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Abstract

In boundary labeling, each feature point is connected to a label placed
on the boundary of a rectangular image by a leader, which may be a recti-
linear or a straight line segment. Currently, all the research about boundary
labeling focuses on how to generate label placements for one image with high
readability. However, there may be a series of related images, which share
all, or parts of the same feature and label set, need to be labeled. If we cal-
culate label placements for each image separately, it is hard to keep track of
the relationship between images. To overcome the above difficulty, in this
thesis we propose a new problem called simultaneous boundary labeling. We
keep the relationship between images by limiting common features and labels
of a series of images in the same place, and find a common label placement
for all images with minimal leader crossing number and minimal total leader
length to increase the readability. We design some heuristic algorithms when
there are two related images need to be labeled and show the problem to be
NP-complete when there are more than four images in the series. The leader
length minimization problem can be solved by a weighted bipartite matching
algorithm.

Keywords: simultaneous graph drawing, boundary labeling, crossing mini-

mization, bipartite matching, barycenter algorithm
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Chapter 1

Introduction

1.1 Motivation

Automatic label placement is one of the important tasks in information visualization.
The task is annotating features of interest in images by textual labels to provide information
about features. The features are typically divided into three types: point features, line
features, and area features [13]. There are many algorithms that automate this task and
many proofs of the computational complexity of labeling problems. Generally, automatic
label placement is divided into two categories, map labeling [20] and boundary labeling
[21, 9, 11]. Map labeling algorithms calculate positions for labels, and put them right
beside their target features like Figure 1.1. Boundary labeling algorithms put labels on the
boundary of the image like Figure 1.2. The model of boundary labeling is first proposed by
Bekos et al [3]. Each label is connected to its corresponding feature by a line, called leader.
Figure 1.3 shows three common leader types. After that, there are many transformation
problem about boundary labeling, such as multi-sided boundary labeling [15, 14], and
boundary labeling for dynamic focus region [18, 10]. However, most of the researches on

automatic label placement focus only on labeling features of one image.
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Figure 1.2: Example of boundary labeling
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Figure 1.3: Common leader types of boundary labeling

In the graph drawing and infromation visualization area, there is a group of researches
called simultaneous graph drawing which focus on how to generate the layout of multiple
related graphs [6, 1, 8]. Consider the problem of drawing a series of graphs that share all,
or parts of the same vertex set. The graphs may represent different relations between the
same set of objects. For example, in social networks, graphs are often used to represent
relations of people. Based on different relations, different graphs can be generated with
the same set of people. Alternatively, the graphs may be the result of a single relation that
changes through time. For example, the Facebook friendship relation of the same set of
people may change through time. Based on different time point, different graphs can be
generated. The problem of simultaneous graph drawing is how to generate a good layout
(as shown in Figure 1.4) to visualize a series of related graphs. A good layout needs to
consider two important criteria: the readability of the individual layouts and the mental
map preservation in the series of layouts.

@

Figure 1.4: Example of simultaneous graph drawing

This work studies the simultaneous automatic labeling problem, which uses the con-

cept of simultaneous graph drawing on automatic labeling. We are concerned with the
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problem of calculating label placements of a series of images, which share all, or parts
of the same feature and label set. The label placement needs to fulfill two important cri-
teria: the readability of the individual images and the mental map preservation in the
series of images. The common criteria for readiblity are minimum crossings of leaders
(the line connect corresponding feature and label), maximal size of labels, and minimum
distance sum between features and labels. These help readers recognize the information
on the image and connect features to their associated labels. The method for mental map
preservation is to place the same labels on the same positions on different images. This
helps readers see the relationship and observe differences among a series of images. If
we individually label each image by traditional labeling algorithms, we may optimize the
readibility. However, it may result in bad mental map preservation among the series of
images, because label positions of the same labels may vary according to different topic
of images. Conversely, if we calculate all the label placements of features from all the
images by traditional labeling algorithms at the same time, we are optimizing the mental
map preservation but the individual images may be far from readable.

In simultaneous automatic labeling (as shown in Figure 1.5), same labels of the same
feature are placed at the exact same location in all images to preserve the mantal map.
And we ease constraints to the readibility while calculating label placements for a series
of images. For example, we only consider the crossings of leaders or the overlappings
of labels in the same image. Therefore, we can trace the relationship or change between
a series of images more easily than trace by the results from individually labeling each
image. Also, we can read individual images to learn details more easily than read the
results from labeling features of all images at the same time. Moreover, comparing to
individually labeling each image, simultaneous labeling can save time by processing all

the common feature-label pairs at once.
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Figure 1.5: Example result of simultaneous boundary labeling
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1.2 Thesis Organization

In this chapter, we introduce the motivation and concept of simultaneous boundary
labeling. The specific problem definition and related work are in Chapter 2. Our main
contribution is in Chapter 3, problems are discussed under three kinds of leader, which
are type-s, type-po, and type-opo. The parameter k is the number of images in a series
of image set which is the input. For a series of two images (k = 2), we design many
algorithms for the problem, and prove that when there are more than four images in the
set (k > 4) the problem is NP-complete. In Chapter 4, we build an extended version
of simultaneous boundary labeling problem (as example in Figure 1.6) and prove it can
be the same problem as the £ = 2 simultaneous boundary labeling problem. Then the

conclusion of this thesis is in Chapter 5.

Cell membrane
Mitochondrion

Chloroplast

Endoplasmic reticulum

Nucleus

Central vacuole

Ribsomes
Cytoplasm

Golgi apparatus

Lysosome
Cell wall

Figure 1.6: Example result of extension SCM-s-2

Table 1.1: Summary of our contributions

type-s type-po type-opo
k = 2 minimum crossing number heuristic heuristic O(nlogn)
k = 3 minimum crossing number ? ? ?
k > 4 minimum crossing number NP-complete | NP-complete | NP-complete
any k € N minimum total leader length | O(n?) O(n?) O(n?)
extension (minimum crossing number) | the same as k = 2

5 doi:10.6342/NTU201600238



Chapter 2

Preliminaries

2.1 Problem Definition

In this research we present efficient algorithms for computing optimal simultaneous
boundary labelings of a series of images. Figure 2.1 shows a single image labeling in our

model: we are given a rectangular image R = (P, L) with width w and height h.

