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中文摘要

本文探討在一維 p-adic 射影空間上的積分理論，並將其使用於建構 Cp 上的對數
F -crystal，主要關注在過程中自然構造出的對數多項式函數 lk(z)。對數多項式函數可實際
應用在計算 p-adic 上的 L-函數特殊值；準確來說，對數多項式函數在分圓點上的取值和
久保田-Leopold L-函數在正整數上的特殊值有連繫。文章以推導 Coleman (從 Koblitz 證明
k = 1 的情形為推廣對象)描述當 k 為正整數時，Lp(k, χk−1) 以及 k 次對數多項式 lk(z) 關
係的公式總結。

關鍵詞：Coleman積分、p-adic、對數F -crystal、對數多項式、久保田-Leopold L-函數、L-函數特殊值。
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Abstract

In this article we discuss the integration theory on P1(Cp), and apply it to construct
the logarithmic F -crystal on Cp, where polylogarithm functions lk(z) occurs in a natural
development. The usage of polylogarithms realize in the computation for the p-adic L-values.
To be precise, valuation of the polylogarithms at primitive roots of unity is related to the
special values of the Kubota-Leopold L-function at positive integers. Eventually, we conclude
by deriving a formula relating Lp(k, χk−1) to the kth-polylogarithm lk(z), which extends the
formula by Koblitz, who proved the case k = 1.

Keywords：Coleman integral, p-adic, logarithmic F -crystal, polylogarithm, Kubota-Leopold L-function,
special value of L-functions at positive integers.
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ON COLEMAN INTEGRATION AND p-ADIC L-FUNCTIONS

CHUNG-RU LEE

Abstract. In this article we discuss the integration theory on P1(Cp), and apply it to construct the
logarithmic F -crystal on Cp, where polylogarithm functions lk(z) occurs in a natural development. The
usage of polylogarithms realize in the computation for the p-adic L-values. To be precise, valuation of the
polylogarithms at primitive roots of unity is related to the special values of the Kubota-Leopold L-function at
positive integers. Eventually, we conclude by deriving a formula relating Lp(k, χk−1) to the k

th-polylogarithm
lk(z), which extends the formula by Koblitz, who proved the case k = 1.
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1. Introduction

The main goal of the article is to introduce the Coleman integral and apply it to establish a formula
for computing p-adic L-values. The Coleman integration is, vaguely speaking, to associate a closed 1-form
θ ∈ Ω(X) on X�a properly chosen space over non-archimedean �elds�with a locally analytic primitive (or
anti-derivative) fθ ∈ L(X), so that dfθ = θ. Integrating rigid analytic functions may be regarded as an
analogy to the integration of complex or real analytic functions, except the abundance of locally constant
functions over non-archimedean algebras made it di�cult to determine the relation between local expressions.

1.1. Coleman integral in brief.
The p-adic space is endowed with the ultrametric triangle inequality ‖x+ y‖ ≤ max(‖x‖, ‖y‖), which made

its topology rather simple. The extraordinariness of ultrametric triangle inequality is often characterized
through two descriptions:

(1) Every point in a disc is the center of the disc, and
(2) Any triangle is equilateral.

To appreciate the di�culty to integration that hides behind the topology of p-adic spaces, observe an example:

X = {z ∈ Cp | ‖z‖ = 1}, and θ =
dz

z
∈ Ω(X).

Date: July 11, 2016.
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In order to seek for fθ, it seems natural to write θ = d((z−a)+a)
(z−a)+a = dz

(z−a)+a = 1
a

∑∞
j=0

(
−(z−a)

a

)j
dz, which

applies on an open neighborhood about some a ∈ X and simply integrate the local expression term-wise:

fθ = b− 1

a

∞∑
j=1

1

j

(
−(z − a)

a

)j
.

The expression converges on B(a, 1), and so the equality holds on B(a, r) for r ≤ 1 up to a constant b = b(a).
The choice of a ∈ X is arbitrary, and one may duplicate the procedure for all points on X and obtain an
abundant of local expressions about fθ, up to a constant.

Until now the experience on R or C applies. In C, in order to relate the local expressions and determine
the constant b, the next step is to cover X with an open covering of connected nerve consisting of discs of
the form B(a, 1), and demand the valuation of the intersection coincide. In this way, we can adjust the local
expression and �nd a constant b = b(a) in a determined sense for each a ∈ X, actually b(a) is constant module
2πi, while winding around 0 creates branches for log(z) as we have known. On p-adic spaces, however, due
to the fact (1) above, two discs of the same radius either coincide, or will be disjoint. Therefore the strategy
above would not succeed.

A major property p-adic owns, while real or complex spaces do not, is the existence of the Frobenius
morphisms, namely the automorphism φ : z 7→ zp

n

on Fpm over Fpn , m ≥ n. Coleman [Col82] developed a
method referred by himself analytic continuation along Frobenius morphism. Consider the case above still,
and φ : z 7→ zp, which is Frobenius. Then

φ∗θ = pθ.

Coleman imposed the condition that the integration fθ should satis�es

φ∗fθ − pfθ = b

for some global constant b. Vary fθ by some non-zero constant we may set b = 0. Thus φ∗fθ − pfθ = fθ(z
p)−

pfθ(z) = 0. For any a ∈ X, there exists an m ∈ N so that the Teichmüller point in B(a, 1)�ω(a) = lim
n→n

ap
mn

exists (and (ω(a))p
m

= ω(a) follows), so (1 − pm)fθ(ω(a)) = 0. Thus the local expressions are determined
uniquely near ω(a) by b(ω(a)) = 0. Since for any a ∈ X, a ∈ B(ω(a), 1), the imposed condition indeed
determined fθ uniquely, up to a global constant.

To elaborate the method in a more thorough detail, suppose fθ is constructed in the sense that it is
unique module Cp. Then

∫ y
x
θ = fθ(y) − fθ(x) ∈ Cp is well-de�ned. Conversely, since θ ∈ Ω = Adz, and

X = B [0, 1] \B(0, 1) is covered by residue classes X =
⋃
‖a‖=1B(a, 1). Suppose we choose fθ(a) = b and

assume that there exists Cp-linear∫
: Ω(X)→ A(X) and d : L(X)→ ΩL(X)

that satisfy the following characterizations:

(1) d ◦
∫

: Ω(X)→ ΩL(X) is the canonical inclusion,
(2)

∫
◦d : A(X)→ L(X)/Cp is a canonical inclusion (after omitted a global constant), and

(3) φ∗ ◦
∫

=
∫
◦φ∗ ∈ L(X)/Cp.

We may de�ne fθ(x) via

fθ(x) = fθ(a) +

∫ x

a

θ.

If x ∈ B(a, 1), by the local expression of
∫

(θ|B(a,1)) ∈ A(B(a, 1))/Cp on B(a, 1), fθ(x) is uniquely
determined. Now, for arbitrary x ∈ X, �nd ω(x), ω(a), and m ∈ N so that

lim
n→∞

(φm)n(a) = a and lim
n→∞

(φm)n(x) = x.

Then by de�nition, ∫ x

a

θ =

∫ ωa

a

θ +

∫ ωx

ωa

θ +

∫ x

ωx

θ,
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where the �rst and last term is known as discussed above. Thus is remains to compute
∫ ωx
ωa

θ. By (3),∫ ωx

ωa

θ =

∫ φm(ωx)

φm(ωa)

θ =

∫ ωx

ωa

φ∗mθ = φ∗m
∫ ωx

ωa

θ = pm
∫ ωx

ωa

θ.

Thus fθ(x) is uniquely determined by the choice of fθ(a) ∈ Cp.

Remark. In the example we have worked with θ ∈ Ω with φ∗θ − pθ = 0. Actually replacement of p by any b
which is not a primitive root of unity, and the right hand side by any exact form dg ∈ dA can be dealt with
using the same method.

In short, a Cp-linear integration map satisfying the three conditions above may provides us with a unique
solution to the di�erential equation {

d
dz f = g,

f(a) = b.

Coleman integration is mainly de�ned for this purpose, and hence is to satisfy the three conditions above, as
we will see later in the passage.

1.2. The logarithmic F -crystal and p-adic L-functions.
The logarithmic F -crystal on a speci�c open set U is an A(U)-module that lies between A(U) and L(U).

A logarithmic F -crystal consists of, roughly speaking, functions f ∈ L(U) so that fdz may be integrated in
the sense of the previous passage.

Coleman established a criterion of six examination to determine whether a A(U)-submodule of L(U) is a
logarithmic F -crystal. The a posteriori but astonishing result is that once we joint those integrals

∫
fdz into

the original logarithmic F -crystal, the sum (as an A(U)-module) would still form a logarithmic F -crystal.
The logarithmic F -crystal, as we might observe in the very �rst example, is a natural module over A(U)

for the logarithmic function log(z) to occur (globally), and the fact that integration over a logarithmic
F -crystal may be executed iteratively allows us to consider higher order di�erential equations, which arises
the polylogarithmic functions (log z)n.

In practice, Coleman [Col82] de�ned lk(z) to be the solution to{
(z d

dz )klk = z
z−1 ,

lim
z→0

lk(z) = 0.

Whose solution may be represented by the formal series

lk(z) =

∞∑
n=1

zn

nk

when close to 0. The signi�cance of l1(z) = log(1− z) is well-established. Over the complex �eld C, lk(z) has
been related to the L-values at k. Let χ : C → C× be a primitive Dirichlet character of conductor d > 1. If

g(χ, ζ) denote the Gauss sum: g(χ, ζ) =
∑d
a=1 χ(a)ζ−a for ζ being a primitive dth-root of unity, and lk(0) = 0

is the principle branch, then it is a well-known formula [Kob79] that

L(k, χ) =
g(χ, ζ)

d

d−1∑
a=1

χ̄(a)lk(ζ−a).(1.1)

Also, when χ = 1 is trivial, let X = B(1, 1)\{1}, and R π−→ X denote the Reimann surface of lk|X . Consider
a sequence {xn}n∈N ⊂ R lying in �nitely many sheets of R, with lim

n→∞
π(xn) = 1, then

L(k, 1) = lim
n→∞

lk(xn).(1.2)

A purpose of this article is to apply the p-adic lk constructed to formulate a p-adic analogue of the formulas
above. Let ω denote the Teichmüller character on Z×p and χ a primitive Dirichlet character of conductor d,
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we will demonstrate

Lp(k, χ⊗ ω1−k) =

(
1− χ(p)

pk

)
g(χ, ζ)

d

d−1∑
a=1

χ̄(a)lk,p(ζ
−a)(1.3)

Lp(k, ω
1−k) =

(
1− 1

pk

)
lim
x→1

lk(x)(1.4)

from [Col82]. Which are direct analogue for (1.1) and (1.2). For some of the notations not de�ned here, see
section 6 and 7.

2. Rigid Analysis on Punctured P1(Cp)

2.1. A�noid subspaces of Cp.
Let Cp be the complete non-archimedean algebraic closure of Q above some �nite place p, O its ring of

integer, m the maximal ideal of O, and F = O/m the residue �eld.

De�nition 2.1. (1) A Tate algebra over a non-archimedean �eld k is de�ned as

Tn(k) = k 〈z1, . . . , zn〉 =

∑
|J|≥0

aJz
J | aJ ∈ k, ‖aJ‖ → 0 as |J | → ∞

 ,

with the Gauss norm ‖
∑
|J|≥0

aJz
J‖ , max

J
‖aJ‖ on it.

(2) A k-a�noid algebra is a k-algebra A which admits an isomorphism A ' Tn/I for some ideal I ⊂ Tn.
The maximal spectrum of a k-a�noid algebra A, along with the ring A, denoted M(A) = (MaxA,A),
is said to be an a�noid variety.

Notice that the Tate algebra Tn is Noetherian, regular, factorial, and any ideal I ⊂ Tn is closed. Therefore
the ideal I ⊂ Tn is always �nitely generated, and A = Tn/I possesses the residue norm ‖f̄‖ , infg∈f̄‖g‖.
An a�noid variety M(A) is said to be connected if A is not a direct sum of two rings. Likewise, M(A) is
irreducible and reduced if A is, respectively.

