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摘要 

本論文探討兩項水下機器人基本問題：動力模型的建立以及載具位置的追蹤

定位。本載具使用轉軸推進器，可於高速下執行橫向轉彎，並具備胸鰭進行急煞

與深度控制動作。為了能夠預先估測載具動作，我們基於拉格朗日原理推導本載

具動力模型。本文研究利用上方攝影系統來追蹤紀錄載具船體上的位置標記。進

而取得載具的縱移、橫移與轉角速度等等數據，並應用非線性最佳化方法估測係

數。經由比較模擬與實驗可知此動力模型具有相當的準確度與可靠性。 

在載具的追蹤定位方面，我們採用單眼視覺方法來追蹤載具的位置與方向。

我們使用前視鏡頭進行觀測，並提出一個新穎的即時最佳化估算方法。在已知地

圖的環境中，使用粒子濾波器方法估測載具位置。特別的是將擴增實境的技術應

用於量測模型中，這個量測方法為濾波器提供重要因子的計算方式。我們的方法

已經過長時間水下巡航的驗證，實驗顯示該方法為穩定且高效能，即時提供水下

載具位置與姿態。 

 

 

 

 

 

關鍵字：自主式水下載具、水下導航、動力模型、單眼視覺、序列式蒙特卡羅定

位演算法 
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ABSTRACT 

This work investigates a development of a highly maneuverable AUV that has a high 

maneuverability to perform power turns. Two fundamental problems are addressed in 

this paper, which are the dynamic modelling of this AUV and pose tracking method by 

vision system. The vehicle has a rotatable stern propeller for horizontal turning at high 

speed, two paddles for the braking and ascending/descending. A motion model is firstly 

derived to predict the motion of the body. The dynamic equations are derived based on the 

Lagrange principle. Added mass coefficients are estimated using the equivalent ellipsoid 

method. A tank environment with an overhead camera system is utilized to record marker 

positions on the vehicle body. The iterative Lucas-Kanade method is applied for the 

tracking of the AUV. 

To track the vehicle’s position and orientation for autonomous navigation, we 

introduce a monocular image-based approach. Our approach is developed for an 

underwater environment which with fewer features and low visibility. We present a 

novel real-time optimizing estimation method which bases on the forward-looking 

camera for observing. The sequence Monte-Carlo method is used for estimating the pose 

of body. In particular, the augmented reality technique is involved to the measuring 

process, this measuring method provide the reliable estimation for importance factor. Our 
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approach was verified by long time cruise in a water tank. Experiment data indicates that 

it is robust and efficient for the real-time position tracking of the robot. 
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Chapter 1  Introduction 

1.1 Motivation 

The ability of self-localization is the prerequisite for intelligent robots, it due to the 

fact that the knowledge of position is the key information for carrying out various tasks. 

Today, many powerful sensors have come out such as Global Position System (GPS) or 

laser range scanner; they provide a reliable measurement for estimating vehicle’s 

position and perceiving environment. However, for underwater environment, 

acoustic-base sensors are still the most common used approach. Global Position 

System is not suitable here due to their rapid attenuation. The Doppler velocity log 

(DVL), which gets the motion information by calculating the time varying between the 

several sound wave cones, provides the vehicle’s trajectory. Similar measurement also 

can be got by the inertial navigation system (INS). In recently years, variety of 

vision-based methods for estimating robots position is presented [9] [10] [24]. 

Compare to other sensors, vision base approach provides good estimation on short 

range measuring. In addition, camera has fascinated characteristics for under water 

application such as smaller size and cheaper price. The information of vision also 

contributes other tasks such as object detect or path planning. Over the past years, 

camera has become an indispensable sensor for the underwater vehicle. Today, 
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numerous autonomous underwater vehicles (AUV) are ready to be applied for various 

missions: undersea infrastructures construction and maintenance, sea environment and 

life investigation, military missions, prospection, sunken ships rescue and security, etc. 

Vision has become essential for all these applications. Hence, there exists a good 

motivation to improve AUVs navigation techniques by expanding their autonomy, 

capabilities and their usefulness.  

However, although various sensors are maturely applying in the AUV navigation, 

dynamic model of vehicle is still indispensable on pose tracking problem. Different to 

kinemics, the dynamics of a robot vehicle describes how the robot moves in response 

to these actuator forces. Dynamic model provides the prior estimation for vehicle's 

motion. Once the equations of motion for a vehicle are known, a simulation of vehicle 

motion can be used to compare to real experimental data. The vehicle localization is 

further enhanced with fusion of model with onboard depth and yaw angle 

measurements through a particle filter. 

In this paper, the identification approach is based on the free-running method [3]. 

Common used method for acquiring the motion data is using the Planar Motion 

Mechanisms (PMM). However, PMM needs a huge water tank and a towing tank 

carriage, and it is a heavy price for maintaining it. On the one hand, free-running 

experiment allowing AUV to swim for a range without any constrain. The motion of 
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vehicle was measured by sensors such as inertial navigation system (INS). In our work, 

we use vision system for measuring the motion of AUV. Comparing to the INS, vision 

system has the merit that has no drift problem, lower hardware requirements and small 

experimental site. 

Localization and tracking problem can be classified into two categories: relative 

and absolute. The relative localization method measures the on-board sensors such as 

odometry, gyroscope and accelerometer. Camera also could be applied on relative 

localization, this method called “visual odometry” and it has numerous researches and 

implementations [10] [13] [25]. Dead-reckoning is the navigation technique which 

employs the odometry data in the motion model of robot, and compute the position 

relative the start position. Although the relative localization can be applied in different 

environment, the localization error will grow with time. In contrast, absolute 

localization obtains the error-constrained position by beacons, satellite-based signal 

and landmarks. Absolute-base method could localize the robot even the robot suffer an 

abrupt movement. However, in practice, the robot cannot observe any landmarks 

sometime, so usually a robot user will fuse both of the information of landmarks and 

the odometry data by a Kalman filter or particle filter [22] for getting more reliable 

estimations. 

We address a monocular image-base method which robustly continues estimating 
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the vehicle’s absolute position, and reconstructs the trajectory in real-time. We 

introduce a novel method which is inspired by the augmented reality technique to 

provide the non-Gaussian distribution measurement model. Augmented reality (AR) is 

the opposite of the virtual reality (VR), which puts user into a completely synthetic 

environment. The augmented reality system makes the real and virtual objects coexist 

in a same space. There are many successful application of augmented reality [14] [15] 

[16]. The augmented reality system tries to enhance the user’s perceptional ability, the 

beginnings could date back to Sutherland’s research in 1960s. Early researches uses the 

device which called head mounted display (HMD) to see through and receive the 

augmented images. Recently, due to various kinds’ developments of display device, AR 

no longer is constrained on heavy devices. Today, augmented reality is showing its 

potential on different applications like medical, robot path planning, commercial and 

military. 

The idea of the AR-base tracking method is explained as follows: by 

pre-rendering what will be seen by the augmented reality technique, if the expectation 

is similar to the observing image which is captured from the camera, the uncertainty 

should be decreased. The pose estimating method will try to find the pose with best 

alignment between the projecting landmarks and the observing landmark on the 

appearance image. For detecting the observation landmark, the color segmentation 
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technique is adopted, more complex feature descriptor such as SIFT or SURF, and any 

feature correspondence algorithm are not used here. Different from the feature-base 

method, the appearance measurement method does not reconstruct the 3-D 

environment; the measurement is relative to the re-projected image. This appearance 

measurement is not only non-Gaussian but is also a non-parametric problem.  

We employed the sequential Monte Carlo method, or called particle-filter, in state 

estimation to cope with the measurement information. In general, more landmarks 

provides more accurate estimation. However, even there is just only one observed 

landmark, experimental data shows that our approach is still able to constraint the 

tracking error. In practical applications, two landmarks (LEDs) at each side of the 

testing tank were placed, and the error of localization could be less than 1 meter. All 

measuring processes are only referring to the current appearance image, so our method 

does not need to solve the data association problem. The data association problem is 

that correspond the measurement to the existence map, it is unavoidable for calculating 

the movement estimation. However, wrong associations will cause the localization 

disastrous. Our algorithm omits this expensive stage by simplifying the environmental 

features, and continually provides the robust measurements. 

Compare to other landmark-based method, our approach does not need to 

recognize the artificial landmark in the observing process. The prior information in our 
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method is the position of the landmark. Our system has been successfully applying in a 

real autonomous underwater robot for the marine museum. We tested it on the regular 

exhibition days when the environment contains full of dynamic interferences such as 

images of tourist and the change of luminance. It shows that this method is robust 

enough for such a noisy environment and it only depends on a single camera. The 

remainder of this paper is organized as following: Chapter 2 introduces the background 

of the image based method for navigation related to our research. Chapter 3 talks 

about the modeling of our robot. A novel method for seeking the parameters will also 

address in this chapter. The particle-filter localization method is introduced in Chapter 

4. Following the experiment result and conclusion will be shown in Chapter 5 and in 

Chapter 6, respectively. 

