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中文摘要

這篇文章中，我們研究 Manjul Bhargava 與 Jonathan Hanke 的 290 定理。主要

是透過分類一些被稱作上升子的特殊基本二次形，建立起決定任一正定整係數二次

形是否為宇態二次形的準則。
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Abstract

In this thesis, we study the 290-theorem of Manjul Bhargava and Jonathan Hanke.

Via the classification of certain basic quadratic forms called escalators, we can estab-

lish an efficient criterion to determine whether a positive integral quadratic form is

universal.
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1 INTRODUCTION

1 Introduction

The main aim of this thesis is to study a theorem of Manjul Bhargava and

Jonathan Hanke that characterises all universal quadratic forms.

A quadratic form Q(x1, ..., xn) takes integer values for all vectors (x1, ..., xn) in

Zn, if and only if Q(x1, ..., xn) ∈ Z[x1, ..., xn], and if this holds it is called a inte-

gral quadratic form. An integral quadratic form Q(x1, ..., xn) is said to represent

an integer z ∈ Z, if Q(a1, ..., an) = z, for some non-zero (a1, ..., an) ∈ Zn, and

Q(x1, ..., xn) is positive-definite if it represents only positive integers. Finally, by

a universal quadratic form we mean a positive-definite integral quadratic form that

represents every natural number.

In history, many universal quadratic forms has been studied. A classical example

comes from the famous Lagrange’s four squares theorem which actually says the form

x2+y2+z2+w2 is universal. Also, in [9] Ramanujan listed 54 other universal quadratic

forms of type ax2 + by2 + cz2 + dw2, where a, b, c, d are certain natural numbers.

Bhargava and Hanke [6] proves the following theorem which was originally con-

jectured by Conway in 1993.

Theorem 1. A positive-definite integral quadratic form is universal if and only if it

represents the following 29 integers:

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290.

Definition 1.1. Those 29 integers listed in Theorem 1 are called critical integers.

Bhargava and Hanke [6] also proves that the 29 critical integers are minimal in

the sense of the following:

Theorem 2. For each critical integer c, there is a non-universal positive-definite

integral quadratic form represents other 28 critical integers except for c.

The proofs of the theorems relies on the concept of escalators of a given quadratic

form Q(x). To explain it, we apply the correspondence between quadratic forms and

1
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lattices (see §2.4), roughly speaking, the lattice of an escalator is generated by the

lattice of Q(x) together with a vector having square norm equal to the smallest posi-

tive integer a not represented by Q(x) (see §3 for details). In particular, this escalator

represents a. By continuing the escalating procedure, one will obtain escalators that

represent all critical integers. Then one check if they are universal. It turns out

one needs at most 7 steps of escalating to achieve the goal. However, there usually

are numerous escalators of a given form. There is only one escalator of the zero

form, namely the one-dimensional form x2, which has 3 escalators, all 2-dimensional,

and these 2-dimensional forms have totally 34 escalators, all 3-dimensional. These

3-dimensional forms have 6560 escalators, all 4-dimensional. Call these basic esca-

lators. Fortunately, the proofs can be completed by just working on 4-dimensional

basic escalators.

There is an effective (and efficient) algorithm to check if a basic 4-dimensional

escalator locally represents an integer m (see Lemma 4.18, 4.19). Although the Hasse-

Minkowski theorem, or the local-global principle, does not always holds for integral

forms, it is applicable to 1658 forms out of all 6560 basic 4-dimensional escalators

so that one can determines if these forms represent an integer m by checking the

corresponding local representability.

For other basic 4-dimensional escalators, one needs to apply analytic method.

By estimating the constants involved in a modified formula of Siegel (see (6.2.1))

and by using the Deligne’s bounds of the Fourier coefficients of Hecke eigenforms,

Bhargava and Hanke are able to find for each basic 4-dimensional escalator a lower

bound B such that the local-global principle holds for m > B. Fortunately, the lower

bound B is of reasonable size so that one can use machine to check if each m ≤ B is

represented by the corresponding escalator. With the information of representability

of all 4-dimensional basic escalators obtained, the theorems are then proved by a few

deductions.

This thesis is organised in the following way. In §2, we review some basic facts

and definitions including the correspondence between equivalence classes of integral

quadratic forms and integral-square-norm lattices. Escalators are discussed in §3.

2
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2 NOTATION AND SETTING

We review the local theory in §4 and the local-global principle in §5. The analytic

method is studied in §6, and finally, the proofs are completed in §7.

2 Notation and setting

For simplicity, write x for the vector (x1, . . . , xn) and denote Q(x) = Q(x1, ..., xn).

Let P be a partition of {1, 2, . . . , n}. For each J ∈ P , let xJ denote the vector

whose components are xi for i ∈ J . For a subset S ⊆ P , let xS be the vector whose

components are xi for all i ∈
∪
J∈S

J .

2.1 The Gram matrix

Definition 2.1. The Gram matrix A of a quadratic form Q(x) is the unique symmetric

matrix A such that

Q(x) = xTAx, for all x.

Call DQ := det(A) the determinant of Q(x).

If Q(x) is integral, then the entries of A are contained in 1
2
Z.

Definition 2.2. Let Q(x) be an integral quadratic form with A as Gram matrix. Let

NQ be the minimal positive integer such that NQ · (2A)−1 is a matrix whose entries

are integers and diagonal entries lie in 2Z. Call NQ the level of Q(x).

For example, the Gram matrix of

Q(x1, x2) := x2
1 + 3x1x2 + 5x2

2 (2.1.1)

is

A =

 1 3/2

3/2 5

 with A−1 =

 20/11 −6/11

−6/11 4/11

 ,

while DQ = 11/4 and NQ = 11.

3



doi:10.6342/NTU201600288

2.2 Integrally equivalence class 2 NOTATION AND SETTING

2.2 Integrally equivalence class

Two quadratic form Q(x) and Q′(x) with Gam matrix A and A′ are integrally

equivalent if and only if there exists some B ∈ GL(n,Z) such that

A′ = BTAB.

We shall refer this equivalence relation as the integral equivalence relation. Integrally

equivalent quadratic forms have the same determinant. We define the determinant of

an integral equivalence class as the that of any of its members.

Lemma 2.3. The number of integral equivalence classes of the same determinant is

finite.

Proof. See [1, §9.2, corollary 1, p.129].

2.3 The Minkowski-reduced forms

Definition 2.4. Let Q(x) be a positive-definite integral quadratic form in n variables

and let A = (aij) be its Gram matrix. Call Q(x) Minkowski-reduced if

Q(x) ≥ aii, whenever g.c.d.(xi, . . . , xn) = 1,

ai,i+1 ≥ 0, for i = 1, . . . , n− 1.

The form Q(x1, x2) in (2.1.1) is not Minkowski-reduced, because Q(−1, 1) < a22.

However, Q(x1 − x2, x2) = x2
1 + x1x2 + 3x2

2 is Minkowski-reduced and is integrally

equivalent to Q(x1, x2). Indeed, each positive-definite integral quadratic form is in-

tegrally equivalent to at least one Minkowski-reduced form [2, p.27].

2.4 The corresponding lattices

Let L be a full-rank lattice in the Euclidean space Rn. Suppose L is a Z-lattice in

the sense that ∥v∥2 ∈ Z, for all vector v ∈ L. Let φ : Zn −→ L be an isomorphism of

abelian groups. Then Q(x) := ∥φ(x)∥2 is a positive-definite integral quadratic form in

n variables. The form Q(x) depends on L as well as the choice of φ, while its integral

4
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3 ESCALATION

equivalence class depends only on L. Conversely, if Q(x1, ...xn) is a positive-definite

integral quadratic form with Gram matrix A, then the assignment (u, v) 7→ uTAv

defines an inner product on Rn, and hence by the Gram Schmidt process, there is an

orthogonal automorphism φ of Rn such that Q(x) = ∥φ(x)∥2, for all x ∈ Zn. Then we

see that Q(x) is exactly the quadratic form induced by φ and the lattice L := φ(Zn).

Thus, we have a bijection between equivalence classes and Z-lattices with integral

square norms. In this thesis, for convenience we will use the identification between

a quadratic form Q(x) and the lattice L = L(Q) via certain implicitly chosen φ.

Therefore, when we say that a lattice has certain property, it means the correspond-

ing quadratic form has such property. For example, the lattice Z4 is universal, by

Largrange’s theorem.

