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摘要 

 

近年來，社群網路的蓬勃發展逐漸地改變了人們的生活，越來越多人習慣在

社群網站上分享生活的點滴；據統計，平均每一天有數百萬的多媒體資料，例如

照片，被上傳至社群網站，而這樣龐大數目的多媒體資料裡極可能蘊藏著豐富的

資訊；在這篇論文裡，我們期望能從大量的多媒體資料裡萃取出有用的資訊，並

藉此解決人們日常生活裡常見的一些問題。 

從一張照片出發，我們期望建立一套資訊系統，可以找出這張照片是在哪裡

拍攝的，其他人可能會對這照片給予怎樣的文字標籤來描述這拍攝的內容，又這

張照片的拍攝地點附近是否有熱門的活動或事件；這樣的資訊，在日常生活裡可

以有許多應用，例如在旅遊的時候，我們常會想知道自己在哪裡、眼前的事物是

什麼，又或者在這附近平常會有什麼樣的活動或事件；這時只要隨手地對眼前事

物拍一張照，再將這照片送入此資訊系統，系統就可以快速地提供我們這些資訊。 

過去找出照片拍攝地點的常見作法是利用照片的視覺特徵與地理標籤，透過

與現有的資料比對，以推測出照片最可能的拍攝地點；但當照片是在室內被拍攝

或是拍攝地點有多個建築物時，可能會降低這類方法的準確度；為此，此論文進

一步地加入了打卡資料來輔助定位，同時提出一個有效的影像重新分群技術，來
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提升推測的照片拍攝地點的準確度。而對於找出照片就拍攝的內容其一般會被加

註什麼樣的文字標籤，常見的技巧是利用已有文字標籤的現有照片集來預測那沒

有標籤的照片其可能的文字標籤；一種有效作法是根據照片與照片之間的視覺相

似度來建構圖，這圖是以照片作為節點，相似度作為連接節點與節點之間的邊的

權重，之後考慮到邊的權重，將標籤自節點傳遞分享至沒有標籤的照片的節點，

這種作法即使是當沒有標籤的照片數目大於有標籤的照片數目仍經常有效；而考

慮到過去的方法大多是一次只傳遞單一個標籤，對於多個標籤的情況下則需要進

行多次，並且現有照片的數目一直以來持續地在增長，方法的效率逐漸成為一個

重要的議題；有鑑於此，此論文提出了一個基於分散式運算原理的多標籤傳遞

法，來有效率地同時傳遞多個標籤。對於找出熱門活動，過往的方法多專注於觀

察單一的多媒體資料集的資料變化，例如字詞的談論頻率變化，異常的變化則表

示可能有活動或事件發生；而此論文考慮到不同資料集其性質都有所不同，彼此

之間可能可以互補不足的地方，來提出了一個有效的兩階段式架構，能有效地結

合資料流類型的資料集及打卡類型的資料集，以找出熱門的活動或事件的發生時

間、發生地點及其內容資訊；由於已能找出照片可能的拍攝地點，則可以透過比

較可能的拍攝地點和熱門活動或事件的發生地點來找出照片拍攝地點附近的熱

門活動或事件。 

此論文所提的方法都已透過實驗分析來顯示這些方法的有效性。最後，此論

文提出一些未來可能的研究方向。 

 

關鍵字：事件挖掘、影像標註、影像地點辦識、複合式模型學習、社群網路媒體、

使用者資訊 
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Abstract

Social media have changed the world and our lives. Every day, millions of

media data are uploaded to social-sharing websites. The goal of the research is to

discover and summarize large amounts of media data from the emerging social media

into information of interests. Our basic idea is to perform multi-modal learning

for given data, leveraging user-contributed data from cross-domain social media.

Specifically, given a photo, we intend to discover geographical information, people’s

description or comments, and events of interest, closely related to the photo. These

information then can be used for various purposes, such as being a real-time guide

for the tourists to improve the quality of tourism. As a result, this dissertation

studies modern challenges of image location identification, image annotation, and

event discovery, followed by presenting promising ways to conquer the challenges.

For image location identification, most previous works directly integrated

visual features and geo-tags of the given photos. The performance of the exist-

ing approaches, however, could be limited if the given photos were taken indoors,

and/or their image contents contain a number of buildings in a close proximity. As

a solution, this dissertation unifies visual features, geo-tags, and check-in data, and

further presents an image cluster refinement approach, for image location identifi-

cation. For image annotation, label propagation is widely used to annotate photos
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based on similarity graphs of photos, where most pervious works focused on single-

label propagation. Although performing multi-label propagation is expected to be

more efficient for annotation than performing single-label propagation several times,

performing multi-label propagation may increase the computational complexities.

Further, sizes of image datasets continue to increase and thus increase the problem

complexity. As a solution, this dissertation presents a scalable multi-label propaga-

tion leveraging the power of distributed computing. For event discovery, most previ-

ous works investigated a specific media stream. Potentially, mining multiple media

streams is capable of achieving better performance than mining a media stream

alone, but could be more challenging. As a solution, this dissertation presents a

two-stage framework that combines a flow-based media dataset and check-in-based

media dataset for events-of-interest discovery.

Experimental results on real media datasets show the effectiveness of all of

the proposed approaches. Finally, this dissertation provides some possible directions

for future studies.

Keywords: Event Discovery, Image Annotation, Image Location Identification,

Multi-Modal Learning, Social Media, User-Contributed Content
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Chapter 1

Introduction

Every day, millions of media data are uploaded to various social-sharing websites.

For example, on average, more than 300 million images are uploaded to Facebook

in a day [16]. It is desirable to discover what the large number of data can be

used to make our lives better. In our daily life, “where am I?” and “what is this?”

and are two common questions that arise when people go out. Earlier, it could be

troublesome or even hard to find the answers, especially when there is a language

barrier, e.g., when travelling abroad. Moreover, people are often like to explore more

about the places they are visiting. “Are there special events or festivals?” “What

happened?” It is desirable to discover events of interest for a specific region.

As a solution, this dissertation attempts to build an effective social-media

mining system for these questions, by developing effective techniques of (1) image

location identification, (2) image annotation, and (3) event discovery, considering

modern challenges. Figure 1.1 illustrates the idea. Ideally, people may upload a

photo onto the system. The system then performs social-media information re-

trieval based on the photo. Specifically, the system is expected to generate geo-tags

that indicates where the photo might be taken by image location identification, tex-

tual tags that reflect the image content of the photo by image annotation, and an

event list that gives events of interest by event discovery. Although image location

identification, image annotation, and event discovery, are classical problems, modern

challenges have reshaped the problems.

This chapter is organized as follows. Section 1.1 introduces modern challenges

of image location identification, image annotation, and event discovery. Section 1.2

gives an overview of the dissertation. Finally, Section 1.3 details the organization
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Figure 1.1: Illustration of the desired social-media mining system, including the
components of image location identification, image annotation, and event discovery.
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of the dissertation.

1.1 Modern Challenges

This section presents challenges for (1) image location identification, (2) im-

age annotation, and (3) event discovery.

1.1.1 Image Location Identification

Image location identification aims to find where a given photo was taken.

Many studies for image location identification focus on landmark identification.

Given a photo, previous works for landmark identification typically matches the

photo with photos of landmarks using features and/or tags of these photos. After-

wards, the text- and geo-tags of the photo of landmark that is the most similar to

the given photo will indicate what landmark the photo was taken for and where

the landmark is located at (thus, where the photo might be taken), respectively.

Consider the phenomenon that people may take a photo of anything anywhere at

any moment. In contrast to landmark identification, this dissertation focuses on

city-view image location identification.

City-view image location identification is challenging mainly because of four

conditions: (1) a photo may cover only a small part of the target object; (2) a photo

may be taken under different operating conditions, such as weather conditions and

shot sizes; (3) photos for a building may be taken indoors or outdoors; (4) there

could be a number of buildings in a very close proximity. See Figure 1.2 as an

illustration1. Among the above four, conditions (1)–(3) and (3)–(4) may degrade

the performance of existing techniques based on visual features and geo-tags of

photos, respectively. In particular, conditions (3)–(4) are more critical to city-view

image location identification than traditional landmark identification. According

to a study of the positional accuracy from mobile phones, locations provided by a

1All of the photos shown in this figure were obtained from Foursquare [2].
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(a) (b) 

(d) (c) 

Figure 1.2: Illustration of challenges of city-view image location identification. (a)
Photos that cover a small part of a building. (b) Photos that were taken in the
morning and in the evening, respectively. (c) Photos that were taken indoors and
outdoors, respectively. (d) Photos that show several stores being in a close proximity.
These conditions may degrade the performance of existing techniques that are based
on visual features or geo-tags of photos.

mobile phone may have a root mean square error (RMSE) of 12.5 or 21.6 meters

depending on that the phone is used outdoors or indoors [55]. Sometimes, an error

of 47.9 meters might occur when a phone is used indoors [55]. Thus, previous works

such as [28] that directly integrated visual features and geo-tags of photos may have

a limitation on distinguishing a building within a city from the others, if the given

photos were taken indoors and/or these buildings are in a close proximity.

1.1.2 Image Annotation

Image annotation aims to add proper tags for the images of a given image

dataset. Image annotation is challenging mainly because of four reasons: (1) there

are relatively few images having tags in a general image dataset, i.e., the resource

is strictly limited, (2) an image dataset may have two or more similar images of the

4
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same landscape but with different tags from different interpretations, (3) the number

of images continues to grow rapidly, and thus complicates the learning process, and

(4) traditional supervised approaches might not be practical because of the hard to

form a model for every tag.

As a solution, semi-supervised learning (SSL) is widely-used to realize image

annotation. SSL is a learning technique to explore lots of untagged images in the

presence of a small amount of tagged images. Among the SSL approaches, graph-

based approaches are quite popular due to their higher efficiencies in contrast to

other approaches [60]. A typical graph-based approach models both tagged and un-

tagged images as vertices followed by adding a weighted edge between each pair of

vertices, where the weight of an edge is the similarity between its two terminal ver-

tices (i.e., images). With the graph, a process called label propagation is activated

to add tags to images (i.e., to label images) accordingly.

Traditional label propagation implies single-label propagation, where each

image considers only a single tag to reduce the complexity on label propagation.

Recently, the study of annotation of multiple tags arises [51]. Moreover, sizes of

image datasets continue to increase. It is desirable to develop a scalable approach

for multi-label propagation.

1.1.3 Event Discovery

Event discovery aims to discover events of interest. Generally, event discov-

ery can be achieved by observing the changes of data numbers from a given media

stream along a period of time. Intuitively, every media stream has unique informa-

tion and its own features. As a case study, an experiment was conducted in our

preliminary work [27] that compared the similarity of top-100 popular places over

different media streams, including Twitter, Instagram, TripAdvisor, and a NYC

open data for subway traffics. The result can be found in Table 1.1. As can be

seen, the popular places of the media streams are diverse. Unifying different media

streams is capable of achieving better diversity and even performance than using

5
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Table 1.1: Pairwise comparison of percentages of overlapped attractions, i.e., simi-
larity, over Twitter, Instagram, TripAdvisor, and subway traffics, in our preliminary
study [27]. As can be seen, their popular places are different to some extent. It is
desirable to unify cross-domain media for high diversity.

Twitter Instagram TripAdvisor Subway

Twitter 1.00 0.35 0.08 0.22
Instagram 0.35 1.00 0.18 0.43

Tripadvisor 0.08 0.18 1.00 0.32
Subway 0.22 0.43 0.32 1.00

one media stream alone. However, combining different media streams is also what

makes event discovery on cross-domain media challenging, because the meanings of

their data, even only for numerical data, may be quite different.

1.2 Overview of the Dissertation

To confront these challenges, we developed three approaches, including (1)

a geo-social media-based approach with graph-based image cluster refinement for

image location identification, (2) a graph-based multi-label propagation approach

with distributed computing for image annotation, and (3) a cross-domain media

learning approach with data normalization and data fusion for event discovery. We

will detail the three approaches in the following three chapters.

• Chapter 2: Geo-Social Media Mining for Image Location Identification

• Chapter 3: Graph-based Semi-Supervised Learning for Image Annotation

• Chapter 4: Cross-Domain Media Learning for Event Discovery

Below gives the abstracts of the three chapters.

1.2.1 Geo-Social Media Mining for Image Location Identification

Recently, landmark identification has shown great promise for image location

identification, where most previous approaches are either visual-based or location-

based. Regarding city-view image location identification, however, there could be

6
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a number of buildings in a close proximity. Moreover, it is common that photos

were taken indoors. The conditions may degrade the performance of previous ap-

proaches. To remedy the deficiencies, we unify visual features, geo-tags, and check-in

data, based on geo-social media. Besides, we use an effective and memory-efficient

implementation by sparse coding, where we propose a new dictionary selection ap-

proach. Further, we proposes a location-aware graph-based regrouping approach,

leveraging spanning graph construction, on clusters of photos to refine clustering

results. Experimental results show the improvement over the baselines (location-

based, visual-based, etc.)

1.2.2 Graph-based Semi-Supervised Learning for Image Annotation

Over the decade, graph-based SSL becomes popular in automatic image an-

notation due to its power of learning globally based on local similarity. However,

recent studies have shown that the emergence of large-scale datasets challenges the

traditional approaches. On the other hand, most previous works have concentrated

on single-label annotation, which may not describe image contents well. To rem-

edy the deficiencies, we propose a new graph-based SSL technique with multi-label

propagation, leveraging the distributed computing power of the MapReduce pro-

gramming model. For high learning performance, we further use both a multi-layer

learning structure and a tag refinement approach, where the former unifies both

visual and textual information of image data during learning, while the latter si-

multaneously suppresses noisy tags and emphasizes the other tags after learning.

Experimental results based on a medium-scale and a large-scale image datasets

show the effectiveness of the proposed approach.

1.2.3 Cross-Domain Media Learning for Event Discovery

Different media streams have their own features and advantages. Combining

different datasets is capable of achieving better performance than using any of them

alone. To the best of our knowledge, we present the first work that unifies a flow-
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based media dataset and a check-in-based media dataset for events of interest. For

the two datasets, the former offers real-time and sufficient number of numerical data,

while the latter offers textual data and accurate event locations. We first normalize

the two domains of media datasets, followed by combing them for a ranked event

list leveraging graph-based algorithms. Experimental results show the effectiveness

of our work, based on a flow dataset of taxis and the Instagram’s check-in dataset

for the City of Sapporo.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the

image location identification approach. Chapter 3 presents the image annotation

approach. Chapter 4 presents the event discovery approach. Finally, Chapter 5

concludes the dissertation and presents future research directions.

8



doi:10.6342/NTU201600215

Chapter 2

Geo-Social Media Mining for Image Location

Identification

2.1 Introduction

Image location identification aims to find where a given photo was taken.

This chapter studies the problem of city-view image location identification. In con-

trast to traditional landmark identification, city-view image location identification

is challenging because of two conditions: (1) the given photos may be taken indoors

and outdoors, and (2) image contents of the given photos may contain a number

of building in a close proximity. Consider Condition (1). According to a study of

mobile phones, locations from a mobile phone may have a root mean square error

(RMSE) of 12.5 or 21.6 meters depending on that the phone is used outdoors or

indoors [55]. Sometimes, an error of 47.9 meters might occur when a phone is used

indoors [55]. Consider Condition (2). Figure 2.1 sketches the distribution of places

of interest retrieved from Yahoo! Travel [5] for San Francisco and that for Man-

hattan on the Google Map [3]. As can be seen, many of the places are in a close

proximity. Thus, integrating visual features and geo-tags of photos directly may

have a limitation for city-view image location identification.

Previously, for landmark search, Kennedy and Naaman extracted representa-

tive images for landmarks by visual clustering and effective ranking approaches [25].