 

1.2 Related Work 

This paper we investigate the dynamic model of underwater vehicle. Similar 

researches which derive model by Newton’s second low [5] [6] [8] or Largrangian 

equations [4], they are basically the same but expressed in different formats. Our 

dynamic model is close to V. Kopman develop in [4], V. Kopman reduce degree of 

freedom to a planar motion, and use nonlinear optimization method in parameter 

identification. 
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Tracking and pose estimation are quite a complex problem in the underwater 

navigation community. Until now there is no single best solution in this issue. For 

underwater applications, traditional approaches, i.e. acoustic-base method, are still 

indispensable. However, acoustic systems usually are limited in resolution and size. 

Although the range of visibility is seriously limited in waters, more and more 

researchers using vision systems for their advantages of small size, low cost and better 

in the resolution. Recently, the major technique of localization in undersea area is the 

combination of the position estimation with map construction techniques. Haywood 

[26], Marks et al. [27] mosaicked the bottom image of sea and extracted the 

frame-to-frame displacement information for navigation purposes. Mosaic-base 

method usually assumes that the bottom of sea is plane and static, and the vehicle 

moves on the plane which is almost parallel to the target plane. Eustice and Pizarro [13] 

employed the combination of camera with other sensors to get the 

six-degree-of-freedom movement of a vehicle. It improves the robustness of image 

registration than camera-only approach because the pose had been constrained by 

multiple sensors. Gracias [10] developed a method for mosaicking that did not 

constrain the camera motion or its relative orientation to the target plane. The method 

was based on self-calibration technique by robust matching algorithm between pairs of 

consecutive images of a video sequence. 
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Position tracking plays an essential role for augmented reality applications. 

Depend on tracking features is artificial or not, the vision-based tracking in AR can be 

divided into the marker approach and the markerless approach. Early AR applications 

in prepared environments usually use the fiducially markers [16] or light emitting 

diodes (LEDs) to find out the relationship between the local and world coordinate. In 

contrast, markerless-base AR was developed for less-constrain. The markerless-base 

AR tracks camera by natural features [28]. Recently an outstanding work is by Schöps 

[28] who presented a direct monocular visual odometry algorithm. In addition to 

estimate the camera pose, the technique maps the environment by pixel-wise filtering 

over many small-baseline stereo comparison. This method is fundamentally different 

from feature-based method, it allow for fast and sub-pixel camera tracking. Even 

though the robustness and the computational costs need to be improved, pure 

vision-based approaches for pursuing general-case, real-time tracking are very 

promising. 

 Han [29] applied fisheye lens to observe the surrounding environment. The 

ground robot could obtain more information by the omnidirectional vision system. 

They also employ landmark-based global localization by particle filter, and developed 

the measurement model for the landmark. Wolf [17] also presented visual global 

localization based on particle-filter. They compared the possible view-points to 
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database by color image retrieval system. To overcome that small corresponding 

view-point problem, an invariant feature was defined. 

 

1.3 System Architecture 

The tested AUV has 90 cm overall length and 19.5 Kg dry mass, see Fig.1.1. The 

streamlined shell of AUV is made of acrylic. In front of the AUV retains two holes for 

observing cameras. A water-proof aluminum box contains the battery and all electric 

systems are mounted inside the shell. Particularly, the AUV equipped a propeller which 

is mounted on a rotatable fixture in the rear side, the AUV then has the thrust vector 

control ability. In general, the system is divided into three partitions, which include: 

(1) Computer: An Advantech highly-efficient industrial PC is equipped. It 

receives the pre-command from operator through wireless communication and 

subsequently arranges the tasks. All movements of the lateral fins and thrusters are 

controlled by the PC. The control command is designed by the PID control to increase 

the robustness and the smoothness in navigation. 

(2) Sensors: The perception system includes two ARTCAM-022MINI cameras 

which has a frame rate up to 50 fps, a pressure transducer and an electronic compass. 

All sensors provide the feedback information to the computer for controlling the depth 

and heading of vehicle. The measurement update rate is 10 Hz, which is sufficient for 
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motion control in our application. 

(3) Propeller and Control Surface: This module executes the final decision of task 

command. Two FAULHABER 2657_024CR series motors with the maximum torque 

of 1.324 N-m are used to drive the angle of the lateral fin and the propeller. 

Compared to traditional rudders, the vectoring thrust provides sufficient heading 

control ability even in quite slow speeds, also decreases the drag force during swing 

moment. The propeller of the AUV can rotate in the horizontal plane, so the depth is 

controlled by the lateral fins. Additionally, two Lithium-ion batteries and three voltage 

transformers are placed ahead of the waterproof box to balance the gravity of the rear 

bracket and the propeller. 

 

 

Figure 1.1 AUV pictured from the side and top with horizontal fins and a rotable 

propeller. 
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Figure 1.2 AUV system architecture. 
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Chapter 2  Computer Vision Background  

In this chapter, we briefly introduce the background knowledge about computer 

vision. These image mapping techniques will be mentioned in this chapter, include the 

following parts: 

 

(1) Motion data Measuring (section 3.2.3) 

(2) The observation model of particles filter (section 4.3) 

(3) Landmark detection (section 4.2) 

 

2.1 Camera Projection Model 

The purpose of camera calibration is to find the model that describes the 

transformation relationship among the image coordinate system, the camera coordinate 

system, and the world coordinate. There are two type coordinate representations for 

image coordinate. The one is described by using metric units and the other is described 

by using pixel units. The 𝑥 − 𝑦 coordinate system is used to describe the first one and 

the 𝑢 − 𝑣 coordinate system to describe the second one. The relationship of the two 

descriptions can be shown as: 
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 [
𝑢
𝑣
 
]  [

   𝑢 

   𝑣 

   
] [

𝑥
𝑦
 
]       (2. 1) 

 

Where    𝑢  𝑣   is the principal point of image,    and    are the scale 

factors in image of 𝑢  and 𝑣  axis respectively. The relationship between two 

coordinate representations is shown in following figure. 

 

y

u

v

O1(u0,v0)

x

 

Figure 2.1 Relationship between two image coordinate representations. 

 

The original point of camera coordinate system (𝑋𝑐 − 𝑌𝑐 − 𝑍𝑐 coordinate system) 

is at the optical center of the camera lens. The 𝑋𝑐 axis and 𝑌𝑐 axis are parallel to the 𝑥 



doi:10.6342/NTU201600174

 

14 

 

axis and 𝑦 axis respectively. Additionally, the 𝑍𝑐 axis is perpendicular to the image 

plane. The relationship between the image coordinate system and camera coordinate 

system can be written as: 

  

                                           [
𝑥
𝑦
 
]  

 

  
[
𝑓
 
 

−𝑓 𝑐𝑜𝑠 𝜃
𝑓 𝑐𝑜𝑠 𝜃

 

 
 
 

 
 
 
] [

𝑋𝑐

𝑌𝑐
𝑍𝑐

 

]                (2.2) 

  

Where 𝑓  is the focal length of the camera, 𝜃  is the skew factor of camera 

coordinate system. Because of the excellent modern camera manufacturing technology, 

the skew factor almost is zero for the camera models. Hence, the 𝜃 should be equal 90
o
, 

the equation could be rewritten as follow: 

 

[
𝑥
𝑦
 
]  

 

𝑍𝑐
[
𝑓
 
 

 
𝑓
 

 
 
 

 
 
 
] [

𝑋𝑐

𝑌𝑐
𝑍𝑐

 

] 

(2.3) 

Substitute equation 2.3 to equation 2.1, the equation could be shown as: 

[
𝑢
𝑣
 
]  

 

𝑍𝑐
[
   𝑢 

   𝑣 

   
] [

𝑓
 
 

 
𝑓
 

 
 
 

 
 
 
] [

𝑋𝑐

𝑌𝑐
𝑍𝑐

 

] 

 
 

𝑍𝑐
[
𝑓  

 
 

 
𝑓  

 

𝑢 

𝑣 

 

 
 
 
] [

𝑋𝑐

𝑌𝑐
𝑍𝑐

 

] ≡
 

𝑍𝑐
𝐴𝑃𝑐 

                                                    (2.4) 
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where 𝐴 is the homogenous camera intrinsic matrix, 𝑃𝑐 is a coordinate position 

with respect to the camera coordinate system. 