Under the above correspondence, if e1, ..., en is the standard basis of Rn so that

fi := φ(fi) is the corresponding Z-basis of L, then the entries of the Gram matrix

A = (aij) of Q(x) can be expressed as

aij = (fi, fj). (2.4.1)

Suppose L ⊂ Rn is a full Z-lattice and let f1, ..., fn be a Z-basis of L. By (2.4.1),

the lattice 2L is contained in the dual lattice L∗ of L. Here

L∗ := {x ∈ Rn | (x, y) ∈ Z, for all y ∈ L} (2.4.2)

which is spanned by the dual basis f ∗
1 , ..., f

∗
n satisfying

(f ∗
i , fj) = δi,j, (2.4.3)

where δi,j denotes the Kronecker symbol.

3 Escalation

The proofs of the main theorems are built on the concept of escalation. We also

refer to the rank of a lattice as its dimension.

5
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3 ESCALATION

Definition 3.1. If a positive-definite integral quadratic form Q(x) is not universal,

we call the smallest positive integer that Q(x) cannot represent the truant of Q(x).

We define an escalation of a non-universal L to be any integral lattice generated by

L and a vector whose square-norm is the truant of L. An escalator lattice is a lattice

which is obtained by consecutive escalations of the zero-dimensional lattice.

Note that if a non-universal L is a full lattice in Rn, then its escalation is a full

lattice in either Rn or Rn+1.

Lemma 3.2. There are only finitely many escalator lattice of a given dimension n.

Proof. We prove by induction on n. The unique escalation of the one-dimensional

lattice is the lattice Z ⊂ R corresponding to the quadratic form x2. Hence the case

n = 1 is proved. Suppose L = Zf +L1 is an n-dimensional escalation of an escalator

lattice L1 such that ∥f∥2 equals the truant a of L1.

We first consider the case where L1 is of dimension n− 1 and let f1, ..., fn−1 be a

Z-basis. Write f = αen+f ′, where en ∈ Rn is the standard unit vector perpendicular

to Rn−1 and f ′ ∈ Rn−1. By (2.4.1), the value

(f ′, fi) = (f, fi)

must be either an integer or a half integer. Hence by (2.4.3), the vector f ′ ∈ 1
2
L∗
1. The

discrete subgroup 1
2
L∗
1 ⊂ Rn−1 contains only finitely many vectors f ′ with ∥f ′∥2 < a.

For each such f ′, the number α must equal ±
√

a− ∥f ′∥2. Hence a given L1 can only

have finitely many escalations. This together with the induction hypothesis implies

that there are finitely many n-dimensional escalation of escalator lattice of dimension

n− 1. Finally, we note that if L1 is n-dimensional with f1, ..., fn as a Z-basis and L

is an n-dimensional integral lattice containing L1, then by (2.4.1), for every f ∈ L,

the values (f, fi), i = 1, ..., n are in 1
2
Z, and hence L ∈ 1

2
L∗

1, by (2.4.3). Therefore,

L/L1 ⊂ 1
2
L∗
1/L1 which is finite, and hence there are only finitely many such L. In

particular, there can only be finitely many n-dimensional escalator lattices containing

L1.

6
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To determine escalator lattices of low dimensions, we follow the proof of Lemma

3.2. The only 1-dimensional escalator lattice is L1 = Z ⊂ R with with truant 2 and

L∗
1 = L1. Denote f1 = 1 ∈ L1. Since no vector in 1

2
L1 represents 2, an escalation L of

L1 must be 2-dimensional with L = Zf + L1 and f = αe2 + xf1. Now x is contained

in 1
2
Z satisfying x2 < 2. Therefore, x = 0,±1

2
,±1. These gives three nonisometric

two-dimensional escalators having Minkowski-reduced matrices:

 1 0

0 2

 ,

 1 1
2

1
2

2

 and

 1 0

0 1

 .

The corresponding lattices are Z
√
2e2 + Zf1, Z(

√
7
2
e2 +

1
2
f1) + Zf1, and Ze2 + Zf1

whose truants are respectively 5, 3, and 3. It turns out that all these three lattices

have no 2-dimensional escalations. Escalating them, we obtain 34 three-dimensional

nonisometric escalator lattices which have no three-dimensional escalations, and there

are actually 6560 four-dimensional nonisometric escalations of these 34 lattices, [6].

We call these the basic escalators.

Lemma 3.3. Each universal positive-definite integral quadratic form must contain a

universal escalator lattice. Conversely, the truant of any non-universal form is the

same as the truant of some non-universal escalator lattice within it.

Proof. Let Q be a positive-definite integral quadratic form and denote L = L(Q).

There exists a maximal sequence of escalator lattices

{0} ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk

within L. Since Lk is maximal, it is either universal or having the same truant as

that of L. Because Lk ⊂ L, if Lk is universal, so is L.

4 The Zp-theory

To see if an integral quadratic form represents an integer m, we can first check if

it represents m locally. In this section, we study the local theory of quadratic forms.

Let p be a finite prime number. A quadratic form Q(x) is called Zp-integral if and

7
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4.1 The normalized form 4 THE ZP -THEORY

only if Q(x) ∈ Zp[x]. Two Zp-integral quadratic forms Q and Q′ are Zp-equivalent if

and only if their Gram matrices A and A′ satisfy

A′ = BTAB, for some B ∈ GL(n,Zp).

4.1 The normalized form

Definition 4.1. A quadratic form Q(x) is Zp-elementary if and only if either Q(x)

is one-dimensional equal to ux2, u ∈ Z∗
p, or p = 2 and Q(x) is 2-dimensional with

Gram matrix

 a11 a12

a12 a22

 , such that a11, a22 ∈ Z2 and 2a12, 2a21 ∈ Z∗
2.

Definition 4.2. An n-dimensional Zp-integral quadratic form Q(x) is a normalized

form if and only if there is a partition P of {1, ..., n} such that

Q(x) =
∑
J∈P

pνJQJ(xJ), (4.1.1)

where each QJ is Zp-elementary and each νJ ≥ 0.

Lemma 4.3. Every quadratic form Q(x) is Zp-equivalent to a normalized form.

Proof. Let A = (aij) denote the Gram matrix of Q(x). We prove by induction on n,

the dimension of Q(x). If dimQ = 1, the lemma obviously holds. We first consider

the case in which p ̸= 2. Suppose min{ordp(aij) | 1 ≤ i, j ≤ n) occurs at some i = j.

We may assume it occurs at i = j = 1. By completing the squares, we can cancel

a12, . . . , a1n as well as a21, . . . , an1. Then

Q(x) ≃ pordp a11 · x2
1 ⊕Q′ (4.1.2)

with dimQ′ = n− 1. Then the proof is completed by the induction hypothesis.

Suppose min{ordp(aij | 1 ≤ i, j ≤ n) does not occur at diagonal entries. We

may assume it equals to ordp a12. Then we add the second column and the second

row into the first ones. By this process, a11 is replaced by a11 + 2a12 + a22. Since

ordp(a11+2a12+a22) = ordp(a12) = min{ordp(aij) | 1 ≤ i, j ≤ n), the proof is reduced

the previous case.

8
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4.1 The normalized form 4 THE ZP -THEORY

Now we consider the p = 2 case. Similarly, if min{ordp(aij) | 1 ≤ i, j ≤ n) occurs

at some diagonal entry, the lemma is proved by completing the squares. Otherwise,

we may assume

min{ordp(aij) | 1 ≤ i, j ≤ n) = ordp(a12) = k.

Write the leading 2× 2 submatrix as

pk−1

 pαb11 b12

b12 pβb22

 := pk−1E, (4.1.3)

where α, β ≥ 1 and | b12 |p=| b21 |p= 1. Then,

| detE|p = |pα+βb11b22 − b12b21|p = 1. (4.1.4)

Since its determinant is a unit in Z2, the matrix E is invertible. Write

A =

 pk−1E pk−1C

pk−1CT U

 ,

for some matrices C and U . Define F := −E−1C and put

B :=

 I2 F

F T In−2

 .

Then

BTAB =

 pk−1E 0

0 A′

 ,

for some (n− 2)× (n − 2) matrix A′. This means Q(x) ≃ pkQ1 ⊕ Q′, where Q1 has

p−1E as its Gram matrix and dimQ′ = n−2. By the induction hypothesis, the proof

is complete.

Lemma 4.4. Let Q(x) be an integral quadratic form. Then the following statements

are equivalent:

(a) p | NQ,

(b) p | D2Q,

9
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(c) if Q(x) is Zp-equivalent to a normalized form expressed by (4.1.1), then either

some vJ ≥ 1, or p = 2 and some QJ is 1-dimensional.

Proof. By lemma 4.3, we may assume that Q(x) is Zp-equivalent to a normalized

form expressed by (4.1.1). We have ordp(D2Q) =
∑
J∈P

λ′
J , where

λ′
J =

 νJ + ordp(2), if dimQJ = 1;

2νJ , if dimQJ = 2,

and also ordp(NQ) = max
J∈P

λ′′
i , where

λ′′
i =

 νJ + 2 ordp(2), if dimQJ = 1,

νJ , if dimQJ = 2.