For an a�noid algebra A, let A0 = {f ∈ A | ‖f‖ ≤ 1}, A1 = {f ∈ A | ‖f‖ < 1}, and Ã = A0/A1. Note

that Ã is a �nitely generated polynomial ring over F. The association A  Ã is a covariant functor between
the category of a�noid algebras and the category of rings. For an a�noid variety X = M(A), we relate an

X̃ = Spec Ã. There is a natural reduction map

red :X → X̃

ma 7→ [ma ∩A0] ,

the last term indicates the ideal of residue classes in A0/A1 = Ã. X is said to have good reduction if X̃ is

smooth as an a�ne variety. The pre-image of a point b ∈ X̃ under the reduction map, namely red−1(b), is
called a residue class in X. When k is algebraically closed, one can regard A as a k-valued function on M(A)
naturally. In this case it is known that ‖f‖ = sup

a∈M(A)

‖f(a)‖ = max
a∈M(A)

‖f(a)‖.

In our notation, k = Cp unless speci�ed. B [a, r] = {z ∈ Cp | ‖z − a‖ ≤ r} and B(a, r) = {z ∈ Cp |
‖z−a‖ < r} are called discs in A1, particularly we de�ne B [∞, r] = {z ∈ P1 | ‖z‖ ≥ 1/r} = P1\B(0, r−1) and
B(∞, r) = {z ∈ P1 | ‖z‖ > 1/r}. The annuli refer to sets of the form A(a; r1, r2) = {z ∈ A1 | r1 < ‖z − a‖ <
r2 , r1, r2 ∈ ‖C×p ‖}, in which case it is said to be an annulus about a. Similar to the de�nition of discs, we
allow the center of an annulus to be ∞. A circle is a set as C(a, r) = A(a; r, r) = {z ∈ Cp | ‖z − a‖ = r}.

For this article, we consider the subspaces of P1(Cp) in the form X =
{
z ∈ P1(Cp) | ‖f(z)‖ ≤ 1, f ∈ F

}
,

where F ⊂ Cp(z) is a �nite subset. In this case if we consider A(X) to be the completion of rational functions
over Cp that are regular on X, with respect to the supremum norm. A(X) would be an a�noid algebra, thus
X is an a�noid variety. Unless otherwise mentioned, we always assume that X ⊂ P1(C), so dimCp X = 1.
Higher dimensional a�noid varieties are not concerned in this article.

It is known that if X is connected, it is conformal to a set of form B [0, 1] \
⋃
j B (aj , rj), that is A(X) '

Cp 〈z, x1, . . . , xs〉 / (zxj − tjaj | j = 1, . . . , s), where 0 < ‖tj‖ = rj ≤ 1. The form above is said to be a standard
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subset of B [0, 1]. If further assume that X has good reduction, by a linear fractional transformation one may
let rj = 1 for j = 1, . . . , s. In this case the standard subset is called a full subspace of B [0, 1], for further
details, see Conrad [Con08] or Tate [Tat71].

2.2. The logarithm.

De�nition 2.2. (1) For an arbitrary subset V ⊂ P1, let L(V ) denote the set of locally analytic functions
on V , and A(V ) ⊂ L(V ) be the set of functions f satisfying f |X∈ A(X) for any a�noid subsets
X ⊂ V .

(2) Let V ⊂ P1 be an open subset, we set Ω(V ) = A(V )dz, ΩL(V ) = L(V )dz, and de�ne the derivation
d : L → ΩL in the canonical sense. H1(V ) is de�ned as Ω(V )/dA(V ).

We de�ne a branch of the logarithm (usually referred to as the p-adic Iwasawa logarithm) by any locally
analytic function l being a homomorphism l : C×p → Cp which satis�es d

dz l(1) = 1.

Lemma 2.3. Let l(z) denote a branch of the logarithm. Then l(z) is analytic on B(z, ‖z‖) for any z ∈ C×p .

Proof. By de�nition, l(xy) = l(x) + l(y), di�erentiation with respect to y and evaluate at y = 1 yields
l(1) = 0 and d

dx l(x) = 1
x , while l(x) is analytic on an open neighborhood V around 1, its local expression can

be written as

l(z) = −
∞∑
n=1

(1− z)n

n
,(2.1)

which converges for z ∈ B(1, 1). For any z ∈ B(1, 1), there exists an n ∈ N so that zp
n ∈ V . We thus have

pnl(z) = l(zp
n

), while the right hand side is analytic, leading to the analyticity of l(z) on B(1, 1). Finally,
for any x ∈ C×p , consider l(xz) = l(x) + l(z), which is analytic for z ∈ B(1, 1). As a result l(z) is analytic on
xB(1, 1) = B(x, ‖x‖). �

From the expression above, we have d log z = dz
z immediately. For any open subset V ⊂ P1 and log(z) a

chosen branch of the logarithm, de�ne Alog(V ) = A(V ) [log f | f ∈ A(V )×].
A wide open set refers to a set U = {z ∈ P1 | ‖f‖ < rf , f ∈ F}, where rf = 1 or ∞, and F ⊂ Cp(z) is

a �nite subset. If V is an annulus about a ∈ A1, a 1-form θ ∈ Ω(V ) can be written as
∑
j∈Z

cj(z − a)jdz, and

we de�ne the residue at a, denoted resaθ, to be c−1. Observe that on any wide open annulus V around a, a
1-form θ ∈ dA(V ) if and only if resaθ = 0.

Lemma 2.4. If V is an annulus about a, and f ∈ A(V )×. If resa
df
f = k, then we have

(1) k ∈ Z
(2) f may be written as f = c(z − a)k(1 + h), where c ∈ Cp, h ∈ A(V ) and ‖h(z)‖ < 1 for any z ∈ V .

Proof. Without loss of generality, let a = 0. It su�ces to prove the lemma for each a�noid annulus about
0 contained in V , thus one may assume V is itself a�noid. That is, V = A [0, r1, r2], and r1, r2 ∈ ‖Cp‖.
Further exploit the advantage of a conformal map, we can assume that V is actually standard, which means
r1 ≤ 1 and r2 = 1.

(1) Consider V1 = C(0, r1) = {z ∈ Cp | ‖z‖ = r1}. Choose a1 ∈ C×p so that f1 , a1f has ‖f1‖ = 1.

Ṽ1 ' Spec F[z,y]
(zy−1) , thus f̃1 ∈ A(Ṽ1)× implies f̃1 = b̃1z

k1 for some b1 ∈ O, ‖b1‖ = 1, and k1 ∈ Z.
That is, (b−1

1 z−k1f1)∼ = 1. It follows that ‖b−1
1 z−k1f1 − 1‖ < 1. From the previous lemma, this

would mean that log b−1
1 z−k1f1 ∈ A(V1). Therefore 0 = res0(d log(b−1

1 z−k1f1)) = res0
df1
f1
− k1, and

res0
df
f = res0

df1
f1

= k1 ∈ Z follows.

(2) Imitate the process in (1) for V2 = C(0, r2). Let b ∈ Cp satis�es ‖bfz−k‖ = 1. Observe that

(bz−kf |Vj
)∼ = (ba−1

j z−kfj)
∼ = (ba−1

j bj)
∼ are constants on Vj for j = 1, 2, respectively. Since the

closure of Ṽ1 ∪ Ṽ2 �lls Ṽ , (bz−kf)∼ = (ba1b1)∼ = (ba2b2)∼ = b̃c̃ is a non-zero constant function on Ṽ
for some c ∈ O. Thus f = czk(1 + h) for some h ∈ A(V ) and ‖h‖ < 1.

�
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Corollary 2.5. By the results of Lemmas 2.3 and 2.4, for an annulus V about a ∈ A1,

Alog(V ) = A(V ) [log (z − a)] .

Let V be an open set and F be a collection of Cp-valued functions on V . F is said to satisfy the identity
principle on V if for any f, g ∈ F , f = g on V whenever f = g on any open subset U ⊂ V . It is known that
for a connected open subset V ⊂ P1, A(V ) satis�es the identity principle on V .

For an a�noid V , a point a ∈ V and a function f ∈ A(V ), we de�ne the order of f at a, denoted ordaf , as
when de�ned on an a�ne variety. For any rational function h = f/g, we let ordah = ordaf − ordag. Notice
that for a locally analytic function f , ordaf

′ ≤ ordaf .

Proposition 2.6. Let V be a wide open annulus about a. Then Alog(V ) = A(V ) [log f | f ∈ A(V )×] satis�es
the identity principle on V .

Proof. [Col82] Without loss of generality, let a = 0. Suppose the statement is false, let n ∈ N be the least

possible integer so that there exists an f ∈ Alog(V ), f =
n∑

m=0
gm(log z)m is non-zero, while f = 0 on some

open U ⊂ V . n > 0 since A(V ) satis�es the identity principle. Consider

f ′ =
n∑

m=0

g′m(log z)m +
n−1∑
m=0

m+ 1

z
gm+1(log z)m

= g′n(log z)n +
n−1∑
m=0

(g′m +
m+ 1

z
gm+1)(log z)m.

f ′ = 0 on U , as well as g′nf − gnf
′. While deglogzf > deglogz(g

′
nf − gnf

′), g′nf − gnf
′ = 0 on V by

assumption.
In particular, gn(gn−1 + n

z gn)− g′ngn−1 = 0. Which indicates that ( gn−1

gn
)′ = n

z , and so gn−1

gn
is analytic on

V since the only possible pole, 0, lies outside. gn−1

gn
∈ A(V ) contradicts with the fact that res0d( gn−1

gn
) = n is

non-zero. �

As a result, for a wide open annulus V , we have dimCp
H0(Alog(V )) = 1. Moreover,

Lemma 2.7. Let V be an wide open annulus, H1(Alog(V )) = 0.

Proof. Let θ =
n∑
j=0

hj log zj ∈ Ωlog(V ), where hj =
∑
k∈Z

aj,kz
k ∈ A(V ). We demonstrate by induction on n.

For n = 0, θ = h0 =
∑
k∈Z

a0,kz
k. (h0 − a0,−1z

−1)dz ∈ dA(V ), while a0,−1
dz
z = a0,−1d log z.

As if n > 0, hndz = an,−1
dz
z + dg for some g ∈ A(V ) as in the previous case. So

hn(log z)ndz = an,−1(log z)nd log z + (log z)ndg

=
an,−1

n+ 1
d(log z)n+1 + n(log z)n−1 g

z
dz − d(log zng).

Where the second last term lies in dAlog(V ) by hypothesis. �

3. The Dwork Principle

3.1. Fq-Frobenius morphisms.

De�nition 3.1. Let X be an a�noid over Cp, Fq denote the Galois �eld of order q = pn, and F : Ã(X) →
Ã(X) is a lifting of the absolute Frobenius automorphism of F/Fq to Ã(X).

(1) A Frobenius morphism refers to a morphism φ : X → X so that the associated φ̃∗ : Ã(X)→ Ã(X) is

in the form of φ̃∗(f) = F−1(fq).
(2) For Y ⊂ P1 a rigid analytic space andX ⊂ Y be a suba�noid. A pair (U, φ) of wide open neighborhood

X ⊂ U ⊂ Y , along with a morphism φ : U → Y is said to be a Frobenius neighborhood of X in Y if
φ|X is a Frobenius automorphism.

(3) For any a�noid variety X ⊂ P1, and (U, φ) be an Fq-Frobenius neighborhood of X in P1. We de�ne
iteratively for n ∈ N: F1(U) = U , and Fn(U) = {z ∈ Fn−1(U) | φ(z) ∈ Fn−1(U)}.
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In the non-archimedean norm, we have the ultrametric triangle inequality ‖x + y‖ ≤ max(‖x‖, ‖y‖). In
particular, if ‖x‖ > ‖y‖, then ‖x+ y‖ = ‖x‖.

Lemma 3.2. Let X be a full subspace of B [0, 1], then there exists some q = pn ∈ N so that the map φ : z 7→ zq

is a Frobenius automorphism of X. Thus, for any wide open neighborhood P1 ⊇ U ⊃ X, the pair (U, φ) is a
Frobenius neighborhood of X.