The original point of the world coordinate system (𝑋𝑤 − 𝑌𝑤 − 𝑍𝑤  coordinate 

system) is at any point of the three-dimensional space. The relationship between the 

camera coordinate system and the world coordinate system can be depicted as follow: 

 

[

𝑋𝑐

𝑌𝑐
𝑍𝑐

 

]  [
𝑅3×3 𝑇3× 

 𝑇  
] [

𝑋𝑤

𝑌𝑤
𝑍𝑤

 

] 

                    (2.5) 

where 𝑅3×3  𝑅𝑥 
𝑅𝑦 

𝑅𝑧   𝑟𝑥 𝑟𝑦 𝑟𝑧  is a rotation matrix which can be 

obtained from matrix multiplication of the three basic rotation matrices about the 𝑋𝑐, 

𝑌𝑐 ,and 𝑍𝑐  axis, 𝑟𝑥 , 𝑟𝑦 ,and 𝑟𝑧  are the three columns unit vectors of 𝑅 , 𝑇3×  is a 

translational vector which relates the world coordinate system to the camera coordinate 

system, and  𝑇  [   ]𝑇. 

Substitute equation 2.5 into equation 2.4, a linear transformation between the 

world coordinate system and the image coordinate system can be derived as follow: 

 

 𝑠�̃�  𝐴𝑐 𝑅  𝑇  ̃                      (2.6) 
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where the 𝐴𝑐  [
𝑓   𝑢 

 𝑓  𝑣 

   

]  , �̃�  [𝑢 𝑣  ]𝑇  is a homogeneous 

coordinate,  ̃  [𝑋𝑤 𝑌𝑤 𝑍𝑤   ]𝑇  is a homogeneous coordinate in the 

three-dimensional space, 𝑠 is an arbitrary scale factor. 

 

2.2 Extrinsic Matrix Estimation 

Recall the eq. 2.6, matrix [𝑅|𝑡] represents the extrinsic parameters which denote 

the coordinate system transformations from 3-D world coordinates to 3-D camera 

coordinates. The extrinsic parameters define the position of the camera center and the 

camera's orientation in world coordinates. T is the position of the origin of the world 

coordinate system expressed in coordinates of the camera-centered coordinate system.  

The parameters of intrinsic matrix (IM) usually are known from the 

specifications of camera. Following we explain how to estimation the extrinsic 

parameters. We expand eq. 2.6: 

 

𝑠�̃�  [
𝑠𝑢
𝑠𝑣
𝑠
]  [

𝑓𝑥  𝑢 

 𝑓𝑦 𝑣 

   

] [

𝑟  
𝑟2 
𝑟3 

𝑟 2
𝑟22
𝑟32

𝑟 3
𝑟23
𝑟33

𝑇𝑥
𝑇𝑦
𝑇𝑧

] [

𝑋𝑤

𝑌𝑤
𝑍𝑤

 

] 

        (2.7) 

Combine intrinsic matrix and extrinsic matrix into M, and the resulting matrix is 

called the camera projection matrix.  
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  [

𝑚  

𝑚2 

𝑚3 

𝑚 2

𝑚22

𝑚32

𝑚 3

𝑚23

𝑚33

𝑚 4

𝑚24

𝑚34

] 

                 (2.8) 

Hence the projection can be express as: 

 

𝑢  
𝑚  𝑋𝑤 + 𝑚 2𝑌𝑤 + 𝑚 3𝑍𝑤 + 𝑚 4

𝑚3 𝑋𝑤 + 𝑚32𝑌𝑤 + 𝑚33𝑍𝑤 + 𝑚34
 

𝑣  
𝑚2 𝑋𝑤 + 𝑚22𝑌𝑤 + 𝑚23𝑍𝑤 + 𝑚24

𝑚3 𝑋𝑤 + 𝑚32𝑌𝑤 + 𝑚33𝑍𝑤 + 𝑚34
 

                (2.9) 

M has 11 independent entries, so it needs at least 11 equations for computing M, 

Namely we need at least 6 world-image point correspondences. Levenberg-Marquardt 

optimizer is used here to solve M. In order to extract R, T from M, we decompose M 

matrix and we get: 

 

  [
𝑓𝑥𝑟  + 𝑢 𝑟3 
𝑓𝑦𝑟2 + 𝑣 𝑟3 

𝑟3 

𝑓𝑥𝑟 2 + 𝑢 𝑟32
𝑓𝑦𝑟22 + 𝑣 𝑟32

𝑟32

𝑓𝑥𝑟 3 + 𝑢 𝑟33
𝑓𝑦𝑟23 + 𝑣 𝑟33

𝑟33

𝑓𝑥𝑇𝑥 + 𝑢 𝑇𝑧
𝑓𝑦𝑇𝑦 + 𝑣 𝑇𝑧

𝑇𝑧

] 

   (2.10) 

However, even we now have rotation matrix R, to get R, T we need to converts a 

rotation matrix to a rotation vector through: 
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sin 𝜃 [

 −𝑟𝑧 𝑟𝑦
𝑟𝑧  −𝑟𝑥
−𝑟𝑦 𝑟𝑥  

]  
𝑅 − 𝑅𝑇

2
       𝜃  𝑛𝑜𝑟𝑚 𝑟  

        (2.11) 

Equation 2.11 is called the Rodriguez transform. 

 

2.3 Homography Transform 

Two views of the same 3-D plane are related by a homography [11] (also referred 

to as a planar transformation), which is represented by a 3*3 matrix defined up to a 

scale factor. A homography matrix performs a point-to-point mapping between the 

homogeneous coordinates of the image points 𝑥′ and x, such that 𝑥′  𝐻𝑥. From [25] 

we know it has, at most, eight degrees of freedom. Therefore, estimating H requires at 

least four pairs of corresponding points; in the case of more than four 

correspondences, it can be estimated by least squares. Matrix form is express as 

following: 

[
𝑥′

𝑦′

 

]  [

h  h 2 h 3

h2 h22 h23

h3 h32 h33

] [
x
y
 
] 

 (2.12) 

Therefore we can get: 

𝑥′  
h  x + h 2y + h 3

h3 x + h32y + h33
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𝑦′  
h2 x + h22y + h23

h3 x + h32y + h33
 

               (2.13) 

 

 

Figure 2.2 The projected relationship of Homography. 

 

If we have enough pairs of corresponding points, Levenberg-Marquardt (LM) 

algorithm can be used to refine the Eq.2.14, Random sample consensus (RANSAC) 

algorithm will be used here for providing initial condition of nonlinear optimization. 

 

𝑚𝑖𝑛 𝐻 ∑‖𝐻𝑥′𝑖 − 𝑥𝑖‖
2 

                    (2.14) 
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2.4 Lab color space 

The L-a-b color space is a color opponent space with dimension L for lightness and 

a, b for the color-opponent dimensions, based on a nonlinearly compressed CIE XYZ 

color space coordinate [2]. The nonlinear relations for L, a, and b are intended to mimic 

the nonlinear response of the eye. Furthermore, uniform changes of components in the 

L-a-b color space aim to correspond to uniform changes in perceived color, so the 

relative perceptual differences between any two colors in L-a-b can be approximated by 

treating each color as a point in a three-dimensional space. An L-a-b color space creates 

a space which can be computed from the XYZ space, but is more perceptually uniform 

than XYZ. Perceptually uniform means that a change of the same amount in a color 

value should produce a change of about the same visual importance. Both L-a-b spaces 

are relative to the white point of the XYZ data they were converted from. L-a-b values 

do not define absolute colors unless the white point is also specified. 

The solution to convert digital images from the RGB space to the L-a-b color 

space is given by the following formula. 

 

 116 16
n

Y
L f

Y

  
  

 
 (2.15) 

 500
n n

X Y
a f f

X Y


    

     
     

 (2.16) 
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 200
n n

Y z
b f f

Y z


    

     
     

 (2.17) 

 

, , ,X ,n nX Y Z Y and nZ  are the coordinates of the CIEXYZ color space. The 

solution to convert digital images from the RGB space to the CIEXYZ color space is 

in the following formula. 

 

 

0.608 0.174 0.201

0.299 0.587 0.114

0 0.066 1.117

X R

Y G

Z B

     
     


     
          

 (2.18) 

 

, ,n nX Y and nZ  are respectively corresponding to the white value of the 

parameter. 

 

  

1

3                  , 0.008856

16
7.787 , 0.008856

116

x x
f x

x x




 
  


 (2.19) 

 

Color space conversion is the translation of the representation of a color from one 

basis to another. This typically occurs in the context of converting an image that is 

represented in one color space to another color space. 
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Chapter 3  Vehicle Motion Model 

3.1 Vehicle Dynamic Modeling 

In order to simplify the modeling procedure, the following assumptions are 

considered must be pre-declared: 

 

1. The shape of body and the distribution of mass are symmetric about the 

𝑌𝑏-𝑍𝑏 plane. 

2. The AUV has a small heave motion, so our model to be considered as planar 

motion which remains surge, sway, and yaw. 

3. The center of mass and the center of buoyancy have same location in horizontal 

plane and has sufficiency static margin. 