Subsequently, Avrithis et al. attempted to retrieve any kind of images, including

landmarks and non-landmarks, followed by showing a two-layer clustering scheme

based on visual and geo-clustering [7]. Considering city-scale landmarks, Chen et

al. identified buildings from street-view images [11]. Later, Kuo et al. extended [11]

and integrated visual features and geo-tags of images to develop a real-time im-

age identification system [28]. Liu et al. combined techniques of large-scale image

9
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(a) (b) 

Figure 2.1: Distribution of places of interest retrieved from Yahoo! Travel [5] for
(a) San Francisco and (b) Manhattan, on the Google Map [3]. Each marker is
associated to a place. It is apparent that many places are in a very close proximity.
Distinguishing a building in a city from the others may be challenging for traditional
techniques.

identification and 3D model reconstruction to provide users’ information of loca-

tion, viewing directions, and routing for photography suggestions [30]. Recently,

Rischka and Conrad performed visual-clustering using hierarchical k-means trees

for high-dimensional visual features [40]. Feng et al. discovered image descriptors

and attempted to extract effective color and texture features [17].

Most previous works on landmark identification were based on image clus-

tering of visual features and geo-tags. The performance of these works may depend

on the setting of the number of clusters or the radius of a cluster. Moreover, GPS

location (in geo-tags) that has been derived from positioning systems may not be

accurate enough. Consequently, we investigate the addition of check-in data as a

complement to geo-tags for city-view image location identification, where check-in

data are used to guide image clustering in our work.

As a result, we unify visual features, geo-tags, and check-in data of photos,

from cross-domain social media. Check-in data offer status messages for users of

social networks, mostly aiming to provide the current location (usually, a venue)

10
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of someone for his or her friends [31]. That is, check-in data also provide location

information of photos. In contrast to geo-tags, check-in data can be regarded as

complementary user-contributed data to photos. Consequently, we combined both

geo-tags and check-in locations acquired from Foursquare [2] to enhance the accuracy

of location information for location identification, where check-in data are used to

generate initial clusters of images in this work. Further, we add photos from Flickr [1]

to increase diversity and performance.

In addition, we observed that some photos might not be closely related to

the places these photos were taken at, but related to other places. For example,

image contents of photos taken at a skyscraper may be more closely related to

buildings near the skyscraper than the skyscraper itself. Intuitively, it is desirable

to make the photos associated to the places closely related to themselves. As a result,

this chapter presents a location-aware graph-based regrouping approach, leveraging

the construction of spanning graphs [54, 58], to optimize the initial clusters for

the improvement of search performance. We further extend to include the places

of interest in Manhattan for the experimental setup, and conduct experiments to

investigate effects of using cross-domain social media and effects of using regrouping

on the search performance. In summary, this chapter has five main contributions:

• We present an effective approach that unifies visual features, geo-tags, and

check-in data of photos to confront the challenges of city-view image location

identification.

• We show a way to circumvent the problem of determining the number of

clusters or the radius of a cluster in conventional clustering-based techniques.

• We propose a location-aware graph-based regrouping approach on clusters of

photos, leveraging spanning graph construction, to refine clustering results.

• We implement our location identification technique based on sparse coding,

where a graph-based approach is proposed for dictionary selection.

11
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• We conduct experiments on large-scale real datasets to investigate effects of

using cross-domain social media, regrouping, and the dictionary selection ap-

proach.

The rest of the chapter is organized as follows. Section 2.2 outlines our image

location identification technique. Section 2.3 presents our regrouping approach. Sec-

tion 2.4 reviews the technique of sparse coding, followed by presenting our dictionary

selection approach. Finally, Section 2.5 reports the experimental results.

2.2 City-View Image Location Identification

This section introduces our location identification technique. For readability,

we first explain the function of sparse coding for this work, and leave the details of

sparse coding to Section 2.4.

For our implementation of location identification, measuring the visual sim-

ilarity between two images (based on their visual features) is a frequently used

process. However, the dimension of the visual feature (e.g., bag-of-words) of an

image could be set to be very large in order to cover as many feature dimensions

as possible, e.g., 1 millon in this work. Although the visual features are typically

sparse, it could be relatively time-consuming to iterate the process during location

identification for many times. Moreover, storing visual features of a large amount of

images could be memory-consuming. Consequently, we adopt a two-phase strategy.

We first extract a high-dimensional visual feature for each image on purpose because

it is unclear which feature dimensions are truly important to images in our image

datasets. Sparse coding is then used to transform the visual feature of each image

into a low-dimensional vector based on a dictionary associated to the image.

Ideally, the transformation from sparse coding preserves the similarity rela-

tions between images. We can measure the visual similarity between two images

based on their vectors derived from sparse coding instead of visual features, if the

vectors were from the same dictionary. In summary, we do not directly extract a

12
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low-dimensional visual feature for each image but rely on sparse coding to identify

important feature dimensions for the image. To this end, we will create dictionaries

for sets of images, so that we can extract appropriate information from the given

visual feature to form a low-dimensional vector (based on sparse coding) for each

image. In the sequel, we will use the terms sparse vector and dictionary when

regarding to sparse coding.

The implementation of our image location identification technique consists

of two procedures, including data collection and location identification. Figures 2.2

and 2.3 show the procedures of data collection and location identification, respec-

tively1. In the following, Section 2.2.1 details the procedure of data collection, and

Section 2.2.2 details the procedure of location identification.

2.2.1 Data Collection

For data testing, we are given a set of places from a city or a zone. In this

work, we extracted a name list of places of interest from Yahoo! Travel [5] for San

Francisco and a name list for Manhattan. Note that the lists of places of interest

can be also acquired from other sources and for other cities or zones. Overall, there

are 387 and 350 places for San Francisco and Manhattan, respectively. Figure 2.1

sketches the distribution of these places. Among these places, most of them are

buildings, and some might not be easily recognizable. In the sequel, for clarity, we

consider only a list of places of interest (same methods were used for the other list).

Given a set of places, we then acquired check-in data from Foursquare [2].

Foursquare is a location-based social networking website for mobile devices. Foursquare

allows users to upload photos and check in to a specific location, i.e., venue in

Foursquare, that has a specific geo-tag consisting of the latitude and longitude of

the location. We thought that the collections of the check-in data are accurate to

1To make the source of photos clear, all of the photos shown in the two figures were obtained
from the same source, i.e., Foursquare [2]. Nevertheless, we will use photos from Foursquare and
photos from Flickr [1] for practical implementation. Moreover, the query photo can be any photo
provided by users, not limited to a photo from Foursquare.
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Figure 2.2: Overall flow of our data collection procedure. The procedure is mainly
composed of five steps, including (a) macro-cluster generation, (b) macro-cluster
expansion, (c) macro-cluster regrouping, (d) visual feature extraction, and (e) sparse
coding. Given a name list of place of interest, we first generate a set of macro
clusters, where each macro cluster consists of a text-tag, a geo-tag, and a set of
images. For better diversity and performance, we then add images from Flickr to
each of the macro clusters. (This step can easily be extended to consider other media
streams for cross-domain media combination.) Afterwards, the set of macro clusters
are regrouped for better search performance. We then extract visual features of all
images in the macro clusters. Finally, sparse coding is used to create sparse vectors
and a dictionary for each macro cluster, based on the visual features of images of
the macro cluster. (Note that we do not create sparse vectors for all images at once,
but cluster-by-cluster, aiming to find appropriate vectors and dictionaries for the
macro clusters of images.)
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some extent. That is, the geo-tag and most photos linked to a specific location in

Foursquare are indeed associated to the location. As a result, based on the given

name list, we generated a set of clusters using the check-in data of Foursquare, as

shown in Figure 2.2(a), where each cluster is associated to a place from the name

list and a specific location in Foursquare. More specifically, each cluster consists of

(1) a name tag (i.e., a text-tag), (2) a geo-tag, and (3) a set of images. We define

each of the clusters as a macro cluster, in order to differentiate from micro clusters

that will be mentioned later in Section 2.3. To increase the diversity of each macro

cluster, we then added images from Flickr [1] to every macro cluster with keyword-

based search, as shown in Figure 2.2(b). We will show in Section 2.5.1 that adding

the images can also increase the search performance.

Empirically, an image is potentially harmful to our search performance if (1)

human faces cover more than a quarter of the area of the image, (2) the image

consists of several images, e.g., an image collage, or (3) the image has been pre-

processed, such as color filtering and blurring. This is because any of the three cases

might reduce the useful feature dimensions of images to our location identification

system. Therefore, we automatically removed those images from all the macro

clusters. Totally, 420, 123 images remain in the macro clusters for San Francisco,

and 242, 360 images remain in the macro clusters for Manhattan.

We then refined the macro clusters with a regrouping process that moves

some images from one macro cluster to another, as shown in Figure 2.2(c). This

is because we observed that some images inside a macro cluster sometimes are not

closely related to the name tag of the macro cluster. For example, the macro cluster

associated to a tower or a skyscraper may contain images that were taken for other

places. Regrouping is used to redistribute images among the macro clusters for

better intra-cluster similarity. (See Section 2.3 for more details). Subsequently,

as shown in Figure 2.2(d), visual features were extracted from all the images (see

Section 2.5). Finally, for each macro cluster, a dictionary for sparse coding was

selected (based on the images in the macro cluster), and then sparse vectors of all
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Figure 2.3: Overall flow of our location identification procedure. The procedure is
mainly composed of four steps, including (a) visual feature extraction, (b) candidate
selection, (c) sparse vector generation, and (d) image ranking. We are given a query
consisting of an image and GPS location, and the macro clusters obtained from the
data collection procedure (Figure 2.2). We first extract the visual feature of the
query image, followed by removing the macro clusters that are far from the GPS
location. Note that each macro cluster has its own dictionary, and two sparse vectors
can make a fair comparison only if they were derived from the same dictionary. We
then generate sparse vectors for the query image, one for each of the remaining macro
clusters. Finally, we will generate a ranked list for the images in the remaining macro
clusters.
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images inside the macro cluster were generated based on the dictionary, as illustrated

in Figure 2.2(e).

So far, we have a set of macro clusters, where each macro cluster consists of

a name tag, a geo-tag, a dictionary, a set of images, and a set of sparse vectors.

2.2.2 Location Identification

For location identification, a user may submit a photo and current GPS

location from a mobile device as a query to our location identification system. For

easier presentation, the photo and the GPS location provided by the user are called

the input image and the input location, respectively. We first extract the visual

feature of the input image, as shown in Figure 2.3(a). Then, we use the input

location to filter some of the macro clusters (obtained from Section 2.2.1) that are

unlikely to be relevant to what the image was taken for, as shown in Figure 2.3(b).

Note that the input location is not essential for a query to our system, but would

benefit to the search performance. We preserve only the macro clusters whose

corresponding locations (in their geo-tags) are 21.6 meters near the input location

because the input location may have an RMSE of 21.6 meters (see Section 2.1).

Obviously, the length, 21.6 meters, is adjustable. The setting of the length provides

a trade-off between the search performance and the execution time of our system.

For clarity, let the set of the remaining macro clusters be M. However, if the

cardinality of M (i.e., |M|) is less than a positive integer α, the nearest α − |M|

macro clusters (except any macro cluster inM) to the input location will be added

into M. Empirically, α is set to 10. By doing so, we may achieve a good balance

between the search performance and the execution time because rarely check-in

location could be with significant errors [43].

Subsequently, for each macro cluster C ∈ M, based on the dictionary in C,

the visual feature of the input image is used to generate a sparse vector, as shown

in Figure 2.3(c). Totally, there will be |M| sparse vectors associated to the input

image. Note that the sparse vectors associated to the input image would be different
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because mostly these vectors are derived based on different dictionaries. For image

ranking, see Figure 2.3(d), we consider both geo-similarity and visual similarity

between the input image and images from the remaining macro clusters, M. More

specifically, for each macro cluster C ∈M, we calculate (1) the Euclidean distance

dg between the input location and the corresponding location of C, and (2) the

Euclidean distance div between the sparse vector of the input image and the sparse

vector of each image with an index i in C. The score for each image with an index

i in C is then set to the inverse of the product of dg and div.

As a result, each image in the macro clusters ofM has a score that represents

its similarity to the input image considering their geo-similarity and visual similarity.

A high score represents a high similarity. Finally, for all the images inM, our system

returns a ranked list of images, where each image in the ranked list is accompanied

by a name tag and a geo-tag. The name tags indicate what the user might take for,

while geo-tags show where the user might be close to. If necessary, the geo-tags and

the input image can also be used to perform a new query for to increase the search

performance.

2.3 Macro-Cluster Regrouping

This section introduces our macro-cluster regrouping approach. During the

process of data collection, we found that some images are not closely related to

check-in locations they were uploaded for, but to nearby locations. It is desirable to

assign these images to locations that are more closely related to them if there are.

More specifically, given macro clusters of images, the regrouping approach aims to

redistribute images among the macro clusters such that our location identification

system is capable of achieving high search performance. Consider the macro clusters

of images which are ready for our regrouping process (mentioned in Section 2.2.1).

We assume that the majority of the images have already been in the macro clusters

which are closely related to themselves because the macro clusters were immediately

derived from Foursquare or Flicker. Therefore, the regrouping approach shall not
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drastically change the distribution of the images.

In the following, Section 2.3.1 presents a naive regrouping approach, and

Section 2.3.2 presents a location-aware regrouping approach used in our system.

2.3.1 A Naive Approach

For macro-cluster regrouping, a naive approach may process images one at a

time. Whenever an image is considered, for each macro cluster, we calculate a visual

similarity score between the image and the macro cluster. Afterwards, the image is

moved to the macro cluster that is with the highest similarity score for the image.

Note that it is preferable not to move an image from the macro cluster (derived

from Foursquare or Flicker) that initially contains the image, unless the movement

is convincing to be beneficial. Thus, we may define a threshold value, says β, and

then move an image to a macro cluster only if the similarity score of the image is

higher than β. However, this approach has two drawbacks.

First, a macro cluster actually may consist of several groups of images, where

each group is associated to a particular scene of the macro cluster. For example, im-

ages of a building (i.e., a macro cluster) may be classified into two groups depending

on whether the images were taken indoors or outdoors. Suppose that a given image

should be added to a group in a macro cluster C. The presence of images from the

other groups in C may bias the similarity score between the image and C, if all of

the images in C are considered. Consequently, the image may be moved to some

other macro cluster. For example, consider a macro cluster with two groups of im-

ages, indoor and outdoor. Given an image that was taken for an outdoor scene, this

image may not be with a high similarity score if for the macro cluster, the majority

of images were taken for indoor scenes. Second, images are processed based on a

pre-determined order; therefore, the results of the naive approach would be sensitive

to the order of processing the images.
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2.3.2 Regrouping by Proximity

This section presents a location-aware graph-based regrouping approach that

improves the naive approach described in Section 2.3.1. For the location-aware

regrouping approach, we first present an approach that is capable of reducing the

risk of moving images improperly based on the geo-tags of macro clusters, followed by

presenting two techniques used to address the two drawbacks of the naive approach.

Finally, we will summarize the whole location-aware regrouping approach.

For macro-cluster regrouping, the setting of a threshold value (i.e., β in

Section 2.3.1) aims to reduce the risk of moving images improperly. Here, we present

an approach aiming to further reduce the risk by reducing the number of macro

clusters which each image requires to consider. Intuitively, for a macro cluster C, it

is not necessary for images in C to consider (1) macro clusters which are far away

from C, and (2) macro clusters where the views associated to the macro clusters are

blocked by the view(s) associated to some other macro cluster(s).

