is a positive constant. Let αj ∈ K, by using rotation and translation, then we can assume

αj = 0 and the vector αj −x0 = −x0 is parallel to e3 = (0, 0, 1). Therefore, we consider the change

of coordinates near each αj as follows:


y′ = x′

y3 = x · ρ− t0,

where x = (x1, x2, x3) = (x′, x3) and y = (y1, y2, y3) = (y′, y3). Denote the parametrization of

∂D near αj by lj(y
′), then we have the following estimates. Note that the oscillating-decaying

solutions are well-defined in D.

Lemma 3.12. For 1 ≤ q <∞, τ ≫ 1, we have the following estimates.

1.

ˆ
D

|E0(x)|qdx ≤ Cτ−1
m∑
j=1

¨
|y′|<δ

e−qτlj(y
′)dy′ − C

q
τ−1e−qδτ + Ce−qcτ
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2.

ˆ
D

|E0|2dx ≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2τlj(y
′)dy′ − C

2
τ−1e−2δτ

3.

ˆ
D

|H0(x)|qdx ≤ Cτ q−1
m∑
j=1

¨
|y′|<δ

e−qτlj(y
′)dy′ − C

q
τ q−1e−qδτ + Cτ qe−qcτ

4.

ˆ
D

|H0|2dx ≥ Cτ

m∑
j=1

¨
|y′|<δ

e−2τlj(y
′)dy′ − C

2
τe−2δτ .

Lemma 3.13. For τ ≫ 1 and p ∈ (
4

3
, 2], we have

∥H0∥2L2(D)

∥E0∥2L2(D)

≥ O(τ2),

∥Ẽ∥2L2(Ω)

∥∇ × E0∥2L2(D)

≤ Cτ1−
2
p .

Moreover, when t = hD(ρ), the following estimate holds

lim inf
τ→∞

ˆ
D

τ |∇ × E0|2dx ≥ C.

End the proof
For 1− µ(x) ≥ C > 0, by Lemma 3.9, we have

−Iρ(τ, t) ≥ τ

ˆ
D

(1− µ(x))|∇ × E0|2dx− τC

ˆ
Ω

|Ẽ(x)|2dx− τC

ˆ
D

|E0(x)|2dx

≥ τC

ˆ
D

|∇ × E0|2dx− τC

ˆ
Ω

|Ẽ(x)|2dx− τC

ˆ
D

|E0(x)|2dx.

Using above lemmas, we have

−Iρ(τ, t)
∥∇ × E0∥2L2(D)

≥ Cτ{1− τ1−
2
p − 2τ−2},

and we get

|Iρ(τ, hD(ρ))| ≥ C > 0.

It is similar to the case µ(x)− 1 ≥ C > 0.
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3.4.2 Impenetrable Case

Recall that the mathematical model of the impenetrable case is



∇× E − ikH = 0 in Ω\D,

∇×H + ikE = 0 in Ω\D,

ν × E = f on ∂Ω,

ν ×H = 0 on ∂D,

and CGO solutions of (3.2.2) are


E0 = ηeτ(x·ρ−t)+i

√
τ2+k2x·ρ⊥

,

H0 = θeτ(x·ρ−t)+i
√
τ2+k2x·ρ⊥

.

where η = O(τ) and θ = O(1) for all τ ≫ 1.

For the impenetrable case, the situation is quite different from the penetrable case. We start

by the following lemma.

Lemma 3.14. Assume (E,H) ∈ (H(curl,Ω\D))2 satisfies



∇× E − ikH = 0 in Ω\D,

∇×H + ikE = 0 in Ω\D,

ν × E = f on ∂Ω,

ν ×H = 0 on ∂D,

with f = ν × E0|∂Ω ∈ TH−1/2(∂Ω). The the following identity holds

−1

τ
Iρ(τ, t) = −

ˆ
D

{|∇ × E0(x)|2 − k2|E0(x)|2}dx−
ˆ
Ω\D

{|∇ × Ẽ(x)|2 − k2|Ẽ(x)|2}dx

=

ˆ
D

{|∇ ×H0(x)|2 − k2|H0(x)|2}dx+

ˆ
Ω\D

{|∇ × H̃(x)|2 − k2|H̃(x)|2}dx,

and the inequality

−1

τ
Iρ(τ, t) ≥

ˆ
D

{|∇ ×H0(x)|2 − k2|H0(x)|2}dx− k2
ˆ
Ω\D

|H̃(x)|2dx,

where Ẽ = E − E0 and H̃ = H −H0.

The remaining task is to estimate the lower order term H̃. In [27], the authors used the potential

theory to prove the following key estimate.
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Proposition 3.15. Let Ω be a C1 domain and D b Ω be Lipschitz. Then for all p ∈ (
4

3
, 2] and

s ∈ (0, 1], we have

ˆ
Ω\D

|H̃(x)|2dx ≤ C{∥∇ ×H0∥2Lp(D) + ∥H0∥2Hs+1/2(D)},

where C > 0 is independent of (Ẽ, H̃) and (E0,H0).

Proof. (Sketch) Let (Eex,Hex) be the solution of the exterior problem in the following


∇× Eex − ikHex = 0 in R3\D,

∇×Hex + ikEex = 0 in R3\D,

ν ×Hex = −ν ×H0 on ∂D,

and (Eex,Hex) satisfies the Silver-Müller radiation condition. Let Φk(x, y) := − eik|x−y|

4π|x− y|
, x ̸=

y ∈ R3, then we can write Eex,Hex to be

Hex(x) := ∇×
ˆ
∂D

Φk(x, y)f(y)dS(y),

Eex(x) := − 1

ik
∇×Hex(x), x ∈ R3\∂D,

where f is the density. We refer readers to [40, 41, 10, 11] for more details about the layer

potential theory for the Maxwell system. By properties of the layer potential potential theory and

for p ∈ (
4

3
, 2], we have

∥Hex∥L2(Ω\D) ≤ C{∥ν ×H0∥Lp(∂D) + ∥∇ ×H0∥Lp(D)}.

Define E := Ẽ − Eex and H := H̃ −Hex, then (E ,H) satisfies



∇× E − ikH = 0 in Ω\D,

∇×H+ ikE = 0 in Ω\D,

ν ×H = 0 on ∂D,

ν × E = −ν × Eex on ∂Ω.

We apply the well-posedness theory for the Maxwell system, then we have

∥H∥L2(Ω\D) ≤ ∥E∥H(curl,Ω\D) ≤ C∥ν × E∥H−1/2(∂Ω) ≤ C∥ν × Eex∥H−1/2(∂Ω).
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Moreover, by Eex(x) := − 1

ik
∇×Hex(x), we can obtain

∥ν × Eex∥H−1/2(∂Ω) ≤ C∥f∥Lp(∂D), ∀p ≥ 1.

From the above inequalities and the vector potential theories, we can obtain

∥H∥L2(Ω\D) ≤ C{∥ν ×H0∥2Lp(∂D) + ∥∇ ×H0∥2Lp(D)}

and use H = H̃ −Hex, then we have

ˆ
Ω\D

|H̃(x)|2dx ≤ C{∥ν ×H0∥2Lp(∂D) + ∥∇ ×H0∥2Lp(D)},

for p ∈ (
4

3
, 2]. Since p ≤ 2, we use the Hölder’s inequality and the trace theorem(see [6]), then we

have for all s ∈ (0, 1],

∥ν ×H0∥Lp(∂D) ≤ C∥H0∥Hs(∂D) ≤ C∥H0∥Hs+1/2(D),

which proves the result.

Remark 3.16. The hardest part is to estimate H̃ in Ω\D in terms of some suitable norm of H0

in D. Moreover, for the anisotropic Maxwell system, it is more complicated than the previous

proposition.

In order to prove the Theorem 4.3, we use similar arguments for the penetrable case as before.

We use the impenetrable-type CGO solutions, then we have the following estimates. Let lj(y′) be

the functions described as before for j = 1, 2, · · · ,m.

Lemma 3.17. For 1 ≤ q <∞, τ ≫ 1, we have the following estimates.

1.

ˆ
D

|H0(x)|qdx ≤ C τ−1
m∑
j=1

¨
|y′|<δ

e−qτlj(y
′)dy′ − C

q
τ−1e−qδτ + Ce−qcτ

2.

ˆ
D

|H0|2dx ≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2τlj(y
′)dy′ − C

2
τ−1e−2δτ

3.

ˆ
D

|∇ ×H0(x)|qdx ≤ Cτ q−1
m∑
j=1

¨
|y′|<δ

e−qτlj(y
′)dy′ − C

q
τ q−1e−qδτ + Cτ qe−qcτ
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4.

ˆ
D

|∇ ×H0|2dx ≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2τlj(y
′)dy′ − C

2
τe−2δτ .

Similarly, we have the following estimates.

For τ ≫ 1, for p < 2, the following estimates hold:

∥H0∥2L2(D)

∥∇ ×H0∥2L2(D)

≤ O(τ−2)

and
∥∇ ×H0∥2Lp(D)

∥∇ ×H0∥2L2(D)

≤ Cτ1−
2
p .

Moreover, when t = hD(ρ), the following estimate holds

lim inf
τ→∞

ˆ
D

τ |∇ ×H0|2dx ≥ C.

End the proof
Finally, we use the above estimates and similar method to obtain the lower bound of the

indicator function,

3.5 Enclosing unknown obstacles in the anisotropic media

In this chapter, we develop an enclosure-type reconstruction scheme to identify penetrable and

impenetrable obstacles in electromagnetic field with anisotropic medium in R3. The main difficulty

in treating this problem lies in the fact that there are so far no complex geometrical optics solutions

available for the Maxwell’s equation with anisotropic medium in R3. Instead, we derive and use

another type of special solutions called oscillating-decaying solutions. To justify this scheme, we

use Meyers’ Lp estimate, for the Maxwell system, to compare the integrals coming from oscillating-

decaying solutions and those from the reflected solutions.

3.5.1 Problem descriptions and main results

Let Ω be a bounded C∞-smooth domain in R3 with connected complement R3 \ Ω and D be a

subset of Ω with Lipschitz boundary. We are concerned with the electromagnetic wave propagation

in an anisotropic medium in R3 with the electric permittivity ϵ = (ϵij(x)) a 3× 3 positive definite

matrix and ϵ(x) = ϵ0(x) in Ω\D̄. We also assume that ϵ(x) = ϵ0(x)−ϵD(x)χD(x) with ϵ0 ∈ C∞(Ω)
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a positive definite 3× 3 symmetric matrix and ϵD(x) is a positive 3× 3 symmetric matrix and µ a

smooth scalar function defined on Ω such that there exist µc > 0 and ϵc > 0 verifying

µ(x) ≥ µc > 0 and
3∑

i.j=1

ϵij(x)ξiξj ≥ ϵc|ξ|2 ∀ξ ∈ R3, ∀x ∈ Ω. (3.5.1)

If we denote by E and H the electric and the magnetic fields respectively, then the electromagnetic

wave propagation by a penetrable obstacle problem reads as


∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

ν × E = f on ∂Ω,

(3.5.2)

with ϵ = ϵ0 − ϵDχD, and the one by the impenetrable obstacle as



∇× E − ikµH = 0 in Ω\D̄,

∇×H + ikϵE = 0 in Ω\D̄,

ν × E = f on ∂Ω,

ν ×H = 0 on ∂D,

(3.5.3)

where ν is the unit outer normal vector on ∂Ω∪ ∂D and k > 0 is the wave number. In this paper,

we assume that k is not an eigenvalue for (3.5.2) and (3.5.3).

Impedance Map: We define the impedance map ΛD : TH− 1
2 (∂Ω) → TH− 1

2 (∂Ω) by

ΛD(ν ×H|∂Ω) = (ν × E|∂Ω),

where TH− 1
2 (∂Ω) := {f ∈ H− 1

2 (∂Ω)|ν · f = 0} and × is the standard cross product in R3. We

denote by Λ∅ the impedance map for the domain without an obstacle.

Consider the anisotropic Maxwell system


∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

(3.5.4)

where µ and ϵ satisfy (3.5.1). Inspired by [51] and [48], our idea is to reduce (3.5.4) to an elliptic

systems and then use the results in [48] to construct oscillating-decaying type solutions to the

anisotropic Maxwell system. Precisely, we can decompose the equation (3.5.4) into two decoupled

strongly elliptic systems. The main difference between the construction of the oscillating-decaying
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solutions in [48] and ours is about the higher derivatives of oscillating-decaying solutions.

One of the main differences between the CGOs and the oscillating-decaying solutions is that,

roughly speaking, given a hyperplane, an oscillating decaying solution is oscillating very rapidly

along this plane and decaying exponentially in the direction transversely to the same plane.

Oscillating-decaying solutions are special solutions with the phase function having nonnegative

imaginary part. In addition, these oscillating decaying solutions are only defined on a half plane.

To use them as inputs for our detection algorithm, we need to extend them to the whole domain

Ω. One way to do the extension is to use the Runge approximation property for the anisotropic

Maxwell’s equation. The Runge approximation property will help us to find a sequence of approx-

imated solutions which are defined on Ω, satisfy (3.5.4) and their limit is the oscillating-decaying

solution. Note that it was first recognized by Lax [31] that the Runge approximation property is

a consequence of the weak unique continuation property. In [33], the authors already proved the

unique continuation property and based on it we derive the Runge approximation property for the

anisotropic Maxwell’s equation.

To be more precise, let ω be a unit vector in R3, denote Ωt(ω) = Ω ∩ {x|x · ω > t}, Σt(ω) =

Ω∩{x|x·ω = t} and set (Et,Ht) to be the oscillating-decaying solution for the anisotropic Maxwell’s

equation in Ωt(ω).

aa

Support function: For ρ ∈ S2, we define the support function of D by hD(ρ) = infx∈D x · ρ.

aa

When t = hD(ω), which means Σt(ω) touches ∂D, we cannot apply the Runge approximation

property to (Et,Ht) in Ωt(ω). Therefore, we need to enlarge the domain Ωt(ω) such that the OD

solutions exist and the Runge approximation property works. Let η be a positive real number,

denote Ωt−η(ω) and Σt−η(ω) and note that Ωt−η(ω) ⊃ Ωt(ω) ∀η > 0. We can find (Et−η, Ht−η)

to be the OD solution in Ωt−η(ω). By the Runge approximation property, there exists a sequence

of functions {(Eη,ℓ, Hη,ℓ)} satisfying the Maxwell system in Ω such that (Eη,ℓ,Hη,ℓ) converges to

(Et−η,Ht−η) as ℓ→ ∞ in L2(Ωt−η(ω)) and in H(curl,D) by interior estimates since D b Ωt−η(ω).

In addition we show that (Et−η,Ht−η) converges to (Et,Ht) in H(curl,D) as η → 0. Then we can

define the indicator function as follows.

aa

Indicator function: For ρ ∈ S2, τ > 0 and t > 0 we define the indicator function

Iρ(τ, t) := lim
η→0

lim
ℓ→∞

Iη,ℓρ (τ, t),
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where

Iη,ℓρ (τ, t) := ikτ

ˆ
∂Ω

(ν ×Hη,ℓ) · ((ΛD − Λ∅)(ν ×Hη,ℓ)× ν)dS.

Goal: We want to characterize the convex hull of the obstacle D from the impedance map ΛD.

The answer to this goal is the following theorem.

Theorem 3.18. Let ρ ∈ S2. For the penetrable (or impenetrable) obstacle case, we have the

following characterization of hD(ρ).


limτ→∞ |Iρ(τ, t)| = 0 when t < hD(ρ),

lim infτ→∞ |Iρ(τ, hD(ρ))| > 0,

To prove Theorem 3.18, for the penetrable obstacle case, we need an appropriate Lp estimate

of the corresponding reflected solution. We follow the idea in [27] to prove a global Lp estimate

for the curl of the solutions of the anisotropic Maxwell’s equation, for p near 2 and p ≤ 2.

To prove Theorem 3.18, in the impenetrable obstacle case, we use layer potential arguments as in

[27] coupled with appropriate Lp estimates. Precisely, first, we use the well-posedness for an exterior

isotropic Maxwell’s system with the Silver-Müller radiation condition and, in particular, the layer

potential theory to find a suitable estimate for the solution of this exterior problem. Second, we

decompose the reflected solution into two functions, one satisfies the reflected Maxwell’s equation

with a zero boundary data, the other satisfies the original anisotropic Maxwell’s equation with

the same boundary conditions which come from the reflected equation. For the first decomposed

function, we use the Lp estimates, and for the second function, we will use the well-posedness, in

L2, for the anisotropic Maxwell’s system. Combining these two steps, we derive the full estimate

for the reflected solution in the impenetrable obstacle case.

This paper is organized as follows. In the section 2, we give decompose the anisotropic Maxwell

system into two strongly elliptic systems. In section 3, we use the elliptic systems derived in the

section 2 to build the oscillating-decaying solutions for the Maxwell system. Then, we give the

Runge approximation for the anisotropic Maxwell equation in section 4. In section 5, we prove the

Theorem 3.18 for both penetrable and impenetrable obstacle case. Finally, in the last section, as

an appendix, we provide some technical details which we postponed in the main text and recall

some useful estimates for solutions of the Maxwell system. Before closing this introduction, let us

mention that in the whole text whenever we use the word smooth it means C∞-smooth.
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3.6 A new reduction method: From the anisotropic Maxwell

system to the second order strongly elliptic system

Our goal is to construct the oscillating-decaying (OD) solution for the following anisotropic time-

harmonic Maxwell’s system



∇× E = ikµH

∇×H = −ikϵE

div(ϵE) = 0

div(µH) = 0,

. (3.6.1)

where E,H denote the electric and magnetic field intensity respectively, and µ denotes the positive

scalar permeability, ϵ denotes the permittivity, which is a real, symmetric, positive definite 3 × 3

matrix.

Inspired by [51], the first step of constructing OD solutions is to reduce (3.6.1) to a strongly

elliptic system. In fact, we reduce the anisotropic Maxwell’s system (3.6.1) to two separate strongly

elliptic equations (3.6.3), while in [51] the isotropic Maxwell’s system is reduced to an elliptic (a

single Schrödinger) system with coupled zero-th order term. The following theorem is our reduction

result.

Theorem 3.19. We set E and H of the following forms


E = − i

k
ϵ−1∇× (µ−1(∇×B))− ϵ−1(∇×A)

H =
i

k
µ−1∇× (ϵ−1(∇×A))− µ−1(∇×B)

(3.6.2)

with A,B satisfying the strongly elliptic systems


µ∇tr(MA∇A)−∇× (ϵ−1(∇×A)) + k2µA = 0

ϵ∇tr(MB∇B)−∇× (µ−1(∇×B)) + k2ϵB = 0

, (3.6.3)

where MA,MB are introduced in Theorem 3.22, then E and H satisfy (3.6.1).

Remark 3.20. Theorem 2.1 shows that, if we can find solutions of (3.6.3), then we can find solutions

of (3.6.1).

Proof. In this proof, we will show the process of the reduction. And the proof that the systems

(3.6.3) are strongly elliptic systems will be postponed to Theorem 3.22.
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As in [51], we set the following two auxiliary functions which are similar to what they used:

Φ =
i

k
div(ϵE)

and

Ψ =
i

k
div(µH).

Note that Φ and Ψ are actually zero by the Maxwell’s equation. We consider the following first-

order matrix differential operator P

P =



0 div(ϵ(·)) 0 0

µ−1∇ 0 ∇× 0

0 −∇× 0 ϵ−1∇

0 0 div(µ(·)) 0


.