 

To describe the motions of AUV, we use [𝑋𝑤 𝑌𝑤 𝑍𝑤]𝑇 to represent the world-fix 

coordinate system, and [𝑥𝑏  𝑦𝑏  𝑧𝑏]
𝑇 indicate the body-fix coordinate system and the 

original point locates on the center of buoyancy. Figure 3.1 shows the coordinate and all 

related forces act on AUV. The thrust 𝑇 with an angle θ and moment reaction   acts on 

the hinge of propeller. Hydrodynamic effects of the AUV’s body can be considered as 

drag  𝑓𝐷 and lift forces  𝑓𝐿, which acting against and normal respectively to the AUV’s 
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velocity �⃑�  [𝑢 𝑣 𝑤]𝑇 direction through the center of buoyancy 𝐵. 

 

B

mH

T

y
b

x
b

θ

R
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Figure 3.1 The reference frames of AUV with associated forces and moments. 

 

In this article, we use Newton-Euler method to derive the dynamic model. First, 

expression of the Newton's second law of motion is written as:  

 

𝐹𝐸  
𝑑𝐵

𝑑𝑡𝐼
 

𝐻𝐸  
𝑑𝐾

𝑑𝑡𝐼
 

 (3. 1) 

where 𝐼 indicates the inertial reference frame, here it equals to the world-fix 



doi:10.6342/NTU201600174

 

24 

 

frame. The symbols 𝐵 and 𝐾 are the linear and the angular momentum, 𝐹𝐸 and 𝐻𝐸 

are the sum of external body forces and moments acting on the AUV. In order to derive 

the momentum, suppose 𝑟𝐺 is the vector of AUV's center of mass, so the absolute 

speed of center of mass 𝑉𝐺 can be derived as follow: 

 

𝑉𝐺  𝑉 + 𝑟�̇� +  × 𝑟𝐺                      (3.2) 

𝑉  𝑢𝑖 + 𝑣𝑗 +  𝑘                       (3. 3) 

 

Here 𝑉 is the absolute speed of the origin of the body-frame, which is shown in 

Fig.3.1. For most vehicles, the consuming rate of fuel also can be neglected, that is �̇� 

equal to zero. Thus the differentiation of linear momentum 𝐵 becomes: 

 

𝐹𝐸  𝑚
𝑑

𝑑𝑡𝐼
 𝑉 + 𝑟�̇� + ω × 𝑟𝐺  

                 (3. 4) 

If the vehicle does not equip any trimming weight system, 𝑟𝐺 will not change with 

time. Therefore, differentiate each term of Eq. 3.4 and we will get the relationship 

between external force and the rigid body motion: 

 

𝐹𝐸  𝑚(�̇� +  × 𝑉 +  ̇ × 𝑟𝐺 +  ×   × 𝑟𝐺 )           (3. 5) 
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Similarly, the rotating motion can be derived as: 

 

𝐻𝐸  𝑚𝑟𝐺 × (�̇� +  × 𝑉) + 𝐼  ̇ +  ×  𝐼                (3. 6) 

 

where 𝐼  is the inertia matrix: 

 

𝐼  [

𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧

] 

 

Notice that the external force and moment can be decomposed as 𝐹𝐸  𝑋𝐸𝑖 +

𝑌𝐸𝑗 + 𝑍𝐸𝑘  and 𝐻𝐸  𝐾𝐸𝑖 +  𝐸𝑗 + 𝑁𝐸𝑘 , so we expanded Eq. 3.5 and Eq. 3.6 and 

combine both in concise way, then the six-degree-of-freedom rigid body motion is 

represented as follows. 

 

    ̇  𝐶    +                (3. 7) 

 

Where the matrix     is the inertial matrix and 𝐶    is the Coriolis and 

centripetal matrix.     include all the external forces such as trust from propeller, 

restoring moment and hydrodynamic force. However, since we already restricts our 

motion model to the planar motion, the pitch, roll, and heave motion are all be 

considered to be zeros. Therefore, the restoring moment which is from the interaction 

between gravity and buoyancy is neglected. In addition, we select the origin of 



doi:10.6342/NTU201600174

 

26 

 

body-frame fit to the center of buoyancy, so that 𝑟𝐺  [   ]𝑇and 𝐼  remains the 

principal axis component. Under these assumptions and combine the added mass 

effect, Eq. 3.7 reduces to [5]: 

                 

 𝑚 − 𝑋 ̇ �̇�      𝑚 − 𝑌 ̇ 𝑣𝑟 + 𝑋𝐸 

 𝑚 − 𝑌 ̇ �̇�  − 𝑚 − 𝑋 ̇ 𝑢𝑟 + 𝑌𝐸 

 𝐽𝑧 − 𝑁 ̇ �̇�    𝑌 ̇ − 𝑋 ̇ 𝑢𝑣 + 𝑁𝐸 

                 (3. 8) 

Where 𝑚 is the mass of vehicle body, 𝐽𝑧 is the inertia moment about the z-axis, 

𝑋 ̇ , 𝑌 ̇ and 𝑁 ̇ represent the effect of added mass about the x-directions, y-directions 

and the rotating axis z-axis, usually, −𝑋 ̇, −𝑌 ̇ and −𝑁 ̇ are positive numbers. The 

hydrodynamic drag, lift and moment acting on the body are merged with thrust force 

into    .  

According to Fig. 3.1, the external force depicted from Eq. 3.8 can be expressed as 

following: 

 

𝑋𝐸  𝑇 𝑐𝑜𝑠 𝜃 − 𝑓𝐷 𝑐𝑜𝑠  + 𝑓𝐿𝑠𝑖𝑛                  (3. 9) 

𝑌𝐸  𝑇 𝑠𝑖𝑛 𝜃 − 𝑓𝐷 𝑠𝑖𝑛  − 𝑓𝐿 𝑐𝑜𝑠                  (3. 10) 

𝑁𝐸  −𝑇 𝑠𝑖𝑛 𝜃 +  + 𝑚                    (3. 11) 
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Here,   is the attack angle of the vehicle, and refer to [4], the hydrodynamic 

damping terms are: 

𝑓𝐷  
 

2
 𝑉2 𝐶𝐷         (3. 12) 

𝑓𝐿  
 

2
 𝑉2 𝐶𝐿           (3. 13) 

𝑚  
 

2
 𝑉2  2𝑅 *𝐶   +

2 

 
𝐶  𝑟+               (3. 14) 

 

Above equations involve several hydrodynamic damping coefficients, which are 

the coefficient of drag 𝐶𝐷, coefficient of lift 𝐶𝐿, coefficient of hydrodynamic restoring 

moment 𝐶  , and coefficient of hydrodynamic viscous moment 𝐶  . In addition,   is 

the mass density of water and   is the reference surface area of the vehicle. The 

reference surface area has several definitions in the literature, such as wet surface area 

or platform area. Naturally, different definition yields different values for the reference 

surface area. We also must note that the value 𝑉 and   are time-varying. 

 

3.2 Parameters Estimation 

3.2.1 Thrust Estimation 

An experiment is set up for getting the relationship between thrust and voltage. A 

load scale was attached to the tested AUV to measure the thrust. We gave the AUV an 
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input value to make a forward motion, and motion was constrained in one direction. 

The input value, which is a control value between -128 to 128, is proportional to 

voltage. Negative values mean reverse rotation which is not considered, so we just 

treat the positive control value 0-128. Table 3-1 shows the experiment results of thrust 

measurements. 

 

Table 3-1 Loading vs. voltage (control input) experiment results 

Voltage 

Command 

(Vc) 

Initial 

Loading  

(g) 

Final 

Loading  

(g) 

Difference  

(g) 

Force  

(N) 

15 2005 1860 145 1.421 

15 2005 1900 105 1.029 

15 2005 1890 115 1.127 

25 2005 1760 245 2.401 

25 2005 1720 285 2.793 

25 2005 1710 295 2.891 

35 2006 1480 526 5.1548 

35 2006 1480 526 5.1548 

35 2006 1550 456 4.4688 

40 2006 1400 606 5.9388 

50 2006 1040 966 9.4668 

50 2006 1100 906 8.8788 

60 2004 844 1160 11.368 

60 2004 822 1182 11.5836 

60 2004 912 1092 10.7016 

80 2003 500 1503 14.7294 

80 2003 480 1523 14.9254 

80 2003 610 1393 13.6514 

100 (max) 2003 601 1402 13.7396 
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Figure 3.2 The relationship between force and voltage.  

