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鴉片類藥物是臨床處理中重度疼痛，最有效也最被廣泛使用的藥物。然而長

期使用鴉片類藥物止痛卻也會伴隨產生藥物的耐受性。脊椎管內鴉片類藥物投與

將藥物直接送至中樞神經產生藥效，是非常有效的止痛方式但卻也更容易產生藥

物耐受性。傳統神經科學以神經元為中心的思維下，鴉片類藥物耐受性的致病機

轉著重於 Opioid receptor 的 internalization、NMDA receptor 的 upregulation 或

glutamate transporter 的 down regulation。然而這些現象都只能部分解釋耐受性的

成因。最近在齧齒類實驗動物上的研究結果顯示神經膠細胞的活化及發炎性物質

的過度表現、也就是所謂的神經炎性反應在神經病變疼痛與類鴉片耐受性的致病

機轉上有重要的角色。然而相關的人體研究證據則相當稀少。 

在本研究的臨床部分，我們首先嘗試建立國內最完整的，有關體外可程控式

植入型脊椎內給藥系統的照護流程。包括合適病患的選取、脊椎內嗎啡藥物輸注

測試、手術方式的改進、長期追蹤與品質提升計畫。我們紀錄並分析了流程建立

初期的病患，其脊椎管內嗎啡的劑量的改變、治療相關併發症的發生率與後續處

理及病患日常生活功能的改善程度。藉由給予足夠劑量的脊椎管內嗎啡，病患的

疼痛控制與生活品質皆能大幅改善。然而在這當中我們也發現所有接受脊椎內嗎

啡輸注療法的病患，其嗎啡的劑量皆快速的增加，遠遠超過病情的演進。 

以臨床的照護觀察到的現象為起點，在研究倫理委員會核准後，我們進行了

一系列的轉譯醫學研究。我們首先分析了已產生類鴉片藥物耐受性病患的腦脊髓

液中發炎相關因子的濃度。包括 TNF-alpha、 CXCL1、CXCL10、CCL2、CX3CL1

及 CXCL12 並與未暴露類鴉片藥物的對照組受試者比較。研究結果發現，已經

對類鴉片止痛藥產生耐受性的病患群，其腦脊髓液中的 CXCL1 及 CXCL12 濃度

明顯高於未暴露類鴉片藥物的對照組。進一步我們更發現 CXCL1 的濃度與病患

所接受的類鴉片止痛藥物劑量成高度正相關。 

接著我們建立轉譯動物實驗模式，藉由實驗鼠的閃尾反應，評估嗎啡的止痛

效果及相關發炎因子對類鴉片耐受性產生的影響。在實驗大鼠投予嗎啡誘發藥物

耐受性後，大鼠脊髓組織之 CXCL1 及 CXCL12 mRNA 皆顯著增加。雖然單獨
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給予椎管內 CXCL1 或 CXCL12 並不會改變老鼠的基礎閃尾行為，然而椎管內給

予 CXCL1 或 CXCL12 卻會大幅降低腹腔內給予嗎啡所造成的急性止痛效果。接

著我們參照臨床長期椎管內類鴉片輸注用於頑固疼痛的處置，建立植入皮下微幫

浦進行長期椎管內嗎啡輸注並誘發大鼠產生藥物耐受性的實驗模式。我們發現耐

受性的發生會因同時給予嗎啡與 CXCL1 或 CXCL12 而加速。反之 若被嗎啡輸

注時一併給予 CXCL1 或 CXCL12 的中和抗體則會延緩耐受性的發生。針對

CXCL1 訊息傳遞給予其受體 CXCR2 的拮抗劑 antileukinate hexapeptide，或針對

CXCL12 訊息傳遞給予其受體 CXCR4 的拮抗劑 AMD3100，則可更有效的延緩

嗎啡耐受性的發生。 

綜合以上的實驗結果，我們藉由臨床到實驗動物的轉譯醫學研究模式驗證了

趨化激素 CXCL1 與 CXCL12 可能參與鴉片類止痛藥耐受性的形成。阻斷 

CXCL1/CXCR2 與 CXCL12/CXCR4 的訊息傳遞路徑則可以延緩藥物耐受性的

產生並降低其嚴重度。因此針對 CXCL1/CXCR2 與 CXCL12/CXCR4 的訊息傳

遞路徑進行介入將是治療類鴉片止痛藥耐受性的新藥研發之潛力標的。 

 

關鍵詞: 

趨化激素、CXCL1、CXCL12、細胞激素、類鴉片止痛藥、脊椎管內嗎啡輸注、

耐受性、神經炎性反應 
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 Opioid analgesics remain the most effective and widely used analgesics for the 

management of moderate to severe pain. However, the efficacy of long-term opioid 

analgesics is progressively attenuated by tolerance, preventing adequate pain relief 

under stable opioid dosages for chronic pain patients. Although intrathecal opioid 

delivery provides very effective analgesia by acting directly on central nervous system, 

opioid analgesic tolerance is also accelerated. Classical neuron-centered concepts 

such as internalization of opioid receptors, up-regulation of N-methyl-D-aspartate 

receptor function, or down-regulation of glutamate transporter activity can only 

partially explain the phenomenon of tolerance. Recent evidence showing glial 

activation and upregulated inflammatory mediators in the rodent central nervous 

system has confirmed the pivotal role of neuroinflammation in neuropathic pain or 

opioid tolerance, or both. However, human evidence is still sparse. 

In clinical part of this study, we developed comprehensive management protocol 

for totally implantable programmable intrathecal drug delivery system from patient 

selection, intraspinal morphine trial, surgical procedure to follow up program. 

Intrathecal morphine dosage adjustment, treatment related complications and patient 

functional outcomes are recorded regularly and analyzed. By delivering liberal dose 

of intrathecal morphine, pain severity decreased significantly. Due to much better pain 

control and improved quality of life, functional performance status also improved. 
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Intrathecal morphine delivery by using totally implantable programmable device is an 

effective alternative method to relieve refractory cancer pain. 

Based on our clinical practice, we further conducted subsequent translational 

research by investigating the intraspinal cytokine and chemokine profiles of 

opioid-tolerant cancer patients after research ethic committee approval. Cerebrospinal 

fluid (CSF) samples from opioid-tolerant cancer patients and opioid-naive subjects 

were compared. The CSF levels of tumor necrosis factor-alpha, CXCL1, CXCL10, 

CCL2, CX3CL1 and CXCL12 were assayed. CXCL1 and CXCL12 levels in CSF 

were significantly upregulated in the opioid-tolerant group. Further analysis revealed 

that CXCL1 level was strongly positively correlated with opioid dosage. 

The rat tail flick test was utilized to assess the effects of intrathecal CXCL1 or 

CXCL12 on morphine-induced acute antinociception and analgesic tolerance. After 

induction of tolerance by intrathecal morphine infusion, the spinal cord CXCL1 and 

CXCL12 messenger RNA were significantly upregulated. Although CXCL1 or 

CXCL12 infusion alone did not affect baseline tail flick latency, the analgesic 

tolerance was accelerated by intrathecal infusion of CXCL1 or CXCL12 in daily 

intraperitoneal morphine injection of paradigm. After establishing tolerance by 

intrathecal continuous infusion of morphine, its development was accelerated by 

co-administration of CXCL1 or CXCL12. On the contrary, tolerance was attenuated 
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by co-administration of CXCL1 or CXCL12 neutralizing antibody or corresponding 

receptor antagonists. 

CXCL1 and CXCL12 were upregulated in both opioid-tolerant patients and 

rodents. The onset and extent of opioid tolerance was affected by antagonizing 

intrathecal CXCL1/CXCR2 and CXCL12/CXCR4 signaling. Therefore, the 

CXCL1/CXCR2 and CXCL12/CXCR4 signal pathways may be novel drug targets for 

the treatment of opioid tolerance. 

