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摘要

在 boundary labeling領域，圖上的每個點都會透過 leader和一個相

關的標籤相連，所有的標籤位在該矩形圖的邊界上。目前，所有關於

boundary labeling的研究都在討論如何替單一的圖產生可讀性高的標籤

排列。然而，有時可能會有一系列相關的圖需要作 boundary labeling，

這些圖共享一部分或全部的點集合和標籤集合。當我們對每張圖分

別作 boundary labeling，而沒有考慮它們共通的部分，產生的結果會

很難觀察圖之間的關聯性。為了解決這個問題，在這份論文，我們

提出了一個叫做 simultaneous boundary labeling的新問題，透過限制每

張圖相同的點和標籤在相同的位置上，來保持圖和圖之間相關的部

分，然後去計算最少 leader crossing數和最短 leader總長的標籤擺法來

提高可讀性。我們設計了一些 heuristic演算法去解決同時計算兩張圖

的 crossing minimization問題，並證明當同時計算超過四張圖的時候，

crossing minimization問題是 NP-complete。另外，用 weighted bipartite

matching演算法解決了 leader length minimization問題。

關鍵字: simultaneous graph drawing, boundary labeling, crossing minimiza-

tion, bipartite matching, barycenter algorithm
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Abstract

In boundary labeling, each feature point is connected to a label placed

on the boundary of a rectangular image by a leader, which may be a recti-

linear or a straight line segment. Currently, all the research about boundary

labeling focuses on how to generate label placements for one image with high

readability. However, there may be a series of related images, which share

all, or parts of the same feature and label set, need to be labeled. If we cal-

culate label placements for each image separately, it is hard to keep track of

the relationship between images. To overcome the above difficulty, in this

thesis we propose a new problem called simultaneous boundary labeling. We

keep the relationship between images by limiting common features and labels

of a series of images in the same place, and find a common label placement

for all images with minimal leader crossing number and minimal total leader

length to increase the readability. We design some heuristic algorithms when

there are two related images need to be labeled and show the problem to be

NP-complete when there are more than four images in the series. The leader

length minimization problem can be solved by a weighted bipartite matching

algorithm.

Keywords: simultaneous graph drawing, boundary labeling, crossing mini-

mization, bipartite matching, barycenter algorithm
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Chapter 1

Introduction

1.1 Motivation

Automatic label placement is one of the important tasks in information visualization.

The task is annotating features of interest in images by textual labels to provide information

about features. The features are typically divided into three types: point features, line

features, and area features [13]. There are many algorithms that automate this task and

many proofs of the computational complexity of labeling problems. Generally, automatic

label placement is divided into two categories, map labeling [20] and boundary labeling

[21, 9, 11]. Map labeling algorithms calculate positions for labels, and put them right

beside their target features like Figure 1.1. Boundary labeling algorithms put labels on the

boundary of the image like Figure 1.2. Themodel of boundary labeling is first proposed by

Bekos et al [3]. Each label is connected to its corresponding feature by a line, called leader.

Figure 1.3 shows three common leader types. After that, there are many transformation

problem about boundary labeling, such as multi-sided boundary labeling [15, 14], and

boundary labeling for dynamic focus region [18, 10]. However, most of the researches on

automatic label placement focus only on labeling features of one image.

1
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Figure 1.1: Example of map labeling

Figure 1.2: Example of boundary labeling

2
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Figure 1.3: Common leader types of boundary labeling

In the graph drawing and infromation visualization area, there is a group of researches

called simultaneous graph drawing which focus on how to generate the layout of multiple

related graphs [6, 1, 8]. Consider the problem of drawing a series of graphs that share all,

or parts of the same vertex set. The graphs may represent different relations between the

same set of objects. For example, in social networks, graphs are often used to represent

relations of people. Based on different relations, different graphs can be generated with

the same set of people. Alternatively, the graphs may be the result of a single relation that

changes through time. For example, the Facebook friendship relation of the same set of

people may change through time. Based on different time point, different graphs can be

generated. The problem of simultaneous graph drawing is how to generate a good layout

(as shown in Figure 1.4) to visualize a series of related graphs. A good layout needs to

consider two important criteria: the readability of the individual layouts and the mental

map preservation in the series of layouts.

Figure 1.4: Example of simultaneous graph drawing

This work studies the simultaneous automatic labeling problem, which uses the con-

cept of simultaneous graph drawing on automatic labeling. We are concerned with the

3
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problem of calculating label placements of a series of images, which share all, or parts

of the same feature and label set. The label placement needs to fulfill two important cri-

teria: the readability of the individual images and the mental map preservation in the

series of images. The common criteria for readiblity are minimum crossings of leaders

(the line connect corresponding feature and label), maximal size of labels, and minimum

distance sum between features and labels. These help readers recognize the information

on the image and connect features to their associated labels. The method for mental map

preservation is to place the same labels on the same positions on different images. This

helps readers see the relationship and observe differences among a series of images. If

we individually label each image by traditional labeling algorithms, we may optimize the

readibility. However, it may result in bad mental map preservation among the series of

images, because label positions of the same labels may vary according to different topic

of images. Conversely, if we calculate all the label placements of features from all the

images by traditional labeling algorithms at the same time, we are optimizing the mental

map preservation but the individual images may be far from readable.

In simultaneous automatic labeling (as shown in Figure 1.5), same labels of the same

feature are placed at the exact same location in all images to preserve the mantal map.

And we ease constraints to the readibility while calculating label placements for a series

of images. For example, we only consider the crossings of leaders or the overlappings

of labels in the same image. Therefore, we can trace the relationship or change between

a series of images more easily than trace by the results from individually labeling each

image. Also, we can read individual images to learn details more easily than read the

results from labeling features of all images at the same time. Moreover, comparing to

individually labeling each image, simultaneous labeling can save time by processing all

the common feature-label pairs at once.