 

Through the experiment data, the Vc – thrust relationship can be obtained by 

linear regression. The equation is: 

𝑇 𝑣     .2   𝑣 −  2.2                     (3. 15) 

 

3.2.2 Added Mass 

When a solid body moved in fluid, it removed the surrounding fluid simultaneously. If 

the body accelerated, it also has to accelerate those surrounding fluid. Hence, the 

inertial force of those removed fluid can be seen as masses (or moments of inertia) that 

are added to the solid body. From the hydrodynamic theory, we can know an object 
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moving in boundless, ideal fluids, the containing kinetic energy is: 

 

𝑇  
 

2
∑∑ 𝑖 𝑣𝑖𝑣 

6

 < 

6

𝑖< 

 

(3. 16) 

where  𝑖  is a positive define matrix and has 6*6 dimension: 

 

λ  

[
 
 
 
 
 
λ  λ 2 λ 3
λ2 λ22 λ23

λ3 λ32 λ33

λ 4 λ 5 λ 6
λ24 λ25 λ26

λ34 λ35 λ36

λ4 λ42 λ43

λ5 λ52 λ53

λ6 λ62 λ63

λ44 λ45 λ46

λ54 λ55 λ56

λ64 λ65 λ66]
 
 
 
 
 

 

 (3.17) 

By the potential flow theory, we can prove: 

 

 𝑖    𝑖 

(3. 18) 

That means there are just 21 independent elements in the added mass matrix. Here the 

added mass is generalization, they contain different dimensions. When 𝑖 𝑗    2  ,  𝑖  

is mass, if 𝑖 𝑗       ,  𝑖  is moments of inertia. The indexes '1', '2', '3' represent the 

translation in x, y, z axis, '4', '5', '6' represent the rotation with respect to x, y , z axis. For 

understanding how much masses we must consider additionally, we transfer the kinetic 

energy come with the removing fluid into the kinetic energy of equivalent masses.  
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Expand Eq. 3.19 we can get: 

 

𝑇  
 

2
[    𝑢

2 +  22𝑣
2 +  33𝑤

2 + 2  2𝑢𝑣 + 2 23𝑣𝑤 + 2  3𝑤𝑢 

+ 44𝑝
2 +  55𝑞

2 +  66𝑟
2 + 2 45𝑢𝑣 + 2 56𝑣𝑤 + 2 46𝑤𝑢 

+2   4𝑢 +  24𝑣 +  34𝑤 𝑝 

+2   5𝑢 +   5𝑣 +   5𝑤 𝑞 

+2   6𝑢 +   6𝑣 +   6𝑤 𝑟 ] 

(3. 19)                

From the flow disturbance, the momentum and kinetic energy of fluid have the 

following relation: 

𝐵𝑖  
𝜕𝑇

𝜕𝑉𝑖
    𝑖    2 ⋯     

(3. 20) 

Notice that 𝑖    represents the motion in u direction, as 𝑉2  𝑣, 𝑉3  𝑤, 𝑉4  𝑝, 

𝑉5  𝑞 , 𝑉6  𝑟 . Substitute Eq. 3.19 into Eq. 3.20, we can get the expression of 

momentum in each direction. 

{
  
 

  
 𝐵  𝐵𝑥  

𝜕𝑇

𝜕𝑢

𝐵2  𝐵𝑦  
𝜕𝑇

𝜕𝑣
⋮

𝐵6  𝐾𝑧  
𝜕𝑇

𝜕𝑟

 

                         (3. 21) 
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The fluid inertia forces and torque on the vehicle are: 

{
𝐹𝐼  −

𝑑𝐵

𝑑𝑡

 𝐼  −
𝑑𝐾

𝑑𝑡

 

                         (3. 22) 

Simplifying our model into planar motion, we have that  𝑤  𝑞  �̇�  �̇�  𝑝  

�̇�   . Experience shows  26 is small and negligible, therefore, substitute Eq. 3.21 

into Eq. 3.22, the fluid inertia forces projection on body-fix coordinate system for our 

vehicle is expressed as following: 

 

{

𝑋𝐼  −   �̇� +  22𝑣𝑟
𝑌𝐼  − 22�̇� −    𝑢𝑟

𝑁𝐼  − 66�̇� +     −  22 𝑢𝑣
 

 (3. 23) 

Refer to Eq. 3.8, notice that     𝑋 ̇,  22  𝑌 ̇, and  66  𝑁 ̇. Added mass  𝑖  

of a solid body in fluid can be computed if the potentials of velocity fields is known 

which arise from the motion along and around coordinate axes. Therefore, to compute 

added masses, we need involve the Laplace equation problem with given boundary 

conditions. However, for an arbitrary body of revolution the solution is quite 

complicated [7]. In general, approximate methods of computation of added masses are 

adopted by modeling the vehicle in some simple bodies which could obtain the exact 

solutions of a Laplace equation. It is proper for modeling our vehicle to an ellipsoid 
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which is one of few cases can be analyzed explicitly [7]. By the simplification of body 

shape,  𝑖  will become zero if 𝑖 ≠ 𝑗, and the diagonal terms    ,  22 and  66 are: 

 

    
 

 
𝜋 𝑎𝑏𝑐

𝐴 

2 − 𝐴 

 22  
 

 
𝜋 𝑎𝑏𝑐

𝐵 

2 − 𝐵 

 66  
 

  
𝜋 

𝑎𝑏𝑐 𝑎2 − 𝑏2 2 𝐵 − 𝐴  

2 𝑎2 − 𝑏2 +  𝐴 − 𝐵   𝑎2 + 𝑏2 

 

        (3. 24) 

where 𝐴 , 𝐵  are:  

 

𝐴  𝑎𝑏𝑐∫
𝑑𝑢

 𝑎2 + 𝑢 √ 𝑎2 + 𝑢  𝑏2 + 𝑢  𝑐2 + 𝑢 
 

∞

 

𝐵  𝑎𝑏𝑐 ∫
𝑑𝑢

 𝑏2 + 𝑢 √ 𝑎2 + 𝑢  𝑏2 + 𝑢  𝑐2 + 𝑢 

∞

 

 

           (3. 25) 

Eq. 3.25 is the complete elliptic integral of the second kind. In above formulas, a, 

b, c are the half-axes of the three-axial ellipsoid we approximate. Hence, considering 

the contour of our vehicle, we got 𝐴   .2    and 𝐵   .  7  by using the 

software Mathematica for the integration. 
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3.2.3 Motion Data Gathering 

This section introduces the motion data recording method using a free running 

test for identifying the vehicle’s dynamic model. We focused on the drift motion; this 

is because most localization error comes from the inaccurate estimation of the yaw 

rate. Motion data gathering strategy is shown in Fig. 3.3, a landmark was arranged to 

guide the AUV and indicate the position where the AUV should begin turning motion. 

Several angles of the propeller jet were tested in our experiment. They would be 

constant during the rotation moment for a while until the speed had been stable. The 

AUV's motion were captured by the top-view camera. The camera has 4 m×2.4 m 

observable area on the AUV's running plane. 

 

Landmark

D

Camera

A

PC

(Motion Analysis)

Yw

Zw Xw

 

Figure 3.3 The free-running model test system. The distance D is the designed 

position where the AUV should begin the test motion. A is the observable area, and the 

blue dashed line represents the water surface. 
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Figure 3.4 Experiment surrounding and the EM calibration pattern. 

 

 

Figure 3.5 Calibration pattern captured by the top camera. Green circles are the 

reprojection of corners. 
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A set of calibration step is conducted to seek the camera's extrinsic parameters. We 

use a known dimension calibration pattern (Fig. 3.4) and put it at designed place where 

the world coordinate is known. Notice that we assume that the intrinsic parameter of the 

camera has already been well calibrated before the experiment. The estimation method 

of extrinsic parameters is introduced in Chapter 2.2. Once the extrinsic and intrinsic 

parameters are acquired, we could define the mapping relationship between image 

plane and any surface in the real world. In this test, the surface is where our vehicle 

operated on. 

 

Table 3-2 EM Parameters in our experiment environment (T in cm; 𝜃 in degree). 

𝑇𝑥 𝑇𝑦 𝑇𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧 

7.353762 -329.450 80.044741 84.476125 3.200259 -1.161266 
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Figure 3.6 (a) The tracking of the two makers. The two trajectories of makers 

will be described as two polygon functions (b) The trajectories in global frame which 

through the HM mapping. The grid size is 1m*1m. 

 

In order to stably track the vehicle, we put two makers both in the front and rear 

side of our AUV. Numerous methods for tracking feature on video stream were 

developed. Here we adopt the iterative Lucas-Kanade [1] method for the tracking 

motion of our AUV. The frame rate of the experimental video is about 30, with the 

resolution in 752×480 pixels. Current time of each frame is also recorded during the 
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experiment. Raw 2D position data on image sequence were recorded. The mapping 

procedure is via the homography transformation, which is discussed in Chapter 2. To 

estimate the homography matrix, we need at least four corresponding points. 

Corresponding pairs is easy to obtain if we get the EM parameters, which are listed in 

Table 3-2. We can find innumerable point pairs via the camera model projection. The 

HM is estimated by RANSAC method, and is listed as following: 

 

𝐻   [
 .       .   2  −2  .   227
 .    7 − . 2   2 2  .2 7  7
 .     2  .       .      

]         (3. 26) 

 

These raw data are smoothed by the regression analysis. The n-orders 

time-varying polynomials described the trajectory 𝑥  and 𝑦  of vehicle, the 

instantaneous heading angle of vehicle   was obtained by calculating the relative 

angle of the two makers. Figure 3.6 shows an example of tracking the two makers and 

the reconstructed continued trajectory which was drawn by the polynomial function. 