* P = {p1,p2,...,pn} is a set of n features (or sites) where p; = (px;,py;) is the

coordinate of the i-th feature point p; in rectangle R.
o L =(ly,ls,...,1,) is an ordering of a set of n labels, l; is the label of feature p;.

Each feature is associated with a different axis-parallel rectangular label /; (think of
the bounding box of the object name written as a single line of text). Each label and its
associated feature are connected by a line segment, denoted as a /leader [2]. The point
where the leader is connected to it’s label is called port. The set of n label ports is denoted
asY = {y1,v2, ..., Yn }, Which is sorted by the value of y;, the y-coordinate of port i in the
increasing order. We assume the port is fixed in this research, and put it in the middle of

label /;’s right edge. Our goal is to assign each label /; to a port y/; to achieve some criteria.

6 doi:10.6342/NTU201600238
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Figure 2.1: Single image model

When it comes to labeling a series of £ rectangular images, the model of simultaneous
boundary labeling problem is shown by the following example of k£ = 2. We are given two

rectangular images of identical size Ry = (P, L) and Ry = (P, Ls).

ny = |Pi| = |Ly| is the number of feature-label pair of R;

ne = | P2| = | Ls| is the number of feature-label pair of R,
° TL:|P|:‘P1UP2|

b m:|L|:]L1UL2]

Y. a set of m label ports sorted by y-coordinate in increasing order

y;: the y-coordinate of the i-th port

In image 1 (e.g. Figure 2.3(a)), there is a set of n, features P, and each feature is
associated with a distinct label in the set L. In image 2 (e.g. Figure 2.3(b)), there is a set
of ny features P, and each feature is associated with a distinct label in the set L,. These 2
images share some common features, that is feature at the same coordinates.

We assume that each feature can only have one associated label (one-to-one) in the
same image, as the first row in Figure 2.2. The same feature in different images can have
more than one associated labels and different features in different images can have the
same asscoiated label, the second and third rows in Figure 2.2 respectively demonstrate

these relationship.

7 doi:10.6342/NTU201600238



The layout like Figure 2.3(c) which is a good simultaneous boundary labeling result

of a series of images according to the criterion of minimum crossing number of leaders, s

the goal of our problem. All the labels are put on the left side of the image, all the features

from both image 1 and image 2 are put in the rectangular image area (blue ones are from

image 1, red ones are from image 2, and black ones are from both images).

feature point 1

label 1

/O

image 1

image 2

feature point 1

label 1

/Q

o feature point 2

label 1

\O feature point 2

feature point 1

o}

image 1

image 2

label 2

feature point 1

label 1

/‘3

label 2

feature point 1

label 1

O

Figure 2.2: Feature-label relationship
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(c) Result of k£ = 2 simultaneous boundary labeling

Figure 2.3: Example of simultaneous boundary labeling for two images

Figure 2.4 is the example result of simultaneous boundary labeling for three images

(k = 3). These three images share some common feature points and labels. The common
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labels and feature points are put on the same position to keep the relationship between

images and when we look three images separately like Figure 2.4(b), 2.4(c), and 2.4(d),

we can find that the readability of these three images is good (no leader crossing).
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(a) Result of £ = 3 simultaneous boundary labeling

(b) Image 1

(d) Image 3

(c) Image 2

(e) The relationship of three images

Figure 2.4: Example of simultaneous boundary labeling for three images

10 doi:10.6342/NTU201600238



The result helps observing relationship between images and preserve the readability
of individual image if we want to read it separately. The common readability criteria of

map labeling quality [4] are:

* minimal crossing numbers of leaders.
* minimal length sum of leaders.

* minimal bend numbers of leaders.

* maximal label size.

* minimal overlap numbers of labels.

These criteria help shortening the distance between features and their related labels, reduc-
ing distraction from leader crossings and increasing the recognizability of label content.
Therefore, the associated feature and label pairs can be found and located more easily.

Each feature and its associated label are connected by a leader. A leader consists of a
sequence of segments. These segments are parallel (p) or orthogonal (o) to the side of the
bounding rectangle R to which the label is attached. The segments can also be a 45 degree
diagonal-line (d) or a straight-line (s) which connects a label and a feature directly. In this
paper we focus on leaders of the types s, po and opo, see Figures 1.3. For each type-opo
leader we further insist that the parallel p-segment is immediately outside the bounding
rectangle R and is routing in the so-called track routing area.

The Simultaneous boundary labeling problem is given a series of k rectangular images,
determine a boundary labeling for R, ..., Ry, i.e. compute a label placement for each
distinct label such that the sum of number of leader crossings in each image is minimum.

In this thesis, we denoted the Crossing Minimization problem for k& images for si-
multaneous boundary labeling with type s leaders as SCM-s-k. There are also SCM-s-1
and SCM-s-2 which represent the same problem of 1 image simultaneous boundary label-
ing and 2 images simultaneous boundary labeling. The total leader Length Minimization
problem for £ images simultaneous boundary labeling with type s leaders is denoted as
SLM-s-k. There are also SLM-po-k and SLM-opo-k represent the same problem with
type po and type opo leaders respectively.

11 doi:10.6342/NTU201600238



2.2 Related Work

Here is a review of related work on a crossing minimization problem that we use in
this research. The following are definition and the result of the PCM-£ problem [5].

Given a set of n labels U, a permutation 7 with respect to U is an ordering of a subset
S of U. For example, U = {ly, s, ..., l5}, a permutation can be 7 = (lo, l1, 14, 13,15). We

call 7 a full permutation, if S = U, and call 7 a partial permutation, if S C U.