Figure 1.5: Example result of simultaneous boundary labeling

4
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1.2 Thesis Organization

In this chapter, we introduce the motivation and concept of simultaneous boundary

labeling. The specific problem definition and related work are in Chapter 2. Our main

contribution is in Chapter 3, problems are discussed under three kinds of leader, which

are type-s, type-po, and type-opo. The parameter k is the number of images in a series

of image set which is the input. For a series of two images (k = 2), we design many

algorithms for the problem, and prove that when there are more than four images in the

set (k ≥ 4) the problem is NP-complete. In Chapter 4, we build an extended version

of simultaneous boundary labeling problem (as example in Figure 1.6) and prove it can

be the same problem as the k = 2 simultaneous boundary labeling problem. Then the

conclusion of this thesis is in Chapter 5.

Figure 1.6: Example result of extension SCM-s-2

Table 1.1: Summary of our contributions

type-s type-po type-opo

k = 2 minimum crossing number heuristic heuristic O(n logn)

k = 3 minimum crossing number ? ? ?

k ≥ 4 minimum crossing number NP-complete NP-complete NP-complete

any k ∈ N minimum total leader length O(n3) O(n3) O(n3)

extension (minimum crossing number) the same as k = 2

5
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Chapter 2

Preliminaries

2.1 Problem Definition

In this research we present efficient algorithms for computing optimal simultaneous

boundary labelings of a series of images. Figure 2.1 shows a single image labeling in our

model: we are given a rectangular image R = (P,L) with width w and height h.

• P = {p1, p2, ..., pn} is a set of n features (or sites) where pi = (pxi, pyi) is the

coordinate of the i-th feature point pi in rectangle R.

• L = (l1, l2, ..., ln) is an ordering of a set of n labels, li is the label of feature pi.

Each feature is associated with a different axis-parallel rectangular label li (think of

the bounding box of the object name written as a single line of text). Each label and its

associated feature are connected by a line segment, denoted as a leader [2]. The point

where the leader is connected to it’s label is called port. The set of n label ports is denoted

as Y = {y1, y2, ..., yn}, which is sorted by the value of yi, the y-coordinate of port i in the

increasing order. We assume the port is fixed in this research, and put it in the middle of

label li’s right edge. Our goal is to assign each label li to a port yj to achieve some criteria.

6
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Figure 2.1: Single image model

When it comes to labeling a series of k rectangular images, the model of simultaneous

boundary labeling problem is shown by the following example of k = 2. We are given two

rectangular images of identical size R1 = (P1, L1) and R2 = (P2, L2).

• n1 = |P1| = |L1| is the number of feature-label pair of R1

• n2 = |P2| = |L2| is the number of feature-label pair of R2

• n = |P | = |P1 ∪ P2|

• m = |L| = |L1 ∪ L2|

• Y : a set ofm label ports sorted by y-coordinate in increasing order

• yi: the y-coordinate of the i-th port

In image 1 (e.g. Figure 2.3(a)), there is a set of n1 features P1 and each feature is

associated with a distinct label in the set L1. In image 2 (e.g. Figure 2.3(b)), there is a set

of n2 features P2 and each feature is associated with a distinct label in the set L2. These 2

images share some common features, that is feature at the same coordinates.

We assume that each feature can only have one associated label (one-to-one) in the

same image, as the first row in Figure 2.2. The same feature in different images can have

more than one associated labels and different features in different images can have the

same asscoiated label, the second and third rows in Figure 2.2 respectively demonstrate

these relationship.

7
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The layout like Figure 2.3(c) which is a good simultaneous boundary labeling result

of a series of images according to the criterion of minimum crossing number of leaders, is

the goal of our problem. All the labels are put on the left side of the image, all the features

from both image 1 and image 2 are put in the rectangular image area (blue ones are from

image 1, red ones are from image 2, and black ones are from both images).

Figure 2.2: Feature-label relationship

8



doi:10.6342/NTU201600238

(a) Image 1

(b) Image 2

(c) Result of k = 2 simultaneous boundary labeling

Figure 2.3: Example of simultaneous boundary labeling for two images

Figure 2.4 is the example result of simultaneous boundary labeling for three images

(k = 3). These three images share some common feature points and labels. The common

9
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labels and feature points are put on the same position to keep the relationship between

images and when we look three images separately like Figure 2.4(b), 2.4(c), and 2.4(d),

we can find that the readability of these three images is good (no leader crossing).

(a) Result of k = 3 simultaneous boundary labeling

(b) Image 1 (c) Image 2

(d) Image 3 (e) The relationship of three images

Figure 2.4: Example of simultaneous boundary labeling for three images

10
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The result helps observing relationship between images and preserve the readability

of individual image if we want to read it separately. The common readability criteria of

map labeling quality [4] are:

• minimal crossing numbers of leaders.

• minimal length sum of leaders.

• minimal bend numbers of leaders.

• maximal label size.

• minimal overlap numbers of labels.

These criteria help shortening the distance between features and their related labels, reduc-

ing distraction from leader crossings and increasing the recognizability of label content.

Therefore, the associated feature and label pairs can be found and located more easily.

Each feature and its associated label are connected by a leader. A leader consists of a

sequence of segments. These segments are parallel (p) or orthogonal (o) to the side of the

bounding rectangleR to which the label is attached. The segments can also be a 45 degree

diagonal-line (d) or a straight-line (s) which connects a label and a feature directly. In this

paper we focus on leaders of the types s, po and opo, see Figures 1.3. For each type-opo

leader we further insist that the parallel p-segment is immediately outside the bounding

rectangle R and is routing in the so-called track routing area.

The Simultaneous boundary labeling problem is given a series of k rectangular images,

determine a boundary labeling for R1, ..., Rk, i.e. compute a label placement for each

distinct label such that the sum of number of leader crossings in each image is minimum.