 

𝑥  𝑎𝑛𝑡
𝑛 + ⋯+ 𝑎 𝑡 + 𝑎  

𝑦  𝑏𝑛𝑡
𝑛 + ⋯+ 𝑏 𝑡 + 𝑏  

  𝑐𝑛𝑡
𝑛 + ⋯+ 𝑐 𝑡 + 𝑐  

                   (3. 27) 
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The order n is arbitrary depends on the shape of trajectory. In our application, we used 

n=20 to describe the trajectory. Therefore, by differential Eq. 3.27, we can get the 

velocity of vehicle in world space. 

The velocity in world space will further be transferred into body frame. By 

tracking the two makers on the AUV from video, we also know the global heading of 

body. So the attack angle   can be determined. Refer to fig.3.1, we decomposed 

global velocity V into surge and sway motion. The decomposed result are shown in 

Fig. 3.7 in various controlled thrust inputs. The relationship between the controlled 

gain value of voltage and thrust is described in Eq. 3.15. These motion data in body 

frame will be used in the next section. 

Although using camera to observe the position of vehicle is convenient and 

intuitive, the uncertainty of AUV’s position will increase with the distance between 

AUV and the camera. This is due to the quantization error. So in order to preserve the 

reliability of the motion data, the view of camera is better from the top view and testing 

area as near the camera as possible. 
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Figure 3.7 The (a) surge, (b) sway and (c) yaw rate during this test in three 

different speed input values. 
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3.2.4 Nonlinear Grey-Box Model Identification 

The planar motion model of the AUV contains several states which couple to each 

other. It is a high-order nonlinear system. In this section, we estimate the parameters 

through a nonlinear grey-box identification algorithm [4] [30] based on the 

free-running testing. Nonlinear grey-box models are suitable for estimating parameters 

of systems that are described by nonlinear state-space structures in continuous or 

discrete time. The purpose of the nonlinear optimization is minimizing the prediction 

error 𝜖 as: 

 

𝜖  ∑( 𝑒𝑥𝑝 −  𝑝 𝑒)
2
 

 (3. 28) 

Where  𝑒𝑥𝑝 is the acquired experimental data, and  𝑝 𝑒 represents the predicted result 

based on the testing model. The experimental data are the history of surge 𝑢 𝑡 , sway 

𝑣 𝑡  and yaw rate 𝑟 𝑡  of the vehicle, which have been shown in Fig.3.7. 

To deal with the optimization problem, we utilize the nonlinear grey-box model 

object of the Matlab system identification toolbox. The testing model has to be 

represented as the first-order nonlinear difference or differential equations form 

represented as the following: 
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𝑥 𝑡  𝐹 𝑡 𝑥 𝑡  𝑢 𝑡  𝑝  𝑝2 …  𝑝𝑛  

𝑦 𝑡  𝐻 𝑡 𝑥 𝑡  𝑢 𝑡  𝑝  𝑝2 …  𝑝𝑛 + 𝑒 𝑡  

𝑥    𝑥  

           (3. 29) 

The state vector 𝑥 𝑡  [𝑢 𝑡  𝑣 𝑡    𝑡 ]𝑇 contains surge, sway and yaw rate. 

The argument 𝑢 𝑡  is the input vector [𝑇 𝑡    𝑡  𝜃 𝑡 ]𝑇  where are the thrust, the 

moment acting on the hinge and the angle of propeller, these control information of the 

vehicle would be recorded during whole experiment. 𝑝  to 𝑝𝑛 are those parameters 

needed to be determined. Refer to the model equations, we exclude those time-varying 

terms and combined the others, then we can define the parameters as following: 

 

𝑝  𝑚 − 𝑋 ̇ 𝑝5  
 

2
  𝐶𝐿 

𝑝2  𝑚 − 𝑌 ̇ 𝑝6    𝑅𝐶   

𝑝3  𝐽𝑧 − 𝑁 ̇ 𝑝7  2  𝑅2𝐶   

𝑝4  
 

2
  𝐶𝐷  

 

Note that nonlinear optimum always stop at local minimum. Hence the initial 

values of those parameters seriously affect the identification result. In order to simplify 

the task, first three parameters which describe the added mass effect are pre-estimated 

by consulting with the literature. Since the number of parameters without initial guess 
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had been reduced to four, we sought the remaining parameters by the open-loop 

simulation. Suitable set parameters were selected for the initial values. Table 3.1 shows 

the set of initial values and the estimated results. The comparison between the 

experimental data and model is shown in the Fig. 3.6. Fig. 3.7 shows comparison of 

simulation and practical trajectory of the AUV; both were fed with the same control 

inputs. 

 

Table 3-3 Parameters of dynamic model 

Parameter P1 P2 P3 P4 P5 P6 P7 

Initial 24.691 72.937 2.3338 70.5 15.0 0.5 10.5 

Estimation 24.691 72.937 2.3338 153.413 54.743 -14.831 24.07 

 

3.3 Simulation 

The simulation is conducted for the AUV to move in two paths. Two control 

inputs in serial were set to drive the AUV to execute an L-shaped and an S-shaped 

trajectory. The rotating speed of tail during the control was considered in the 

simulation. The swing speed of the stern propeller was 62.4 (deg/s). Three speed input 

of propeller were tested here, which are 30, 40, and 50. From eq.3.15, we can know it 

equal to 4.17, 6.32 and 8.47 (N). 
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3.3.1 Test 1: L-Shaped Path 

 

Figure 3.8 The motor input value for dynamic model simulation. For our system, 

the motor input contains the direction and speed of the propeller. 

 

 

Figure 3.9 The simulated L-shaped trjectory. 
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Figure 3.10 The change of (upper) sway and yaw rate in this simulation. 
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3.3.2 Test 2: S-Shaped Path 

 

Figure 3.11 The motor input value for S-shaped trajectory. 

 

 

Figure 3.12 The simulation result of S-shaped trjectory. 
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Figure 3.13 The change of (upper) sway and yaw rate in this simulation. 
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3.3.3 Comparison to the experimental data 

Fig. 3.14 to Fig. 3.16 present comparisons between the experimental data used 

for identification of parameters, which was mention in Chapter 3.2.3. Simulations run 

using the identified parameters in Table 3-3. Also, the resulting trajectories out of 

three speed inputs of propeller are compared, and the swing angle of tail in all cases 

were set at position=30000, which means 𝜃 (in Fig. 3.1) is 54 degree. 
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Figure 3.14 Comparison of surge, sway and yaw rate at speed inupt 30. 
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Figure 3.15 Comparison of surge, sway and yaw rate at speed inupt 40. 
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Figure 3.16 Comparison of surge, sway and yaw rate at speed inupt 50. 
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Chapter 4  Pose Tracking 

4.1 Particles Filter Algorithm 

Particles filter represents the belief of state by a set of random samples. Particles 

can accommodate arbitrary noise distribution. In the re-sampling step, uncertainty of 

state estimation will be reduced. However, the re-sampling process needs to refer the 

result of weighting, so a precise perceptual model is critical. Particles filter is 

constituted with Monte Carlo sampling and recursive Bayesian filter, the main formula 

of recursive Bayesian filter is as follows: 

 

𝐵𝑒𝑙 𝑥   𝜂𝑝 𝑧 |𝑥  ∫𝑝 𝑥 |𝑥 ;  𝑢  𝐵𝑒𝑙 𝑥 ;  𝑑𝑥 ;  

(4.1) 

Here 𝐵𝑒𝑙 𝑥 ;   is the belief which represents pervious state of the vehicle, the 

notation 𝑧  is measurement of the vehicle, 𝑢  is the control input, and the conditional 

probability distribution 𝑝 𝑥 |𝑥 ;  𝑢   represents motion model of the vehicle. The 

likelihood 𝑝 𝑧 |𝑥   plays an important role in the PF. In this work, we 

calculate 𝑝 𝑧 |𝑥   using the AR technique to measure the similarity. The flow char of 

the PF localization is shown in Fig 4.1. For each particle, 𝑝 𝑥 |𝑥 ;  𝑢   is a Markov 

random process. Since it represents each particle's motion model, the Gaussian noise 
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was introduced in the state transferring step. In our work, the motion noise exists in 

yaw rate �̇� and linear velocity V. 

 

(�̂�
�̂̇�
)   (

𝑉
�̇�
) + (

𝜀 1| |: 2| ̇| 

𝜀 3| |: 4| ̇|
) 

                   (4.2) 

where �̂� and �̂̇� represent the motion in reality, 𝜀𝑏 is a zero-mean error variable with 

standard deviation b. Figure 4.2 illustrates the simulation of the motion model derived 

in Chapter 3 with noises. We can see due to the noise, the uncertainty of vehicle's pose 

will increase dramatically for long distance travelling. 