 

Keywords: 

Chemokine, CXCL1, CXCL12, Cytokine, Opioid Analgesics, Intrathecal Morphine, 

Tolerance, Neuroinflammation, Translational Research 
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1-1. The Role of Opioid Therapy in Pain Management 

According to IASP (International association for the study of pain) definition, 

pain is an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage. By definition, acute 

pain is a sensation results from actual tissue damage related activation of specialized 

nerve endings located in the nociceptive pathway. Under physiological condition, 

acute pain serves as a protective mechanism. On the contrary, chronic pain or 

pathological pain lasts beyond anticipated period of tissue healing or associated with 

inflammation and/or malfunction of the nervous system. Long lasting pain does not 

provide protective cue and survival benefit. According to the 2011 Institute of 

Medicine report, more than 100 million people in the Unites States suffered from 

chronic pain, and the annual direct and indirect economic burden is as high as $600 

billion US dollars (Pizzo and Clark 2012). Adequate pain management thus is an 

essential part of modern medicine to improve patients’ quality of life and maintain 

patients’ psychosocial function. Though current concept of comprehensive pain 

management incorporate multi-dimension therapy including interventional procedures, 

rehabilitation and physical/occupational therapy, pharmacotherapy especially opioids 

are still the main treatments for moderate to severe pain, especially for cancer pain 

management (Portenoy 2011) and severe acute postoperative or post traumatic pain 
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(Wu and Raja 2011). Cancer pain can generally be controlled using adequate 

analgesics.(Zech et al,, 1995) As efficient management of pain ensures patient 

comfort, studies have reported that early and aggressive management of symptoms, 

including pain, may even improve patient survival.(Quinten et al., 2009, Temel et al., 

2010) Although opioid use for the treatment of chronic non-cancer pain remains 

controversial both with respect to the efficacy and adverse physical effects and to 

aberrant behaviors (Stein et al., 2010), opioids use has escalated in recent years and 

making opioids one of the most commonly prescribed medications (Chapman et al., 

2010, Okie 2010). Morphine is most widely used opioid analgesics in clinical setting 

for decades and is the most important essential opioids in the World Health 

Organization (WHO) list of medication to be universally provided to relieve suffering 

in countries with limited medical resources. It is also recommended as a first-line 

opioid in the WHO Cancer Pain Relief Guidelines. Apart from morphine, various 

opioids with different intervals, administration routes, and potency are available in the 

market.  Although many guidelines acknowledge transdermal opioids as an 

alternative to oral opioids (Caraceni et al., 2012, Ripamonti et al., 2012, National 

Comprehensive Cancer Network 2015), it is still surprising to find that transdermal 

fentanyl is the most commonly used strong opioids in Taiwan (Lin et al., 2016). 
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1-2. Pharmacology of Opioids and Mechanism of Opioid Tolerance 

Opioid systems are critical in the modulation of antinociception and pain 

behavior. Endogenous opioid peptides and their receptors are expressed throughout 

the nociceptive neural circuitry and critical regions of the central nervous system 

included in reward and emotion-related brain structures. Just like endogenous opiates 

such as endorphins, enkephalins and dynorphins, opioid analgesics exert their 

pharmacological action through binding to opioid receptors. Opioids receptors belong 

to G-protein coupled receptors (GPCR) which are characterized as seven 

transmembrane domain (Al-Hasani and Bruchas 2011) (Williams et al., 2013). The 

possible sites of action of opioids are illustrated in Fig. 1-1. 
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There are four major subtypes of opioid receptors including μ opioid receptor 

(MOR), δ opioid receptor (DOR), κ opioid receptor (KOR) and newly found 

nociceptin receptor.  Each receptor is involved in different physiological functions. 

The majority of analgesic effect of either endogenous opiates or opioid medications 

are from activation of MOR while DOR also mediate some analgesia, antidepressant 

and physical dependence effect and KOR function as pain relief, sedation, dysphoria 

and pupil constriction. Activation of MOR is also linked with respiratory depression 

and supra-spinal analgesia  (Al-Hasani and Bruchas 2011). The new class of opioid 

receptor -nociceptin receptor, participates in appetite, depression and anxiety effect 

but the role of nociceptin receptor needs further elucidation (Bodnar 2016). Upon 

binding to opioid receptor, opioids may trigger receptor conformational change and 

activate inhibitory regulative G-protein (Gi). Stimulation of Gi receptor leads to a 

decrease of cyclic adenosine monophosphate (cAMP) and the activation of protein 

kinase A (PKA). Opioids can also inhibit neurotransmitter release by a direct effect on 

calcium channel to reduce the concentration of calcium in presynapse. The opioid 

signaling cascade is illustrated in Fig. 1-2. 
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Clinical use of opioid analgesic is usually limited by opioid related side effects 

such as respiratory depression, constipation, nausea and vomiting. Potential of 

addiction (or fear of addiction) also complicates opioid utilization for chronic 

non-cancer pain. Repetitive administration of opioids for a certain amount of time can 

cause tolerance. As tolerance develops, a higher dose of opioids is needed to achieve 

the same level of pain relief, which might further lead to serious side effects and 

physical dependence. The molecular and cellular mechanism of opioid tolerance has 

been extensively studied and was illustrated in Fig. 1-3 (Williams et al., 2013). Upon 

agonist binding to opioid receptor, serial downstream molecular events triggered 

including receptor phosphorylation by G protein receptor kinase, beta-arresting 

binding saturated within minutes. By definition, rapid desensitization and 

re-sensitization reached equilibrium within minutes while short term tolerance 

manifested by receptor endocytosis happened within one day. On the contrary, long 

term tolerance involves with multiple regulatory processes that cannot be fully 

explained by molecular events and is summarized in Fig. 1-4. 
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1-3. Neuroinflammation Counteracts Opioid Analgesia 

Since classical neuron-centered concepts such as internalization of opioid 

receptors (Zuo 2005), up-regulation of N-methyl-D-aspartate receptor function 

(Shimoyama et al., 2005), or down-regulation of glutamate transporter activity (Mao 

et al., 2002) can only partially explain the  pathogenesis of opioid tolerance, the role 

of neuroinflammation to counteract opioid analgesia has been proposed in recent 

years. Neuroinflammation manifested by morphological glial cell proliferation and 

hypertrophy with pro-inflammatory cytokine/chemokine over-production has been 

recognized as key contributors to multiple central nervous system diseases including 

pathological and chronic pain mechanisms (Milligan and Watkins 2009). The first 

report linking glial activation to opioid tolerance demonstrated that chronic systemic 

morphine increases astroglial activation showed by increased glial fibrillary acidic 

protein (GFAP) immunostaining in the spinal cord (Narita et al., 2001). In parallel, 

co-administration of fluorocitrate (a glial metabolic inhibitor) with morphine 

significantly attenuates not only glial activation but also morphine tolerance (Song 

and Zhao 2001). Following studies also showed that chronic morphine treatment 

activates microglia as well as astrocytes (Raghavendra et al., 2002, Tai et al., 2006). 

In the spinal cord, along with glial activation, proinflammatory cytokines including 

Tumor necrosis factor alpha (TNFα), IL-1β and IL-6 are significantly up-regulated 
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(Raghavendra et al., 2002, Johnston et al., 2004, Tai et al., 2006). The progressively 

induced tolerance is temporally well correlated with increasing glial activation and 

pro-inflammatory cytokine production (Johnston et al., 2004, Raghavendra et al., 

2004). More strikingly, morphine tolerance is slowed or reversed by either inhibition 

of spinal pro-inflammatory cytokines or by knocking out IL-1β signaling 

(Raghavendra et al., 2002, Johnston et al., 2004, Raghavendra et al., 2004, Shavit et 

al., 2005). Microglia are derived from bone marrow during the perinatal period and 

are reported to participate in neuropathic and postoperative pain and opioid tolerance 

(Wen et al., 2011). Intrathecally administered microglial inhibitor minocycline can 

prevent the development but fails to attenuate established morphine tolerance (Cui et 

al., 2008). Astrocytes not only metabolically support neurons in the central nervous 

system (CNS) but also have active roles in multiple pathological conditions such as 

stroke, seizure, pathological pain, and opioid tolerance (Farina et al., 2007). 