Note that P is a 8× 8 matrix. Let

Y =



Φ

E

H

Ψ


Then the problem (3.6.1) can be rewritten as follows:

PY = −ikV Y,

where

V =



1 0 0 0

0 ϵ 0 0

0 0 µ 0

0 0 0 1


Thus, the Maxwell’s system (3.6.1) implies

(P + ikV )Y = 0 and Φ = Ψ = 0. (3.6.4)

It is easy to see that conversely (3.6.4) implies the Maxwell’s system, and hence they are equivalent.

The first idea of the reducing process is to construct a suitable Q̃, which can make (P + ikV )Q̃
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a “good” second-order differential operator. Then, a solution X for the problem

(P + ikV )Q̃X = 0 (3.6.5)

will give rise to a solution Y = Q̃X for

(P + ikV )Y = 0.

Moreover, if we find the solution X such that the first and the last component of Y = Q̃X are

zero, then we obtain solutions for the Maxwell’s system.

We try the matrix differential operator Q̃ = Q− ikI, where

Q =



0 div(ϵ(·)) 0 0

∇ 0 ϵ−1(∇× (·)) 0

0 −µ−1(∇× (·)) 0 ∇

0 0 div(µ(·)) 0


. (3.6.6)
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Then

(P + ikV )Q̃

= (P + ikV )(Q− ikI)

= PQ− ikP + ikV Q+ k2V

=



div(ϵ∇) 0 0 0

0 L1 0 0

0 0 L2 0

0 0 0 div(µ∇)



+



0 −ikdiv(ϵ(·)) 0 0

−ikµ−1∇ 0 −ik∇× 0

0 ik∇× 0 −ikϵ−1∇

0 0 −ikdiv(µ(·)) 0



+



0 ikdiv(ϵ(·)) 0 0

ikϵ∇ 0 ik∇× 0

0 −ik∇× 0 ikµ∇

0 0 ikdiv(µ(·)) 0



+



k2 0 0 0

0 k2ϵ 0 0

0 0 k2µ 0

0 0 0 k2



=



div(ϵ∇) + k2 0 0 0

ik(ϵ− µ−1)∇ L1 + k2ϵ 0 0

0 0 L2 + k2µ ik(µ− ϵ−1)∇

0 0 0 div(µ∇) + k2


,

where

L1 = µ−1∇(div(ϵ(·)))−∇× (µ−1(∇× (·))) (3.6.7)

L2 = ϵ−1∇(div(µ(·)))−∇× (ϵ−1(∇× (·))). (3.6.8)

A prominent feature of the above operator is that it decomposes the original eight-component
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system into two four-component systems. Precisely, Set

X =



φ

e

h

ψ


,

then (3.6.5) can be separated into two systems:


div(ϵ∇φ) + k2φ = 0

L1e+ k2ϵe+ ik(ϵ− µ−1)∇φ = 0.

and 
div(µ∇ψ) + k2ψ = 0

L2h+ k2µh+ ik(µ− ϵ−1)∇ψ = 0.

Moreover,

Y = Q̃X

=





0 div(ϵ(·)) 0 0

∇ 0 ϵ−1(∇× (·)) 0

0 −µ−1(∇× (·)) 0 ∇

0 0 div(µ(·)) 0


− ikI


X

=



div(ϵe)− ikφ

∇φ+ ϵ−1(∇× h)− ike

−µ−1(∇× e) +∇ψ − ikh

div(µh)− ikψ


.

Therefore, the problem of finding the solutions X of

(P + ikV )Q̃X = 0 with the first and last component of Q̃X being 0 (3.6.9)
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is equivalent to the problem of finding solutions of the following two separate systems:


div(ϵe)− ikφ = 0,

div(ϵ∇φ) + k2φ = 0,

µ−1∇(div(ϵe))−∇× (µ−1(∇× e)) + k2ϵe+ ik(ϵ− µ−1)∇φ = 0,

(3.6.10)

and 
div(µh)− ikψ = 0,

div(µ∇ψ) + k2ψ = 0,

ϵ−1∇(div(µh))−∇× (ϵ−1(∇× h)) + k2µh+ ik(µ− ϵ−1)∇ψ = 0.

(3.6.11)

Notice that if we set e in the following form

e = − i

k
(∇φ+ ϵ−1(∇×A)), (3.6.12)

then the first equation of (3.6.10) becomes the same as the second one. For the third equation, we

have

µ−1∇
(
div(ϵe)

)
−∇×

(
µ−1(∇× e)

)
+ k2ϵe+ ik(ϵ− µ−1)∇φ

= − i

k
µ−1∇ (div(ϵ∇φ)) + i

k
∇×

(
µ−1

[
∇× (ϵ−1(∇×A))

])
− ikϵ∇φ− ik(∇×A) + ikϵ∇φ− i

k
µ−1∇

(
k2φ

)
= − i

k
µ−1∇

(
div(ϵ∇φ) + k2φ

)
+
i

k
∇×

(
µ−1

[
∇× (ϵ−1(∇×A))

])
− ik∇×A

= 0 +
i

k
∇×

(
µ−1

[
∇× (ϵ−1(∇×A))

])
− ik∇×A,

by the second equation of (3.6.10). Thus, by letting e be of the form (3.6.12), the system (3.6.10)

reduces to


div

(
γ∇φ

)
+ k2φ = 0,

∇×
(
µ−1

[
∇× (ϵ−1(∇×A))

]
− k2A

)
= 0.

(3.6.13)

Similarly, by letting

h = − i

k
(∇ψ + µ−1(∇×B))
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for some vector field B, we can reduce (3.6.11) to the following system:


div

(
µ∇ψ

)
+ k2ψ = 0,

∇×
(
ϵ−1

[
∇× (µ−1(∇×B))

]
− k2B

)
= 0.

(3.6.14)

To resume, if we can find solutions φ,A, ψ and B of (3.6.13) and (3.6.14), we can find solutions of

the problem (3.6.9) and therefore the original problem (3.6.1).

Now let us focus on (3.6.13) and (3.6.14). The goal is to find special solutions (e.g. oscillating-

decaying solutions) of (3.6.13) and (3.6.14). The idea of doing that is to subtract zero terms of

the form ∇×
(
∇tr(MA∇A)

)
and ∇×

(
∇tr(MB∇B)

)
from the second equations of (3.6.13) and

(3.6.14) for some matrices MA,MB , so that they become ∇ × (LAA) = 0 and ∇ × (LBB) = 0

with LA and LB being strongly elliptic operators. Precisely, we want to find suitable matrices MA

and MB such that

µ∇tr(MA∇A)−∇×
(
ϵ−1(∇×A)

)
+ k2µA = 0 (3.6.15)

and

ϵ∇tr(MB∇B)−∇×
(
µ−1(∇×B)

)
+ k2ϵB = 0 (3.6.16)

are strongly elliptic systems. In fact, by letting MA = mµ−1I and MB = mµ−1ϵ, we can show

that (3.6.15) and (3.6.16) are strong elliptic systems for arbitrary positive constant m. The proof

are given in Theorem 3.22.

To prove Theorem 3.22, we start with the following computational lemma.

Lemma 3.21. Let M be a matrix-valued function with smooth entries and F be a vector field.

Then the i-th component of the vector ∇×
(
M(∇× F)

)
is given by

(
∇×

(
M(∇× F)

))
i =

∑
j,k,ℓ

C̃ijkℓ∂jℓfk + R̃i, (3.6.17)

where

C̃ijkℓ = δjℓMki + δikMℓj − δjkMℓi − δiℓMkj +
(
δiℓδjk − δikδjℓ

)
tr(M),

and R̃i contains the lower order terms. Here, δij is the Kronecker delta, Mij is the ij-th entry of

M , and F = (f1, f2, f3)
T .
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Proof. We prove it by direct computations. For any vectors a,b, letting c = a × b, we have

cm =
∑
kℓ

εmℓkaℓbk,

where a = (a1, a2, a3)
T , b = (b1, b2, b3)

T , c = (c1, c2, c3)
T and εmℓk denotes the Levi-Civita symbol.

Therefore, we obtain the m-th component of ∇× F:

(
∇× F

)
m

=
∑
kℓ

εmℓk∂ℓfk.

Then, the n-th component of M(∇× F) is

(
M(∇× F)

)
n

=
∑
m,k,ℓ

Mnmεmℓk∂ℓfk.

Finally, taking the curl operator on the vector M(∇×F), the i-th component of the resulted vector

is (
∇×

(
M(∇× F)

))
i

=
∑

j,n,m,k,ℓ

εijn∂j
(
Mnmεmℓk∂ℓfk

)
=

∑
j,n,m,k,ℓ

εijnεmℓk

(
(∂jMnm)∂ℓfk +Mnm∂jℓfk

)

Thus

(
∇×

(
M(∇× F)

))
i

=
∑
j,k,ℓ

C̃ijkℓ∂jℓfk + R̃i,

where

C̃ijkℓ :=
∑
m,n

εijnεmℓkMnm, R̃i :=
∑

j,m,n,k,ℓ

εijnεmℓk(∂jMnm)∂ℓfk.

Since

εijnεmℓk =

∣∣∣∣∣∣∣∣∣∣
δim δiℓ δik

δjm δjℓ δjk

δnm δnℓ δnk

∣∣∣∣∣∣∣∣∣∣
= δim

(
δjℓδnk − δnℓδjk

)
− δiℓ

(
δjmδnk − δnmδjk

)
+ δik

(
δjmδnℓ − δnmδjℓ

)
,
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we can obtain

C̃ijkℓ =
∑
mn

(
δim

(
δjℓδnk − δnℓδjk

)
− δiℓ

(
δjmδnk − δnmδjk

)
+ δik

(
δjmδnℓ − δnmδjℓ

))
Mnm

=
(
δjℓMki − δjkMℓi

)
− δiℓMkj + δiℓδjktr(M) + δikMℓj − δikδjℓtr(M)

= δjℓMki + δikMℓj − δjkMℓi − δiℓMkj +
(
δiℓδjk − δikδjℓ

)
tr(M).

Theorem 3.22. Assume that µ is a smooth, positive scalar function and ϵ is a symmetric, positive

definite matrix-valued function with smooth entries. The eigenvalues of ϵ are denoted by λ1(x), λ2(x)

and λ3(x). Assume there exist positive constants µ0, Λ, λ such that for all x ∈ Ω

0 < µ(x) ≤ µ0

0 < λ ≤ λ1(x) ≤ λ2(x) ≤ λ3(x) ≤ Λ. (3.6.18)

Then (3.6.15) and (3.6.16) are uniformly strongly elliptic by letting MA = mµ−1I and MB =

mµ−1ϵ, for arbitrary positive constant m. Here I denotes the 3× 3 identity matrix.

Proof. To see whether (3.6.15) and (3.6.16) are strongly elliptic, we only have to check the leading

order terms of (3.6.15) and (3.6.16). We divide this proof into two parts, Part A and Part B, to

deal with the equation (3.6.15) for A and the equation (3.6.16) for B respectively.

Part A. By Lemma 3.21,

(
µ∇tr

(
MA∇A

)
−∇×

(
ϵ−1(∇×A)

))
i

=
∑
jkℓ

µδij∂j
(
MA

ℓk∂ℓAk

)
−

∑
jkℓ

C̃A
ijkℓ∂jℓAk − R̃A

i

=
∑
jkℓ

(
µδijM

A
ℓk − C̃A

ijkℓ

)
∂jℓAk +

∑
jkℓ

µδij(∂jM
A
ℓk)∂ℓAk − R̃A

i

=
∑
jkℓ

CA
ijkℓ∂jℓAk +

∑
jkℓ

µδij(∂jM
A
ℓk)∂ℓAk − R̃A

i ,

where CA
ijkℓ = µδijM

A
ℓk − C̃A

ijkℓ are the coefficients of the leading order terms of (3.6.15) and

C̃A
ijkℓ = δjℓ(ϵ

−1)ki + δik(ϵ
−1)ℓj − δjk(ϵ

−1)ℓi − δiℓ(ϵ
−1)kj +

(
δiℓδjk − δikδjℓ

)
tr(ϵ−1).
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Recall that (3.6.15) is called uniformly strongly elliptic in some domain Ω if there exists a

positive c0 > 0 independent of x ∈ Ω such that

∑
ijkℓ

CA
ijkℓ(x)aiakbjbℓ ≥ c0|a|2|b|2 (3.6.19)

for any a,b ∈ R3 and for all x ∈ Ω. Now

∑
ijkℓ

CA
ijkℓaiakbjbℓ =

∑
ijkℓ

(
µδijM

A
ℓk − C̃A

ijkℓ

)
aiakbjbℓ

= µ(a · b)(bTMAa)

−
∑
ijkℓ

(
δjℓ(ϵ

−1)ki + δik(ϵ
−1)ℓj − δjk(ϵ

−1)ℓi

− δiℓ(ϵ
−1)kj +

(
δiℓδjk − δikδjℓ

)
tr(ϵ−1)

)
aiakbjbℓ

= µ(a · b)(bTMAa)

−
(
|b|2(aT ϵ−1a) + |a|2(bT ϵ−1b)− (a · b)(bT ϵ−1a)

− (a · b)(aT ϵ−1b) + tr(ϵ−1)(a · b)2 − tr(ϵ−1)|a|2|b|2
)

= tr(ϵ−1)|a|2|b|2 − |a|2(bT ϵ−1b)− |b|2(aT ϵ−1a)− tr(ϵ−1)(a · b)2

+ 2(a · b)
(
bT ϵ−1a

)
+ µ(a · b)

(
bTMAa

)
since ϵ (and hence ϵ−1) is symmetric. Let S be the orthogonal matrix such that ϵ = STDS,

where D = diag(λ1, λ2, λ3). Thus ϵ−1 = STD−1S. Also let MA = STNAS. By letting

v = Sa/|a| and w = Sb/|b|, it’s easy to see that (3.6.19) holds for all a,b ∈ R3 iff

tr(ϵ−1)− (wTD−1w)− (vTD−1v)− tr(ϵ−1)(v · w)2

+ 2(v · w)
(
wTD−1v

)
+ µ(v · w)

(
wTNAv

)
≥ c0

for all v,w ∈ R3 such that |v| = |w| = 1. Note that tr(ϵ−1) = tr(D−1) = λ−1
1 + λ−1

2 + λ−1
3 .

In summary, we find that (3.6.15) is uniformly strongly elliptic on Ω iff

inf
x∈Ω

(
min

|v|=|w|=1
F (v,w)

)
> 0, (3.6.20)
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where

F (v,w) =

(
tr(D−1)− (wTD−1w)− (vTD−1v)− tr(D−1)(v · w)2

+ 2(v · w)
(
wTD−1v

))
+ µ(v · w)

(
wTNAv

)
=: G(v,w) + µ(v · w)

(
wTNAv

)
.

We will show that

G(v,w) ≥ λ−1
3

(
1− (v · w)2

)
(3.6.21)

under the constraints |v| = |w| = 1. Then, by choosing MA = mµ−1I for some positive

constant m, we also have NA = mµ−1I, and

F (v,w) = G(v,w) +m(v · w)2

≥ λ−1
3

(
1− (v · w)2

)
+m(v · w)2

= λ−1
3 + (m− λ−1

3 )(v · w)2.

Now since 0 ≤ (v · w)2 ≤ 1, if m ≥ λ−1
3 , we have F (v,w) ≥ λ−1

3 , while if m < λ−1
3 , we have

F (v,w) ≥ λ−1
3 + (m − λ−1

3 ) = m. Remember that λ−1
3 (x) ≥ Λ−1 on Ω, we conclude that

F (v,w) ≥ min(Λ−1,m) for all |v| = |w| = 1 and all x ∈ Ω.

It remains to show (3.6.21). For this, note that

G(v,w) =
∑

j=1,2,3

λ−1
j

(
1− w2

j − v2j − (v · w)2 + 2(v · w)vjwj

)
=:

∑
j

λ−1
j Kj .

We can prove Kj ≥ 0 as follows: Since (v · w)− v1w1 = v2w2 + v3w3, by Schwarz inequality

we have

|(v · w)− v1w1| ≤
√
v22 + v23

√
w2

2 + w2
3 =

√
1− v21

√
1− w2

1.

Taking square, we obtain

(v · w)2 − 2(v · w)v1w1 + v21w
2
1 ≤ 1− v21 − w2

1 + v21w
2
1,

which means K1 ≥ 0. Similarly K2,K3 ≥ 0. As a consequence, since λ−1
1 ≥ λ−1

2 ≥ λ−1
3 , we
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have

G(v,w) ≥ λ−1
3 (K1 +K2 +K3) = λ−1

3

(
1− (v · w)2

)
,

which completes the proof of Part A.

Part B. For (3.6.16), we have

(
ϵ∇tr

(
MB∇B

)
−∇×

(
µ−1(∇× B)

))
i

=
∑
jkℓ

ϵij∂j
(
MB

ℓk∂ℓBk

)
−
∑
jkℓ

C̃B
ijkℓ∂jℓBk − R̃B

i

=
∑
jkℓ

(
ϵijM

B
ℓk − C̃B

ijkℓ

)
∂jℓBk +

∑
jkℓ

ϵij(∂jM
B
ℓk)∂ℓBk − R̃B

i ,

(3.6.22)

where

C̃B
ijkℓ = δjℓµ

−1δki + δikµ
−1δℓj − δjkµ

−1δℓi

− δiℓµ
−1δkj +

(
δiℓδjk − δikδjℓ

)
tr(µ−1I)

= µ−1
(
δiℓδjk − δikδjℓ

)
.

Denote the coefficients of the leading order terms of (3.6.22) by CB
ijkℓ, we have

CB
ijkℓ = ϵijM

B
ℓk − C̃B

ijkℓ = ϵijM
B
ℓk − µ−1

(
δiℓδjk − δikδjℓ

)
.

By choosing MB = mµ−1ϵ we obtain

∑
ijkℓ

CB
ijkℓaiakbjbℓ = µ−1

(
m(aT γb)2 −

(
(a · b)2 − |a|2|b|2

))

for all a,b ∈ R3. Remember that ϵ = STDS. Since we have assumed µ−1 ≥ µ0 for some

positive constant µ0, by letting v = Sa/|a| and w = Sb/|b| for a,b ̸= 0, we see to prove

CB
ijkℓaiakbjbℓ ≥ c0|a|2|b|2 for some constant c0 > 0 is equivalent to prove

inf
x∈Ω

min
|v|=|w|=1

H(v,w) > 0, (3.6.23)

where H(v,w) = m(vTDw)2+
(
1− (v ·w)2

)
. Although (3.6.23) looks simpler than (3.6.20),

we fail to find a simple method as before to get a clear lower bound. Nevertheless, it is also

easy to see that (3.6.23) is true by continuity, as follows: If (v · w)2 = 1, then v = ±w, and

m(vTDw)2 = m(λ1v
2
1 + λ2v

2
2 + λ3v

2
3)

2 ≥ mλ21.
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By continuity, there exists ε > 0 such that for 0 ≤ 1 − (v · w)2 ≤ ε we have m(vTDw)2 ≥

mλ21/2. Thus for 0 ≤ 1− (v ·w)2 ≤ ε we have H(v,w) ≥ mλ21/2. While for 1− (v ·w)2 > ε,

H(v,w) > ε. Thus under the constraints |v| = |w| = 1 we obtain

H(v,w) ≥ min(mλ21/2, ε) ≥ min(mλ2/2, ε),

where recall that λ is the lower bound of λ1(x) on Ω. This completes the proof of Part B.