Definition 1. Permutation Crossing Minimization problem with k£ permutations (PCM-k)
Question: P = {my, ..., 7} is a given set of (full or partial) £ permutations on a set of n
labels U = {ly,1s, ..., l,,}. The crossing minimization problem is finding a best permuta-
tion 7* such that the crossing number of P is minimal. The crossing number definition is
as following,

cross(P) = ming-cross(P, ™)

cross (P,m*) = Zle cross (m;, )

cross (m, ) = [{(lu, ly) |7 (l,) < (L)  and 7 (1) > 7 (L) }]
Result: This problem is proved to be NP-hard for any £ > 4 permutations. However it

can be solved in O(n) time when k£ = 2 by barycenter algorithm.

Definition 2. Barycenter algorithm

The Barycenter algorithm is also a common heuristic algorithm for one-sided bipartite
crossing minimization problem [12]. The algorithm sorts vertexes from free side accord-
ing to the barycenter value. The barycenter value of each vertex u, vertex from free side,
is the average x-coordinates of all neighbors (vertices, which are at fixed side, connected
to u) of vertex w.

As for the PCM-k problem, order of each vertex w in 7* is chosen as the barycen-
ter(average) of its order in permutation 7 to 7. If two vertices have the same barycenter,

we order them arbitrarily.

() = bary(u) = 72— Y, m(u)

For more about algorithms of crossing minimization and their performance see refer-
ences [12, 19,7, 17].

12 doi:10.6342/NTU201600238



Chapter 3

Simultaneous boundary labeling

In this chapter, we only discuss one-sided (left side) boundary labeling. All the results

could be used in right-sided boundary labeling by minor changes.

3.1 type-s leader

Lemma 1. SCM-s-1 can be solved in O(nlogn) time.

Proof. Given k = 1, an image R = (P, L), and Y, a crossing-free type-s leader label
placement can be constructed in O(n logn) time with the following algorithm.

For: = 1,...,n, a ray emitted from y; vertically downwards, then rotate in counter-
clockwise. The first unlabeled feature p € P that is hit by the ray is assigned to y; [3].

The correctness can be proved by contradiction. If there would be a crossing of two
leaders (y1,p1) and (yo, p2), the rotating ray emitted from y; would have found p, first,
and connected py to y; not 4. The time complexity of this algorithm is O(n?). The first
touched feature point p; is being searched from total n feature points for each port y; in
O(n) time and there is n ports. The time complexity can be improved to O(nlogn) by
deleting p; from the feature point set P when p; is assigned to a port y;.

For the condition that all the labels are being put on the right side of the image, we

only need to change the direction of the ray emitted from each port y.

13 doi:10.6342/NTU201600238



For SCM-s-2, we are not able to give a polynomial-time algorithm or show NP-hardness
for the problem at this point.

Given k = 2, images Ry, Ry, and Y, simply assigning each feature to a port by the
order of their y-coordinates might lead to crossings. Unlike one-sided bipartite crossing
minimization problem or PCM-£, x-coordinates of feature points influence crossing num-
bers in the type-s boundary labeling problem. For example, in Figure 3.1, given images
Ry = (P, L) and Ry = (P, Lz). Pr = Py = {p1,p2,p3,p1, 5} L1 = (l2, 13, 1a, 11, 15).
Ly = (I3,15,15,14,11). The solution 7* to PCM-2 problem is (ls, [3,l4, 5, 1) as in Figure
3.1(a). When this solution is applied to SCM-s-2 problem, the result is shown in Figure
3.1(b). However, there exists a non-crossing label placement (ls, I3, l4, [, [5) of SCM-s-2

problem as in Figure 3.1(c).
p, I3

./«:

P

P; 1y Iy
P W=

29 Is Py ls

pj :'; l;.'

(a) The graph of best (b) The graphof 7™ applied in SCM-s-2 problem.

2

/
I3

permutation 7* for PCM-2

I>
./p(
P2 I3
lq
Ps
Py Iy
Ps
Is

(c) The best solution to SCM-s-2 problem.

problem.

Figure 3.1: Example for illustrating the influence of the x-coordinate of features in SCM-
s-2 problem

Therefore, we design some polynomial time heuristic algorithms to generate a type-s

14 doi:10.6342/NTU201600238



leader label placement of minimum number of crossings and compare their results with
the optimal result.

3.1.1. Greedy-SCM-s-2

The first algorithm for SCM-s-2 is a greedy algorithm. When £ = 2, labels can be
divided into the following three categories by the relationship between labels and their

associated features.

o0
—

Figure 3.2: Three categories of label in type-s k = 2 simultaneous boundary labeling

Labels in the first category are the ones which have the same associated feature point
in image R; and R,. Labels in the second category are the ones which only have one
associated feature point in either image R; or R,. Labels in the third category are the
ones which have two different associated feature points in image R; and R, respectively.
Figure 3.2 illustrates these three categories of label, the blue feature point and label are
from image R;. The red feature point and label are from image R,. The black ones are
from both images R; and R,.

If all the labels are from the first 2 categories, a non-crossing label placement can be
constructed by the algorithm in lemma 1 in O(nlogn) time. So the idea is that we use the
algorithm in lemma 1 to calculate a label placement for labels in the first 2 categories then
deal with labels in the third category. Assume there are total m labels in the 3rd category.

First, a label ordering is built for labels from 1st and 2nd categories by the algorithm
from lemma 1. Second, we sort the remaining m labels (labels in the 3rd category) by the
y-coordinate of their associated points in increasing order. At last, each of the sorted label
are assigned to the port one by one at where it cause the minimal leader crossings. The

15 doi:10.6342/NTU201600238



time complexity of the greedy algorithm is O((n —m) log (n — m) 4+ mn). The fewer the
labels in the 3rd category, the faster the algorithm.