Astrocytes, as well as microglia, also participate in acute postoperative pain (Obata et 

al., 2006). Above mentioned evidence demonstrated that glial activation and 

upregulated inflammatory mediators in the rodent central nervous system has 

confirmed the pivotal role of neuroinflammation in neuropathic pain or opioid 

tolerance, or both (Milligan and Watkins 2009, Watkins et al., 2009). In response to 

chronic morphine and peripheral nerve injury-related pain, astrocytes produce 
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proinflammatory cytokines that enhance neuropathic pain behavior and offset the 

analgesic efficacy of morphine (Raghavendra et al., 2002). By suppressing astroglial 

activation, both neuropathic pain and morphine tolerance are attenuated (Guo et al., 

2007, Lilius et al., 2009). Proinflammatory cytokines (e.g., TNFα) have a pivotal role 

in neuroinflammation related to nerve injury-induced pain and chronic morphine 

exposure (Myers et al., 2006, Shen et al., 2012). Gene transfer of tumor necrosis 

factor soluble receptor can inhibit spinal TNFα production, thus preventing the 

development of morphine tolerance (Sun et al., 2012). TNFα subsequently induces 

rapid expression of CCL2 (MCP-1), CXCL10 (IP-10), and CXCL1 (GROα) in 

primary astroglial cell culture (Gao et al., 2009) and may contribute to the 

consolidation of morphine tolerance. CCL2 has an important role in the development 

of neuropathic pain (White et al., 2005, White et al., 2007), but its role in morphine 

tolerance is based on limited information (Zhao et al., 2012). Series of preclinical 

researches demonstrated that orchestrated action of different cytokines (including 

TNF-α, IL-1β, IL-6) and chemokines (including CCL2, CCL21, CX3CL1, CXCL1 

and CXCL12) as well as other neuromodulators (including growth factors, 

neurotransmitters and proteases) powerfully modulate synaptic transmission, lead to 

central sensitization and enhance chronic pain states. These mediators can further act 

on glial and immune cells to potentiate neuroinflammation via autocrine and paracrine 
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fashion (Ji et al., 2014). Some glial modification compounds also show promising 

effect on reversing morphine tolerance and are under active studies to validate their 

therapeutic potential and are summarized in Table 1-1.(Raghavendra et al., 2004, 

Shavit et al., 2005, Cui et al., 2008, Hutchinson et al., 2009, Hameed et al., 2010) 
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1-4. The biological function of chemokines of CXCL1 and CXCL12 

Chemokines are small secreted chemo-attractant cytokines that can be further 

divided into four subfamilies based on structure motifs including CXC-, CC-, C- and 

CX3C- subfamilies. Chemokines of CC subfamily have two consecutive cysteines 

near the N-terminus (β-chemokine) while members of CXC subfamily have one 

amino acid  between the two cysteines (α-chemokine). CX3C subfamily has only 

one member which is CX3CL1 (fractalkine). Each subfamily of chemokines exerts 

their physiological function by binding to chemokine receptors that belong to 

G-protein coupled receptors. Current evidence shows that single chemokine can 

activate more than one receptors and one specific chemokine receptor can be activated 

by more than one chemokine (White et al., 2005). The receptor selectivity and major 

function of chemokines are summarized in Table 1-2 and 1-3 (Griffith et al., 2014). In 

addition to the pathological roles of chemokines in the maturation and trafficking of 

leukocytes during inflammatory process, chemokine signaling has been extensively 

studied for their neuromodulator function by interfering neurotransmission, 

neuron-glial cross talk and contribution in the pathogenesis of neuroinflammtory 

diseases including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, 

amyotrophic lateral sclerosis and stroke  (Ramesh et al., 2013, Reaux-Le Goazigo et 

al., 2013, Melik Parsadaniantz et al., 2015).  
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CXCL1 (also known as growth-related oncogene (GRO) or keratinocyte-derived 

chemokine) is a chemokine in the CXC family. CXCL1 is first purified from human 

malignant melanoma cells and is reported to play an important role in inflammation 

and cancer (Richmond et al., 1985, Verbeke et al., 2012). Among the three isoforms 

of GRO (GROα/CXCL1, GROβ/CXCL2, and GROγ/CXCL3), GROα/CXCL1 

possesses the highest affinity to their shared receptor, CXCR2 (Haskill et al., 1990, 

Hammond et al., 1996). CXCL1 is reported to attract neutrophils, stimulate 

endothelial cell-mediated angiogenesis, and activate macrophages or T cells (Eck et 

al., 2003, Wang et al., 2006, Verbeke et al., 2012). An animal study shows that 

CXCL1 also plays a crucial role in neuroinflammation. One study shows that CXCL1 

(when activated via NF-κB signaling) can recruit neutrophils to sites of inflammation 

in traumatic spinal cord injury (Kang et al., 2011). Upregulation of CXCL1 is also 

involved in brain injury (Johnson et al., 2011, Lee et al., 2012). Long-term opioid 

administration activates spinal cord glial cells and neuroinflammation, which is 

considered to be one of the mechanisms leading to morphine tolerance (Johnston et al., 

2004, Hutchinson et al., 2008). CXCL1 is involved in neutrophil chemotaxis and 

degranulation at the early phase of inflammation in peripheral tissue. In the nervous 

system, CXCL1 can also modulate neuronal excitability (Wang et al., 2008, Yang et 
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al., 2009)]. A recent study shows that CXCL1 is upregulated in the spinal nerve 

ligation model of neuropathic pain and is colocalized with spinal astrocyte markers. 

Intraspinally-applied lentiviral vectors of CXCL1 short hairpin RNA can persistently 

attenuate neuropathic pain behavior. This evidence implies the involvement of 

CXCL1/CXCR2 in nerve injury-induced neuropathic pain (Zhang et al., 2013). 

 

The role of CXCL12/CXCR4 signaling in the development and maintenance of 

pathological pain has been extensively studied in different animal models including 

chronic constriction injury of the sciatic nerve (Dubovy et al., 2010), partial sciatic 

nerve ligation (Luo et al., 2014), HIV-associated sensory neuropathy (Bhangoo et al., 

2009), diabetic neuropathy (Menichella et al., 2014) and bone cancer (Shen et al., 

2014, Hu et al., 2015). Opioids can trigger neuroinflammation through direct and 

indirect activation of microglia and astrocytes. Protein and mRNA study shows that 

microglia and astrocytes express opioid receptors and opioid can trigger downstream 

signaling (Horvath and DeLeo 2009). Opioids can also activate glial cells through 

non-classical, non-stereoselective mechanism by binding to Toll-like receptor 4 

(TLR4) and trigger downstream MyD88 and TRIF-dependent intracellular signaling 

pathways including cell motility and survival/apoptosis related phosphatidylinositol 

3-Kinase pathway and proinflammatory mediator production related NFkB and 
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mitogen activated protein kinase pathways (Watkins et al., 2009). Recent study has 

demonstrated that CXCL12 expression in dorsal root ganglion (DRG) neuron is 

increased after repeated morphine exposure (Wilson et al., 2011). The primary 

sensory neuron may release CXCL12 from its central terminal to spinal cord dorsal 

horn (Reaux-Le Goazigo et al., 2012). CXCL12/CXCR4 signaling thus might mediate 

morphine-induced tactile allodynia, and might offset the analgesic potency in rodent 

models and be involved in the pathogenesis of the clinically important phenomenon of 

opioid induced hyperalgesia (Wilson et al., 2011, Rivat et al., 2014). CXCR4 is 

co-expressed with opioid receptors in different areas of the rodent peripheral and 

central nervous systems, including dorsal root ganglion (Wilson et al., 2011),  dorsal 

horn (Reaux-Le Goazigo et al., 2012), periaqueductal gray (Szabo et al., 2002) and 

brain (Heinisch et al., 2011). The cross talk between chemokines and the opioid 

system provides new perspectives for optimizing analgesic therapies (Melik 

Parsadaniantz et al., 2015).  
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Table 1-2 Summary table for Chemokines and corresponding immune function 

Chemokine Other names Receptor Key/main immune functionb 

CXCL1 GROα, MGSA, 

mouse KC 

CXCR2 Neutrophil trafficking 

  

  CXCL2 GROβ, MIP-2α, 

mouse MIP2 

CXCR2 

CXCL3 GROγ, MIP-2β CXCR2 

CXCL4 PF4 ? Procoagulant 

CXCL5 ENA-78, mouse 

LIX 

CXCR2 Neutrophil trafficking 

  

  

  
CXCL6 GCP-2 (no mouse) CXCR1, CXCR2

CXCL7 NAP-2 CXCR2 

CXCL8 IL-8 (no mouse) CXCR1, CXCR2

CXCL9 Mig CXCR3 Th1 response; Th1, CD8, NK 

trafficking 

  

  

CXCL10 IP-10 CXCR3 

CXCL11 I-TAC CXCR3 

CXCL12 SDF-1 CXCR4 Bone marrow homing 

CXCL13 BLC, BCA-1 CXCR5 B cell and Tfh positioning LN 

CXCL14 BRAK ? Macrophage skin homing (human) 

Cxcl15 Lungkine (mouse 

only) 

? ? 