Remark 3.23. One can check that the C̃A and C̃B satisfy C̃A
ijkℓ = C̃A

kℓij and C̃B
ijkℓ = C̃B

kℓij . And, by

choosing MA = mµ−1I and MB = mµ−1ϵ as above, the CA and CB also satisfy such symmetry.

This additional property is useful in the next section.

3.7 Construction of oscillating-decaying solutions for the

anisotropic Maxwell system

In this section, we will use the reduction results in section 4.2 to construct oscillating-decaying

solutions of (3.6.1). From now on, we suppose that µ > 0 is a C∞ scalar function and ϵ is a 3× 3

real positive definite matrix-valued smooth functions (i.e. every entry is a real C∞ function) and

E , H satisfy 
∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω.

In order to obtain the oscillating-decaying solutions of E and H, we have to construct the

oscillating-decaying solutions for A and B. We follow the proof in [48] to construct the oscillating-

decaying solutions for A and B, but here we need to derive higher derivatives for A and B.

From [48], we borrow several notations as follows. Assume that Ω ⊂ R3 is an open set with

smooth boundary and ω ∈ S2 is given. Let η ∈ S2 and ζ ∈ S2 be chosen so that {η, ζ, ω} forms an

orthonormal system of R3. We then denote x′ = (x · η, x · ζ). Let t ∈ R, Ωt(ω) = Ω ∩ {x · ω > t}

and Σt(ω) = Ω ∩ {x · ω = t} be a non-empty open set.

3.7.1 Construction of the oscillating-decaying solutions A and B

In this subsection, we show how the scheme in [48] can be used to derive the oscillating-decaying

solutions A and B. Recall that E and H satisfy equation (3.6.2), therefore we need to derive

estimates of the higher derivatives for A and B. Note that the main term of wA
χt,b,t,N,ω (resp.

wB
χt,b,t,N,ω) is χt(x

′)Qte
iτx·ξe−τ(x·ω−t)AA

t (x′)b (resp. χt(x
′)Qte

iτx·ξe−τ(x·ω−t)AB
t (x′)b), which can be
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directly differentiated term by term since it is a multiplication of smooth functions. So we can

calculate E and H directly. For convenience, we denote w = wχt,b,t,N,ω γ = γχt,b,t,N,ω(x, τ).

Without loss of generality, we can use the change of coordinates to assume t = 0, ω = (0, 0, 1) and

η = (1, 0, 0), ζ = (0, 1, 0). Define

Q̃A := e−iτx′·ξ′LA(e
iτx′·ξ′ ·), Q̃B := e−iτx′·ξ′LB(e

iτx′·ξ′ ·)

where x′ = (x1, x2), ξ′ = (ξ1, ξ2) with |ξ′| = 1 and LA, LB have been defined by (3.7.7) and (3.7.8).

In the following, we will give all the details for the higher derivatives of E and H.

In [48], the authors used the phase plane method to get a first order ODE system and we want

to decouple the equation in order to solve it by direct calculations. The method of construction

the oscillating-decaying solution is decomposed into several steps:

Step 1. As mentioned before, we set Q̃A = e−iτx′·ξ′LA(e
iτx′·ξ′ ·), Q̃B := e−iτx′·ξ′LB(e

iτx′·ξ′ ·) and

solve Q̃AvA = 0, Q̃BvB = 0. In the following calculations, we only need to consider Q̃AvA = 0

since Q̃BvB = 0 will follow the same calculations. Let QA = CAQ̃A be the operator which satisfies

the leading coefficient of ∂23 is 1 and the existence of CA is given by the strong ellipticity of LA and

we need to solve QAvA = 0 (the same reason for the operator Q̃B and QB). Now, We introduce

the concept of the order in the following manner. We consider τ, ∂3 are of order 1, ∂1, ∂2 are of

order 0 and x3 is of order −1.

Step 2. Use the Taylor expansion with respect to x3, we have

QA(x
′, x3) = QA(x

′, 0) + · · ·+ xN−1
3

(N − 1)!
∂N−1
3 QA(x

′, 0) +R

= Q2
A +Q1

A + · · ·+Q−N+1
A +R

where ord(Qj
A) = j and ord(R) = −N . Since we hope that QAvA = 0, we have

Q2
AvA = −(Q2

A +Q1
A + · · ·+Q−N+1

A +R)vA := f.

Step 3. Following the paper [48], we denote D3 = −i∂3, ρ = (ξ1, ξ2, 0) and ⟨a, b⟩ = (⟨a, b⟩ik)

for a = (a1, a2, a3) and b = (b1, b2, b3), where ⟨a, b⟩ik =
∑

jl C
A
ijklajbl with CA

ijkl being the leading

coefficient of the second order strongly elliptic operator LA. If we set W =

 w1

w2

, where


w1 = vA

w2 = −τ−1 ⟨e3, e3⟩x3=0D3vA − ⟨e3, ρ⟩x3=0 vA

,
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and use f = −(Q2
A +Q1

A + · · ·+Q−N+1
A +R)vA, then W will satisfy

D3W = τKAW +

 0

τ−1 ⟨e3, e3⟩x3=0 f


= (τKA +KA

0 + · · ·+KA
−N + S)W

where KA is a matrix in depending of x3 which can be diagonlizable by the property of the

strong ellipticity of LA. Note that each KA
j ’s only involves the x′ derivatives with ord(KA

j ) = j,

ord(S) = −N − 1. It is worth to mention that with the help of such special W , then we can solve

the ODE system explicitly.

Step 4. Decompose KA such that

K̃A = Q̃−1KAQ̃ =

 K̃A
+ 0

0 K̃A
−

 ,

where spec(K̃A
±) ⊂ C± := {±Imλ > 0} (the existence of K̃A and Q̃ were showed in [48]). If we

set Ŵ = Q̃−1W , then

D3Ŵ = (τK̃A + K̂0 + · · ·+ K̂−N + Ŝ)Ŵ ,

Step 5. If we write Ŵ = (I + x3A
(0) + B(0))W̃ (0) with A(0), B(0) being differential operators in

∂x′ (their coefficients independent of x3), then

D3W̃
(0) = {τK̃A + (K̂0 − τx3A

(0)K̃A + τx3K̃AA(0) −B(0)K̃A

+K̃AB(0) + iA(0)) + K̂ ′−1 + · · · }W̃ (0)

:= (τK̃A + K̃0 + K̂ ′−1 + · · · )W̃ (0)

where ord(K̂ ′−1) = −1 and the remainders are at most −2. We choose A(0), B(0) to be suitable

operators and use the same calculations in [48], then we will get

K̃0 =

 K̃0(1, 1) 0

0 K̃0(2, 2)


to be a diagonal form (here we omit all the details).
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Step 6. Finally, following step 5, we can write

Ŵ = (I + x3A
(0) + τ−1B(0))(I + x23A

(1) + τ−1x3B
(1) + τ−2C(1)) · · ·

×(I + xN+1
3 A(N) + τ−1xN3 B

(N) + τ−2xN−1
3 C(N))W̃ (N)

with suitable A(j), B(j) and C(j) for j = 0, 1, 2, · · · , N (C(0) = 0), then W̃ (N) satisfies

D3W̃
(N) = {τK̃A + K̃0 + · · ·+ K̃−N + S̃}W̃ (N),

with all K̃−j are decoupled for 0 ≤ j ≤ N and ord(S̃) = −N − 1. If we omit the term S̃, we can

find an approximated solution of the form

v̂
(N)
A =

N+1∑
j=0

v̂
(N)
−j,A

satisfying

D3v̂
(N)
A = {τK̃A

+ + K̃0(1, 1) + · · ·+ K̃−N (1, 1)}v̂(N)
A

and each v̂
(N)
−j,A has to satisfy



D3v̂
(N)
0,A = τK̃A

+ v̂
(N)
0,A , v̂

(N)
0,A |x3=0 = χt(x

′)b,

D3v̂
(N)
−1,A = τK̃A

+ v̂
(N)
−1,A + K̃0(1, 1)v̂

(N)
0,A , v̂

(N)
−1,A|x3=0 = 0,

...

D3v̂
(N)
−N−1,A = τK̃A

+ v̂
(N)
−N−1,A +

∑N
j=0 K̃−j(1, 1)v̂

(N)
−j,A, v̂

(N)
−N−1,A|x3=0 = 0,

where χt(x
′) ∈ C∞

0 (R2) and b ∈ C3. Thus, by solving this ODE system we can get the following

estimates:

∥xβ3∂αx′(v̂
(N)
−j,A)∥L2(R3

+) ≤ cτ−β−j−1/2 (3.7.1)

for 0 ≤ j ≤ N + 1. Moreover, if we set V̂ (N)
A =

 v̂
(N)
A

0

, then it satisfies


V̂

(N)
A − {τK̃A + K̃0 + · · ·+ K̃−N}V̂ (N)

A = R̃,

V̂
(N)
A |x3=0 =

 χt(x
′)b

0

 ,
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where

∥R̃∥L2(R3
+) ≤ cτ−N−3/2.

Step 7. Finally, if we define the function ṽA =


ṽ1

ṽ2

ṽ3

, with ṽj being the jth component of the

vector Q̃(I+x3A
(0)+τ−1B(0))(I+x23A

(1)+τ−1x3B
(1)+τ−2C(1)) · · · (I+xN+1

3 A(N)+τ−1xN3 B
(N)+

τ−2xN−1
3 C(N))V̂

(N)
A and set wA = exp(iτx′ · ξ′)ṽA, we will get that

wA = Q exp(iτx′ · ξ′) exp(iτx3K̃A
+(x′))χt(x

′)b+ exp(iτx′ · ξ′)Γ̃(x, τ)

= Q exp(iτx′ · ξ′) exp(−iτx3(−K̃A
+(x′)))χt(x

′)b+ Γ(x, τ)

and

wA|x3=0 = exp(iτx′ · ξ′)(χt(x
′)Qb+ β0(x

′, τ),

where β0(x′, τ) = Γ̃(x′, 0, τ) is supported in supp(χt). Note that the function γ̃ comes from the

combination of v̂(N)
−j,A’s, for j = 1, 2, · · · , N + 1. Now, we derive higher derivative estimates for

the oscillating-decaying solutions, back to see all the v̂(N)
−j,A’s separately. In fact, only need to see

v̂
(N)
−1,A. From the estimate (3.7.1), we know that the estimate is independent of the derivative of x′

variables, all we need to concern is the ∂3 derivative. From the equation

D3v̂
(N)
−1,A = τK̃A

+ v̂
(N)
−1,A + K̃0(1, 1)v̂

(N)
0,A (3.7.2)

and the standard regularity theory of ODEs(ordinary differential equations), we know that v̂(N)
−1,A ∈

C∞ if all the coefficients are smooth. Moreover, note that K̃+ independent of x3, then we can

differentiate (3.7.2) directly, to get

D2
3 v̂

(N)
−1,A = D3[τK̃A

+ v̂
(N)
−1,A + K̃0(1, 1)v̂

(N)
0,A ]

= τK̃A
+(D3v̂

(N)
−1,A) + (D3K̃0(1, 1))v̂

(N)
0,A + K̃0(1, 1)D3v̂

(N)
0,A

= τ2(K̃A
+)2v̂

(N)
−1,A + τK̃A

+K̃0(1, 1)v̂
(N)
0,A + (D3K̃0(1, 1))v̂

(N)
0,A

+τK̃0(1, 1)K̃A
+ v̂

(N)
0,A .

Thus, we can obtain that

∥xβ3∂αx′∂
η
3 (v̂

(N)
−1,A)∥L2(R3

+) ≤ cτ−β+η−3/2,
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for all η ≤ 2. Inductively, we have

∥xβ3∂αx′∂
η
3 (v̂

(N)
−1,A)∥L2(R3

+) ≤ cτ−β+η−3/2,

for all η ∈ N. Similarly, for other v̂(N)
−j,A with 2 ≤ j ≤ N + 1, we can get similar estimate in the

following:

∥xβ3∂αx′∂
η
3 (v̂

(N)
−j,A)∥L2(R3

+) ≤ cτη−β−j−1/2

∀η ∈ N ∪ {0}. Therefore, Γ satisfies

∥∂αxΓ∥L2(Ωs) ≤ cτ |α|−3/2e−τ(s−t)λ

on Ωs := {x3 > s} ∩ Ω for s ≥ 0 and ∀|α| ∈ N ∪ {0}. Note that since each v̂
(N)
−j,A’s are smooth, we

can get the smoothness of R̃ and

∥∂αx R̃∥L2(R3
+) ≤ cτ |α|−N−3/2

for all |α| ∈ N ∪ {0}. Furthermore, we have that

∥∂αx (QAṽA)∥L2(Ω0) ≤ cτ |α|−N−1/2.

Step 8. Now let u = w + r = eiτx
′·ξ′ ṽ + r and r be the solution to the boundary value problem


LAr = −eiτx′·ξ′Q̃AṽA in Ω0

r = 0 on ∂Ω0

.

However, note that Ω0 = {x3 > 0}∩Ω is not a smooth domain since ∂Ω0 = ({x3 = 0}∩Ω)∪({x3 >

0}∩∂Ω). Note that the oscillating-decaying solution exists in the half space, from the construction,

we know that the solution is independent of the domain Ω. Let Ω̃ ⊂ R3
+ be a open bounded smooth

domain containing Ω with {x3 = 0} ∩ Ω ⊂ ∂Ω̃, from the construction, it is easy to see the form of

oscillating-decaying solution does not depend on the domain Ω, then we can extend r to be defined

on Ω̃ and call it r̃(x). Here we can also extend ṽA to be defined on Ω̃, still denote ṽA and all the

decaying estimates will hold since our estimates were considered in R3
+, then we have


LAr̃ = −eiτx′·ξ′Q̃AṽA in Ω̃,

r̃ = 0 on ∂Ω̃.

Note that all the coefficients are smooth, we apply a well-known elliptic regularity theorem (The-
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orem2.3, [12]), then we will get r̃ ∈ Ck(Ω) ∀k (recall that ∂Ω ∈ C∞) and

∥r̃∥Hk+1(Ω;R3) ≤ c∥Q̃AṽA∥Hk(Ω;R3).

Hence ∥∂αx r∥L2(Ω0) ≤ ∥∂αx r̃∥L2(Ω̃) ≤ cτ |α|−N+1/2 for all |α| ≤ k, ∀k ∈ N. Similarly, we can

construct the oscillating decaying solution for LBB = 0. Then we represent A and B to be two

oscillating-decaying solution in the following form:



A = wA
χt,b,t,N,ω + rAχt,b,t,N,ω in Ωt(ω),

A = eiτx·ξ{χt(x
′)Qt(x

′)b+ βA
χt,t,b,N,ω} on Σt(ω),

B = wB
χt,b,t,N,ω + rBχt,b,t,N,ω in Ωt(ω),

B = eiτx·ξ{χt(x
′)Qt(x

′)b+ βB
χt,t,b,N,ω} on Σt(ω),

where 
wA

χt,b,t,N,ω = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)AA
t (x′)b+ γAχt,b,t,N,ω(x, τ),

wB
χt,b,t,N,ω = χt(x

′)Qte
iτx·ξe−τ(x·ω−t)AB

t (x′)b+ γBχt,b,t,N,ω(x, τ),

γAχt,b,t,N,ω and γBχt,b,t,N,ω satisfy (3.7.10) and (3.7.11).

3.7.2 Construct oscillating-decaying solutions for E and H

We can construct oscillating-decaying solutions for E and H in the following.

Theorem 3.24. Given {η, ζ, ω} an orthonormal system of R3, x′ = (x · η, x · ζ) and t ∈ R. We

set Ωt(ω) = Ω ∩ {x · ω > t} and Σt(ω) = Ω ∩ {x · ω = t}, then We can construct two types OD

solutions for the Maxwell system in Ωt(ω) which can be useful for penetrable and impenetrable

obstacles respectively. There exist two solutions of (3.7.7) of the forms. The first one is


E = F 1

A(x)e
iτx·ξe−τ(x·ω−t)AA

t (x′)b+ ΓA,1
χt,b,t,N,ω(x, τ) + rA,1

χt,b,t,N,ω(x, τ) in Ωt(ω),

H = F 2
A(x)e

iτx·ξe−τ(x·ω−t)AA
t (x′)b+ ΓA,2

χt,b,t,N,ω(x, τ) + rA,2
χt,b,t,N,ω(x, τ) in Ωt(ω),

(3.7.3)

where F 1
A(x) = O(τ), F 2

A(x) = O(τ2) are some smooth functions and for |α| = j, j = 1, 2, we have


∥ΓA,j

χt,b,t,N,ω(x, τ)∥L2(Ωt(ω)) ≤ cτ |α|−3/2e−τ(s−t)aA ,

∥rA,j
χt,b,t,N,ω(x, τ)∥L2(Ωt(ω)) ≤ cτ j−N+1/2,

(3.7.4)
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for some positive constants aA and c. The second one has the form


E = G2

B(x)e
iτx·ξe−τ(x·ω−t)AB

t (x′)b+ ΓB,2
χt,b,t,N,ω(x, τ) + r,B,2

χt,b,t,N,ω(x, τ) in Ωt(ω),

H = G1
B(x)e

iτx·ξe−τ(x·ω−t)AB
t (x′)b+ ΓB,1

χt,b,t,N,ω(x, τ) + rB,1
χt,b,t,N,ω(x, τ) in Ωt(ω),

(3.7.5)

where G1
B(x) = O(τ),G2

B(x) = O(τ2) are some smooth functions and for |α| = j, j = 1, 2, we have


∥ΓB,j

χt,b,t,N,ω(x, τ)∥L2(Ωt(ω)) ≤ cτ |α|−3/2e−τ(s−t)aB ,

∥rB,j
χt,b,t,N,ω(x, τ)∥L2(Ωt(ω)) ≤ cτ j−N+1/2,

(3.7.6)

for some positive constants aB and c.

Proof. We want to find special solutions A,B ∈ (C∞(Ωt(ω)\∂Σt(ω)) ∩ C0(Ωt(ω)))
3 with τ ≫ 1

satisfying Dirichlet boundary problems


LAA := µ∇tr(MA∇A)−∇× (ϵ−1(∇×A)) + k2µA = 0 in Ωt(ω)

A = eiτx·ξ
{
χt(x

′)Qt(x
′)b+ βA

χt,t,b,N,ω

}
on Σt(ω),

(3.7.7)

and 
LBB := ϵ∇tr(MB∇B)−∇× (µ−1(∇×B)) + k2ϵB = 0 in Ωt(ω)

B = eiτx·ξ
{
χt(x

′)Qt(x
′)b+ βB

χt,t,b,N,ω

}
on Σt(ω),

(3.7.8)

where ξ ∈ S2 lying in the span of {η, ζ} is chosen and fixed, χt(x
′) ∈ C∞

0 (R2) with supp(χt) ⊂

Σt(ω), Qt(x
′) is a nonzero smooth function and 0 ̸= b ∈ C3 and N is some large nature number.

