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ABSTRACT

-

In this article we discuss the integration theory on P!'(C,), and apply it to \€onsttuct
the logarithmic F-crystal on C,, where polylogarithm functions [j(z) occurs in;a natural
development. The usage of polylogarithms realize in the computation for the p-adie Z-values.
To be precise, valuation of the polylogarithms at primitive roots of unity is related“te.the
special values of the Kubota-Leopold L-function at positive integers. Eventually, we conclude
by deriving a formula relating L,(k, xx—_1) to the k*"-polylogarithm [ (z), which extends the
formula by Koblitz, who proved the case k = 1.

Keywords : Coleman integral, p-adic, logarithmic F-crystal, polylogarithm, Kubota-Leopold L-function,
special value of L-functions at positive integers.
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ON COLEMAN INTEGRATION AND p-ADIC L-FUNCTIONS &\l |
CHUNG-RU LEE

AssTrAcT. In this article we discuss the integration theory on P(C,), and apply it to construct the
logarithmic F-crystal on C,, where polylogarithm functions [ (z) occurs in a natural development. The
usage of polylogarithms realize in the computation for the p-adic L-values. To be precise, valuation of the
polylogarithms at primitive roots of unity is related to the special values of the Kubota-Leopold L-function at
positive integers. Eventually, we conclude by deriving a formula relating Ly (k, xx_1) to the k*-polylogarithm
lk(2), which extends the formula by Koblitz, who proved the case k = 1.
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1. INTRODUCTION

The main goal of the article is to introduce the Coleman integral and apply it to establish a formula
for computing p-adic L-values. The Coleman integration is, vaguely speaking, to associate a closed 1-form
0 € Q(X) on X—a properly chosen space over non-archimedean fields—with a locally analytic primitive (or
anti-derivative) fo € L(X), so that dfy = 6. Integrating rigid analytic functions may be regarded as an
analogy to the integration of complex or real analytic functions, except the abundance of locally constant
functions over non-archimedean algebras made it difficult to determine the relation between local expressions.

1.1. Coleman integral in brief.

The p-adic space is endowed with the ultrametric triangle inequality ||z + y|| < max(||z]|, ||y|]), which made
its topology rather simple. The extraordinariness of ultrametric triangle inequality is often characterized
through two descriptions:

(1) Every point in a disc is the center of the disc, and
(2) Any triangle is equilateral.

To appreciate the difficulty to integration that hides behind the topology of p-adic spaces, observe an example:

X={eC,||lz] =1}, and 0 = % € Q(X).

Date: July 11, 2016.
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2 F. LEE

N\ ;4—-.".. "r'.’:\'l
In order to seek for fy, it seems natural to write 6 = d(((zz:aa)l:raa) = (z_daz) = %Z;‘io (@) dz,’“@_ﬁgﬂlh
applies on an open neighborhood about some a € X and simply integrate the local expression term- se‘(i I'i
1 &1 (—(z—a))’ ¥ N W
S EC
a‘=J a

The expression converges on B(a, 1), and so the equality holds on B(a,r) for » < 1 up to a constant b = b(a).
The choice of a € X is arbitrary, and one may duplicate the procedure for all points on X and obtain an
abundant of local expressions about fy, up to a constant.

Until now the experience on R or C applies. In C, in order to relate the local expressions and determine
the constant b, the next step is to cover X with an open covering of connected nerve consisting of discs of
the form B(a, 1), and demand the valuation of the intersection coincide. In this way, we can adjust the local
expression and find a constant b = b(a) in a determined sense for each a € X, actually b(a) is constant module
271, while winding around 0 creates branches for log(z) as we have known. On p-adic spaces, however, due
to the fact (1) above, two discs of the same radius either coincide, or will be disjoint. Therefore the strategy
above would not succeed.

A major property p-adic owns, while real or complex spaces do not, is the existence of the Frobenius
morphisms, namely the automorphism ¢ : z — 2" on Fpm over Fpn, m > n. Coleman [Col82] developed a
method referred by himself analytic continuation along Frobenius morphism. Consider the case above still,
and ¢ : z — 2P, which is Frobenius. Then

¢ 0 = pé.
Coleman imposed the condition that the integration fy should satisfies
" fo —pfo=">

for some global constant b. Vary fy by some non-zero constant we may set b = 0. Thus ¢* fy — pfg = fo(2P) —
pfo(z) = 0. For any a € X, there exists an m € N so that the Teichmiiller point in B(a,1)—w(a) = lim a?™"
n—,n

exists (and (w(a))? = w(a) follows), so (1 — p™)fyp(w(a)) = 0. Thus the local expressions are determined
uniquely near w(a) by b(w(a)) = 0. Since for any a € X, a € B(w(a),1), the imposed condition indeed
determined fy uniquely, up to a global constant.

To elaborate the method in a more thorough detail, suppose fy is constructed in the sense that it is
unique module C,. Then fj& = fo(y) — fo(x) € C, is well-defined. Conversely, since § € Q@ = Adz, and
X = B[0,1]\B(0,1) is covered by residue classes X = {J,,=; B(a,1). Suppose we choose fy(a) = b and
assume that there exists C,-linear

m

/:Q(X)—>A(X) and d:L(X)— Qg(X)

that satisfy the following characterizations:
(1) do [ : Q(X) — Qz(X) is the canonical inclusion,
(2) [od:A(X)— L(X)/C, is a canonical inclusion (after omitted a global constant), and
(3) ¢ o [ = [o¢" € L(X)/C,.

We may define fp(x) via
fola) = fola) + [ 6.

If € B(a,1), by the local expression of [(0|p(,1)) € A(B(a,1))/C, on B(a,1), fe(x) is uniquely
determined. Now, for arbitrary « € X, find w(z), w(a), and m € N so that

lim (¢™)"(a) =a and nll_{rolo((bm)"(x) =x.

n—oo
/e:/ 9+/ o+/a,

Then by definition,
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ON COLEMAN INTEGRATION AND p-ADIC L-FUNCTIONS . B

where the first and last term is known as discussed above. Thus is remains to compute f 0. By (3 :

wz ¢™ (wz) wz wT
/ 9_/ o= [ 5mo—gm szm/ 6.
m(wa) wa wa wa

Thus fp(z) is uniquely determined by the choice of fy(a) € C,.

Remark. In the example we have worked with 6 € Q with ¢*0 — pf = 0. Actually replacement of p by any b
which is not a primitive root of unity, and the right hand side by any exact form dg € dA can be dealt with
using the same method.

In short, a C,-linear integration map satisfying the three conditions above may provides us with a unique
solution to the differential equation
&f=y9,
f(a)=b.

Coleman integration is mainly defined for this purpose, and hence is to satisfy the three conditions above, as
we will see later in the passage.

1.2. The logarithmic F-crystal and p-adic L-functions.

The logarithmic F-crystal on a specific open set U is an A(U)-module that lies between A(U) and L(U).
A logarithmic F-crystal consists of, roughly speaking, functions f € £(U) so that fdz may be integrated in
the sense of the previous passage.

Coleman established a criterion of six examination to determine whether a A(U)-submodule of £(U) is a
logarithmic F-crystal. The a posteriori but astonishing result is that once we joint those integrals f fdz into
the original logarithmic F-crystal, the sum (as an A(U)-module) would still form a logarithmic F-crystal.

The logarithmic F-crystal, as we might observe in the very first example, is a natural module over A(U)
for the logarithmic function log(z) to occur (globally), and the fact that integration over a logarithmic
F-crystal may be executed iteratively allows us to consider higher order differential equations, which arises
the polylogarithmic functions (log z)™.

In practice, Coleman [Col82] defined I (z) to be the solution to

( Z)klk - zil’
lim I (z) = 0.
z—0

Whose solution may be represented by the formal series

z
nk

NE

lk(Z) =

Il
_

n

when close to 0. The significance of [;(z) = log(1 — z) is well-established. Over the complex field C, [;(z) has
been related to the L-values at k. Let y : C — C* be a primitive Dirichlet character of conductor d > 1. If
9(x, ¢) denote the Gauss sum: g(x,¢) = 22:1 x(a)¢~@ for ¢ being a primitive d'"-root of unity, and I;(0) = 0
is the principle branch, then it is a well-known formula [Kob79] that

(1) 20 = SIS sy

a

&

Il
o

Also, when y = 1 is trivial, let X = B(1,1)\{1}, and R = X denote the Reimann surface of I;,|x. Consider
a sequence {z, }nen C R lying in finitely many sheets of R, with lim n(z,) =1, then
n— oo

(1.2) L(k,1) = nh_%lo Ie(zn).

A purpose of this article is to apply the p-adic [y, constructed to formulate a p-adic analogue of the formulas
above. Let w denote the Teichmiiller character on Z, and x a primitive Dirichlet character of conductor d,

doi:10.6342/NTU201600789



4 F. LEE

we will demonstrate

d*l
(1.3) Ly(k,x @ wl_k) - (1 B ) a)lip(C

(1.4) Ly (k') = (1 - 1) lim Ly (2)

from [Col82]. Which are direct analogue for (1.1) and (1.2). For some of the notations not defined here, see
section 6 and 7.

2. RIGID ANALYSIS ON PUNCTURED P!(C,)

2.1. Affinoid subspaces of C,.
Let C, be the complete non-archimedean algebraic closure of Q above some finite place p, O its ring of
integer, m the maximal ideal of O, and F = O/m the residue field.

Definition 2.1. (1) A Tate algebra over a non-archimedean field & is defined as

To(k)=k{z1,...,2n) = Z ayz’ |ay €k, |las| = 0as [J| = o0y,
[7]>0
with the Gauss norm || Y. ajz’|| £ max||aJ|| on it.
|J[>0
(2) A k-affinoid algebra is a k-algebra A which admits an isomorphism A ~ T,, /I for some ideal I C T,,.
The maximal spectrum of a k-affinoid algebra A, along with the ring A, denoted M(A) = (MaxA, A),
is said to be an affinoid variety.

Notice that the Tate algebra T,, is Noetherian, regular, factorial, and any ideal I C T, is closed. Therefore
the ideal I C T, is always finitely generated, and A = T;,/I possesses the residue norm ||f|| £ inf e rllgll-
An affinoid variety M(A) is said to be connected if A is not a direct sum of two rings. Likewise, M(A) is
irreducible and reduced if A is, respectively.