3.1.2. BaryY-SCM-s-2

The second algorithm for SCM-s-2 is a barycenter algorithm according to the y-coordinate
of associated feature points. Labels are sorted by their average y-coordinates of associated
feature points in increasing order. Then each label is assigned to a port from bottom to
top according to this order. The time complexity is O(n logn) due to sorting algorithm.

3.1.3. BaryRay-SCM-s-2

The third algorithm for SCM-s-2 is a barycenter algorithm according to the label place-
ment of each image. To consider x-coordinates of features as well. First, the label place-
ments of image R; and image R, are generated by the algorithm in lemma 1. Second,
labels are sorted by the average of their order in image R; and image R, in increasing
order. Then each label is assigned to a port from bottom to top according to this order.
The time complexity is O(n logn) for both the initial label placement part and the sorting
algorithm.

3.1.4. BaryRayEnhanced-SCM-s-2

The fourth algorithm for SCM-s-2 is the enhanced version of the preceding algorithm.
When the average ranks of labels are the same, we compare the value of their average
y-coordinates of associated feature points. The label with smaller average y-coordinate is
assigned to the lower port. The time complexity is still O(n logn).

3.1.5. LenMin-SCM-s-2

The fifth algorithm for SCM-s-2 is a bipartite matching algorithm which finds the label
placement with minimal total leader length. This label placement also gives a good but
not optimal result to the minimal leader crossing problem. The time complexity is O(n?).

The experiment result is shown in Table 3.1. Table 3.1(a) is the average total cross-
ing count of k£ = 2 type-s full simultaneous boundary labeling problem solved by differnt
algorithms according to different number of given features. Table 3.1(b) is the total execu-
tion time of £ = 2 type-s full simultaneous boundary labeling problem solved by differnt

algorithms according to different number of given features. For each set of test param-

16 doi:10.6342/NTU201600238



eters, we randomly generated 1000 test instances. All feature points have un-repetitive
integer x-coordinates between 0 and 800 as well as y-coordinates between 0 and 600. The
feature sets and label sets of image R; and image R, are the same. There are n distinct
features in the feature sets and n distinct labels in the label sets. The associated labels
of a feature point in different images are different, i.e., the feature-label relationships are
different between these two images.

Table 3.1: The experiment result of algorithms for SCM-s-2

(a) average leader crossing counts

run = 1000, w = 800, h = 600

fabel count 5 6 7 8 9 10 15 20 25 50
Algorithm
Initial 8.07 | 12.22 | 16.97 | 22.56 | 29.53 | 36.94 | 86.65 | 156.62 | 248.27 | 1016.13
PCM-2 5.03 741 | 1039 | 14.02 | 18.17 | 22.59 | 5247 95.38 | 150.85 616.58
Greedy-SCM-s-2 3.32 4.99 6.94 9.39 | 12.30 | 15.27 | 36.46 66.80 | 106.44 447.65
BaryY-SCM-s-2 3.84 5.70 8.08 | 11.02 | 14.29 | 17.72 | 42.20 76.81 | 122.49 505.91
BaryRay-SCM-s-2 4.02 5.88 838 | 11.37 | 14.74 | 18.30 | 43.00 77.95 | 124.03 508.82
BaryRayEnhanced-SCM-s-2 | 3.84 5.70 8.08 11.02 | 14.29 | 17.72 | 42.20 76.81 122.49 505.91
LenMin-SCM-s-2 345 5.11 7.22 9.71 12.63 15.75 | 37.19 67.45 106.92 441.78
Optimal 3.32 4.60 6.36 8.52 | 11.14

(b) total execution time (s)

label count

5 6 7 8 9 10 15 20 25 50
Algorithm
PCM-2 0.09 0.08 0.07 | 0.19 0.17 1.09 1.04 0.90 1.16 2.02
Greedy-SCM-s-2 1.32 1.19 1.46 | 647 7.69 | 37.64 | 48.50 | 74.65 | 120.26 | 703.26
BaryY-SCM-s-2 0.10 0.07 0.07 | 024 0.23 1.13 1.05 1.11 1.45 2.35
BaryRay-SCM-s-2 0.14 0.22 0.10 | 0.27 0.26 1.47 1.48 1.49 1.85 2.69

BaryRayEnhanced-SCM-s-2 | 0.17 0.14 0.13 0.29 0.32 1.81 1.95 1.86 1.91 2.58

LenMin-SCM-s-2 0.68 0.42 0.42 1.82 249 | 1474 | 2299 | 31.35 52.23 | 140.28

Optimal 6.56 | 1631 | 1043 | 6143 | 53948

Besides the five algorithms mentioned above, we use the result of the PCM-2 problem
and optimal case to compare. To generate the optimal result for the PCM-2 problem, we
set all the x-coordinates of feature points to one, and solve it by the barycenter algorithm.
In PCM-2 case, only y-coordinates matter, so the result generated by barycenter algorithm
is optimal, that has been proved by [5]. To generate the optimal result of simultaneous
boundary labeling problem, which is the label placement with minimal leader crossing, we
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calculate the crossing number for all possible label placements. It’s really time-consuming
because there are total n! label placements for each test case.

In the case of boundary labeling with type-s leader, the x-coordinates of features mat-
ter as well. For example, given 2 labels /; and [, as well as 2 features p; and p,. Every
label-feature pair is connected by a leader, [; is the label of p; and [5 is the label of p,. If
the y-coordinate of p; is bigger than y-coordinate of p, and the y-coordinate of /; is smaller
than y-coordinate of /5, there must exist a crossing of leaders in PCM-k, 2-layer 1-sided
bipartite graph crossing minimization, and type-opo boundary labeling problems. How-
ever, when it comes to type-s boundary labeling problem, intersection between leaders
(I1,p1) and (l5,p2) is not inevitable in this situation.