Moreover, βA
χt,b,t,N,ω(x

′, τ), βB
χt,b,t,N,ω(x

′, τ) are smooth functions supported in supp(χt) satisfying:

∥βA
χt,b,t,N,ω(·, τ)∥L2(R2) ≤ cτ−1, ∥βB

χt,b,t,N,ω(·, τ)∥L2(R2) ≤ cτ−1

for some constant c > 0. From now on, we use c to denote a general positive constant whose value

may vary from line to line. As in [48], A,B satisfy second order strongly elliptic equations, then it

can be written as 
A = Aχt,b,t,N,ω = wA

χt,b,t,N,ω + rAχt,b,t,N,ω

B = Bχt,b,t,N,ω = wB
χt,b,t,N,ω + rBχt,b,t,N,ω

with 
wA

χt,b,t,N,ω = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)AA
t (x′)b+ ΓA

χt,b,t,N,ω(x, τ)

wB
χt,b,t,N,ω = χt(x

′)Qte
iτx·ξe−τ(x·ω−t)AB

t (x′)b+ ΓB
χt,b,t,N,ω(x, τ)

(3.7.9)
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and rAχtb,t,N,ω, r
B
χtb,t,N,ω satisfying

∥rAχt,b,t,N,ω∥Hk(Ωt(ω)) ≤ cτk−N+1/2, ∥rBχt,b,t,N,ω∥Hk(Ωt(ω)) ≤ cτk−N+1/2, (3.7.10)

where AA
t (·), AB

t (·) are smooth matrix functions with its real part ReAA
t (x

′) > 0, ReAB
t (x

′) > 0

and ΓA
χt,b,t,N,ω, Γ

B
χt,b,t,N,ω are a smooth functions supported in supp(χt) satisfying


∥∂αxΓA

χt,b,t,N,ω∥L2(Ωs(ω)) ≤ cτ |α|−3/2e−τ(s−t)aA

∥∂αxΓB
χt,b,t,N,ω∥L2(Ωs(ω)) ≤ cτ |α|−3/2e−τ(s−t)aB

(3.7.11)

for |α| ∈ N ∪ {0} and s ≥ t, where aA, aB > 0 are some constants depending on AA
t (x

′) and

AB
t (x

′) respectively. We give details of the construction of A and B with the estimates (3.7.10)

and (3.7.11).

We have derived the explicit representation of A and B. Recall that E and H are represented

in terms of A and B as follows
E = − i

k
ϵ−1∇× (µ−1(∇×B))− ϵ−1(∇×A),

H =
i

k
µ−1∇× (ϵ−1(∇×A))− µ−1(∇×B).

(3.7.12)

Now, we can show that (E,H) satisfies (3.7.3), (3.7.4) and we will use this form to prove The-

orem 3.18 for the penetrable case. Similarly, we can show that (E,H) satisfies (3.7.5), (3.7.6)

in order to prove Theorem 3.18 for the impenetrable case. All we need to do is to differentiate

A and B term by term componentwisely. For the main terms of A and B, we can differentiate

χt(x
′)Qte

iτx·ξe−τ(x·ω−t)AA
t (x′)b and χt(x

′)Qte
iτx·ξe−τ(x·ω−t)AB

t (x′)b directly and it is easy to see

that 
∇×A = τF̃A(x)e

iτx·ξe−τ(x·ω−t)AA
t (x′)b+∇× ΓA

χt,b,t,N,ω(x, τ) +∇× rAχt,b,t,N,ω,

∇×B = τ F̃B(x)e
iτx·ξe−τ(x·ω−t)AB

t (x′)b+∇× ΓB
χt,b,t,N,ω(x, τ) +∇× rBχt,b,t,N,ω,

where F̃A(x) and F̃B(x) are smooth matrix-valued functions and support in supp(χt(x
′)). For

the penetrable obstacle case, we choose A = wA
χt,b,t,N,ω + rAχt,b,t,N,ω to be the oscillating-decaying

solution satisfies LAA = 0 and B ≡ 0 (also satisfies LB0 = 0) in Ωt(ω), then (3.7.12) will become

to 
E = −ϵ−1(∇×A),

H =
i

k
µ−1∇× (ϵ−1(∇×A)),
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which means
E = F 1

A(x)e
iτx·ξe−τ(x·ω−t)AA

t (x′)b+ ΓA,1
χt,b,t,N,ω(x, τ) + rA,1

χt,b,t,N,ω(x, τ),

H = F 2
A(x)e

iτx·ξe−τ(x·ω−t)AA
t (x′)b+ ΓA,2

χt,b,t,N,ω(x, τ) + rA,2
χt,b,t,N,ω(x, τ),

where F 1
A(x), F 2

A(x) are smooth functions consisting µ(x), ϵ(x), Qt(x
′), AA

t (x
′) and their curls (it

can be seen by directly calculation). Moreover, by suitable choice of b (for example, we can choose

b ̸= 0 is not parallel to ξ), we will get F 1
A(x) = O(τ) and F 2

A(x) = O(τ2). Moreover, ΓA,1
χt,b,t,N,ω

and ΓA,2
χt,b,t,N,ω satisfy (3.7.11) for |α| = 1 and |α| = 2, respectively, rA,1

χt,b,t,N,ω and rA,1
χt,b,t,N,ω satisfy

(3.7.10) for k = 1 and k = 2, respectively. Similarly, for the impenetrable obstacle case, we choose

A = 0 and B = wB
χt,b,t,N,ω + rBχt,b,t,N,ω in Ωt(ω), then


E = G2

B(x)e
iτx·ξe−τ(x·ω−t)AB

t (x′)b+ ΓB,2
χt,b,t,N,ω(x, τ) + r,B,2

χt,b,t,N,ω(x, τ),

H = G1
B(x)e

iτx·ξe−τ(x·ω−t)AB
t (x′)b+ ΓB,1

χt,b,t,N,ω(x, τ) + rB,1
χt,b,t,N,ω(x, τ),

where G1
B(x) = O(τ) and G2

B(x) = O(τ2) and ΓB,j
χt,b,t,N,ω satisfies (3.7.11) for |α| = j and rB,j

χt,b,t,N,ω

satisfies (3.7.11) for k = j.

3.8 Proof of Theorem 3.13

Recall that we have constructed the oscillating-decaying (OD) solutions in the previous section and

note that OD solutions only exists on a half space. Similar to the anisotropic elliptic case, we need

to use the Runge approximation property for the anisotropic Maxwell system, which means that

we can find a sequence of solutions satisfying the anisotropic Maxwell system and approximates

to the OD solution on the unknown obstacle.

3.8.1 Runge approximation property: Maxwell version

We derive the Runge approximation property for the following anisotropic Maxwell equation


∇× E − ikµH = 0

∇×H + ikϵE = 0

in Ω,

where µ is a smooth scalar function defined on Ω and ϵ is a 3× 3 smooth positive definite matrix.

Recall that

µ(x) ≥ µ0 > 0 and
3∑

i.j=1

ϵij(x)ξiξj ≥ ϵ0|ξ|2 ∀ξ ∈ R3.
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If we set u =

 H

E

 and

L := i

 ϵ−1 0

0 µ−1I3


 0 ∇×

−∇× 0

+ kI6, (3.8.1)

then we have

Lu = 0, (3.8.2)

where Ij means j × j identity matrix for j = 3, 6.

Theorem 3.25. Let D and Ω be two open bounded domains with C∞ boundary in R3 with D b Ω.

If u ∈ (H(curl,D))2 satisfies

Lu = 0 in D.

Given any compact subset K ⊂ D and any ϵ > 0, there exists U ∈ (H(curl,Ω))2 such that

LU = 0 in Ω,

and ∥U − u∥H(curl,K) < ϵ, where ∥f∥H(curl,Ω) =
(
∥f∥L2(Ω) + ∥curlf∥L2(Ω)

)
.

Proof. The proof is standard and it is based on weak unique continuation property for the anisotropic

Maxwell system L in (3.8.1) and the Hahn-Banach theorem. The unique continuation property of

the system L is proved in [33]. For more details, how to derive the Runge approximation property

from the weak unique continuation, we refer readers to [31].

Now, we start to prove Theorem 3.13 by using the Runge approximation property and the OD

solutions to prove Theorem 3.18. We define B to be an open ball in R3 such that Ω ⊂ B. Assume

that Ω̃ ⊂ R3 is an open Lipschitz domain with B ⊂ Ω̃. Recall we have set ω ∈ S2 and {η, ζ, ω}

forms an orthonormal basis of R3 and t0 = infx∈D x · ω = x0 · ω, where x0 = x0(ω) ∈ ∂D. The

proof is divided in the following two cases: the penetrable case and the impenetrable case.

3.8.2 Penetrable Case

For the anisotropic Maxwell’s equation



∇× E = ikµH

∇×H = −ikϵE

div(ϵE) = 0

div(µH) = 0,

. (3.8.3)
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for any t ≤ t0 and η > 0 small enough, in section 3, we have constructed


Et−η = F 1

A(x)e
iτx·ξe−τ(x·ω−(t−η))AA

t (x′)b+ ΓA,1
χt,b,t−η,N,ω(x, τ) + rA,1

χt,b,t−η,N,ω(x, τ),

Ht−η = F 2
A(x)e

iτx·ξe−τ(x·ω−(t−η))AA
t (x′)b+ ΓA,2

χt,b,t−η,N,ω(x, τ) + rA,2
χt,b,t−η,N,ω(x, τ),

to be the oscillating-decaying solutions satisfying (3.8.3) in Bt−η(ω) = B ∩{x|x ·ω > t− η}, where

F 1
A(x) = O(τ) and F 2

A(x) = O(τ2). Moreover, ΓA,1
χt,b,t−η,N,ω and ΓA,2

χt,b,t−η,N,ω satisfy (3.7.11) for

|α| = 1 and |α| = 2, respectively, rA,1
χt,b,t−η,N,ω and rA,1

χt,b,t−η,N,ω satisfy (3.7.10) for k = 1 and k = 2,

respectively. Similarly, we have


Et = F 1

A(x)e
iτx·ξe−τ(x·ω−t)AA

t (x′)b+ ΓA,1
χt,b,t,N,ω(x, τ) + rA,1

χt,b,t,N,ω(x, τ),

Ht = F 2
A(x)e

iτx·ξe−τ(x·ω−t)AA
t (x′)b+ ΓA,2

χt,b,t,N,ω(x, τ) + rA,2
χt,b,t,N,ω(x, τ),

so be the oscillating-decaying solutions satisfying (3.8.3) in Bt(ω) = B ∩ {x|x · ω > t}, where

ΓA,1
χt,b,t,N,ω and ΓA,2

χt,b,t,N,ω satisfy (3.7.11) for |α| = 1 and |α| = 2, respectively, rA,1
χt,b,t,N,ω and

rA,1
χt,b,t,N,ω satisfy (3.7.10) for k = 1 and k = 2, respectively. In fact, from the construction the

oscillating-decaying solutions and the property of continuous dependence on parameters in ordinary

differential equations in section 3, it is not hard to see that for any τ ,


Et−η → Et

Ht−η → Ht

in H2(Bt(ω)) as η tends to 0.

Note that Ωt(ω) ⊂ Bt−η(ω) for all t ≤ t0. By using the Runge approximation property, we can

see that there exists a sequence of functions (Eη,ℓ,Hη,ℓ), ℓ = 1, 2, · · · , such that


Eη,ℓ → Et−η

Hη,ℓ → Ht−η

in H(curl, Bt(ω)),

as ℓ → ∞, where (Eη,ℓ,Hη,ℓ) satisfy (3.8.3) in Ω̃ for all η > 0, ℓ ∈ N. Recall that the indicator

function Iρ(τ, t) was defined by the formula:

Iρ(τ, t) := lim
η→0

lim
ℓ→∞

Iϵ,ℓρ (τ, t),

where

Iη,ℓρ (τ, t) := ikτ

ˆ
∂Ω

(ν ×Hη,ℓ) · ((ΛD − Λ∅)(ν ×Hη,ℓ)× ν)dS.
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We prove the Theorem 1.1 for the penetrable obstacle case. For the anisotropic penetrable

obstacle problem 
∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

ν ×H = f on ∂Ω,

(3.8.4)

where k is not an eigenvalue of (3.8.4). Moreover, we assume µ is a positive smooth scalar function,

ϵ = ϵ0(x)−χDϵD(x), where ϵ0 is symmetric positive definite smooth matrix, ϵD(x) is a symmetric

smooth matrix with detϵD(x) ̸= 0 ∀x ∈ D and χD =


1 x ∈ D

0 otherwise
. Moreover, we need ϵ = ϵ(x)

is a positive definite matrix satisfying the uniform elliptic condition. Recall that when ϵ(x) = ϵ0(x),

we have constructed Et and Ht which are oscillating-decaying solutions defined on the half space

for the anisotropic Maxwell’s equation


∇× E − ikµH = 0 in Ω,

∇×H + ikϵE = 0 in Ω,

(3.8.5)

and {(Eη,ℓ,Hη,ℓ)} are sequence of functions satisfying (3.8.5) defined on the whole Ω. Therefore,

we can define the boundary data fη,ℓ = ν × Hη,ℓ on ∂Ω and solve (E,H) satisfies (3.8.4). Let

H̃η,ℓ = H −Hη,ℓ be the reflected solution, then H̃η,ℓ satisfies


∇× (ϵ−1∇× H̃η,ℓ)− k2µH̃η,ℓ = −∇× ((ϵ−1(x)− ϵ−1

0 (x))∇×Hη,ℓ) in Ω,

ν × H̃η,ℓ = 0 on ∂Ω.

(3.8.6)

Lemma 3.26. We have the following estimates

1.

−τ−1Iη,ℓρ ≥
ˆ
D

[ϵ(ϵ−1 − ϵ−1
0 )−1ϵ−1

0 ∇×Hη,ℓ] · (∇×Hη,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx.

2.

τ−1Iη,ℓρ (τ, t) ≥
ˆ
D

((ϵ−1
0 − ϵ−1)∇×Hη,ℓ) · (∇×Hη,ℓ)dx− k2

ˆ
Ω

µ|H̃η,ℓ|2dx.

Proof. First, we need to prove the following identity

−τ−1Iη,ℓρ (τ, t) =

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×Hη,ℓ

)
· (∇×Hη,ℓ)dx

−
ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx. (3.8.7)

79 doi:10.6342/NTU201600158



Multiplying H̃η,l in the equation (3.8.6) and integrating by parts we have

ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx

+

ˆ
Ω

((ϵ−1 − ϵ−1
0 )∇×Hη,ℓ) · (∇× H̃η,ℓ)dx = 0,

ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx

−
ˆ
Ω

(ϵ−1 − ϵ−1
0 )∇×Hη,ℓ) · (∇×Hη,ℓ)dx (3.8.8)

=−
ˆ
Ω

((ϵ−1 − ϵ−1
0 )∇×Hη,ℓ) · (∇×H)dx. (3.8.9)

On the other hand, H(x) satisfies

∇× (ϵ−1(x)∇×H(x))− k2µH(x) = 0, (3.8.10)

then multiply by Hη,l(x) in the equation (3.8.10) and integrating by parts we have

ˆ
Ω

((ϵ−1 − ϵ−1
0 )∇×Hη,ℓ) · (∇×H)dx =

ˆ
∂Ω

(ϵ−1∇×H) · (ν ×Hη,ℓ)ds

−
ˆ
∂Ω

(ϵ−1
0 ∇×Hη,ℓ) · (ν ×H)ds (3.8.11)

Thus, combine (3.8.8), (3.8.11) and
´
∂Ω

(ν ×Hη,ℓ) · (ϵ−1
0 ∇×Hη,ℓ)ds is real, then we have

ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx

−
ˆ
Ω

((ϵ−1 − ϵ−1
0 )∇×Hη,ℓ) · (∇×Hη,ℓ)dx (3.8.12)

=

ˆ
∂Ω

(ν ×Hη,ℓ) · (ϵ−1∇×H)ds−
ˆ
∂Ω

(ν ×H) · (ϵ−1
0 ∇×Hη,ℓ)ds

=

ˆ
∂Ω

(ν ×Hη,ℓ) · (ϵ−1∇×H)ds−
ˆ
∂Ω

(ν ×Hη,ℓ) · (ϵ−1
0 ∇×Hη,ℓ)ds

=

ˆ
∂Ω

(ν ×Hη,ℓ) · (ϵ−1∇×H)ds−
ˆ
∂Ω

(ν ×Hη,ℓ) · (ϵ−1
0 ∇×Hη,ℓ)ds

=

ˆ
∂Ω

(ν ×Hη,ℓ) · [−ikE + ikEη,ℓ]ds

=ik

ˆ
∂Ω

(ν ×Hη,ℓ) · [(ΛD − Λ∅)(ν ×Hη,ℓ)× ν]ds

=τ−1Iη,ℓρ . (3.8.13)
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Second, we show the following identity

ˆ
Ω

(ϵ−1
0 ∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2

ˆ
Ω

µ|H̃η,ℓ|2dx (3.8.14)

+

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇×H) · (∇×H)dx

=− τ−1Iη,ℓρ .

Replacing Hη,ℓ(x) by H(x)− H̃η,ℓ(x) in the equation (3.8.6), then we have

∇×
(
(ϵ−1 − ϵ−1

0 )∇×H
)
+∇×

(
ϵ−1
0 ∇× H̃η,ℓ

)
− k2µH̃η,ℓ = 0 in Ω. (3.8.15)

Multiplying H̃η,l(x) in the equation (3.8.15) and using integration by parts we have

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×H
)
·
(
∇× H̃η,ℓ

)
dx

+

ˆ
Ω

(
ϵ−1
0 ∇× H̃η,ℓ

)
·
(
∇× H̃η,ℓ

)
dx− k2

ˆ
Ω

µ
∣∣∣H̃η,ℓ

∣∣∣2 dx = 0, (3.8.16)

since ν × H̃η,l = 0 on ∂Ω. Then we can write equation (3.8.16) to be

ˆ
Ω

(
ϵ−1
0 ∇× H̃η,ℓ

)
·
(
∇× H̃η,ℓ

)
dx− k2

ˆ
Ω

µ
∣∣∣H̃η,ℓ

∣∣∣2 dx
+

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×H
)
· (∇×H)dx

=

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×H
)
· (∇×Hη,ℓ)dx. (3.8.17)

Eliminating H(x) by H̃η,l(x) +Hη,l(x) in (3.8.17) we have

ˆ
Ω

(
ϵ−1
0 ∇× H̃η,ℓ

)
·
(
∇× H̃η,ℓ

)
dx− k2

ˆ
Ω

µ
∣∣∣H̃η,ℓ

∣∣∣2 dx
+

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×H
)
· (∇×H)dx

=

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇×Hη,ℓ) · (∇×Hη,ℓ)dx

+

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇× H̃η,ℓ) · (∇×Hη,ℓ)dx (3.8.18)

Again from (3.8.6) and by taking the complex conjugate, we can write

∇× (ϵ−1∇× H̃η,ℓ)− k2µH̃η,ℓ +∇× ((ϵ−1(x)− ϵ−1
0 (x))∇×Hη,ℓ) = 0. (3.8.19)
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Multiplying by H̃η,l(x) in the equation (3.8.19) and using integration by parts we have

ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx

+

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇×Hη,ℓ) · (∇× H̃η,ℓ)dx = 0. (3.8.20)

Then from the equations (3.8.18), (3.8.20) and the first identity (3.8.7), we can obtain

ˆ
Ω

(ϵ−1
0 ∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2

ˆ
Ω

µ|H̃η,ℓ|2dx

+

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇×H) · (∇×H)dx

=

ˆ
Ω

((ϵ−1(x)− ϵ−1
0 (x))∇×Hη,ℓ) · (∇×Hη,ℓ)dx

−
ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx+ k2
ˆ
Ω

µ|H̃η,ℓ|2dx

=− τ−1Iη,ℓρ . (3.8.21)

Combine (3.8.21) with the formula

(ϵ−1
0 ∇× H̃η,ℓ) · (∇× H̃η,ℓ) + ((ϵ−1 − ϵ−1

0 )∇×H) · (∇×H)

=((ϵ−1 − ϵ−1
0 )∇×H) · ∇ ×H + ϵ−1

0 (∇×H) · (∇×H)

− 2Re
{
ϵ−1
0 ∇×H · ∇ ×Hη,ℓ

}
+ ϵ−1

0 ∇×Hη,ℓ · ∇ ×Hη,ℓ

=ϵ−1(∇×H) · (∇×H)− 2Re
{
ϵ−1
0 ∇×H · ∇ ×Hϵ,l

}
+ ϵ−1

0 ∇×Hϵ,ℓ · ∇ ×Hϵ,ℓ

=
[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
·
[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
−
[
ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
·
[
ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
+ ϵ−1

0 ∇×Hη,ℓ · ∇ ×Hη,ℓ

=
[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
·
[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
+
(
ϵ−1
0 − ϵϵ−2

0

)
(∇×Hη,ℓ) ·

(
∇×Hη,ℓ

)
≥[

(
I − ϵϵ−1

0

)
ϵ−1
0 ∇×Hη,ℓ] · (∇×Hη,ℓ)

≥[ϵ(ϵ−1 − ϵ−1
0 )−1ϵ−1

0 ∇×Hη,ℓ] · (∇×Hη,ℓ)

and note that

[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
·
[
ϵ−

1
2∇×H − ϵ

1
2 ϵ−1

0

(
∇×Hη,ℓ

)]
≥ 0.