For an affinoid algebra A, let Ag = {f € A[ | fl| <1}, Av ={f € A|[f| <1}, and A = Ag/A,. Note
that A is a finitely generated polynomial ring over F. The association A ~» A is a covariant functor between
the category of affinoid algebras and the category of rings. For an affinoid variety X = M(A), we relate an

= Spec A. There is a natural reduction map

red : X — X

m, — [mg N Agl,

the last term indicates the ideal of residue classes in Ag/A; = A. X is said to have good reduction if X is
smooth as an affine variety. The pre-image of a point b € X under the reduction map, namely red_l(b), is
called a residue class in X. When k is algebraically closed, one can regard A as a k-valued function on M(A)
naturally. In this case it is known that ||f|| = sup [|f(a)|| = max || f(a)]-

aeM(A) a€eM(A)

In our notation, k = C, unless specified. Bla,7] = {z € C, | ||z —a|] < r} and B(a,r) = {z € C, |
|z —a|| < r} are called discs in Al, particularly we define B [oo,r] = {z € P! | ||z|| > 1/r} = P1\B(0,7 1) and
B(oo,r) ={z € P! | ||z|]| > 1/r}. The annuli refer to sets of the form A(a;ri,m2) = {z € Al |r < |z —a| <
T2, 71,72 € ||C)|}, in which case it is said to be an annulus about a. Similar to the definition of discs, we
allow the center of an annulus to be co. A circle is a set as C(a,r) = A(a;r,r) ={2€ C, | |z —a| =7}.

For this article, we consider the subspaces of P'(C,) in the form X = {z € P1(C,) | [|f(2)| < 1,f € F},
where F' C C,(2) is a finite subset. In this case if we consider A(X) to be the completion of rational functions
over C, that are regular on X, with respect to the supremum norm. A(X) would be an affinoid algebra, thus
X is an affinoid variety. Unless otherwise mentioned, we always assume that X c P!(C), so dim¢, X = 1.
Higher dimensional affinoid varieties are not concerned in this article.

It is known that if X is connected, it is conformal to a set of form B[0,1]\|J; B (a;,r;), that is A(X) ~
Cp(z,x1,...,xq) [ (zxj —tja; | j=1,...,5), where 0 < ||t;|| = r; < 1. The form above is said to be a standard

doi:10.6342/NTU201600789



ON COLEMAN INTEGRATION AND p-ADIC L-FUNCTIONS y N
subset of B0, 1]. If further assume that X has good reduction, by a linear fractional transformatlon one.-may
let 7; = 1 for j = 1,...,s. In this case the standard subset is called a full subspace of B [0, 1];yfor flﬁfﬁér.
details, see Conrad [Con08] or Tate [Tat71]. [I '|~

2.2. The logarithm.

Definition 2.2. (1) For an arbitrary subset V C P!, let £(V) denote the set of locally analytic functions
on V, and A(V) C L(V) be the set of functions f satisfying f |x€ A(X) for any affinoid subsets
XCV.

(2) Let V C P! be an open subset, we set Q(V) = A(V)dz, Qg (V) = £(V)dz, and define the derivation
d: £ — Qf in the canonical sense. H!(V) is defined as Q(V)/dA(V).

We define a branch of the logarithm (usually referred to as the p-adic Iwasawa logarithm) by any locally
analytic function [ being a homomorphism [ : C;; — C,, which satisfies (f—zl(l) =1

Lemma 2.3. Let [(z) denote a branch of the logarithm. Then [(z) is analytic on B(z, |[|z]|) for any z € C;.

PrROOF. By definition, {(zy) = I(z) + l(y), differentiation with respect to y and evaluate at y = 1 yields
(1) =0 and Li(z) = %, while [(z) is analytic on an open neighborhood V around 1, its local expression can

be written as
oo

(2.1) I(2) = —Z¥7
n=1

which converges for z € B(1,1). For any z € B(1, 1), there exists an n € N so that 27" € V. We thus have
p"l(z) = 1(z*"), while the right hand side is analytic, leading to the analyticity of I(z) on B(1,1). Finally,
for any z € C), consider I(xz) = I(z) + [(2), which is analytic for z € B(1,1). As a result [(z) is analytic on
xB(1,1) = B(z, | z|). O

From the expression above, we have dlogz = % immediately. For any open subset V C P! and log(z) a

chosen branch of the logarithm, define Ajog(V) = A(V)[log f | f € A(V)*].
A wide open set refers to a set U = {z € P | ||f|| < ry, f € F}, where ry = 1 or oo, and F C C,(2) is
a finite subset. If V is an annulus about a € A!, a 1-form 6 € Q(V) can be written as Y ¢;(z — a)’dz, and
JEL
we define the residue at a, denoted res,f, to be c_;. Observe that on any wide open annulus V' around a, a
1-form 6 € dA(V) if and only if res,0 = 0.

Lemma 2.4. If V is an annulus about a, and f € A(V)*. If resa =k, then we have

(1) keZ
(2) f may be written as f = c(z — a)*(1 + h), where c € C,, h € A(V) and ||h(2)| < 1 for any z € V.

Proor. Without loss of generality, let @ = 0. It suffices to prove the lemma for each affinoid annulus about
0 contained in V, thus one may assume V is itself affinoid. That is, V = A[0,r1,72], and 1,72 € ||C,].
Further exploit the advantage of a conformal map, we can assume that V' is actually standard, which means
r1 <1and ry =1.

(1) Consider Vi = C(0,r1) = {z € Cp, | ||z]| = r1}. Choose a; € C so that fi £ aif has || f1] = 1.

Vi ~ Spec Flz,y 1]), thus f, € A(Vl) implies f; = by12** for some by € O, Ib1]] = 1, and ky € Z.
That is, (b1 z7R )~ = 1. Tt follows that ||by'27F1f; — 1] < 1. From the previous lemma this
would mean that loghy'z=% f; € A(V1). Therefore 0 = resq(dlog(b; *2~%1 £1)) = resof— — k1, and

resg ff = resp 4L f = kq € Z follows.

(2) Imitate the process in (1) for Vo = C(0,72). Let b € C, satisfies ||bf2=%|| = 1. Observe that
(bz=Ff |VJ)~N :~(baj_1z~_kfj)w = (ba; 'b;)™ are constants on Vj for j = 1,2, respectively. Since the
closure of V; U V5 fills V., (bz=%f)~ = (ba;b;)™ = (bagby)™ = bé is a non-zero constant function on V'
for some ¢ € O. Thus f = c2*(1 + h) for some h € A(V) and ||h| < 1.

(]

doi:10.6342/NTU201600789



6 F. LEE

Corollary 2.5. By the results of Lemmas 2.3 and 2.4, for an annulus V about a € A', =54
Alog(v) A(V) [log (z — a)]. | f'(; ||

1
Let V be an open set and F be a collection of C,-valued functions on V. F is said to satisfy+ the[ bdentzt’g\
principle on V if for any f,ge F, f=gonV whenever f = g on any open subset U C V. It is’known that
for a connected open subset V C P!, A(V) satisfies the identity principle on V.
For an affinoid V', a point @ € V and a function f € A(V'), we define the order of f at a, denoted ord, f, as
when defined on an affine variety. For any rational function h = f/g, we let ord,h = ord, f — ord,g. Notice
that for a locally analytic function f, ord, f’ < ordgf.

Proposition 2.6. Let V be a wide open annulus about a. Then Aig(V) =A(V)[log f | f € A(V)*] satisfies
the identity principle on V.

PrOOF. [Col82] Without loss of generality, let a = 0. Suppose the statement is false, let n € N be the least

m

possible integer so that there exists an f € Ajz(V), f = Z gm(log 2)™ is non-zero, while f = 0 on some
=0

open U C V. n > 0 since A(V) satisfies the identity prln(:lple Consider

f= Z G (log 2)™ + Z 79m+1 (log 2)™
m=0

n—1
m+1
=g,(log2)" + > (gh + ——gm41)(log 2)™
m=0 z
f/ =0 on U; as well as g;zf - gnf/ While deglong > deglogz(g;,f - gnf/)7 g',nf - gnf, =0onV by
assumption.
In particular, gn(gn—1 + 29n) — gj9n—1 = 0. Which indicates that (%)/ =2, and so
V since the only possible pole, 0, lies outside. g’g‘—‘l € A(V) contradicts with the fact that resod(gZ‘l) =nis
non-zero. O

9n=1 is analytic on

As a result, for a wide open annulus V', we have dimc, H Y(Aiog(V)) = 1. Moreover,

Lemma 2.7. Let V be an wide open annulus, H'(A;og(V)) = 0.

PROOF. Let§= Z hilogz9 € Mog(V), where h; = Y a; 2% € A(V). We demonstrate by induction on n.
= kEZ

Forn=0,0=ho= Y aorz*. (ho—aop,—127")dz € dA(V), while ag,_1 % = ay,_1dlog 2.
keZ
Asifn >0, hpdz = ay, g Z +dg for some g € A(V') as in the previous case. So

hy (log z)"dz = a,,—1(log z)"dlog =z + (log 2)"dyg
Un,—1 19
— 21 4 (log )" + n(log 2)" 1L dz — d(log 2"g).
n+1d(ogz) + n(log 2) Zdz d(log z"g)
Where the second last term lies in dAjo. (V') by hypothesis. O

3. THE DWORK PRINCIPLE

3.1. F,-Frobenius morphisms.

Definition 3.1. Let X be an affinoid over C,, F, denote the Galois field of order ¢ = p”, and F : A(X) —
A(X) is a lifting of the absolute Frobenius automorphism of F/F, to A(X).

(1) A Frobenius morphism refers to a morphism ¢ : X — X so that the associated ¢* : A(X) — A(X) is
in the form of ¢*(f) = F~(f9).

(2) ForY C P! arigid analytic space and X C Y be a subaffinoid. A pair (U, ¢) of wide open neighborhood
X Cc U CY, along with a morphism ¢ : U — Y is said to be a Frobenius neighborhood of X in Y if
¢|x is a Frobenius automorphism.