Proof. Suppose X is of the form B [0, 1] \ ∪dj=1 B(aj , 1). Since d is �nite, aj lies in �nitely many residue
classes. There exists some q = pm ∈ N so that ãj

q = ãj for j = 1, . . . , d. In other words, q may be chosen
with ‖aqj − aj‖ < 1.

For z ∈ X, we have ‖z − aj‖ = 1, so z̃q − ãj
q = (z̃ − ãj)

q 6= 0 ∈ F. Therefore ‖zq − aqj‖ = 1, and

‖zq − aj‖ = max(‖zq − aqj‖, ‖a
q
j − aj‖) = 1. Since the argument applies for any j, φ : X → X is an

endomorphism, while it is Frobenius by direct computation. �

The lemma above leads to the implication that any connected a�noid with good reduction has a Frobenius
neighborhood.

Lemma 3.3. Let Y = A1\{a1, . . . , ad}, X ⊂ Y be a suba�noid with good reduction, and (U, φ) an Fq-Frobenius
neighborhood of X in Y . Then there exists an m ∈ N and an Fqm-Frobenius neighborhood (V, ϕ) with V ⊂
Fm(U) of X so that

(1) ϕ(A ∩ V ) ⊆ A for each connected component A of A1\X.
(2) ϕ∗ log(z − a)− qn log(z − a) ∈ A(V ).

Proof. [Col82] By assumption, we may assume that X is a full subspace of Y , say, X = B [0, 1] \ ∪sj=1

B(aj , 1), with ‖aj‖ ≤ 1 only when j = 1, . . . , s. In this way, the connected components of A1\X are the
residue classes B(aj , 1) and A1\B [0, 1].

Consider the identity function z ∈ B [0, 1]
∼

= T1(k)∼ = F [z], which is simply z : a 7→ a. Then

φ(a)∼ = φ̃∗(z)|z=a = zq|z=a = ãq.

Thus, ‖φ(z)− zq‖ < 1 for all ‖z‖ ≤ 1. De�ne W = {z ∈ U | ‖φ(z)− zq‖ < 1}
B [0, 1] \X consists of only �nitely many residue classes, one may choose m ∈ N so that ‖zqm − z‖ < 1 for

any z ∈ B [0, 1] \X. Let ϕ = φm, then ‖ϕ(z) − z‖ ≤ max(‖ϕ(z) − zqm‖, ‖zqm − z‖) < 1. Notice that for any
‖a‖ > 1, φ(a)∼ = ãq 6= 0, so ‖φ(a)‖ > 1, resulting in ‖ϕ(a)‖ = ‖φm(a)‖ > 1. Thus ϕ|A is an endomorphism
for each connected component A of A1\X. In particular, the statement for (1) holds ϕ on any wide open
neighborhood of X.

For (2), notice that for all z ∈ X,

‖1− ϕ(z)− aj
zqm − aj

‖ < 1 for j ≤ s,(3.1)

‖z‖ < min(‖aj‖, ‖ϕ(aj)‖) for j > s.(3.2)

The �rst inequality is true because for z ∈ X, ϕ(z)∼ = z̃q
n

and ãj
qn = ãj . So (ϕ(z) − aj)∼ = z̃q

n − ãjq
n

=

(z̃ − ãj)q
n

. The second holds since ϕ : X → X ⊆ O is an endomorphism, while ‖aj‖ > 1 for j > s.

By Lemma 2.3, the �rst inequality implies ϕ∗ log(z−aj)−qn log(z−aj) = log(
ϕ(z)−aj
(z−aj)q ) is analytic. Moreover,

the second line says that log(z−aj) and log(ϕ(z)−aj) are analytic, therefore so is ϕ∗ log(z−aj)−qn log(z−aj).
De�ne V by

V = {z ∈ Fm(U) | ‖1− ϕ(z)− aj
zqm − aj

‖ < 1 for j ≤ s, and

‖z‖ < min(‖aj‖, ‖ϕ(aj)‖) for j > s}
Then (V, ϕ) is a Frobenius neighborhood of X ⊂ Y with (2) satis�ed. �

3.2. The Dwork Principle.
Let X be an a�noid with good reduction, φ a Frobenius morphism on X. It is known that for each residue
class R ⊂ X there exists an n ∈ N, zR ∈ R so that lim

m→∞
φnm(z) = zR, in which case zR is said to be the

Teichmüller point of R in X with respect to φn.
Observe that zR is a �xed point for φn, that is, φn(zR) = zR.
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Lemma 3.4. Let V be a wide open annulus, and φ : V → V be a rigid morphism. Then φ∗ : A(V ) → A(V )
may be extended to a map Alog(V )→ Alog(V ).

Proof. Note that by de�nition Alog(V ) = A(V ) [log(f) | f ∈ A(V )×], so one can extend φ∗ naturally via

φ∗(
s∑
j=1

gj(z) log fj(z)) =
s∑
j=1

φ∗gj(z) log φ∗fj(z), since φ
∗gj still lies in A(V ), while φ∗fj ∈ A(V )× since φ∗ is

a homomorphism, thus φ∗(
s∑
j=1

gj(z) log fj(z)) ∈ Alog(V ) as desired. �

Lemma 3.5. Let X be an a�noid, φ : X → X a Frobenius morphism, and f being locally constant. Suppose
there exist some a ∈ Cp with 1 /∈ {an}n∈N so that φ∗f − af = 0. Then f = 0 on X.

Proof. φn∗f = anf by direct computation. Let R ⊂ X be a residue class, with zR its Teichmüller
point for φn. f(zR) = 0 because anf(zR) = φn∗f(zR) = f(zR). f is locally constant, so that f = 0 for
some open neighborhood zR ∈ V ⊂ R. For any z ∈ R, chose m great enough so that φnm(z) ∈ V . Then
anmf(z) = φnm∗f(z) = f(φnm(z)) = 0. Since the argument holds for any residue class R in X, f = 0 on
X. �

A few notations to be mentioned:

(1) Let LR(X) = {f ∈ L(X) | f |R ∈ A(R) for each residue class in X}, and
(2) ΩR(X) is de�ned by ΩR(X) , LR(X)⊗A(X) Ω(X).

Observe that if X̃ is smooth, any residue class R ⊂ X would be conformal to B(0, 1), and φ(zR) = zφ(R).
Let R be a residue class, and φ : X → X be a Frobenius morphism. Then φ(R) also lies in a residue
class since ‖x − y‖ < 1 implies (φ(x) − φ(y))∼ = x̃q − ỹq = 0. Suppose U lies in a residue class R, we set
n = nφ,U = minm∈N{m | φm(R) ⊆ R}, the inequality nφ,R ≥ nφ,φ(R) leads to

nφ,R ≥ nφ,φ(R) ≥ · · · ≥ nφ,φn(R) = nφ,R.

Which says nφ,R = nφ,φ(R) for any residue classes R ⊂ X.

Lemma 3.6. Let X be an a�noid with good reduction, θ ∈ ΩR(X), and φ : X → X be Frobenius satisfying
φ∗(θ)− aθ ∈ dLR(X) with 1 /∈ {an}n∈N. Suppose φ∗(θ)− aθ = dg for some g ∈ LR(X). Then there exists a
unique f ∈ LR(X) so that

(1) df = θ, and
(2) φ∗(f)− af = g.

Proof. Note �rst that if (2) hold for some f ∈ LR(X), then f must also satis�es φn∗f = anfR +
n−1∑
j=0

an−1−jg ◦ φj for any n ∈ N.

Any residue class R ' B(0, 1) since X̃ is smooth. In other words, we may let A(R) ' Cp 〈z〉. Choose
n = nφ,R ∈ N be the minimal natural number so that φnR(R) ⊆ R, and �nd the corresponding Teichmüller
point zR. Since θ ∈ ΩR(X), θ|R ∈ A(R)dz. Hence there exist fR ∈ A(R) so that dfR = θ|R. The fR above is

unique up to its constant term, and will be so after we demand that f(zR) = (1− an)−1
n−1∑
j=0

an−1−jg ◦φj(zR).

De�ne f ∈ LR(X) to be the unique function satisfying f |R = fR, and f satis�es (1) by construction.
If we let F = φ∗(f) − af − g ∈ L(X), dF = 0 implies F being locally constant. Notice that F ∈ LR(X),

so F is actually constant on each residue class. Since nφ,R = nφ,φ(R) as discussed above, we have φ∗f(zR) =
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(1− an)−1
n−1∑
j=0

an−1−jg ◦ φj+1(zR) = (1− an)−1
n∑
j=1

an−jg ◦ φj(zR). Thus

F (zR) = φ∗f(zR)− af(zR)− g(zR)

=
1

1− an
n∑
j=1

an−jg ◦ φj(zR)− a

1− an
n−1∑
j=0

an−1−jg ◦ φj(zR)− g(zR)

=
1

1− an
( n∑
j=1

an−jg ◦ φj(zR)−
n−1∑
j=0

an−jg ◦ φj(zR)
)
− g(zR)

=
1

1− an
(
g(φn(zR))− ang(zR)

)
− g(zR)

= 0

Therefore F = 0 on X, which indicates that f satis�es (2). �

Corollary 3.7. The function f constructed above is manifestly unique.

Proof. Suppose there exists f1 and f2 in LR(X) satisfying (1) and (2) simultaneously. Consider F =
f1 − f2, which satis�es

(1) dF = 0
(2) φ∗F − aF = 0

(1) implies that F is locally constant, and so (2) would lead to F = 0 on X by lemma 3.5. �

4. The Logarithmic F -Crystals

4.1. De�nition of a logarithmic F -crystal on A1.
Recall that a full subspace X in B [0, 1] is an a�noid subset of the form B [0, 1] \ ∪dj=1 B(aj , 1). A basic wide

open set U about X is de�ned to be U = A1\ ∪dj=1 B
[
aj , raj

]
, where raj < 1. For j = 1, . . . , d, let Vj denote

the wide open annuli Vj = A(aj ; raj , 1). Notice that X ∪ {Vj}dj=1 ∪ A(∞; 0, 1) = U is a disjoint covering of

U . For 0 < r < 1, let Ur(X) , B(0, r−1)\ ∪dj=1 B [aj , r]. Ur(X) ⊃ X is a wide open neighborhood, and
Ur(X) ⊂ U whenever r is su�ciently close to 1.

Now, U is a basic wide open set. For z ∈ U , set r(z) , mindj=1{‖z − aj‖}, D = D(U) , {(x, y) ∈ U × U |
‖x− y‖ < r(x)}, and pj : D → U to be the projection maps, j = 1, 2.

Suppose U ⊂ A1 is an open subset, and M ⊂ L(U) is an A(U)-submodule. If ι : V ↪→ U , we let
M(V ) = ι∗M , ΩM (V ) = ι∗ΩM be de�ned by restriction. It follows that M(V ) = M ⊗A(U) A(V ) ⊆ L(V )
regarded as an A(V )-module, and ΩM (V ) = M(V )⊗A(V ) Ω(V ) ⊆ ΩL(V ). Thus M and ΩM can be regarded
as sheaves on U (though if not speci�ed, M and ΩM will denoteM(U) and ΩM (U) respectively from now on).
For any morphism between rigid spaces f : U → V , f∗M and f∗ΩM will denote the inverse image sheaves (of

A-modules), respectively. If further M satis�es dM ⊆ ΩM (U), de�ne H1(M(V )) , ΩM (V )/dM(V ).

De�nition 4.1 (Logarithmic F -crystals). Let U = A1\ ∪dj=1 B
[
aj , raj

]
be a basic wide open set about a full

subspace of B [0, 1], say X = B [0, 1] \ ∪dj=1 B(aj , 1). A logarithmic F -crystal on U ⊂ A1 is de�ned to be an
A(U)-module M = M(U) ⊂ L(U) with A(U) ⊂M , satisfying the six conditions below:

(A) For j = 1, . . . , d,
(A1) M(X) ⊆ LR(X), and
(A2) M(Vj) ⊆ Alog(Vj).