Therefore, we get

−τ−1Iη,ℓρ ≥
ˆ
D

[ϵ(ϵ−1 − ϵ−1
0 )−1ϵ−1

0 ∇×Hη,ℓ] · (∇×Hη,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx
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which finished the part 1 of Lemma 3.26. Finally, again from (3.8.13), we have

τ−1Iη,ℓρ ≥
ˆ
Ω

((ϵ−1
0 − ϵ−1)∇×Hη,ℓ) · (∇×Hη,ℓ)dx− k2

ˆ
Ω

µ|H̃η,ℓ|2dx.

Remark 3.27. The first inequality will be used when
(
ϵ−1 − ϵ−1

0

)
is strictly positive definite, i.e.

ξ · (ϵ−1 − ϵ−1
0 )ξ ≥ Λ|ξ|2 for all ξ ∈ R3 and for some Λ > 0;

and the second inequality will be used when
(
ϵ−1
0 − ϵ−1

)
is strictly positive definite, i.e.

ξ · (ϵ−1
0 − ϵ−1)ξ ≥ λ|ξ|2 for all ξ ∈ R3 and for some λ > 0.

Now, our work is to estimate the lower order term H̃η,ℓ.

3.8.2.1 Estimate of the lower order term H̃η,ℓ

Proposition 3.28. Assume Ω is a smooth domain and D b Ω. Then there exist a positive constant

C and δ > 0 such that

∥H̃η,ℓ∥L2(Ω) ≤ C∥∇ ×Hη,ℓ∥Lp(D)

for every p ∈ (max{4
3
,
2 + δ

1 + δ
}, 2].

Proof. We follow the proof of the Proposition 3.2 in [27]. Fix l ∈ N and we set f := −(ϵ−1 −

ϵ−1
0 )(∇ × Hη,ℓ), g = 0. Note that, ϵ−1 − ϵ−1

0 = ϵ−1(ϵDχD)ϵ−1
0 is supported in D. Then the

reflected solution H̃η,ℓ satisfies


∇× (ϵ−1∇× H̃η,ℓ)− k2µH̃η,ℓ = −∇× ((ϵ−1(x)− ϵ−1

0 (x))∇×Hη,ℓ) in Ω,

ν × H̃η,ℓ = 0 on ∂Ω.

(3.8.22)

From the Lp estimate for the Maxwell type system, if we consider the following problem


∇× (ϵ−1∇× U) + ϵ−1

maxU = ∇× f in Ω,

ν × U = 0 on ∂Ω,

has a unique solution in H1,q
0 (curl,Ω), where ϵ−1

max is the maximum value among all eigenvalues of

the matrix ϵ−1(x) in the region Ω. Moreover, we have the estimate

∥U∥Lp(Ω) + ∥∇ × U∥Lp(Ω) ≤ C∥f∥Lp(Ω) (3.8.23)
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for p ∈ (
2 + δ

1 + δ
, 2] for some δ > 0 which depends only on Ω. Now, we set Πη,ℓ = H̃η,ℓ − U , then

Πη,ℓ satisfies 
∇× (ϵ−1∇×Πη,ℓ)− k2µΠη,ℓ = (k2µ+ ϵ−1

max)U in Ω,

ν ×Πη,ℓ = 0 on ∂Ω.

(3.8.24)

By the well-posedness of (3.8.24) in H(curl,Ω) for the anisotropic Maxwell’s equation (see Ap-

pendix), we have

∥Πη,ℓ∥L2(Ω) + ∥∇ ×Πη,ℓ∥L2(Ω) ≤ C∥U∥L2(Ω) (3.8.25)

if k is not an eigenvalue. Moreover, for p ≤ 2, it is to see that

∥Πη,ℓ∥Lp(Ω) + ∥∇ ×Πη,ℓ∥Lp(Ω) ≤ C∥U∥L2(Ω).

Following the proof in the Proposition 3.2 in [27] again, we denote Bp,2
1
p

(Ω) to be the Sobolev-

Besov space, then we have U ∈ Bp,2
1
p

(Ω) and the inclusion map Bp,2
1
p

(Ω) → L2(Ω) is continuous

for p ∈ ( 43 , 2]. Moreover, since ∇ · U = 0 and ν × U = 0 on ∂Ω and use Lemma 3.5, we have the

estimate

∥U∥L2(Ω) ≤ C∥U∥Bp,2
1
p

(Ω) ≤ C{∥U∥Lp(Ω) + ∥∇ × U∥Lp(Ω)} (3.8.26)

for p ∈ ( 43 , 2]. Combining (3.8.23), (3.8.25) and (3.8.26), we obtain

∥Πη,ℓ∥Lp(Ω) + ∥∇ ×Πη,ℓ∥Lp(Ω) ≤ C∥f∥Lp(Ω) (3.8.27)

for p ∈ (max{ 4
3 ,

2+δ
1+δ}, 2]. Since H̃η,ℓ = Πη,ℓ + U , by using (3.8.23) and (3.8.27), we have

∥H̃η,ℓ∥Lp(Ω) + ∥∇ × H̃η,ℓ∥Lp(Ω) ≤ C∥f∥Lp(Ω). (3.8.28)

Since ν × H̃η,l = 0 on ∂Ω, we use the Lemma 3.5 again, then we can obtain

∥H̃η,ℓ∥L2(Ω) ≤ C∥H̃η,ℓ∥Bp,2
1
p

(Ω)

≤ C{∥H̃η,ℓ∥Lp(Ω) + ∥∇ × H̃η,ℓ∥Lp(Ω) + ∥∇ · H̃η,ℓ∥Lp(Ω)}. (3.8.29)

In addition, from (3.8.22), it is easy to see 0 = ∇ · (µH̃η,ℓ) = ∇µ · H̃η,ℓ +µ(∇ · H̃η,ℓ), then we have

∥∇ · H̃η,ℓ∥Lp(Ω) ≤
∥∇µ∥L∞(Ω)

∥µ∥L∞(Ω)
∥H̃η,ℓ∥Lp(Ω). (3.8.30)
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Finally, use (3.8.28), (3.8.29) and (3.8.30), we will get

∥H̃η,ℓ∥L2(Ω) ≤ C{∥H̃η,ℓ∥Lp(Ω) + ∥∇ × H̃η,ℓ∥Lp(Ω)}

≤ C∥f∥Lp(Ω)

≤ C∥∇ ×Hη,ℓ∥Lp(D). (3.8.31)

Remark 3.29. In the reconstruction scheme, we need to take lim supℓ→∞ for (3.8.31) on both sides

and Ht−η → Ht in H(curl,Ωt(ω)) as η → 0, then we have

lim
η→0

lim sup
ℓ→∞

∥H̃η,ℓ∥L2(Ω) ≤ C∥∇ ×Ht∥Lp(D),

for p ∈ (
4

3
, 2].

In view of the lower bound, we need to introduce the sets Dj,δ ⊂ D, Dδ ⊂ D in the following.

Recall that hD(ρ) = infx∈D x · ρ and t0 = hD(ρ) = x0 · ρ for some x0 ∈ ∂D. ∀α ∈ ∂D ∩ {x · ρ =

hD(ρ)} := K, define B(α, δ) = {x ∈ R3; |x − α| < δ} (δ > 0). Note K ⊂ ∪α∈KB(α, δ) and K is

compact, so there exists α1, · · · , αm ∈ K such that K ⊂ ∪m
j=1B(αj , δ). Thus, we define

Dj,δ := D ∩B(αj , δ) and Dδ := ∪m
j=1Dj,δ.

It is easy to see that 
´
D\Dδ

e−pτ(x·ω−t0)A
A
t0

(x′)bdx = O(e−paτ )

´
D\Dδ

e−pτ(x·ω−t0)A
B
t0

(x′)bdx = O(e−paτ )

where AA
t0(x

′), AB
t0(x

′) are smooth matrix-valued functions with bounded entries and their real

part strictly greater than 0. so ∃a > 0 such that ReAA
t0(x

′) ≥ a > 0 and ReAB
t0(x

′) ≥ a > 0. Let

αj ∈ K, by rotation and translation, we may assume αj = 0 and the vector αj − x0 = −x0 is

parallel to e3 = (0, 0, 1). Therefore, we consider the change of coordinates near each αj as follows:


y′ = x′

y3 = x · ρ− t0,

where x = (x1, x2, x3) = (x′, x3) and y = (y1, y2, y3) = (y′, y3). Denote the parametrization of

∂D near αj by lj(y
′), then we have the following estimates. Note that the oscillating-decaying

solutions are well-defined in D.

Lemma 3.30. For q ≤ 2, τ ≫ 1, we have the following estimates.
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1.

ˆ
D

|Ht(x)|qdx ≤ τ2q−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ2q−1e−qaδτ )

+O(τ2qe−qaτ ) +O(τe−cτ ) +O(τ−2N+5)

2.

ˆ
D

|Ht|2dx ≥ Cτ3
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτ3e−2aδτ

−Cτe−2cτ − Cτ−2N+5

3.

ˆ
D

|Et(x)|qdx ≤ τ q−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ q−1e−qaδτ )

+O(τ qe−qaτ ) +O(τ−1) +O(τ−2N+3)

4.

ˆ
D

|Et|2dx ≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτe−2aδτ

−Cτ−1 − Cτ−2N+3,

where Et and Ht are oscillating-decaying solutions for the penetrable case defined in Ωt(ω).

Proof. The proof is via the representation of the oscillating-decaying solutions of (Et,Ht). For

τ ≫ 1(τ ≪ τ2), we have

ˆ
D

|Ht|qdx ≤ Cτ2q
ˆ
D

e−qaτ(x·ω−t0)dx+ Cq

ˆ
D

|ΓA,2
χt,b,t,N,ω|

qdx

+Cq

ˆ
D

|rA,2
χt,b,t,N,ω|

qdx

≤ Cτ2q
ˆ
Dδ

e−qaτ(x·ω−t0)dx+ Cτ2q
ˆ
D\Dδ

e−qaτ(x·ω−t0)dx

+Cq

ˆ
D

|Γ1
A,B,γ,µ|qdx+ Cq

ˆ
D

|r1A,B,γ,µ|qdx

≤ Cτ2q
m∑
j=1

¨
|y′|<δ

dy′
ˆ δ

lj(y′)

e−qaτy3dy3 + Cτ2qe−qaτ

+C∥ΓA,2
χt,b,t,N,ω∥

2
L2(D) + C∥rA,2

χt,b,t,N,ω∥
2
L2(D)

≤ Cτ2q−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ − C

q
τ2q−1e−qaδτ

+Cτ2qe−qaτ + Cτe−caτ + Cτ−2N+5,
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where c is a positive constant and a depending only on aA, aB . For the lower bound of
´
D
|Ht|2dx,

we have

ˆ
D

|Ht|2dx ≥ Cτ4
ˆ
D

e−2aτ(x·ω−t0)dx− C∥ΓA,2
χt,b,t,N,ω∥

2
L2(Ωt0 (ω))

−C∥rA,2
χt,b,t,N,ω∥

2
L2(Ωt0 (ω))

≥ Cτ4
ˆ
Dδ

e−2aτ(x·ω−t0)dx− Cτe−cτ − Cτ−2N+5.

≥ Cτ3
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτ3e−2aδτ

−Cτe−caτ − Cτ−2N+5.

It is similar to prove the remaining case, so we omit the proof.

Lemma 3.31. We have the following estimate

∥Ht∥2L2(D)

∥Et∥2L2(D)

≥ O(τ2), τ ≫ 1.

Proof. Since ∂D is Lipschitz, we have lj(y′) ≤ C|y′|. Therefore we have the following estimate

Cτ3
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ ≥ Cτ3

m∑
j=1

¨
|y′|<δ

e−2aτ |y′|

≥ Cτ
m∑
j=1

¨
|y′|<τδ

e−2a|y′|dy′

= O(τ).

Then we use Lemma 3.30 to get

∥Ht∥2L2(D)

∥Et∥2L2(D)

≥ Cτ2
1− Ce−2aδτ+Cτ−2e−2cτ+Cτ−2N+2∑m

j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

1− O(e−2δaτ )+O(τe−caτ )+O(τ−2N+2)∑m
j=1

˜
|y′|<δ

e−2aτlj(y
′)dy′

= O(τ2) (if τ ≫ 1).

Lemma 3.32. If t = hD(ρ), then for some positive constant C, we have

lim inf
τ→∞

ˆ
D

τ |∇ ×Ht|2dx ≥ C.
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Proof. Since lj(y′) ≤ C|y′|, we have

ˆ
D

|∇ ×Ht(x)|2dx ≥ C

ˆ
D

|Et(x)|2dx

≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτe−2aδτ

−Cτ−1 − Cτ−2N+3

≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2aτ |y′|dy′ − Cτe−2aδτ

−Cτ−1 − Cτ−2N+3

≥ Cτ [τ−2
m∑
j=1

¨
|y′|<τδ

e−2a|y′|dy′]− Cτe−2aδτ

−Cτ−1 − Cτ−2N+3 (as τ ≫ 1).

Therefore, we have

lim inf
τ→∞

ˆ
D

τ |∇ ×Ht|2dx ≥ C.

Lemma 3.33. For p ∈ (max{ 4
3 ,

2+δ
1+δ}, 2]. we have the following

lim
η→0

lim sup
ℓ→∞

∥H̃η,ℓ∥2L2(Ω)

∥∇ ×Ht∥2L2(D)

≤ Cτ1−
2
p (τ ≫ 1).

Proof. From the Proposition 3.28, we have

lim
η→0

lim sup
ℓ→∞

∥H̃η,ℓ∥L2(Ω) ≤ C∥∇ ×Ht∥Lp(D).

Then it is easy to see the conclusion.

Remark 3.34. Recall that the sequence {Hη,ℓ} converges to Ht+η in H(curl,K) as ℓ → ∞ for all

compact subset D b K b Ω and Ht+η → Ht in H2(Ωt(ω)) as η → 0, so we have

∥∇ ×Hη,ℓ∥Lp(D) → ∥∇×Ht∥Lp(D) and ∥Hη,ℓ∥L2(D) → ∥Ht∥L2(D)

as ℓ→ ∞, η → 0.
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3.8.2.2 End of the proof of Theorem 1.1 for the penetrable case

First, we prove the case t < hD(ρ). From (3.8.7), we have

−τ−1Iη,ℓρ (τ, t) =

ˆ
Ω

(
(ϵ−1 − ϵ−1

0 )∇×Hη,ℓ

)
· (∇×Hη,ℓ)dx

−
ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx. (3.8.32)

Note that (Ẽϵ,ℓ, H̃ϵ.ℓ) satisfies


∇× Ẽη,ℓ − ikµH̃η,ℓ = 0 in Ω,

∇× H̃η,ℓ + ikγẼη,ℓ = ik(ϵ0 − ϵ)Eη,ℓ in Ω,

and rewrite it as

∇× (ϵ−1∇× Ẽη,ℓ)− k2γẼη,ℓ = k2(ϵ− ϵ0)Eη,ℓ. (3.8.33)

Thus, we can use the same argument from the Remark 5.4 again to (3.8.33), it is easy to see

∥Ẽη,ℓ∥L2(Ω) ≤ C∥Eη,ℓ∥L2(D).

In addition, we use the Maxwell’s equation and ϵ− ϵ0 = −ϵDχD, then we have

ˆ
Ω

(ϵ−1∇× H̃η,ℓ) · (∇× H̃η,ℓ)dx =

ˆ
Ω

(−ikϵẼη,ℓ + ik(ϵ0 − ϵ)Eη,ℓ)) · (∇× H̃η,ℓ)dx

≤ C

ˆ
Ω

|Ẽη,ℓ|2dx+ C

ˆ
D

|Eη,ℓ|2dx (3.8.34)

≤ C

ˆ
D

|Eη,ℓ|2dx.

Thus, from (3.8.32), Proposition 3.28, Lemma 3.30 and (3.8.34), we can obtain

|1
τ
Iη,ℓρ (τ, t)| ≤ ∥Eη,ℓ∥2H(curl,D) + ∥Hη,ℓ∥2H(curl,D).

From taking ℓ→ ∞ and η → 0, we have

|1
τ
Iρ(τ, t)| ≤ |τ

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ2e−2aδτ )

+O(τ2e−2aτ ) +O(τ−3) +O(τ−2N+3)

≤ O(τ−1) +O(τ2e−2aδτ )

+O(τ2e−2aτ ) +O(τ−3) +O(τ−2N+3).
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In particular, we get

lim sup
τ→∞

|1
τ
Iρ(τ, t)| = 0.

Second, we prove the case t = hD(ρ).

Case 1. ξ · (ϵ−1 − ϵ−1
0 )ξ ≥ Λ|ξ|2 for all ξ ∈ R3 for some Λ > 0.

From the inequality in Lemma 3.26, we have

−τ−1Iη,ℓρ ≥
ˆ
D

[ϵ(ϵ− ϵ−1
0 )−1ϵ−1

0 ∇×Hη,ℓ] · (∇×Hη,ℓ)dx− k2
ˆ
Ω

µ|H̃η,ℓ|2dx

−k2
ˆ
Ω

µ|H̃η,ℓ|2dx

≥ C

ˆ
D

|∇ ×Hη,ℓ|2dx− c∥H̃η,ℓ∥2L2(Ω).

By using the definition Iρ(τ, t) := limη→0 limℓ→∞ Iϵ,ℓρ (τ, t), {Hη,ℓ} converges to Ht in H(curl,K)

for all compact subset D b K b Ω as ℓ→ ∞, η → 0, we have

−Iρ(τ, t)
∥∇ ×Ht∥2L2(D)

≥ Cτ

[
1− C lim

ϵ→0
lim sup
ℓ→∞

∥H̃ℓ∥2L2(Ω)

∥∇ ×Ht∥2L2(D)

]
≥ Cτ(1− Cτ1−

2
p ).

Hence, using Lemma 3.32 we deduce that for τ ≫ 1,

|Iρ(τ, hD(ρ))| ≥ C > 0

which finishes the proof.