4.2 The reduction maps

Let Q(x) be a normalized form expressed by (4.1.1) and set

S0 := {J ∈ P | νJ = 0}, S1 := {J ∈ P | νJ = 1}, and S2 := {J ∈ P | νJ ≥ 2}.

Definition 4.5. For a given m ∈ Zp, define

Rpk,Q(m) := {x ∈ Zn
p/p

kZn
p | Q(x) ≡ m (mod pk)},

RZero
pk,Q

(m) := {x ∈ Rpk,Q(m) | x ≡ 0 (mod p)},

RGood
pk,Q

(m) := {x ∈ Rpk,Q(m) | pνJxJ ̸≡ 0 (mod p), for some J ∈ P},

RBad
pk,Q

(m) := {x ∈ Rpk,Q(m) | x ̸≡ 0 but xS0 ≡ 0 (mod p)},

and let rpk,Q(m), rZero
pk,Q(m)

, rGood
pk,Q(m)

and rBad
pk,Q(m)

denote respectively the cardinality of

the sets Rpk,Q(m), RZero
pk,Q

(m), RGood
pk,Q

(m) and RBad
pk,Q

(m).

Remark 4.6. We have

Rpk,Q(m) = RZero
pk,Q(m) ⊔RGood

pk,Q (m) ⊔Rbad
pk,Q(m).

Also, if p - m, then Rpk,Q(m) = RGood
pk,Q

(m); if p - NQ, then RBad
pk,Q

(m) = ∅.

Now, reduction maps of various types are in order.

10
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4.2.1 The reduction map of good type

Definition 4.7. Let πG : RGood
pk,Q

(m) −→ RGood
pk−1,Q

(m) denote the reduction map

sending x (mod pkZp) into x (mod pk−1Zp).

Lemma 4.8. For k ≥ 2 ordp 2 + 1, the map πG is surjective with multiplicity pn−1,

namely,

rGood
pk+1,Q(m) = p(n−1) · rGood

pk,Q (m).

Proof. This is a direct consequence of Hensel’s Lemma [10, §I.3 Theorem 3].

4.2.2 The reduction map of zero type

If x ∈ RZero
pk,Q

(m), then x | p and hence p2 | m.

Definition 4.9. If RZero
pk,Q

(m) is nonempty, define the reduction map

πZ : RZero
pk,Q(m) −→ Rpk−2,Q(

m

p2
)

to be the one sending x (mod pkZp) into x
p
(mod pk−1Zp).

Obviously, the following lemma holds.

Lemma 4.10. This map is surjective with multiplicity pn

4.2.3 The reduction map of bad type

Define Q′(x) =
∑

J∈P pν
′
JQJ and Q′′(x) =

∑
J∈P pν

′′
JQJ , where

ν ′
J =

νJ + 1, if J ∈ S0;

νJ − 1, if J ̸∈ S0,

ν ′′
J =

νJ , if J ∈ S0

∪
S1;

νJ − 2, if J ∈ S2.

Denote, for i = 0, 1, 2,

R
xSi ̸≡0

pk,Q
(m) := {x ∈ Rpk−2,Q(m) | xSi

̸≡ 0 (mod pk)},

and also

R
Bad, xS1

̸≡0

pk,Q
(m) = {x ∈ RBad

pk,Q(m) | xS1 ̸≡ 0 (mod p)},

R
Bad, xS1

≡0

pk,Q
(m) = {x ∈ RBad

pk,Q(m) | xS1 ≡ 0 (mod p)}.

11
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Definition 4.11. If S1 ̸= ∅ define

πB′ : R
Bad, xS1 ̸≡0

pk,Q
(m) −→ RGood

pk−1,Q′(
m

p
)

to be the map sending xJ (mod pk) into xJ

p
(mod pk−1), for J ∈ S0; and xJ (mod pk)

into xJ (mod pk−1), otherwise.

Lemma 4.12. The map πB′ is surjective with multiplicity p#S1
∪

S2.

Proof. We can choose arbitrary lift of xJ (mod pk−1) for J ∈ S1

∪
S2.

Definition 4.13. If S1 = ∅ or xS1 ≡ 0 (mod p), define

πB′′ : R
Bad, xS1

≡0

pk,Q
(m) −→ R

xS2 ̸≡0

pk−2,Q′′(
m

p2
)

to be the map sending xJ (mod pk) into xj

p
(mod pk−2), if J ∈ S0

∪
S1; xJ (mod pk)

into xJ (mod pk−2), otherwise.

Similarly, the folllowing lemma holds.

Lemma 4.14. The map πB′′ is surjective with multiplicity p#S0
∪

S1+2#S2.

4.2.4 The depth

Definition 4.15. We define the depth of each type of solution of Rpk,Q(m) to be the

maximal difference k − k′ for any x ∈ Rpk,Q(m) to be mapped into Rpk′ ,Q∗(m∗) under

consecutive application of the maps πG, πZ, and πB′, or πB′′ for some Q∗ and m∗

Under these definitions, we can easily gain the depth of each type:

Lemma 4.16. The Good-, Zero-, Bad-type depths of Rpk,Q(m) are bounded above by

k − 1, ordp(m), and ordp(NQ) + 1 respectively.

4.3 The representability

We say that an n-dimensional Zp-integral form Q(x) represents a p-adic integer

m, if and only if there is some non-zero x ∈ Zn
p such that Q(x) = m, while when

referring to “Q(x) representing m (mod pk)”, we use the following definition.

12
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Definition 4.17. An n-dimensional Zp-integral form Q(x) represents a p-adic integer

m modulo pk if and only if there is some x ∈ Zn
p , x ̸≡ 0 (mod p) such that Q(x) ≡ m

(mod pk). In other words, x (mod pk) is contained in Rpk,Q but not in RZero
pk,Q

.

For n ≥ 3, we have the following useful results. Define

RQ(m) := {x̃ ∈ Zn
p | Q(x̃) = m, x̃ ̸≡ 0 (mod p)},

and for i = 0, 1, 2,

R
x̃Si

≡0

Q (m) := {x̃ ∈ Zn
p | Q(x̃) = m, x̃Si

≡ 0 (mod p)},

R
x̃Si

̸≡0

Q (m) := {x̃ ∈ Zn
p | Q(x̃) = m, x̃Si

̸≡ 0 (mod p)}.

Lemma 4.18. Let Q be an n-dimensional Zp-integral quaderatic form. If n ≥ 3 and

p - NQ, then Q(x) represents every p-adic integer m.

Proof. First assume that p ̸= 2. Then Q(x) is Zp-equivalent to the normalized form

u1x
2
1 + · · · + unx

2
n, with u1, ..., un ∈ Z∗

p. By [10, §1.62 Corollary 2, p. 393 Theorem

5], Q(x) represents m (mod p), and hence RGood
p,Q (m) is non-empty. Then we apply

Lemma 4.8.

Suppose p = 2. By Lemma 4.4, n must be even, and hence n ≥ 4. Thus,

Q(x) = Q1(x1, x2) +Q2(x3, x4) +Q′(x′),

where x′ is either (if n = 4) trivial or equals (x5, ...xn) (if n > 4) and

Q1(x1, x2) = 2α1a1x
2
1 + u1x1x2 + 2β1b1x

2
2, a1, b1, u1 ∈ Z∗

2, α1, β1 > 0,

Q2(x3, x4) = 2α2a2x
2
3 + u2x3x4 + 2β2b2x

2
4, a1, b1, u1 ∈ Z∗

2, α2, β2 > 0.

Because Q1(1, 1) ∈ Z∗
2 and Q1(x1 + 2, x2) ≡ Q1(x1, x2) + 2u1x2 (mod 8), we see that

Q1(x1, x2) represents all odd integers modulo 8. Therefore, Q1(x1, x2) + Q2(x3, x4)

represents all integers modulo 8 and so is Q(x). Then apply again Lemma 4.8.

Lemma 4.19. Let Q be an n-dimensional Zp-integral quaderatic form with n ≥ 3

and p | NQ. A integer m is represented by Q(x) over Zp if and only if some quotient

of m by square factor is represented by Q(x) modulo pordp(4NQ)+2.

13
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Proof. If Q(x) = m in Zp and x = pνx′ with x′ ∈ Zp such that x′ ̸≡ 0 (mod p), then

Q(x′) ≡ m
p2ν

(mod pordp (4NQ)+2) as desired.

To prove the implication in the other direction, we may assume that Q(x) repre-

sents m modulo pordp(4NQ)+2. Put k = ordp (4NQ) + 2. Suppose Q(x) ≡ m (mod pk)

and x ̸≡ 0 (mod p), then x ̸∈ RZero
pk,Q

(m).