CXCL16   CXCR6 NKT and ILC migration and survival

CCL1 I-309, mouse TCA3 CCR8 Th2 cell and Treg trafficking 

CCL2 MCP-1, mouse JE CCR2 Inflammatory monocyte trafficking 

CCL3 MIP-1α CCR1, CCR5 Macrophage and NK cell migration;

T cell–DC interactions 

  
CCL4 MIP-1β CCR5 

CCL5 RANTES CCR1, CCR3, 

CCR5 

CCL6 C-10, MRP-1 

(mouse only) 

Unknown ? 

CCL7 MCP-3, mouse Fic 

or MARC 

CCR2, CCR3 Monocyte mobilization 

CCL8 MCP-2 CCR1, CCR2, 

CCR3, CCR5 

Th2 response; skin homing (mouse) 
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Chemokine Other names Receptor Key/main immune functionb 

(human); CCR8 

(mouse) 

CCL9/10 MIP-1γ, MRP-2 

(mouse only) 

Unknown ? 

CCL11 Eotaxin-1 CCR3 Eosinophil and basophil migration 

CCL12 MCP-5 (mouse 

only) 

CCR2 Inflammatory monocyte trafficking 

CCL13 MCP-4 (no mouse) CCR2, CCR3, 

CCR5 

Th2 responses 

CCL14 HCC-1 (no mouse) CCR1 ? 

CCL15 Leukotactin-1, 

HCC-2, MIP-5 (no 

mouse) 

CCR1, CCR3 ? 

CCL16 HCC-4, NCC-4, 

LEC (no mouse) 

CCR1, CCR2, 

CCR5 

? 

CCL17 TARC CCR4 Th2 responses, Th2 cell migration, 

Treg, lung and skin homing 

CCL18 PARC, DC-CK1 

(no mouse) 

CCR8 Th2 response; marker AAM, skin 

homing 

CCL19 ELC, MIP-3β CCR7 T cell and DC homing to LN 

CCL20 MIP-3α, LARC CCR6 Th17 responses; B cell and DC 

homing to gut-associated lymphoid 

tissue 

CCL21 SLC, 6CKine CCR6, CCR7 T cell and DC homing to LN 

CCL22 MDC CCR4 Th2 response, Th2 cell migration, 

Treg migration 

CCL23 MPIF-1, MIP-3 (no 

mouse) 

Unknown ? 

CCL24 Eotaxin-2, MPIF-2 CCR3 Eosinophil and basophil migration 

CCL25 TECK CCR9 T cell homing to gut; thymocyte 

migration 

CCL26 Eotaxin-3 CCR3, CX3CR1 Eosinophil and basophil migration 

CCL27 CTAK CCR10 T cell homing to skin 

CCL28 MEC CCR3, CCR10 T cell and IgA plasma cell homing to 

mucosa 



doi:10.6342/NTU201600959

  31

Chemokine Other names Receptor Key/main immune functionb 

XCL1 Lymphotactin α, 

SCM-1α 

XCR1 Cross-presentation by CD8+ DCs 

  

XCL2 Lymphotactin β, 

SCM-1β (no 

mouse) 

XCR1 

CX3CL1 Fractalkine CX3CR1 NK, monocyte, and T cell migration

Abbreviations: AAM, alternatively activated macrophages; DC, dendritic cell; ILC, 

innate lymphoid cell; LN, lymph node; NK, natural killer; Tfh, T follicular helper cell; 

Th, T helper cell; Treg, regulatory T cell. 

Adapted from (Griffith et al., 2014) 

 

  



doi:10.6342/NTU201600959

  32

Table 1-3 Summary of chemokine receptor and corresponding immune function 

Receptor Immune cell expression Key immune function 

G protein–coupled receptors 

CXCR1 Neutrophil > monocyte, NK, mast 

cell, basophil, CD8+ TEFF 

Neutrophil trafficking 

CXCR2 Neutrophil > monocyte, NK, mast 

cell, basophil, CD8+ T 

B cell lymphopoiesis, neutrophil 

egress from bone marrow, neutrophil 

trafficking 

CXCR3 Th1, CD8+ TCM and TEM, NK, 

NKT, pDC, B cell, Treg, Tfh 

Th1-type adaptive immunity 

CXCR4 Most (if not all) leukocytes Hematopoiesis, organogenesis, bone 

marrow homing 

CXCR5 B cell, Tfh, Tfr, CD8+ TEM B and T cell trafficking in lymphoid 

tissue to B cell zone/follicles 

CXCR6 Th1, Th17, γδ T, ILC, NKT, NK, 

plasma cell 

ILC function, adaptive immunity 

CCR1 Monocyte, macrophage, 

neutrophil, Th1, basophil, DC 

Innate immunity, adaptive immunity 

CCR2 Monocyte, macrophage, Th1, iDC, 

basophil, NK 

Monocyte trafficking, Th1-type 

adaptive immunity 

CCR3 Eosinophil > basophil, mast cell Th2-type adaptive immunity, 

eosinophil distribution and trafficking

CCR4 Th2, skin- and lung-homing T, 

Treg > Th17, CD8+ T, monocyte, 

B cell, iDC 

Homing of T cells to skin and lung, 

Th2-type immune response 

CCR5 Monocyte, macrophage, Th1, NK, 

Treg, CD8+ T, DC, neutrophil 

Type 1 adaptive immunity 

CCR6 Th17 > iDC, γδ T, NKT, NK, 

Treg, Tfh 

iDC trafficking; GALT development, 

Th17 adaptive immune responses 

CCR7 naive T, TCM, TRCM, mDC, B cell mDC, B cell, and T cell trafficking in 

lymphoid tissue to T cell zone, egress 

of DC and T cells from tissue 

CCR8 Th2, Treg, skin TRM, γδ T, 

monocyte, macrophage 

Immune surveillance in skin, type 2 

adaptive immunity, thymopoiesis 

CCR9 Gut-homing T, thymocytes, B, 

DC, pDC 

Homing of T cells to gut, GALT 

development and function, 
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Receptor Immune cell expression Key immune function 

thymopoiesis 

CCR10 Skin-homing T cell, 

IgA-plasmablasts 

Humoral immunity at mucosal sites, 

immune surveillance in skin 

XCR1 Cross-presenting CD8+ DC, 

thymic DC 

Antigen cross-presentation by 

CD8+ DCs 

CX3CR1 Resident monocyte, macrophage, 

microglia, Th1, CD8+ TEM, NK, γδ 

T cell, DC 

Patrolling monocytes in innate 

immunity, microglial cell and NK cell 

migration, type 1 adaptive immunity 

Atypical (nonsignaling) receptors 

ACKR1 

(DARC; Duffy) 

RBC, LEC Chemokine transcytosis, chemokine 

scavenging 

ACKR2 (D6) LEC, DC, B cell Chemokine scavenging 

ACKR3 

(CXCR7) 

Stromal cells, B cell Shaping chemokine gradients for 

CXCR4 

ACKR4 

(CCRL1; 

CCX-CKR) 

Thymic epithelium Chemokine scavenging 

Abbreviations: DC, dendritic cell; GALT, gut-associated lymphoid tissue; iDC, 

immature dendritic cell; ILC, innate lymphoid cell; LEC, lymphatic endothelium; NK, 

natural killer; NKT, natural killer T; RBC, red blood cell; TCM, central memory T 

cell; TEFF, effector T cell; TEM, effector-memory T cell; Tfh, T follicular helper cell; 

Tfr, follicular regulatory T cell; Th, T helper; TRCM, recirculating memory T cell; 

Treg, regulatory T cell; TRM, resident-memory T cell 

Adapted from (Griffith et al., 2014) 
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2-1 IDDS Clinical Study 

Patient selection for intraspinal morphine trial 

Refractory cancer pain is defined as failure to achieve adequate analgesia despite 

maximal opioids escalation and rotation, and development of analgesic-related 

toxicity or intolerant to opioid side effects. We followed the protocol for refractory 

cancer pain management at NTUH (figure 2-1.1 ITM flow chart). Patients suffering 

from wide-spread pain or failed to respond to neuroablative procedures were indicated 

for intraspinal (epidural or intrathecal) morphine therapy. These patients were 

considered eligible for permanent IDDS implantation if their life expectancy was 

greater than 3months. We excluded patient with bleeding tendency, active infection 

and brain metastasis. 