In this thesis, we denoted the Crossing Minimization problem for k images for si-

multaneous boundary labeling with type s leaders as SCM-s-k. There are also SCM-s-1

and SCM-s-2which represent the same problem of 1 image simultaneous boundary label-

ing and 2 images simultaneous boundary labeling. The total leader Length Minimization

problem for k images simultaneous boundary labeling with type s leaders is denoted as

SLM-s-k. There are also SLM-po-k and SLM-opo-k represent the same problem with

type po and type opo leaders respectively.

11
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2.2 Related Work

Here is a review of related work on a crossing minimization problem that we use in

this research. The following are definition and the result of the PCM-k problem [5].

Given a set of n labels U , a permutation π with respect to U is an ordering of a subset

S of U . For example, U = {l1, l2, ..., l5}, a permutation can be π = (l2, l1, l4, l3, l5). We

call π a full permutation, if S = U , and call π a partial permutation, if S ⊂ U .

Definition 1. Permutation Crossing Minimization problem with k permutations (PCM-k)

Question: P = {π1, ..., πk} is a given set of (full or partial) k permutations on a set of n

labels U = {l1, l2, ..., ln}. The crossing minimization problem is finding a best permuta-

tion π∗ such that the crossing number of P is minimal. The crossing number definition is

as following,

cross(P ) = minπ∗cross(P, π∗)

cross (P, π∗) =
∑k

i=1 cross (πi, π
∗)

cross (πi, π
∗) = |{(lu, lv) |πi (lu) < πi (lv) and π∗ (lu) > π∗ (lv)}|

Result: This problem is proved to be NP-hard for any k ≥ 4 permutations. However it

can be solved in O(n) time when k = 2 by barycenter algorithm.

Definition 2. Barycenter algorithm

The Barycenter algorithm is also a common heuristic algorithm for one-sided bipartite

crossing minimization problem [12]. The algorithm sorts vertexes from free side accord-

ing to the barycenter value. The barycenter value of each vertex u, vertex from free side,

is the average x-coordinates of all neighbors (vertices, which are at fixed side, connected

to u) of vertex u.

As for the PCM-k problem, order of each vertex u in π∗ is chosen as the barycen-

ter(average) of its order in permutation π1 to πk. If two vertices have the same barycenter,

we order them arbitrarily.

π∗(u) = bary(u) = 1
deg(u)

∑
k πk(u)

For more about algorithms of crossing minimization and their performance see refer-

ences [12, 19, 7, 17].

12
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Chapter 3

Simultaneous boundary labeling

In this chapter, we only discuss one-sided (left side) boundary labeling. All the results

could be used in right-sided boundary labeling by minor changes.

3.1 type-s leader

Lemma 1. SCM-s-1 can be solved in O(n logn) time.

Proof. Given k = 1, an image R = (P,L), and Y , a crossing-free type-s leader label

placement can be constructed in O(n logn) time with the following algorithm.

For i = 1, ..., n, a ray emitted from yi vertically downwards, then rotate in counter-

clockwise. The first unlabeled feature p ∈ P that is hit by the ray is assigned to yi [3].

The correctness can be proved by contradiction. If there would be a crossing of two

leaders (y1, p1) and (y2, p2), the rotating ray emitted from y1 would have found p2 first,

and connected p2 to y1 not y2. The time complexity of this algorithm is O(n2). The first

touched feature point pi is being searched from total n feature points for each port yj in

O(n) time and there is n ports. The time complexity can be improved to O(n logn) by

deleting pi from the feature point set P when pi is assigned to a port yj .

For the condition that all the labels are being put on the right side of the image, we

only need to change the direction of the ray emitted from each port y.

13
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For SCM-s-2, we are not able to give a polynomial-time algorithm or showNP-hardness

for the problem at this point.

Given k = 2, images R1, R2, and Y , simply assigning each feature to a port by the

order of their y-coordinates might lead to crossings. Unlike one-sided bipartite crossing

minimization problem or PCM-k, x-coordinates of feature points influence crossing num-

bers in the type-s boundary labeling problem. For example, in Figure 3.1, given images

R1 = (P1, L1) and R2 = (P2, L2). P1 = P2 = {p1, p2, p3, p4, p5}. L1 = (l2, l3, l4, l1, l5).

L2 = (l3, l2, l5, l4, l1). The solution π∗ to PCM-2 problem is (l2, l3, l4, l5, l1) as in Figure

3.1(a). When this solution is applied to SCM-s-2 problem, the result is shown in Figure

3.1(b). However, there exists a non-crossing label placement (l2, l3, l4, l1, l5) of SCM-s-2

problem as in Figure 3.1(c).

(a) The graph of best

permutation π∗ for PCM-2

problem.

(b) The graph of π∗ applied in SCM-s-2 problem.

(c) The best solution to SCM-s-2 problem.

Figure 3.1: Example for illustrating the influence of the x-coordinate of features in SCM-
s-2 problem

Therefore, we design some polynomial time heuristic algorithms to generate a type-s

14
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leader label placement of minimum number of crossings and compare their results with

the optimal result.

3.1.1. Greedy-SCM-s-2

The first algorithm for SCM-s-2 is a greedy algorithm. When k = 2, labels can be

divided into the following three categories by the relationship between labels and their

associated features.

Figure 3.2: Three categories of label in type-s k = 2 simultaneous boundary labeling

Labels in the first category are the ones which have the same associated feature point

in image R1 and R2. Labels in the second category are the ones which only have one

associated feature point in either image R1 or R2. Labels in the third category are the

ones which have two different associated feature points in image R1 and R2 respectively.

Figure 3.2 illustrates these three categories of label, the blue feature point and label are

from image R1. The red feature point and label are from image R2. The black ones are

from both images R1 and R2.