If x ∈ RGood
pk,Q

(m), then we apply Lemma 4.8 to ensure the existence of some

x̃ ∈ Rx̸̃≡0
Q (m) such that x̃ ≡ x (mod pk). In particular, RQ(m) is non-empty.

If x ∈ R
Bad, xS1

̸≡0

pk,Q
(m), then πB′(x) ∈ RGood

pk−1,Q′(
m
p
) and since k − 1 ≥ 2 ordp 2 + 1,

Lemma 4.8 is applicable. Therefore, there there exists some t̃ ∈ R
x̃S0

̸≡0

Q′ (m
p
) such that

t̃ ≡ πB′(x) (mod pk−1). Consider the commutative diagram

R
x̃S1

̸≡0

Q (m)
φ′

//

��

R
x̃S0

̸≡0

Q′ (m
p
)

����
R

Bad, xS1
̸≡0

pk,Q
(m)

πB′ // RGood
pk−1,Q′(

m
p
),

where down-arrows are respectively reduction modulo pk and pk−1, while φ′ is the

bijection sending x̃ to t̃ with t̃S0 = 1
p
· x̃S0 and t̃S1∪S2 = x̃S1∪S2 . The diagram shows

R
x̃S1

̸≡0

Q (m), end hence RQ(m) is non-empty.

If x ∈ R
Bad, xS1

≡0

pk,Q
(m), then we apply the reduction map πB′′ consecutively k′ times

until the image of x launches either RBad, xS1
̸≡0

pk−2k′ ,Q∗ ( m
p2k

′ ) or RGood
pk−2k′ ,Q∗(

m
p2k

′ ). Since we have

NQ∗ ≤ p−2k′NQ, Lemma 4.8 is applicable to Q∗(x) and m
p2k

′ . To reduce the proof to

the previous cases, we only need to consider the bijection

φ′′ : R
x̃S0

≡0

Q (m) ∩R
x̃S1

≡0

Q (m) −→ RQ′′(
m

p2
)

as well as the associated commutative diagrams:

R
x̃S0

≡0

Q (m) ∩R
x̃S1

≡0

Q (m)
φ′′

//

��

RQ′′(m
p2
)

����
R

Bad, xS1
≡0

pk,Q
(m)

πB′′ // Rpk−1,Q′′(m
p2
).

Here, if t̃ = φ′′(x̃), then t̃S0∪S1 =
1
p
x̃S0∪S1 and t̃S2 = x̃S2 .

14
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5 The local-global principle

The Hasse-Minkowski theorem says a Q-rational quadratic form represents a ra-

tional number if and only it represents this number locally at all primes including

the infinite prime. This local-global principle also holds to some extend for integral

forms. In this section, we review such wonderful theory, our reference is Cassels [1].

The main result is Theorem 5.3 below. For convenience, denote

Z∞ = R.

Definition 5.1. Two integral quadratic forms are in the same genus if and only if

they are Zp-equivalent at all primes including the infinite one. The number of integral

equivalence classes in a given genus is called the class number.

Lemma 5.2. The class number of a genus is finite.

Proof. Two forms in the same genus must be of the same determinant, while the

number of integral equivalence classes in the collection of forms of a given determinant

is finite (Lemma 2.3).

Theorem 5.3. Let Q(x) be an integral form in n variables of determinant d ̸= 0. Let

a ̸= 0 be an integer which is represented by Q(x) over Zp, for p = ∞, 2, 3, . . ., then

there exists some form Q∗(x) in the same genus of Q(x) representing a.

The above two theorems will be proved at the end of this section.

5.1 Basic results

The following results are consequence of Lemma 4.3 or linear algebra over Z or

Zp. We omit their proofs.

Lemma 5.4. Let p be a finite prime number. Suppose f1 and f2 are two Zp-integral

forms and that Df1 = Df2 is a unit in Zp, then these two forms are Zp-equivalent.

Lemma 5.5. Let p be a finite prime number and let c1, . . . , cJ be linearly independent

elements in Zn
p . Then the following three conditions are all equivalent:

15
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(i) There exist cJ+1, . . . , cn such that c1, . . . , cn forms a basis for Zn
p .

(ii) The n × J matrix c1, . . . , cJ contains a J × J minor whose determinant is a

p-adic unit.

(iii) If a = l1c1 + · · · + lJcJ ∈ Zn
p for some l1, · · · , lJ ∈ Qp, then it must imply the

result l1, · · · , lJ ∈ Zp.

Lemma 5.6. Let c1, . . . , cJ be elements in Zn. Then the following three conditions

are all equivalent:

(i) There exist cJ+1, . . . , cn such that c1, . . . , cn forms a basis for Zn.

(ii) The determinants of the J ×J submatrices of the n×J matrix (c1, . . . , cn) have

no common divisor larger than 1.

(iii) If a = l1c1 + · · · + lJcJ ∈ Zn for some l1, · · · , lJ ∈ Q, then it must imply the

result l1, · · · , lJ ∈ Z.

5.2 The approximation of Zp-forms

We first prove the following lemma on the simultaneous approximation. Let P

denote a given collection of finitely many prime numbers.

Lemma 5.7. Let K > 1 be an integer and let m(p)
k ∈ Zp, 1 ≤ k ≤ K, p ∈ P , be given

such that for every p ∈ P ,

max
1≤k≤K

|m(p)
k |p = 1. (5.2.1)

Then for each ϵ > 0, there exist mk ∈ Z, 1 ≤ k ≤ K, with

gcd(m1, . . . ,mk) = 1,

such that

|mk −m
(p)
k |p < ε, for all p ∈ P. (5.2.2)

Proof. By the Chinese Remainder Theorem, we pick m1 ̸= 0 such that (5.2.2) holds

for k = 1. Let P ∗ be the set of primes p∗ which divide m1 but are not in P. Again,

16
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apply the Chinese Remainder Theorem, we can find an m2 ∈ Z such that (5.2.2)

holds for k = 2, and

p∗ - m2 (5.2.3)

for all p∗ ∈ P ∗. Now, for k > 2 we choose mk ∈ Z to satisfy (5.2.2). We may assume

that ε < 1. Then (5.2.1) implies gcd(m1, . . . ,mk) is not divisible by any p ∈ P . The

condition 5.2.3 ensures that it is not divisible by any other primes. Thus, the proof

is complete.

For a Zp-integral quadratic form f(x) in n-variables with Df ̸= 0, let Of denote

the subgroup of GL(n,Zp) consisting of matrice τ such that f(x) = f(τx). For such

τ , we have (det τ)2 = 1, and hence det τ = ±1.

Lemma 5.8. Let f(x) be a Zp-integral quadratic form in n-variables with Df ̸= 0.

Then there exists τf ∈ Of such that det τf = −1.

Proof. We first consider the case where f(x) is Zp-elementary. If f(x) = x2, then

take τf = −1. If dim f = 2, then D2f is a unit in Z∗
2 and is ≡ −u2 (mod 16), for

some u ∈ Z∗
2. This implies D2f = −µ2 + 16 for some µ ∈ Z∗

2. Lemma 5.4 says 2f

is Zp-equivalent to 2g(x) := 4x2
1 + 2µx1x2 + 4x2

2, and hence f(x) is Zp-equivalent to

g(x). Take τg =


0 1

1 0

, and if f(x) = g(Tx), take τf = T−1τgT .

In general, by Lemma 4.3, we can assume that f(x) = pνJ1f1(xJ1)+f2(xJ2), where

f1 is Zp-elementary and J1 ⊔ J2 = {1, ..., n}. Take τf such that τfxJ = τf1xJ and

τfxJ2 = xJ2 .

Lemma 5.9. Let P be a finite set of prime numbers and let Q(x) be an integral form

of determinant d ̸= 0. For each p ∈ P , let fp be a Zp-integral form of determinant

d which is Zp-equivalent to Q(x). Then there exists a form Q∗(x) which is integrally

equivalent to Q(x) and whose coefficients are arbitrarily close p-adically to fp for each

p ∈ P .

Proof. By the hypothesis, for each p ∈ P , there exists a p-adic integral matrix Tp such

that fp(x) = Q(Tpx). Since Dfp = Df = d ̸= 0 and (detTp)
2 = 1, the determinant

17
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detTp = ±1. By Lemma 5.8, we may assume that detTp = 1. It is sufficient to

construct a global integral matrix T with detT = 1, which is p-adically arbitrarily

close to each Tp. For such T , the quadratic form Q∗(x) = Q(Tx) satisfies the required

condition.