Case 2. ξ · (γ−1
0 − γ−1)ξ ≥ λ|ξ|2 for all ξ ∈ R3 for some λ > 0.

Similarly, using the inequality in Lemma 3.26, we have

τ−1Iη,ℓρ (τ, t) ≥
ˆ
D

((ϵ−1
0 − ϵ−1)∇×Hη,ℓ) · (∇×Hη,ℓ)dx− k2

ˆ
Ω

µ|Hη,ℓ|2dx.

Then use the same argument as in Case 1 we can finish the proof.

3.8.3 Impenetrable Case

We give the proof of the second part of Theorem 1.1, since it is the hardest part. The other cases are

easy since we have proved it in the penetrable case. In addition, the upper bound is easy because of

the well-posedness and the Lp estimate for the indicator function, but the lower bound is not easy

to see. In the following proof, we will use the layer potential properties for the exterior isotropic

Maxwell’s equation (with the Silver-Müller radiation condition) and the perturbation argument

from the anisotropic Maxwell’s equation compared with the isotropic case. In the impenetrable
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case, we have chosen the oscillating-decaying solution as the following form


Et = G2

B(x)e
iτx·ξe−τ(x·ω−t)AB

t (x′)b+ ΓB,2
χt,b,t,N,ω(x, τ) + r,B,2

χt,b,t,N,ω(x, τ),

Ht = G1
B(x)e

iτx·ξe−τ(x·ω−t)AB
t (x′)b+ ΓB,1

χt,b,t,N,ω(x, τ) + rB,1
χt,b,t,N,ω(x, τ),

where G1
B(x) = O(τ) and G2

B(x) = O(τ2) and ΓB,j
χt,b,t,N,ω satisfies (3.7.11) for |α| = j and rB,j

χt,b,t,N,ω

satisfies (3.7.11) for k = j.

We start by the following lemma.

Lemma 3.35. Assume that µ is a smooth scalar function and γ is a matrix-valued function. Let

(E,H) ∈ H(curl; Ω\D̄)×H(curl; Ω\D̄) be a solution of the problem



∇× E − ikµH = 0 in Ω\D̄,

∇×H + iϵE = 0 in Ω\D̄,

ν × E = f on ∂Ω,

ν ×H = 0 on ∂D,

(3.8.35)

with f ∈ TH−1/2(∂Ω). If we put fη,ℓ = ν×Eη,ℓ with {Eη,ℓ} is obtained by the Runge approximation

property. Then we have the identity

−1

τ
Iη,ℓρ (τ, t) = −

ˆ
D

{|∇ × Eη,ℓ(x)|2 − k2|Eη,ℓ(x)|2}dx

−
ˆ
Ω\D̄

{|∇ × Ẽη,ℓ(x)|2 − k2|Ẽη,ℓ(x)|2}dx

=

ˆ
D

{|∇ ×Hη,ℓ(x)|2 − k2|Hη,ℓ(x)|2}dx

+

ˆ
Ω\D̄

{|∇ × H̃η,ℓ(x)|2 − k2|H̃η,ℓ(x)|2}dx

and the inequality

−1

τ
Iη,ℓρ (τ, t) ≥

ˆ
D

{|∇ ×Hη,ℓ(x)|2 − k2|Hη,ℓ(x)|2}dx− k2
ˆ
Ω\D̄

|H̃η,ℓ(x)|2}dx,

where Ẽη,ℓ = E − Eη,ℓ and H̃η,ℓ = H −Hη,ℓ are described in section 5.

Proof. Use the integration by parts and the boundary condition, we have

ˆ
Ω\D̄

ϵ−1(∇× E) · (∇× Ẽη,ℓ)− k2ϵE · Ẽη,ℓdx = −(

ˆ
∂Ω

−
ˆ
∂D

)ik(ν ×H) · Ẽη,ℓdS = 0.

91 doi:10.6342/NTU201600158



Adding this to

Iη,ℓρ =

ˆ
∂Ω

(ν × Eη,ℓ) · (−ikH + ikHη,ℓ)dS

=

ˆ
Ω\D̄

−(µ−1∇× Eη,ℓ) · (∇× E) + k2(µEη,ℓ) · Ēdx

+

ˆ
Ω

µ−1|∇ × Eη,ℓ|2 − k2(µEη,ℓ) · Eη,ℓdx+

ˆ
∂D

(ν × Eη,ℓ) · (−ikH)dS

due to the zero boundary condition on ∂D we have the last term is vanishing.

From the above estimate, it only need to control the lower order term
´
Ω\D̄ |H̃η,ℓ(x)|2dx.

3.8.3.1 Estimate of the lower order term H̃η,ℓ

Proposition 3.36. Let Ω be a C1 domain, D b Ω be Lipschitz. Then there exists a positive

constant C independent of (Ẽη,ℓ, H̃η,ℓ) and (Eη,ℓ,Hη,ℓ) such that

ˆ
Ω\D̄

|H̃η,ℓ(x)|2dx ≤ C{∥∇ ×Hη,ℓ∥2Lp(D) + ∥Hη,ℓ∥2Hs+1/2(D)},

for all p and s such that max{2− δ, 4/3} < p ≤ 2 and 0 < s ≤ 1 with δ > 0.

Proof. Step 1. Before proving the Proposition 3.36, we consider the anisotropic Maxwell’s equa-

tion in Ω as follows: 
∇× Eη,ℓ − ikµHη,ℓ = 0 in Ω,

∇×Hη,ℓ + ikϵEη,ℓ = 0 in Ω,

ν × Eη,ℓ := fη,ℓ ∈ TH−1/2(∂Ω) on ∂Ω,

(3.8.36)

where Eη,ℓ and Hη,ℓ are solutions of the anisotropic Maxwell’s equation. Since Ẽη,ℓ = E − Eη,ℓ,

H̃η,ℓ = H −Hη,ℓ, we have



∇× Ẽη,ℓ − ikµH̃η,ℓ = 0 in Ω\D̄,

∇× H̃η,ℓ + ikγẼη,ℓ = 0 in Ω\D̄,

ν × Ẽη,ℓ = 0 on ∂Ω,

ν × H̃η,ℓ = −ν ×Hη,ℓ on ∂D.

(3.8.37)

92 doi:10.6342/NTU201600158



Step 2. Let (Eex
η,ℓ,H

ex
η,ℓ) be the solution of the following well posed exterior Maxwell’s problem



∇× Eex
η,ℓ − ikHex

η,ℓ = 0 in R3\D̄,

∇×Hex
η,ℓ + ikEex

η,ℓ = 0 in R3\D̄,

ν ×Hex
η,ℓ = −ν ×Hη,ℓ on ∂D,

Eex
η,ℓ,H

ex
η,ℓ satisfiy the Silver-Müller radiation condition.

(3.8.38)

We can represent these solutions Eex
η,ℓ and Hex

η,ℓ by the following layer potentials

Hex
η,ℓ(x) := ∇×

ˆ
∂D

Φk(x, y)f(y)ds(y),

Eex
η,ℓ(x) := − 1

ik
∇×Hex

η,ℓ(x), x ∈ R3\∂D,

where Φk(x, y) = − eik|x−y|

4π|x− y|
, x, y ∈ R3, x ̸= y, is the fundamental solution of the Helmholtz

equation and f is the density. Now, we follow the arguments in section 2.1 of [27] and use the

same argument for the isotropic Maxwell’s equation (3.8.38), then we have


∥Eex

η,ℓ∥Lp(Ω\D̄) ≤ C{∥ν ×Hη,ℓ∥Lp(∂D) + ∥∇ ×Hη,ℓ∥Lp(D)},

∥Hex
η,ℓ∥L2(Ω\D̄) ≤ C{∥ν ×Hη,ℓ∥Lp(∂D) + ∥∇ ×Hη,ℓ∥Lp(D)},

(3.8.39)

for p ∈ (
4

3
, 2]. Moreover, if we define Eη,ℓ = Ẽη,ℓ − Eex

η,ℓ, Hη,ℓ = H̃η,ℓ − Hex
η,ℓ, then Eη,ℓ and Hη,ℓ

satisfy the following Maxwell’s equation



∇× Eη,ℓ − ikµHη,ℓ = ik(1− µ)Hex
η,ℓ in Ω\D̄,

∇×Hη,ℓ + ikϵEη,ℓ = ik(γ − I3)E
ex
η,ℓ in Ω\D̄,

ν ×Hη,ℓ = 0 on ∂Ω,

ν × Eη,ℓ = −ν × Eex
η,ℓ on ∂D.

(3.8.40)

Step 3. Now we decompose Eη,ℓ = E1
η,ℓ + E2

η,ℓ and Hη,ℓ = H1
η,ℓ +H2

η,ℓ, where (E1
η,ℓ,H1

η,ℓ) satisfies

the following zero boundary Maxwell’s equation


∇× E1

η,ℓ − ikµH1
η,ℓ = ik(1− µ)Hex

η,ℓ in Ω\D̄,

∇×H1
η,ℓ + ikϵE1

η,ℓ = ik(ϵ− I3)E
ex
η,ℓ in Ω\D̄,

ν × E1
η,ℓ = ν ×H1

η,ℓ = 0 on ∂(Ω\D̄),

(3.8.41)
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and (E2
η,ℓ,H2

η,ℓ) satisfies 

∇× E2
η,ℓ − ikµH2

η,ℓ = 0 in Ω\D̄,

∇×H2
η,ℓ + ikγE2

η,ℓ = 0 in Ω\D̄,

ν ×H2
η,ℓ = 0 on ∂Ω,

ν × E2
η,ℓ = −ν × Eex

η,ℓ on ∂D.

(3.8.42)

First, we deal with the equation (3.8.41) by using the Lp estimate in Ω\D̄. Note that (E1
η,ℓ,H1

η,ℓ)

satisfies (3.8.41), then we have


∇× (ϵ−1∇× E1

η,ℓ)− k2γE1
η,ℓ = ik∇× [(µ−1 − 1)Hex

η,ℓ] + ik(γ − I3)E
ex
η,ℓ in Ω\D̄,

ν × E1
η,ℓ = 0 on ∂(Ω\D̄),

and 
∇× (ϵ−1∇×H1

η,ℓ)− k2µH1
η,ℓ = ik∇× [(I3 − ϵ−1)Eex

η,ℓ] + ik(1− µ)Hex
η,ℓ in Ω\D̄,

ν ×H1
η,ℓ = 0 on ∂(Ω\D̄).

Now, if we use the same method in the proof of the Proposition 3.28, we will obtain


∥E1

η,ℓ∥Lp(Ω\D̄) + ∥∇ × E1
η,ℓ∥Lp(Ω\D̄) ≤ C{∥Hex

η,ℓ∥Lp(Ω\D̄) + ∥Eex
ϵ,ℓ∥L2(Ω\D̄)},

∥H1
η,ℓ∥Lp(Ω\D̄) + ∥∇ ×H1

η,ℓ∥LP (Ω\D̄) ≤ C{∥Eex
η,ℓ∥Lp(Ω\D̄) + ∥Hex

η,ℓ∥L2(Ω\D̄),

(3.8.43)

for any 4

3
< p ≤ 2. If we combine (3.8.39) and (3.8.43) together, we have

∥H1
η,ℓ∥Lp(Ω\D̄) ≤ C{∥ν ×Hη,ℓ∥Lp(∂D) + ∥∇ ×Hη,ℓ∥Lp(D)}. (3.8.44)

For (E2
η,ℓ,H2

η,ℓ), we apply the L2-theory for the anisotropic Maxwell’s equation, we get

∥H2
η,ℓ∥L2(Ω\D̄) ≤ ∥E2

η,ℓ∥H(curl,Ω\D̄) ≤ C∥ν × E2
η,ℓ∥H−1/2(∂Ω) ≤ C∥ν × Eex

η,ℓ∥H−1/2(∂Ω).

Moreover, following the proof in the Lemma 2.3 of [27], we have

∥ν × Eex
η,ℓ∥H−1/2(∂Ω) ≤ C∥f∥Lp(∂D), ∀p ≥ 1,

and

∥H2
η,ℓ∥L2(Ω\D̄) ≤ C{∥ν ×Hη,ℓ∥2Lp(∂D) + ∥∇ ×Hη,ℓ∥2Lp(D)}, (3.8.45)

94 doi:10.6342/NTU201600158



for all p ∈ (
4

3
, 2]. Recall that Hη,ℓ = H1

η,ℓ +H2
η,ℓ, by using (3.8.44) and (3.8.45), then we have

∥Hη,ℓ∥L2(Ω\D̄) ≤ C{∥ν ×Hη,ℓ∥Lp(∂D) + ∥∇ ×Hη,ℓ∥Lp(D)} (3.8.46)

for all p ∈ (
4

3
, 2]. Combining (3.8.39), (3.8.46) and H̃η,ℓ = Hη,ℓ +Hex

η,ℓ, we get

ˆ
Ω\D̄

|H̃η,ℓ(x)|2dx ≤ ∥Hη,ℓ∥L2(Ω\D̄) + ∥Hex
η,ℓ∥L2(Ω\D̄)

≤ C{∥ν ×Hη,ℓ∥2Lp(∂D) + ∥∇ ×Hη,ℓ∥2Lp(D)} (3.8.47)

for all p ∈ (
4

3
, 2]. Finally, for s > 0 and p ≤ 2 we have Hs(∂D) ⊂ L2(∂D) ⊂ Lp(∂D), then we

reduce that

∥ν ×Hη,ℓ∥Lp(∂D) ≤ C∥Hη,ℓ∥Lp(∂D) ≤ C∥Hη,ℓ∥Hs(∂D).

Note that the trace map from Hs+1/2(D) → Hs(∂D) is bounded for all 0 < s ≤ 1. So the estimate

(3.8.47) will become

ˆ
Ω\D̄

|H̃η,ℓ(x)|2dx ≤ C{∥Hη,ℓ∥2Hs+1/2(D) + ∥∇ ×Hη,ℓ∥2Lp(D)},

for all p ∈ (
4

3
, 2] and 0 < s ≤ 1.

Remark 3.37. Now, if we take ℓ→ ∞ and ϵ→ 0, we will get

lim
η→0

lim sup
ℓ→∞

ˆ
Ω\D̄

|H̃η,ℓ(x)|2dx ≤ C{∥Ht∥2Hs+1/2(D) + ∥∇ ×Ht∥2Lp(D)},

where Ht is the oscillating-decaying solution defined on Ωt(ω).

We have the following lemmas for the oscillating-decaying solutions in the same way as we did

in section 5, so we omit the proofs.

Lemma 3.38. For 1 ≤ q <∞, τ ≫ 1, we have the following estimates.

1.

ˆ
D

|Ht(x)|qdx ≤ τ q−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ q−1e−qaδτ )

+O(τ qe−qaτ ) +O(τ−1) +O(τ−2N+3)
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2.

ˆ
D

|Ht|2dx ≥ Cτ
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτe−2aδτ

−Cτ−1 − Cτ−2N+3

3.

ˆ
D

|∇ ×Ht(x)|qdx ≤ τ2q−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ2q−1e−qaδτ )

+O(τ2qe−qaτ ) +O(τe−cτ ) +O(τ−2N+5)

4.

ˆ
D

|∇ ×Ht(x)|2dx ≥ Cτ3
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτ3e−2aδτ

−Cτe−cτ − Cτ−2N+5

Lemma 3.39. We have the following estimate

∥Ht∥2L2(D)

∥∇ ×Ht∥2L2(D)

≤ O(τ−2), τ ≫ 1.

For p < 2, we have the following estimate

∥∇ ×Ht∥2Lp(D)

∥∇ ×Ht∥2Lp(D)

≤ Cτ1−
2
p , τ ≫ 1.

Lemma 3.40. If t = hD(ρ),then for some positive constant C, we have

lim inf
τ→∞

ˆ
D

τ |∇ ×Ht|2dx ≥ C.

3.8.3.2 End of the proof of Theorem 1.1 for the impenetrable case

By using the same argument in the penetrable case, it is easy to see that

lim sup
τ→∞

|1
τ
Iρ(τ, t)| = 0

for t > hD(ρ). Recall that from Lemma 3.35, we have

− 1

τ
Iη,ℓρ (τ, t) ≥

ˆ
D

{|∇ ×Hη,ℓ(x)|2 − k2|Hη,ℓ(x)|2}dx− k2
ˆ
Ω\D̄

|H̃η,ℓ(x)|2}dx. (3.8.48)
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By using Proposition 3.32, we deduce

−1

τ
Iη,ℓρ (τ, t) ≥

ˆ
D

{|∇ ×Hη,ℓ(x)|2 − k2|Hη,ℓ(x)|2}dx− C{∥Ht∥2Hs+1/2(D) + ∥∇ ×Ht∥2Lp(D)},

where 0 < s ≤ 1 and 4

3
< p ≤ 2. We want to estimate

∥Ht∥2Hs+1/2(D)

∥∇ ×Ht∥2L2(D)

, for 0 < s ≤ 1. Set

r = s+ 1/2, then we need to estimate

∥Ht∥2Hr(D)

∥∇ ×Ht∥2L2(D)

for r ∈ (
1

2
,
3

2
]. Using the interpolation inequality, we have

∥Ht∥Hr(D) ≤ C∥Ht∥1−r
L2(D)∥Ht∥rH1(D), 0 ≤ r ≤ 1.

By the Young’s inequality ab ≤ δ−α aα

α + δβ bβ

β , 1
α + 1

β = 1, we obtain

∥Ht∥2Hr(D) ≤ C

[
δ−α

α
∥Ht∥2L2(D) +

δβ

β
∥Ht∥2H1(D)

]
≤ C

[
{(1− r)δ−(1−r)−1

+ rδr
−1

}∥H0∥2L2(D) + rδr
−1

∥∇Ht∥2L2(D)

]
. (3.8.49)

Recall that Ht = G1
B(x)e

iτx·ξe−τ(x·ω−t)AB
t (x′)b+ΓB,1

χt,b,t,N,ω(x, τ)+r
B,1
χt,b,t,N,ω(x, τ) is a smooth func-

tion with G1
B(x) = O(τ) and ΓB,1

χt,b,t,N,ω satisfies (3.7.11) for |α| = 1 and rB,1
χt,b,t,N,ω satisfies (3.7.11)

for k = 1. If we can differentiateHt componentwisely, we will get ∂Ht

∂xj
=
∂G1

Be
iτx·ξe−τ(x·ω−t)AB

t b

∂xj
+

∂ΓB,1
χt,b,t,N,ω

∂xj
+
∂rB,1

χt,b,t,N,ω

∂xj
and



∥
∂N t

A,B,γ,µ

∂xj
∥2L2(D) ≤ Cτ4

´
D
e−2aτ(x·ρ−t)dx,

∥
∂Γ2,t

A,B,γ,µ

∂xj
∥L2(D) ≤ cτ−1/2e−cτ .

∥
∂r2,tA,B,γ,µ

∂xj
∥L2(D) ≤ cτ−N+3/2.