(B) dM ⊆ ΩM (U).
(C) p∗1M = p∗2M .
(D) For any 0 < r < 1 so that Ur ⊂ U , M(Ur(X)) satis�es the identity principle.
(E) For any 0 < r < 1 so that Ur ⊂ U , the natural map ι∗ : H1(M) → H1(M(Ur(X))) induced by

restriction is an isomorphism.
(F) There is an Frobenius neighborhood (V, φ) of X in U , and ι : V → U the inclusion map, so that

(F1) φ∗(M) ⊆M(V ) = ι∗(M), and
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(F2) There exists a b ∈ Cp with 1 /∈ {bn}∞n=1 so that φ∗(θ)− bθ ∈ dM(V ) for any θ ∈ ΩM (U).

Lemma 4.2. For any Frobenius neighborhood (V, φ) of X in U satisfying (F), (Fn(V ), φn) also satis�es (F),
with φn and bn in place of φ and b, respectively.

Proof. [Col82] Note that for any n ∈ N, φn−1Fn(V ) ⊆ V . By (F1),

φn∗M(FnV ) = φ∗M(φn−1FnV ) ⊆ ι∗M(φn−1FnV ) = φn−1∗M(FnV ),

so by induction, φn∗M(FnV ) ⊆M(Fn(V )). Observe that Fn(V ) here may be replaced by any subset of itself,
so (F1) holds for (Fn(V ), φn).

Suppose now φ∗θ − bθ = dg for some g ∈M(V ). Since φ∗M(V ) ⊆ ι∗M(V ) = M(V ), by induction we have
φm∗g ∈M(V ). Thus φm∗dg ∈ dM(V ) for m = 0, . . . , n− 1. Writing

φn∗θ − bθ =
n∑
j=1

(φ∗)n−jbj−1(φ∗θ − bθ) =
n∑
j=1

(φ∗)n−jbj−1dg,

we see that (F2) holds for (Fn(V ), φn) �

From now on, we will always assume that the Frobenius neighborhood (V, φ) we choose for the logarithmic
F -crystal M over U satis�es the statement of Lemma 4.2 and is of the form V = Ur(X) for some 0 < r < 1.
In this manner, we have V ∩ Vj as an annulus for j = 1, . . . , d.

4.2. Integration on a logarithmic F -crystal.
The main theorem for this section is as follows:

Theorem 4.3. There exists a unique minimal logarithmic F -crystal M1 ⊃M over U so that

dM1 ⊃ ΩM (U).

That is, for any θ ∈ ΩM (U) = M(U)dz, there exists an fθ ∈M1 so that dfθ = θ.

The proof for this theorem will be postponed until the end of this section.

Lemma 4.4. Let M be a logarithmic F -crystal on U ⊃ X. There exists a Fq-Frobenius neighborhood (W,ϕ)
of X in U , ϕ = φn for some n ∈ N so that

(1) (W,φ) satis�es (F) with b replaced by a = bn in (F2).
(2) φ(W ∩ Vj) ⊂ Vj for j = 1, . . . , d.

(3) log(
φ(z)−aj
(z−aj)q ) ∈ A(W ) for j = 1, . . . , d.

Proof. [Col82] Let (V, φ) be the Frobenius neighborhood for M in (F). By Lemma 3.3, there is an Fq
Frobenius neighborhood (V 1, φn) of X with V 1 ∈ Fn(V ) so that (3) is satis�ed. Also, for any connected
component A ⊂ A1\X, we have φn(A ∩ V 1) ⊂ A.

To see that (W,ϕ) satis�es (2), by shrinking V 1, one may assume that each A∩V 1 ⊂ Vj for some j = 1, . . . , d.

Set W = ∩nj=0{z ∈ V 1 | φj(z) ∈ V 1} = ∩n−1
j=1 Fj(V

1) = Fn−1(V 1), then for each connected component

A ⊂ A1\X, since W ⊂ V 1, we have

φn(Vj ∩W ) ⊆ φn(A ∩W ) ⊆ A ∩ V1 ⊆ Vj .

Since W ⊆ Fn, by Lemma 4.2, (W,ϕ) satis�es (1). �

Lemma 4.5. Let θ ∈ ΩM (U) be a 1-form, (V, φ) be the Frobenius neighborhood in (F). There exists an
fθ ∈ L(U) and W ⊆ V satisfying

(1) dfθ = θ,
(2) φ∗fθ − bfθ ∈M(V ) after restriction onto V, and
(3) fθ|X ∈ LR(X), fθ|Vj

∈ Alog(Vj), where j = 1, . . . , d.

Proof. [Col82] Let θ = h(z)dz, we have h|X ∈ LR(X) by (A), so θ|X ∈ ΩR(X). Moreover, by (F2), there
exists some g ∈M(V ) so that φ∗(θ)− bθ = dg. Thus by Lemma 3.5, there exists a unique f ∈ LR(X) with
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(a) df |X = θ|X , and
(b) φ∗(f)− bf = g

on X.
Meanwhile for j = 1, . . . , d, on Vj we have fj ∈ Alog with dfj = θ|Vj , which is unique up to a constant

for each j. Again by (F2), we have Fj = φ∗fj − bfj − g ∈ M(Vj ∩ V ) ⊆ L(Vj ∩ V ) satis�es dFj = 0 and
is locally constant. However, φ∗fj ∈ φ∗M(V ∩ Vj) ⊆ M(V ∩ Vj) by (F1), bfj ∈ M(V ∩ Vj) by de�nition,
g|V ∩Vj

∈ M(V ∩ Vj), while M(V ∩ Vj) ⊆ Alog(Vj ∩V) by (A), we have Fj ∈ Alog(Vj ∩ V ). Since V ∩ Vj are
annuli, by the identity principle of Alog over annuli (Proposition 2.6), Fj is constant on V ∩ Vj .

Notice that by Proposition 2.6, fj may be di�ered only by a constant. Suppose fθ|Vj = fj + bj , then

φ∗(fj + bj)− b(fj + bj)−g = Fj +(1− b)bj . Thus if we set bj = −(1− b)−1Fj , that is, fθ|Vj = fj− (1− b)−1Fj ,
it would be φ∗fθ − bfθ = g on Vj .

Thus, we de�ne fθ by

(a) fθ|Vj
= fj − (1− b)−1Fj , j = 1, . . . , d, and

(b) fθ|X = f ,

which satis�es the three conditions given in the statement. �

Respecting its own nature, we will denote the function fθ constructed above as
∫
θ for the rest of this

article. Justi�cation of this notation will be done in the following passage.

Remark. Apparently the function satisfying the conditions in Lemma 4.5 above is not unique; however, when
(V, φ) is replaced by any other Frobenius neighborhood, say (Fn(V ), φn), the constant chosen would be di�erent
but will vary as a constant function on U by property (D). We construct fθ =

∫
θ in the sense of proving

Lemma 4.5, but any function satisfying the same conditions will not a�ect the validity of our results. One can
simply regard the liberty by a constant as a generalization of the case in the inde�nite integration over R or
�nding primitive on C. For convenience, We will denote f ∼ g if f and g di�er by a constant.

We will now state some properties for primitive computation, some of which may be regarded as an analogy
to the case on R or C
Corollary 4.6 (Linearity). The association θ 7→ fθ (mod Cp) is a well-de�ned homomorphism. That is, let
σ and ω be two 1-forms in ΩM (U), and a, b ∈ Cp, then we have∫

(aσ + bω) ∼ a
∫
σ + b

∫
ω.

Proof. Since F =
∫

(aσ + bω) − a
∫
σ + b

∫
ω ∈ M(U) satis�es dF = 0, it is a locally constant function.

φ∗F − bF ∈ M(V ), applying property (D) for r su�ciently close to 0 so that U ⊇ Ur(X), we know that
φ∗F − bF = α ∈ Cp. Since F |X ∈ LR(X), consider F 1 = F − α

1−b on X, which satis�es φ∗F 1 − bF 1 = 0, by

Lemma 3.5, F 1 = 0, so F = α
1−b on X.

Since F |Vj
∈ Alog(Vj) while it is locally constant, by Proposition 2.6, F ∈ Cp on any annulus containing Vj ,

with (1− b)F = α, thus F = α
1−b is constant on U . �

Corollary 4.7 (Fundamental Theorem of Calculus). Let θ ∈ ΩM (U) be a closed 1-form, say, θ = dg for some
g ∈ L(Ur), 0 < r < 1. Then

∫
θ ∼ g on Ur.

Proof. Let F =
∫
θ − g, so dF = 0. Choose 0 < r < 1 su�ciently close to 1 so that on Ur, φ

∗F − bF ∈
M(Ur). Therefore φ

∗F −bF = α ∈ Cp as above. Similar to the prove above, F |X = α
1−b is constant by Lemma

3.6 and its corollary. On the other hand, (1 − b)F |Vj
= α, and the result can be extended to any annulus

containing Vj by Proposition 2.6. �

Remark. By Corollary 4.7, for any θ ∈ ΩM , one may de�ne
∫ y
x
θ , fθ(y)− fθ(x) ∈ Cp, which is well-de�ned.

The elimination of ambiguity may be regarded as an analogy to the de�nite integral over R or contour
integration for analytic function (which satis�es the Cauchy theorem) over C.

One now de�ne

M̂1 = M(U) +
∑
θ

A(C)

∫
θ,

where the sum is taken over any θ ∈ ΩM (U) and
∫
θ = fθ satisfying the hypotheses in Lemma 4.5. dM̂1 ⊃ ΩM

is true from this de�nition.
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Proof of Theorem 4.3. [Col82] We will complete the proof for this theorem via two statements separately:

(1) M̂1 is a logarithmic F -crystal over U with ΩM (U) = Mdz ⊆ dM̂1, and

(2) For any logarithmic F -crystal M2 over U so that ΩM (U) ⊆ dM2, one has M̂1 ⊆M2.

For (1), we examine each of the properties provided in the de�nition of a logarithmic F -crystal.

(A) By construction, any f =
∫
θ satis�es property (3) in Lemma 4.5, which is exactly (A1) and (A2).

(B) dM̂1 = d(M +
∑
θ

A(U)
∫
θ) = dM +

∑
θ

(θA(U) +
∫
θdA(U)). Observe that dM ⊆ ΩM (U), θ ∈ ΩM (U)

means θA(U) ⊆ ΩM (U), and
∫
θdA(U) ⊆ M̂1dz = ΩM̂1 . Since ΩM (U) ⊆ ΩM̂1(U), (B) holds for M̂1.

(C) Before proving (C), we need the following

Lemma 4.8. If f ∈ M̂1, then f is analytic on B(x, r(x)) for x ∈ U . (For the de�nition of r(x),
review the second paragraph of this section.)

Proof. (a) For x ∈ X, r(x) = 1, while B(x, 1) = R is a residue class in X. By construction
f |X ∈ LR(X), thus f |R ∈ A(R).

(b) If for some j = 1, . . . , d, x ∈ Vj , so r(x) = ‖x− aj‖. Since f |Vj
∈ Alog(Vj) = Alog [log(z − aj)] by

Lemma 2.4 and its corollary, while log(z) is analytic on B(x, ‖x‖) by Lemma 2.3, we know that
f is analytic for z − a ∈ B(x− a, ‖x− a‖), that is, z ∈ B(x, r(x)).

�

Lemma 4.9. Let 0 < r < 1 so that Ur(x) ⊇ U . For any f(x, y) ∈ A
(
D(Ur(X))

)
, there exists a

unique F (x, y) ∈ A
(
D(Ur(X))

)
so that

(a) ∂
∂yF (x, y) = f(x, y), and

(b) F (x, x) = 0.

Proof. Note that 0 < r(x) ≤ 1, so B(x, r(x)) is conformal to B(x, 1) ' M(T1(k)), which leads
to H1(B(x, r(x))) = 0. For any x ∈ Ur(X), p−1

1 (x) = {(x, y) ∈ U × U | ‖y − x‖ < r(x)} '
{y ∈ U | ‖y − x‖ < r(x)} = B(x, r(x)) and for any x ∈ Ur(X), f(x, y) ∈ A(B(x, r(x))) when
regarded as a single-variable function in y. Thus there exists a unique Fx(y) ∈ A(B(x, r(x))) so that
∂
∂yFx(y) = f(x, y) and Fx(x) = 0 on B(x, r(x)). Suppose there exists a function g(x, y) satisfying the

statement of the lemma, then g(x, y) = Fx(y) on B(x, r(x)) since H0(B(x, r(x))) = Cp, proving the
existence and uniqueness.