Write Tp = (c
(p)
1 , . . . , c

(p)
n ) so that the columns c

(p)
i , i = 1, ..., n, form a basis for

Zn
p , and denote

∥x∥p = max
1≤k≤n

| xk |p, for x = (x1, . . . , xn) ∈ Zn
p .

For J = 1, ..., n, we claim that for every ε > 0, there exist c1, . . . , cJ ∈ Zn

extendable to a basis c1, ..., cj, bJ+1, . . . , bn of Zn such that

∥cj − c
(p)
j ∥p < ε, for p ∈ P, 1 ≤ j ≤ J. (5.2.4)

Then the lemma is proved by taking J = n. We prove the claim by induction on J .

For J = 1 the claim follows from Lemma 5.5, 5.7 and 5.6. Suppose the claim

holds for J and c1, . . . , cJ , bJ+1, . . . , bn. Then

c
(p)
J+1 = l

(p)
1 c1 + . . .+ l

(p)
J cJ +m

(p)
J+1bJ+1 + . . .+m(p)

n bn,

for some l(p)1 , . . . , l
(p)
J ,m

(p)
J+1, . . . ,m

(p)
n ∈ Zp. By Lemma 5.5, we have max

J<j≤n
| m(p)

j |p= 1.

By Chinese Remainder Theorem, we can find lj ∈ Z such that | li − l
(p)
j |p< ε for

all j ≤ J and p ∈ P . Assume that J < n − 1 so that K := n − J > 1 and

Lemma 5.6 applicable. It ensures that we can find mj ∈ Z for J < j ≤ n satisfying

| mj −m
(p)
j |p< ε and gcd(mJ+1, . . . ,mn) = 1. Put

cJ+1 = l1c1 + . . .+ lJ−cJ +mJ+1bJ+1 + . . .+mnbn.

Then ∥cJ+1 − c
(p)
J+1∥p < ϵ, for all p ∈ P . Moreover, since gcd(mJ+1, . . . ,mn) = 1, by

Lemma 5.6, c1, . . . , cJ+1 can be extended to a basis of Zn. Hence the claim holds for

J + 1.

Now suppose J = n− 1. We may assume that bn is chosen to have

det(c1, ..., cn−1, bn) = 1

18
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and that c1, . . . , cn−1 are sufficiently close to c
(p)
1 , . . . , c

(p)
n−1 so that c1, . . . , cn−1, c

(p)
n

forms a basis of Zn
p and the determinant detp := det(c1, . . . , cn−1, c

(p)
n ) sufficiently

close to 1. Let ĉn
(p) := 1

detp c
(p)
n . Then det(c1, . . . , cn−1, ĉn

(p)) = 1. Hence

ĉn
(p) = l̂1

(p)
c1 + . . .+ l̂n−1

(p)
cn−1 + bn,

By Chinese Remainder Theorem, we pick l1, . . . , ln−1 sufficiently close to l̂1
(p)
, . . . , l̂n−1

(p)
,

such that the vector

cn := l1c1 + . . .+ ln−1cn−1 + bn,

satisfies

∥cn − c(p)n ∥p ≤ max{∥cn − ĉn
(p)∥p, ∥ĉn(p) − c(p)n ∥p} < ε.

The proof is complete.

Lemma 5.10. Let f(x) and g(x) be Zp-integral forms with Gram matrices F and G

respectively. If

2F ≡ 2G (mod pδ+2λ+1), (5.2.5)

where δ is defined by | D2F |p= p−δ and λ = δ2,p (the Kronecker symbol), then f(x)

and g(x) are Zp-equivalent

Proof. Set

S :=
1

2
F−1(G− F ) =

1

2
(2F )−1(2G− 2F ). (5.2.6)

Suppose 2G ≡ 2F (mod pµ) with µ ≥ δ + 2λ+ 1.Then

2(det 2F )S = (adj 2F )(2G− 2F ) ≡ 0 (mod pµ). (5.2.7)

Since adj 2F is a Zp-integral matrix, S ≡ 0 (mod pµ−δ−λ). Put F1 = (I + S)tF (I+S),

so that

(G− F1) = −StFS = −1

2
St(G− F ). (5.2.8)

Then 2G− 2F1) ≡ 0 (mod p2µ−δ−2λ). Since (2µ− δ − 2λ) > µ, we may replace F by

F1 and repeat the procedure to complete the proof.
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5.3 The proofs of Theorem 5.3

For a finite prime number, we say an element x ∈ Zn
p is primitive if ∥x∥p = 1, and

a ∈ Zp is primitively represented by a quadratic form f(x) if there exists a primitive

element b ∈ Zn
p with a = f(b). For p = ∞, f(x) primitively represents a, if f(x)

represents a.

Theorem 5.11. Let n ∈ N and d ̸= 0 be given. Let fp be a n-dimensional Zp-integral

form of determinant d, for all p = ∞, 2, 3. . . .. Suppose there exists a rational form

R(x) which is Qp-equivalent to fp(x) for each p. Then there is a Z-integral form Q(x)

which is Zp-equivalent to fp for each p, and Q-equivalent to R(x). Moreover, if each

fp(x) primitively represents a rational integer a, then Q(x) represents a.

Proof. We prove by induction on the dimension n. When n = 1, fp(x) = dx2
1 for all

p. The theorem holds for Q(x) = dx2
1. Indeed, if fp(x) primitively represents a, for

all p, then d = a, and hence Q(1) = a as required. For the rest of the proof, assume

that n ≥ 2 and the theorem holds for n− 1.

Next, we claim that there is an integer c primitively represented by fp for all p

over Zp and by R(x) over Q. To show it, let b be any non-zero integer such that

b = R(x) where x = (x1, x2, . . . , xn) ∈ Qn. Let B = (Bij) be the gram matrix of R(x)

and write Bij = Uij/Vij with Uij, Vij ∈ Z, gcd(Uij, Vij) = 1. Also write xi = si/ti,

si, ti ∈ Z with gcd(si, ti) = 1. Let P be the set of primes dividing 2bd, Uij, Vij, si
and ti. For p /∈ P , R(x) is a Zp-integral form primitively representing b. Since d

is a p-adic unit, by Lemma 5.4, fp is Zp-equivalent to R(x), and hence primitively

represents b. For p ∈ P , since fp is Qp-equivalent to R(x), fp represents b over Qp.

Suppose b = fp(xp) for xp ∈ Qn
p . We may choose β(p) ∈ Z so that ∥pβ(p)xp∥p = 1.

Then take c = b
∏
p∈P

p2β(p) for the claim.

Now let a be an integer primitively represented by fp over Zp, for all p. By lemma

5.5, we may assume fp(1, 0, . . . , 0) = a for all p. Also, by Hasse-Minkowski Theorem,

R(x) represents a over Q, and we may assume R(1, 0, . . . , 0) = a. By completing the

square, we have

4afp(x) = (2ax1 + b2px2 + . . .+ bnpxn)
2 + f ∗

p (x2, . . . , xn)
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for some b2p, . . . , bnp ∈ Zp, where f ∗
p (x) is a Zp-integral form in (n− 1)-variables with

determinant d∗ = a(n−2)d. Similarly,

4aR(x) = (2ax1 + c2x2 + . . .+ bnxn)
2 +R∗(x2, . . . , xn)

for some c2, . . . , cn ∈ Q and some rational form R∗(x) in (n − 1)-variables. Taking

y1 = 2ax1 + b2px2 + . . .+ bnpxn, we can write

4afp = y21 + f ∗
p (x2, ..., xn).

Similarly, by taking z1 = 2ax1 + c2x2 + . . .+ bnxn, we can write

4aR = z21 +R∗(x2, ...xn).

Since y21 is Qp-equivalent to z21 , by Witt’s Theorem, f ∗
p (x2, . . . , xn) is Qp-equivalent

to R∗(x2, . . . , xn). By the induction hypothesis, there exists a global integral form

Q∗(x2, . . . , xn) of determinant d∗ = Df∗
p

= (4a)nd/a2 which is Zp-equivalent to

f ∗
p (x2, . . . , xn) for all p and Q-equivalent to R∗. By Chinese Remainder Theorem,

we can find b2, . . . , bn ∈ Z arbitrarily close p-adically to b2p, . . . , bnp for all p | 2ad.

Moreover, by Lemma 5.9, we can replace Q∗ by an equivalent form that is p-adically

sufficiently close to f ∗
p for all p | 2ad so that the quadratic form Q(x) defined by

4aQ(x) = (2ax1 + b2x2 + . . .+ bnxn)
2 +Q∗(x2, . . . , xn) (5.3.1)

is an integral form. Since DQ∗ = d∗, DQ = d. Obviously, Q(1, 0, ..., 0) = a. Since

Q(x) is sufficiently close p-adically to fp for p | 2d, by lemma 5.10, Q(x) and fp are

Zp-equivalent for these p. For p - 2d, p ̸= ∞, by Lemma 5.4, Q(x) is automatically

Zp-equivalent to fp. For p = ∞, Q(x) also Zp-equivalent to fp(x), because they have

the same signature. Therefore, by Hasse-Minkowski Theorem, Q(x) is Q-equivalent

to R(x). The proof is complete.