 

 

Figure 4.1 The process of particles filter localization 
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Figure 4.2 Sampled densities obtained for incremental movement of an AUV 

motion. Path are L-shpaed (left) and S-shpaed (right) which same as the simulation in 

section 3.3. 

 

Refer to Fig. 4.1, if the robot didn’t observe any features, the means of the 

predicted distribution will be the same as the distribution of the current state. Once 

observations are obtained, the particle which has the maximum likelihood will 

represent the current state. The weight of each particle is updated by the Eq. 4.3: 

 

𝑤 
[𝑖]  𝑤 ; 

[𝑖] ∙ 𝑝 (𝑧 |𝑥 
[𝑖]) 

                     (4.3) 

After a few iterations, the degeneration problem of the weights will arise. Some of them 

will have negligible value. Therefore in the re-sampling step, we eliminate the particles 

which has weighting less than 0.01. Also, the remained space from elimination will be 
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shared to the survived particles. The number of allotment is according their weighting 

score. Final step is normalizing the weight again, and we will obtain a new particle set 

which represents the new probability distribution of belief. 

 

4.2 Measurement Comparing Template 

Illuminants are suitable for guiding an underwater vehicle if there is large 

visibility. Water-proof LEDs of green color light were applied as the landmarks. To get 

the landmark's position from the robot's view, color segmentation process was utilized 

here. We adopted L*a*b* color space here. In practice, the color of LED light is not 

invariable, when the robot close to the light, the brightness of the light’s center will 

become white color in robot’s view. This may cause misdetection of LED’s position. 

To increase the accuracy of detection, after the green area was extracted by the color 

segmentation, we search the maximum brightness point within the area, which results 

in the detecting accuracy to be in pixel resolution. 

In order to speed up the comparison process, after the positions of landmarks are 

obtained, the detecting result was transferred into one-dimension histogram, which is 

shown in Fig.4.4. Considering measurement error, the possible position of landmark is 

modeled to have the Gaussian distribution. Measurement error may come from camera 

calibration or color segmentation. This histogram will be used for calculating the 
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likelihood which is addressed in the next section. 

 

 

Figure 4.3 The landmark extraction. Red rectangular represent first step - the 

color segmentation. After that, the center of LED will search in the region, which is 

represented by yellow cross. 

 

 

Figure 4.4 The Landmark detecting result and its corresponding histogram. 
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4.3 Observation Model 

In this section, we will present an effective measurement method for calculating 

the weight of each particle which uses the monocular camera for observing. The 

observation model in particles filter algorithm is used to calculate the importance factor 

of each particle. The importance factor is obtained as quotient as following:  

 

𝜂𝑝 (𝑧 |𝑥 
[𝑖] 𝑚)  

𝜂𝑝 (𝑧 |𝑥 
[𝑖] 𝑚) 𝑝 (𝑥 

[𝑖]|𝑥 ; 
[𝑖]  𝑢 ) 𝑏𝑒𝑙 (𝑥 ; 

[𝑖] )

𝑝 (𝑥 
[𝑖]|𝑥 ; 

[𝑖]  𝑢 ) 𝑏𝑒𝑙 (𝑥 ; 
[𝑖] )

 

             (4.4) 

Here the notation i indicate the i-th particle. Since 𝜂 is a constant, Eq. 4.3 is 

proportional to the importance factor. The numerator and the denominator are also 

called the target distribution and the proposal distribution. The importance factor 

accounts for the mismatch between these two distributions. 

To calculate the likelihood   𝑝 (𝑧 |𝑥 
[𝑖] 𝑚)  here we use registration technique 

which is the key issue of augmented reality. The registration problem amounts to 

tracking the camera pose in a world frame. The term m represents the map. Here it 

stores the 3-D world coordinate of all the landmarks. For general augmented reality 

application, the pose information are assumed known to form the extrinsic matrix. 

Back to calculation of likelihood, we re-project all the landmarks according to the 
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state 𝑏𝑒𝑙 (𝑥 ; 
[𝑖]

) of particle which implied an extrinsic matrix  [𝑅|𝑡]. Because the 

multi-hypothesis of body poses, not all the landmarks will be projected to the virtual 

image plane. This re-projection result represents the prediction of measurement of each 

state of i-th particle. At any time step, we process this prediction for n times to weight 

all the particles, where n is the amount of particles. 

Suppose the position of landmark in map is the 𝑝𝑓. Depend on the hypothesis of 

pose, we use the i-th extrinsic matrix is [𝑅|𝑡][𝑖] , then according to camera projection 

which has been discussed in Chapter 2: 

 

𝐼𝑝
[𝑖]  𝐾 [𝑅|𝑡][𝑖]𝑝𝑓                         (4.5) 

 

𝐼𝑝
[𝑖]

 is the imaged view of the i-th particle. It means that if the robot is located at that 

position, the expected appearance it will be seeing. Same as the observation, which 

transfer the landmark detecting result into 1-D histogram, the predicted image Ip was 

also transferred the 2-D landmark’s position into the histogram form. We also use the 

Gaussian distribution to model it for correlation. Here we defined 𝐻 (𝐼𝑝
[𝑖]) represents 

the combination of two of the histograms in X and Y axis. Assume that we have the 

observation image IO from camera. Therefore the weight is accounted by following 

equation: 

𝑤[𝑖]  𝑝 (𝑧 |𝑥 
[𝑖] 𝑚)  𝑁𝐶𝐶 ( 𝐻 (𝐼𝑝

[𝑖])  𝐻 𝐼   ) 

           (4.6) 
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The function NCC is the well knows "Normalized Cross Correlation". Equation 4.6 

calculates the similarity between predicted measurement 𝐻 (𝐼𝑝
[𝑖]) of each particle and 

real measurement 𝐻 𝐼  . Through this equation we assign different weights to each 

particle.  

 

4.4 Summary 

The sequential Monte Carlo method (SMC), also called particles filter (PF) is 

utilized for estimating the global pose of AUV. In general, particle filters can 

accommodate arbitrary sensor characteristics, motion dynamics, and noise 

distributions. However, in practice, real-time application always restricted by its 

heavy computer loading, or we must decrease the number of samples. In this chapter 

we present a pose tracking method without 3D reconstruction procedure (like stereo 

vision or structure from motion algorithm), and do not need any complex object 

reorganization or data association issue, which often appear in SLAM problem. The 

measurement method is quite simple but useful and reliable. Benefitting from the 

multi-hypothesis of PF, temporary mismatch of landmark can be overcome, PF will 

track all the hypothesis for seeking the best state. 
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Chapter 5  Experiment 

Our pose tracking method was tested using the robot Iron Fish (IF) which is an 

autonomous underwater vehicle. IF equip with a digital compass, a pressure gauge and 

two cameras, see Fig. 5.1. The AUV is equipped with the highly-efficient industrial 

computer, among which CPU adopts Intel Core i7-2710QE, RAM has 8 gigabytes. 

Basic heading and depth control were accomplished by PID controller, and the PID 

algorithm is given by 

 

𝑢𝑃𝐼𝐷  𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒 + 𝑘𝑑�̇�                    (5.1) 

 

where, 𝑢𝑃𝐼𝐷 is the output of the PID controller, 𝑘𝑝  is the proportional gain, 𝑘𝑖  is the 

integral gain, 𝑘𝑑  is the derivative gain and e is the error signal. 

 

 

Figure 5.1 The underwater robot IF and its peripheral equipment. 
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5.1 Experiment 1 – The Comparison of EKF and PF 

In this section, an experiment was introduced that verified the tracking algorithm 

which is developed in this work. The testing environment is shown in Fig.5.2. Two 

landmarks (buoy balls) are located at the position: x=5m, y=10m and x=10m, y=10m. 

During the experiment, the AUV tracked the two landmarks by the vision system. 

Motor input data are recorded within entire trip. Beside PF, we also implemented 

extend Kalman filter (EKF) localization algorithm. 

 

 

Figure 5.2 Stage arrangement of the experiment 1. While turning, two buoys are 

used for guiding the AUV. 
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5.1.1 Extended Kalman Filter 

Table 5.1 illustrates the EKF localization algorithm [22]. Here we provide the 

initial guess for both algorithms. We show that the PF algorithm has the global 

localization ability, on the other hand, EKF algorithm cannot track without given 

initial guess. Another dissimilarity is that in order to provide the inverse measurement 

for EKF localization, we use stereo vision method to get the depth information, then 

estimate the relative pose between the landmark and AUV. 

The EKF tracking result is shown by the red dot “x” trajectory in Fig.5.3. It 

shows that in the beginning of the tracking, the AUV is only running in 

dead-reckoning mode and kept diving until the target appeared in the view of camera. 