For example, a skyscraper (e.g., C2 in Figure 2.4(a)) may block the views

just behind the skyscraper. It might not be necessary to consider moving images

in a macro cluster associated to a place in front of the skyscraper (e.g., C1 in Fig-

ure 2.4(a)) to those macro clusters associated to the places just behind the skyscraper

(e.g., C3 in Figure 2.4(a)). Even if C2 is not a skyscraper, we thought that taking

photos for views behind some other views are relatively uncommon. However, it

is challenging to define a specific distance so as to determine whether one macro

cluster is far away from another macro cluster or not, because the maximum dis-

tance that a camera can produce images depends on several factors, such as camera

specifications and lighting conditions. It is also a hard work to identify whether a

view is blocked or not.

Consequently, we implement a spanning graph [54,58]. For each macro clus-

ter, the spanning graph helps us determine which macro clusters should be con-

sidered for. Originally, constructing a spanning graph was for efficiently finding a

minimum spanning tree. Given a set of vertices, a spanning graph with the vertices
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is a simple graph that contains a sufficient number of edges between the vertices

such that a minimum spanning tree can be constructed by using some of the edges

of the spanning graph. Recently, for some studies, constructing spanning graphs

has been considered as a technique of finding critical neighborhoods of vertices in a

plane, e.g., [21].

A spanning graph can be constructed as follows. Consider a set of vertices

in a plane. We traverse the vertices in any order. Whenever a vertex is visited,

we divide the plane evenly into eight regions with respect to the vertex, followed

by connecting the vertex to the nearest vertex in each region. Eventually, we can

obtain a spanning graph for the set of vertices, once all of the given vertices have been

visited. For our regrouping approach, each vertex of a spanning graph is associated

to a macro cluster, where the locations of the vertex is determined by the geo-tag of

the macro cluster. Figure 2.4 illustrates the idea of constructing a spanning graph

for macro clusters C1, C2, C3, and C4, in a plane. As shown in Figure 2.4(a), initially,

the macro clusters are disconnected. Assume that C1 is first visited. The plane is

divided into eight regions with respect to C1. As shown in Figure 2.4(b), C1 is then

connected to C2 and C4, because either of C2 and C4 is the nearest macro cluster to

C1 in a region. Sequentially, C2, C3, and C4 will be visited and edges will be added

accordingly. As a result, Figure 2.4(c) shows the resultant spanning graph for the

given four macro clusters.

Given a spanning graph, images of a macro cluster C will not consider the

macro clusters which are not adjacent to C in the spanning graph. The rationale

behind is that those macro clusters might be far away from C. Besides, the views

associated to those macro clusters could be blocked by the view(s) associated to

some other macro cluster(s), because intuitively taking photos for views behind

some other views are relatively uncommon. That is, for regrouping, images of a

macro cluster C consider only the macro clusters which are adjacent to C in the

spanning graph. Take Figure 2.4(c) as an example. Images in C1 will not consider

C3, because C1 and C3 are not adjacent to each other. The idea is that, for C1,
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Figure 2.4: Illustration of constructing a spanning graph for four macro clusters,
C1, C2, C3, and C4, in a plane. (a) The macro clusters are initially disconnected.
(b) Assume that C1 is first visited. The plane is divided into eight regions with
respect to C1, and C1 is connected to the macro cluster that is the nearest one of
C1 in each region, i.e., C2 and C4. (c) The resultant spanning graph for C1, C2, C3,
and C4, after the four macro clusters have been visited. (Details of constructing a
spanning graph can be found in Section 2.3.2.) With the spanning graph, images
of a macro cluster will not consider macro clusters which are not adjacent to it for
regrouping, because the graph is expected to find critical neighborhoods for these
macro clusters.

C3 is farther than C2, and the view associated to C3 could be blocked by the view

associated to C2.

Now we consider the two issues of the simple approach mentioned in the

last paragraph of Section 2.3.1. The first issue comes from the fact that a macro

cluster may consist of several groups of images. The second issue is that the results

of the simple approach could be highly sensitive to the order of processing images.

For the first issue, we group the images in each macro cluster into a set of micro

clusters, where each micro cluster is associated to a particular scene of the macro

cluster. We take sequential clustering [44] as the clustering approach to generate

micro clusters because it is difficult to determine an appropriate number of scenes

that a macro cluster contains in advance, while sequential clustering can determine

the number naturally. Once all macro clusters have been processed, we begin to

calculate similarity scores. In contrast to the simple approach, for each image being

considered, here we calculate visual similarity scores between the image and micro
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clusters, instead of macro clusters.

By doing so, for each image, the influence of irrelevant images on similarity

scores could be minimized. We then consider moving each image to the micro cluster

that is with the highest similarity score to the image. Although our objective is to

redistribute images among macro clusters, not micro clusters, moving an image

to a micro cluster H is equivalent to move the image to the macro cluster that

contains H. For the second issue, we calculate similarity scores of all images to micro

clusters, followed by moving the images to their desired macro clusters concurrently.

Therefore, the clustering results of our regrouping approach are independent of the

order of processing the images.

Figures 2.5 and 2.6 summarize the whole process of our location-aware graph-

based regrouping approach. In Line 3, we construct a spanning graph for the given

macro clusters. In Lines 4–6, we generate micro clusters for each macro cluster. In

Lines 7–15, we determine a desired macro cluster for each image. In Lines 16–24,

we consider moving images to their desired macro clusters.

2.4 Sparse Coding for Macro Clusters

This section describes how sparse coding is used for images of each macro

cluster. In the following, Section 2.4.1 reviews the technique of sparse coding, and

Section 2.4.2 presents our dictionary selection approach.

2.4.1 Formulation

Sparse coding has been shown success in various fields, such as machine learn-

ing, signal processing, and statistics [35]. For image location identification, we intend

to transform visual features of images into sparse vectors. The transformation is

applied cluster-by-cluster to the macro clusters obtained in Section 2.3.2. Formally,

consider a macro cluster C. Let n be the number of images in C. Let m be the

dimension of the visual feature of an image. Let V = (v(1), v(2), ..., v(n)), V ∈ Rm×n

be a matrix consisting of visual features of images in C, where v(i) ∈ Rm is a vec-
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1: Procedure Regrouping(macro clusters M)
2: Begin
3: G = CreateSpanningGraph(M);
4: foreach macro cluster C ∈M
5: GenerateMicroClusters(C);
6: end foreach
7: foreach macro cluster C ∈M
8: foreach micro cluster H ∈ C
9: foreach image q ∈ H
10: q.maxSimilarity = CalcSimilarity(H, q);
11: q.bestMacroCluster = C;
12: FindDesiredCluster(G, C, q);
13: end foreach
14: end foreach
15: end foreach
16: foreach macro cluster C ∈M
17: foreach image q ∈ C
18: T = q.bestMacroCluster;
19: if (T 6= C) ∧ (q.maxSimilarity> β)
20: C = C \ {q};
21: T = T ∪ {q};
22: end if
23: end foreach
24: end foreach
25: End

Figure 2.5: Algorithm of the proposed graph-based regrouping process. Given macro
clusters, the process moves images to their desired macro clusters.

tor of the visual feature of the image with an index i in C for 1 ≤ i ≤ n. Let

S = (s(1), s(2), ..., s(n)), S ∈ Rr×n be a matrix consisting of sparse vectors, where

s(i) ∈ Rr is a sparse vector associated to the image with an index i in C. Motivated

by [29], we then consider the following optimization problem.

minimize
D,S

n∑
i=1

(∥∥v(i) −Ds(i)∥∥2
2

+ γ
∥∥s(i)∥∥

1

)
,

subject to
m∑
i=1

(Dij)
2 = 1, 1 ≤ j ≤ r,

where D ∈ Rm×r is often called a dictionary, consisting of r basis vectors in Rm,

and γ ≥ 0 is a constant. Among the objective function, the left term represents an
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1: Procedure FindDesiredCluster(spanning graph G, macro cluster C, image q)
2: Begin
3: foreach macro cluster T adjacent to C in G
4: foreach micro cluster W ∈ T
5: curSimilarity = CalcSimilarity(W , q);
6: if curSimilarity > q.maxSimilarity
7: q.maxSimiliarity = curSimilarity;
8: q.bestMacroCluster = T ;
9: end if
10: end foreach
11: end foreach
12: End

Figure 2.6: Algorithm of finding desired cluster for the proposed graph-based re-
grouping process. Given a spanning graph, a macro cluster, and an image, the
process finds the desired macro cluster with the associated similarity between the
image and a micro cluster of the macro cluster for the image.

error to reproduce the given visual feature of an image using a linear combination

of the basis vectors from the dictionary (s(i) is a vector of weights for 1 ≤ i ≤ n),

while the right term is for sparsity. γ is used to control the relative importance of

the two terms. The addition of the constraint is to normalize the basis vectors in

D.

We will show how to find D (and r) in Section 2.4.2. Once D has been deter-

mined, the optimization problem can be reduced to an L1-regularized least square

problem, and then efficiently solved by the least angle regression algorithm [15].

2.4.2 Dictionary Selection within a Macro Cluster

Given a set of images, this section describes how to create a dictionary from

the images for sparse coding. Similar to random sampling-based approaches [12,38],

our idea is to find a subset of the given images for dictionary creation. Different from

random sampling, we intend to find the subset based on visual features of images.

The proposed approach consists of three steps: (1) graph construction, (2)

edge removal, and (3) image removal. For the first step, we first construct a visual
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similarity graph, where each image is modeled as a vertex and a weighted edge is

added between every pair of vertices, (e.g., see Figure 2.7(a) and (b)). The weight

of each edge is set to the visual similarity between the two images associated to the

two terminal vertices of the edge. For the second step, we remove the edges whose

weights are too small from the visual similarity graph by thresholding, (e.g., see

Figure 2.7(c)). As for the final step, this step concentrates on reducing the size of

the visual similarity graph by removing the vertices that might not be important

(see, next paragraph). Once we have removed those vertices, the images associated

to the vertices of the resulting graph are used to create a dictionary D for sparse

coding. More specifically, each basis vector in D will be the visual feature of an

image from the resulting graph.

However, it is difficult to define the so-called importance of a vertex, i.e., an

image. Intuitively, the importance of a vertex of a graph is closely related to the

topology of the graph. We could remove a vertex u from a visual similarity graph

while preserving the similarity relations of the graph well if all vertices strongly

correlated (i.e., adjacent) to u are preserved. Moreover, it is desirable to preserve

as small number of vertices as possible because the number of remaining vertices

after the step of image removal will be the dimension of sparse vectors generated

by sparse coding. Consequently, we consider the minimum vertex cover problem,

which is to find the smallest set of vertices from a graph such that every edge

of the graph must be incident to at least one vertex of the set. We can remove

the vertices not belonging to the resulting vertex set of the minimum vertex cover

problem because the similarity relations of the graph should be well-preserved by

vertices of the resulting vertex set. Although it is unlikely to efficiently solve the

minimum vertex cover problem, lots of efficient approximation algorithms have been

developed, e.g., [24].

In this work, as suggested in [47], the minimum vertex cover problem was

formulated as a 0-1 integer linear programming. As already defined, n is the number

of images in a macro cluster. Further, we define Z as the given graph for the mini-
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mum vertex cover problem; E as the edge set of Z. Each vertex of Z is associated

to a variable, xi ∈ {0, 1}, for 1 ≤ i ≤ n. The minimum vertex cover problem was

formulated as follows.

minimize
n∑

i=1

xi,

subject to xi + xj ≥ 1,∀(i, j) ∈ E,

where a vertex is in the resulting vertex set of the minimum vertex cover problem

if the variable associated to the vertex is set to one; otherwise, the vertex is not.

We can see that the objective is to minimize the number of vertices in the resulting

vertex set, while the constraint is to ensure that every edge is covered by at least one

vertex of the set. We directly solve the problem if the number of vertices is small.

Otherwise, an approximate solution is achieved through the linear programming

relaxation of the formulation.

Figure 2.7 summarizes the overall process of our graph-based selection ap-

proach2. Given a macro cluster with images, we construct a visual similarity graph

based on the images, and then we remove the edges whose weights are too small

from the graph. Finally, we formulate a minimum vertex cover problem, followed

by removing the vertices not belonging to the resulting vertex set of the problem.

2.5 Experiments

This section evaluates the proposed approaches. We implemented our ap-

proaches using the Matlab programming language. All of the evaluations were

based on the two image datasets described in Section 2.2.1. Overall, for San Fran-

cisco, there are 387 macro clusters (i.e., 387 query categories) and 420, 123 images

in the associated image dataset. For Manhattan, there are 350 macro clusters and

242, 360 images in the associated image dataset. We extracted visual features us-

ing the following way. We took visual words (i.e., bag-of-words) as visual features.

For each image, we applied the difference-of-Gaussian approach to detect feature

2All of the photos shown in this figure were obtained from Foursquare [2].
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Figure 2.7: Illustration of our graph-based selection approach: (a) consider a macro
cluster with images; (b) construct a visual similarity graph based on the visual
similarities of images; (c) remove the edges whose weights are too small; (d) remove
images while retaining representative images by solving the vertex cover problem.
Finally, the images associated to the vertices of the resulting graph are used to
create a dictionary. (cf. Section 2.4.2.)
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points, followed by describing them with scale invariant feature transform (SIFT).

The SIFT descriptors were then quantized into 1 million clusters by k-means clus-

tering. Eventually, each cluster generated a visual word containing the feature

descriptors (feature points) of the cluster.

Because there is no ground truth in the image datasets, we determined ground

truth in two ways: (1) manual annotation: images (of our image datasets) were

labeled manually, and (2) automatic annotation: images from Foursquare were re-

garded as ground truth because generally images uploaded to a location (i.e., venue)

in Foursquare were taken at this location. All performances were evaluated by

P@k, which is the precision of top-k images in ranking results. In the sequel, Sec-

tion 2.5.1 evaluates our approaches based on manual-annotated ground truth, while

Section 2.5.2 evaluates our approaches based on automatic-annotated ground truth.

Note that the terms, “Ours,” for all tables of Section 2.5, are exactly the

same. “Ours” combines visual features, GPS locations, and check-in data, select-

ing images for dictionaries with minimum vertex covering, and using graph-based

regrouping, for image location identification.

2.5.1 Results with Manual-Annotated Ground Truth

In this section, we conducted three suites of experiments to show the effec-

tiveness of the use of (1) cross-domain social media (i.e., Foursquare and Flickr),

(2) the location-aware graph-based regrouping approach, and (3) the proposed dic-

tionary selection approach. For ground truth, we sampled 12 locations from each

image dataset and manually added tags for images of the locations.

First, we investigated the effect of using cross-domain social media on search

performance. Table 2.1 shows the results of using Foursquare only and the results

of combining Foursquare and Flickr as Metadata, for the images of San Francisco.

Similarly, Table 2.2 shows the results of using Foursquare only and the results of

combining Foursquare and Flickr as Metadata, for the images associated to Manhat-

tan. Note that the experiments also compared our approach to three approaches,
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Table 2.1: Comparison between visual-based, location-based, visual and location-
based, and our approach, on the Foursquare-based image dataset of San Francisco,
and on the Foursqure and Flickr-based image dataset of San Francisco. Note that
“Ours” combines visual features, GPS locations, and check-in data.

Dataset: Foursquare for San Francisco
P@1 P@2 P@5 P@10

Visual Only 0.1243 0.1631 0.1687 0.1923
Location Only 0.1744 0.1859 0.2344 0.2523
Visual + Location 0.2009 0.2056 0.2135 0.2482
Ours 0.2149 0.2417 0.2414 0.2648

Dataset: Foursquare+Flickr for San Francisco
P@1 P@2 P@5 P@10

Visual Only 0.1401 0.1459 0.1933 0.2407
Location Only 0.2380 0.2912 0.3399 0.3449
Visual + Location 0.3230 0.3797 0.4128 0.4405
Ours 0.3642 0.3793 0.4317 0.4682

Table 2.2: Comparison between visual-based, location-based, visual and location-
based, and our approach, on the Foursquare-based image dataset of Manhattan, and
on the Foursqure and Flickr-based image dataset of Manhattan. Note that “Ours”
combines visual features, GPS locations, and check-in data.