De�ne F (x, y) = Fx(y). For any a�noid Y contained in Ur(X), let h(x, t) = f(x, y)|Y ∈ A(Y ) by

the change of variable t = y−x. Since (x, x) ∈ D(Ur(X)) for any x ∈ U , h =
∞∑
j=0

aj(x)(y−x)j , where

aj(x) lies in the completion of Cp(X). While ∂
∂yF (x, y) = h(x, y − x) on p−1

1 (x) and F (x, x) = 0, by

the identity principle on A(B(x, r(x))) and A(Y ), we have F (x, y) =
∞∑
j=0

aj(x)
j+1 (y − x)j+1 ∈ A(Y ). �

Lemma 4.10. Let θ ∈ ΩM (U) and fθ =
∫
θ, then

p∗1fθ − p∗2fθ ∈ p∗1M.

Proof. Set F (x, y) = (p∗1fθ)(x, y) − (p∗2fθ)(x, y) = fθ(x) − fθ(y). By Lemma 4.8, for each x ∈ U ,
F (x, y) is analytic on p−1

1 (x). F (x, y) satis�es
(a) ∂

∂yF (x, y)dy = p∗2(θ), and

(b) F (x, x) = 0 for any x ∈ U .
θ ∈ ΩM (U) = M ⊗A(U) A(U)dz and so p∗2θ ∈ p∗2M ⊗A(D(U)) A(D(U))dz. Note that p∗2M = p∗1M by

(C) for M and p−1
1 (Ur(X)) ⊆ p−1

2 U for some 0 < r < 1. Thus, one may write p∗2θ =
n∑
j=1

hj(x, y)gj(x)

for some hj ∈ A(D) and gj ∈M(Ur(X)) for the 0 < r < 1 chosen above.
By the previous lemma, for some restriction onto Ur(X) for 0 < r < 1, one can �ndHj(x, y) ∈ A(D)

so that
(a) ∂

∂yHj(x, y)dy = p∗2(θ), and

(b) Hj(x, x) = 0 for all j = 1, . . . , n.
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If we let F 1(x, y) =
n∑
j=1

Hj(x, y)gj(x), then by direct computation F 1 satis�es the same criterion

as F does and F 1 ∈ p∗1M . For any x ∈ U , p−1
1 (x) = {x} × B(x, r(x)), and both F and F 1 are

analytic on p−1
1 x as a function of y. By the criterion satis�es by both, F (x, y) = F 1(x, y) for any

(x, y) ∈ {x} × p−1
1 x, and so on D. Thus F ∈ p∗1M as desired. �

Since p∗1M = p∗2M , one immediately has p∗1fθ−p∗2fθ ∈ p∗2M as well. Therefore, for any θ ∈ ΩM (U),

p∗2
∫
θ ∈ p∗1M̂1 and p∗1

∫
θ ∈ p2 ∗ M̂1. This proves that M̂1 satis�es (C) since M̂1 = M +

∑
θ

∫
θ ·A(U).

(D) First, note that for any a�noid X, it is known that A(X) satis�es the nullstellensatz : for any ideal
I ⊆ A(X), {x ∈ X | f(x) = 0 for any f ∈ I} = φ if and only if I = A(X).

For any rigid space U so that A(U) satis�es the identity principle, for any x ∈ U , f ∈ A(U)
non-zero, we have ( d

dz )mf(x) 6= 0 for some m ∈ N∪{0} (consider the local expression on some a�noid
neighborhood x ∈ X ⊂ U about x). Thus, the for any non-zero f ∈ A(U), we know that

∞∑
m=0

(
(

d

dz
)mf ·A(U)

)
= A(U).

For sake of a neat notation, we will use fθ and
∫
θ interchangeably.

Now, (D) follows from

Proposition 4.11. Let 0 < r < 1 so that Ur(X) ⊂ U , and θ1, . . . , θn be in ΩM (U) so that the
congruent classes [θ1] , . . . , [θn] de�ned in H1(M(U)) are linearly independent. Suppose

F (z) = f(z) +
n∑
j=1

hj(z) ·
∫
θj ∈ M̂1(Ur(X))(4.1)

with hj ∈ A(Ur(X)) and f ∈ M(Ur(X)). If F satis�es F = 0 on V ⊆ Ur(X) for some non-empty
open V . Then hj(z) = 0 on Ur(X).

Proof. Suppose not; let n ∈ N be minimal so that for some F ∈ M̂1 as above, F = 0 while

hj(z) 6= 0. dF = fdz +
n∑
j=1

(dhjfθj + hjθj) = 0. De�ne f1 via f1dz = fdz +
∑n
j=1 hjθj , since

θ ∈ ΩM (Ur(X)), f1 ∈M(Ur(X)). We have F ′ = f1 +
n∑
j=1

fθjh
′
j , so

h′nF − hnF ′ = (h′nf − hnf1) +
n−1∑
j=1

fθj (hnh
′
j − h′nhj) = 0 on Ur(X).

Notice that h′j ∈ M by (B), and this function, lying in M̂1, �t in the form in the statement of this
proposition. By the minimality of n, we know that hnh

′
j−h′nhj = 0 for j = 1, . . . , n−1 (and, of course,

for j = n). Thus, d(
hj

hn
) = 0, saying that hj/hn ∈ A(Ur(X)) (following an argument similar to that

used in proving Lemma 2.6) and so hj = bjhn for some bj ∈ Cp. Thus, hj
∫
θj = bjhn

∫
θj = hn

∫
(bjθj)

by Corollary 4.6. Rewrite (4.1) as

F = f + hn

∫
(
n∑
j=1

bjθj).

Let θ =
∑n
j=1 bjθj , so F = f+hn

∫
θ = 0 on V . Di�erentiate to yield F ′dz = f ′dz+hnθ+fθ

d
dzhndz.

De�ne recursively f0 = f , and fmdz = f ′dz + ( d
dz )m−1hnθ. Then inductively we have

(
d

dz
)mF = fn + (

d

dz
)mhnfθ = 0 on V.

By nullstellensatz, g + fθ = 0 on V for some g ∈ M(Ur(X)). By (B) and (D) we have θ = −dg
on Ur(X), so [θ] = 0 in H1(MUr(X)). By (E) for M , the independence of θ1, . . . , θn (mod dM) is
violated in H1(M), a contradiction. �
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Lemma 4.12. For any 1 > r > 0, with Ur(X) ⊆ U , F ∈ M̂1(Ur(X)), one may always write F in
form of

F = f(z) +
n∑
j=1

hj(z)

∫
θj ,

with hj ∈ A(Ur(X)), f ∈M(Ur(X)), and {[θj ]}nj=1 being independent in H1(M(Ur(X))).

Proof. It su�ces to prove that for any �nite sum
m∑
j=1

hjfθj as in the latter term, one has
m∑
j=1

hjfθj =

f +
n∑
k=1

hjkfθjk , where f ∈M(Ur(X)), m ≤ n, and {[θjk ]}nk=1 is independent in H1(M(Ur(X))). We

proceed by induction:
For m = 1, if dθ1 6= 0 we are �nished. Otherwise, then fθ1 ∈ Cp and so h1fθ1 ∈ A(Ur(X)) ⊂

M(Ur(X)) may be joined into the �rst term, which leads to n = 0, a trivial case.

For m > 1, suppose
s∑

k=1

bkθjk ∈ dM for some m ≥ s, bk ∈ Ctpimes, say
s∑

k=1

bkθjk = df1. Since

s∑
k=1

bk
∫
θjk ∼ f1 by Corollaries 4.6 and 4.7, and f1 may be joined into the �rst term, we may simply

assume that
s∑

k=1

bkθjk = 0. However, then,
s∑

k=1

bk ·
∫
θjk = b ∈ Cp. Consider

m∑
j=1

hjfθj =
hj1
b1

s∑
k=1

bk

∫
θjk −

hj1
b1

s∑
k=1

bk

∫
θjk +

m∑
j=1

hjfθj

= f +

m∑
j=1
j 6=j1

gjfθj

with f =
hj1

b1

s∑
k=1

bk
∫
θjk and an proper choice of gj ∈ A(Ur(X)). By induction hypothesis the proof

is done. �

Remark. Following the notation in the above lemma, note that when
s∑

k=1

bkθjk ∈ dM , bk ∈ C×p , one

may rewrite the expression
m∑
j=1

hjfθj as

m∑
j=1

hjfθj = f(k) +
m∑
j=1
j 6=jk

gjfθj

for any of k = 1, . . . , s, with f(k) depending on it. In short, one may choose to remove (in the above
sense) any term from the expression that occurs in the dependence relation.

For any F ∈ M̂1(Ur(X)), f = 0 on V , write F in form of the lemma above. By the previous
proposition, m = 0 and so F = f ∈M(Ur(X)). By (D) for M , the same property is also satis�ed by

M̂1.
(E) Starting with

Proposition 4.13. Let V = Ur(X) ⊂ U , the map

H1(M(U))⊗H1(A(V ))
α−→ H1(M̂1(V ))

α([θ] , [ν]) =

[∫
θ · ν

]
is a well-de�ned isomorphism.
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Proof. First, if θ ∈ dM , fθ ∈ M and so [fθν] = 0 since A(V ) ⊆ M(V ) ⊆ M̂1(V ). As if

ν = dg ∈ dA(V ) ⊆ dM̂1(V ),
∫
θ ∈ M̂1 and∫

θ · ν =

∫
θ · dg = d(

∫
θg)− (d

∫
θ)g ∈ dM̂1 = d(

∫
θg)− θg ∈ dM̂1.

By Corollary 4.6, θ 7→
∫
θ (mod Cp) is a homomorphism. To prove the map in the statement

unambiguous, it remains that for b ∈ Cp, bν ∈ ΩM (V ) ⊆ dM̂1.
α is an epimorphism since it is true on the form level. It su�ces to prove that α is a monomorphism,

that is, kerα = 0. Suppose now
n∑
j=1

θj⊗νj ∈ kerα, that is,
n∑
j=1

∫
θj ·νj . One may assume [θj ] ∈ H1(M)

being independent:
n∑
j=1

bjθj ∈ dM implies
n∑
j=1

bjfθj ∈ M , so 1
bn

n∑
j=1

bjfθjνn ∈ dM ⊆ dM̂1, iterative

subtraction with the original term guarantees independence. Let
n∑
j=1

∫
θj · νj = dF for some F ∈ M̂1.

By Lemma 4.12, one may write F = f +
m∑
j=1

hjfθj with f ∈ M and hj ∈ A(V ). Notice that we did

not require {[θj ]}mj=1 to be independent (see the remark following Lemma 4.12). So

n∑
j=1

fθj · νj = dF = df +

m∑
j=1

(fθjhj + hjθj),

and
m∑
j=1

fθj (νj − dhj) = df +
m∑
j=1

hjθj ∈ ΩM = M ⊗A Adz (for j > n, de�ne νj = 0). Choose the

primitive in the way that, say,
m∑
j=1

fθj (νj − dhj) = dg with 0 = g −
m∑
j=1

fθj (νj − dhj). By Proposition

4.11, we know that νj − dhj = 0, that is, [νj ] = 0 in H1(V ), then
n∑
j=1

[θj ]⊗ [νj ] = 0. �

Lemma 4.14. For 0 < r < 1 so that Ur(X) = V ⊆ U , we have H1(A(U))
∼−→ H1(Ur(X)) an

isomorphism induced by ι∗.

Proof. The map is well-de�ned homomorphism since restriction will not a�ect an 1-form being
exact. Suppose θ|V ∈ dA(V ), then (

∫
θ)|V ∈ A(V ), while by construction,

∫
θ ∈ M̂1 satis�es (

∫
θ)|X ∈

LR(X) and (
∫
θ)|Vj ∈ Alog(Vj). Since the Alog(Vj) possess the identity principle, and the local

expressions on Vj would not change after passing to a annuli subset, one has
∫
θ ∈ A(U). Therefore

θ = d
∫
θ, and [θ] = 0 in H1(U). �

Thus, (E) follows from the commutativity of the diagram

H1(M)×H1(U) H1(M̂1(U))

�

H1(M)×H1(V ) H1(M̂1(V ))

o

∼

o
∼

(F) (F1) Let (V, φ) be a Frobenius neighborhood of X in U so that M(U) satis�es (F1). By construction

of M̂1, for any F ∈ M̂1(U), F may be written as F = f +
m∑
j=1

hjfθj . Then

φ∗F = φ∗f +
m∑
j=1

(φ∗hj)(φ
∗fθj ).