Based on the relative relationship between feature p and coordinates of /; and [y, we
can divided p into three categories. The first category is that p is above both /; and [5. The
second category is that p is in the middle of /; and /5. The third category is that p is under
both [ and (5.

Table 3.2: The possibility of crossing-free in SCM-s-2 when there must a crossing for
PCM-2

category of p; | category of p, | intersection is avoidable
1 1 V

2 1 \V}

3 1

2 2 V

3 2

3 3 \V}
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Table 3.3: The possibility of crossing in SCM-s-2 when there must be no crossing for
PCM-2

category of p; | category of py | intersection may occur

1 1 V

1 2
2 2
1 3
2 3

When [1y > lyy and poy > pyy, there must be a crossing in PCM-2, however there are
four out of six cases that the intersection of 2 leaders can be avoided in SCM-s-2 according
to the different x-coordinates of p; and ps. When l1y > loy and p1y > poy, there must be
crossing-free in PCM-2, however there are only two out of six cases that the intersection
of 2 leaders may occur in SCM-s-2 according to the different x-coordinates of p; and p,.
Therefore, the average crossing number of optimal result is fewer than the result of PCM-2
in our experimental test cases.

Greedy-SCM-s-2 algorithm has the best performance among all parameters of feature
point number and it costs more time than the other four algorithms (as shown in Figure
3.3). LenMin-SCM-s-2 algorithm performs next to it, but it has higher complexity than the
complexity of Greedy-SCM-s-2 algorithm. Because the given number of feature points is
not big enough, it seems Greedy-SCM-s-2 algorithm takes more time in the experiment
owing to its complicated steps. BaryY-SCM-s-2 algorithm, which only considers the y-
coordinates of features, is the fastest one (as shown in Figure 3.4). BaryRay-SCM-s-
2 algorithm, which also considers the x-coordinates of features, is slower and does not

outperform the others.
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Theorem 1. SCM-s-k is a NP-complete problem when k > 4.

Proof. The problem is obviously in NP. Now we show the lower bound. The PCM-£
problem can be reduced to type-s leader simultaneous boundary labeling. Since the PCM-
k problem is NP-hard when k£ > 4 [5], so as this problem.

We show how to reduce PCM-k to our problem as following. Given a set of (full or

partial) permutations 7 = {7y, ..., 7} on a set of labels U = {l,1ls,...,1,,}. First, we
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construct a series of k images R, Rs, ..., R of which the height A is n; and the width
w is 2. The number n; is equals to |U|, which means there are n; distinct labels in the
series of images. The number n, of distinct features points in the series of images is
maX;eq1,... k) || The x-coordinates of these distinct n, points py, ps, ..., py,, are the same,
i.e., they are on the same column. The y-coordinates of these distinct n, points are 1 to
n,. Then for i =1 to k, we build an image R; for each permutation ;. If there are |n;|
elements in 7;, the feature point sets of R; is P, = {p1,p2, ..., Pn, }, and the associated
label of each point in R; is the same as ;.

For example in Figure 3.5, if the permutation m; = (I3, I3, l, 4, [5), we can build an
image R; of which the height i is 5 and the width w is 2. The point set of image R,
is P, = {p1, pe, p3, P4, ps } and the coordinates of feature p; is (1, 7). The label ordering
of Ry is Ly = (ly,l1s,1s,14,15), which means [; is the associated label of p; and I3 is the

associated label of p,, and so on.

71-]:([],[3,Z2,l4,15)

= (1,5
s ;21: =(1,4)
“ O =13
" O =12
. O =1
I

>

Figure 3.5: The example of how to build an image R; by a permutation 7

If we can find a label placement, i.e., assign each label in L to a port in Y, which
guarantee the sum of crossing number from image R; to Ry is minimal, the order of the
label placement according to y-coordinate is also the best permutation 7* such that the
crossing number of 7 is minimal.

If the order of [, and [, in permutation 7; and the order of which in best permutation

7* is different, means the y-coordinate order of [, and [, is different with their associated
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feature points p, and p,. This condition must cause a crossing in both PCM-k and the

type-s simultaneous boundary labeling problem.

Theorem 2. SLM-s-2 can be solved in O(n?) time.

Proof. We transform the problem to Min-Weighted Bipartite Matching problem and solve
it by the Hungarian Algorithm which can solve the Min-Weighted Bipartite Matching
problem in O(n?) time. In SLM-s-2 problem, images R;, Ry, and Y are given. The
vertexs on one side of the bipartite graph are labels in L; U Ly, and the vertexs on the
other side are coordinates of label ports. The weight of edge (/;, y;) is the sum of the
Euclidean distance between the associated points of /; and the port y;. Figure 3.6 is the
graph of the weighted bipartite graph of this problem. The label placement of minimal
total leader length criterion for a series of two images does not guarantee the minimal

leader crossing number according to our experiment result of SCM-s-2.

d

L)

® )

lz . Y2

[, ® Vn

d = sum of distance between y, and
all feature points corresponding to [,

Figure 3.6: The weighted bipartite graph of SML-s-2

Theorem 3. SLM-s-k (k € N) can be solved in O(n?) time.

Proof. We transform the problem to Min-Weighted Bipartite Matching problem and solve
it by the Hungarian Algorithm which can solve the Min-Weighted Bipartite Matching

problem in O(n?) time. In SLM-s-k problem, images Ry, Ro, ..., Ry, and Y are given.
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The vertexs on one side of the bipartite graph are labels in Ly U Lo U...U L;, vertexs on the
other side are label ports. The weight of edge (I;, ¥;) is the sum of the Euclidean distance

between the associated points of /; and the port ;.

3.2 type-po leader

For SCM-po-2, The exact complexity of the problem or optimal algorithm are not
known at this point. Therefore, we design some polynomial time heuristic algorithms to
generate a type-po leader label placement of minimum number of crossings and compare
their results with the optimal result.

In SCM-po-2, images R;, Ry, and Y are given as input.