Before permanent IDDS implantation, all patients were admitted to hospital and 

initiated an intraspinal morphine trial for 7 days. The intraspinal morphine can be 

delivered by daily intrathecal injection, continuous epidural infusion or continuous 

intrathecal infusion. The relative potency for intravenous: epidural: intrathecal 

morphine is 1: 10: 100. It is well-known that under equipotent dose, the opioids 

related side effects, especially nausea / vomiting and constipation, are markedly 

decreased when delivered more centrally (Myers et al., 2010). The intraspinal 

morphine dosage was adjusted according to each patient’s pain intensity and side 
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effects. Patients who achieved greater than 50% pain reduction were considered 

eligible to permanent IDDS implantation. 

 

Implantation techniques for permanent IDDS 

We applied standardized surgical procedure for every patient. After 

induction of general anesthesia, patient was put in lateral decubitus position on the 

operating table with the pre-planned side of implantation upward. Intra-operative 

fluoroscopy was mandatory to confirm access to the L3-4 intrathecal space and the 

catheter tip to the optimal position according to patient disease status. Intrathecal 

catheterization was performed by paramedian approach with gentle oblique angle to 

optimize cerebrospinal fluid flow and decrease the risk of catheter kink or fracture. 

The catheter was then fixed on dorsal lumbar fascia by special anchorage device to 

accommodate possible vigorous movement after patient’s general condition improved. 

The intrathecal catheter was then tunneled to lower abdomen subcutaneous pocket 

where we implanted the programmable pump. 

 

Patients follow up after IDDS implantation 

After operation, IDDS was set according to the intraspinal morphine trial result. Extra 

dose of analgesics might be necessary for acute postoperative wound pain. Patients 

were discharged 7 to 10 days after healing of surgical wounds and stabilization of 
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intrathecal morphine dose. Patient then continued their previous treatment plan of 

either systemic chemotherapy or supportive care. Patients were hospitalized whenever 

clinically indicated.  

Each patient’s pain severity was measured by numeric rating scale from 0 to 10. Pain 

scores and equipotent morphine dosages were recorded at every visit and further 

analyzed at following time points: before pain specialist consultation, screen for 

eligibility of IDDS (before intraspinal morphine trial), after stable dose of intraspinal 

morphine trial, 14 days after IDDS implantation, and optimal condition during regular 

follow-up. Patient’s functional status was recorded by Eastern oncology cooperative 

group (ECOG) performance status before and 14 days after implantation. 
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2-2 Translational Human Research 

Setting and Consent Process for Translational Human Study 

After obtaining Institutional Research Ethics Committee (National Taiwan University 

Hospital Research Ethics Committee, Taipei, Taiwan) approval, this prospective 

case-control study was conducted at a tertiary medical center in accordance with the 

Helsinki Declaration and the International Association for the Study of Pain’s 

Guidelines for Pain Research in Animals and Humans. Participant recruitment and 

sample collections were carried out from June 2010 to Aug 2014. All participants 

were informed by the investigators about the aims of the study and that the study 

would not affect any of their ongoing therapies. Informed consents were obtained 

before the collection of CSF samples. 

 

Definition Opioid Tolerant Patients 

An opioid tolerant patient was defined as a patient regularly taking strong opioids for 

pain management for more than one month. Daily treatments included intravenous 

morphine at a dosage greater than 100 mg, or other strong opioids given at an 

equipotent dose by other routes of administration, e.g., transdermal fentanyl and 

orally- or intraspinally-delivered opioids. We recruited advanced stage cancer patients 

suffered from cancer related pain under strong opioids and optimal adjuvant drugs. In 
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general, we followed National Comprehensive Cancer Network guideline to titrate 

opioid dosage and to manage breakthrough pain. The goal of pain management was to 

keep each patient has no background pain (or only mild pain, i.e. numeric rating scale 

less than 3). The breakthrough pain was managed by proper dose of immediate release 

oral morphine when at home or intravenous morphine when hospitalized. The 

duration of regular opioids usage was longer than one month. Patients with evidence 

of central nervous system involvement were excluded. CSF samples (3 ml) were 

collected immediately after intrathecal catheterization or immediately before a 

scheduled refilling of an implanted intrathecal pump. We made certain that the pain 

score is less than 3 at the time of CSF sampling. 

 

Definition of Opioid Naïve Control Subjects 

An opioid naïve patient was defined as an individual that had not taken opioids within 

3 months of the CSF sampling. An opioid naïve control subjects must have no chronic 

pain or ongoing acute pain at the time of CSF sampling. Patients scheduled for 

surgical removal (under spinal anesthesia) of implants used to treat lower extremity 

bone fractures were recruited. Lumbar puncture was performed at the L3-4 or L4-5 

interlaminar space with a 27G spinal needle, without traumatic tapping or repeated 

puncture attempts. CSF was collected immediately before injection of bupivacaine for 
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spinal anesthesia. 

 

CSF Sample Processing and Cytokine/Chemokine Quantification 

All CSF samples were centrifuged immediately after collection at 3,000 rpm for 5 

minutes at 4°C and aliquots were stored at –80°C until assayed. The Procarta cytokine 

profiling kit (Panomics-Affymatrix, Santa Clara, CA, USA) was used to quantify 

TNFα, CXCL1, CXCL10, CXCL12, CCL2, and CX3CL1 in CSF according to the 

manufacturer’s protocol. Briefly, a 96-well filter plate was pre-wet with reading buffer. 

The reagents (in the order of addition to the plate) were as follows: pre-mixed 

antibody beads prior to buffer removal by vacuum filtration; CSF samples with 

incubation on a shaker at 600 rpm for 60 minutes at room temperature and then 

washing; pre-mixed detection antibodies with incubation on a shaker at 600 rpm for 

30 minutes at room temperature; streptavidin phycoerythrin with incubation on a 

shaker at 600 rpm for 30 minutes at room temperature and then washing, and finally 

reading buffer. The plate was read by a Luminex (Austin, TX) instrument and the data 

were analyzed by the designated Luminex acquisition software. 
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2-3 Translational Rat Study 

Chemicals and Reagents 

Morphine hydrochloride was purchased from the National Bureau of Controlled 

Drugs, National Health Administration (Taipei, Taiwan). CXCL1, CXCL12, 

CXCL1-neutralizing antibody (CXCL1-Ab), CXCL12-neutralizing antibody 

(CXCL12-Ab) and CXCR4 blocker AMD3100 were purchased from R&D Systems 

(Minneapolis, MN, USA). CXCR2 blocker Antileukinate hexapeptide (RRWWCR, 

with an acetylated N terminus and amidated C terminus) was purchased from 

Yao-Hong Biotechnology (Taipei, Taiwan).  

 

Generation of Fab Fragments of CXCL1-Ab and CXCL12-Ab 

To exclude the possible interaction of Fc fragment with Fc receptors on glia cells, Fab 

fragments of antibody were prepared by Professor Chuang WJ’s Lab (in NCKU). Fab 

fragments were prepared with Immobilized Papain (Pierce; Rockford, IL) according 

to the manufacturer's protocol. Briefly, the antibodies were dialyzed against 20 mM 

sodium phosphate buffer at pH 7.0 containing 10 mM EDTA. The digestion buffer (20 

mM sodium phosphate, 20 mM cysteine-HCl, 10 mM EDTA at pH 7.0) was freshly 

prepared before the digestion reaction. Immobilized papain slurry was prewashed 

with the digestion buffer. The dialyzed antibodies were mixed with immobilized 
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papain slurry in a 1:10 v/v ratio and incubated at 37°C for 6 h. The digestion was 

stopped by adding 10 mM Tris-HCl at pH7.5 and the immobilized enzyme was 

separated from IgG fragments by centrifugation. The Fab fragments were then 

separated from undigested IgG and Fc fragments using an immobilized protein A resin 

(Pharmacia). IgG fragment mixture was dialyzed against phosphate buffer saline and 

incubated with immobilized protein A at room temperature for 30 min. After 

centrifugation, the supernatant, which contains the Fab fragments, was collected. The 

immobilized protein A resin was washed and supernatant was combined to Fab 

fraction. The Fab fraction was ready for downstream experiments. 