If all the labels are from the first 2 categories, a non-crossing label placement can be

constructed by the algorithm in lemma 1 inO(n logn) time. So the idea is that we use the

algorithm in lemma 1 to calculate a label placement for labels in the first 2 categories then

deal with labels in the third category. Assume there are totalm labels in the 3rd category.

First, a label ordering is built for labels from 1st and 2nd categories by the algorithm

from lemma 1. Second, we sort the remainingm labels (labels in the 3rd category) by the

y-coordinate of their associated points in increasing order. At last, each of the sorted label

are assigned to the port one by one at where it cause the minimal leader crossings. The

15
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time complexity of the greedy algorithm isO((n−m) log (n−m)+mn). The fewer the

labels in the 3rd category, the faster the algorithm.

3.1.2. BaryY-SCM-s-2

The second algorithm for SCM-s-2 is a barycenter algorithm according to the y-coordinate

of associated feature points. Labels are sorted by their average y-coordinates of associated

feature points in increasing order. Then each label is assigned to a port from bottom to

top according to this order. The time complexity is O(n logn) due to sorting algorithm.

3.1.3. BaryRay-SCM-s-2

The third algorithm for SCM-s-2 is a barycenter algorithm according to the label place-

ment of each image. To consider x-coordinates of features as well. First, the label place-

ments of image R1 and image R2 are generated by the algorithm in lemma 1. Second,

labels are sorted by the average of their order in image R1 and image R2 in increasing

order. Then each label is assigned to a port from bottom to top according to this order.

The time complexity is O(n logn) for both the initial label placement part and the sorting

algorithm.

3.1.4. BaryRayEnhanced-SCM-s-2

The fourth algorithm for SCM-s-2 is the enhanced version of the preceding algorithm.

When the average ranks of labels are the same, we compare the value of their average

y-coordinates of associated feature points. The label with smaller average y-coordinate is

assigned to the lower port. The time complexity is still O(n logn).

3.1.5. LenMin-SCM-s-2

The fifth algorithm for SCM-s-2 is a bipartite matching algorithmwhich finds the label

placement with minimal total leader length. This label placement also gives a good but

not optimal result to the minimal leader crossing problem. The time complexity isO(n3).

The experiment result is shown in Table 3.1. Table 3.1(a) is the average total cross-

ing count of k = 2 type-s full simultaneous boundary labeling problem solved by differnt

algorithms according to different number of given features. Table 3.1(b) is the total execu-

tion time of k = 2 type-s full simultaneous boundary labeling problem solved by differnt

algorithms according to different number of given features. For each set of test param-
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eters, we randomly generated 1000 test instances. All feature points have un-repetitive

integer x-coordinates between 0 and 800 as well as y-coordinates between 0 and 600. The

feature sets and label sets of image R1 and image R2 are the same. There are n distinct

features in the feature sets and n distinct labels in the label sets. The associated labels

of a feature point in different images are different, i.e., the feature-label relationships are

different between these two images.

Table 3.1: The experiment result of algorithms for SCM-s-2

(a) average leader crossing counts

run = 1000, w = 800, h = 600

Algorithm

label count
5 6 7 8 9 10 15 20 25 50

Initial 8.07 12.22 16.97 22.56 29.53 36.94 86.65 156.62 248.27 1016.13

PCM-2 5.03 7.41 10.39 14.02 18.17 22.59 52.47 95.38 150.85 616.58

Greedy-SCM-s-2 3.32 4.99 6.94 9.39 12.30 15.27 36.46 66.80 106.44 447.65

BaryY-SCM-s-2 3.84 5.70 8.08 11.02 14.29 17.72 42.20 76.81 122.49 505.91

BaryRay-SCM-s-2 4.02 5.88 8.38 11.37 14.74 18.30 43.00 77.95 124.03 508.82

BaryRayEnhanced-SCM-s-2 3.84 5.70 8.08 11.02 14.29 17.72 42.20 76.81 122.49 505.91

LenMin-SCM-s-2 3.45 5.11 7.22 9.71 12.63 15.75 37.19 67.45 106.92 441.78

Optimal 3.32 4.60 6.36 8.52 11.14

(b) total execution time (s)

Algorithm

label count
5 6 7 8 9 10 15 20 25 50

PCM-2 0.09 0.08 0.07 0.19 0.17 1.09 1.04 0.90 1.16 2.02

Greedy-SCM-s-2 1.32 1.19 1.46 6.47 7.69 37.64 48.50 74.65 120.26 703.26

BaryY-SCM-s-2 0.10 0.07 0.07 0.24 0.23 1.13 1.05 1.11 1.45 2.35

BaryRay-SCM-s-2 0.14 0.22 0.10 0.27 0.26 1.47 1.48 1.49 1.85 2.69

BaryRayEnhanced-SCM-s-2 0.17 0.14 0.13 0.29 0.32 1.81 1.95 1.86 1.91 2.58

LenMin-SCM-s-2 0.68 0.42 0.42 1.82 2.49 14.74 22.99 31.35 52.23 140.28

Optimal 6.56 16.31 104.3 6143 53948

Besides the five algorithms mentioned above, we use the result of the PCM-2 problem

and optimal case to compare. To generate the optimal result for the PCM-2 problem, we

set all the x-coordinates of feature points to one, and solve it by the barycenter algorithm.

In PCM-2 case, only y-coordinates matter, so the result generated by barycenter algorithm

is optimal, that has been proved by [5]. To generate the optimal result of simultaneous

boundary labeling problem, which is the label placement with minimal leader crossing, we
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calculate the crossing number for all possible label placements. It’s really time-consuming

because there are total n! label placements for each test case.