3.2.1. Sort-SCM-po-2

The first algorithm uses the concept of bubble sort. From =1 to n, we swap the i-th
label with 7+1-th label if the crossing number is smaller after swapping in every iteration.
The iteration ends until the number of crossing is not reduced. The time complexity is

O(n?).

Algorithm Sort-SCM-po-2 algorithm
Input order := the initial label placement

Output result := the final label placement
order = the initial label placement
repeat
for :=1ton-1do
tempOrder = order after swapping the ¢-th and +1-th label
if crossing(tempOrder) > crossing(order) then

order =tempOrder

until the number of crossing is not reduced;

3.2.2. BaryY-SCM-po-2
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The second algorithm for SCM-po-2 is a barycenter algorithm according to the y-
coordinate of associated feature points. Labels are sorted by their average y-coordinates
of associated feature points in increasing order. Then each label is assigned to a port from
bottom to top according to this order. The time complexity is O(n logn) due to sorting
algorithm.

3.2.3. SortEnhanced-SCM-po-2

The third algorithm is the enhanced sorting algorithm. To enhanced the sorting al-
gorithm, we set the initial label order from the result of barycenter algorithm. Then we
improve the result (reduce crossing number) by the sorting algorithm. It is intuitional that
the difference between label placement from barycenter algorithm and optimal label place-
ment is very small, that is, every label is not far from its best label position. Therefore,
through swapping the label with their neighbors and record the best order among them,
the result of enhanced sorting algorithm can be very closed to the optimal result.

The time complexity is O(n?).

Algorithm SortEnhanced-SCM-po-2
Input order = the label placement generated by barycenter algorithm

Output result := the final label placement
order = the label placement generated by barycenter algorithm
repeat
for :=1ton-1do
tempOrder = order after swapping the i-th and i+1-th label
if crossing(tempOrder) > crossing(order) then

order =tempOrder

until the number of crossing is not reduced;

3.2.4. LenMin-SCM-po-2

The fourth algorithm for SCM-po-2 is a bipartite matching algorithm which finds the
label placement with minimal total leader length. This label placement also gives a good
but not optimal result to the minimal leader crossing problem. The time complexity of
this algorithm is O(n?).
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The experiment result is shown in Table 3.4. Table 3.4(a) is the average total crossing
count of k£ = 2 type-po full simultaneous boundary labeling problem solved by differnt
algorithms according to different number of given features. Table 3.4(b) is the total execu-
tion time of k = 2 type-po full simultaneous boundary labeling problem solved by differnt
algorithms according to different number of given features. For each set of test param-
eters, we randomly generated 1000 test instances. All feature points have un-repetitive
integer x-coordinates between 0 and 800 as well as y-coordinates between 0 and 600. The
feature sets and label sets of image R; and image R, are the same. There are n distinct
features in the feature sets and n distinct labels in the label sets. The associated labels
of a feature point in different images are different, i.e., the feature-label relationships are
different between these two images.

Besides the four algorithms mentioned above, we generate the optimal result of si-
multaneous boundary labeling problem, which is the label placement with minimal leader
crossing, by calculating the crossing number for all possible label placements. It’s really
time-consuming to calculate the crossing number for each label placement because there
are total n! label placements for each test case.

SortEnhanced-SCM-po-2 algorithm has the best performance among all parameters
of feature point number (as shown in Figure 3.7) and is more than two times faster than
the Sort-SCM-po-2 algorithm (as shown in Figure 3.8). By using the result of BaryY-
SCM-po-2, the SortEnhanced-SCM-po-2 algorithm converges faster. LenMin-SCM-po-2
algorithm has the worst performance for type-po simultaneous boundary labeling problem

of two images.
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Table 3.4: The experiment result of algorithms for SCM-po-2

(a) average leader crossing counts

run = 1000, w = 800, h = 600

fabel count 5 6 7 8 9 10 15 20 25 50
Algorithm
Initial 6.02 | 9.10 | 12.90 | 17.40 | 22.41 | 28.47 | 67.00 | 123.21 | 196.13 802.46
Sort-SCM-po-2 3.02 | 475 7.14 | 1027 | 1342 | 17.39 | 45.78 89.28 | 149.95 | 681.600
SortEnhanced-SCM-po-2 | 2.26 | 3.38 5.06 6.89 8.89 | 11.34 | 28.18 53.23 87.56 388.58
BaryY-SCM-po-2 3.07 | 472 6.74 9.08 | 11.82 | 14.79 | 35.32 64.56 | 104.06 434.85
LenMin-SCM-po-2 3.43 | 5.02 7.15 9.72 | 12.64 | 15.71 | 36.98 67.47 | 106.56 440.36
Optimal 1.66 | 2.35 3.46 4.75 5.96
(b) total execution time (s)
run = 1000, w = 800, h = 600
label count s 6 ; g 9
Algorithm
Sort-SCM-po-2 15.36 | 17.96 | 25.92 32.71 40.38
SortEnhanced-SCM-po-2 6.78 7.89 | 10.77 14.98 20.40
BaryY-SCM-po-2 0.74 0.87 1.20 1.15 0.78
LenMin-SCM-po-2 1.99 1.98 2.58 3.17 3.78
Optimal 31.62 153 1610 | 14756 | 134369
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Figure 3.8: The execution time of algorithms for SCM-po-2

Theorem 4. SCM-po-k is a NP-complete problem when k > 4.

Proof. The problem is obviously in NP. Now we show the lower bound. We can reduce
the PCM-£ problem to a special case of type-po leader simultaneous boundary labeling
problem where the y-coordinate of any feature is smaller than that of the lowest port of the
lowest label, as Figure 3.9. (Note that some of edges are omitted in the figure.) Since the
PCM-£ problem is NP-hard when £ > 4 [5], so as this problem. In SCM-po-k k (k > 4)
problem, images R, Rs, ..., Ry, and Y are given. It is obvious that in order not to induce
the crossing of leaders, a label should be assigned to a port from bottom to up according

to the order of features sorted by their x-coordinates in increasing order.