(3) For any affinoid variety X C P!, and (U, ¢) be an F,-Frobenius neighborhood of X in P'. We define
iteratively for n € N: F1(U) = U, and F,(U)={z€F,,_1(U) | ¢(z) € F,,_1(U)}.

doi:10.6342/NTU201600789
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i) ~
In the non-archimedean norm, we have the ultrametric triangle inequality ||z + y|| < max(||z||, || E};'lp
particular, if ||z|| > |ly||, then ||z + y|| = ||z||- | (

J. \ I[
Lemma 3.2. Let X be a full subspace of B |0, 1], then there exists some ¢ = p" € N so that the map ¢[ 2 ZH
is a Frobenius automorphism of X. Thus, for any wide open neighborhood P* O U D X, the pair (U <25) 150
Frobenius neighborhood of X .

PROOF.  Suppose X is of the form B[0,1]\ U, B(ay,1). Since d is finite, a; lies in finitely many residue

classes. There exists some ¢ = p™ € N so that a;7 = dj for j = 1,...,d. In other words, ¢ may be chosen
with [la — a;[| < 1.

For z € X, we have ||z — a;] = 1, so 27 — ;' = (2 — ;)7 # 0 € F. Therefore |27 — af|| = 1, and
[29 — a;]| = max(||z? — afl|, laj — a;]]) = 1. Since the argument applies for any j, ¢ : X — X is an
endomorphism, while it is Frobenius by direct computation. ([l

The lemma above leads to the implication that any connected affinoid with good reduction has a Frobenius
neighborhood.

Lemma 3.3. LetY = A'\{a1,...,a4}, X CY be a subaffinoid with good reduction, and (U, ) an F,-Frobenius
neighborhood of X in'Y. Then there exists an m € N and an Fym-Frobenius neighborhood (V,y) with V' C
F..(U) of X so that

(1) (ANV) C A for each connected component A of A\ X.

(2) ¢*log(z —a) — ¢"log(z — a) € A(V).
PrOOF.  [Col82] By assumption, we may assume that X is a full subspace of Y, say, X = B[0,1]\ Uj_,
B(aj,1), with [|a;]| < 1 only when j = 1,...,s. In this way, the connected components of A\ X are the
residue classes B(aj;,1) and A'\B [0, 1].

Consider the identity function z € B[0,1]” = Ty (k)™ = F [z], which is simply z : a — a. Then

P(a)” = ¢"(2)]z=a = 29|:=a = a’.
Thus, ||¢(z) — 29| < 1for all ||z|| < 1. Define W ={z € U | ||¢(z) — 27| < 1}

B[0,1]\X consists of only finitely many residue classes, one may choose m € N so that [|z¢" — z|| < 1 for
any z € B[0,1]\X. Let ¢ = ¢™, then [|p(z) — 2| < max(||¢(z) — 29" |, [|2¢" — z||) < 1. Notice that for any
lall > 1, ¢(a)™ = a? # 0, so ||¢(a)|| > 1, resulting in |¢(a)| = [[¢™(a)|| > 1. Thus ¢|4 is an endomorphism
for each connected component A of A\ X. In particular, the statement for (1) holds ¢ on any wide open
neighborhood of X.

For (2), notice that for all z € X,

P 4y g for j < s,
24 a;

(3.2) 1]l < min({la], [le(az)) for j > s.

(3.1) It —

The first inequality is true because for z € X, p(2)~ = 29" and d;9" = dj. So (p(z) — a;)~ = 29" — d;7" =
(2 —d;)?". The second holds since ¢ : X — X C O is an endomorphism, while ||a;| > 1 for j > s.

By Lemma 2.3, the first inequality implies ¢* log(z—a;)—¢" log(z—a;) = log( fz(z)a ‘)” ) is analytic. Moreover,

the second line says that log(z—a;) and log(¢(z) —a,) are analytic, therefore so is ¢* log(z—a;)—¢™ log(z—ay;).
Define V' by

Vz{zEFm(U)|||1—%||<1forj§8,and

J
[I21] < min([lay [, le(aj)) for j > s}

Then (V, ) is a Frobenius neighborhood of X C Y with (2) satisfied. O
3.2. The Dwork Principle.

Let X be an affinoid with good reduction, ¢ a Frobenius morphism on X. It is known that for each residue
class R C X there exists an n € N, zg € R so that lim ¢""(z) = zg, in which case zp is said to be the
m— oo

Teichmiiller point of R in X with respect to ¢™.
Observe that zg is a fixed point for ¢", that is, ¢"(zg) = zg.
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Lemma 3.4. Let V be a wide open annulus, and ¢ : V — V be a rigid morphism. Then ¢* : A(V) '—J;\\é("l/]\l
may be extended to a map Aig(V) = Aiog (V). | ‘ ’e{" 1
= ||

Proor. Note that by definition Ajog(V) = A(V) [log(f) | f € A(V)*], so one can extend ¢* ﬁé_’ugrglly yid &
o™ ( Z gi(2)log f;(2)) = Z ¢*gi(2)log ¢* f;(2), since ¢*g; still lies in A(V'), while ¢* f; € A(V)* since o is
j=1 j=1

a homomorphism, thus ¢*(>_ g,(2)log f;(2)) € Aleg(V) as desired. O
j=1

Lemma 3.5. Let X be an affinoid, ¢ : X — X a Frobenius morphism, and f being locally constant. Suppose
there exist some a € C, with 1 ¢ {a"}nen so that ¢*f —af =0. Then f =0 on X.

PROOF. ¢"*f = a™f by direct computation. Let R C X be a residue class, with zg its Teichmiiller
point for ¢™. f(zgr) = 0 because a"f(zg) = ¢"*f(2r) = f(zr). f is locally constant, so that f = 0 for
some open neighborhood zz € V' C R. For any z € R, chose m great enough so that ¢"™(z) € V. Then
a" f(z) = ¢"" f(2) = f(¢™™(z)) = 0. Since the argument holds for any residue class R in X, f = 0 on
X. O

A few notations to be mentioned:

(1) Let Lr(X) ={f € L(X) | flr € A(R) for each residue class in X}, and
(2) Qr(X) is defined by Qr(X) £ Lr(X) ®ax) UX).

Observe that if X is smooth, any residue class R C X would be conformal to B(0,1), and ¢(zz) = 24(R)-
Let R be a residue class, and ¢ : X — X be a Frobenius morphism. Then ¢(R) also lies in a residue
class since ||z — y|| < 1 implies (¢(z) — ¢(y))~ = 27 — g9 = 0. Suppose U lies in a residue class R, we set
n =ngy = mingen{m | ¢™(R) C R}, the inequality ng r > ny 4(r) leads to

Ng.R = N, ¢(R) = " = Ng¢n(R) = Ne,R-

Which says ng r = ny ¢(r) for any residue classes R C X.

Lemma 3.6. Let X be an affinoid with good reduction, 6 € Qr(X), and ¢ : X — X be Frobenius satisfying
¢*(0) — al € ALR(X) with 1 ¢ {a"}nen. Suppose ¢*(0) — al = dg for some g € Li(X). Then there exists a
unique f € Lg(X) so that

(1) df =6, and
(2) o*(f) —af =y

ProOOF. Note first that if (2) hold for some f € Lg(X), then f must also satisfies ¢"*f = a"fr +
n—1

S an7igo ¢l for any n € N.

§=0

Any residue class R =~ B(0,1) since X is smooth. In other words, we may let A(R) ~ C, (). Choose

n = ng r € N be the minimal natural number so that ¢"#(R) C R, and find the corresponding Teichmiiller
point zg. Since § € Qr(X), 0|r € A(R)dz. Hence there exist fr € A(R) so that dfg = 0|g. The fr above is

n—1 ) )
unique up to its constant term, and will be so after we demand that f(zg) = (1—a™)™t 3 a" 177 go¢/(zR).
7=0
Define f € Lr(X) to be the unique function satisfying f|r = fr, and f satisfies (1) by construction.
If welet FF = ¢*(f) —af —g € L(X), dF = 0 implies F being locally constant. Notice that F' € Lr(X),

so F' is actually constant on each residue class. Since ng r = 14 4(r) as discussed above, we have ¢* f(zr) =
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n—1 n
(1—a™)t Y a1 gogtl(zg) = (1 —a™) "1 Y a"Igo ¢’ (zg). Thus
=0 i=1

F(zr) = ¢" f(2r) — af(2r) — 9(2r)

n n—1
1 i , a — ,
= T—an Zan Igo ¢! (zp) — T Za 1 igo¢?(zr) — g(zR)
i=1 =0
1 o . =
== (D_a" g0 ¢ (zr) = Y _a" g0 ¢ (2r)) — 9(2r)
Jj=1 j=0
1
= 7 (9(0"(2r)) — a"g(zr)) — g(2r)
=0
Therefore F' = 0 on X, which indicates that f satisfies (2). O

Corollary 3.7. The function [ constructed above is manifestly unique.

PROOF. Suppose there exists f1 and fo in Lr(X) satisfying (1) and (2) simultaneously. Consider F' =
fi — fo, which satisfies

(1) dF =0
(2) ¢*F —aF =0
(1) implies that F is locally constant, and so (2) would lead to ' = 0 on X by lemma 3.5. O

4. THE LOGARITHMIC F-CRYSTALS

4.1. Definition of a logarithmic F-crystal on A'.

Recall that a full subspace X in B [0,1] is an affinoid subset of the form B[0,1]\ U%_; B(a;,1). A basic wide
open set U about X is defined to be U = A\ U?:1 B [aj,ra].}, where r,, < 1. For j =1,...,d, let V; denote
the wide open annuli V; = A(a;;7,,,1). Notice that X U{V;}9_, U A(00;0,1) = U is a disjoint covering of
U. For 0 < r < 1, let Up(X) £ B(0,r~")\ U, Blaj,r]. Up(X) D X is a wide open neighborhood, and
U,(X) C U whenever r is sufficiently close to 1.

Now, U is a basic wide open set. For z € U, set r(z) £ min?zl{Hz —a;||}, D=DU) £ {(z,y) €U x U |
|z —y|| < r(x)}, and p; : D — U to be the projection maps, j = 1,2.

Suppose U C A! is an open subset, and M C L(U) is an A(U)-submodule. If + : V < U, we let
M) ="M, Qu(V) = t*Qp be defined by restriction. It follows that M (V) = M @) A(V) € L(V)
regarded as an A(V)-module, and Qp/(V) = M(V) ®@av) 2(V) € Qg (V). Thus M and Qp; can be regarded
as sheaves on U (though if not specified, M and Qs will denote M (U) and Q;(U) respectively from now on).
For any morphism between rigid spaces f : U — V, f*M and f*Q); will denote the inverse image sheaves (of
A-modules), respectively. If further M satisfies dM C Qp/(U), define HY (M (V) £ Qp (V) /dM (V).