Dataset: Foursquare for Manhattan
P@1 P@2 P@5 P@10

Visual Only 0.1547 0.1915 0.2032 0.2207
Location Only 0.1983 0.2011 0.2297 0.2375
Visual + Location 0.2508 0.2573 0.2627 0.2814
Ours 0.2577 0.2819 0.3029 0.3317

Dataset: Foursquare+Flickr for Manhattan
P@1 P@2 P@5 P@10

Visual Only 0.1408 0.1607 0.1792 0.2023
Location Only 0.1943 0.1988 0.2145 0.2355
Visual + Location 0.2595 0.2693 0.2999 0.3305
Ours 0.2711 0.2908 0.3312 0.3528
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including (1) only visual features, (2) only GPS locations (in geo-tags), and (3)

both visual features and GPS locations, where except our approach, the other three

approaches successively measured similarity between query and each image in the

associated image dataset. Our overall approach is a combination of visual features,

GPS locations, and check-in data (i.e., macro clusters).

As revealed in Tables 2.1 and 2.2, we found that combing both visual features

and GPS locations (i.e., Visual + Location) is beneficial for performance enhance-

ment. On top of them, adding check-in data is beneficial to further increase their

performance. In addition, as shown in the tables, it is interesting to note that com-

bining Foursqure and Flickr is beneficial for performance enhancement. At first, we

thought that the search performance of an image dataset with two image sources

might be worse than the search performance of the image dataset with any one

of the two image sources, because the noise to the image dataset might increase

accordingly. While based on the results, we found that combining the two image

sources may result in better search performance than the performance by using any

of them alone. The reason why the two image sources could benefit from each other

may be due to the averaging of the noise from different image sources.

Second, we investigated the effect of using our regrouping approach on search

performance. Table 2.3 compares our overall approach and two variants derived from

our overall approach, based on the image dataset obtained from combining datasets

of San Francisco and Manhattan. Refer to Section 2.3.2. The first variant did

not activate the process of macro-cluster regrouping. The second variant simplified

the process of macro-cluster regrouping. The second variant does not move images

among macro clusters, but remove images in macro clusters. The second variant re-

moves images if their desired macro clusters are not exactly the same as the macro

clusters they are in. Based on the results, we concluded that macro-cluster re-

grouping (ours) is capable of increasing search performance. Moreover, observing

the results of not using regrouping and those of using the modified regrouping ap-

proach, we thought that removing an images from a macro cluster may lose a small
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number of important features for the macro cluster, even if the image is more closely

related to another macro cluster. Observing the results of using the simplified re-

grouping approach and those of using our regrouping approach (ours), we concluded

that the amount of the loss (from moving out images from macro clusters) could be

much smaller than the amount of added features through regrouping images.

Table 2.3: Comparison between our overall approach and its two variants for the
effects of using our regrouping approach on search performance. The two variants
include our approach without macro-cluster regrouping and our approach with sim-
plified regrouping (i.e., removing ambiguous images in macro clusters). Note that
“Ours” uses macro-cluster regrouping.

Dataset: Foursquare+Flickr for San Francisco+Manhattan
P@1 P@2 P@5 P@10

Ours w/o regrouping 0.3592 0.3601 0.3777 0.4052
Ours w/ simple regrouping 0.3566 0.3738 0.3798 0.3982
Ours 0.3983 0.4055 0.4235 0.4512

Third, we investigated the effect of using our dictionary selection approach.

Table 2.4 compares our overall approach and its variant derived from our overall

approach, based on the image dataset obtained from combining datasets of San

Francisco and Manhattan. The only difference between our overall approach and its

variant is the composition of the dictionary of each macro cluster for sparse coding.

For the variant, the dictionary of each macro cluster consists of all images in the

macro cluster, while for our overall approach, the dictionary of each macro cluster

was selected by the approach introduced in Section 2.4.2 from all images in the

macro cluster.

Table 2.4: Comparison between our overall approach and its variant for the effect of
using the proposed dictionary selection approach (see Section 2.4.2) or not. “VC”
denotes the vertex-cover-based approach, which is the proposed dictionary selection
approach. Note that “Ours” uses the dictionary selection approach.

Dataset: Foursquare+Flickr for San Francisco+Manhattan
P@1 P@2 P@5 P@10

Ours w/o VC 0.2593 0.2694 0.3020 0.3385
Ours 0.3983 0.4055 0.4235 0.4512

Based on the results, we found that for an image cluster, there might be
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a number of noisy images inside, and some noisy images can be removed by the

dictionary selection approach. More specifically, the second step of our dictionary

selection approach eliminated weak similarity relations between noisy images and

good images, and then the third step (vertex cover) implicitly removed vertices

incident to few edges, which probably, were noisy images.

2.5.2 Results with Automatic-Annotated Ground Truth

In this section, we conducted an experiment to show the effectiveness of our

approach, where the images (of our image dataset) from Foursquare were regarded

as ground truth, i.e., automatic annotation. Note that we did not activate the pro-

cess of macro-cluster regrouping at this time. This is because automatic annotation

was based on the assumption that images from Foursquare were regarded as ground

truth, while macro-cluster regrouping was motivated by the observation that some

images might not be closely related to the macro clusters they are in. As a ref-

erence, Table 2.5 compares our approach (without macro-cluster regrouping) and

three approaches, based on the image dataset obtained from combining datasets of

San Francisco and Manhattan, where the three approaches are the same as those

compared in Tables 2.1 and 2.2. More specifically, the three approaches are (1)

considering only visual features, (2) considering only GPS locations, and (3) con-

sidering both visual features and GPS locations. Similar to the results in Tables 2.1

and 2.2, as can be seen in Table 2.5, our approaches achieved higher performance

than the three approaches.
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Table 2.5: Comparison between visual-based, location-based, visual and location-
based, and our approach. Note that here the same dataset as that for Tables 2.3
and 2.4 was used, but this experiment was based on automatic annotation (the
prior experiments were based on manual-annotated ground truth). We did not
show “Ours”, but “Ours w/o regrouping” because automatic annotation assumes
that Foursquare provides the golden image clustering results, while the motivation
of regrouping is that the clustering results might not be the best at all aspects.

Dataset: Foursquare+Flickr for San Francisco+Manhattan
P@1 P@2 P@5 P@10

Visual Only 0.1322 0.1734 0.2017 0.2351
Location Only 0.1929 0.2313 0.2916 0.3205
Visual + Location 0.2858 0.3259 0.3467 0.3519
Ours w/o regrouping 0.3377 0.3627 0.4016 0.4463
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Chapter 3

Graph-based Semi-Supervised Learning for Image

Annotation

3.1 Introduction

Image annotation aims to generate proper tags for the images of a given image

dataset, where semi-supervised learning (SSL) is widely-used learning technique that

explores lots of untagged images in the presence of a small amount of tagged images.

Among the existing SSL approaches, graph-based approaches are quite popular due

to their high efficiency [60]. Typically, a graph-based approach will model both

tagged and untagged images as vertices followed by adding a weighted edge between

each pair of vertices, where the weight of an edge is the similarity between its two

terminal vertices (i.e., images). An edge weight is either positive or zero. In practical

implementation, the zero-weight edges are often removed for complexity reduction.

Then, a process called label propagation is activated to add tags to images (i.e., to

label images) accordingly. In this chapter, we focus on the development of a multi-

label propagation approach for graph-based SSL for image annotation. Note that

in this chapter the term, “label,” is equivalent to “add tag(s)” or “tag,” depending

that it is a verb or a noun, respectively.

So far, there have been lots of studies on label propagation, where [19, 23,

33, 37, 39, 45, 46, 48, 57, 62] are closer to ours. Zhu et al. proposed to use Gaussian

random field model [62]. Later, Zhou et al. presented an iterative algorithm followed

by deriving a simple while effective closed-form solution [57]. After that, He et al.

improved the graph structure in [57] and indicated that the closed form solution

in [57] may not be applicable for large-scale label propagation [19]. Moreover, He et

al. combined relevance feedback with label propagation. As a counterpart of [19],
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which focused on the scenario of query by example, Tong et al. focused on the

scenario of query by keyword and proposed the idea of multi-label propagation [45].

Unlike the prior works, which are deterministic methods, Pan et al. proposed a

probabilistic solution based on random walk with restart [37].

On the other hand, Tong et al. presented a linear fusion and a sequential

fusion schemes to fuse multi-modal features for learning quality enhancement [46].

In addition, Wang et al. argued to integrate visual and textual information for

label propagation [48]. Liu et al. presented to integrate similarities immediately

on different graphs for label propagation [33]. Recently, Liu et al. observed that

most label-propagation approaches have to perform at least an inverse operation on

a n-by-n graph Laplacian, where n is the number of vertices. The inverse operation

often requires a cubic time (i.e., O(n3)) complexity, which becomes prohibitive as

the number of vertices (i.e., images) increases [32]. For the addressed problem,

Rao and Yarowsky focused on text data to develop a parallel label-propagation

algorithm [39]; unfortunately, such a text-oriented algorithm may not handle more

complicated data (e.g., images) well. More recently, Kang et al. presented a matrix-

vector multiplication approach by MapReduce [23].

This chapter focuses on label propagation for graph-based SSL, where two

important issues raised in recently years. One is the large-scale issue: the proposed

algorithm has to be useful to high-dimensional data and large-scale datasets. The

other is the multi-labeling issue: the proposed algorithm has to handle several tags

on an image, so as to explore (improve) multiple tags for each untagged (tagged)

image, while most previous works focused on single tag issue. Consequently, we

unify the promising ideas of (a) graph-based SSL [19, 37, 57], (b) multi-label prop-

agation [45], (c) linear fusion [33, 46], and (d) matrix-vector multiplication [23],

to develop a multi-layer multi-label propagation framework for large-scale image

datasets. Note that for multi-label propagation, we generalize the matrix-vector

multiplication in [23] to a matrix-matrix multiplication, i.e., matrix multiplication.

Overall, in this chapter, (1) we implement a flexible multi-layer learning
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structure, which unifies the visual and textual features of given images by linear

fusion to enhance the learning performance; (2) we consider multi-label propagation

to enable the addition and refinement of multiple tags to untagged and tagged

images, respectively; (3) we introduce a technique to set the convergence criterion

of our multi-label propagation approach automatically instead of using an ad-hoc

assignment; (4) we present a practical implementation of our multi-layer multi-

label propagation approach by MapReduce, which is capable of handling large-scale

image datasets; (5) we conduct experiments on a medium-scale and a large-scale

image datasets to evaluate the effectiveness of the proposed methods.

The rest of this chapter is organized as follows. Section 3.2 presents the

overview of our graph-based SSL system. Section 3.3 introduces the proposed algo-

rithms for label propagation. Finally, Section 3.4 presents the experimental evalua-

tion.

3.2 Learning System Overview

Before turning to the details of our label-propagation algorithm, this section

gives an overview of our graph-based SSL system. The overall system flow is illus-

trated in Figure 3.11. Given a set of tagged and untagged images, for each image we

extract both the visual and textual features. Note that the textual features might be

missing. With the extracted features, we then construct a sparse visual graph and a

sparse textual graph accordingly. Each vertex of the visual (textual) graph is asso-

ciated with an image, while the weight of an edge between two images is the visual

(textual) similarity of the two image contents. Subsequently, our label-propagation

algorithm is activated to add (improve) tags to the given untagged (tagged) images.

Finally, we suppress noisy tags by tag refinement and output the results.

As aforementioned, we construct two sparse graphs before the activation of

label propagation. In fact, our label-propagation algorithm can also work on a dense

1All of the photos shown in this figure were obtained from Flickr [1].
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Pisa tower, 

night 

bridge, tower, 

night 
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Feature Extraction 
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Multi-layer Multi-label Propagation 

(Distributed on Hadoop Servers)  
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Figure 3.1: Illustration of our graph-based SSL system. Given an image dataset, we
first perform feature extraction to obtain both visual and textual features. Then a
sparse visual graph and a sparse textual graph are constructed to enable multi-layer
label propagation. Based on the two graphs, we then perform multi-layer multi-label
propagation. Finally, we apply tag refinement to improve the tag results.
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graph, e.g., a complete graph. We do not work on a dense graph but on a sparse

graph because it has been shown in [61] that fully-connected dense graphs performed

worse than sparse graphs empirically. A dense graph may contain many spurious

edges between dissimilar vertices, and therefore misleads label propagation to a low-

quality result. Since graph construction is not the main focus of this chapter, we shall

not give the details here, but a brief description instead, as follows. Overall, our in-

house tool for graph construction consists of two stages. For large-scale issues, both

the two stages were implemented based on the MapReduce programming model [14].

In the first stage, we partition the given images into overlapped groups called image

pools by MinHash [9], while in the second stage, for each image pool we compute

the pairwise similarities and remove image-pool boundaries afterwards. Note that

we do not build any zero-weight edge to reduce the graph complexity. The resultant

graph is our sparse similarity graph. For simplicity, in the rest of the chapter, we

will use the terms “visual graph” and “textual graph” to be as shorthand for “sparse

visual graph” and “sparse textual graph,” respectively.

3.3 Methodologies

This subsection presents our proposed methods for multi-layer multi-label

propagation. Note that all of the distributed algorithms mentioned in the rest of

chapter are developed based on the MapReduce model. Section 3.3.1 introduces our

multi-layer learning structure followed by the overview of our proposed algorithm.

Section 3.3.2 gives a formal description of our multi-layer multi-label propagation

approach. Section 3.3.3 presents the convergence criterion setting of our label prop-

agation approach. Finally, Section 3.3.4 describes the tag refinement approach.

3.3.1 Multi-Layer Learning Structure

Given a visual and a textual graph, we construct a multi-layer learning struc-

ture, which is sketched in Figure 3.2. In this structure, the top layer is a visual graph,

the bottom layer is a textual graph, and the middle layer shows an abstract fusion
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layer for the visual and textual graphs to communicate with each other during the

learning process. The reasonable behind is that empirically there is often a high

correlation between the similarity of two images in the visual graph and that of the

two images in the textual graph. With the fusion layer, the two graphs can supervise

and guide each other to achieve a high-quality learning result.

Visual 

Fusion 

Textual 

1st stage 2nd stage 

untagged tagged 

Inferring: Fusing: 

Figure 3.2: Multi-layer learning structure. The top layer is a visual graph, the
bottom layer is a textual graph, and the middle layer shows an abstract fusion
layer for the communication of the visual and textual graphs. Note that initial
labels are shown in double circles (light red). Graph structure can also benefit
from the MapReduce model by only propagating and receiving information from
the neighbors.

Our multi-layer multi-label propagation algorithm is an iterative process. We

assign some initial tags as ground truth in our algorithm. Each iteration consists of
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two inferring processes and one fusion process (linear fusion, see, e.g., [46]), where

an inferring process is a two-stage process, which is composed of two separate dis-

tributed algorithms; the fusion process is a distributed algorithm, too. Note that the

actions of the two inferring processes are the same but applied on different graphs:

one is on the visual graph, and the other is on the textual graph. An inferring pro-

cess is activated to propagate the label information (e.g., a value) from each labeled

vertex to its adjacent vertices. More precisely, the first stage of an inferring process

weights the adjacent edges of each vertex using the label information, while the sec-

ond stage collects the weighted value(s) to the vertices pointed to (cf. Figure 3.2).