L, J R, D I R T

Figure 3.9: A special case of type-po leader boundary labeling

In this case, two leaders cross only when the x-coordinate increasing order of any two
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features is differnt with the y-coordinate increasing order of their corresponding labels.
Recall that in PCM-k, two edges cross only when the order of any two items in 7; is
different with the the order of the same two items in 7*. Obviously, the special case of
type-po leader simultaneous boundary labeling and PCM-k are equivalent as counting the

crossing number. Therefore this problem is NP-complete.

Theorem 5. SLM-po-k (k € N) can be solved in O(n?) time.

Proof. We can use the same method from theorem 3 to solve the problem. In SLM-po-k
problem, images Ry, R,, ..., Ry, and Y are given. Note that the total leader length of the
horizontal part is fixed for type-po leaders, so the weight of edge (/;, ;) is the y-coordinate

difference between the associated points of /; and the port y;.

3.3 type-opo leader

In a boundary labeling for type-opo leaders, we only need to consider the crossings
of leaders in tracking route area because all the type-opo leaders go from a feature point
through the left borderline of image R orthogonally so that there are no crossings inside
image R. The crossing number of type-opo leaders only affected by the y-coordinate of
features points. In [16], they provide a leader routing algorithm and prove that two type-
opo leaders p;l; and pyls cross if and only if the y-coordinate of feature points p; and p,
in increasing (or decreasing) order and the y-coordinate of the port of labels /; and /5 in
decreasing (or increasing) order.

Hence, we can reduce our problem to PCM-k problem. When k£ = 2, it can be solved
by barycenter algorithm in O(n) time. When k& > 4, we can reduce PCM-£ to our problem

and prove that it is a NP-complete problem.
Theorem 6. SCM-opo-2 can be solved in O(nlogn) time.

Proof. First, we show how to reduce our problem to PCM-2. P| and P are sorted feature
point sets of P, and P, respectively by y-coordinates of feature points in increasing order.
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L and L), are the ordered sequential of corresponding labels to P| and P;. We take )
and L} as inputs m; and 7y of the PCM-2 problem. Then 7*, the solution to PCM-2, will
also be the best solution to our problem by assigning labels according the order in 7 to
left side from bottom to top.

Second, the barycenter algorithm which is used to solve PCM-2, can also solve our
problem in O(n logn) time.

As a result, the overall algorithm takes O(nlogn) time due to the sorting process at

the first step.

Theorem 7. SCM-opo-k is a NP-complete problem when k > 4.

Proof. The problem is obviously in NP. Now we show the lower bound. The reduce pro-
cess of transforming PCM-£ to type-opo leader simultaneous boundary labeling problem
is the same as the process for type-s leader in the theorem 1.

If the order of [, and [, in permutation 7; and the order of which in best permutation
7* is different, means the y-coordinate order of [, and [, is different with the order of their
associated feature points p, and p,. This condition must cause a leader crossing in both

PCM-£ and the type-opo simultaneous boundary labeling problem.

Theorem 8. SLM-opo-k (k € N) can be solved in O(n?) time.

Proof. We can use the same method from theorem 3 to solve the problem. In SLM-opo-k
problem, images R, R», ..., R, and Y are given. Note that the total leader length of the
horizontal part is fixed for type-opo leaders, so the weight of edge (/;, ;) is the y-coordinate
difference between the associated points of /; and the port y;.

Plus, we can prove that the label placement of minimum crossing number does not
guarantee the label placement of minimum total leader length and vice versa by contra-
diction examples. The first example is trivial. It’s easy to find an instance that exists
multiple label placements which fulfill the requirement of minimum total crossing num-

ber, with different total leader length. (As example in Figure 3.11, given P = {py, p2, p3}.
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Ly = (li,13,13). Ly = (l3,15,11). The label placement (I3, [;,13), as shown in the left of
the figure, has the minimal crossing number which is three. But its total leader length is
bigger than that of the label placement (/y, I3, [3), as shown in the right of the figure, which
also has the minimal crossing number.) Therefore, the label placement of minimum total
crossing number is not necessarily the one of minimum total leader length. The second
example is that assume all feature points have the identical y-coordinate like Figure 3.10.
Whatever the order of labels is, the total leader length is the same. Therefore, a label
placement which fits the criterion of minimum total leader length does not guarantee the

minimum crossing number.

Figure 3.10: Example of type-opo label placement with minimal total leader length
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image R,

1 _L * p,=(x, 5x/2)
[ —= p,= (x, 3x/2)

l; * p,=(x,x/2)
image R,

l, * p=(x 5x/2)

L, M * p,=(x, 3x/2)

l; * p= (x, x/2)

When L* = (1,,1,, ;)

total leader length = width + 6x

3x

image R;
[ * p,=(x, 5x/2)
; * p,= (x, 3x/2)
I * p,= (x, x/2)
image R,
l; * p=(x 5x/2)
[, * p,=(x 3x/2)
l.? B ¢ pj: (x’ X/Z)

When L*=(1,, 1,,1,)

total leader length = width + 4x

Figure 3.11: Example of type-opo label placements with minimal crossing count
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Chapter 4

Extension of simultaneous boundary

labeling for two images

This is another transformation of £ = 2 simultaneous boundary labeling, which can
be useful in many applications. Given two images R; and R, of which the height and
width could be different. They share all or parts of the same label set L, but have their
own feature point sets P, and P,. The labels are placed between images such as Figure 4.1
and Y is a set of legal label positions. This kind of images are widely used in atlases of
anatomy and biological structure maps for comparison, such as examples in Figure 4.2.