Definition 4.1 (Logarithmic F-crystals). Let U = A"\ U%_, B [a;,74,] be a basic wide open set about a full
subspace of B[0,1], say X = B0,1]\ U?zl Blaj,1). A logarithmic F-crystal on U C Al is defined to be an
A(U)-module M = M(U) C L(U) with A(U) C M, satisfying the six conditions below:
(A) Forj=1,...,d,
(A1) M(X) C Lp(X), and
(A2) M(V;) C Aiog(Vj)-
(B) dM C Qu (V).
(C) piM =p; M.
(D) For any 0 < r < 1 so that U, C U, M(U,(X)) satisfies the identity principle.
(E) For any 0 < r < 1 so that U, C U, the natural map ¢* : H*(M) — H*(M(U,(X))) induced by
restriction is an isomorphism.
(F) There is an Frobenius neighborhood (V, ¢) of X in U, and ¢ : V' — U the inclusion map, so that
(F1) ¢*(M) € M(V) =" (M), and
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(F3) There exists a b€ C, with 1 ¢ {b"}72, so that ¢*(0) — b € dM (V) for any 6 € QM(U) A .
& |

Lemma 4.2. For any Frobenius neighborhood (V, ¢) of X in U satisfying (F), (F,.(V), ™) alse salis es'ﬂ(?'F ,\
with ¢" and b™ in place of ¢ and b, respectively. ®

PRrOOF. [Col82] Note that for any n € N, ¢"~F, (V) C V. By (F),
P M(F,V) = ¢*M(¢" 'F,V) C "M (" 'F,V) = ¢" " M(F,V),

so by induction, ¢"* M (F,,V) C M (F,(V)). Observe that F,, (V') here may be replaced by any subset of itself,
so (F1) holds for (F,,(V), ¢™).

Suppose now ¢*6 — bf = dg for some g € M (V). Since ¢*M (V) C *M (V) = M(V), by induction we have
¢™*g € M(V). Thus ¢™*dg € dM (V) for m =0,...,n — 1. Writing

n n

G0 =00 =3 (7)Y TG0 —10) = D (67)" g,
j=1 j=1
we see that (F3) holds for (F,,(V), ¢") 0

From now on, we will always assume that the Frobenius neighborhood (V, ¢) we choose for the logarithmic
F-crystal M over U satisfies the statement of Lemma 4.2 and is of the form V = U,.(X) for some 0 < r < 1.
In this manner, we have V NV as an annulus for j =1,...,d.

4.2. Integration on a logarithmic F-crystal.
The main theorem for this section is as follows:

Theorem 4.3. There exists a unique minimal logarithmic F-crystal M* > M over U so that
dM* > Qu(U).
That is, for any 0 € Qp(U) = M (U)dz, there exists an fo € M* so that dfs = 6.
The proof for this theorem will be postponed until the end of this section.

Lemma 4.4. Let M be a logarithmic F-crystal on U D X. There exists a F,-Frobenius neighborhood (W, ¢)
of X inU, ¢ = ¢™ for some n € N so that

(1) (W, ) satisfies (F) with b replaced by a = b" in (Fy).

(2) W NV;)CV; forj=1,....d.

(3) log(Z2=2%)y ¢ A(W) forj=1,...,d.

(z—aj)?

Proor. [Col82] Let (V,¢) be the Frobenius neighborhood for M in (F). By Lemma 3.3, there is an F,
Frobenius neighborhood (V1,¢") of X with V! € F,(V) so that (3) is satisfied. Also, for any connected
component A C A'\ X, we have ¢"(ANV?!) C A.

To see that (W, ¢) satisfies (2), by shrinking V!, one may assume that each ANV! C V; for some j = 1,...,d.
Set W = ni_o{z € V! | ¢/(2) € V'} = ﬂ?;lle(Vl) = F,_1(V1), then for each connected component
A C AN\X, since W C V1, we have

"(V;iNW) C ¢"(ANW)C ANVi C V.

Since W C F,, by Lemma 4.2, (W, ¢) satisfies (1). O
Lemma 4.5. Let 0 € Qp(U) be a 1-form, (V,¢) be the Frobenius neighborhood in (F). There exists an
fo € LIU) and W CV satisfying

(1) dfe =9,
(2) ¢*fo —bfg € M(V) after restriction onto V, and
(3) fol X € Lr(X), folv, € Aog(V}), where j =1,...,d.

ProOOF. [Col82| Let § = h(z)dz, we have h|x € Lr(X) by (A), so 0|x € Qr(X). Moreover, by (Fz), there
exists some g € M (V) so that ¢*(0) — b = dg. Thus by Lemma 3.5, there exists a unique f € Lr(X) with
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(a) df|x =0|x, and AWA

(0) ¢*(f) —bf =g | .em— \
on X. e '[~
Meanwhile for j = 1,...,d, on V; we have f; € Ay, with df; = 0]y;, which is unique up t'é'_aa_. CL)nstan% ”
for each j. Again by (F3), we have F; = ¢*f; —bf; —g € M(V; NV) C L(V; NV) satisfies dFj =0 and
is locally constant. However, ¢*f; € ¢*M(V NV;) C M(V NV;) by (F1), bf; € M(V NV;) by definition,
glvav, € M(V NV;), while M(V NV;) C Alg(V;NV) by (A), we have Fj € Ajog(V; NV). Since V NV are
annuli, by the identity principle of Ajoe over annuli (Proposition 2.6), F; is constant on V N'Vj.

Notice that by Proposition 2.6, f; may be differed only by a constant. Suppose fp|v, = f; + b;, then
(b*(fj +bJ) —b(fj +bJ) —g=F;+ (1 —b)bj. Thus if we set b; = —(1 —b)_le, that is, f0|VJ = fj — (1 —b)_le,
it would be ¢* fs —bfg = g on V;.

Thus, we define fy by

(a) folv, = f; — (1 — b)~'F;,j=1,...,d, and
(b) f9|X = f7

which satisfies the three conditions given in the statement. |

Respecting its own nature, we will denote the function fy constructed above as [ 6 for the rest of this
article. Justification of this notation will be done in the following passage.

Remark. Apparently the function satisfying the conditions in Lemma 4.5 above is not unique; however, when
(V, ¢) is replaced by any other Frobenius neighborhood, say (F,,(V'), ¢™), the constant chosen would be different
but will vary as a constant function on U by property (D). We construct fy = [ 6 in the sense of proving
Lemma 4.5, but any function satisfying the same conditions will not affect the validity of our results. One can
simply regard the liberty by a constant as a generalization of the case in the indefinite integration over R or
finding primitive on C. For convenience, We will denote f ~ ¢ if f and ¢ differ by a constant.

We will now state some properties for primitive computation, some of which may be regarded as an analogy
to the case on R or C

Corollary 4.6 (Linearity). The association 8 — fg (mod C,) is a well-defined homomorphism. That is, let
o and w be two 1-forms in Qp(U), and a,b € C,, then we have

/(aa+bw)~a/cr+b/w.

PRrROOF. Since F = [(ac +bw) —a [0+ b [w € M(U) satisfies dF = 0, it is a locally constant function.
¢*F — bF € M(V), applying property (D) for r sufficiently close to 0 so that U 2 U,(X), we know that
¢*F —bF = a € C,. Since F|x € Lr(X), consider F! = F — 1% on X, which satisfies ¢*F' — bF! = 0, by
Lemma 3.5, F!' =0, so F = 1% on X.

Since Fly, € Ajog(Vj) while it is locally constant, by Proposition 2.6, ' € C, on any annulus containing V},

with (1 —b)F = a, thus F' = 1% is constant on U. O

Corollary 4.7 (Fundamental Theorem of Calculus). Let 6 € Qp(U) be a closed 1-form, say, 6 = dg for some
g€ L(U,),0<r<1. Then [~ g onU,.

PROOF. Let F = [6— g, sodF =0. Choose 0 < r < 1 sufficiently close to 1 so that on U,, ¢*F — bF €
M(U,). Therefore ¢*F'—bF = a € C, as above. Similar to the prove above, F|x = %7 is constant by Lemma
3.6 and its corollary. On the other hand, (1 — b)F|y, = «, and the result can be extended to any annulus

containing V; by Proposition 2.6. O

Remark. By Corollary 4.7, for any 6 € Q,;, one may define fzy 0 = fo(y) — fo(x) € C,, which is well-defined.
The elimination of ambiguity may be regarded as an analogy to the definite integral over R or contour
integration for analytic function (which satisfies the Cauchy theorem) over C.

One now define

Nt = M)+ 3 A(C) /9,
0

where the sum is taken over any § € Q(U) and [ 0 = fy satisfying the hypotheses in Lemma 4.5. dM* 5 Qy
is true from this definition.
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ProOF OoF THEOREM 4.3. [Col82] We will complete the proof for this theorem via two statements separately
(1) M' is a logarithmic F-crystal over U with Qp(U) = Mdz C dM*, and e:” I,'[
(2) For any logarithmic F-crystal M2 over U so that Q,(U) C dM?2, one has M* C M?2, [l H H

For (1), we examine each of the properties provided in the definition of a logarithmic F—crystal

(A) By construction, any f = [ 6 satisfies property (3) in Lemma 4.5, which is exactly (A1) and (Ag).
(B) dM' =d(M + S A(U) [6) dM+z(9A )+ [ dA(U)). Observe that dM C Qp(U), € Qpr(U)
0

means §A(U) C Qu(U), and [dA(U) C M'dz = Q1. Since Qpr(U) € Q4 (U), (B) holds for M.
(C) Before proving (C), we need the following

Lemma 4.8. If f € M", then f is analytic on B(x,r(x)) for x € U. (For the definition of r(x),
review the second paragraph of this section.)

Proor. (a) For z € X, r(z) = 1, while B(z,1) = R is a residue class in X. By construction
flx € Lr(X), thus f|r € A(R).
(b) If for some j =1,...,d, x € V}, so r(x) = ||z — a;||. Since f|v, € Aiog(V}) = Alog [log(z — a;)] by
Lemma 2.4 and its corollary, while log(z) is analytic on B(z,||z||) by Lemma 2.3, we know that
f is analytic for z — a € B(xz — a, || — al|), that is, z € B(x,r(z)).
(]

Lemma 4.9. Let 0 < r < 1 so that U,(z) 2 U. For any f(z,y) € A(D(U,(X))), there ezists a
unique F(z,y) € A(D(U,(X))) so that
(a) & F(z,y) = f(z.y), and

(b) F(z,z)=0.