In the case of boundary labeling with type-s leader, the x-coordinates of features mat-

ter as well. For example, given 2 labels l1 and l2 as well as 2 features p1 and p2. Every

label-feature pair is connected by a leader, l1 is the label of p1 and l2 is the label of p2. If

the y-coordinate of p1 is bigger than y-coordinate of p2 and the y-coordinate of l1 is smaller

than y-coordinate of l2, there must exist a crossing of leaders in PCM-k, 2-layer 1-sided

bipartite graph crossing minimization, and type-opo boundary labeling problems. How-

ever, when it comes to type-s boundary labeling problem, intersection between leaders

(l1,p1) and (l2,p2) is not inevitable in this situation.

Based on the relative relationship between feature p and coordinates of l1 and l2, we

can divided p into three categories. The first category is that p is above both l1 and l2. The

second category is that p is in the middle of l1 and l2. The third category is that p is under

both l1 and l2.

Table 3.2: The possibility of crossing-free in SCM-s-2 when there must a crossing for
PCM-2

category of p1 category of p2 intersection is avoidable

1 1
∨

2 1
∨

3 1

2 2
∨

3 2

3 3
∨
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Table 3.3: The possibility of crossing in SCM-s-2 when there must be no crossing for
PCM-2

category of p1 category of p2 intersection may occur

1 1
∨

1 2

2 2

1 3

2 3

3 3
∨

When l1y > l2y and p2y > p1y, there must be a crossing in PCM-2, however there are

four out of six cases that the intersection of 2 leaders can be avoided in SCM-s-2 according

to the different x-coordinates of p1 and p2. When l1y > l2y and p1y > p2y, there must be

crossing-free in PCM-2, however there are only two out of six cases that the intersection

of 2 leaders may occur in SCM-s-2 according to the different x-coordinates of p1 and p2.

Therefore, the average crossing number of optimal result is fewer than the result of PCM-2

in our experimental test cases.

Greedy-SCM-s-2 algorithm has the best performance among all parameters of feature

point number and it costs more time than the other four algorithms (as shown in Figure

3.3). LenMin-SCM-s-2 algorithm performs next to it, but it has higher complexity than the

complexity of Greedy-SCM-s-2 algorithm. Because the given number of feature points is

not big enough, it seems Greedy-SCM-s-2 algorithm takes more time in the experiment

owing to its complicated steps. BaryY-SCM-s-2 algorithm, which only considers the y-

coordinates of features, is the fastest one (as shown in Figure 3.4). BaryRay-SCM-s-

2 algorithm, which also considers the x-coordinates of features, is slower and does not

outperform the others.
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Figure 3.3: The experiment result of algorithms for SCM-s-2

Figure 3.4: The execution time of algorithms for SCM-s-2

Theorem 1. SCM-s-k is a NP-complete problem when k ≥ 4.

Proof. The problem is obviously in NP. Now we show the lower bound. The PCM-k

problem can be reduced to type-s leader simultaneous boundary labeling. Since the PCM-

k problem is NP-hard when k ≥ 4 [5], so as this problem.

We show how to reduce PCM-k to our problem as following. Given a set of (full or

partial) permutations π = {π1, ..., πk} on a set of labels U = {l1, l2, ..., lnl
}. First, we
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construct a series of k images R1, R2, ..., Rk of which the height h is nl and the width

w is 2. The number nl is equals to |U |, which means there are nl distinct labels in the

series of images. The number np of distinct features points in the series of images is

maxi∈{1,...,k} |πi|. The x-coordinates of these distinct np points p1, p2, ..., pnp are the same,

i.e., they are on the same column. The y-coordinates of these distinct np points are 1 to

np. Then for i = 1 to k, we build an image Ri for each permutation πi. If there are |ni|

elements in πi, the feature point sets of Ri is Pi = {p1, p2, . . . , pni
}, and the associated

label of each point in Ri is the same as πi.

For example in Figure 3.5, if the permutation π1 = (l1, l3, l2, l4, l5), we can build an

image R1 of which the height h is 5 and the width w is 2. The point set of image R1

is P1 = {p1, p2, p3, p4, p5} and the coordinates of feature pi is (1, i). The label ordering

of R1 is L1 = (l1, l3, l2, l4, l5), which means l1 is the associated label of p1 and l3 is the

associated label of p2, and so on.

Figure 3.5: The example of how to build an image R1 by a permutation π1

If we can find a label placement, i.e., assign each label in L to a port in Y , which

guarantee the sum of crossing number from image R1 to Rk is minimal, the order of the

label placement according to y-coordinate is also the best permutation π∗ such that the

crossing number of π is minimal.

If the order of la and lb in permutation πi and the order of which in best permutation

π∗ is different, means the y-coordinate order of la and lb is different with their associated
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feature points pa and pb. This condition must cause a crossing in both PCM-k and the

type-s simultaneous boundary labeling problem.

Theorem 2. SLM-s-2 can be solved in O(n3) time.

Proof. We transform the problem to Min-Weighted Bipartite Matching problem and solve

it by the Hungarian Algorithm which can solve the Min-Weighted Bipartite Matching

problem in O(n3) time. In SLM-s-2 problem, images R1, R2, and Y are given. The

vertexs on one side of the bipartite graph are labels in L1 ∪ L2, and the vertexs on the

other side are coordinates of label ports. The weight of edge (li, yi) is the sum of the

Euclidean distance between the associated points of li and the port yi. Figure 3.6 is the

graph of the weighted bipartite graph of this problem. The label placement of minimal

total leader length criterion for a series of two images does not guarantee the minimal

leader crossing number according to our experiment result of SCM-s-2.

Figure 3.6: The weighted bipartite graph of SML-s-2

Theorem 3. SLM-s-k (k ∈ N) can be solved in O(n3) time.

Proof. We transform the problem to Min-Weighted Bipartite Matching problem and solve

it by the Hungarian Algorithm which can solve the Min-Weighted Bipartite Matching

problem in O(n3) time. In SLM-s-k problem, images R1, R2, ..., Rk, and Y are given.
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The vertexs on one side of the bipartite graph are labels in L1∪L2∪ ...∪Lk vertexs on the

other side are label ports. The weight of edge (li, yi) is the sum of the Euclidean distance

between the associated points of li and the port yi.