The proof of Theorem 5.3. If p - a, Q(x) must primitively represents a. Otherwise,

we assume Q(xp) = a over Zp. Then ∥xpp
β(p)∥p = 1 for some non-positive integers

β(p). We set â = a
∏
p|a

p2β(p). Since

| â |p=| a | · |
∏
p|a

p2β(p) |=| f(xp) | ·
1

p2β(p)
≤ 1 (5.3.2)
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so â ∈ Z. It is clear that Q(x) primitively represents â. Theorem 5.11 applied to

the case where fp = Q(x) and R(x) = Q(x) says there exists in the genus of Q(x)

a Z-integral form Q∗(x) that globally represents â. Assume Q∗(ξ) = â for some

ξ ∈ Zn.Then

Q∗(ξ ·
∏
p|a

p−β(p)) = a. (5.3.3)

5.4 Example and conclusion

In some cases, we can apply the arithmetic method discussed in this section and the

section before to find the set of integers which are represented by a four-dimensional

escalator L4. Suppose L4 is the escalator of a three-dimensional sublattice L3, which

is unique in its genus. By Theorem 5.3, such L3 represents all integers which is locally

represented over Zp. We can use the information of L3 to show that the direct sum

of L3 with orthogonal complement in L4 represents all sufficiently large integers n

locally represented by it. Thus, we only need to check the representability of small

n to determine the set of integers which are represented by the four-dimensional

escalator L4.

For example, we consider the quadratic form x2 + y2 + z2 and its corresponding

lattice L3. It is well known that a natural number n is represented by L3 if and only

if n is not of the form 4a(8k + 7) [5]. Now L∗
3 = L3, and hence L4 is generated by L3

together with a vector f = αe4 + f ′, such that ∥f∥2 = 7 and f ′ ∈ 1
2
L3. If f ′ ∈ L3,

then L4 = L3 ⊕ αe4 =: L3 ⊕ [m], where m = α2 = 1, 2, 3, 4, 5, 6. If f ′ ̸∈ L3, then L4

contains L3 ⊕ 2αe4 := L3 ⊕ [m], where m = 4α2 < 28. In this case we can check that

4 - m and m ̸= 21. In both cases, we have L4 conatins L3 ⊕ [m] with m ≤ 27 and

m ̸≡ 0 (mod 8). If L4 were not universal and let u be the smallest natural number

missed by L4, then u is also missed by L3. By the minimality, u ≡ 7 (mod 8). Since

L4 represents 7, u is at least 15.

If m ̸≡ 3, 7 (mod 8), then u−m is not of the form 4a(8k+7). If u−m > 0, then

it is represented by L3, and hence u would be represented by L4, which is absurd.
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Therefore, u ≤ m. Thus, if m ≤ 14, then L4 is universal. One can check that in this

case all possible L4 are universal.

If m ≡ 3, 7 (mod 8), then u− 4m is not of the form 4a(8k+7) and is represented

by L3 in case u > 4m. This implies u ≤ 4m. Thus, if m = 3, then L4 is universal.

One can check that all possible L4 in this case are also universal.

Among 34 three-dimensional basic escalator, 20 are unique in their genus. More-

over, the escalations of 17 of these 20 escalator lattices can be handled by this process.

We can apply such arithmetic method to determine the sets of integers represented

by 1658 of the 6560 basic four-dimensional escalators [6].

6 Analytic method

For basic 4-dimensional escalators on which the arithmetic method does not work

well, one can apply the analytic method discussed in this section. The aim is to find

for each form a lower bound of reasonable size such that every positive integer greater

than this bound is represented by the given form if and only if it is locally represented

by the form.

6.1 The theta function associated to 4-dimensional escalators

For a basic four-dimensional escalator Q(x), we define the theta function associ-

ated with Q(x) as

ΘQ(z) :=
∑
x∈Z4

e2πiQ(x)z =
∑
m≥0

rQ(m)e2πimz

The theta function ΘQ(z) is a modular form[6] of weight 2, and hence there exist an

Eisenstein series E(z) and a cusp form f(x) such that

ΘQ(z) = E(z) + f(z).

We observe that rQ(m) > 0 if and only if Q(x) represents m. We have to compare

the growth rates of Fourier coefficients aE(m) of E(x) and af (m) of f(x) to establish

an effective criterion for rQ(m) > 0 for m sufficiently large by checking if m is locally

represented by Q(x).
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6.2 Fourier coefficients of Eisenstein series E(z)

Let aE(m) be as before. According to Segel’s theory[8], we have

aE(m) =
∏

p=∞,2,3,...

βp(m), (6.2.1)

where

βp(m) =


lim
k→∞

rpk,Q(m)

p(n−1)k
, if p ̸= ∞;

µ({x ∈ R4 | Q(x) = m}), if p = ∞,

(6.2.2)

and µ denotes the three-dimensional Lebesgue measure. By direct computation, we

get

β∞(m) =
2ω4m√
det(Q)

, (6.2.3)

where ω4 is the measure of four-dimensional unit ball. However, the evaluation of

aE(m) needs more discussion.

Definition 6.1. The discriminant of a non-singular quadratic form f(x) in a field

F is defined to be dFf := Df · (F ∗)2 ∈ F ∗
/
(F ∗)2 .

Definition 6.2. A binary non-singular quadratic form f(x) over a field F is called

a hyperbolic plane if f ≃ 2xy, and an even-dimensional non-singular quadratic form

is called hyperbolic if it is F -equivalent to a direct sum of some hyperbolic planes.

The proofs of the following two basic lemmas can be found in[5]

Lemma 6.3. Let f(x) be a non-singular binary quadratic form in Fp, p ̸= 2, then

the following are all equivalent:

(i) f(x) is a hyperbolic plane.

(ii) f(x) is isotropic, that is, there is some a ∈ F∗
p such that f(a) = 0.

(iii) dFf = −1.

Lemma 6.4. Let f(x) and g(x) be two non-singular quadratic forms over Fp, p ̸= 2,

thenf(x) is Fp-equivalent to g(x) if and only if dim f(x) = dim g(x) and dFpf = dFpg.
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Now, we compute rp,Q(m) as follow.

Lemma 6.5. Let Q(x) be positive integral quadratic form of dimension 2k and let

p ̸= 2 be a prime number not dividing NQ. For an integer m ̸≡ 0 (mod p), we have

rp,Q(m) =
1

p− 1
(p2k − rp,Q(0)).

Proof. Put Q(m)(x) = mQ(x). Since the discriminants of dFpQ
(m) = dFpQ, Lemma

6.4 says Q(m)(x) ≃ Q(x) over Fp. Therefore, the two sets {a ∈ F2k
p | Q(a) = 1} and

{a ∈ F2k
p | Q(a) = m} have an one-to-one correspondence, hence rp,Q(m) = rp,Q(1).

By counting, we obtain the desired equality.

Lemma 6.6. Let Q(x) be a four-dimensional positive integral quadratic form with

p ̸= 2 and p - NQ. The following holds:

(i) If Q(x) is hyperbolic, then rp,Q(m) =

 p3 + p(p− 1), for m ≡ 0 (mod p);

p3 − p, for m ̸≡ 0 (mod p).

(ii) If Q(x) is not hyperbolic, then rp,Q(m) =

 p3 − p(p− 1), for m ≡ 0 (mod p);

p3 + p, for m ̸≡ 0 (mod p).

Proof. To prove (i), write Q = Q1 ⊕Q2 with Q1 ≃ Q2 ≃

 0 1

1 0

. Then

rp,Q(0) = rp,Q1(0) · rp,Q2(0) + (rp,Q1(1))
2 · (p− 1)

= (2p− 1)2 + (p− 1)3

= p3 + p(p− 1).

By Lemma 6.5, rp,Q(m) = p3 − p if m ̸≡ 0 (mod p).

For (ii), by Lemma 6.4, we can write Q = Q1 ⊕Q2 with Q1 ≃

 0 1

1 0

 and Q2

is not hyperbolic, and hence not isotropic , by Lemma 6.3. Thus,

rp,Q(0) = 1 · rp,Q1(0) + (p2 − 1)rp,Q1(1)

= 1 · (2p− 1) + (p2 − 1)(p− 1)

= p3 − p(p− 1).
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By Lemma 6.5, rp,Q(m) = p3 + p if m ̸≡ 0 (mod p).