PrOOF. Note that 0 < r(z) < 1, so B(z,r(x)) is conformal to B(z,1) ~ M(Ty(k)), which leads
to H'(B(z,r(z))) = 0. For any z € U, (X), p;*(z) = {(z,9) € UxU | |ly — z| < r(z)} ~
{ly e U] |ly—=z| < r(x)} = B(z,r(z)) and for any z € U.(X), f(z,y) € A(B(z,r(z))) when
regarded as a single-variable function in y. Thus there exists a unique F,(y) € A(B(z,r(z))) so that

%Fz(y) = f(z,y) and F,(x) =0 on B(x,r(z)). Suppose there exists a function g(z,y) satisfying the
statement of the lemma, then g(z,y) = F.(y) on B(x,r(x)) since H*(B(z,r(x))) = C,, proving the
existence and uniqueness.
Define F(z,y) = F,(y). For any affinoid Y contained in U,.(X), let h(z,t) = f(z,y)|y € AY) by
the change of variable ¢t = y — . Since (z,z) € D(U,(X)) for any z € U, h = Z aj(x)(y —z)?, where
=0
a;(x) lies in the completion of C,(X). While %F(z,y) = h(z,y —z) on 1_1(1) and F(z,z) =0, by

the identity principle on A(B(z,r(z))) and A(Y), we have F(z,y) = Z S) (y—x) e A(Y). O

Lemma 4.10. Let § € Qp(U) and fo = [0, then
pifo —pafo € P1M.
PrOOF.  Set F(x,y) = (pifo)(z,y) — (05fo)(x,y) = fo(x) — fo(y). By Lemma 4.8, for each z € U,
F(x,y) is analytic on p;!(x). F(z,y) satisfies
(a) & F(x,y)dy = p5(0), and
(b) F(x,z) =0 for any z € U.
0 € QuU) = M @aw) A(U)dz and so p36 € psM @5 pwy) A(D(U))dz. Note that p§M piM by
(C) for M and p; ' (U,.(X)) C p, *U for some 0 < 7 < 1. Thus, one may write p50 = Z hj(z,y)g;(z)
=

for some h; € A(D) and g; € M(U,(X)) for the 0 < < 1 chosen above.

By the previous lemma, for some restriction onto U,.(X) for 0 < r < 1, one can find H;(z,y) € A(D)
so that
(a) #-H;(z,y)dy = p3(6), and
(b) Hj(z,z)=0forall j=1,...,n
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If we let F'(z,y) = > Hj(z,y)gj(x), then by direct computation F' satisfies the same :cﬁl'fgﬁl"'l
Jj=1 |

as F does and F' € piM. For any x € U, p;'(x) = {z} x B(z,r(x)), and both F anc} F{(“arel

analytic on p; 'z as a function of y. By the criterion satisfies by both, F(z,y) = F(, y) y lfor anif] A

(z,y) € {x} x p; 'z, and so on D. Thus F € p{M as desired. B

Since p{ M = p3 M, one immediately has p} fg — p3 fo € p5M as well. Therefore, for any 6 € Qp,(U),
p5 [0 € piM" and p} [ 6 € po* M. This proves that M satisfies (C) since M* = M+ [0-A(U
0

First, note that for any affinoid X, it is known that A(X) satisfies the nullstellensatz: for any ideal
ICAX),{zeX | f(x)=0for any f € I} = ¢ if and only if I = A(X).

For any rigid space U so that A(U) satisfies the identity principle, for any « € U, f € A(U)
non-zero, we have (L)™ f(z) # 0 for some m € NU{0} (consider the local expression on some affinoid
neighborhood x € X C U about x). Thus, the for any non-zero f € A(U), we know that

o0 d .
()™ f-AW) = AW).
m=0 z
For sake of a neat notation, we will use fy and [ 6 interchangeably.
Now, (D) follows from

Proposition 4.11. Let 0 < r < 1 so that U.(X) C U, and 01,...,0, be in Qp(U) so that the
congruent classes [01],...,[0,] defined in H'(M(U)) are linearly independent. Suppose

() Yohy(a) - [ 65 € 31U, ()

with h; € A(U,(X)) and f € M(U,(X)). If F satisfies F =0 on V C U,.(X) for some non-empty

open V Then h (2) =0 on U,(X).

PROOF. Suppose not; let n € N be minimal so that for some F € M as above, F' = 0 while

hj(z) # 0. dF = fdz+ 3 (dh;fe, + hj0;) = 0. Define f' via f'dz = fdz + 37, h;0;, since
j=1

0 € Qu(U.(X)), fr € M(U.(X)). We have F' = f! + Z fo,h, s

n—1
Wy F = hn ' = (W f = hof1) 4+ > fo, (hnhly = hihy) =0 on Up(X).
j=1

Notice that h; € M by (B), and this function, lying in M?, fit in the form in the statement of this
proposition. By the minimality of n, we know that h,,h —hj,h; = 0for j = 1,...,n—1 (and, of course,
for j = n). Thus, d(,%) = 0, saying that h;/h, € A(U,(X)) (following an argument similar to that
used in proving Lemma 2.6) and so h; = bj;h,, for some b; € C,. Thus, h; [ 0; = bjh,, [0; = h,, [(b;0)
by Corollary 4.6. Rewrite (4.1) as

F:f+hn/(2bjoj).
j=1

Let 0 = Y7 b;60;,50 F = f+h, [0 =0on V. Differentiate to yield F'dz = f'dz+hn0+ fo5-hndz.
Define recurswely fO=f,and fmdz = f'dz + ()™ 'h,6. Then inductively we have

d m _ fmn im _
(&) F=f +(dz) hnfo=0 onV.

By nullstellensatz, g + fo = 0 on V for some g € M(U,(X)). By (B) and (D) we have § = —dg
on U,(X), so [f] = 0 in HY(MU,(X)). By (E) for M, the independence of 61,...,60, (mod dM) is
violated in H'(M), a contradiction. O
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Lemma 4.12. For any 1 > r > 0, with U,(X) C U, F € M'(U.(X)), one may always wmte.,F'
form of ‘

n

j=1

1|'

with hj € A(U(X)), f € M(U.(X)), and {[6;]}}—, being independent in H* (M (U,(X))).

m m
Proor. It suffices to prove that for any finite sum ) h; fp, as in the latter term, one has ) h;fg, =
j=1 j=1

f+ 3 hj fe;, , where f € M(U,(X)), m <n, and {[8;,]}7_, is independent in H'(M(U,(X))). We
k=1

proceed by induction:
For m = 1, if df; # 0 we are finished. Otherwise, then fy, € C, and so hifg, € A(U.(X)) C
M(U,(X)) may be Jomed into the first term, which leads to n =0, a tr1v1a1 case.

For m > 1, suppose Z bibj, € dM for some m > s, by € Ctzmes say Z b, = df!. Since
Z b [0, ~ f! by Corollaries 4.6 and 4.7, and f' may be joined into the first term, we may simply
k=1

S S
assume that Y by6;, = 0. However, then, Y by - [6;, =b € C,. Consider
k=1 k=1

m h S h S m
Zhjfej:%Zbk/ejk_%Zbk/ejk—i_zhjfej
j=1 bg=1 bk=1 j=1

=f+> gifo,
j=1
J#J1
with f = };— Z % [ 0, and an proper choice of g; € A(U,(X)). By induction hypothesis the proof
is done. - |

Remark. Following the notation in the above lemma, note that when »_ bi0;, € dM, b, € C), one

k=1
m
may rewrite the expression ) h;fy, as
j=1
m m
> hife, = foy + Y 9ife,
j=1 j
J#Tk
for any of £ = 1,...,s, with f() depending on it. In short, one may choose to remove (in the above

sense) any term from the expression that occurs in the dependence relation.

For any F € M'(U.(X)), f = 0 on V, write F in form of the lemma above. By the previous
proposition, m =0 and so F = f € M(U,.(X)). By (D) for M, the same property is also satisfied by
M*.

Starting with

Proposition 4.13. Let V =U,.(X) C U, the map

HY (M(U)) ® H' (A(V)) = H'(MY(V))

(el = | [ 0-v]

is a well-defined isomorphism.
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Proor. First, if 6 € dM, fp € M and so [for] = 0 since A(V) C M(V) C J\Zfl(V)lr\\_.és}f
v=dgedA(V)CdMY(V), [§ e M" and ==

/e.yz/e.dg:d(/eg)—(d/e)gedMl:d(/eg)—egedMl. 'Il

By Corollary 4.6, § — [0 (mod C,) is a homomorphism. To prove the map in the statement
unambiguous, it remains that for b € C,, bv € Qp (V) C dMt.
« is an epimorphism since it is true on the form level. It suffices to prove that « is a monomorphism,

‘ lfﬁj'yj. One may assume [0,] € H' (M)

n
that is, ker & = 0. Suppose now ) 6;®v; € ker ¢, that is,
— i

j
being independent: Y. b;0; € dM implies Y b;fg, € M, so & > bjfo,vn € dM C dM?, iterative
j=1 j=1 " =1

subtraction with the original term guarantees independence. Let > [ 6, -v; = dF for some F € M.
j=1
m
By Lemma 4.12, one may write F' = f + Y h;fs, with f € M and h; € A(V). Notice that we did
j=1

not require {[0;]}7L, to be independent (see the remark following Lemma 4.12). So

ngj "V = dF = df+Z(f9]hJ +hj9j)’
j=1 =1

m

and ) fo,(v; —dh;) = df + > h;0; € Qy = M ®4 Adz (for j > n, define v; = 0). Choose the
j=1 j=1

primitive in the way that, say, > fo,(v; —dh;) = dg with 0 =g — >~ fo,(v; — dh;). By Proposition
1 j=1

J
n

4.11, we know that v; — dh; = 0, that is, [v;] =0 in H*(V), then Y [0;] ® [v;] = 0. O

Jj=1

~

Lemma 4.14. For 0 < r < 1 so that U.(X) = V C U, we have H'(A(U)) = HY(U.(X)) an
isomorphism induced by .*.