3.2 type-po leader

For SCM-po-2, The exact complexity of the problem or optimal algorithm are not

known at this point. Therefore, we design some polynomial time heuristic algorithms to

generate a type-po leader label placement of minimum number of crossings and compare

their results with the optimal result.

In SCM-po-2, images R1, R2, and Y are given as input.

3.2.1. Sort-SCM-po-2

The first algorithm uses the concept of bubble sort. From i=1 to n, we swap the i-th

label with i+1-th label if the crossing number is smaller after swapping in every iteration.

The iteration ends until the number of crossing is not reduced. The time complexity is

O(n2).

Algorithm Sort-SCM-po-2 algorithm
Input order := the initial label placement

Output result := the final label placement

order = the initial label placement

repeat

for i = 1 to n-1 do

tempOrder = order after swapping the i-th and i+1-th label

if crossing(tempOrder) > crossing(order) then

order = tempOrder

until the number of crossing is not reduced;

3.2.2. BaryY-SCM-po-2
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The second algorithm for SCM-po-2 is a barycenter algorithm according to the y-

coordinate of associated feature points. Labels are sorted by their average y-coordinates

of associated feature points in increasing order. Then each label is assigned to a port from

bottom to top according to this order. The time complexity is O(n logn) due to sorting

algorithm.

3.2.3. SortEnhanced-SCM-po-2

The third algorithm is the enhanced sorting algorithm. To enhanced the sorting al-

gorithm, we set the initial label order from the result of barycenter algorithm. Then we

improve the result (reduce crossing number) by the sorting algorithm. It is intuitional that

the difference between label placement from barycenter algorithm and optimal label place-

ment is very small, that is, every label is not far from its best label position. Therefore,

through swapping the label with their neighbors and record the best order among them,

the result of enhanced sorting algorithm can be very closed to the optimal result.

The time complexity is O(n2).

Algorithm SortEnhanced-SCM-po-2
Input order := the label placement generated by barycenter algorithm

Output result := the final label placement

order = the label placement generated by barycenter algorithm

repeat

for i = 1 to n-1 do

tempOrder = order after swapping the i-th and i+1-th label

if crossing(tempOrder) > crossing(order) then

order = tempOrder

until the number of crossing is not reduced;

3.2.4. LenMin-SCM-po-2

The fourth algorithm for SCM-po-2 is a bipartite matching algorithm which finds the

label placement with minimal total leader length. This label placement also gives a good

but not optimal result to the minimal leader crossing problem. The time complexity of

this algorithm is O(n3).
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The experiment result is shown in Table 3.4. Table 3.4(a) is the average total crossing

count of k = 2 type-po full simultaneous boundary labeling problem solved by differnt

algorithms according to different number of given features. Table 3.4(b) is the total execu-

tion time of k = 2 type-po full simultaneous boundary labeling problem solved by differnt

algorithms according to different number of given features. For each set of test param-

eters, we randomly generated 1000 test instances. All feature points have un-repetitive

integer x-coordinates between 0 and 800 as well as y-coordinates between 0 and 600. The

feature sets and label sets of image R1 and image R2 are the same. There are n distinct

features in the feature sets and n distinct labels in the label sets. The associated labels

of a feature point in different images are different, i.e., the feature-label relationships are

different between these two images.

Besides the four algorithms mentioned above, we generate the optimal result of si-

multaneous boundary labeling problem, which is the label placement with minimal leader

crossing, by calculating the crossing number for all possible label placements. It’s really

time-consuming to calculate the crossing number for each label placement because there

are total n! label placements for each test case.

SortEnhanced-SCM-po-2 algorithm has the best performance among all parameters

of feature point number (as shown in Figure 3.7) and is more than two times faster than

the Sort-SCM-po-2 algorithm (as shown in Figure 3.8). By using the result of BaryY-

SCM-po-2, the SortEnhanced-SCM-po-2 algorithm converges faster. LenMin-SCM-po-2

algorithm has the worst performance for type-po simultaneous boundary labeling problem

of two images.
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Table 3.4: The experiment result of algorithms for SCM-po-2

(a) average leader crossing counts

run = 1000, w = 800, h = 600

Algorithm

label count
5 6 7 8 9 10 15 20 25 50

Initial 6.02 9.10 12.90 17.40 22.41 28.47 67.00 123.21 196.13 802.46

Sort-SCM-po-2 3.02 4.75 7.14 10.27 13.42 17.39 45.78 89.28 149.95 681.600

SortEnhanced-SCM-po-2 2.26 3.38 5.06 6.89 8.89 11.34 28.18 53.23 87.56 388.58

BaryY-SCM-po-2 3.07 4.72 6.74 9.08 11.82 14.79 35.32 64.56 104.06 434.85

LenMin-SCM-po-2 3.43 5.02 7.15 9.72 12.64 15.71 36.98 67.47 106.56 440.36

Optimal 1.66 2.35 3.46 4.75 5.96

(b) total execution time (s)

run = 1000, w = 800, h = 600

Algorithm

label count
5 6 7 8 9

Sort-SCM-po-2 15.36 17.96 25.92 32.71 40.38

SortEnhanced-SCM-po-2 6.78 7.89 10.77 14.98 20.40

BaryY-SCM-po-2 0.74 0.87 1.20 1.15 0.78

LenMin-SCM-po-2 1.99 1.98 2.58 3.17 3.78

Optimal 31.62 153 1610 14756 134369

Figure 3.7: The experiment result of algorithms for SCM-po-2
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Figure 3.8: The execution time of algorithms for SCM-po-2

Theorem 4. SCM-po-k is a NP-complete problem when k ≥ 4.