After the inferring processes, the fusion process is activated. The fusion process

fuses every two vertices in the different graphs but referring to the same image, in

a weighted fashion with a user-specified parameter β ∈ (0, 1) (cf. Eq. (3.2), e.g.,

β = 0.5 for averaging) so that the two graphs can communicate with each other.

Finally, both visual and textual graphs are updated by assigning each fused value

back to the two corresponding vertices. The overall learning process is repeated

until a certain number of iterations have been reached.

3.3.2 Multi-Layer Multi-label Propagation Algorithm

This subsection details our multi-layer multi-label propagation algorithm.

Our algorithm is extended from [57], targeting at multi-label propagation for large-

scale image datasets. For simplicity, we shall concentrate on the operations in the

visual graph, and shall not mention those in the textual graph, except when we

explain the fusion process. Note that each vertex may have tags or no tag at all.

In the sequel, let G be the visual graph with vertex set X = {x1, ..., xn},

where n is the vertex number; let W ∈ Rn×n be the similarity matrix of G, where

Wij denotes the edge weight between vertices xi and xj; let D ∈ Rn×n be a diagonal

matrix with Dii equaling the inverse square root of the sum of the ith-row of W ;

let L = {1, ..., c} be the label set of G; let Y ∈ Rn×c be a matrix with Yij = 1 if

xi is initially labeled as j, and Yij = 0 otherwise; let F ∈ Rn×c be a classification
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matrix, where eventually each vertex xi will be assigned tag(s) by tag refinement

(see Section 3.3.4) based on the i-row of F ; let α ∈ (0, 1) be a user-specified pa-

rameter. Without loss of generality, assuming that initially the first l (typically,

l � n) vertices {x1, ..., xl} are individually labeled, and the other (n − l) vertices

{x(l+1), ..., xn} are unlabeled. Our objective is to infer the labels of the unlabeled

vertices. Note that in general both S and Y are sparse.

The propagation process is as follows. Initially, we assign Y to F . Then

we create a normalized weight matrix S, which equals the product of D times W

times D (i.e., S = D ×W ×D). Next, we activate an iterative process, iteratively

performing the following two operations.

F ((i+1),vis) = αS × F (i,vis) + (1− α)Y, (3.1)

F ((i+1),vis) = βF ((i+1),vis) + (1− β)F ((i+1),txt), (3.2)

where the meaning of a matrix with the superscript “(i, vis)” is twofold: obtained

in the i-th iteration, and used for learning on the visual graph (i.e., F (0,vis) = F ).

Similarly, F ((i+1),txt) is the classification matrix for the textual graph obtained in

the (i + 1)-th iteration. Note that β is the fused parameter (cf. Section 3.3.1).

As aforementioned, the physical meanings of the two are to infer labels and then

to fuse with the textual graph. Note that fusion (Eq. (3.2)) in the i-th iteration

can only be done after inferring labels (Eq. (3.1)) in both of the visual graph and

textual graphs in the i-th iteration. The iterative process is repeated until a certain

number of iterations is reached. We will show how to decide the iteration number

in Section 3.3.3.

Now we present our implementation for Eq. (3.1), i.e., the inferring process.

Note that both S and Y are invariant during the whole propagation process. We

substitute S ′ for αS and Y ′ for (1−α)Y , i.e., S ′ = αS and Y ′ = (1−α)Y . Clearly,

S ′ (Y ′) is sparse if S (Y ) is sparse. Therefore, we rewrite Eq. (3.1) as

F ((t+1),vis) = S ′ × F (t,vis) + Y ′, (3.3)
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which contains a matrix multiplication and a matrix addition. As mentioned earlier,

we implemented such an inferring process by a two-stage distributed process: the

first stage performs the multiplication part of the matrix multiplication, while the

second stage performs the addition concurrently for the products from the first

stage and for the matrix addition. The two stages are described in Figure 3.3 and

Figure 3.4, sequentially. Note that we store each matrix based on a coordinate list

representation: each line is associated to a row-column index pair and a nonzero

weight.

The rationale behind Figure 3.3 is that given an operation, S ′ times F , each

entry of the i-th column of S ′ should and would be multiplied by each entry of the i-

th row of F exactly once. This can be done by assigning proper key values in the map

procedure followed by performing pairwise multiplications in the reduce procedure.

Subsequently, in Figure 3.4 we add the resultant entries from Figure 3.3 and the

entries of Y ′ together according to their row and column indexes. (Two entries can

only be added if they have the same row and column indexes.) Note that in practical

implementation, the reduce procedure can also work as a combiner of the MapReduce

programming model. In addition, it is instructive to note that if in Figure 3.4 we

consider only the resultant entries from Figure 3.3, the two-stage process will become

a generalized version of the matrix-vector multiplication approach [23] for matrix-

matrix multiplication. So far we have presented the implementation of the inferring

process. In particular, the fusion process can also be achieved in a similar way as in

Figure 3.3, where the fusion parameter β is injected in the map procedure.

3.3.3 Convergence Criterion of Label Propagation

The issue remains in label propagation is to decide the iteration number as

the criterion of convergence. This is important for a distributed environment because

it is hard to inspect each subgraph individually. We will also show experimentally

in Section 3.4.5 the necessity to determine the iteration number automatically and

globally. Intuitively, this number must be large enough such that each image can
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1: Procedure Map(String key, String value)
2: Input:

key: file name of S’, file name of F;
value: a matrix entry;

3: Begin
4: (rowId, colId, weight) = ParseLine(value);
5: if IsSbarFile(key) is true
6: newKey = colId;
7: newValue.setTriple(’S’, rowId, weight);
8: else
9: newKey = rowId;
10: newValue.setTriple(’F’, colId, weight);
11: end if
12: Emit(newKey, newValue);
13: End

14: Procedure Reduce(String key, Iterator values)
15: Begin
16: ArrayList arrayListS, arrayListF;
17: foreach val in values
18: if val.first is ’S’
19: arrayListS.addPair(val.second, val.third);
20: else
21: arrayListF.addPair(val.second, val.third);
22: end if
23: end foreach
24: foreach dataS in arrayListS
25: (rowId, weightS) = dataS.getPairData();
26: foreach dataF in arrayListF
27: (colId, weightF) = dataF.getPairData();
28: Emit(rowId+” ”+colId, weightS×weightF);
29: end foreach
30: end foreach
31: End

Figure 3.3: The first stage of an inferring process with MapReduce.

propagate its label information to those images related to it. That is, a vertex u

should propagate its label information to every vertex v during label propagation

if there is a path from u to v. To this end, we first replace each edge weight by

one. Note that our graph did not reserve the zero-weight edges before; the edges
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1: Procedure Map(String key, String value)
2: Input:

key: file names;
value: a matrix entry;

3: Begin
4: (rowId, colId, weight) = ParseLine(value);
5: Emit(key, weight);
6: End

7: Procedure Reduce(String key, Iterator values)
8: Begin
9: sum=0.0;
10: foreach val in values
11: sum += val;
12: end foreach
13: Emit(key, sum);
14: End

Figure 3.4: The second stage of an inferring process with MapReduce.

considered here are all positive-weight edges. By doing so, the original problem can

then be transformed into the finding of maximum path length from the shortest

paths between all pairs of vertices in the graph, where each missing edge represents

an infinite distance. Since the inferring process introduced before in nature realizes

a matrix multiplication, we thus find the all-pairs shortest paths using dynamic

programming, i.e., the matrix multiplication-based approach [13]. Once the all-

pairs shortest paths have been identified, we can find the maximum path length

accordingly. Note that the processes described above can be implemented following

the ideas of Figure 3.3 and Figure 3.4 with small modifications.

3.3.4 Tag Refinement

In this subsection, we present the tag refinement approach used in this chap-

ter, which is applied after label propagation. Note that at this moment, the classi-

fication matrices in both the visual graph and the textual graph are the same. We

take any of them as the resultant classification matrix. In the sequel, we define the
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transpose matrix of the ith-row matrix of the resultant classification matrix as the

tag matrix Ti ∈ Rc×1, where (Ti)j1 is the score of image i to tag j of L for 1 ≤ j ≤ c.

Before proceeding, let us explain the reason for using tag refinement. We need tag

refinement to improve image tags learned because the original images crawled from

an image dataset, such as Flicker, without any pre-processing may have some noisy

tags. In other words, some tags may not properly (or even not correctly) interpret

the images. Undoubtedly, such noisy tags may introduce noises into the learning

results after label propagation. As a solution, the main objective of tag refinement

is to effectively suppress the noisy tags while emphasize the others. That is, given

an image with a tag list, we would like to to reorder the list such that tag i precedes

(i.e., gets a higher rank) tag j if tag i is more relevant to the image than tag j.

Figure 3.5 gives two examples2. Each image contains two list of tags with different

orders, where the upper (lower) list is the tag list before (after) tag refinement.

Consider the left image. We can see that after tag refinement, the tag list is sorted

according to their relevance to the image. For example, tag “Tower of Pisa” is placed

at the first in the tag list. This means that “Tower of Pisa” is the most-relevant tag

to the image here. The right image is the same. The most-relevant tag, “Golden

Gate Locale,” in the tag list is placed at the first in the tag list after tag refinement.

Recently, a promising work for tag refinement was presented in [59], where

Zhu et al. proposed to decompose a user-provided tag matrix into a low-rank re-

fined matrix and a sparse error matrix. The work in [59] is effective for a global tag

refinement; however, it may not be appropriate to our problem here as each entry

in our tag matrices represents a score and our objective is to tune the scores locally

(a global tag refinement may obscure the experimental results of our proposed ap-

proaches). As a result, we modified the approach of learning class-specific weights

for the searching of visually similar images in [22] to fit our needs. Without loss

of generality, assume there is a union set of vertices {x1, x2, ..., x(k−1)} which are

adjacent to a target vertex xk in the visual or textual graphs. Let adjVis(xk) and

2All of the photos shown in this figure were obtained from Flickr [1].
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Tags (before): 

Italy, tower, Tower of Pisa, Pisa, 

Roman, Pisa tower,   
 

Tags (after):  

Tower of Pisa, Pisa tower, Pisa, 

tower, Roman, Italy 

Tags (before): 

California and Marin County, traveling, 

tourists, Golden Gate Locale, SFO, 

bridge, California, San Francisco, 

vacation 
 

Tags (after): 

Golden Gate Locale, San Francisco, 

SFO, bridge, California and Marin 

County, California, traveling, tourists, 

vacation 
(a) (b) 

Figure 3.5: Illustration of tag refinement. After tag refinement, the tag order of a
tag list is changed while the number of tags is the same. A tag in the tag list of an
image precedes if it is more relevant to the image than the tag(s) placed behind.
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adjTxt(xk) be the vertices adjacent to xk in the visual and textual graph, respec-

tively, i.e., adjVis(xk)
⋃
adjTxt(xk) = {x1, x2, ..., x(k−1)}. Let A1, A2, ..., Ak be the

weight vectors (i.e., column matrices), where Ai ∈ Rc×1, 1 ≤ i ≤ k. We consider the

proximity between xi and xj by the similarity between them, for 1 ≤ i, j ≤ k and

i 6= j, to preserve the inter-image relationship. Finally, our formulation is as follows

(cf. Eqs. (2)–(5) of [22]).

Minimize γ
∑

xi∈adjVis(xk)

(
W vis

ik ‖Ai ◦ Ti − Ak ◦ Tk‖2
)

+

(1− γ)
∑

xi∈adjTxt(xk)

(
W txt

ik ‖Ai ◦ Ti − Ak ◦ Tk‖2
)

subject to A>i × 1 = 1, i = 1, ..., k, (3.4)

Ai ≥ 0, i = 1, ..., k, (3.5)

where γ ∈ (0, 1) is a parameter that controls the balance of the visual and textual

graphs, W vis
ik (W txt

ik ) is the edge weight between xi and xk in the visual (textual)

graph, the symbol “◦” denotes element-wise (Hadamard) product, the superscript

“>” denotes the transpose operation, and 1 (0) denotes a c × 1 matrix filled with

ones (zeros). For the objective function to one graph, the term ‖.‖2 shows a weighted

distance between two images, which is further weighted by the similarity between

the two corresponded images. For the constraints, Constraint (3.4) enforces the

summation of the entries of each weight vector to be one, while Constraint (3.5)

enforces every entry of a weight vector to be nonnegative. As a result, we can learn

k weight vectors, in which A(k) is used to concurrently suppress the noisy tags and

emphasize the other tags of our target image, xk, by weighting T (k) in element-wise.

Note that if a normalized result is preferable, we may rewrite Constraint (3.4) as

follows:

A>i × Ti = 1, i = 1, ..., k. (3.6)
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3.4 Experiments

This section evaluates the effectiveness of the proposed multi-label graph-

based SSL approach and the necessity of tag refinement. We implemented our ap-

proaches using the Java programming language. The experiments were conducted on

a middle Hadoop cluster (version 0.20.1) consisting of 24 commodity machines. The

rest of this section is organized as follows. Section 3.4.1 presents the input datasets

and explains the basic experiment setup. Section 3.4.2 introduces the evaluation

criteria. Section 3.4.3 compares our multi-layer multi-label propagation with four

traditional approaches. Section 3.4.4 investigates the effectiveness of tag refinement.

Section 3.4.5 evaluates the proposed convergence criterion for label propagation. Fi-

nally, Section 3.4.6 performs the sensitivity tests for the three parameters used in

this chapter.

3.4.1 Experimental Setup

All of the experiments were based on the following two image datasets.

Flickr550K: Flickr550K contains 540, 321 images with 9, 360 manually-annotated

ground truth images in 21 query categories [53]. (Note that in [53] this dataset was

named Flickr550. We use Flickr550K instead to be consistent with Flickr11K intro-

duced in the following.)

Flickr11K: Flickr11K is made as a specific subset of Flickr550K [26]. It

contains 11, 277 medium resolution (500 × 360) images with 1, 282 ground truth

images in seven query categories.

For both Flickr11K and Flickr550K, each image is presented in visual and

textual high-dimensional features. For each dataset, we consider the 1, 282 ground

truth images in the seven query categories, which are colosseum, eiffel tower, golden,

starbucks, torre pendente di pisa, tower bridge, and triomphe. Note that although

Flickr550K is with 21 query categories, we focus on the seven out of the 21 query

categories.
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We extracted the visual and textual features in the following ways. We

took visual word as visual features for similarity computation. For visual word

generation, we adopted the difference-of-Gaussian (DoG) approach to detect feature

points followed by describing them with scale invariant feature transform (SIFT).

The SIFT descriptors were then quantized into 10k clusters using k-means clustering,

where each cluster defined a visual word containing the feature descriptors (feature

points) in this cluster. For the textural features, we adopted the expanded Google

snippet from the Google search engine to perform query expansion to represent

associated (noisy) tags in textual features in 91, 004 dimensions.

To be close to the real world image data (i.e., relatively few tagged images),

for all of the textual graphs used, we reserved only a portion of tagged images by

randomly sampling, while removed the tags from the other tagged images. For

graph construction, we reserved only 30% tagged images by randomly sampling

from each dataset to fit the real world condition. For label propagation, the focus

of this chapter, we further reduced the number to 100 to show the effectiveness of

our propagation method. That is, Flickr11K and Flickr550K reserved only 0.89%

and 0.02% tagged images (randomly sampled), respectively.

Since general graph-based SSL is sensitive to the initial labels, for each ex-

periment we repeated the learning process ten times and average the results for a

more accurate test result.