Let χ denote the Dirichlet character such that χ(p) :=
(

DQ

p

)
, for p - NQ and let

L (s, χ) denote the Dirichlet L-function. Namely,

L (s, χ) :=
∏
p

(1− χ(p))−s, s ∈ C,

where in the product p runs through all finite primes.

Corollary 6.7. For p - 2NQ, we have

rp,Q =

 p3 + p(p− 1)χ(p), if m ≡ 0 (mod p);

p3 − pχ(p), if m ̸≡ 0 (mod p).

Proof. As in the above proof, write Q = Q1⊕Q2 so that Q is hyperbolic if and only if

Q2 ≃ Q1. By Lemma 6.4, Q2 ≃ Q1 if and only if dFp(Q2) = d|Fp(Q1), or equivalently,

dFp(Q) = −1.

Definition 6.8. Let p be a finite prime. We say that an integer m is p-stable with

respect to an integral form Q(x), if it is locally represented by Q(x) at p and for each

k ≫ 1,

rGood
pk,Q (mp2ν) + rBad

pk,Q(mp2ν)

is constant for all ν ≥ 1 . Furthermore, we define Stable(m) to be the set containing

all primes at which m is stable.

Lemma 6.9. Let Q(x) be a four dimensional integral form of level N and let m be

an integer. Then m is p-stable for every p - 2N .

Proof. Since p - DQ, rBad
pk,Q

(mp2ν) = 0 for each ν ≥ 1. Because rGood
p,Q (mpν) = rp,Q(0),

the lemma is a consequence of Corollary 6.7 and Lemma 4.8.

We say that an integer m is supported on a set S of finite primes if ordp(m) = 0

whenever p ̸∈ S. This means all prime factors of m lie in S.
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Lemma 6.10. Let Q(x) be a 2n-dimensional integral form of level N and let m be

an integer. Suppose m = (m′)2 · t and p ∈ Stable(t) with ν := ordp(m
′) ≥ 1. Then

β(m)

β(t)
≥ Cp(t),

where

Cp(t) := min{ pn−2

pn−2 − 1
·
βGood
p (p2t) + βBad

p (p2t)

βp(t)
, 1}.

Proof. For a µ ∈ Z∗
p, the form Q(µx) is Zp-equivalent to Q(x). Therefore, without

loss of generality, we may assume m′ = pν . For simplicity, write rGood∪Bad
pk

(m) for

rGood
pk,Q

(m) + rBad
pk,Q

(m). By Lemma 4.10, we have the recursive formula

rpk(m) =rGood∪Bad
pk (m) + rZero

pk,Q(m)

=rGood∪Bad
pk (m) + pn · rpk−2

(m
p2

)
,

and hence

rpk(m) =
ν−1∑
i=0

pnirGood∪Bad
pk

(m

p2i

)
+ pnνrpk−2ν ,Q

(
t
)
.

Put K = βGood∪Bad
p (p2t). Since p ∈ Stable(t), letting k → ∞, we get

βp(m) = K ·

(
1

pn−2

)v

− 1

1
pn−2 − 1

+
βp(t)

p(n−2)v
.

Therefore, by setting

L :=
pn−2

pn−2 − 1
· K

βp(t)
,

we obtain

βp(m)

βp(t)
=

1

p(n−2)ν
+

K

βp(t)
·

(
1

pn−2

)ν

− 1

1
pn−2 − 1

=
1

p(n−2)ν

(
(1− L) + L · p(n−2)ν

)
.

Therefore, we have the desired

βp(m)

βp(t)
=


1−L

p(n−2)ν + L ≥ L, if 1 ≥ L;

(L−1)(p(n−2)ν−1)

p(n−2)ν + 1 ≥ 1, if L ≥ 1.
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Lemma 6.11. Let notation be as in Lemma 6.9. Suppose n = 2 and p - 2N . If if

p - t and χ(p) = −1, then Cp(t) ≥ p
p+1

; otherwise Cp(t) = 1.

Proof. By Lemma 5.4, we have Q(x) ≃ x2
1 + x2

2 + x2
3 +DQx

2
4 over Zp. Consequently,

rp,Q(a) = rGood
p,Q (a) for every a. If p | t, then since rp,Q(p

2t) = rp,Q(t) = rp,Q(0), by

Lemma 4.8, we have
p2

p2 − 1
· βp(p

2t)

βp(t)
=

p2

p2 − 1
> 1.

Hence Cp(t) = 1. If p - t, then rp,Q(p
2t) = rP,Q(0) and rp,Q(t) = rp,Q(1). By Corollary

6.7 and Lemma 4.8, we have

p2

p2−1
· βp(p2T ′)

βp(T ′)
= p2

p2−1
· p3+p(p−1)χ(p)

p3−pχ(p)

=


p2

p2−1
· p3+p2−p

p3−p
> 1, if χ(p) = 1;

p2

p2−1
· p3−p2+p

p3+p
> p

p+1
, if χ(p) = −1.

The following is the main theorem of this section. By Lemma 6.9, we can write

m = (m′)2 · t such that m′ supported on Stable(t) and ordp(t) ≤ 1, for p - 2N . There

could be more than one choice of t′, let T denote the set of all possible choices. Let

Cp(t) be as in Lemma 6.9 and denote

δ2 =

C2(t), if 2 | m′;

1, otherwise.

Theorem 6.12. Let Q(x) be a four-dimensional basic escalator of level N and de-

terminant D and let m be locally represented by Q(x). Then we have the following

estimation

aE(m) ≥ CE ·m ·
∏

p|m,p-2N,χ(p)=−1

p− 1

p+ 1
,

where

CE = min
t∈T

{2ω4 ·D1/2

L (2, χ)
·
∏
p|2N

βp(t)

1− χ(p)
p2

·
∏
p|N

p∈Stable(t)

Cp(t) · δ2
}
.
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Proof. Obviously, for p - m′, βp(m) = βp(t
′). On the other hand, if p | m′, with

ordp(m
′) = ν ≥ 1, then since p ∈ Stable(t′), by Lemma 6.9, β(m)

β(t)
≥ Cp(t). Thus, by

(6.2.1), (6.2.2) and (6.2.3),

aE(m) ≥ aE(t) · (m′)
2 ·

∏
p|m′

Cp(t). (6.2.4)

Lemma 6.11 says∏
p|m′

Cp(t) ≥
∏
p-2Nt

χ(p)=−1

p

p+ 1
·

∏
p|N

p∈Stable(t)

Cp(t) · δ2. (6.2.5)

To estimate aE(t), we first note that by Lemma 6.6,∏
p-2N

βp(t) =
∏
p-2Nt

βp(t) ·
∏

p-2N,p|t

βp(t)

=
∏
p-2Nt

(
1− χ(p)

p2

)
·

∏
p-2N,p|t

p3 + p(p− 1)χ(p)

p3

≥
∏
p-2Nt

(
1− χ(p)

p2

)
·

∏
p-2N,p|t

(p+ χ(p))(p2 − χ(p))

p3

=
∏
p-2N

(
1− χ(p)

p2

)
·

∏
p-2N,p|t

(p+ χ(p))(p2 − χ(p))

p(p2 − χ(p))

≥
∏
p-2N

(
1− χ(p)

p2

)
·

∏
p-2N,p|t,
χ(p)=−1

(
1− 1

p

)

=
1

L (2, χ)
·
∏
p|2N

1

1− χ(p)
p2

·
∏

p-2N,p|t,
χ(p)=−1

(
1− 1

p

)
.

Therefore,
aE(t) = β∞(t) ·

∏
p|2N

βp(t) ·
∏
p-2N

βp(t)

≥ β∞(t)

L (2, χ)
·
∏
p|2N

βp(t)

1− χ(p)
p2

·
∏

p-2N,p|t,
χ(p)=−1

(
1− 1

p

)
.

Thus, by (6.2.3), (6.2.4) and (6.2.5)

aE(m) ≥
(2ω4 ·D1/2

L (2, χ)
·
∏
p|2N

βp(t)

1− χ(p)
p2

·
∏

p|N,p∈stable(t)

Cp(t) · δ2
)
·m ·

∏
p|m,p-2N,

χ(p)=−1

p− 1

p+ 1
.

Then take minimum for t ∈ T and complete the proof.
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6.3 Fourier coefficients of the cusp form f(z)

In order to estimate the growth rate of the Fourier coefficients af (m) of the cusp

form f(z), we apply general theory of Hecke eigenforms to write f(z) as a linear

combination of Hecke eigenforms

f(z) =
r∑

i=1

γigi(z),

where γi ∈ C. Suppose we write gi(z) =
∑
m≥0

bi(m)e2πimz, then af (m) =
r∑

i=1

γibi(m).