Note that φ∗f ∈ M(V ) by (F1) for M , φ∗hj ∈ A(V ) since a Frobenius morphism is rigid, and

φ∗
∫
θj − bj

∫
θj ∈M(V ) ⊆ M̂1 from Lemma 4.5, so φ∗

∫
θj ∈ M̂1. Therefore M̂1 satis�es (F1).
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(F2) Let (V, φ) be a Frobenius neighborhood of X that satis�es the criterion in Lemma 4.2. De�ne

α : H1(M)⊗H1(A(V ))→ H1(M̂1(V )) to be the bilinear map de�ned in Proposition 4.13. Note
that for θ ∈ ΩM and ν ∈ Ω,

φ∗α(θ, ν) = (φ∗fθ)φ
∗ν = fφ∗θφ

∗ν

leads to

φ∗α(θ, ν)− qb · α(θ, ν) = fφ∗θφ
∗ν − qb · fθν

= fφ∗θφ
∗ν − bfθφ∗ν + bfθφ

∗ν − qb · fθν
= α(φ∗θ − bθ, φ∗ν) + bα(θ, φ∗ν − qν).

As φ∗θ− bθ ∈ dM(V ) by (F2) forM , and φ∗ν− qν ∈ dA(V ) by Lemma 3.6 and identity principle
for A(V ), (φ∗θ − qbθ) ⊗ (φ∗ν − qbν) = φ∗θ ⊗ ν − qb · θ ⊗ ν ∈ kerα. Since α is surjective and

bilinear, M̂1 satis�es (F2).

As for (2), for any M2 so that dM2 ⊇ ΩM , fθ ∈ M2 and dM ⊆ ΩM ⊆ dM2 by (B), so M̂1 ⊆ M2 following

4.7. As a A(U)-module, M̂1 is minimal, and we write M̂1 = M1 afterwards. �

5. Integration Theory for Basic Wide Open Sets

5.1. A(U) as a logarithmic F -crystal.
In this section, we will prove that for a basic wide open set U , A(U) is a logarithmic F -crystal and apply
the conclusions from the last section to develop an integration theory on it. This process is essential because
otherwise the discussion above would seem rather idiosyncratic.

we will let U = P1\{a1, . . . , ad}, X = B [0, 1] \
⋃d
j=1B(aj , 1), and Ur(X) de�ned as before.

Lemma 5.1. Let U ⊃ X be a basic wide open set. Then A(U) satis�es criterion (F) above.

Proof. (F1) holds for any rigid analytic morphism. Choose q = pn so that z 7→ zq is a Frobenius morphism
on X and satis�es the statements for Lemma 3.3. Then for each θ ∈ Ω(U), since

θ|Vj − (resajθ)
dz

z
∈ dA(Vj),

by condition (2) of Lemma 3.3, θ satis�es (F2) on Vj for each j = 1, . . . , d. While θ|X automatically satis�es
so since Frobenius morphisms are rigid. �

Theorem 5.2. Let U ⊃ X be as above. Then A(U) is a logarithmic F -crystal.

Proof. Note that X and Vj are a�noid subsets of U .

(A) By de�nition of A(U) for arbitrary open sets.
(B) Consider the local expression on each suba�noid, say, a residue class R ⊂ X. Since H1(R) =

H1(B(0, 1)) = 0, (B) follows from (D).
(C) It follows from the identity principle for A(D): any F (x, y) = p∗1f(x, y) = f(x) is constant for

x ∈ Ur(X) ⊂ U on p−1
1 (x) ' B(0, 1), which is a suba�noid of D, thus it is a constant and therefore

lies in p∗2A(U)
(D) Uniqueness principle for analytic functions are satis�ed on wide open sets.
(E) See Lemma 4.14.
(F) See Lemma 5.1.

�

We will denote A0(U) = A(U), de�ne recursively An(U) = (A(U))1, and let Ωn = An ⊗ Ω.

Lemma 5.3. For any logarithmic F -crystal M ,

dimCp
H1(M1) = d · dimCp

H1(M),

where d is the number of connected components in A1\X.

Proof. From Lemma 4.13, it su�ces to prove that dimCp
A(U) = d. The latter follows from Lemma

2.7. �
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Thus, inductively, dimCp
H1(An(U)) = dn.

Corollary 5.4. Let X be a standard subset of B [0, 1] of the form X = B [0, 1] \
⋃d
j=1B(aj , 1), aj ∈ O, each

in distinct residue classes. U ⊂ X a wide open neighborhood about as above. Then,

A1(U) = A(U) +
d∑
j=1

log(z − aj) ·A(U).

Proof. It is not di�cult to see that {
[

dz
z−aj

]
}dj=1 is a independent subset in H

1(U). Compare the dimension

of both sides to see that H1(U) =
d∑
j=1

dz
z−aj · dA(U). Thus

A1(U) ⊆ A(U) +
d∑
j=1

∫
dz

z − aj
·A(U),

and equality holds since ∫
dz

z − aj
= log(z − aj) ∈ A1(U).

�

5.2. The structure of An(U).

Lemma 5.5. Let the notation be as above, then An(Vj) =
n∑
k=0

(log(z − aj))k ·A(Vj).

Proof. Without loss of generality, let aj = 0 and write Vj = V . We proceed by induction, for n = 1, for

any θ ∈ A0(V )dz, follow the prove of Lemma 5.1 and see that θ−(res0θ)d log(z) ∈ dA0(V ). By the uniqueness
principle (D) for A1(V ),

∫
θ ∈ (A(V ) + Cp log(z). Since the conclusion holds for any 1-form θ,

A1(V ) = A0(V ) +
∑
θ

∫
θ ·A(V ) = A(V ) + log(z) ·A(V ).

For n > 1, follow the computation of Lemma 2.7 to see that if θ ∈ An−1(V ), written by induction hypothesis

as θ =
∑n−1
j=0 hj(log z)j with hj ∈ A(V ), we have θ − 1

n res0(hn−1dz)d(log z)n ∈ dAn−1(V ). Thus,

An(V ) = An−1(V ) + (log z)n ·A(V ) =
n∑
k=0

(log(z))k ·A(V )

as desired. �

Lemma 5.6. Let f ∈ L(U), then f ∈ An(U) if and only if

(1) f |X ∈ LR(X), and f |Vj
= Alog(Vj), for j = 1, . . . , d,

(2) df ∈ Ωn(U), and
(3) there exists an Fq-Frobenius neighborhood (V, φ) of X in U so that

φ∗(f)− qn+1f |V ∈ An(V ).

Proof. (⇒) (1) An(U) is a logarithmic F -crystal, thus satis�es (A).
(2) It follows from condition (B).
(3) Since by choosing any wide open neighborhood V with (V, φ), φ : z 7→ zq satis�es (F1), both

φ∗(f) and qn+1f |V lies in An(V ).
(⇐) Note that (1) is necessary by de�nition. By (3), one may �nd g in An(U) with φ∗f − qn+1f = g. Let b

and a Frobenius neighborhood (V 1, φ1) satis�es the conclusion of (F2) for An(U), then by (2) we can
�nd g1 ∈ An+1(V ) so that df = dg1 and φ∗f − bf = g1. The problem here is whether we may choose
the b in condition (F) for An(U) as b = qn+1, and (V, φ) = (V 1, φ1). If so, then g1 = g ∈ An(V ) and
therefore df = dg1 implies f ∈ An(V ).

Let (V, φ) be an Fq-Frobenius neighborhood that satis�es the conclusion of Lemma 3.3. We proceed
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by induction on n ∈ N, by (D) it su�ces consider the expression on each of Vj :
For n = 0, A(U)|Vj

= A(Vj) ' Cp 〈z, y〉 /(zy − 1) since the local expression on an a�noid annuli

does not alter after restriction onto a suba�noid annuli. Then for any θ = hdz = h0dz ∈ Ω0(Vj),

h may be written as a convergent Laurent series on Vj about aj . θ − resaj (h0dz) dz
z−aj ∈ dA0(Vj),

while dz
z−aj = d log(z − aj). Hence, if we denote the operator φ∗ − b = Fb(φ), it su�ces to prove that

Fq(φ)(
log(z−aj)
z−aj dz) = Fq(φ)(d log(z − aj) ∈ dA0, which holds by Lemma 3.3,

Fq(φ)d log(z − aj) = d(Fq(φ) log(z − aj)).

For heuristic purpose, we will proceed and discuss one more step in the induction. If n = 1, by
Lemma 5.5, and θ ∈ Ω1(U) of the form θ = (h0(z) + h1(z) log(z − aj))dz, from the discussion in
Lemma 5.5, one know that θ − resaj (h1(z)dz) 1

z−aj log(z − aj)dz ∈ dA(U). We need to prove that

Fq(φ)(
log(z−aj)
z−aj dz) = Fq(φ)( 1

2d(log(z − aj)2) ∈ dA1, which holds by Lemma 3.3,

Fq2(φ)d(log(z − aj))2 = d(Fq2(φ)(log(z − aj))2), and

Fq2(φ) log(z − aj) = (φ∗ log(z − aj) + q log(z − aj))Fq(φ log(z − aj)).

where φ log(z − aj) = (φ log(z − aj)− q log(z − aj)) + q log(z − aj) ∈ A1(V ∩ Vj), and the statement
holds by induction hypothesis.

Suppose n > 1, again by Lemma 5.5, write θ = fdz ∈ Ωn(V ) and f(z) = f1(z)+hn(z)(log z − aj)n,
with f1(z) =

∑n−1
j=0 hj(z)(log z − aj)j satis�es (3) for qn+1. Since

(log(z−aj))n

z−aj dz ∈ dAn(U), it is

su�cient to prove that Fqn+1(φ)(log(z − aj))n ∈ An. Similar to the above case,

Fqn(φ)(log(z − aj))n =

n∑
j=0

(φ∗(log(z − aj))jqn−j(log(z − aj))n−j)Fq(φ log(z − aj)).

Since φ∗(log(z−aj))n−j = (φ∗(log(z−aj))n−j−qn−j(log(z−aj))n−j)+qn−j(log(z−aj))n−j ∈ An−j(V ∩
Vj) by induction hypothesis and Lemma 5.5, we have reached the conclusion that Fqn+1(φ)(log(z −
aj))

n ∈ An.
�

Notice that An(U) for n > 0 is in general not a ring; however, with the previous lemma,

Corollary 5.7. The direct limit Ā(U) = lim→
n

An(U) of A(U)-modules forms a ring, equipped with multiplication

de�ned when regarded as a subset in L(U).

Proof. It follows from a simple observation: for f ∈ An(U), g ∈ Am(U), f · g satis�es

φ∗(f · g)− q(n+1)(m+1)(f · g) = φ∗f(φ∗g − qm+1g) + (φ∗f − qn+1f)qm+1g.

So by the converse of the previous lemma, f · g ∈ Ā(U). �

6. The Polylogarithms

6.1. De�nition and functional equations of the polylogarithms.
From now on, we will choose a speci�c a�noid subspace of P1 to work on. Let U = P1\{0, 1,∞} = A1\{0, 1},
and X = B [0, 1] \(B(0, 1) ∪B(1, 1)) = M( k〈z,y1,y2〉

(zy1−1,(z−1)y2−1) ).