3.4.2 Evaluation Criteria

We evaluate the performance by Mean Average Precision (MAP), which is

the mean of the average precision of the tags for each image. That is, a higher MAP

indicates a better retrieval results. For tag refinement, we focus on the precision

of the top-n labels of the ranked label set of each image, i.e., P@n. Empirically,

parameters α, β, and γ were set to 0.9, 0.5, and 0.6, respectively. Note that the

sensitivity test of each of them can be found in Section 3.4.6.
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3.4.3 Multi-Layer Multi-Label Propagation

This subsection compares our multi-layer learning with visual graph, textual

graph, early fusion and late fusion -based learning, where visual (textual) graph-

based learning uses no textual (visual) graph, and early (late) fusion-based learning

considers both visual and textual graph but fuses only at the beginning (end). All of

the label propagations here were implemented based on our multi-label propagation

approach described in Section 3.3.2 to tackle the large-scale dataset, i.e., Flickr550K.

The results are shown in Table 3.1. As revealed in the table, our multi-layer learning

can significantly improve the baselines by aggregating visual and textual contexts

during message passing among the graphs. Moreover, the results also verify that

our multi-label propagation approach is practical and useful to a large-scale image

dataset.

Table 3.1: Compare the visual graph, textual graph, early-fusion [48], late-
fusion [48], and multi-layer (ours) -based learning methods in MAP, where the per-
centages (%’s) are the improvement ratios between the visual graph only and the
multi-layer learning methods. We can see that the multi-label method can achieve
better results than the others.

Visual Textual Early Late Multi-layer
Only Only Fusion Fusion (Ours)

Flickr11K 0.2859 0.3083 0.3114 0.3418 0.3611 (26%)
Flickr550K 0.1632 0.1994 0.2149 0.2342 0.2883 (77%)

After multi-label propagation, each image contains a set of tags, where each

tag is with a score. With this information, we then do tag refinement to suppress

noisy tags.

3.4.4 Tag Refinement

As mentioned in Section 3.4.2, here we investigate the precision of the top-

n labels of the ranked label set of each image, i.e., P@n. Table 3.2 shows the

experimental results. We consider the top-1, 2, 3, 4, 5, and 10 labels. As can be

seen, the results of using tag refinement are consistently better than using no tag
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refinement. Based on the results, we further believe that the noisy tags indeed may

lower the learning quality a lot. With tag refinement, such noises are effectively

suppressed by considering the neighbor information of an image graph.

Table 3.2: Compare the use of tag refinement and not in MAP, where the resultant
top-1, 2, 3, 4, 5, and 10 labels are considered.

Flick11K P@1 P@2 P@3 P@4 P@5 P@10

Multi-label
0.0016 0.0059 0.1059 0.1809 0.3029 0.3548

w/o Refinement
Multi-label

0.0842 0.1033 0.1348 0.2948 0.3541 0.3611
w/ Refinement

Flick550K P@1 P@2 P@3 P@4 P@5 P@10

Multi-label
0.0003 0.0189 0.1093 0.1777 0.2574 0.2680

w/o Refinement
Multi-label

0.0546 0.1098 0.1357 0.1867 0.2883 0.3271
w/ Refinement

3.4.5 Convergence Criterion - Shortest Path

As described in Section 3.3.2, we set a maximum number of iterations as

the criterion of convergence for label propagation. Such a number is defined as

the maximum path length from the shortest paths between all pairs of vertices in

the graph such that each image can propagate its label information to any images

related to it. At this moment, we compare the shortest path-based approach and

an ad-hoc approach which arbitrarily sets the maximum number of iterations. The

experimental results are shown in Table 3.3. Each of the numbers, 1, 5, 10, 50, and

100, denotes the maximum number of iterations adopted. Note that the maximum

numbers of iterations to Flickr11K and Flickr550K are 13 and 15, respectively. As

we can see, our shortest path-based approach can achieve the best results. From

the results, it is interesting to notice that using more than enough iteration may

degrade the performance. This may be because of the magnification of the influence

of the potential noisy tags.
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Table 3.3: Compare the shortest path-based approach and an ad-hoc approach in
MAP. Based on the results, we can see that the shortest path-based results are
comparable to those by the ad-hoc approach.

Ad-Hoc Approach Shortest Path-
1 5 10 50 100 Based Approach

Flickr11K 0.3297 0.3330 0.3504 0.3473 0.3455 0.3611
Flickr550K 0.2544 0.2629 0.2680 0.2643 0.2697 0.2883

3.4.6 Sensitivity Test

In this subsection, we conduct experiments to decide the three user-specified

parameters used in this work, i.e., α, β, and γ. They are for the inferring process,

the fusion process of label propagation, and the balance control of tag refinement,

respectively. The sensitivity tests of them are as follows. Table 3.4 investigates the

use of different α in the inferring process. As can be seen, when α equals to 0.9, we

can achieve the best MAP. Thus we set α to 0.9. Table 3.5 investigates the use of

different β in the fusion process. As can be seen, the best setting of β is 0.5. This

result also reflects the necessity of fusing the visual and textual graphs to achieve

a better MAP. They are both important. No matter we bias toward any of them,

the resultant MAP would get worse. Table 3.6 investigates the use of different γ in

balance control. As revealed in the table, the best setting of γ is 0.6. Consequently,

parameters α, β, and γ were set to 0.9, 0.5, and 0.6, respectively.

Table 3.4: Consider the setting of α (cf. Eq. (3.1)), i.e., the inferring parameter in
the graph-based multi-layer multi-label propagation in MAP.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flickr11K 0.0097 0.1044 0.1504 0.1695 0.1766 0.2112 0.2373 0.2501 0.2554
Flickr550K 0.0999 0.1203 0.1400 0.1504 0.1655 0.1799 0.1867 0.2003 0.2237
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Table 3.5: Consider the setting of β (cf. Eq. (3.2)), i.e., the fusion parameter in the
graph-based multi-layer multi-label propagation in MAP.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flickr11K 0.2113 0.2367 0.2548 0.2481 0.2677 0.2499 0.2410 0.2158 0.2035
Flickr550K 0.2044 0.2130 0.2205 0.2311 0.2359 0.2245 0.2139 0.2008 0.1917

Table 3.6: Consider the setting of γ (cf. Eq. (3.4)), i.e., the balance control param-
eter in tag refinement in MAP.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Flickr11K 0.2572 0.2628 0.2848 0.3066 0.3244 0.3620 0.3502 0.3115 0.2753
Flickr550K 0.1977 0.2046 0.2283 0.2380 0.2508 0.2737 0.2494 0.2229 0.2002
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Chapter 4

Cross-Domain Media Learning for Event

Discovery

4.1 Introduction

Every day, millions (and even more) of media data are uploaded to various

social-sharing websites. As the volume of media data increases, there have been

many studies in the literature that aim to discover and/or summarize media datasets

for useful information. Most previous works focused on the mining of a single media

dataset for specific applications.

Previously, based on Twitter tweets, Sankaranarayanan et al. builded a

news processing system to capture late breaking news [42]. Sakaki et al. builded a

reporting system for earthquake detection [41]. Weng et al. then builded a system,

called Voters’ Voice, that effectively summarized netizens’ discussion for Singapore

General Election [49]. Recently, Meladianos et al. extracted sub-events for evolving

events, e.g., natural disasters [36]. Based on taxis traces, Zhang et al. identified the

place and time of events that happened and the scale of events [56]. For complex

events in videos, Yan et al. discovered videos of particular events from internet

video archives [52]. Chang et al. studied video ranking for specified events, where

no training data is required [10].

Intuitively, different media datasets have their own features and information.

For example, Kuo et al. observed that most Instagram users like to share information

of food and travel, while many Twitter users like to share more for sports and

news [27]. Similarly, Becker et al. also considered multiple media datasets, including

Twitter, YouTube, and Flickr, and then provided diverse media contents for target

events [8].
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In contrast, this chapter unifies two media datasets for events of interest.

Unlike related works, e.g., [27], that explored multiple datasets separately for diverse

aspects, this chapter combines a flow-based media dataset and a check-in-based

media dataset seamlessly for high search performance. A flow-based media dataset

has flow information for some locations. The dataset can offer the numerical value

of something per unit of time for each of the locations (c.f., Section 4.2). A check-

in-based media dataset has user-contributed information for some locations, e.g.,

comments and images. Practically, we used a flow dataset of taxis and a check-in

dataset from Instagram. We collected data for the City of Sapporo from March to

November in 2014, where the taxi’s dataset was created using GPS data from about

10,000 taxis. Note that we did not use another check-in-based media dataset, e.g.,

Twitter, because Instagram not only has textual data but only a large number of

images for future studies. Further, it is more convenient to us for long-term data

collection. However, the methods presented in this chapter can be easily extended

to many other check-in-based media datasets with textual data. Table 4.1 compares

the two media datasets used throughout this chapter.

Table 4.1: Comparison of a flow dataset of taxis and an Instagram’s check-in dataset
for the City of Sapporo.

Taxis Instagram
(flow dataset) (check-in dataset)

Information
time, places, time, places, texts

values images, values
Hotspots / weekdays / holidays /
Weakspots holidays weekdays

Reaction
relatively relatively

instantaneous non-instantaneous

Distribution
relatively relatively
gathered scattered

Coverage from
61% 47%

the other dataset

As can be seen, the strengths of the two datasets are different but comple-

mentary. Both the taxi’s dataset and the Instagram’s dataset have numerical data,

i.e., number of boarding and alighting for the taxi’s dataset, and number of check-
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ins for the Instagram’s dataset, for different locations for different dates. Relatively,

the numerical data for the taxi’s dataset is more steady and traceable and because

they were collected from the same set of taxis, while additionally, the Instagram’s

dataset have textual data and images. The hotspots of the two datasets are contrary

to each other, and thus their data volumes are complementary. Moreover, the reac-

tion to events is instantaneous for the taxi’s dataset, and the distribution of taxis’s

boarding and alighting locations are gathered. Compared with the taxi’s dataset,

the reaction to events for the Instagram’s dataset are not instantaneous enough (c.f.,

Section 4.4.3.1), and the distribution of check-in locations are scattered. Further,

about half of the boarding and alighting locations and the check-in locations are in

a close proximity (c.f., Section 4.4.2).

As the two datasets are complementary, we intend to unify them for high

search performance in finding events of interest. Overall, the major contributions

of this chapter are summarized as follows:

• To the best of our knowledge, this chapter presents the first work to combine

a flow-based media dataset and a check-in-based media dataset seamlessly for

events of interest.

• This chapter presents a generic two-stage framework that normalizes data

from different sources and then combines the normalized data by effective

graph algorithms.

• Experimental results show that our approach is effective to normalize data

from different datasets, and is able to achieve high performance for a ranked

list of events.

The rest of this chapter is organized as follows. Section 4.2 formulates the

problem of finding events of interest. Section 4.3 details the proposed approach.

Finally, Section 4.4 evaluates the performance of the proposed approach.
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4.2 Problem Formulation

This section presents the problem formulation. For clarity, we first define

a day as the smallest unit of time for event discovery. (However, the methods

presented in this chapter can be easily extended for a smaller unit than a day,

e.g., an hour.) With the definition, we then give formal descriptions of two terms,

i.e., flow data and check-in data, as follows.

Definition 1 (Flow Data) Given a location for a period of time, flow data of the

location can offer the numerical value of something per day at the location.

For example, for flow dataset of taxis, flow data may offer the number of boarding

and alighting from taxis per day at a location.

Definition 2 (Check-in Data) Given a location for a period of time, check-in data

of the location can offer a set of tags and/or comments per day at the location from

users of social networks.

Note that check-in data may offer more information than tags and comments, e.g.,

images. This chapter will focus on textual information from tags and comments

(although textual information could be extracted from images). Finally, our problem

of finding events of interest of a region can be stated as follows.

Problem 1 Given a set of flow data of locations and a set of check-in data of

locations for a period of time of a region, the objective of the problem of finding

events of interest of a region is to create a ranked list of events of the region, based

on the given sets of data.

Practically, we used (1) a flow dataset of taxis and (2) an Instagram’s check-

in dataset, for events of interest in the City of Sapporo. Most of events in the

experiments are either sports or local festivals for the datasets (despite the fact that

the application of our approach is not limited to sports and festivals). In fact, the two
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datasets are not the original datasets, but the resultant datasets after pre-processing

for ease of use. More specifically, the original flow dataset of taxis consists of a list.

Each item of the list keeps (a) a boarding location, (b) an alighting location, and (c)

the timing information e.g., the date. The original Instagram’s check-in dataset also

consists of a list. Each item of the list keeps (a) a check-in location, (b) a comment

from a user, and (c) the timing information of the check-in. Figure 4.1 gives an

illustration, where there are two items for the original flow dataset and two items

for the original Instagram’s dataset.

v1 

v3 

5/21; from v1 to v3 

4/28; from v2 to v3 

v2 

Sapporo dome 

1.  5/21; “I just love baseball.”  

2.  5/21; “Good match!” 

Figure 4.1: Illustration of two items listed in the original flow dataset of taxis, and
two items in the original Instagram’s dataset that are associated to Sapporo Dome.
The two datasets can be processed for a flow dataset with a set of flow data, and a
check-in dataset with a set of check-in data.

We used the datasets that had been pre-processed. That is, the flow dataset

can be accessed as a set of flow data, and the Instagram’s check-in dataset can

be accessed as a set of check-in data. Note that the locations with flow data and

those with check-in data may differ (as indicated in Table 4.1). In addition, our
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approach is capable of handling many other flow-based media datasets or check-in-

based media datasets, not limited to the taxi’s dataset and the Instagram’s check-in

dataset.

Based the given datasets, this work will create a ranked list of events. Ta-

ble 4.2 illustrates the idea of a ranked list of two events in Sapporo. The list implies

that there could be two popular events: one is a display of fireworks in Moerenuma

Park on September 20, and the other is a baseball game for Nipponham fighters

in Sapporo Dome on May 21. Besides, more information may be obtained by the

users’ comments that are associated to the events. In the following, we will describe

how to generate the ranked list of events.

Table 4.2: Illustration of a ranked list of events, where “Cmnt” is an abbreviation
of “Comment.” Two items (i.e., rows) are listed, where each item is associated to
an event. Each item gives the date, the location, the relevant terms, and users’
comments which the relevant terms are derived from, for the event.

Rank Date Location Term Cmnt

1 9/20
Moerenuma

fireworks, art ...
Park

2 5/21
Sapporo baseball, match

...
Dome Nipponham

4.3 Proposed Approach

Figure 4.2 outlines the proposed approach for finding events of interests.

Given a set of flow data of locations and a set of check-in data of locations, the

proposed approach normalizes the given sets of data, followed by combing the nor-

malized datasets for a ranked list of events. More specifically, the proposed approach

uses six techniques, including (a) flow normalization, (b) buzz-score calculation, (c)

variability-score calculation, (d) spanning-graph construction, (e) weight determina-

tion, and (f) flow propagation. Initially, flow data of each location will be processed

by flow normalization and variability-score calculation. Check-in data of each lo-

cation will be processed by buzz-score calculation and variability-score calculation.

Subsequently, the resultant datasets will be linked by spanning-graph construction

60



doi:10.6342/NTU201600215

D
a
ta

 N
o
rm

a
li

za
ti

o
n

 

F
lo

w
 D

at
a 

C
h
ec

k
-i

n
 

D
at

a 

F
lo

w
 

N
o
rm

al
iz

at
io

n
 

B
u
zz

-S
co

re
 

C
al

cu
la

ti
o
n

 

(a
) 

(b
) 

V
ar

ia
b
il

it
y

-S
co

re
 

C
al

cu
la

ti
o
n

 

V
ar

ia
b
il

it
y

-S
co

re
 

C
al

cu
la

ti
o
n

 

(c
) 

(c
) 

G
ra

p
h

-B
a
se

d
 D

a
ta

 F
u

si
o
n

 

R
an

k
ed

 L
is

t 

o
f 

E
v
en

ts
 

S
p
an

n
in

g
-G

ra
p
h
 

C
o
n
st

ru
ct

io
n

 

(d
) 

W
ei

g
h
t 

D
et

er
m

in
at

io
n

 
0
.2

 

0
.4

 
0
.2

 
0
.7

 0
.5

 
0

.8
 

0
.1

 

(e
) 

F
lo

w
 

P
ro

p
ag

at
io

n
 

(f
) 

0
.9

 

F
ig

u
re

4.
2:

O
ve

ra
ll

fl
ow

of
th

e
p
ro

p
os

ed
ap

p
ro

ac
h

fo
r

fi
n
d
in

g
ev

en
ts

of
in

te
re

st
.