Then by using the same method as before, it is easy to see that

∥∇Ht∥2L2(D) =

3∑
j=1

∥∂Ht

∂xj
∥2L2(D)

≤ Cτ4
ˆ
D

e−2(x·ρ−t)dx+ cτ−1e−2cτ + cτ−2N+3.
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For t = hD(ρ), we have

∥∇Ht∥2L2(D) ≤ Cτ4
ˆ
D

e−2a(x·ρ−hD(ρ))dx+ cτ−1e−2cτ + cτ−2N+3

≤ Cτ4(

ˆ
Dδ

+

ˆ
D\Dδ

)e−2a(x·ρ−hD(ρ))dx+ cτ−1e−2τ(s−t)a

+cτ−2N+3

≤ Cτ4
m∑
j=1

¨
|y′|<δ

dy′
ˆ δ

lj(y′)

e−2aτy3dy3 + Cτ4e−2acτ

+cτ−1e−2cτ + cτ−2N+3

≤ Cτ3
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − Cτ3e−2aδτ

+Cτ3e−2acτ + cτ−1e−2cτ + cτ−2N+3. (3.8.50)

From Lemma 3.38 and (3.8.50), we have

∥∇Ht∥2L2(D)

∥∇ ×Ht∥2L2(D)

≤ C. (3.8.51)

Combining Lemma 3.38, (3.8.49) and (3.8.51) we obtain

∥Ht∥2Hr(D)

∥∇ ×Ht∥2L2(D)

≤ C{(1− r)δ−(1−r)−1

+ rδr
−1

}
∥Ht∥2L2(D)

∥∇ ×Ht∥2L2(D)

+Crδr
−1 ∥∇Ht∥2L2(D)

∥∇ ×Ht∥2L2(D)

≤ C{(1− r)δ−(1−r)−1

+ rδr
−1

}O(τ−2) + Crδr
−1

.

We now choose p ∈ ( 43 , 2), combining (3.8.48), (3.8.49) and (3.8.51) we have

−1

τ
Iϵ,ℓρ (τ, t)

∥∇ ×Ht∥2L2(D)

≥ C − c1
∥Ht∥2L2(D)

∥∇ ×Ht∥2L2(D)

− c2
∥Ht∥2Hr(D)

∥∇ ×Ht∥2L2(D)

− c3
∥∇ ×Ht∥2Lp(D)

∥∇ ×Ht∥2L2(D)

≥ C − c1{(1− r)δ−(1−r)−1

+ rδr
−1

}O(τ−2)− Crδr
−1

− c3τ
1− 2

p

≥ C − c2rδ
r−1

,
1

2
< r < 1, τ ≫ 1.

Hence from Lemma 3.40, we have

lim inf
τ→∞

|Iρ(τ, hD(ρ))| ≥ c > 0.

3.8.4 Reconstruction algorithm

1. Give ω ∈ S2 and choose η, ζ, ξ ∈ S2 so that {η, ζ, ξ} forms a basis of R3 and ξ lies in the

span of η and ζ;
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2. Choose a starting t such that Ω ⊂ {x · ω ≥ t};

3. Construct the oscillating-decaying solutions for the anisotropic Maxwell system from the

reduction strongly elliptic system;

4. Define a suitable indicator function Iρ(τ, t) and the support function hD(ρ) = infx∈D x · ρ;

5. If Iρ(τ, t) → 0 as τ → ∞, then choose t′ > t and repeat (iv), (v), (vi);

6. If Iρ(τ, t′) 9 0, then t′ = t0 = hD(ρ);

7. Varying ρ ∈ S2 and repeat previous steps again, we can determine the convex hull of D.
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Chapter 4

Strong unique continuation for a

residual stress system with Gevrey

coefficients

We consider the problem of the strong unique continuation for an elasticity system with general

residual stress. Due to the known counterexamples, we assume the coefficients of the elasticity

system are in the Gevrey class of appropriate indices. The main tools are Carleman estimates for

product of two second order elliptic operators.

First, we give some properties of the strong unique continuation property (SUCP) for the second

order elliptic operators with Gevrey coefficients.

4.1 SUCP for the elliptic equations

Let Aij(x)∂xixj
be a second order uniformly elliptic differential operator and Aij(x) satisfies ∀ξ ∈

Rn,

λ|ξ|2 ≤ Aij(x)ξiξj ≤ Λ|ξ|2, (4.1.1)

for some 0 < λ ≤ Λ. Recall that we have the following scalar second order elliptic inequalities

|
n∑

i,j=1

Aij(x)∂2xixj
u| ≤ C{|u|+ |∇u|} (4.1.2)

have the SUCP if the coefficients Aij(x) are real, Lipschitz continuous and satisfy (4.1.1). If u

satisfies (4.1.2) and u satisfies

sup
r≤δ

r−N∥u∥L2(Br(0)) <∞
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for all N , then u vanishes near 0.

For higher order elliptic differential equation, we consider the following product form A(x) :=

AN · · ·A1 (using the Einstein convention), where all Aℓ’s satisfy (4.1.1), which are uniformly elliptic

operators such that

Aℓu := Aℓ
ij(x)∂

2
xixj

u.

We assume that all coefficients are in the Gevrey class Gs (we will define in the later section) and

∃α > 0 such that the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn of Aℓ
ij(x) satisfy

µn − µ1

µ1
< α (4.1.3)

uniformly in x and ℓ. The following is the main result about the SUCP for the higher order product

elliptic equation.

Proposition 4.1. Let Gs be the Gevrey class of order s. Let Aℓ(x) ∈ Gs satisfy (4.1.1) for all

ℓ = 1, 2, · · · , N and α > 0 satisfying (4.1.3) at x = x0 for some x0 ∈ Ω. Moreover, if s > 0

satisfies

s < 1 +
1

α
,

then SUCP holds at x = x0 for the following differential equation

Au = AN · · ·A1u =
∑

|β|≤⌊ 3N
2 ⌋

aβ∂
βu

provided that all aβ ∈ Gs.

In order to prove the Proposition, we use the Carleman estimates for the second order elliptic

equation. Recall that for the second order elliptic equation

Av :=
∑
i,j

∂xi(Aij(x)∂jv),

with Aij(x) ∈ Gs, we have the following Carleman estimates holds

2∑
j=0

τ3/2−j∥|x|α/2|x|(j−2)(1+α)Djeτ |x|
−α

v∥L2 ≤ c∥eτ |x|
−α

Av∥L2 , (4.1.4)

where c is independent of v. For detailed proof, we refer readers to [9]. Then we can iterate

the above estimates to higher order elliptic equation, which has the product form A = AN · · ·A1

with each Aℓ’s are second order elliptic operators. In Proposition 4.1, we can observe that the

derivative order of the right hand side do not exceed
⌊
3N

2

⌋
. The reason is that we have used the
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iteration argument from the original Carleman estimates for the second order elliptic equations.

Since the highest power of τ in left hand side of (4.1.4) is τ3/2, after iteration N times, the number

of derivative cannot be bigger than 3N

2
.

4.2 Basic properties for the Gevrey class

First, we give the definition of the Gevrey class.

Definition 4.2. We say that f ∈ C∞(Ω) belongs to the Gevrey class of order s, denote it as

Gs(Ω), if there exist constants c, A and multiindices β such that

|∂βf | ≤ cA|β||β|!s in Ω.

To simplify the notation, from now on, we use Gs to denote Gs(Ω).

Note that the Gevrey class contains the following properties:

1. Gevrey regularity: If u is a solution of an elliptic equation with Gevrey coefficients Gs, then

u also lies in the Gevrey class Gs.

2. |u| ≤ ce−|x|−s near x = x0 for some x0 ∈ Ω and u ∈ Gs will imply u vanishes near x = x0.

In the following, we list basic properties for the Gevrey class which will be used in the following

sections.

Lemma 4.3. Let U be a bounded open set and suppose that 0 ∈ U , s ≥ 1 and f ∈ Gs(U) satisfies

∂βf(0) = 0

for all multiindices β. Let s− 1 < ρ, then

|f(x)| ≤ e−|x|−1/ρ

near x = 0.

Lemma 4.4. We have

e−|x|−1/ρ

∈ Gs(R3)

provided 1 + ρ = s.

Lemma 4.5. Let

P (x,D)u = f in U
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be an elliptic differential system with coefficients and right had side in the Gevrey class Gs(U).

Then u ∈ Gs(V ) for all bounded V b U .

Proof. See [5], Proposition 2.13, we know that the Gevrey class are good classes of elliptic regularity.

4.3 SUCP for the residual stress system with Gevrey coef-

ficients

Our main result is to prove the strong unique continuation property (SUCP) for the isotropic

elasticity system with residual stress under appropriate conditions. We formulate the mathematical

problem in the following.

Let Ω be a connected open domain in R3 and consider the time-harmonic elasticity system

∇ · σ + κ2ρu = 0 in Ω, (4.3.1)

where σ = (σij)
3
i,j=1 is the stress tensor field, κ ∈ C is the frequency and ρ = ρ(x) > 0 denotes

the density of the medium. The vector field u(x) = (ui(x))
3
i=1 is the displacement vector. Suppose

that the stress tensor is given by

σ(x) = T (x) + (∇u)T (x) + λ(x)(trE)I + 2µ(x)E,

where E(x) =
∇u+∇ut

2
is the infinitesimal strain and λ(x), µ(x) are the Lamé parameters. The

second-rank tensor T (x) = (tij(x))
3
i,j=1 is the residual stress and satisfies

tij(x) = tji(x), ∀i, j = 1, 2, 3 and x ∈ Ω

and

∇ · T =
∑
j

∂jtij = 0 in Ω, ∀i = 1, 2, 3.

If we define the elastic tensor C = (Cijkl)
3
i,j,k,l=1 with

Cijkl = λδijδkl + µ(δjkδjl + δjkδil) + tjlδik,

then (4.3.1) is equivalent to

∇ · (C∇u) + κ2ρu = 0 in Ω.

We concern the SUCP for (4.3.1), i.e., if u ∈ H2
loc(Ω) satisfies (4.3.1) and u(x) vanishes to
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infinite order at a point x0 ∈ Ω, then u must vanish identically in Ω. Without loss of generality,

we assume x0 = 0.

Historical notes
A brief history of the results on the (strong) unique continuation for (4.3.1) is in the following. In

[50], Nakamura and Wang proved the unique continuation property for (4.3.1) under the condition

maxi,j ∥tij∥∞ is small and T (x), λ(x), µ(x) ∈ W 2,∞ and ρ(x) ∈ W 1,∞. In [36], Lin proved the

SUCP for (4.3.1) under the assumptions that T (0) = 0, maxi,j ∥tij∥∞ is small, λ(x), µ(x) and ρ(x)

are in C2. In addition, in [63], Uhlmann and Wang proved unique continuation principle for (4.3.1)

under the conditions T (x), λ(x), µ(x) ∈W 2,∞, ρ(x) ∈W 1,∞ and general residual stress.

Motivated by [63], we want to prove the SUCP for (4.3.1) with arbitrary residual stress. In this

paper, we will give a reduction algorithm to transform (4.3.1) into a special fourth order elliptic

system. The main difficulty is that when T (0) ̸= 0, the leading terms of (4.3.1) will not be the

Laplacian at zero, so we cannot use a perturbation argument to derive suitable Carleman estimates

in order to obtain the SUCP. In [4], Alinhac and Baouendi proved the SUCP for any fourth order

operator with smooth coefficients verifying P = Q2Q1 + R, where Qi’s are second order elliptic

operators with Qi(0, D) = −∆ for i = 1, 2. Moreover, in [32], Le Borgne proved the SUCP for

fourth order differential inequality with Qi’s are Lipschitz continuous and Qi(0, D) = −∆ for

i = 1, 2. In [36], Lin introduced v = ∇ · u and w = ∇ × u to transform (4.3.1) into a second

order differential system, but the system is weakly-coupled, i.e., the principal part of the second

order derivatives are not diagonal. Moreover, Lin also introduced a fourth order elliptic system

P = ∆Qi with Qi’s are second order elliptic operators with Qi(0, D) = ∆ for i = 1, 2 and give

another approach to derive the SUCP. For more details, we refer readers to [36].

In this note, our transformation will reduce (4.3.1) into a fourth order principally diagonal

elliptic system with the same leading coefficients. The key observation is that the leading terms

of the fourth order elliptic system are the same. Notice that principally diagonal strongly elliptic

systems allow the application of Carleman estimates for scalar operators since these estimates are

flexible with respect to perturbations by lower order terms. Therefore, it is possible to derive

suitable Carleman estimates for the fourth order elliptic system.

In general, the SUCP doe not hold even the coefficients are smooth, Alinhac gave a counterex-

ample in [3]. Thus, we consider all the coefficients in the Gevrey class and we will use the Carleman

estimates proved in [9] for the scalar higher order elliptic equations in order to prove the SUCP

for the new fourth order strongly elliptic system.

We assume all the coefficients T (x), λ(x), µ(x) and ρ(x) lie in the Gevrey class Gs. We are

interested in the SUCP for (4.3.1) with Gevery coefficients, which means if u satisfies (4.3.1) and
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u is flat at the origin in the sense that

sup
r≤δ

r−N∥u∥L2(B(0,r)) <∞ (4.3.2)

for all N , then u vanishes near the origin. If u is smooth, the condition (4.3.2) is equivalent to all

partial derivatives of u vanishing at 0.

The SUCP for the second order elliptic equations in the Gevrey class were studied in many

literature [7, 8, 9, 34]. In 1981, Lerner [34] considered a second order elliptic operator L in R2 with

simple characteristics and the coefficients in the Gevery class of order s. Lerner proved that if s is

smaller than a quantity depending on the principal symbol of l2(0,R2), then L has the SUCP near

0. In [8], the authors extended Lerner’s result to RN , which means the SUCP holds for a second

order elliptic operator L in RN with the Gevrey order s smaller than a quantity depending on the

principal symbol of l2(0,RN ).

Recall that the strongly elliptic condition is given as: there exists c0 > 0 such that for all

vectors ξ = (ξi)
3
i=1, ∑

ij

aij(x)ξiξj ≥ c0|ξ|2, ∀x ∈ Ω.

In this paper, we assume P1 and P2 are two strongly elliptic operators, where

P1(x,D) :=
∑
jk

a1jk(x)∂
2
xjxk

:=
∑
jk

(µδjk + tjk)∂
2
xjxk

, (4.3.3)

P2(x,D) :=
∑
jk

a2jk(x)∂
2
xjxk

:=
∑
jk

((λ+ 2µ)δjk + tjk)∂
2
xjxk

(4.3.4)

with a1jk(x) = µ(x)δjk + tjk(x) and a2jk(x) = (λ(x) + 2µ(x))δjk + tjk(x). Further, there exists

c0 > 0 such that for any ξ = (ξi)
3
i=1 ∈ R3

∑
jk

a1jk(x)ξjξk =
∑
jk

tjkξjξk + µ|ξ|2 ≥ c0|ξ|2 (4.3.5)

∑
jk

a2jk(x)ξjξk =
∑
jk

tjkξjξk + (λ+ 2µ)|ξ|2 ≥ c0|ξ|2 (4.3.6)

for all x ∈ Ω, note that (aℓjk(x))
3
j,k=1 is a symmetric matrix for ℓ = 1, 2.

We also assume that there exists a constant α > 0 such that the eigenvalues λℓ1 ≤ λℓ2 ≤ λℓ3 of

(aℓjk(0)) satisfying

α >
λℓ3 − λℓ1
λℓ1

(4.3.7)

and

s < 1 +
1

α
(4.3.8)
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for ℓ = 1, 2.

The following theorem derives the SUCP for (4.3.1) when all the coefficients lie in the Gevrey

class Gs.

Theorem 4.6. Let the residual stress (tij(x))
3
i,j=1, the Lamé parameters λ(x), µ(x) and the

density of the medium ρ(x) be in the Gevrey class Gs(Ω) with s satisfying (4.3.8). Then for all

u ∈ H2
loc(Ω;R3) solving (4.3.1) and for all N > 0

ˆ
R≤|x|≤2R

|u|2dx = O(RN ) as R→ 0,

then u is identically zero in Ω.

This paper is organized as follows. In section 2, we will reduce (4.3.1) into a fourth order

principally diagonal elliptic system. We use the ideas in [36] and give more detailed transformations.

In section 3, we will use the property of the strongly elliptic system in the Gevrey class, then we

can get the asymptotic behavior of u near 0. In section 4, we state the SUCP for the fourth order

elliptic system and prove the theorem by using the Carleman estimates.

4.4 Reduction to a fourth order strongly elliptic system

In this section, we want to transform (4.3.1) into a principally diagonal fourth order strongly elliptic

system. As the calculation in [36]. Let

Ru = ∇ · (∇uT ) (4.4.1)

with Ru = ((Ru)1, (Ru)2, (Ru)3), where (Ru)i =
∑

jk tjk∂
2
jkui, i = 1, 2, 3.

As in Section 2, we set U = (u, v, w)t, where v = ∇·u, w = ∇×u and u satisfies (4.3.1). From

(4.3.1), (4.4.1), let P1 and P2 be two elliptic operators

P1(x,D) = R+ µ∆,

P2(x,D) = R+ (λ+ 2µ)∆,
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then (u, v, w) satisfies

P1(x,D)u = A1,1(u, v) +A1,0(u, v), (4.4.2)

P2(x,D)v = −
∑
jk

∇(tjk) · ∂2jku (4.4.3)

+A2,1(u, v, w) +A2,0(u, v, w),

P1(x,D)w = −
∑
jk

∇(tjk)× ∂2jku (4.4.4)

+A3,1(u, v, w) +A3,2(u, v, w),

where Aℓ,m are m-th order differential operators. For more details, we refer reader to [36].

Notice that u ∈ H2
loc(Ω;R3) satisfies (4.4.2) and v = ∇ · u ∈ H1

loc(Ω) and ∇v ∈ L2
loc(Ω), then

the right hand side of (4.4.2) lies in L2
loc(Ω). Therefore, we use the standard elliptic higher order

regularity theory for (4.4.2) (see Theorem 2.2 in [13]) and the strongly elliptic property, then we

have u ∈ H3
loc(Ω;R3). Iterate the procedures, we obtain u ∈ Hk

loc(Ω;R3) ∀k ∈ N (which implies

v, w ∈ Hk
loc(Ω) ∀k ∈ N).

Let P (x,D) be the principal part of the system to get

P (x,D)U = (P1(x,D)u, P2(x,D)v, P1(x,D)w)t,

where U := (u, v, w)t : Ω → R7. Component-wise, we have

(P (x,D)U)i = µ∆ui +
∑
jk

tjk∂
2
jkui, i = 1, 2, 3

(P (x,D)U)i = (λ+ 2µ)∆v +
∑
jk

tjk∂
2
jkv, i = 4

(P (x,D)U)i = µ∆wi−4 +
∑
jk

tjk∂
2
jkwi−4 i = 5, 6, 7.

Now, let us take the second order elliptic operator P2(x,D) on (4.4.2), we get

P2P1(x,D)u = P2(x,D)[A1,1(u, v) +A1,0(u, v)] (4.4.5)

:=
3∑

m=0

B1,m(u, v),

where B1,m is an m-th order differential operator. Similarly, we can take P1(x,D) on (4.4.3) and

107 doi:10.6342/NTU201600158



P2(x,D) on (4.4.4), then we obtain

P1P2(x,D)v (4.4.6)

= P1(x,D)(−
∑
jk

∇(tjk) · ∂2jku) + P1(x,D)(A2,1(u, v, w) +A2,0(u, v, w))

= −P1(x,D)(
∑
jk

∇(tjk) · ∂2jku) +
3∑

m=0

B2,m(u, v, w),

and

P2P1(x,D)w (4.4.7)

= P2(x,D)(−
∑
jk

∇(tjk)× ∂2jku) + P2(x,D)(A(u, v, w) +A3,2(u, v, w))

= −P2(x,D)(
∑
jk

∇(tjk)× ∂2jku) +
3∑

m=0

B3,m(u, v, w).