This is due to the field of view of camera was not able to cover the target. Once the 

target appears in the view of the camera, the measurement model started to update, 

and the outputted the best estimation of the vehicle pose. Additionally, in the Fig.5.4, 

black lines present Gaussian estimate of the AUV state at time -1t , with 1tX  . Blue 

lines present Gaussian estimate of the AUV state at time -1t , with x-position and 

y-position covariance 1t . 
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Table 5-1 Extended Kalman filter localization algorithm. 

Input  𝑿   𝜮   𝑴   

𝑱𝑋𝑡
 [

   − 𝑠𝑖𝑛 𝜃 𝑉𝑧 + 𝑐𝑜𝑠 𝜃 𝑉𝑥 ∆𝑡

   𝑐𝑜𝑠 𝜃 𝑉𝑧 + 𝑠𝑖𝑛 𝜃 𝑉𝑥 ∆𝑡
   

] 

𝑱 𝑡
 [

𝑠𝑖𝑛 𝜃 ∆𝑡 𝑐𝑜𝑠 𝜃 ∆𝑡  
− 𝑐𝑜𝑠 𝜃 ∆𝑡 𝑠𝑖𝑛 𝜃 ∆𝑡  

  ∆𝑡
] 

𝜮 𝑡
  

[
 
 
 (  |𝑉𝑥| +  2|𝑉𝑧| +  3|�̇�|)

2
  

 ( 4|𝑉𝑥| +  5|𝑉𝑧| +  6|�̇�|)
2

 

  ( 7|𝑉𝑥| +  8|𝑉𝑧| +  9|�̇�|)
2
]
 
 
 

 

�̅�  [

𝑥 +  𝑐𝑜𝑠 𝜃 𝑉𝑧 + 𝑠𝑖𝑛 𝜃 𝑉𝑥 ∙ ∆𝑡

𝑧 +  𝑠𝑖𝑛 𝜃 𝑉𝑧 − 𝑐𝑜𝑠 𝜃 𝑉𝑥 ∙ ∆𝑡

𝜃 + �̇�∆𝑡

] 

�̅�  𝑱𝑥𝑡
𝜮 𝑱𝑥𝑡

𝑇 + 𝑱 𝑡
𝜮 𝑡

𝑱 𝑡
𝑇  

𝑯  
𝜕 

𝜕𝑋 

 [
   
   
   

] 

𝜮 𝑡
 𝑯 �̅� 𝑯 

𝑇  

𝑲  �̅� [𝑯 ]
𝑇[𝜮 𝑡

]
; 

 

�̅�  �̅� + 𝑲 𝑒  

�̅�   𝑰 − 𝑲 𝑯  �̅�  

Return, �̅� , �̅�  
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Figure 5.3 Result of EKF localization 

 

 

Figure 5.4 x-position change of covariance with time 

 

 



doi:10.6342/NTU201600174

 

65 

 

 

Figure 5.5 y-position change of covariance with time 

 

5.1.2 Particle Filter Localization 

PF localization method was tested using the same environment. Fig.5.6 shows in 

the beginning of the tracking, also, because of the camera of the AUV unable to 

observe the target, the AUV predicted its pose by motion model until the target 

appeared in the view of the camera. And once the target appears in the view of the 

camera, the update step will be involved. AUV kept the target in the field of view 

until it decided to execute next task (tracking another buoy). Fig.5.7 shows that 

maximum weight of all samples were changed. We can see the target was contacted at 

about t=5 sec, and the huge vibration was due to the re-sampling procedure. 
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Figure 5.6 Result of SMC localization 

 

Figure 5.7 Changes of sample weight with time 
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5.2 Testing in NMMST’s Tank 

To test the tracking, the AUV was commanded to do numerous round trips to 

follow the reference path as shown in Fig. 5.9. The path is quite simple; however, at 

the end of the straight line path, the AUV needs to execute a 180 degrees turn. Motion 

model shows high speed turning motion is a challenge for tracking. The testing took 

1.5 hours to verify the stability of the tracking system. We recorded the video and data 

while the AUV did regularly performance in the NMMST water tank for evaluating 

system performance. Shape of the tank is rectangular with 17.16 meters length, 6.67 

meters width and 3.00 meters depth of water. Two green LED lights are mounted each 

side of the tank to be the landmark, the testing environment is shown in Fig.5.8. In 

this experiment, we used 200 particles for sampling. The start position of the path was 

given. The complete trajectories of the position included the X, Z, yaw angle are 

shown in Fig. 5.10. 
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Figure 5.8 The environment of the testing water tank in National Museum of 

Marine Science & Technology, Keelung, Taiwan 

 

 

Figure 5.9 The long cruise testing environment, red line is the reference path for 

one trip, two landmarks are mounted each side. The initial position of AUV was located 

at the middle of two landmark and the AUV must keep 1m distance to the side walls. 
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Figure 5.10 The tracking result of the cruise testing. (a) X-psition tracking result. 

(b) Y-position tracking result. (c) Yaw angle tracking result. 

 

 

5.3 The Kidnapped Problem 

In addition to the tracking capability, we also tested the global localization 

capability. The robot was suffering an abrupt movement to another position; this 
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situation is called the kidnapped robot problem. In order to let our AUV “notice” that it 

is getting lost, we need a magnitude value to indicate uncertainty of position during 

the state update process. Here we introduce the information entropy for determining 

the situation that AUV needs to be “woke-up” or not. Entropy was devised in the late 

1940s by Claude Shannon [31] when he invented information theory (then known as 

communication theory).  

 

𝐻 𝑋  −∑ 𝑃 𝑚𝑖 𝑙𝑜𝑔2 𝑃 𝑚𝑖 
𝑛
𝑖<                   (5.2) 

 

The Eq. 5.2 is same as the entropy in thermodynamics and that why it called 

entropy. From the equation, we know once the probability of events is closest to each 

other, the information entropy will be the maximum. It means the system has highest 

uncertainty now. Related to particles filter, the probability of event equals to the 

normalized weight of each particle, so we could use entropy for measuring the 

uncertainty of system. If the AUV was conscious that it needs a re-localization, the 

number of particles will re-distribute, but this time they will uniformly distribute on all 

map, no longer depend on the last state. Fig.5.11 shows the re-localization result and 

Fig.5.12 shows the uncertainty during the re-localization experiment. 
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Figure 5.11 Re-localization for the kidnap problem. 

 

 

Figure 5.12 Changes of information entropy. 
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Chapter 6  Conclusion 

In conclusion, two fundamental problems of robotic are investigated in this thesis, 

which are the modeling the dynamic behavior of an AUV and the technique to robustly 

track the pose of robot body. We constructed an AUV that has a rotatable stern 

propeller for horizontal turning. High turning-speed bring serious drift motion of 

vehicle. In Chapter 3, the dynamic model of the AUV is derived. An effective and low 

cost visual-based method for recording the bodily motion data is presented in this work. 

The motion data are used to identify the parameters of model by a nonlinear grey-box 

method. Simulation results show this dynamic model is reliable enough for predicting 

vehicle's motion. 

In addition, we present a novel monocular image-based tracking method for AUV 

in Chapter 4. By re-projecting the invariant features into current view of robot, we 

could get the similarity between predicted and real view of robot. In our system, we do 

not need to treat feature matching problem, and do not associate measurement to a map. 

Our method results in lower cost of computing load, and it is sufficient for real-time 

tracking of the robot in a water tank. 

 Fusion of the dynamic model and the re-projecting measurement model by 

particles filter are demonstrated to achieve a long-time navigation for the AUV in a 
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water tank. Particles filter was employed for carrying out the non-parametric 

appearance measurement. Due to the correctness of the dynamic model, fewer features 

(landmarks) number is needed in the tracking. The cooperation of dynamic model and 

visual-base measurement track the robot and recover its localization error, but also 

globally estimate its positions even the robot was "kidnapped". From the experiment, 

we show that with a limited amount of model errors, the time-independent error 

characteristics can be achieved.  

The contribution of this paper is that. First, we addressed a compact method to 

estimate the parameters of dynamic model. Second, a robust and efficiency tracking 

method was presented. Further work of our research is stated as following:  

 (1) More formality of features instead of LED lights could be applied in the 

tracking algorithms, they not limit to be the artificial landmarks. In fact, color 

information is enough to provide measurement for tracking.  

 (2) Using fisheye lens is a feasible solution for increasing the field of view. 

This will bring less chance of vision loss of the robot. Fortunately, the fisheye 

projection model is easy to be introduced in our system. 

 (3) Model-based optimal control will be investigated for instantaneous 

reacting moves when the robot suddenly encounters obstacles. The reactive navigation 

of an underwater robot is still a challenging problem. 
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Appendix 

Appendix A  

 

Table 6-1 Specifications of the propeller: 

Trade Name SEABOTIX 

Item Mode BTD150  SPECIFICATIONS 

Work Voltage (Volt) 19.1V DC  10% 

Work Current (A) 4.25 

Power(Watt) 110 

Weight (grams) 705(in air) 

350(in fresh water) 
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