T
h
e

fr
am

ew
or

k
of

th
e

p
ro

p
os

ed
ap

p
ro

ac
h

h
as

tw
o

st
ag

es
,

in
cl

u
d
in

g
d
at

a
n
or

m
al

iz
at

io
n

an
d

gr
ap

h
-b

as
ed

d
at

a
fu

si
on

.
N

ot
e

th
at

b
ef

or
e

d
at

a
fu

si
on

,
d
at

a
n
or

m
al

iz
at

io
n

is
es

se
n
ti

al
b

ec
au

se
th

e
gi

ve
n

d
at

as
et

s
ar

e
d
iff

er
en

t
in

n
at

u
re

.
S
p

ec
ifi

ca
ll
y,

th
e

ap
p
ro

ac
h

u
se

s
si

x
te

ch
n
iq

u
es

,
in

cl
u
d
in

g
(a

)
fl
ow

n
or

m
al

iz
at

io
n
,

(b
)

b
u
zz

-s
co

re
ca

lc
u
la

ti
on

,
(c

)
va

ri
ab

il
it

y
-s

co
re

ca
lc

u
la

ti
on

,
(d

)
sp

an
n
in

g-
gr

ap
h

co
n
st

ru
ct

io
n
,

(e
)

w
ei

gh
t

d
et

er
m

in
at

io
n
,

an
d

(f
)

fl
ow

p
ro

p
ag

at
io

n
.

F
or

th
es

e
te

ch
n
iq

u
es

,
th

e
fi
rs

t
th

re
e

ar
e

u
se

d
fo

r
d
at

a
n
or

m
al

iz
at

io
n
,

an
d

th
e

ot
h
er

th
re

e
ar

e
u
se

d
fo

r
d
at

a
fu

si
on

.
O

ve
ra

ll
,

th
e

gi
ve

n
d
at

as
et

s
w

il
l

b
e

n
or

m
al

iz
ed

in
d
iv

id
u
al

ly
,

an
d

th
en

co
m

b
in

ed
to

ge
th

er
b
y

gr
ap

h
-b

as
ed

te
ch

n
iq

u
es

.

61



doi:10.6342/NTU201600215

and weight determination. Finally, the datasets will be combined by flow propaga-

tion for a ranked list of events.

In the sequel, Section 4.3.1 to Section 4.3.6 will present the aforementioned

six techniques, respectively.

4.3.1 Flow Normalization

Given a location, flow data of the location can offer the numerical value of

something per day at the location. For the taxi’s dataset, flow data can offer the

number of boarding and alighting from taxis per day at the location. The number of

boarding and alighting from taxis at a location changes with the dates. Therefore,

finding events of interest at the location should be achieved by observing the changes

of the numbers for the location. In this chapter, calculating variability scores helps

us observe the changes of the numbers. Details of variability-score calculation will

be presented soon in Section 4.3.3.

However, we found that different periods of time may result in quite different

numbers of boarding and alighting from taxis at a location. For example, we ob-

served that the average number of boarding and alighting from taxis at the Sapporo

station per day in August is typically more than that in November, probably because

of the tourist season in the City of Sapporo (August is, but November is not). With

such a bias, it is likely that most high-ranking events found by our approach will be

in the tourist season or some other specific periods of time. (See Section 4.3.3 for

more details.) Thus, we normalize flow data of a location of a day by

fN
i,j =

1

2a+ 1

j+a∑
s=j−a

fi,j
fi,s

, (4.1)

where fN
i,j is the flow data of location i for date j after flow normalization, fi,j is

the given flow data of location i for date j, and a ≥ 1 is a user-defined parameter

that specifies the data range used for normalization. The summation is from a days

before date j to a days after date j. Empirically, a is set to 3, and thus the set of

flow data for a week will be involved.

62



doi:10.6342/NTU201600215

Practically, we will normalize the given set of flow data of each location for

each date.

4.3.2 Buzz-Score Calculation

Recently, calculating buzz scores has been shown success in trending search

based on query logs, see, e.g., [6, 50]. In this chapter, we develop a strategy similar

to that in [50] for trending search on check-in data, where buzz-score calculation

helps us identify critical terms from comments and/or tags of users.

Consider a location. Check-in data of the location can offer a set of tags

and/or comments at the location per day from users of social networks. Given all

check-in data for each location, we first remove stop words appeared in the contents

of tags and comments. We then split the contents of tags and comments into terms.

Given the terms, we extract the top-frequent terms (top-100 terms in our work),

and then calculate their buzz scores individually. Assume that there are n terms,

i.e., {t1, t2, ..., tn}, have been extracted. The same as that mentioned in [50], the

buzz score of term tk of a location of a date for 1 ≤ k ≤ n can be formulated as

cBi,j,k =

j−b∑
s=j−1

(
1

j − s
(P (tk|Tj)− P (tk|Ts))

)
, (4.2)

where cBi,j,k is the buzz score of term tk of location i for date j, b ≥ 1 is a user-defined

parameter, and P (tk|Tj) is the probability of the occurrence of term tk given the set

of terms, Tj, for date j. The buzz score of a term for a date helps us measure the

degree of rising for the popularity of the term of the date. A term with a high buzz

score for a date implies that the frequency of using the term (mostly, mentioned or

discussed) has been increasing up to the date. b ≥ 1 can be used to determine the

number of days that will be involved, before the date. Empirically, b is set to 5.

Further, we can consider groups of terms with similar semantics, and then simply

modify the formulation, as that suggested in [6, 50].

Note that every location has its own top-frequent terms. Practically, we will

calculate the buzz score for each top-frequent term of each location for each date. In
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addition, it is worth noting that buzz-score calculation and flow normalization (c.f.,

Section 4.3.1) are similar in the concepts, because they both consider dates other

than the date being processed. We thought that calculating buzz scores can also be

regarded as a kind of normalization. Thus we will not further normalize check-in

data before variability-score calculation.

4.3.3 Variability-Score Calculation

Consider a period of time. Intuitively, finding events of interest should be

achieved by observing the changes of data numbers along the dates. Whenever

there is a sharp jump on a date, there might be an event that happened on the date.

For example, consider a sequence of five numbers, say {10, 11, 20, 10, 11}. Assume

that each number is associated to a date. It is likely that there was an event that

happened on the date associated to the third number of the sequence.

Further, we observed that it is preferred to observe the changes of data

numbers along each of the seven days of a week, rather than along the dates. The

reason is that the change of data numbers may be considerable for different days of a

week. For example, the number of boarding and alighting from taxis on weekdays is

typically more than that on holidays, based on our dataset. The change along a day

of a week is relatively regular, and thus observing the change is relatively effective.

As a result, we decompose the set of data for each location of the resultant dataset

from Section 4.3.1 into seven groups, which are associated to the seven days of a

week, respectively. Similarly, we also decompose the set of data for each location of

each top-frequent term of the resultant dataset from Section 4.3.2 into seven groups,

which are associated to the seven days of a week, respectively. Eventually, for the

part of the flow-based dataset, each group is associated to a location and one of

the seven days of a week. For the part of the check-in-based dataset, each group is

associated to a location, a term, and one of the seven days of a week.

Practically, we express each group as a sequence of numbers, sorted along

the dates. For example, consider a location and a period of time, e.g., a year. For
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the flow-based dataset, i.e., the taxi’s dataset, the sequence of Sunday will contain

the number (after flow normalization) of boarding and alighting from taxis at the

location for the first Sunday of the year, that for the second Sunday of the year,

and so on. With all the sequences, we will observe the change of numbers in each

sequence for event of interest.

For each sequence, we first calculate the mean and the standard deviation.

We then define the variability score associated to flow data as

fV
i,j =

fN
i,j − µF

i,s

σF
i,s

, s = d(j), (4.3)

where fN
i,j is the flow data of location i for date j after flow normalization, fV

i,j is the

variability score of fN
i,j, d(j) gives the day of a week for date j, and µF

i,s and σF
i,s are

the mean and the standard deviation of the sequence associated to location i of day

s of a week for the flow data, respectively. The advantage of calculating variability

scores is twofold.

• Every variability score can be used to measure the degree of the variability

of the data number for a specific location and a specific date. The larger the

absolute value of a score is, the higher the variability of the data is. A positive

(negative) score implies that the data number is more (less) than normal.

• Calculating variability scores can be regarded as normalization that eliminates

the unit of the given data numbers. It is beneficial for us to combine the flow-

based dataset and the check-in-based dataset later.

Similarly, we can define the variability score associated to check-in data as

cVi,j,k =
cBi,j,k − µC

i,s,k

σC
i,s,k

, s = d(j), (4.4)

where cBi,j,k is the buzz score of term tk of location i for date j, cVi,j,k is the variability

score of cBi,j,k, d(j) gives the day of a week for date j, and µC
i,s,k and σC

i,s,k are the

mean and the standard deviation of the sequence associated to term tk of location

i of day s of a week for the check-in data, respectively.
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Note that as mentioned in Section 4.3.1, flow normalization is essential to

reduce the bias from different periods of time. Without flow normalization, the

variability scores of data in some period of time, e.g., a tourist season, may be

much higher than those in the other periods of time, such that most events with

high rankings may be selected from the period of time (i.e., the tourist season).

Similarly, the calculation of buzz scores also helps to reduce such kind of bias.

4.3.4 Spanning-Graph Construction

So far, the set of flow data and the set of check-in data have been normalized.

For a high search performance, we intend to bridge the two datasets by graph

algorithms. More specifically, consider two types of vertices. Each of the locations

to the set of flow data can be modelled as one type of vertex. Each of the locations

to the set of check-in data can be modelled as the other type of vertex. Given

two vertices with different types, we may add an edge for the two vertices, if the

locations associated to them are relevant. We then assign an appropriate weight

for each edge. Finally, we may combine the set of flow data and the set of check-in

data, by transmitting information along the edges. This section will focus on graph

construction, and Sections 4.3.5 and 4.3.6 will present weight determination and

information transmission, respectively.

For graph construction, we implement spanning graphs for the two datasets [54,

58]1. So far, there have been many studies shown that constructing spanning graphs

is capable of finding critical neighborhoods of vertices in a plane, see, e.g., [20,21,34].

A spanning graph is an undirected graph that contains no graph loops or multiple

edges. Simply, a spanning graph can be constructed as follows. Given a set of ver-

tices in a plane, we may traverse the vertices in any order. Whenever a vertex is

visited, we will divide the plane evenly into eight regions with respect to the ver-

tex, followed by connecting the vertex to the nearest vertex to itself in each region.

1To be self-contained, we introduce the construction of spanning graphs again, despite the fact
that the the construction has been presented in Section 2.3.2.
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(Note that we may divide the plane evenly into more than eight regions if necessary.)

Eventually, we will have a spanning graph for the given set of vertices, when all of

the vertices have been visited. Overall, the edge number (i.e., size) of a spanning

graph is O(n), if the number of vertices is n. Also, spanning graphs can efficiently

be constructed [54]. Thus, constructing spanning graphs is capable of scaling to the

case of a large number of vertices.

Figure 4.3 shows an example of spanning-graph construction for four vertices,

i.e., v1, v2, v3, and v4. Initially, these vertices are disconnected. Assume that v1 is

(a) 

v1 
v2 

v3 

v4 

(b) 

Figure 4.3: Illustration of spanning-graph construction. Consider a set of vertices:
v1, v2, v3, and v4. (a) Assume that v1 is first visited. We will divide the plane evenly
into eight regions with respect to v1. We then add an edge between v1 and v2, and
an edge between v1 and v3, because each of v2 and v3 is the nearest vertex to v1 in
one of the regions. (b) The spanning graph for the given set of vertices.

first visited. As shown in Figure 4.3(a), v1 is connected to v2 and v3, because each

of v2 and v3 is the nearest vertex to v1 in one of the eight regions with respect to

v1. Once all of the vertices have been visited, we will have a spanning graph for the

four vertices, as shown in Figure 4.3(b).

Note that we intend to combine two types of data numbers, i.e., flows and

check-ins, instead of data numbers of the same type. We model each of the locations

to the set of flow data as one type of vertex, and each of the locations to the set of

check-in data as another type of vertex. We then modify a part of spanning-graph
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construction method by restriction as follows. Whenever a vertex v is visited, v will

only consider those vertices of the other type with respect to v. By doing so, each

edge will only be used to connect vertices of different types. Eventually, we can get a

graph for the two datasets. Figure 4.4 shows an example. Without loss of generality,

(a) 
flow data 

check-in 

data 

(b) 

Figure 4.4: Illustration of spanning-graph construction for the two datasets. (a)
The resultant graph after the vertices associated to the flow-based dataset have
been traversed. (Assume that the vertices associated to the check-in-based dataset
have not been traversed.) (b) The resultant spanning graph after all of the vertices
have been traversed.

assume that vertices associated to the flow-based dataset will be traversed before

those associated to the check-in-based dataset. Figure 4.4(a) shows the resultant

graph after the vertices associated to the flow-based dataset have been traversed,

and Figure 4.4(b) shows the resultant spanning graph after all of the vertices have

been traversed.

Consider the process of connecting a vertex v for flow data to its nearest

vertex for check-in data in each of the eight regions with respect to v. Interestingly,

the process is somewhat similar to the case that one may walk to a nearby location

(in any direction) after alighting from a taxi. From the perspective, we thought that

using another method, e.g., the k-nearest neighbors (kNN), for graph construction

may work, but the resultant performance might not be better than that of using the

spanning graphs (see Section 4.4.3.2 for the evaluation).
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4.3.5 Weight Determination

Given a graph, we intend to assign a weight for each edge. To further combine

the given two datasets, we plan to transmit information from the vertices of the

flow-based dataset to the vertices of the check-in-based dataset. Note that we do

not consider the opposite direction for transmission. The reason is that the check-

in-based dataset can offer textual information, but our flow-based dataset cannot.

Moreover, the information of event locations from the check-in-based dataset is

typically more accurate than that from the flow-based dataset. By doing so, the

exact event locations will be determined by the locations in the check-in-based

dataset.

For weight determination, we consider (1) how the numerical values (i.e.,

variability scores) of a vertex for flow data to be divided for its adjacent vertices,

and (2) the percentage of the input from a vertex v for flow data, a vertex for check-

in data that adjacent to v should receive. Accordingly, for each edge, we will assign

two values, and then set the product of the two values as the edge weight. Formally,

given a graph, let E be the edge set of the graph. Let V F and V C be the vertex

set to the flow-based dataset of the graph and the vertex set to the check-in-based

dataset of the graph, respectively. For each edge, the first value can be set as

wF
p,q =

(
1

g(p,q)

)2
∑

(p,r)∈E

(
1

g(p,r)

)2 ,
∀(p, q) ∈ E, p ∈ V F , q ∈ V C , (4.5)

where wF
p,q is the first value for the edge between vertex p and vertex q, and g(p, q)

gives the geographical distance between the two locations that are associated to p

and q. An edge will be assigned a large value if both (a) the degree of its vertex

for flow data and (b) the geographical distance associated to the edge are small,

compared to the other edges connected to the vertex for flow data. Figure 4.5 shows

an example, where p is a vertex with a degree of 3 for flow data, and v1, v2, and

v3 are the vertex for check-in data that are adjacent to p. For each edge, the value
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with an underline shows the first value for the edge. Similarly, the second value can

flow data 

check-in data 

0.19 

g(p, v1)=10 

g(p, v2)=6 

g(p, v3)=8 

v1 

v2 

v3 

p 

0.29 

0.52 

Figure 4.5: Illustration of assigning values for edges (partial values for the desired
weights) that are adjacent to a vertex for flow data. Assume that p is a vertex for
flow data, and v1, v2, and v3 are the vertices for check-in data that are adjacent to
p. If g(, ) gives the geographical distance for two vertices, the assigned values will
be the values with underlines.

be set as

wC
p,q =

(
1

g(p,q)

)2
∑

(r,q)∈E

(
1

g(r,q)

)2 ,
∀(p, q) ∈ E, p ∈ V F , q ∈ V C , (4.6)

where wC
p,q is the second value for the edge between vertex p and vertex q, and g(p, q)

gives the geographical distance between the two locations that are associated to p

and q. An edge will be assigned a large value if both (a) the degree of its vertex for

check-in data and (b) the geographical distance associated to the edge are small,

compared to the other edges connected to the vertex for check-in data.