De�nition 6.1. De�ne the polylogarithm functions lk(z) recursively by:

(1) l0(z) = z
1−z ∈ A(U),

(2) dlk(z) = lk−1(z)dz
z , and

(3) lim
z→0

lk(z) = 0,

so that lk ∈ Ak(U) for k ∈ N∪{0}. lk exists since U is a wide open set, and Ak−1(U) are logarithmic F -crystals

for k ∈ N. Note that l0(z) is analytic for z near 0 and l0(0) = 0. Precisely speaking, l0(z) = −
∞∑
n=1

zn on
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B(0, 1)\{0}, which is a wide open annulus. Thus by construction lk|B(0,1\{0}) ∈ Alog(B(0, 1)\{0}) and

lk(z) =
∞∑
n=1

zn

nk
(6.1)

on B(0, 1)\{0} (compare (6.1) when k = 1 to (2.1), be aware that l1(z) is not a homomorphism as log(z)
is), by Proposition 2.6, lk ∈ A(B(0, 1)\{0}). By the identity principal (D) for 0 < r < 1 for logarithmic
F -crystals, lk extends to a locally analytic function on P1\{1,∞} (note that lk(0) = 0 extends lk as a locally
analytic function to z = 0). Note that we also de�ne lk for k < 0; since z ∈ A(U)×, lk ∈ A(U) = A0(U) for
k < 0.

Proposition 6.2. For m ∈ N, let ζ be some mth-root of unity. We have

1

m

m−1∑
j=0

lk(ζjz) =
lk(zm)

mk
.

Proof. Note �rst that
m−1∑
j=0

(ζj)n =

{
m if n ∈ mZ
0 otherwise

since if otherwise, ζn
m−1∑
j=0

(ζj)n =
m∑
j=1

(ζj)n =

m−1∑
j=0

(ζj)n. Due to the identity principle, one only has to consider the validity of this functional equation

near 0, where lk =
∞∑
n=1

zn/nk. So

1

m

m−1∑
j=0

lk(ζjz) =
1

m

∞∑
n=1

zn

nk

m−1∑
j=0

(ζj)n =
∞∑
d=1

zmd

(md)k
=
lk(zm)

mk
.

�

For a simple generalization for (2), if n ∈ Z, notice that d
dz lk(zn) = lk−1(zn)

zn · nzn−1 = n lk−1

z , an identity
which we will use repeatedly.

Observe that for X chosen in this section, since 0̃ = 0 and 1̃ = 1 both lies in Fp ⊂ F, for s = 0, 1, any point
as ∈ B(s, 1) satis�es ‖aps − as‖ < 1. Hence φ : z 7→ zp is a Frobenius morphism of X, and any wide open
neighborhood V about X is a Frobenius neighborhood of X in U ; furthermore, observe that any a ∈ {0, 1,∞},
φ(a) = a.

De�ne the twisted polylogarithic functions by lk,p = lk(z)− p−klk(zp),

Lemma 6.3. lk,p ∈ Ak−1(Ur(X)) for 0 < r < 1 su�ciently close to 1 so that Ur(X) = V does not contain

any primitive pth-root of unity, say, r = ‖p‖
1

p−1 .

Proof. Note that z ∈ A(U)
×
, and for k > 1, d

dz lk(zp) = lk−1(zp)
zp · pzp−1 = p lk−1(zp)

z . Thus,

z
d

dz
lk,p(z) = lk−1(z)− p−(k−1)lk−1(zp).

So by construction, it su�ces to prove that l1(z) − p−1l1(zp) ∈ A(Ur(X)). Since with φ : z 7→ zp, (V, φ) is a
Frobenius morphism of X, one may rewrite l1(z) − p−1l1(zp) = − 1

p

(
(φ∗l1)(z) − p · l1(z)

)
, and d

(
(φ∗l1)(z) −

p · l1(z)
)

= (pz
p−1

zp−1 −
p
z−1 )dz. On any residue class R ' B(0, 1) of X, (pz

p−1

zp−1 −
p
z−1 ) ∈ A(R) and so (pz

p−1

zp−1 −
p
z−1 )dz ∈ dA(R) since H1(B(0, 1)) = 0. We then have F ∈ LR(X) so that F = 1

1−zp −
p

1−z on each of the

residue classes R ⊂ X. Since 1
1−zp −

p
1−z ∈ A(X), F ∈ A(X). Thus d

(
(φ∗l1)(z) − p · l1(z)

)
∈ dA(X) and

(l1(z)− p−1l1(zp))|X ∈ A(X) follows.

For any 0 < r < 1 so that Ur(X)∩{z ∈ A1 | zp = 1} = ∅, for either s = 0 or 1, (pz
p−1

zp−1 −
p
z−1 )dz ∈ Ω(Vs) with

ress(
pzp−1

zp−1 −
p
z−1 ) = 0, thus (l1(z)−p−1l1(zp))|Vs

∈ A(Vs). The facts above indicates that (l1(z)−p−1l1(zp)) ∈
A(V ) by (D) for A1(V ).

At last, we prove that r = ‖p‖
1

p−1 guarantees that Ur(X) = V does not contain any primitive pth-root of

unity: 1 /∈ V is direct, and if zp = 1, z̃p−1 = (z̃−1)p = 0 implies z ∈ B(1, 1). Now, zp−1 = (z−1)
p−1∑
j=0

zj = 0
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and suppose z 6= 1. Write z = 1 + α, then
p−1∑
j=0

((1 + α)j − 1) = p and ‖α‖ ≤ ‖
p−1∑
j=0

((1 + α)j − 1)‖ = ‖p‖ with k

being non-archimedean. �

The lemma has a strengthen version:

Proposition 6.4. Let B = B
[
1, ‖p‖

1
p−1

]
. The twisted k-logarithm lk,p is analytic on U\B and has an analytic

continuation onto P1\B so that lk,p(0) = lk,p(∞) = 0.

Proof. Note that lk,p(0) = 0 by de�nition since lk(0) = 0.
We will prove the proposition by induction on k ∈ N ∪ {0} that lk,p can be extended with analyticity on

U\B.
For k = 1, l0,p = z

1−z−
zp

1−zp is analytic on P1\B since the poles of both terms are excluded, and l0,p(∞) = 0.

By induction hypothesis, suppose lk,p ∈ A(U\B). By Proposition 6.2,

1

m

m−1∑
j=0

lk,p(ζ
jz) =

1

mk
lk(zm)− 1

mk
p−klk(zmp) =

1

mk
lk,p(z

m).

Thus lk,p(∞) = 1
m ·m · lk,p(∞) = m−klk,p(∞), hence lk,p(∞) = 0 when k > 0.

lk,p

z , then, is analytic on P1\B.
In particular, θk , lk,p

dz
z ∈ Ω(P1\B) and since P1\B is a wide open disc H1(P1\B) = 0. There exists an

F ∈ A(P1\B) so that dF = θk. Then by the identity principle for A(P1\B), lk,p ∼ F is analytic on P1\B. �

6.2. The function D(z) and its related identities.

De�nition 6.5. (1) log(z) denotes a branch of the logarithm. De�ne D(z) ∈ A2(U) by

D(z) = l2(z) +
1

2
log(z) log(1− z).

(2) For any Cp-values function f de�ned on U\{a}, a ∈ U , de�ne

lim
z→a

1f(z) = lim
z→a
z∈K

f(z),

if any limits on the right exist and coincide, where K is an arbitrary �nitely rami�es extension of Qp
that contains a, or a =∞.

Lemma 6.6. Using the notation de�ned above, lim1
z→0 log(z) log(1− z) = 0.

Proof. We may see that for any �nite rami�ed extension K ⊇ Qp, log(z) is bounded near 0. Let a ∈ K,
write a = pku with ‖u‖ = 1. Since log : K× → Cp is a homomorphism, and {k log p}k∈Z is bounded, it
su�ces to prove that log |C(0,1)∩K is bounded. Since for any u ∈ C(0, 1) ∩K so that u 6= 1, ‖u− 1‖ = 1 and
‖uq − 1‖ < 1 for some p-power q (we may choose q to be the order of K0/K1, the residue class �eld). By the
local expression of log(z) near 1, we know that {log(uq)}u∈C(0,1)∩K = {q log(u)}u∈C(0,1)∩K is then bounded.
The existence of the restricted limit follows.

Since for z su�ciently close to 0, log(1 − z) = −
∞∑
n=1

zn

n holds, we know that log(1 − z)/z is bounded

on a punctured disc about 0. Thus, it su�ces to prove that lim1
z→0 z log(z) = 0. Suppose not, that is,

lim1
z→0 z log(z) = a ∈ C×p . b , log(a) ∈ Cp is therefore de�ned. Since log(z) ∈ L, b = lim1

z→0 log(z log(z)) =

lim1
z→0(log z + log(log(z))). The last term does not exists in any �nitely rami�ed extension K ⊃ Qp by, say,

zn = pp
n → 0 because

log(zn) + log(log(zn)) = log(pp
n

) + log(log(pp
n

)) = (pn log p+ log pn + log(log p) = (pn + n) log p+ log(log p)

does not converge. Hence a contradiction is reached. �

Corollary 6.7. lim1
z→0D(z) = 0

Proof. This is a direct result from the lemma above and l2(0) = 0 (the latter holds by construction). �

We adapt the convention that 1
k! = 0 once k < 0 and 0! = 1.
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Proposition 6.8 (Coleman-Sinnott).

lk(z) + (−1)klk(
1

z
) = − 1

k!
(log z)k,(6.2)

D(z) = −D(
1

z
), and(6.3)

D(z) = −D(1− z).(6.4)

Proof. [Col82]

(6.2): For k = 0,

l0(z) + l0(z−1) =
z

1− z
+

z−1

1− z−1
= −1

holds; apply z d
dz iteratively and observe that (6.2) holds for k < 0.

For k ∈ N, we proceed by induction on k. Assume that (6.2) holds for some k ≥ 0, di�erentiation
yields

dz(lk+1(z) + (−1)k+1lk+1(
1

z
)) = lk(z) + (−1)klk(

1

z
)
dz

z
= − 1

k!
(log z)k

dz

z
.

Note that the last term equals to d(− 1
k!

(log z)k+1

k+1 ) = d(− 1
(k+1)! (log z)k+1). Thus (6.2) holds for k + 1

module Cp, namely

lk+1(z) + (−1)k+1lk+1(
1

z
) = − 1

(k + 1)!
(log z)k+1 + b(6.5)

for some b ∈ Cp. Notice that

(log z)k+1 = p−(k+1)(log zp)k+1.

Substituting z by zp, we have

lk+1(zp) + (−1)k+1lk+1(z−p) = − 1

(k + 1)!
(log zp)k+1 + b = − pk+1

(k + 1)!
(log(z))k+1 + b.

The three equations above assemble together to

lk+1,p(z) + (−1)k+1lk+1,p(
1

z
) = (1− pk+1)b.

By Proposition 6.4, lk+1,p(0) = lk+1,p(∞) = 0, giving b = 0 and therefore (6.2) holds for k + 1 by
(6.5).

(6.3): By (6.2), and the de�nition of D(z),

D(z−1) = l2(z−1) +
1

2
log(z−1) log(1− z−1)

= −l2(z)− 1

2!
(log z)2 +

1

2

(
log(z−1) log(1− z−1)

)
= −l2(z)− log z

2

(
(log z) + log(1− z−1)

)
= −l2(z)− 1

2
log z log(z − 1)

= −D(z).

Note that log(−1) = 1
2 log(1) = 0.
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(6.4): l1(z) = − log(1− z), so dl2(z) = − log(1− z)dz
z = − log(1− z)d log(z) and

dl2(
z

z − 1
) = −z − 1

z
log(

1

1− z
)d(

z

z − 1
)

= − log(
1

z − 1
)d(log z − log(z − 1))

= log(z − 1)d(log z − log(z − 1))

= −dl2(z)− log(z − 1)d log(z − 1),

d
(

log(
z

z − 1
) log(1− z

z − 1
)
)

= −d((log z − log(z − 1) log(1− z)))

= −d(log(z) log(1− z)) + 2 log(z − 1)d log(z − 1).

As a result,

dD(z) = dlz(z) +
1

2
d(log(z) log(1− z))

= (dlz(z) + log(z − 1)d log(z − 1)) +
1

2
(d(log(z) log(1− z))− 2 log(z − 1)d log(z − 1))

= −dl2(
z

z − 1
)− d

(
log(

z

z − 1
) log(1− z

z − 1
)
)

= dD(
z

z − 1
).(6.6)

By (6.6), D(z) +D( z
z−1 ) is constant. The constant is 0, considering lim1

z→0(D(z) +D( z
z−1 )) = 0.