 

Experimental Animals 

All experiments were performed in accordance with the International Association for 

the Study of Pain and the National Institutes of Health Guidelines on Laboratory 

Animal Welfare and the recommendations of National Taiwan University Animal 

Care and Use Committee.  Adult male Sprague-Dawley rats (n=3~7 per protocol; 

weight, 250~275 g) were purchased from BioLASCO Taiwan Co., Ltd (I-Lan, 

Taiwan). Rats were housed individually and maintained in a controlled environment 

(12 h light/dark cycle) with food and water freely available. The rats were randomly 

allocated to different experimental conditions. The behavior test (Tail-flick response) 
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was performed in a blinded manner. 

 

Intrathecal Catheterization and Osmotic Pump Implantation  

Intrathecal catheters (polyethylene PE10 tubing, 5 cm; Becton Dickinson, Franklin 

Lakes, NJ) were inserted into the upper thoracic spine by laminotomy under 

anesthesia with chlorohydrate through the dura mater into the subarachnoid space. 

The catheter was advanced caudally so that the tip rested on the lumbar enlargement. 

The rostral end of the catheter was firmly fixed to the thoracic spine and hidden in the 

interscapular soft tissue. Rats showing signs of motor dysfunction (e.g., paralysis) 

were excluded from the study. After recovery for 7 days, the catheter was connected 

to primed Alzet osmotic minipumps (Durect Corp., Cupertino, CA, USA) for the 

delivery of drugs for 5 days. 

 

Evaluation of the Tail Flick Response and Antinociceptive Effect of Morphine 

The analgesic effect of morphine was evaluated using the tail flick assay. Using a tail 

flick analgesia apparatus (Columbus, OH, USA), the tail flick latency was measured 

with 0.1 s precision. A 15-s cut-off time was used to prevent permanent tissue damage. 

Three measurements were made per rat per time point, on the distal half of the tail. 

The same thermal intensity was set for all animals, which resulted in a baseline tail 
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flick latency of around 2 to 3 seconds. To assess the morphine antinociceptive effect, 

the percentage of the maximal possible antinociceptive effect (% MPE) was 

calculated by comparing the latency before [baseline (BL)] and after drug injection 

(TL), using the equation: % MPE = [(TL-BL)/(cutoff time-BL)]×100. 

 

Morphine Tolerance Paradigms 

Two paradigms were used to assess the effects of chemokine signaling on morphine 

tolerance. The first was the daily intraperitoneal morphine injection paradigm. After 

establishing intrathecal saline or chemokine continuous infusion by osmotic 

minipumps for 24 hours, morphine (10 mg/kg) was injected intraperitoneally. 

Morphine antinociceptive effects were assessed at 15, 30, 45, 60, 75, and 90 minutes 

and %MPEs were calculated. The same procedure was done for 5 consecutive days. 

The area under the curve (AUC) for time-response was considered an index of the 

antinociceptive effect at each dose of intraperitoneal morphine.  

The second paradigm was intrathecal continuous infusion of morphine. After 

establishing intrathecal continuous infusion of morphine (15 μg/hr) using osmotic 

minipumps (with or without tested factors, antinociceptive effects of morphine were 

assessed at 16, 24, 48, 72, 96, and 120 hours. The study design for CXCL1 is shown 

in Figure 2-2. The study design for CXCL12 is shown in Figure 2-3. 
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Total RNA Extraction and Real-Time Quantitative PCR 

Rats were sacrificed after continuous intrathecal of infusion of morphine or saline by 

osmotic minipump for 2 and 5 days. The spinal cord L4-L5 dorsal horn regions were 

identified and isolated for the total RNA extraction. Single-strand complementary 

DNA was synthesized using SSIII reverse transcription reagent (Invitrogen, Carlsbad, 

CA) according to the manufacturer's protocol. All cDNA samples were stored at 

-20°C. Real-time PCR was performed using a StepOnePlus™ Real-Time PCR system 

(Invitrogen). Relative mRNA levels were calculated according to the 2-CT method. 

All ΔCt values were normalized to Glyceraldehyde 3-phosphate dehydrogenase. 

Oligonucleotide primers were used as follows:  

Rat CXCL1:  

forward 5’- AGA ACA TCC AGA GTT TGA AGG TGA-3’ and  

reverse 5’-GTG GCT ATG ACT TCG GTT TGG-3’,  

Rat CXCL12:  

forward 5′- GCCGATTCTTTGAGAGCCATGT-3′ and  

reverse 5′- GCACACTTGTCTGTTGTTGCTT-3′ 

Rat GAPDH: 

forward 5’- GGC AAG TTC AAT GGC ACA GT -3’ and  

reverse 5’- TGG TGA AGA CGC CAG TAG ACT C -3’ 
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2-4 Statistical Analysis  

The CSF cytokine / chemokine concentrations are presented as medians (25th; 75th 

percentiles) or means ± standard error of the mean (SEM). Comparisons between the 

opioid naïve control subjects and opioid tolerant patients were done by using the 

Mann–Whitney test or t-test when appropriate. Linear regression was used to illustrate 

the possible relationship between daily morphine equivalent dose and the selected 

chemokine. The difference was considered statistical significant when p < 0.05. 

As for animal studies, results are presented as means ± SEM. For rat studies, we 

selected a minimal sample size of 3 to detect 3 folds upregulation of mRNA level 

(type 1 error=5% and power=0.8) between morphine infused and saline infused rats. 

We selected a minimal sample size of 5 to detect 30% difference of %MPE (type 1 

error=5% and power=0.8). Rat mRNA expression was compared by t-test on Day-2 

and Day-5, respectively. The time dependent data were tested using two-way ANOVA 

with repeated-measures. The two factors were treatment and time. After assessing that 

the treatment-by-time interaction was statistically significant, we then compared 

groups at each time point. Posttests were done by t-test with Bonferroni correction for 

p-value to compare %MPE difference of treatment group and morphine only control 

group at each time points. The differences of %MPE between different time points 

were not tested. The differences were considered statistically significant when 
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adjusted p < 0.05.  

The data were analyzed using GraphPad Prism, version 6.0 for Windows (GraphPad 

Software, Inc., San Diego, CA). 
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According to current consensuses (Burton et al., 2004, Myers et al., 2010), IDDS can 

be a good alternative for selected cancer pain patients, such as those with refractory 

cancer pain that cannot be relieved by conventional routes or suffered from intolerable 

side effects. However, the experience of using IDDS to manage refractory cancer pain 

is very limited in Taiwan. This part of study is our preliminary report on development 

and validation of IDDS clinical service in our institute. We presented the detailed 

patient selection criteria, intraspinal morphine trial procedures, surgical techniques of 

final pump placement, treatment related complications and drug adjustment strategies. 

Based on these experiences, our institute can regularly provide both temporary and 

long term intrathecal opioid analgesia to manage refractory cancer pain. 

 

Results 

From January 2007 to January 2010, 6 refractory cancer pain patients received IDDS. 

The characteristics of these patients were summarized in table 3-1. Four patients had 

inadequate pain control despite maximal drug escalation and rotation. Two patients 

were intolerant to opioids adverse effects with intractable nausea and vomiting.   

The intraspinal morphine trial procedures were not consistent in our study population. 

For the first case, we tried daily lumbar puncture by 27 G spinal needle to deliver 

intrathecal morphine. This procedure had some drawbacks. Patient needed repeated 
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transfer to operation room for consecutive 7 days. Analgesic effect was not stable and 

the duration of the single shot intrathecal morphine lasted only for 18-22 hr; patient 

suffered from intractable pain during the drug windows. Afterward, we switched to 

continuous epidural morphine infusion program before implanting IDDS. Epidural 

catheter was inserted in the operation room under fluoroscopy guide. After confirming 

proper catheter position and fixation, dosage adjustment could be easily managed in 

the ward. Since intrathecal space is an immune-privileged site and infection was 

always a concern especially in cancer patients, we were very cautious with 

externalized catheter. Only one patient shifted to temporary intrathecal catheter to 

provide adequate analgesia. His initial intrathecal dose was too high for effective 

epidural route. 