Our research prove that the extended version of simultaneous boundary labeling prob-
lem can be transformed to standard simultaneous boundary labeling problem of two im-
ages, and solved by algorithms from previous chapter. Then we show some real-world

application results.
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Cerebralcortex  Limbicsystem  Brainstem

(a) brain structure

(b) cell structure

Figure 4.2: Common usages of extended version of simultaneous boundary labeling

Theorem 9. Extension-SCM-opo-2 can be solved in O(nlogn) time.

Proof. This problem can be reduced to SCM-opo-2 problem, then be solved in O(n logn)

time. In Extension-SCM-opo-2 problem, two images R;, R,, and Y are given. We trans-

form the image R;(R,) to image R;(R-) with the coordinate axes illustrated in Figure 4.1.

It is obvious that when there is a crossing in image R(R>), there must be a crossing in

image R;(R,), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 4.3 is the

result of extended version of type-opo simultaneous boundary labeling. Table 4.1 is the

input data of this figure.
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Figure 4.3: Example result of extension SCM-opo-2

Theorem 10. Extension-SCM-s-2 and SCM-s-2 are equivalent.

Proof. This problem can be reduced to SCM-s-2 problem, then the heuristic algorithms for
SCM-s-2 problem can be applied on it. In Extension-SCM-s-2 problem, two images R,
R,,and Y are given. We transform the image R;(R,) to image R,(Ry) with the coordinate
axes illustrated in Figure 4.1. It is obvious that when there is a crossing in image R;(Rs),
there must be a crossing in image R;(R,), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 1.6 is the
result of extended version of type-s simultaneous boundary labeling. We use the Greedy

algorithm and get a non-crossing label placement. [
Theorem 11. Extension-SCM-po-2 and SCM-po-2 are equivalent.

Proof. This problem can be reduced to SCM-po-2 problem, then the heuristic algorithms
for SCM-po-2 problem can be applied on it. In Extension-SCM-po-2 problem, two images
R;, R.,and Y are given. We transform the image R;(R,) to image R;(R:) with the coor-
dinate axes illustrated in Figure 4.1. It is obvious that when there is a crossing in image
R1(R5), there must be a crossing in image R;(R,), and vice versa.

We use the picture of cell structural map in Figure 4.2 as an example. Figure 4.4 and
4.5 are the result of extended version of type-po simultaneous boundary labeling. We use

the Enhanced sorting algorithm and get a non-crossing label placement.
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Table 4.1: The input data of the example of extension-SCM-opo-2

(a) Input of R,

Ry = (P, L)
P, X y | L; | label content
p1 | 133 | 115 | I; | golgi apparatus
Do 56 | 127 | ls | ribosomes
ps | 221 | 133 | [17 | cell wall
ps | 199 | 153 | 1o | central vacuole
ps | 131 | 137 | lg | cytoplasm
ps | 121 | 166 | l4 | nucleus
D7 76 | 170 | I3 | endoplasmic reticulum
Ps 98 | 202 | Iy | mitochondrion
po | 102 | 211 | [y | cell membrane
p1o | 199 | 196 | lg | chloroplast

(b) Input of R,
R, = (P, Ly)
P, X y | L, | label content
P11 78 | 115 | lg | cytoplasm
P12 | 39| 123 | [5 | ribosomes
pis | 134 | 122 | I; | golgi apparatus
p1a | 199 | 135 | lg | lysosome
p1s | 93 | 215 | [; | cell membrane
P | 89 | 173 | Iy | nucleus
p17 | 44 | 175 | I3 | endoplasmic reticulum
pig | 78 | 205 | [ | mitochondrion
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed the model of simultaneous boundary labeling for calculating
label placements for a series of related images. As listed in Table 1.1, the main contibution

of this thesis includes:

1. In Section 3.1, we proved that for type-s simultaneous boundary labeling problem
with minimal leader crossing number criterion, given a series of four or more im-
ages, the problem is NP-complete. When given a series of two images, we designed
five polynomial time heuristic algorithms in which the performance of Greedy-
SCM-s-2 algorithm is the best. Also, for the minimal total leader length criterion,

we designed an O(n?) time algorithm to solve the problem.

2. In Section 3.2, we proved that for type-po simultaneous boundary labeling problem
with minimal leader crossing number criterion, given a series of four or more im-
ages, the problem is NP-complete. When given a series of two images, we designed
four polynomial time heuristic algorithms in which the performance of SortEnhanced-
SCM-po-2 algorithm is the best. Also, for the minimal total leader length criterion,

we designed an O(n?) time algorithm to solve the problem.

3. In Section 3.3, we proved that for type-opo simultaneous boundary labeling problem
with minimal leader crossing number criterion, given a series of four or more im-
ages, the problem is NP-complete. When given a series of two images, the Barycen-
ter algorithm can solve the problem in O(nlogn) time. Also, for the minimal total
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leader length criterion, we designed an O(n?) time algorithm to solve the problem.

4. In Chapter 4, we proved that the extended version of simultaneous boundary labeling
problem (as show in Figure 1.6) is the same as the standard version of simultaneous

boundary labeling problem of two images, whatever the leader type is.

The following are open questions of simultaneous boundary labeling. First, in this
thesis, we only proved £ > 4 crossing minimization problem for simultaneous boundary
labeling with type-s/po to be NP-complete. The NP-hard proofs or approximation algo-
rithns of £ = 2 and k£ = 3 are remained to be research. Second, our heuristitc algorithms
only been tested under the condition of k£ = 2, a general algorithm for all £ crossing min-
imization problem is still lacking. Third, in boundary labeling problem, the port can be
divided into two categories, fixed and sliding. We assumed port to be fixed in this thesis,
that is leaders can only be attached to the middle point of the side of labels. The simulta-
neous boundary labeling problem with sliding ports, that is leaders can be attached to any
point of the side of labels are remained to be discussed. Lastly, the simultaneous labeling
concept can also be used on map labeling, which is the problem of calculating the label

placement to put each label right beside its corresponding feature point in map.
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