Finally, the weight of the edge between p and q will be set to the product of

wF
p,q and wC

p,q.

4.3.6 Flow Propagation

So far, we have (1) the variability score of flow data for each location for each

date, (2) the variability score for check-in data for each term of each location for
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each date, and (3) a graph with weighted edges that connects the vertices associated

to the locations of the flow-based dataset and the check-in-based dataset.

Now we can transmit information from the vertices for the flow-based dataset

to the vertices for the check-in-based dataset along the weighted edges on the graph.

For the check-in-based dataset, a score for each term of each location for each date

can be determined by the following formula:

cPq,j,k = cVq,j,k
∑

(p,q)∈E

(
wP

p,q · fV
p,j

)
, (4.7)

where cPq,j,k is the resultant score for term tk of location q for date j, cVq,j,k is the

variability score for check-in data for term tk of location q for date j, wP
p,q is the

weight of the edge that connects location p and location q, and fV
p,j is the variability

score for the flow data of location p for date j. Finally, we can generate a ranked

list of events based on the resultant scores. The higher the score is, the higher the

rank is. Note that cVq,j,k or the summation of the products may be negative. We

will remove any event data from the ranked list if both of the values associated to

the event data are negative. The reason is that this happens typically when more

critical events happened before or after the current date. Although the case of two

negative values could imply something happen, it also implies that it is challenging

to describe the event based on the textual information from the current datasets.

For the ranked list of events, we will merge the results for the same date and

the same location into the result that has a higher rank. As a result, we can use (1)

a date, (2) a location (from the check-in-based dataset), and (3) one or more terms,

to describe each event of the ranked list. Practically, we still can efficiently extract

comments that are related to the terms from users’ comments for the location for

the date if necessary.

Table 4.3 gives an example of a ranked list of events before merging its items.

Totally, five items (i.e., rows) are listed. Comments of each item are associated to

the terms of the item (comments are not shown here due to the space limit for the
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table). Table 4.2 shows the resultant ranked list of events after merging the items

in Table 4.3 that are with the same date and the same location.

Table 4.3: Illustration of an original ranked list of events, where “Cmnt” is an
abbreviation of “Comment.” Items of the list will be merged together if they are
for the same date and the same location.

Rank Date Location Term Cmnt

1 9/20
Moerenuma

fireworks ...
Park

2 5/21
Sapporo

baseball ...
Dome

3 9/20
Moerenuma

art ...
Park

4 5/21
Sapporo

match ...
Dome

5 5/21
Sapporo

Nipponham ...
Dome

4.4 Experiments

To evaluate the proposed approach, we conducted experiments based on a

taxi’s dataset, provided by National Institute of Informatics in Japan, from about

10,000 taxis and an Instagram’s dataset for the City of Sapporo from March to

November in 2014 (as mentioned in Section 4.1).

The taxi’s dataset was generated based on the GPS data of the taxis. For

the Instagram’s dataset, we used the Instagram’s open API [4] for data collection.

To use the API, we considered two issues. First, each request has its upper limit to

the number of returned photos, and thus the returned result might be incomplete if

a large search region is used. Second, we are also limited to 5,000 requests per hour

per access token, which makes the use of small search regions for the whole collecting

process become impractical. As a result, we followed the similar collection approach

presented in [18], to collect as more photos as possible, considering the issues. More

specifically, we started from a large search region (i.e., a circle with 5km radius) and

a time span (i.e., 1,000 seconds). Whenever the number of returned photos is more
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than the limit, we divided the search region into four sub-regions and then called

the search API recursively.

Totally, the number of boarding and alighting locations is about 5,500 for

the taxi’s dataset, and the number of check-in locations is about 6,300 for the

Instagram’s dataset.

4.4.1 Experimental Setup

Overall, we will show (1) cross-dataset analysis and (2) comparatively stud-

ies, in Section 4.4.2 and Section 4.4.3, respectively. For cross-dataset analysis, we

focused on data from May to July for detailed analysis. We studied the cross-dataset

coverage for the taxi’s dataset and the Instagram’s dataset. For comparatively stud-

ies, we evaluated (a) the effect of using cross-domain social media (by comparing our

approach with [50], i.e., a state-of-the-art), (b) the effect of using spanning graphs

for the connection of the two datasets, and (c) the effect of data normalization. We

will show all the results, ranging from March to November.

Note that all performances of the comparatively studies were evaluated by

P@n, which represents the precision (i.e., correctness) of the top-n events in the

ranking results. Because there is no ground truth in the media datasets, we pre-

defined 212 events throughout the nine months manually, and then used these events

as our ground truth. Most of these events are associated to sports, local festivals,

concerts, and exhibitions. In particular, Sapporo has a soccer team and a baseball

team. There are many sport events taking place every year. Moreover, Sapporo has

many seasonal local festivals, e.g., beer festival and snow festival. Therefore, more

than 70% of the pre-defined events are either sports or local festivals.

4.4.2 Cross-Dataset Analysis

We see the correlation between the taxi’s data dataset and the Instagram’s

dataset by coverage analysis. We consider the boarding and alighting locations for

the taxi’s dataset and the check-in locations for the Instagram’s dataset. For each
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dataset, we sorted the locations according to the degree of popularity, from popular

locations to non-popular locations. We then see the ratio of the locations from

one dataset that are close to (say, within 100 meters) the locations from the other

dataset, considering the degree of popularity.

Figure 4.6 shows the ratios of the locations for the taxi’s dataset that are

close to the locations for the Instagram’s dataset, where the numbers listed in the

horizontal axis represent the percentages of the boarding and alighting locations for

the taxi’s dataset, based on the popularity. For example, 5% denotes the top-5%

popular locations. The coverage ratio of the top-5% taxi’s locations is about 94%,

meaning that 94% of the taxi’s locations are close to some Instagram’s locations.

Overall, the change of the coverage ratios implies that most of the popular taxi’s
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Figure 4.6: Change of coverage ratios from the Instagram’s dataset along with
changes of percentages of boarding and alighting locations for the taxi’s dataset,
based on the popularity. Most of the popular taxi’s locations are close to some
Instagram’s locations, but the ratio decreases as more and more non-popular taxi’s
locations are involved.

locations are close to some Instagram’s locations, but the ratio decreases as more

and more non-popular taxi’s locations are involved. That is, there might be no

Instagram’s locations that are close to the non-popular taxi’s locations.
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Similarly, Figure 4.7 shows the ratios of the locations for the Instagram’s

dataset that are close to the locations for the taxi’s dataset. Overall, about 74% of

0%

20%

40%

60%

80%

100%

5% 25% 45% 65% 85%

co
v

er
ag

e 
ra

ti
o

 

percentage of sorted Instagram's locations  

May

June

July

Figure 4.7: Change of coverage ratios from the taxi’s dataset along with changes of
percentages of check-in locations for the Instagram’s dataset, based on the popu-
larity. Most of the popular Instagram’s locations are close to some taxi’s locations,
but the ratio decreases as more and more non-popular Instagram’s locations are
involved.

the top-5% popular Instagram’s locations are close to some taxi’s locations, and the

ratio decreases as more and more non-popular Instagram’s locations are involved.

We noticed that the coverage ratio, 74%, is smaller than the coverage ratio, 94%

(see Figure 4.6). This may be because the distribution of the popular Instagram’s

locations is more scattered than that of the popular taxi’s locations. (Note that the

coverage ratios shown in Table 4.1 are average values.)

4.4.3 Evaluation of the Proposed Approach

In the sequel, Section 4.4.3.1 shows the effect of cross-domain media min-

ing, Section 4.4.3.2 shows the effect of spanning-graph construction, and finally,

Section 4.4.3.3 shows the effect of data normalization.
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4.4.3.1 Effect of Cross-Domain Media Mining

Figure 4.8 compares the results of using the Instagram’s dataset alone and

the results of using both the taxi’s dataset and the Instagram’s dataset, where the

approach of using the Instagram’s dataset alone was implemented based on that

in [50]. As can be seen, combing the two datasets achieved better performance for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mar Apr May Jun Jul Aug Sep Oct Nov

p
@

1
0

 

Instagram-only Taxis+Instagram

Figure 4.8: Comparison of the results of using the Instagram’s dataset alone and
the results of using both the taxi’s dataset and the Instagram’s dataset.

finding events in the nine months. Based on the result, we found that some events

can only be detected by using the Instagram’s dataset alone. Despite of that, the

information of time for the events might not be accurate enough. The reason is that

people might not upload their media data for an event immediately, but a few days

after the event. Perhaps, some of them like to remove some photos, add tags for

someone, or make some comments. In contrast, the information provided by the

taxi’s dataset may be more real-time (as we summarized in Table 4.1). It is thus

beneficial to add the taxi’s dataset for good performance.

4.4.3.2 Effect of Spanning-Graph Construction

This section considers the use of the k-nearest neighbors (kNN) for graph

construction in our work, where the kNN is a classical algorithm that usually works

well in practice. For graph construction, the kNN algorithm will connect each

vertex to its nearest k vertices. In contrast, for spanning-graph construction, given
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a vertex, the vertex connects only the nearest vertex in each of the eight regions

with respect to itself (c.f., Section 4.3.4). Figure 4.9 compares the results of using

the kNN algorithm for graph construction and the results of using spanning graphs,

where the k-value of the kNN algorithm was set to 8 because the spanning graphs

used in our work considers only eight regions. (The construction of spanning graphs
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Figure 4.9: Compares the results of using the k-nearest neighbors (kNN) algorithm
for graph construction and the results of using spanning graphs (c.f., Section 4.3.4)
for our work.

can be easily extended to consider more than eight regions.) Based on the results,

we clearly see that the use of spanning graphs achieved better performance. We

found that kNN may make a vertex connected to many vertices that are in similar

directions to the vertex, and usually, this situation will mislead the information

transmission along the edges.

4.4.3.3 Effect of Data Normalization

Finally, the section evaluates the effect of data normalization (c.f., Sec-

tions 4.3.1 to 4.3.3). Specifically, we intend to evaluate the effect of the flow nor-

malization and the variability-score calculation, except the buzz-score calculation.

Buzz-score calculation is essential for us to extract critical textual information. We

consider the correctness, i.e., P@n, for the top-10 events, top-20 events, top-50

events, and all events (i.e, 212 events), where the top-10 events refer to the 10
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events that have the most data volumes among all the events, and so forth. Ta-

ble 4.4 compares the results of no normalization (i.e., no flow normalization and

no variability-score calculation) and the results of using data normalization. As ex-

Table 4.4: Comparison of the results of no data normalization and the results of
using data normalization. Note that “Ours w/o Normalization” did not use flow
normalization and variability-score calculation, but buzz-score calculation.

Ours w/o Normalization
P@1 P@2 P@5 P@10

Pre-defined 10 0.1814 0.1925 0.2144 0.2177
Pre-defined 20 0.1739 0.1911 0.2080 0.2280
Pre-defined 50 0.2004 0.2391 0.2529 0.2643
All pre-defined 0.2123 0.2385 0.2955 0.3149

Ours
P@1 P@2 P@5 P@10

Pre-defined 10 0.4292 0.5452 0.5727 0.6047
Pre-defined 20 0.4385 0.5561 0.5733 0.6126
Pre-defined 50 0.5348 0.5728 0.6517 0.6166
All pre-defined 0.5054 0.5682 0.6419 0.6323

pected, normalization does play an important role to combine datasets with different

units, e.g. the “times” of boarding and alighting from taxis, for high performance.

We found that data from the taxi’s dataset dominated the ranking results if no

normalization was involved. This is because the data volume of the taxi’s dataset is

much more than that of the textual data from the Instagram’s dataset in our work.
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Chapter 5

Conclusion and Future Work

In recent years, social media have changed the world and our lives. More and more

people like to share their daily life by social media. This dissertation has presented

three techniques for an effective social-media mining system, aiming to make our

lives better. Given a photo, image location identification provides us geographical

information, image annotation provides us people’s description or comments, and

event discovery provides us events of interest to the nearby places associated to the

photo. This chapter concludes our research results and lists some directions for

future research.

5.1 Conclusion

For image location identification, we have presented an approach that unifies

visual features, geo-tags, and check-in data of images, for the addressed problem.

Moreover, we have introduced a location-aware graph-based regrouping approach on

clusters of images, where this approach might benefit existing clustering-based tech-

niques. Furthermore, we have integrated sparse coding in our system and developed

a graph-based dictionary selection approach for sparse coding. Finally, experimental

results have shown that our technique can be applied on daily-life large-scale image

datasets to retrieve image locations in a reasonable quality.

For image annotation, we have presented a graph-based multi-layer multi-

label SSL method which can effectively unify the visual and textual information for

multi-label learning. Our framework does not require to pre-processing the given

large-scale dataset but is capable of performing large-scale multi-label propagation.

On the other hand, we have also presented a tag refinement technique which can
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simultaneously suppress noisy tags and emphasize the other tags. Experimental

results have shown that our algorithm can operate on a large-scale image dataset

while effectively infer the image labels.

For event discovery, we have presented a two-stage framework, including

data normalization and graph-based data fusion, that unifies a flow-based dataset

and a check-in-based dataset for ranked events. Data normalization enables the

fusion of two datasets, and data fusion combines data from two datasets with graph

approaches. Based on a taxi’s dataset and an Instagram’s dataset, the experiments

have shown the effectiveness of the proposed approach. Further, the framework is

capable of combing other datasets for high performance.

5.2 Future Work

Two directions for future research are listed as follows.

1. Combing Visual and Textual Information for Event Discovery:

Most approaches for event discovery were based on textual information. Re-

cently, many people like to share photos than textual data (e.g., comments)

on social media websites. Generally, photos can provide people a different

kind of information, in contrast to textual data. It is desirable to combing

visual and textual information for event discovery. Fortunately, there have

been lots of studies on image content analysis and/or its application. An idea

is to transform information of photos into textual data, and then add the data

to existing textual data. By doing so, we can apply conventional approaches

for event discovery. However, it is challenging to extract textual data from

photos with high performance. Moreover, it could be difficult to find proper

weights for different kinds and amounts of information for data fusion.

2. Combing Check-in and Flow Information for Traffic Route Recom-

mendation:
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Traffic congestion is an important problem. Traffic congestion not only wastes

time and energy resources, but may also endanger our lives. For example,

ambulances or fire engines may get suck in traffic jams. Discovering relation

between events and traffic flows is capable of solving the problem. Specifically,

check-in data can be used to find events, and flow data can be used to find re-

gions of traffic congestion. Given an event, it is expected to predict the regions

of traffic congestion based on the historical data, and if possible, recommend

people proper routes to avoid the generation of traffic congestion. Further, it

is desirable to perform efficient information update based users’ feedback.
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