PrROOF. The map is well-defined homomorphism since restriction will not affect an 1-form being
exact. Suppose 0]y € dA(V), then ([ )|y € A(V), while by construction, [0 € M satisfies ([ 0)|x €
Lp(X) and ([0)|y, € Ag(Vj). Since the Ajg(V;) possess the identity principle, and the local
expressions on V; would not change after passing to a annuli subset, one has f 0 € A(U). Therefore
6=d[6,and [0] =0in H'(U). O

Thus, (E) follows from the commutativity of the diagram

H' (M) x H((U) —— H'(M'(U))
Zl O JZ
H'(M) x HY(V) —— H"(M(V))

(F) (F1) Let (V,¢) be a Frobenius neighborhood of X in U so that M (U) satisfies (F}). By construction
of M, for any F € M'(U), F may be written as F = f + 5 h;fo,. Then
j=1

¢ F =" [+ (670;) (6" fo,)-

Jj=1

Note that ¢*f € M(V) by (F1) for M, ¢*h; € A(V) since a Frobenius morphism is rigid, and
¢* [0, —b; [0, € M(V) C M" from Lemma 4.5, so ¢* [ §; € M". Therefore M" satisfies (F}).
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(Fy) Let (V,¢) be a Frobenius neighborhood of X that satisfies the criterion in Lemma 4.9 IrD-_.gﬁ @
a: HY(M)® HY(A(V)) — Hl(Ml(V)) to be the bilinear map defined in Propositioni4. ]rf lf)'t'e
that for 8 € Qyr and v € Q, I| 6=

A

. H
d"a(0,v) = (9" fo)P"v = fprad™v A

leads to
d)*OZ(G, V) - qb : O[(Q, V) = f¢*9¢*y - qb . f9V
= fo-00 v — bfgd" v + bfed v — qb- fov
=a(p*0 — b0, 0"v) + ba(0, ¢*v — qu).
As ¢*0—b6 € dAM (V) by (Fy) for M, and ¢*v —qv € dA(V) by Lemma 3.6 and identity principle
for A(V), (¢*0 — qbf) ® (p*v — gbv) = ¢*0 Qv — gb- 0 @ v € kera. Since « is surjective and
bilinear, M* satisfies (Fb).
As for (2), for any M? so that dM2 D Qyy, fo € M? and dM C Qy; C dM?2 by (B), so M C M? following
4.7. As a A(U)-module, M*! is minimal, and we write M! = M! afterwards. O

5. INTEGRATION THEORY FOR Basic WIDE OPEN SETS

5.1. A(U) as a logarithmic F-crystal.
In this section, we will prove that for a basic wide open set U, A(U) is a logarithmic F-crystal and apply
the conclusions from the last section to develop an integration theory on it. This process is essential because
otherwise the discussion above would seem rather idiosyncratic.

we will let U = P'\{as,...,aq}, X = B[0,1]\U{_, B(a;,1), and U, (X) defined as before.

Lemma 5.1. Let U D X be a basic wide open set. Then A(U) satisfies criterion (F) above.

PROOF.  (F}) holds for any rigid analytic morphism. Choose g = p™ so that z — 29 is a Frobenius morphism
on X and satisfies the statements for Lemma 3.3. Then for each 6 € Q(U), since

d
0y, — (resa_,,e)f e dA(V)),

by condition (2) of Lemma 3.3, 6 satisfies (F») on V; for each j = 1,...,d. While 0| x automatically satisfies
so since Frobenius morphisms are rigid. ]

Theorem 5.2. Let U D X be as above. Then A(U) is a logarithmic F-crystal.

Proor. Note that X and V; are affinoid subsets of U.

(A) By definition of A(U) for arbitrary open sets.

(B) Consider the local expression on each subaffinoid, say, a residue class R C X. Since H!(R) =
H'(B(0,1)) =0, (B) follows from (D).

(C) It follows from the identity principle for A(D): any F(z,y) = pif(z,y) = f(z) is constant for
z € U, (X) C U on p;*(z) ~ B(0,1), which is a subaffinoid of D, thus it is a constant and therefore
lies in p5A(U)

(D) Uniqueness principle for analytic functions are satisfied on wide open sets.

(E) See Lemma 4.14.

(F) See Lemma 5.1.

We will denote A°(U) = A(U), define recursively A™(U) = (A(U))!, and let Q" = A" ® Q.
Lemma 5.3. For any logarithmic F-crystal M,
dimc, H'(M") = d - dimc, H' (M),
where d is the number of connected components in A1\ X.

PrOOF. From Lemma 4.13, it suffices to prove that dimg, A(U) = d. The latter follows from Lemma
2.7. O
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Thus, inductively, dimc, H'(A™(U)) = d".

Corollary 5.4. Let X be a standard subset of B[0,1] of the form X = B0,1] \U?:1 B(aj, 1), a; 6!l :
in distinct residue classes. U C X a wide open neighborhood about as above. Then,

d
AN U) = AU) + Z log(z — a;) - A(U).

PrOOF. It is not difficult to see that { [fol } d_, is aindependent subset in H!(U). Compare the dimension
J

d
of both sides to see that H(U) = > -92- . dA(U). Thus
g=1""

and equality holds since

/ dz =log(z — a;) € AY(U).

z—aj

5.2. The structure of A"(U).

n

Lemma 5.5. Let the notation be as above, then A"(V;) = 3 (log(z — a;))* - A(V}).

k=0
Proor. Without loss of generality, let a; = 0 and write V; = V. We proceed by induction, for n = 1, for
any 0 € A°(V)dz, follow the prove of Lemma 5.1 and see that 0 — (resof)dlog(z) € dA’(V). By the uniqueness
principle (D) for A*(V), [0 € ( ) 4+ C, log(z). Since the conclusion holds for any 1-form 6,

AYV) = AO(V) +y / 0-A(V) = A(V) +log(z) - A(V).
6

For n > 1 follow the computation of Lemma 2.7 to see that if § € A”~1(V), written by induction hypothesis
as = > 0", ! h;(log 2)? with hj € A(V), we have § — Lreso(hyp—1dz)d(log z)™ € dA™ (V). Thus,

A"(V) = A" (V) + (log 2)" = "(log(2))* - A(V)
k=0

as desired. O

Lemma 5.6. Let f € L(U), then f € A™(U) if and only if
(1) f|X € ‘CR(X)’ and f“/} = Alog(‘/j): fOTj =1,... ,d’
(2) df € Q*(U), and
(8) there ezists an F,-Frobenius neighborhood (V,¢) of X in U so that

¢"(f) =" flv € A(V).

PROOF. (=) (1) A™(U) is a logarithmic F-crystal, thus satisfies (A).
(2) It follows from condition (B).
(3) Since by choosing any wide open neighborhood V' with (V,¢), ¢ : z — 27 satisfies (F}), both
¢*(f) and g™ f|y lies in A™(V).

(<) Note that (1) is necessary by definition. By (3), one may find g in A™(U) with ¢*f —¢" "1 f = g. Let b
and a Frobenius neighborhood (V!, ') satisfies the conclusion of (Fy) for A"(U), then by (2) we can
find g' € A"TY(V) so that df = dg' and ¢*f —bf = g*. The problem here is whether we may choose
the b in condition (F) for A"(U) as b = ¢"*!, and (V, ¢) = (V1, ¢'). If so, then g' = g € A®(V) and
therefore df = dg' implies f € A"(V).

Let (V, ¢) be an F,-Frobenius neighborhood that satisfies the conclusion of Lemma 3.3. We proceed
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by induction on n € N, by (D) it suffices consider the expression on each of V: ‘\"

For n = 0, A(U)|lv, = A(V;) ~ Cp(2,y) /(zy — 1) since the local expression on an afﬁnmpLﬁ’ul
does not alter after restriction onto a subaffinoid annuli. Then for any 6 = hdz = h(]dZ € \
h may be written as a convergent Laurent series on V; about a;. 6 — resy, (hodz);9%"€ dAO TR

while zf—‘zj = dlog(z — a;). Hence, if we denote the operator ¢* —b = F(9), it sufﬁces to prove that
Fo(#) (2= 42y = F,(¢)(dlog(z — a;) € dA®, which holds by Lemma 3.3,

Fq(@)dlog(z — a;) = d(Fy(¢) log(z — a;)).

For heuristic purpose, we will proceed and discuss one more step in the induction. If n = 1, by
Lemma 5.5, and 0 € QY(U) of the form § = (ho( ) + hi1(2)log(z — a;))dz, from the discussion in
Lemma 5.5, one know that 6 — res,; (hi(2)dz) = (z —aj)dz € dA(U). We need to prove that

Fole) () qz) = F(4)(Ad(log(z — a;)?) € dAl, which holds by Lemma 3.3,

zZ—aj

Fo(#)d(log(z — a;))* = d(Fg2(¢)(log(z — a;))?), and
Fq2(9)log(z — a;) = (6" log(z — a;) + qlog(z — a;)) Fo(plog(z — aj)).
where ¢log(z — a;) = (¢log(z — a;) — qlog(z — a;)) + qlog(z — a;) € AY(V NV;), and the statement
holds by induction hypothesis.
Suppose n > 1, again by Lemma 5.5, write § = fdz € Q"(V) and f(z) = f!(2)+hn(2)(log z — a;)",
with f1(z) = Z;:Ol h;(z)(logz — a;)? satisfies (3) for ¢"™*. Since Wdz € dA™(U), it is
sufficient to prove that Fn+1(¢)(log(z — a;))™ € A™. Similar to the above case,

n

Fon(9)(log(z — a;))" = D (¢ (log(z — a;))¢" 7 (log(= — a;))" ) Fy(d log(z — ay)).

Jj=0

Since ¢* (log(z—a;))" ™7 = (¢* (log(z—a;))" 7 —¢" 7 (log(z—a;))"7)+¢" 7 (log(2—a;))"~7 € A"~I (VN
Vj) by induction hypothesis and Lemma 5.5, we have reached the conclusion that F n+1(¢)(log(z —
a;))" € A",

([l

Notice that A™(U) for n > 0 is in general not a ring; however, with the previous lemma,
Corollary 5.7. The direct limit A(U) = lim A™U) of A(U)-modules forms a ring, equipped with multiplication
defined when regarded as a subset in L(U).