Proof. The problem is obviously in NP. Now we show the lower bound. We can reduce

the PCM-k problem to a special case of type-po leader simultaneous boundary labeling

problem where the y-coordinate of any feature is smaller than that of the lowest port of the

lowest label, as Figure 3.9. (Note that some of edges are omitted in the figure.) Since the

PCM-k problem is NP-hard when k ≥ 4 [5], so as this problem. In SCM-po-k k (k ≥ 4)

problem, images R1, R2, ..., Rk, and Y are given. It is obvious that in order not to induce

the crossing of leaders, a label should be assigned to a port from bottom to up according

to the order of features sorted by their x-coordinates in increasing order.

Figure 3.9: A special case of type-po leader boundary labeling

In this case, two leaders cross only when the x-coordinate increasing order of any two
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features is differnt with the y-coordinate increasing order of their corresponding labels.

Recall that in PCM-k, two edges cross only when the order of any two items in πi is

different with the the order of the same two items in π∗. Obviously, the special case of

type-po leader simultaneous boundary labeling and PCM-k are equivalent as counting the

crossing number. Therefore this problem is NP-complete.

Theorem 5. SLM-po-k (k ∈ N) can be solved in O(n3) time.

Proof. We can use the same method from theorem 3 to solve the problem. In SLM-po-k

problem, images R1, R2, ..., Rk, and Y are given. Note that the total leader length of the

horizontal part is fixed for type-po leaders, so the weight of edge (li, yi) is the y-coordinate

difference between the associated points of li and the port yi.

3.3 type-opo leader

In a boundary labeling for type-opo leaders, we only need to consider the crossings

of leaders in tracking route area because all the type-opo leaders go from a feature point

through the left borderline of image R orthogonally so that there are no crossings inside

image R. The crossing number of type-opo leaders only affected by the y-coordinate of

features points. In [16], they provide a leader routing algorithm and prove that two type-

opo leaders p1l1 and p2l2 cross if and only if the y-coordinate of feature points p1 and p2

in increasing (or decreasing) order and the y-coordinate of the port of labels l1 and l2 in

decreasing (or increasing) order.

Hence, we can reduce our problem to PCM-k problem. When k = 2, it can be solved

by barycenter algorithm inO(n) time. When k ≥ 4, we can reduce PCM-k to our problem

and prove that it is a NP-complete problem.

Theorem 6. SCM-opo-2 can be solved in O(n logn) time.

Proof. First, we show how to reduce our problem to PCM-2. P ′
1 and P ′

2 are sorted feature

point sets of P1 and P2 respectively by y-coordinates of feature points in increasing order.
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L′
1 and L′

2 are the ordered sequential of corresponding labels to P ′
1 and P ′

2. We take L′
1

and L′
2 as inputs π1 and π2 of the PCM-2 problem. Then π∗, the solution to PCM-2, will

also be the best solution to our problem by assigning labels according the order in π∗ to

left side from bottom to top.

Second, the barycenter algorithm which is used to solve PCM-2, can also solve our

problem in O(n logn) time.

As a result, the overall algorithm takes O(n logn) time due to the sorting process at

the first step.

Theorem 7. SCM-opo-k is a NP-complete problem when k ≥ 4.

Proof. The problem is obviously in NP. Now we show the lower bound. The reduce pro-

cess of transforming PCM-k to type-opo leader simultaneous boundary labeling problem

is the same as the process for type-s leader in the theorem 1.

If the order of la and lb in permutation πi and the order of which in best permutation

π∗ is different, means the y-coordinate order of la and lb is different with the order of their

associated feature points pa and pb. This condition must cause a leader crossing in both

PCM-k and the type-opo simultaneous boundary labeling problem.

Theorem 8. SLM-opo-k (k ∈ N) can be solved in O(n3) time.

Proof. We can use the same method from theorem 3 to solve the problem. In SLM-opo-k

problem, images R1, R2, ..., Rk, and Y are given. Note that the total leader length of the

horizontal part is fixed for type-opo leaders, so theweight of edge (li, yi) is the y-coordinate

difference between the associated points of li and the port yi.

Plus, we can prove that the label placement of minimum crossing number does not

guarantee the label placement of minimum total leader length and vice versa by contra-

diction examples. The first example is trivial. It’s easy to find an instance that exists

multiple label placements which fulfill the requirement of minimum total crossing num-

ber, with different total leader length. (As example in Figure 3.11, given P = {p1, p2, p3}.
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L1 = (l1, l2, l3). L2 = (l3, l2, l1). The label placement (l2, l1, l3), as shown in the left of

the figure, has the minimal crossing number which is three. But its total leader length is

bigger than that of the label placement (l1, l2, l3), as shown in the right of the figure, which

also has the minimal crossing number.) Therefore, the label placement of minimum total

crossing number is not necessarily the one of minimum total leader length. The second

example is that assume all feature points have the identical y-coordinate like Figure 3.10.

Whatever the order of labels is, the total leader length is the same. Therefore, a label

placement which fits the criterion of minimum total leader length does not guarantee the

minimum crossing number.

Figure 3.10: Example of type-opo label placement with minimal total leader length
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Figure 3.11: Example of type-opo label placements with minimal crossing count
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Chapter 4

Extension of simultaneous boundary

labeling for two images

This is another transformation of k = 2 simultaneous boundary labeling, which can

be useful in many applications. Given two images Rl and Rr of which the height and

width could be different. They share all or parts of the same label set L, but have their

own feature point sets Pl and Pr. The labels are placed between images such as Figure 4.1

and Y is a set of legal label positions. This kind of images are widely used in atlases of

anatomy and biological structure maps for comparison, such as examples in Figure 4.2.