The patient’s pain scores were 10 (9-10) at pain specialist consultation, 9 (8-10) after 

medication adjustment including opioids and adjuvant agents. After the intraspinal 

morphine trial, the pain scores decreased to 3.5 (2-4) which was statistically 

significant and was illustrated in Fig. 3-1. The two patients who suffered from severe 

nausea and vomiting related to opioids could tolerate the intraspinal morphine trial 

well and easily escalated dose to adequate analgesia. All the 6 patients were satisfied 

with the analgesic efficacy and received IDDS according to trial result, the pain score 

was stabe from the immediate post-implantation period to follow-up visits (Fig. 3-1). 
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The course equipotent morphine dosage escalation was illustrated in figure 3-2. Two 

patients suffered from pocket seroma and one patient also had back wound seroma. 

During mean 54.1 months follow-up, no other complication was noted such as 

central nervous system infection, nerve roots or spinal cord injury. Four patients had 

functional improvement at 14 days after IDDS implantation, while the other two are 

the same (Fig. 3-3). All 6 patients felt significant improvement of their quality of life 

with better pain control. 

 

Discussion: 

Our results in these 6 refractory cancer pain patients showed that IDDS improved pain 

control, performance status and quality of life. The pain scores significantly decreased 

from 10 to 3.5, although concomitantly daily intravenous morphine equivalent dose 

was rapidly increased under intrathecal drug administration indicating development of 

tolerance. During intraspinal morphine trial period, the equipotent morphine dose 

nearly doubled from the opioid dosage before the trial. With IDDS, we can deliver 

morphine directly to receptors in spinal cord dorsal horn and brain. This improves 

efficacy and reduces those common side effects such as nausea/vomiting and 

especially constipation (Myers et al., 2010). Functional status improved in 4 of our 

patients after better pain control. Prolonged refractory pain status could lead to 
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physical exhaustion and functional decline. Therefore, early intervention is essential 

to improve performance status among cancer patients. We cannot generalize the 

results of this study to patients with refractory pain due to the small sample size. 

IDDS related complications have been reported (Fluckiger et al., 2008) and up to 1% 

IDDS related central nerves system infection that necessitates pump and catheter 

removal. Minor complications such as local seroma around pump pocket site are not 

uncommon. In our experience, no surgical related infection or acute complication was 

noted. However, two patients suffered from post-operative pocket seroma; one of 

them combined with back wound seroma. One of the possible causes is the low serum 

albumin level (Stearns et al., 2005), as observed in our patients (3.3 g/dl and 3.1g/dl 

respectively). Further studies are needed on the efficacy of albumin supplements prior 

to the procedure for reducing seroma. The back wound seroma might also be 

secondary to persistent cerebrospinal fluid (CSF) leakage (Belverud et al., 2008). This 

explanation is less likely in our study because our patients did not show any other 

symptoms related to persistent CSF leakage such as positional headache. In addition, 

their seroma resolved spontaneously after short-term use of abdominal binder 

compression. Another complication with IDDS implantation is epidural or intrathecal 

bleeding/hematoma accumulation which is suspected if patients complained of  rapid 

increase of focal back pain associated with progressive neurologic deficit (Belverud, 
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et al., 2008). Magnetic resource imaging (MRI) study is necessary to confirm the 

diagnosis. None of the patients suffered from similar symptoms. However, one patient 

had to undergo regular MRI exam for monitoring his cancer status. IDDS pump will 

shut down when exposed to magnetic field greater than 1.5 Tesla, and resume its 

preprogrammed setting after leaving the magnetic field. After MRI examination, 

IDDS worked well and MR image quality was affected only at the pump area. 

Morphine remains to be the gold standard for spinal administered analgesia and the 

only opioid approved by the FDA for intrathecal delivery. In this study, two patients 

required very high dose of morphine daily for adequate pain control: 16 mg and 21 

mg intrathecal morphine (equivalent to 1600 mg and 2100 mg intravenously) 

respectively. However, delivering high concentration (>25 mg/ml), high daily dose 

(>10mg/day) morphine intrathecally may increase risk of intrathecal granuloma 

formation (Hassenbusch et al., 2002). According to recent guidelines from the 2007 

Polyanalgesic Consensus Conference (Timothy et al., 2007), morphine may be shifted 

to other first-line medication (including hydromorphone and ziconotide) or 

second-line medication. Unfortunately, these drugs are not available in Taiwan. 

Morphine delivered by IDDS can be adjusted easily at both outpatient clinic and 

inpatient setting by hand-held programmer. Dosage titration is guided according to 

patient’s pain level and site of care as morphine adjustment of hospitalized patients 
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can be managed more aggressively. Generally, if pain score is 5-6, dose can be 

increased by 25%-50% daily. If pain score is 7-10, 50%-100% dose escalation might 

be mandatory and patient should be closely monitored for possible drug toxicities in 

the initial 12-24 hours. As cancer progressed, patient’s morphine-equivalent daily 

dosage is tailored to reach adequate pain control without hesitation. In our practice, 

IDDS pump drug refill is arranged in an ambulatory surgery setting for complete 

sterile environment. Each refill lasts from 2 weeks to 3 months depending on the daily 

dose requirement. 

This is a preliminary report on the effect of intrathecal morphine delivery on patients 

with refractory cancer pain. Although this study has small sample size, it supports the 

use of intrathecal morphine delivery with totally implantable programmable pumps to 

ameliorate cancer pain. Further evaluation is necessary to validate the efficacy of 

intrathecal morphine delivery, but it can be an alternative for cancer patients with 

refractory pain. 
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Table 3-1 Patient demographics 

 

 Gender/age Primary cancer 

diagnosis 

Major Pain 

character 

ECOG 

before IDDS 

ECOG 

after IDDS 

P’t 1 M/58 Hepatocellular  

carcinoma 

Somatic 3 3 

P’t 2 M/56 Rectal cancer 

 

Visceral 3 3 

P’t 3 M/58 Rectal cancer 

 

Neuropathic 3 2 

P’t 4 F/25 Buttock synovial 

sarcoma 

Neuropathic 3 1 

P’t 5 F/70 Cholangiocarcinoma

 

Somatic 4 3 

P’t 6 M/48 Sigmoid colon  

cancer 

Visceral 3 2 

 

ECOG: Eastern oncology cooperative group performance status, 0 fully active and 4 

completely disabled 
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Although evidence in animals shows that neuroinflammation participates in the 

pathogenesis of morphine tolerance, there is no human evidence to support. In this 

reverse translational study, we explored the possibility that TNFα, CXCL1, CXCL10, 

CCL2, and CX3CL1 play roles in human opioid tolerance. We found that CXCL1 

levels were significantly higher in the CSF of a group of 30 opioid tolerant patients 

compared to a control group of 10 age-matched opioid naïve patients. The CSF level 

of CXCL1 was positively correlated to opioid dosage. Lastly, we conducted 

proof-of-concept animal studies to confirm the relationship between CXCL1 and 

morphine tolerance. 

 

Results 

Cytokine and Chemokine Analysis in Opioid-tolerant Patients 

Patient Demographics 

Thirty patients with lung carcinoma (n=6), colorectal carcinoma (n=12), pancreatic 

carcinoma (n=6), hepatobiliary carcinoma (n=2), breast carcinoma (n=2) and sarcoma 

(n=2) and ongoing cancer-related pain controlled by strong opioids were recruited as 

the opioid tolerant group. All the recruited patients were stage 4 but no CNS 

involvement and had their cancer pain well controlled at the time of CSF sampling. 

Ten age-matched opioid naïve patients were also recruited as control subjects. The age, 
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gender, and cancer diagnosis are summarized in Table 4-1.  

 

Cytokine / Chemokine Measurement in CSF Samples 

The median CSF concentration of CXCL1 was significantly higher among opioid 

tolerant patients than among opioid naïve patients (18.8 pg/ml vs. 13.2 pg/ml; p=0.02). 

There was no significant between-group difference in CSF concentrations of TNFα, 

CXCL10, CCL2, and CX3CL1. The concentration distributions for CXCL1, CXCL10, 

CCL2, and CX3CL1 were shown in Fig. 4-1. Re-analysis of this relationship after 

logarithmic transformation of the concentration values (Fig. 4-2A) identified two 

populations within the opioid tolerant patients with different CSF CXCL1 levels. 

Interestingly, CSF CXCL1 concentration was positively correlated with daily 

morphine equivalent dose (r2=0.49, p<0.01) (Fig. 4-2B). 