ProOOF. It follows from a simple observation: for f € A™(U), g € A™(U), f - g satisfies

¢*(f-9) =g TIII(fg) = ¢ f(¢"g — " g) + (" — " g™ g
So by the converse of the previous lemma, f - g € A(U). |

6. THE POLYLOGARITHMS

6.1. Definition and functional equations of the polylogarithms.
From now on, we will choose a specific affinoid subspace of P! to work on. Let U = P'\{0, 1,00} = A\{0, 1},

and X = B[0,1]\(B(0,1) U B(1,1)) = M(—542 ).

Definition 6.1. Define the polylogarithm functions l;(z) recursively by:
(1) lo(2) = ),

(2) dla(z) =ty ()2, and
(3) lim 15(z) = 0,

so that I, € A¥(U) for k € NU{0}. I, exists since U is a wide open set, and A*~1(U) are logarithmic F-crystals
o)

for k € N. Note that lo(z) is analytic for z near 0 and [y(0) = 0. Precisely speaking, lo(z) = — > 2™ on
n=1
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ON COLEMAN INTEGRATION AND p-ADIC L-FUNCTIONS 1 . 9

(6.1) (z) =) %:
n=1

on B(0,1)\{0} (compare (6.1) when k = 1 to (2.1), be aware that I;(z) is not a homomorphismras log(7)
is), by Proposition 2.6, I, € A(B(0,1)\{0}). By the identity principal (D) for 0 < r < 1 for logarithmic
F-crystals, I3, extends to a locally analytic function on P'\{1, 00} (note that I;(0) = 0 extends I}, as a locally
analytic function to z = 0). Note that we also define I for k < 0; since z € A(U)*, Iy € A(U) = A°(U) for
kE <O0.

Proposition 6.2. For m € N, let ¢ be some m™-root of unity. We have

m—1
1 : lk(Zm)
m Z b(¢?2) = mk
7=0
m—1 if 7, m—1 m .
PrROOF. Note first that > (¢7)" = ot ne.m since if otherwise, (™ > (¢Z)" = > (¢)" =
3=0 0 otherwise j=0 j=1

m—1 .
> (¢?)™. Due to the identity principle, one only has to consider the validity of this functional equation
7=0

near 0, where [, = > z"/n*. So

n=1
1 m—1 ) 1 0o o m—1 ] 00 Zmd lk(Z"L)
SN (= =S 2 iy — - .
7=0 n=1 7=0 =1
([l
For a simple generalization for (2), if n € Z, notice that %Zk(z”) = l’“jﬁ "l = nl’°7’1, an identity

which we will use repeatedly.

Observe that for X chosen in this section, since 0 = 0 and 1 = 1 both lies in F, C T, for s =0,1, any point
as € B(s,1) satisfies ||a? — as|| < 1. Hence ¢ : z — 2P is a Frobenius morphism of X, and any wide open
neighborhood V about X is a Frobenius neighborhood of X in U; furthermore, observe that any a € {0, 1, 00},

6(a) = a.
Define the twisted polylogarithic functions by lx , = lx(2) — p~*li(2P),

Lemma 6.3. I}, € AF=Y(U,(X)) for 0 < r < 1 sufficiently close to 1 so that U.(X) =V does not contain

any primitive p-root of unity, say, r = Hp||ﬁ

Proor. Note that z € A(U)™, and for k > 1, 11;(2?) = l’c’;% cp2Pl = p%. Thus,

d
el (2) = lhoa(2) = p7 "Vl (7).
So by construction, it suffices to prove that I1(z) — p~1l1(2P) € A(U,(X)). Since with ¢ : z — 2P, (V,¢) is a
Frobenius morphism of X, one may rewrite /;(z) — p~1l;(2P) = —%((W[l)(z) —p-11(2)), and d((¢*11)(2) —

p-l(z) = (p;::ll — -Z-)dz. On any residue class R ~ B(0,1) of X, (22— 2} ¢ A(R) and so (pzp:ll -

zP—1 z—1 zP
—£-)dz € dA(R) since H*(B(0,1)) = 0. We then have F € Lz(X) so that F = 5 — 12 on each of the
residue classes R C X. Since = — & € A(X), F € A(X). Thus d((¢*l1)(z) —p-li(z)) € dA(X) and

(I1(2) — p~ 1 (2P))|x € A(X) follows.
For any 0 < r < 1o that U,.(X)N{z € Al | 27 = 1} = (), for either s = 0 or 1, (1‘72,%1 Po)dz € Q(V;) with

2P—1 z—
ress(’;ip:ll —-2-) =0, thus (I1(2) —p~'1(27))|v, € A(V;). The facts above indicates that (I1(2) —p~'11(2?)) €
A(V) by (D) for AY(V).
At last, we prove that r = Hp||ﬁ guarantees that U,.(X) = V does not contain any primitive p*'-root of

p—1
unity: 1 ¢ V is direct, and if 2? =1, 2/ —1 = (£ —1)? = 0 implies z € B(1,1). Now, 2P =1 =(z—1) >_ 2/ =0
3=0
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4—.\

p—1

and suppose z # 1. Write z = 1+ a, then > ((1+a) —1) =p and ||af < || Z (14 a)l — 1)|| = |p|{ '{«1
3=0 I‘ r(
* m\

being non-archimedean. [

The lemma has a strengthen version:

Proposition 6.4. Let B=B [1, ||p||ﬁ} The twisted k-logarithm ly, , is analytic on U\B and has an analytic
continuation onto P1\B so that I, ,(0) = Il ,(c0) = 0.

PrOOF. Note that {5 ,(0) = 0 by definition since [;(0) = 0.

We will prove the proposition by induction on k& € NU {0} that I , can be extended with analyticity on
U\B.

For k = 1,1y, = 1% — 1255 is analytic on P!\ B since the poles of both terms are excluded, and [ ,(c0) = 0.
By induction hypothesis, suppose Ix, € A(U\B). By Proposition 6.2,

3

lep((P2) = Wlk(z ) — WP klk(z P) = mlk,p(z )-

M

1
m

<.

Il
\_/ =]

Thus I p(00) = = -m- lkm( = m ", (c0), hence I, ,(00) = 0 when k > 0. 2 then, is analytic on P'\B.
In particular, Hk £ Ip% € QP'\B) and since P'\B is a wide open disc Hl(]P’l\B) = 0. There exists an
F € A(P'\B) so that dF = 0x. Then by the identity principle for A(P*\B), Iy, ~ F is analytic on P'\B. O

2

6.2. The function D(z) and its related identities.

Definition 6.5. (1) log(z) denotes a branch of the logarithm. Define D(z) € A%(U) by

1
D(z) =13(2) + 3 log(z)log(1 — 2).
(2) For any Cp-values function f defined on U\{a}, a € U, define
.1 .
lim () = Jim f(2),
zeK
if any limits on the right exist and coincide, where K is an arbitrary finitely ramifies extension of @,
that contains a, or a = oo.

Lemma 6.6. Using the notation defined above, lim’_,,log(z)log(1 — z) = 0.

PrOOF. We may see that for any finite ramified extension K D Q,, log(z) is bounded near 0. Let a € K,
write a = p*u with |jul| = 1. Since log : K* — C, is a homomorphism, and {klogp}rcz is bounded, it
suffices to prove that log |c(o,1)nx is bounded. Since for any v € C(0,1) N K so that v # 1, ||u — 1] = 1 and
[lu? — 1] < 1 for some p-power ¢ (we may choose ¢ to be the order of Ky/K7, the residue class field). By the
local expression of log(z) near 1, we know that {log(u?)}.cc0,1)nx = {¢10g()}}uec(0,1)nK is then bounded.
The existence of the restricted limit follows.

Since for z sufficiently close to 0, log(l — z) = — Z " holds, we know that log(1 — z)/z is bounded

on a punctured disc about 0. Thus, it suffices to prove that limz _o0%2log(z) = 0. Suppose not, that is,
lim! ,,zlog(z) =a € Cy. b 2 log(a) € C,, is therefore defined. Since log(z) € £, b = lim!_,,log(zlog(2)) =
lim?! _)O(jogz + log(log(z))). The last term does not exists in any finitely ramified extension K > Q, by, say,
zn = pP — 0 because

log(2,) + log(log(2,)) = log(p”") + log(log(p”")) = (p" log p + log p" + log(log p) = (p" + n) log p + log(log p)

does not converge. Hence a contradiction is reached. O
Corollary 6.7. lim! ,, D(z) =0
ProOOF. This is a direct result from the lemma above and I5(0) = 0 (the latter holds by construction). O

We adapt the convention that 1 =0 once k<0 and 0! =1.
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Proposition 6.8 (Coleman-Sinnott).

1 1 |‘ A |
(6.2) (2) + (~D) () = = (log 2)", bl
(6.3) D(z):—D(%), and XL
(6.4) D(z) = —D(1 - 2).

Proor. [Col82]
(6.2): For k=0,

z z
(@) + oz = T+ y o =

holds; apply z% iteratively and observe that (6.2) holds for k& < 0.
For k € N, we proceed by induction on k. Assume that (6.2) holds for some k > 0, differentiation
yields

dz(lk+1(2) + (_1)k+1lk+1(§)) = lk(2) + (_l)klk(;)7 =~y (log2)"—.

Note that the last term equals to d(—2 (10%_)1’““) = d(fﬁ(log z)k*+1). Thus (6.2) holds for k + 1
module C,,, namely

1
(6.5) lrv1(2) + (—1)k+1lk+1(;) =-
for some b € C,. Notice that
(log 2)*+1 = p~(F+ D (log 2P)k+1,

Substituting z by 2P, we have

k+1

(log 2P)F 1 4+ b= — P

l1(2P) 4 (1) g (277) = = (k+1)!

T (log(2))F ! +b.