By the Deligne’s bound [7] on Hecke eigenforms, we obtain the estimation

|bi(m)| ≤ τ(m)
√
m,

where τ(m) is the number of positive divisors of m; hence,

|af (m)| ≤ Cfτ(m)
√
m, (6.3.1)

where Cf =
r∑

i=1

|γi|.

6.4 The criterion of representability

Let Q(x) be a basic escalator. Combining the bounds of the Fourier coefficients

of E(z) and f(z), we know that any number m locally represented by Q(x) and

satisfying √
m

τ(m)

∏
p-N,p|m,

χ(p)=−1

p− 1

p+ 1
>

Cf

CE

(6.4.1)

is represented by Q.

Definition 6.13. For a given basic escalator Q(x), an positive integer m is called an

eligible integer of the form if m is locally represented by Q(x) but fails to satisfy the

inequity 6.4.1. Furthermore, define

B(m) =

√
m

τ(m)

∏
p-N,p|m,

χ(p)=−1

p− 1

p+ 1
.
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In order to determine the set of integers represented by a basic quaternary es-

calator Q(x), it is necessary to handle the eligible integers. Thus, we require more

information about the function B(m).

Lemma 6.14. B(m) is a multiplicative function, and B(p) > 1 for each prime p > 7.

Moreover, for any positive m and prime p,

B(mpν) > B(m) if



ν ≥ 1, for p ≥ 11;

ν ≥ 2, for p = 5, 7;

ν ≥ 5, for p = 3;

ν ≥ 11, for p = 2.

(6.4.2)

Proof. First, B(m) is obviously multiplicative and by direct computation, the in-

equality B(p) > 1 is obtained for p > 7. We need to check the inequality 6.4.2.

Suppose m = m1p
ν1 with p - m1, then

B(mpν) =
p

ν
2
√
m1pν1

(1 + ν + ν1)τ(m1)

∏
q|m1p,q-NQ,

χ(q)=−1

q − 1

q + 1

≥
( 1 + ν1
1 + ν + ν1

)(p ν
2 (p− 1)

p+ 1

) √
m1pν1

(1 + ν1)τ(m1)

∏
q-NQ,q|m1,

χ(q)=−1

q − 1

q + 1

≥ 1 + ν1
1 + ν + ν1

· p
ν
2 (p− 1)

p+ 1
B(m)

≥ p
ν
2

1 + ν
· p− 1

p+ 1
B(m).

Therefore, the proof is completed by solving the inequality

p
ν
2

1 + ν
· p− 1

p+ 1
> 1.

Corollary 6.15. For a basic escalator Q(x), the set of all eligible integers of Q(x) is

finite.

Proof. Since B(m) is a multiplicative function and B(p) ≤ Cf

CE
holds only for finitely

many p, the assertion follows from Lemma 6.14 and its proof.
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Since the number of eligible integers is finite (although maybe very large), the set

of positive integers represented by the form Q(x) could be determined by computation

[6, §4.3]. In the Bhargave and Hanke’s paper [6], they present a quaternary basic form

Q(x̃) = x2+2y2+4z2+31w2+yz−yw+3zw. The level NQ = 3774, χ(p) = (104
p
), CE =

36
125

, and Cf ≈ 2331.99, giving the largest bound Cf

CE
< 8100.65 of 6560 quaternaries.

In this case, there are 28 billion square-free eligible integers.

7 Proofs of the main theorems

7.1 Summary

By checking with machine using the above arithmetic and analytic methods, we

classify all basic four-dimensional escalator lattices L into three types:

Type I: L is universal.

Type II : L is not universal but miss at most three positive integers, every

missed number is a critical integer.

Type III : Otherwise.

We find that among all basic four-dimensional escalator lattices, there are 6402

lattices of Type I, 153 one of type II, and 5 ones of Type III.

7.2 The 10-14 switch

The lattice escalators of Type III all have truants 14 and are given by



1 0 −1/2 −3

0 2 1 0

−1/2 1 5 1

−3 0 1 10



,



1 0 −1/2 −2

0 2 1 −2

−1/2 1 5 3

−2 −2 3 10



,



1 0 −1/2 −2

0 2 1 −2

−1/2 1 5 1

−2 −2 1 10



,

32



doi:10.6342/NTU201600288

7.3 The proof of Theorem 1 7 PROOFS OF THE MAIN THEOREMS



1 0 −1/2 −1

0 2 1 0

−1/2 1 5 3

−1 0 3 10



and



1 0 −1/2 −1

0 2 1 0

−1/2 1 5 2

−1 0 2 10



.

These five lattices are escalated from the three-dimensional escalator L3 given by
1 0 1/2

0 2 1

1/2 1 5

, whose truant is 10.

Now instead of escalating L3 by adding a new vector of square norm 10, we add a

vector of square norm 14 to it. There are 330 lattices obtained in this way, they are

all 4-dimensional. Call them the auxiliary quaternaries.

Lemma 7.1. The escalator of a basic lattice L of Type III contains an auxiliary

quaternary.

Proof. Let M = L+Ze, with ∥e∥2 = 14. Then L′ = L3+Ze is an auxiliary quaternary

contained in M .

One finds that 226 of these 330 auxiliary quaternaries recurred in the 6555 basic

escalator lattices of Type I and II. By machine computation, we can classify the

remaining 104 forms L into three types:

Type I: L is universal.

Type II: L not universal but miss at most three positive integers, every

missed number is a critical integer.

Type IV : L represents all integers except for those of forms 10n2 and 13n2 .

7.3 The proof of Theorem 1

So far, all basic quaternary escalators and auxiliary quaternaries are classified.

Definition 7.2. Let C290 denote the collection of all integers missed by at least one

of all basic quaternary escalators and auxiliary quaternaries.
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The result of computation tells the following:

Lemma 7.3. C290 is exactly the set of all critical integers listed in Theorem 1.

Lemma 7.4. The zero lattice can be escalated at most 7 times.

Proof. If a basic 4-dimensional escalator is of Type II, then it becomes universal after

at most three escalating. If it is of Type III, then any of its escalator L′ contains an

auxiliary quaternary. If this auxiliary quaternary, which misses 10, is of Type II, then

L′, which represents 10, misses at most two integers, and hence becomes universal

after at most two escalations. If this auxiliary quaternary, which represents 10, is

of Type II, then L′ is exactly this auxiliary, and hence becomes universal at most 3

escalations. If the auxiliary quaternary is of Type IV, then it is universal.

Proof of Theorem 1. First, let Q be a positive-definite integral quadratic form, then

there exists a maximal sequence of escalator lattices

{0} ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk

within L(Q) (k ≤ 7). If L(Q) is universal, then Lk is also universal. Conversely,

suppose L(Q) is not universal, then truant(L)=truant(Lk); otherwise, if truant(L) ≥

truant(Lk), then one can obtain a escalator Lk+1 within L(Q) properly containing

Lk.

7.4 The proof of Theorem 2

Now we complete the prove of Theorem 2.

The proof of Theorem 2. First, we know that all critical integers except 203 and 290

arise as the truants of 1, 2, 3, 4 dimensional escalator lattices. For 203 and 290, we

consider the special escalator lattice

L145 :=


1 0 −1/2

0 2 −1/2

−1/2 −1/2 4

⊕ [29].
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L145 has 145 as its truant, and its escalation


1 0 −1/2

0 2 −1/2

−1/2 −1/2 4

⊕ [29]⊕ [145]

has the truant 290. Remarkably, L145 is the only basic four-dimensional escalator

lattice dose not represent 203. We set a lattice L203 := L145 ⊕ [58]. Since the only

square multiples of 58 less than 203 are 0 and 58 itself, L203 represents

{0, 1, . . . , 144}
∪

{0 + 58, 1 + 58, . . . , 144 + 58},

but dose not represent 203. This is, 203 is the truant of L203. Since L203 represents

145, we may pick a vector v of norm 145 in the lattice L203, and set L′
203 as the lattice

generated by L145 and the vector v. Because L145 cannot represent 145, v is form of

(∗, ∗, ∗, ∗, 1), which implies L203 = L′
203.

So far, we have proven that each critical integer is the truant of some escalator

lattice. For any critical integer m, let L be an escalator lattice whose truant is m,

and define Lm = L⊕ [m+ 1]⊕4 ⊕ [mx+ 1]. We claim that Lm represents all nonzero

integers except for m.

By Lagrange’s four theorem, [m+1]⊕4 represents all integers of the form (m+1)n.

Every integer a can be expressed as a = (m + 1)q + r, where 0 ≤ r ≤ m. Therefore,

Lm represent all nonzero integers except for m, since L represents all integers in the

interval [0,m− 1] while [2m+ 1] represents 2m+ 1. Thus, the proof is complete.
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