Now, if we interchange P1, P2 on (4.4.6), and use

P2P1 = P1P2 − [P1,P2],

where [P1, P2] is the commutator of two second order elliptic operators, then [P1, P2] is a third

order differential operator. Thus, (4.4.6) becomes

P2P1(x,D)v = −P1(x,D)[
∑
jk

∇(tjk) · ∂2jku] (4.4.8)

+
3∑

m=0

B̃2,m(u, v, w),

where B̃2,m is an m-th order differential operator and

3∑
m=0

B̃2,m(u, v, w) =

3∑
m=0

B2,m(u, v, w)− [P1, P2](x,D)v.
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Now, combine (4.4.5), (4.4.7) and (4.4.8) together, we have

P2P1(x,D)


u

v

w

 = −


0

P1(x,D)[
∑

jk ∇(tjk) · ∂2jku]

P2(x,D)[
∑

jk ∇(tjk)× ∂2jku]

 (4.4.9)

+
3∑

m=0


B1,m(u, v)

B̃2,m(u, v, w)

B3,m(u, v, w)

 .

Now, for P1

(∑
jk ∇(tjk) · ∂2jku

)
in (4.4.9), recall that P1(x,D) = R+µ∆ and Ru = ∇·(∇uT ),

then we have

P1(x,D)[
∑
jk

∇(tjk) · ∂2jku] = R(
∑
jk

∇(tjk) · ∂2jku) + µ∆(
∑
jk

∇(tjk) · ∂2jku). (4.4.10)

For the second term of (4.4.10), by using the vector identity ∆u = ∇(∇·u)−∇×∇×u = ∇v−∇×w,

it is easy to see

∆(
∑
jk

∇(tjk) · ∂2jku)

=
∑
jk

∇(tjk) · ∂2jk(∆u) + Ã2,3(u) + Ã2,2(u)

=
∑
jk

∇(tjk) · ∂2jk(∇v −∇× w) + Ã2,3(u) + Ã2,2(u)

= B̃2,3(u, v, w) + Ã2,2(u),

where Ã2,m and B̃2,m are m-th order differential operators and

B̃2,3(u, v, w) =
∑
jk

∇(tjk) · ∂2jk(∇v −∇× w) + Ã2,3(u).
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For the first term of (4.4.10), we have

R(
∑
jk

∇(tjk) · ∂2jku)

=
∑
ℓm

tℓm∂
2
ℓm(

∑
jk

∇(tjk) · ∂2jku))

=
∑
jk

∇(tjk) · [
∑
ℓm

tℓm∂
2
ℓm∂

2
jku] + C̃2,3(u) + C̃2,2(u)

=
∑
jk

∇(tjk) · ∂2jk(
∑
ℓm

tℓm∂
2
ℓmu) + D̃2,3(u) + D̃2,2(u)

=
∑
jk

∇(tjk) ·Ru+ D̃2,3(u) + D̃2,2(u),

and use (4.4.2), we have Ru = −µ∆u+A1,1,(u, v) +A1,0(u, v), we have

R(
∑
jk

∇(tjk) · ∂2jku)

=
∑
jk

∇(tjk) · ∂2jk(−µ∆u+A1,1(u, v) +A1,0(u, v)) + D̃2,3(u) + D̃2,2(u)

=
∑
jk

∇(tjk) · ∂2jk(−µ(∇v −∇× w)) +
3∑

m=0

Ẽ2,3(u, v)

=
3∑

m=0

F̃2,m(u, v, w)

where C̃2,m, D̃2,m, Ẽ2,m and F̃2,m are m-th order differential operators. From the above calculation

and (4.4.9), we have

P2P1(x,D)v =

3∑
m=0

Ê2,m(u, v, w), (4.4.11)

where Ê2,m are m-th order differential operators. Similarly, for P2

(∑
jk ∇(tjk)× ∂2jku

)
, it is easy

too see that

∆(
∑
jk

∇(tjk)× ∂2jku) = Ã3,3(u, v, w) + Ã3,2(u),

where Ã3,m is an m-th order differential operator. Similarly, for R(
∑

jk ∇(tjk)×∂2jku), component-
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wise, we have

R(∑
jk

∇(tjk)× ∂2jku)


i

=
∑
ℓm

tℓm∂
2
ℓm(

∑
jk

∇(tjk)× ∂2jku)i

=
∑
ℓm

∑
jk

(∇(tjk)× tℓm∂
2
ℓm∂

2
jku)i + B̃3,3(u) + B̃3,2(u)

=
∑
jk

(∇(tjk)× ∂2jk(
∑
ℓm

tℓm∂
2
ℓmu)i) + C̃3,3(u) + C̃3,2(u)

=
∑
jk

(∇(tjk)× ∂2jkRu)i + D̃3,3(u) + D̃3,2(u)

and use (4.4.2) again, we obtain

R(∑
jk

∇(tjk)× ∂2jku)


i

=
∑
jk

(
∇(tjk)× ∂2jk[−µ(∇v −∇× w)]

)
i
+

3∑
m=0

Ẽ3,m(u, v)

=
3∑

m=0

F̃3,m(u, v, w),

where B̃3,m, C̃3,m, D̃3,m, Ẽ3,m and F̃3,m are m-th order differential operators.

Therefore, we transform the equation (4.4.7) into

P2P1(x,D)w =
3∑

m=0

Ê3,m(u, v, w), (4.4.12)

where Ê3,m are m-th order differential operators. From (4.4.11), (4.4.12) and (4.4.9), we can obtain

P2P1(x,D)


u

v

w

 =

3∑
m=0


Ê1,m(u, v, w)

Ê2,m(u, v, w)

Ê3,m(u, v, w)

 ,

with Êℓ,m are m-th order differential operators, or equivalently,

P2P1U =

3∑
m=0

Êm(U), (4.4.13)

with Êm = (Ê3,m, Ê3,m, Ê3,m)t is an m-th order differential operator and U = (u, v, w)t, which

means this fourth-order differential equation has the same leading term P2P1 and all coefficients of
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(4.4.13) lie in Gs. Moreover, use the elliptic regularity for (4.4.13) with Gevrey coefficients, then

U ∈ Gs by Proposition 2.13 in [5].

4.5 The asymptotic behavior of u near 0

As in Section 2, we set U = (u, v, w)t, where v = ∇ · u and w = ∇ × u. If we can prove that U

solves (4.4.13) and satisfies the SUCP, then u solves (4.3.1) and fulfills the SUCP. In the following

lemma, we describe the asymptotic behavior of u near 0. Recall that if u ∈ H2
loc(Ω;R3), then

u ∈ C∞(Ω) by the standard elliptic regularity. Thus, ∀k ∈ N, we can consider u ∈ Hk
loc(Ω;R3) for

arbitrary k ∈ N in the following results.

Theorem 4.7. [36] Let u be a solution to (4.3.1) and for all N > 0

ˆ
R≤|x|≤2R

|u|2dx = O(RN ) as R→ 0.

Then for |β| ≤ 2, we have

ˆ
R≤|x|≤2R

|R|β|Dβu|2dx = O(RN ) as R→ 0.

Proof. The lemma was proved by the Corollary 17.1.4 in Hörmander [15]. By using the Theorem

4.7, we will get the following Corollary.

Corollary 4.8. Let U = (u, v, w)t with v = ∇ · u and w = ∇× u. Then for |β| ≤ 1, ∀N > 0, we

have ˆ
R≤|x|≤2R

|DβU |2dx = O(RN ) as R→ 0. (4.5.1)

In fact, we can get higher derivatives for |β| ≥ 2 in the Corollary 3.2.

Lemma 4.9. [15] If U satisfies a fourth order strongly elliptic system (4.4.13)

PU =
3∑

m=0

Êm(U),

and U satisfies ∀N > 0, ˆ
R≤|x|≤2R

|U |2dx = O(RN ) as R→ 0.

Then it follows that if |β| ≤ 4 that

ˆ
R≤|x|≤2R

|R|β|DβU |2dx = O(RN ) as R→ 0. (4.5.2)
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Proof. Since U satisfies (4.4.13), a fourth order strongly elliptic system, by using the Corollary

17.1.4 in [15], we can obtain (4.5.2).

Remark 4.10. In the section 3 of [36], the author proved (4.5.2) holding for |β| ≤ 2. From Lemma

4.9 and the coefficients of P are in the Gevrey class Gs, we have U ∈ Gs and

ˆ
|x|≤R

|DβU |2dx = O(RN ) as R→ 0,

for |β| ≤ 4 and ∀N > 0.

4.6 Proof of the main theorem

In this section, we want to prove Theorem 1.1. If U = (u, v, w)t satisfies (4.4.13) and the SUCP,

then the SUCP holds for u, where u fulfills (4.3.1).

4.6.1 SUCP for U

In the following theorem, we will prove the SUCP for U .

Theorem 4.11. Suppose that the second order elliptic operators Pℓ satisfies (4.3.3), (4.3.4),

(4.3.5) and (4.3.6) for ℓ = 1, 2. α > 0 satisfies (4.3.7) at x = 0 and s satisfies (4.3.8). Let

P = P2P1 be a fourth order elliptic operator. Then the SUCP holds for the elliptic system

PU =
∑
|β|≤3

aβ∂
βU (4.6.1)

provided the coefficients of Pℓ are in the Gevery class Gs.

Proof. The proof follows from [9] and section 1. To prove Theorem 4.1, there are two steps. First,

Gevrey regularity of the elliptic system implies the solution U of (4.6.1) is in the Gevrey class Gs

(see Proposition 2.13 in [5]). Use the vanishing order assumption and U ∈ Gs, we have

|U | . e−|x|−γ

, (4.6.2)

near x = 0 and for some constant γ > 0. Second, we can show that (4.6.2) implies U vanishes near

0 by using appropriate Carleman estimates. In addition, since U vanishes near 0, by the results in

[63], we have U ≡ 0 in Ω.

Remark 4.12. We give the Carleman estimates which were used in the proof of Theorem 4.1 in the

following section.
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4.6.2 Carleman Estimates

We are going to derive the Carleman estimates with the weight eτ |x|−α for the fourth order elliptic

operator P = P2P1 in this section. The following Carleman estimates for the scalar case has been

proven in [8] and [9]. Similar to the scalar elliptic equation, we can derive the following Carleman

estimate for the special elliptic system.

Proposition 4.13. Let Pℓ(x,D) =
∑

jk a
ℓ
jk(x)∂

2
jk be a principally diagonal second order elliptic

operator where aℓjk(x) ∈ Gs satisfies(4.3.3), (4.3.4), (4.3.5) and (4.3.6) for ℓ = 1, 2. α > 0 satisfies

(4.3.7) at x = 0 and s satisfies (4.3.8). Then there exist τ0 > 0 and r0 > 0 such that for τ > τ0

and for all V ∈ C∞((Br0\{0});R7), ℓ = 1, 2, the following inequality holds:

τ

ˆ
|D2(|x|α/2eτ |x|

−α

V |2dx+ τ3
ˆ

|x|−4−3αe2τ |x|
−α

V |2dx

.
ˆ

|e2τ |x|
−α

(PℓV )|2dx.

Proof. Since Pℓ is the principally diagonal second order elliptic operator for ℓ = 1, 2, we can directly

follow the consequences in [9] and use the proof in [8]. For more details and classical results, we

refer readers to [14, 59].

By using the integration by parts, we can get a stronger inequality in the following. For more

details, we refer readers to [9] and section 3, then we have

2∑
j=0

τ3−2j

ˆ
e2τ |x|

−α

|x|α|x|2(j−2)(1+α)|DjV |2dx

.
ˆ

|e2τ |x|
−α

|PℓV |2dx,

with Pℓ satisfying all the assumptions in Proposition 4.2 for ℓ = 1, 2. Note that the right hand

side of (4.4.3) and (4.4.4) involve second order derivatives of u, we cannot apply the Carleman

estimates for the second order differential systems directly to get the SUCP for U . Since we have

transformed (4.3.1) into a special fourth order elliptic system with the same leading operator, see

(4.4.13), then we can derive the Carleman estimates for the operator P = P2P1.

Corollary 4.14. [9] Let

A =
∑
jk

ajk(x)∂
2
xjxk

be a second order strongly elliptic operator with aij in the Gevrey class Gs. Suppose α > 0 satisfying
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(4.3.7) at x = 0. Then there exists τ0 such that for all |s|, k ≤ ν and τ ≥ τ0

k+2∑
j=0

τ3−2j

ˆ
|x|α+2j(1+α)|x|2se2τ |x|

−α

|DjV |2dx (4.6.3)

.
k∑

j=0

τ−2j

ˆ
|x|2(2+j)(1+α)|x|2se2τ |x|

−α

|Dj(AV )|2dx.

Proof. See [9] and section 3. We can use the induction hypothesis to prove the Corollary 4.3.

For the fourth order elliptic operator PU = P2P1U is the product of two second order elliptic

operators which satisfies (4.4.13), where U = (u, v, w)t and Pℓ(x,D)U =
∑

jk a
ℓ
jk(x)∂

2
jkU . Recall

that aℓjk ∈ Gs and α > 0 satisfying (4.3.7) uniformly in x and for ℓ = 1, 2, then we have the

following key estimates.

Proposition 4.15. We have the following Carleman estimates

4∑
j=0

τ6−2j

ˆ
|x|−8−6α|x|2j(1+α)e2τ |x|

−α

|DjV |2dx ≤ C

ˆ
e2τ |x|

−α

|PV |2dx.

Proof. Apply the Corollary 4.2 iteratively, then we have

4∑
j=0

τ6−2j

ˆ
|x|−8−6α|x|2j(1+α)e2τ |x|

−α

|DjV |2dx (4.6.4)

.
2∑

j=9

τ3−2j

ˆ
|x|−4−3α|x|j(1+α)e2τ |x|

−α

|Dj(P1V )|2dx

.
ˆ
e2τ |x|

−α

|(P2P1V )|2dx =

ˆ
e2τ |x|

−α

|PV |2dx,

where the first inequality is obtained by (4.6.3) with k = 2, s = −4− 7

2
α and the second inequality

is obtained by (4.6.3) with k = 0, s = −2(1 + α). For more details, we refer reader to see [9].

Now, we want to prove the SUCP for (4.3.1). Here we prove the theorem 2.2.

Proof of Theorem 4.1: The operator P = P2P1 is strongly elliptic in the Gevrey class Gs, then U

is also in the Gevrey class Gs. Therefore, we have the vanishing of infinite order implies that

|u| . e−|x|−γ

for some γ > α. Let χ ∈ C∞
0 (R3) be such that χ ≡ 1 for |x| ≤ R and χ ≡ 0 for |x| ≥ 2R (R > 0 is
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small enough). Then we can apply (4.6.4) to the function χU , which means

C
4∑

|β|=0

τ6−2|β|
ˆ
|x|<R

|x|(2|β|−6)(1+α)−2e2τ |x|
−α

|DβU |2dx (4.6.5)

≤
ˆ
e2τ |x|

−α

|PU |2dx

≤
ˆ
|x|<R

e2τ |x|
−α

|PU |2dx+

ˆ
|x|>R

e2τ |x|
−α

|P (χU)|2

≤
ˆ
|x|<R

e2τ |x|
−α

|
3∑

m=0

Êm(U)|2dx+

ˆ
|x|>R

e2τ |x|
−α

|P (χU)|2,

by using the reduction elliptic system (4.4.13).

If τ is large and R is sufficiently small, then (4.6.5) implies

C
4∑

|β|=0

τ6−2|β|
ˆ
|x|<R

|x|(2|β|−6)(1+α)−2e2τ |x|
−α

|DβU |2dx (4.6.6)

≤
ˆ
|x|>R

e2τ |x|
−α

|P (χU)|2,

for some constant C > 0. Notice that eτ |x|−α ≥ eτR
−α for |x| < R and eτ |x|−α ≤ eτR

−α for |x| > R.

Therefore, we can use (4.6.6) to obtain

C

4∑
|β|=0

τ6−2|β|
ˆ
|x|<R

|x|(2|β|−6)(1+α)−2|DβU |2dx

≤
ˆ
|x|>R

|P (χU)|2.

Let τ → ∞, we get U = 0 in {|x| < R} for R small, which implies u = 0 in {|x| < R}. Furthermore,

by using the unique continuation principal in [63], we can obtain u ≡ 0 in Ω, then we are done.
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Chapter 5

Future work

5.1 Fundamental solutions for the anisotropic Maxwell sys-

tem

The last chapter of this thesis is going to list out related opening problems. We list some future

works which related to this thesis in the following. In the above chapters, we have already men-

tioned the enclosure-type method for the anisotropic medium. We gave reconstruction algorithms

for both anisotropic elliptic equation (Chapter 2) and anisotropic Maxwell system (Chapter 3).

Recall that for the enclosure-type method, we have two tools: One is to define a suitable indicator

function and the other is to construct appropriate special solutions for the mathematical model.

In Chapter 2 and 3, we have constructed oscillating-decaying (OD) solutions for both anisotropic

elliptic equation and anisotropic Maxwell system. The drawback of this special type solutions is

that we need to use the Runge approximation property to find a sequence of solutions defined on the

whole domain and to satisfy the same equation which approximates to OD solutions. It looks like

the Runge approximation property used in the thesis is not constructive. If we can make the proof

in a constructive way, then this may be useful if one tries to implement the method numerically.

The Runge approximation has a constructive version. Indeed, we can use the density property of

the single layer operator between appropriate Sobolev spaces (as L2-spaces) and the well-posedness

of the forward problem. This argument can be used as soon as we have the corresponding fun-

damental solution and the unique continuation property of the Maxwell model. If ϵ and µ are

isotropic, this is of course possible. In the anisotropic cases, we need the construction of the

fundamental solution (and justify its type of singularities) in addition to the unique continuation

property. We could not find these properties in the literature, so we need to do more construc-

tive work for the fundamental solutions. One of our future work is to construct the fundamental

solutions for the anistropic Maxwell system.
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5.2 More Lp estimates for the anisotropic Maxwell system

For the anisotropic Maxwell system in Chapter 3, we only consider the electric permittivity to be

allowed to have the jump and the anisotropy and the magnetic permeability µ is a scalar function.

It is known that the same method would work when the role of the two parameters exchange.

Recall that we have defined the impedance map as ΛD : ν ×H|∂Ω → ν × E|∂Ω and we can allow

ϵ to be anisotropic and to have jump discontinuity. If we exchange ϵ and µ, we need to use the

other impedance map Λ̃D : ν × E|∂Ω → ν × H|∂Ω. Indeed, we needed to assume that the other

coefficients are smooth. The technique is due to the type of Lp estimates we are using. Then, we

are able to remove these assumptions by using the Layer potential techniques. and we could test

this idea for the scalar divergence form PDE model and it works. Hence, we do hope that this idea

can go smoothly to Maxwell as well. We are working on it.

5.3 Strong unique continuation for the general second order

elliptic system

In many literature, we know the strong unique continuation property (SUCP) holds for the scalar

elliptic equation case. However, for more general elliptic system, we do not know much about the

result. In Chapter 4, we gave a very special method to derive the SUCP for the residual stress

system with Gevrey coefficients. We use the “product” of two elliptic operators to derive the

SUCP for this system. Our future work is try to use similar method to derive more SUCP for

more general elliptic system with Gevrey coefficients. In [8], the authors derived the SUCP for the

second order elliptic operator P (x,D) with complex coefficients. We want to generalize their ideas

to second order elliptic system without any assumptions.
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