The three equations above assemble together to
1
lp(2) + (=1 e p(2) = (1= P00
By Proposition 6.4, lx11,(0) = lg41,(00) = 0, giving b = 0 and therefore (6.2) holds for k£ + 1 by

(6.5).
(6.3): By (6.2), and the definition of D(z),

Dz =1h(z7h) + %log(z’l) log(1 — 2z~ 1)

— ly(z) - %(log 22 4 %(mg(z*l) log(1 — =)

log =
= —la() - 5

((log 2) 4+ log(1 — z71))

1
=—ly(z) — 3 log zlog(z — 1)

= —D(z).
Note that log(—1) = % log(1) = 0.
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(6.4): 11(z) = —log(1 — 2), so dla(z) = —log(1 — 2)4 = —log(1 — 2z)d log(z) and
z ):—Z_llog( 1 )d( z

z—1 z 1—=z )
__ 1og($)d(logz log(z — 1))
=log(z — 1)d(log z — log(z — 1))
= —dly(z) — log(z — 1)dlog(z — 1),
d(log(——)log(1 — ——=)) = —d((log z — log(= — 1) log(1 — 2)))
= —d(log(z)log(1 — 2)) + 2log(z — 1)dlog(z — 1).

dla(

z—1

As a result,
dD(2) = dL.(2) + %d(log(z) log(1 — 2))

= (dl,(z) 4+ log(z — 1)dlog(z — 1)) + %(d(log(z) log(1 — 2)) — 2log(z — 1)dlog(z — 1))

(6.6) = —dlg(zil)—d(log(ﬁ)log(l—ﬁ)) :dD(zfl).
By (6.6), D(2) + D(3%7) is constant. The constant is 0, considering lim}_,,(D(z) + D(3%7)) = 0.
|
Corollary 6.9. lim!_,, D(2) =0 for a = 0,1, or cc.
PROOF. a =0 is proved before, by this result, a = 1 follows from (6.4) and a = oo from (6.3). O

Proposition 6.10. For k > 1, the function:

lk(z) —

1 log(2)lx_1 € AR(U)
has an analytic continuation onto B(0,1).

PROOF. By induction on k > 1, for k = 2, by (6.8) and log(z) log(1 — z) being invariant under z — 1 — z,
1
la(z) —log(2)l1(2) = l2(2) + 2 - 3 log(z)log(l — z) =12(1 — 2) € A(B(0,1)).

For k > 2, observe that

dz 1 dz 1 dz
_ 1 B — (N E 92 ] e
d(le — =7 l0g(2)lk-1(2)) = le—1(2)— — =7 le-1— = — log(2)lk—2—
k—2 1 dz
= lp—1— 1 lp_9)—
k_l(k 1 k_ZOg(Z)k 2)Z7
which lies in Q(B(0,1)) = A(B(0,1))dz by induction hypothesis. Since H'(B(0,1)) = 0 and A(B(0,1))
satisfies the uniqueness principle, I, — 27 log(2)lk—1(z) € A(B(0,1)) to prove the statement. O

7. RELATION BETWEEN THE POLYLOGARITHMS AND SPECIAL VALUES OF THE KUBOTA-LEOPOLD
L-FUNCTION AT POSITIVE INTEGERS

7.1. An identity for the valuation of [j.

For sake of a simplified notation, we will write Z(C) f(¢) to denote Z;;i f(¢7) when ( is a non-trivial primitive

h

rf_root of unity.

Lemma 7.1. For k > 1, l;; extends to a C,-valued function that is
(1) continuous on any finitely ramified K O Q) and,

(2) hmglc—u l(z) = ﬁ Z(Q 1:(€)
for any v € N and (" = 1 non-trivial.
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PRrROOF. (1) The only problematic points in this lemma are 0 and 1, continuity at z = 0 limi ".Il .(;_z)

—0 -
lim, 0 l;(2) = 0 exists by Definition 6.1. While the continuity at z = 1 for k = 2 follows from Fﬁfn'&
6.6 and the functional equation | 2
|

l2(2) +1og(2)log(l — z) = I2(1 — 2).

For k > 2, the statement follows from Proposition 6.10 since log(1) = 0 and the fact that rigid analytic
functions are continuous.

(2) Proposition 6.2 may be revised as rk(z(c) Ik(C2) + 1k(2)) = lk(2"). As

ph—1
I(2") = 11 Zlk(fz),
(©)

taking z — 1 in K O Q,, proves (2).

7.2. The p-adic L-function and its special values.
For d € N, let

Xq =lim 7/dp"Z
as a topological space. For a € Z, n € NU {0}, there is a natural projection map mq, : Xqg — Z/dp™Z.
Construct the compact open sets Uy, (a) = W;;(a) = {z € Xy | maj(x) = a (mod dp’Z) for j < k} =
a+ dp™Z,. Notice that when we consider Uy ,,(a), the choice of a is actually independent module dp™Z. Let
Xin = Ugi_ll Uin(a). If z € C, satisfying 29" £ 1 for all n € N, one may define a p-adic distribution td,
(following Koblitz) on Xg:

z(l

pd,z(Udn(a)) = 1

The measure pgq, . defines a linear functional on locally constant functions Xgq — C,:

dp
d/”'d,z : f = fd/f"d,z £ lim f a) - fd,z Ud, a)).
5 5 i, D 1(@) s Vi)

If there is an ambiguity in the integration, we will denote erX dp to emphasize on the variable x being the

integral variable. Note that X; = Z, and X} = Z,\{0}. We now consider only d = 1 and henceforth drop
out any subscript d by setting it 1.

Definition 7.2. (1) A Teichmiiller character w on Z,\{0} is a homomorphism characterized by w(z) € C,
being the unique solution of w(x) = w(z)P in the residue class of x. It is also known that w(x) =
limy, o0 2"
(2) Let m =m; : X — Z,, and for x € X, let (z) = 7(z)/w(n(z)).
(8) For any Dirichlet character x : X — C,, n € N, let x,, denote the twisted Dirichlet character x @ &",
where @(a) = w(a)™t.

For x being a Dirichlet character of conductor d, it is known (by Kolitz) that for any r € N, (r, pd) = 1,

(7.) Ls:0 = e [ @ e

(r)' " x(r) -1 Jx

where p = 3" ) ¢ with ¢" = 1 non-trivial.

Lemma 7.3. For z € C,\B(1,1), we have

lk,p(z):/ xR du,.
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Proor. (For the case when k = 1, see Koblitz [Kob79])
For z € B(0,1),

Pl e
foa = g 3
=2 G 2 () = () =)

O

There is the p-adic analogy of the Fourier inversion formula: for x being a primitive Dirichlet character of
conductor d, (r,dp) =1, and &, ¢ primitive d*P-root and r*"-root of unity respectively, we have

d—1

368 -
/XdeMc* d ZX(Q)/deﬂgfag,

a=1

where g(x, &) = Z;l;i x(5)& is the Gauss sum and y(a) = x(a)™'.

Let 7 : X — Z, be the identification in the end of the first paragraph. Then

/fo?Td/j,C:/ fdpc.
b'e Z,

In particular, choosing f = 2~ and by the application of the Fourier inversion formula, for £, ¢ being primitive
d*"-root and r*P-root of unity respectively,

1

/ ) = o8 ;X(a) / L e
(72) - but) dzix@ B l677)
- 8o d:w) (@(E70) ~ P (€70
(7.9 - i) <d: X(a) - (e=¢) - M) d: Fla)lk(€7°C)
- s 2, :W) (6770,

(7.2) follows from Lemma 7.3, and (7.3) holds by (r, p) = 1 thereby ZZ;} X(ap)l(§79P¢P) = ZZ;} x(a)lk(67%C).

Theorem 7.4. Let the notation be a above, for x a primitive, non-trivial Dirichlet character,

(1.3) Ly(k,x ® ') = 208
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PROOF. [Col82]  Notice that by definition, (z)* w*(z) = 2*, by the computation above, for any zmtegqr

k>1, |I ’f{" ||![
Lylhx @) = i [ () 0D @) @ x(@)in bdl
)X — 1 <
1 —k
T -1 feo o
= ; x Fy(z)d
<<> T 1
_ 1 8068 4 x(0) d_lfa [ (e=a
i <r)1% &0 ) LR (e
1 7 d—17 l —ak .
- e 20 X Y v B e
() x(r) pet
_ 1 g(Xaé) _ X(p) r ,rlfk = v(a —a
= T 0 S D S s

The second last equation follows from Proposition 6.2, and the last follows from

1

Y
|

d—1
Xa)(r T (€)= x(r)r Y x(a)l(€”

a=1

Since the p-adic L-function represented in (7.1) is independent of r chosen, one may choose r € B(1,1)NZ,
so that w(r) =1 and (r) = r. We have then derived the desired formula. O

Theorem 7.5. When x is chosen to be a trivial character, the above formula does not apply; however we have
1
1—ky _ .
(1.4) Ly(k,w ") =(1- E) lim Iy, ().
Proo¥r. [Col82| For non-trivial Dirichlet character x. Since x =1,
1

_ wkfl - - x_szik
Ly(hoxi) = L) = o [ ™ et

S S
iR /X an
=y L ea®

6

Choose r € B(1,1) N Z as above. By continuity of lx(z) at 1, lim1 Ig(z) = lim1 le(2?) and 32 bp(C) =
r—r T—r

20 k(€) = p L (¢P) = (1—p7F) 20 le(Q) if we choose C to be a r*f-root of unity with (r,p) = 1. Thus,

. 1. 1
lim () = (1= ) lim Ia(a) = (1= ) 2= SO0(0) k_l_l%lmo

©
by Lemma 7.1, arises (1.4). O

8. CONCLUSION AND SUGGESTIONS

We have now discussed the integration theory over connected affinoid subspaces of C,, with good reduction.
In this article a logarithmic F-crystal M is defined to be a A-submodule of £ with functions f so that fdz
can be integrated. Moreover, if we consider the smallest A-submodule of £ that contains M and [ fdz, which
by definition would be M* = M(U) + >-, A(C) [ 0 as discussed in section 4, is still a logarithmic F-crystal.
We therefore applied it to define the solution to the recursive differential equations

(1) lo(2) = ),
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(2) dlp(2) = lp_1(2)%, and

. -1(2) [ ==
(3) lim Iy(z) = 0. gl
The constructed solutions, namely the polylogarithmic functions i (z), is locally of the form | ;;
o0 Zn
k(z) = el
n=1

As in the complex case, the polylogarithm are related to the special values of L-function at positive integers,
namely through (1.3) and (1.4), partially contribute to the validity of the Coleman integral in moral.
Various differential equations whose solution exists in the complex field C to possess arithmetic meaning,
just as the one we discussed in this article. The author would suggests that thorough survey might lead to
other analogy to the p-adic field C, which involves deeper contents.
Another possible generalization is to discuss the integration theory on affinoid variety of dimensionality
greater than 1, which Coleman partially discussed the case in his later-published articles.
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