Our research prove that the extended version of simultaneous boundary labeling prob-

lem can be transformed to standard simultaneous boundary labeling problem of two im-

ages, and solved by algorithms from previous chapter. Then we show some real-world

application results.
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Figure 4.1: Model of the extended version of simultaneous boundary labeling

(a) brain structure (b) cell structure

Figure 4.2: Common usages of extended version of simultaneous boundary labeling

Theorem 9. Extension-SCM-opo-2 can be solved in O(n logn) time.

Proof. This problem can be reduced to SCM-opo-2 problem, then be solved inO(n logn)

time. In Extension-SCM-opo-2 problem, two images Rl, Rr, and Y are given. We trans-

form the imageRl(Rr) to imageR1(R2) with the coordinate axes illustrated in Figure 4.1.

It is obvious that when there is a crossing in image R1(R2), there must be a crossing in

image Rl(Rr), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 4.3 is the

result of extended version of type-opo simultaneous boundary labeling. Table 4.1 is the

input data of this figure.
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Figure 4.3: Example result of extension SCM-opo-2

Theorem 10. Extension-SCM-s-2 and SCM-s-2 are equivalent.

Proof. This problem can be reduced to SCM-s-2 problem, then the heuristic algorithms for

SCM-s-2 problem can be applied on it. In Extension-SCM-s-2 problem, two images Rl,

Rr, and Y are given. We transform the imageRl(Rr) to imageR1(R2) with the coordinate

axes illustrated in Figure 4.1. It is obvious that when there is a crossing in image R1(R2),

there must be a crossing in image Rl(Rr), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 1.6 is the

result of extended version of type-s simultaneous boundary labeling. We use the Greedy

algorithm and get a non-crossing label placement.

Theorem 11. Extension-SCM-po-2 and SCM-po-2 are equivalent.

Proof. This problem can be reduced to SCM-po-2 problem, then the heuristic algorithms

for SCM-po-2 problem can be applied on it. In Extension-SCM-po-2 problem, two images

Rl, Rr, and Y are given. We transform the image Rl(Rr) to image R1(R2) with the coor-

dinate axes illustrated in Figure 4.1. It is obvious that when there is a crossing in image

R1(R2), there must be a crossing in image Rl(Rr), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 4.4 and

4.5 are the result of extended version of type-po simultaneous boundary labeling. We use

the Enhanced sorting algorithm and get a non-crossing label placement.
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Figure 4.4: Example result of Extension-SCM-po-2

Figure 4.5: Original output of Extension-SCM-po-2 and its leader crossing count
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Table 4.1: The input data of the example of extension-SCM-opo-2

(a) Input of Rl

Rl = (Pl, Ll)

Pl x y Ll label content

p1 133 115 l7 golgi apparatus

p2 56 127 l5 ribosomes

p3 221 133 l11 cell wall

p4 199 153 l10 central vacuole

p5 131 137 l6 cytoplasm

p6 121 166 l4 nucleus

p7 76 170 l3 endoplasmic reticulum

p8 98 202 l2 mitochondrion

p9 102 211 l1 cell membrane

p10 199 196 l9 chloroplast

(b) Input of Rr

Rr = (Pr, Lr)

Pr x y Lr label content

p11 78 115 l6 cytoplasm

p12 39 123 l5 ribosomes

p13 134 122 l7 golgi apparatus

p14 199 135 l8 lysosome

p15 93 215 l1 cell membrane

p16 89 173 l4 nucleus

p17 44 175 l3 endoplasmic reticulum

p18 78 205 l2 mitochondrion
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed themodel of simultaneous boundary labeling for calculating

label placements for a series of related images. As listed in Table 1.1, the main contibution

of this thesis includes:

1. In Section 3.1, we proved that for type-s simultaneous boundary labeling problem

with minimal leader crossing number criterion, given a series of four or more im-

ages, the problem is NP-complete. When given a series of two images, we designed

five polynomial time heuristic algorithms in which the performance of Greedy-

SCM-s-2 algorithm is the best. Also, for the minimal total leader length criterion,

we designed an O(n3) time algorithm to solve the problem.

2. In Section 3.2, we proved that for type-po simultaneous boundary labeling problem

with minimal leader crossing number criterion, given a series of four or more im-

ages, the problem is NP-complete. When given a series of two images, we designed

four polynomial time heuristic algorithms inwhich the performance of SortEnhanced-

SCM-po-2 algorithm is the best. Also, for the minimal total leader length criterion,

we designed an O(n3) time algorithm to solve the problem.

3. In Section 3.3, we proved that for type-opo simultaneous boundary labeling problem

with minimal leader crossing number criterion, given a series of four or more im-

ages, the problem is NP-complete. When given a series of two images, the Barycen-

ter algorithm can solve the problem in O(n logn) time. Also, for the minimal total
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leader length criterion, we designed an O(n3) time algorithm to solve the problem.

4. In Chapter 4, we proved that the extended version of simultaneous boundary labeling

problem (as show in Figure 1.6) is the same as the standard version of simultaneous

boundary labeling problem of two images, whatever the leader type is.

The following are open questions of simultaneous boundary labeling. First, in this

thesis, we only proved k ≥ 4 crossing minimization problem for simultaneous boundary

labeling with type-s/po to be NP-complete. The NP-hard proofs or approximation algo-

rithns of k = 2 and k = 3 are remained to be research. Second, our heuristitc algorithms

only been tested under the condition of k = 2, a general algorithm for all k crossing min-

imization problem is still lacking. Third, in boundary labeling problem, the port can be

divided into two categories, fixed and sliding. We assumed port to be fixed in this thesis,

that is leaders can only be attached to the middle point of the side of labels. The simulta-

neous boundary labeling problem with sliding ports, that is leaders can be attached to any

point of the side of labels are remained to be discussed. Lastly, the simultaneous labeling

concept can also be used on map labeling, which is the problem of calculating the label

placement to put each label right beside its corresponding feature point in map.
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