�

Corollary 6.9. lim1
z→aD(z) = 0 for a = 0, 1, or ∞.

Proof. a = 0 is proved before, by this result, a = 1 follows from (6.4) and a =∞ from (6.3). �

Proposition 6.10. For k > 1, the function:

lk(z)− 1

k − 1
log(z)lk−1 ∈ Ak(U)

has an analytic continuation onto B(0, 1).

Proof. By induction on k > 1, for k = 2, by (6.8) and log(z) log(1− z) being invariant under z 7→ 1− z,

l2(z)− log(z)l1(z) = l2(z) + 2 · 1

2
log(z) log(1− z) = l2(1− z) ∈ A(B(0, 1)).

For k > 2, observe that

d(lk −
1

k − 1
log(z)lk−1(z)) = lk−1(z)

dz

z
− 1

k − 1
lk−1

dz

z
− 1

k − 1
log(z)lk−2

dz

z

=
k − 2

k − 1
(lk−1 −

1

k − 2
log(z)lk−2)

dz

z
,

which lies in Ω(B(0, 1)) = A(B(0, 1))dz by induction hypothesis. Since H1(B(0, 1)) = 0 and A(B(0, 1))
satis�es the uniqueness principle, lk − 1

k−1 log(z)lk−1(z) ∈ A(B(0, 1)) to prove the statement. �

7. Relation between the Polylogarithms and Special Values of the Kubota-Leopold

L-function at Positive Integers

7.1. An identity for the valuation of lk.
For sake of a simpli�ed notation, we will write

∑
(ζ) f(ζ) to denote

∑r−1
j=1 f(ζj) when ζ is a non-trivial primitive

rth-root of unity.

Lemma 7.1. For k > 1, lk extends to a Cp-valued function that is

(1) continuous on any �nitely rami�ed K ⊇ Qp and,

(2) lim1
x→1 lk(x) = 1

r1−k−1

∑
(ζ) lk(ζ)

for any r ∈ N and ζr = 1 non-trivial.
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Proof. (1) The only problematic points in this lemma are 0 and 1, continuity at z = 0 lim1
z→0 lk(z) =

limz→0 lk(z) = 0 exists by De�nition 6.1. While the continuity at z = 1 for k = 2 follows from Lemma
6.6 and the functional equation

l2(z) + log(z) log(1− z) = l2(1− z).

For k > 2, the statement follows from Proposition 6.10 since log(1) = 0 and the fact that rigid analytic
functions are continuous.

(2) Proposition 6.2 may be revised as rk(
∑

(ζ) lk(ζz) + lk(z)) = lk(zr). As

lk(zr) =
rk−1

1− rk−1

∑
(ζ)

lk(ζz),

taking z → 1 in K ⊇ Qp proves (2).
�

7.2. The p-adic L-function and its special values.
For d ∈ N, let

Xd = lim←
n

Z/dpnZ

as a topological space. For a ∈ Z, n ∈ N ∪ {0}, there is a natural projection map πd,n : Xd → Z/dpnZ.
Construct the compact open sets Ud,n(a) = π−1

d,n(a) = {x ∈ Xd | πd,j(x) = a (mod dpjZ) for j ≤ k} =

a + dpnZp. Notice that when we consider Ud,n(a), the choice of a is actually independent module dpnZ. Let
X∗d,n =

⋃dp−1
a=1 Ud,n(a). If z ∈ Cp satisfying zdp

n 6= 1 for all n ∈ N, one may de�ne a p-adic distribution µd,z
(following Koblitz) on Xd:

µd,z(Ud,n(a)) =
za

1− zdpn
.

The measure µd,z de�nes a linear functional on locally constant functions Xd → Cp:∫
Xd

dµd,z : f 7→
∫
Xd

fdµd,z , lim
N→∞

dpN∑
a=0

f(a) · µd,z(Ud,N (a)).

If there is an ambiguity in the integration, we will denote
∫
x∈X dµ to emphasize on the variable x being the

integral variable. Note that X1 = Zp and X∗1 = Zp\{0}. We now consider only d = 1 and henceforth drop
out any subscript d by setting it 1.

De�nition 7.2. (1) A Teichmüller character ω on Zp\{0} is a homomorphism characterized by ω(x) ∈ Cp
being the unique solution of ω(x) = ω(x)p in the residue class of x. It is also known that ω(x) =
limn→∞ xp

n

.
(2) Let π = π1 : X → Zp, and for x ∈ X, let 〈x〉 = π(x)/ω(π(x)).
(3) For any Dirichlet character χ : X → Cp, n ∈ N, let χn denote the twisted Dirichlet character χ⊗ ω̄n,

where ω̄(a) , ω(a)−1.

For χ being a Dirichlet character of conductor d, it is known (by Kolitz) that for any r ∈ N, (r, pd) = 1,

Lp(s, χ) =
1

〈r〉1−sχ(r)− 1

∫
X∗
〈x〉−sχ1(x)dµ,(7.1)

where µ =
∑

(ζ) µζ with ζ
r = 1 non-trivial.

Lemma 7.3. For z ∈ Cp\B(1, 1), we have

lk,p(z) =

∫
X∗

x−kdµz.
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Proof. (For the case when k = 1, see Koblitz [Kob79])
For z ∈ B(0, 1),

∫
X∗

x−kdµz = lim
N→∞

pN−1∑
a=1

1

ak
za

1− zpN

= lim
N→∞

(

pN−1∑
a=1

(
za

ak
)−

pN−1−1∑
a=1

(
zap

(ap)k
)) = lk(z)− p−klk(zp)

�

There is the p-adic analogy of the Fourier inversion formula: for χ being a primitive Dirichlet character of
conductor d, (r, dp) = 1, and ξ, ζ primitive dth-root and rth-root of unity respectively, we have

∫
X

χfdµζ =
g(χ, ξ)

d

d−1∑
a=1

χ̄(a)

∫
X

fdµξ−aζ ,

where g(χ, ξ) =
∑d−1
j=1 χ(j)ξj is the Gauss sum and χ̄(a) = χ(a)−1.

Let π : X → Zp be the identi�cation in the end of the �rst paragraph. Then

∫
X

f ◦ πdµζ =

∫
Zp

fdµ1,ζ .

In particular, choosing f = x−k and by the application of the Fourier inversion formula, for ξ, ζ being primitive
dth-root and rth-root of unity respectively,

∫
x∈X

π(x)−kχdµζ =
g(χ, ξ)

d

d−1∑
a=1

χ̄(a)

∫
x∈Zp

x−kdµξ−aζ

=
g(χ, ξ)

d

d−1∑
a=1

χ̄(a) · lk,p(ξ−aζ)(7.2)

=
g(χ, ξ)

d

d−1∑
a=1

χ̄(a) · (lk(ξ−aζ)− p−klk((ξ−aζ)p))

=
g(χ, ξ)

d
(
d−1∑
a=1

χ̄(a) · lk(ξ−aζ)− χ(p)

pk

d−1∑
a=1

χ̄(a)lk(ξ−aζ))(7.3)

=
g(χ, ξ)

d
(1− χ(p)

pk
)
d−1∑
a=1

χ̄(a) · lk(ξ−aζ).

(7.2) follows from Lemma 7.3, and (7.3) holds by (r, p) = 1 thereby
∑d−1
a=1 χ̄(ap)lk(ξ−apζp) =

∑d−1
a=1 χ̄(a)lk(ξ−aζ).

Theorem 7.4. Let the notation be a above, for χ a primitive, non-trivial Dirichlet character,

Lp(k, χ⊗ ω1−k) =
g(χ, ξ)

d
(1− χ(p)

pk
)
∑
(ξ)

χ̄(a)lk(ξ−a).(1.3)
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Proof. [Col82] Notice that by de�nition, 〈x〉k ωk(x) = xk, by the computation above, for any integer
k > 1,

Lp(k, χ⊗ ω1−k) =
1

〈r〉1−kχ(r)− 1

∫
X∗
〈x〉−k(ω(1−k)−1(x)⊗ χ(x))dµ

=
1

〈r〉1−kχ(r)− 1

∫
X∗

x−kχ(x)dµ

=
∑
(ζ)

1

〈r〉1−kχ(r)− 1

∫
X∗

x−kχ(x)dµζ

=
1

〈r〉1−kχ(r)− 1

∑
(ζ)

g(χ, ξ)

d
(1− χ(p)

pk
)
d−1∑
a=1

χ̄(a) · lk(ξ−aζ)

=
1

〈r〉1−kχ(r)− 1

g(χ, ξ)

d
(1− χ(p)

pk
)
d−1∑
a=1

χ̄(a) · ( lk(ξ−ak)

r1−k − lk(ξ−a))

=
1

〈r〉1−kχ(r)− 1

g(χ, ξ)

d
(1− χ(p)

pk
)(χ(r)r1−k − 1)

d−1∑
a=1

χ̄(a)lk(ξ−a)

The second last equation follows from Proposition 6.2, and the last follows from

d−1∑
a=1

χ̄(a)(r1−klk(ξ−ar)) = χ(r)r1−k
d−1∑
a=1

χ̄(a)lk(ξ−a).

Since the p-adic L-function represented in (7.1) is independent of r chosen, one may choose r ∈ B(1, 1)∩Z,
so that ω(r) = 1 and 〈r〉 = r. We have then derived the desired formula. �

Theorem 7.5. When χ is chosen to be a trivial character, the above formula does not apply; however we have

Lp(k, ω
1−k) = (1− 1

pk
) lim
x→1

lk(x).(1.4)

Proof. [Col82] For non-trivial Dirichlet character χ. Since χ = 1,

Lp(k, χ1−k) = Lp(k, ω
k−1) =

1

〈r〉1−k − 1

∫
X∗
〈x〉−k ω(x)−kdµ

=
1

〈r〉1−k − 1

∫
X∗

x−kdµ

=
1

〈r〉1−k − 1

∑
(ξ)

lk,p(ξ)

Choose r ∈ B(1, 1) ∩ Z as above. By continuity of lk(x) at 1, lim
x→1

lk(x) = lim
x→1

lk(xp) and
∑

(ζ) lk,p(ζ) =∑
(ζ)(lk(ζ)− p−klk(ζp) = (1− p−k)

∑
(ζ) lk(ζ) if we choose ζ to be a rth-root of unity with (r, p) = 1. Thus,

lim
x→1

lk,p(x) = (1− 1

pk
) lim
x→1

lk(x) = (1− 1

pk
)

1

rk−1 − 1

∑
(ζ)

lk(ζ) =
1

rk−1 − 1

∑
(ζ)

lk,p(ζ).

by Lemma 7.1, arises (1.4). �

8. Conclusion and Suggestions

We have now discussed the integration theory over connected a�noid subspaces of Cp with good reduction.
In this article a logarithmic F -crystal M is de�ned to be a A-submodule of L with functions f so that fdz
can be integrated. Moreover, if we consider the smallest A-submodule of L that contains M and

∫
fdz, which

by de�nition would be M1 = M(U) +
∑
θ A(C)

∫
θ as discussed in section 4, is still a logarithmic F -crystal.

We therefore applied it to de�ne the solution to the recursive di�erential equations

(1) l0(z) = z
1−z ∈ A(U),
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(2) dlk(z) = lk−1(z)dz
z , and

(3) lim
z→0

lk(z) = 0.

The constructed solutions, namely the polylogarithmic functions lk(z), is locally of the form

lk(z) =
∞∑
n=1

zn

nk
.

As in the complex case, the polylogarithm are related to the special values of L-function at positive integers,
namely through (1.3) and (1.4), partially contribute to the validity of the Coleman integral in moral.

Various di�erential equations whose solution exists in the complex �eld C to possess arithmetic meaning,
just as the one we discussed in this article. The author would suggests that thorough survey might lead to
other analogy to the p-adic �eld Cp which involves deeper contents.

Another possible generalization is to discuss the integration theory on a�noid variety of dimensionality
greater than 1, which Coleman partially discussed the case in his later-published articles.
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