 

Effects of CXCL1/CXCR2 signaling on rat morphine tolerance 

Effects of intrathecal morphine, CXCL1, CXCL1-Ab and hexapeptide on 

baseline tail flick latency 

To examine whether intrathecal CXCL1 (1.2 ng/hr), CXCL1-Ab (3.6 ng/hr), and 

CXCR2 antagonist-Antileukine hexapeptide (5 g/hr) affected baseline thermal 

response, these substances were administered via intrathecal continuous infusion 
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using osmotic pump. The tail flick responses (presented in seconds) were examined at 

0, 4, 16, 24, 48, 72, 96 and 120 hr. We found that administration with tested dose of 

CXCL1, CXCL1-Ab and antileukine hexapeptide did not affect the tail-flick latency 

compared with saline group. Morphine analgesic effect reached maximal at 16 hour 

then gradually declined (Fig. 4-3). 

 

Increase of CXCL1 mRNA expression following intrathecal continuous 

morphine infusion  

Continuous intrathecal infusion of morphine (15 g/hr) or saline was administered 

using osmotic pump for 48 hours. The rat spinal cord L4-L5 dorsal horn region was 

identified and isolated for the expression of CXCL1 mRNA by real-time PCR.  It 

was found that intrathecal infusion with morphine increased CXCL1 mRNA levels to 

32.5 ± 11.9-fold of saline control (n=4 for each treatment) (Fig. 4-4). 

 

Effects of Exogenous CXCL1 on Morphine Antinociception and Development of 

Tolerance in Rats 

Based on our human study finding which suggested that CXCL1 had a potential role 

in the development of opioid tolerance, we tested whether this phenomenon could be 

verified experimentally in an animal model. Continuous intrathecal infusion of 



doi:10.6342/NTU201600959

  66

CXCL1 (1.2 ng/hr) was administered using an osmotic pump for 24 hours before the 

first dose of intraperitoneal morphine. Exogenous CXCL1 significantly decreased the 

antinociceptive efficacy of morphine (Fig. 4-5). On Day-1, the analgesic efficacy 

expressed by AUC of 10 mg intraperitoneal morphine in CXCL1-treated rats was only 

66% of the AUC in saline-infused control rats. On Day-2, the AUC was 45% for 

CXCL1-treated rats which was significantly lower than saline-infused control rats 

(86%, compared with Day-1). On Day-3, the AUC was 15% for CXCL1-treated rats 

while saline-infused control rats still retained 50% efficacy.  Therefore, intrathecally 

delivered CXCL1 decreased morphine analgesic efficacy and accelerated the 

development of morphine tolerance. 

 

Modulating Morphine Tolerance by Intervening CXCL1/CXCR2 Signaling 

Since intrathecal exogenous CXCL1 infusion accelerated the development of 

tolerance to intraperitoneally administered morphine, we then co-infused morphine 

with CXCL1, CXCL1-Ab, or CXCL1 receptor (CXCR2) antagonist intrathecally 

using osmotic minipumps to mimic intrathecal morphine infusion in clinical setting. 

As shown in Fig. 4-6, analgesic efficacy peaked after 16 hr of intrathecal continuous 

infusion of morphine (15 μg/hr), then declined gradually. MPE decreased to 

43.8±7.1%, 18.8±2.5% and 7.1±4.4% at 24, 48, and 72 hr, respectively. 
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Co-administration of morphine with CXCL1 further accelerated the development of 

morphine tolerance (p=0.02). The MPE in CXCL1 plus morphine co-infusion rapidly 

declined to 4.8 ± 2.7% at 24hr, which was significantly lower than morphine alone 

infusion (p<0.001). On the other hand, co-infusion of CXCL1-neutralizing antibody 

partially preserved morphine analgesic efficacy (p=0.02). Post hoc tests showed the 

significantly higher MPE among CXCL1-Ab plus morphine co-infusion than 

morphine alone infusion at 48hr (58.1 ± 8.0% vs 18.8± 2.5%, p<0.001), 72hr 

(34.6±2.9% vs 7.1± 4.4%, p<0.05) and 96 hr (30.0±2.7% vs 2.0±2.5%, p<0.05) (Fig. 

4-6A). The analgesic efficacy of intrathecal morphine was also preserved by 

co-administration with CXCR2 antagonist-antileukinate hexapeptide at 24 (92.1±

6.4%, p<0.001), 48 (52.1±7.7, p<0.001), 72 (32.7±4.4, p<0.05) and 96 (24.2±3.4, 

p<0.05) hr, respectively (Fig. 4-6B). 

 

Discussion 

Herein, we documented evidence that CXCL1 might be implicated in the 

pathogenesis of opioid tolerance in both humans and rodents.  

While the involvement of CXCL1 in neuroinflammation has already been 

demonstrated, the relationship between morphine tolerance and CXCL1 is unknown 

at the start of our studies. Our study in humans found a significant increase in CSF 
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CXCL1 in opioid tolerant cancer patients and a strong positive correlation between 

CSF CXCL1 level and daily opioid dosage. CXCL1 has been detected in humans in a 

variety of neurological diseases (Zwijnenburg et al., 2003, Franciotta et al., 2006, 

Pranzatelli et al., 2013)]. For example, CXCL1 is markedly upregulated in bacterial 

meningitis but not in aseptic meningitis and healthy controls (Zwijnenburg et al., 

2003), and upregulated in neuroinflammatory diseases such as multiple sclerosis, 

acute disseminated encephalomyelitis (Franciotta et al., 2006), and 

opsoclonus-myoclonus syndrome (Pranzatelli et al., 2013). Of note, the CSF CXCL1 

level in our opioid naïve control group was also comparable with levels reported in 

healthy control subjects of the above-mentioned neurological disease studies. Our 

findings suggested that increase in CXCL1 may be related to opioid tolerance, since 

our opioid tolerant patients had neither neurological comorbidity nor cancer with 

central nervous system involvement.  

Parallel to evidence in humans, we also found a rapid and significant upregulation of 

CXCL1 mRNA in the rat spinal cord after the induction of tolerance by intrathecal 

morphine infusion for 48 hours. Although CXCL1 alone infused intrathecally did not 

affect tail flick latency throughout the study period for 5 days, exogenous CXCL1 can 

markedly decrease morphine antinociceptive efficacy and accelerate the development 

of morphine tolerance. By using intrathecal co-infusion technique, we found that 
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morphine analgesic efficacy dropped to nearly undetectable within 24 hours among 

CXCL1 co-infused rats. On the contrary, by blocking CXCL1/CXCR2 signaling with 

co-infused CXCL1 neutralizing antibody or receptor antagonist, morphine analgesic 

efficacy could be at least partially preserved. Thus, morphine tolerance might be 

attenuated by CXCL1/CXCR2 signaling interventions. Though the antileukinate 

hexapeptide (a potent inhibitor of CXCR2) has been reported to suppress 

inflammatory injury in acute pancreatitis or lung injury (Lomas-Neira et al., 2004, 

Bhatia and Hegde 2007), it has never been reported to suppress the development of 

morphine tolerance. 

Although CXCL1 has been implicated in both pain (Wang et al., 2008, Zhang et al., 

2013) and cancer progression (Dhawan and Richmond 2002, Verbeke et al., 2011), 

we recruited only opioid tolerant cancer patients, not chronic non-cancer pain patients, 

in our human study. Opioid dose was typically titrated to effect, but was generally 

greater in patients with more advanced disease. Based on our study design, it is 

therefore difficult to interpret whether the upregulation of CXCL1 is related to cancer 

disease progression per se or related to long term opioid use that causes tolerance. In 

this study, we tried to minimize confounding effect from cancer progression by 

recruiting relatively homogenous patients. They were all stage 4 cancer patients with 

distant metastasis but none of them had CNS involvement. Thus, we could rule out 
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the possibility that changes of CSF CXCL1 were resulted from CNS metastasis. 

Although all the participants were in similar disease status, their opioid dosage range 

was very wide. We found a strong positive correlation between CSF CXCL1 level and 

daily opioid dosage, which further implied that upregulated CXCL1 might be related 

to long-term use of high dose opioids. Although we recruited only patients with 

advanced stage cancer with relatively stable dosage of opioids and disease status, the 

underlying cancer diagnosis would still be an inevitable confounding covariate. We 

could not recruit chronic non-cancer pain patients as study subjects because in our 

society, non-steroidal anti-inflammatory drugs and weak opioids are widely used to 

control most neuropathic pain and chronic musculoskeletal pain. However, strong 

opioid use for chronic non-cancer pain in our society is very limited and it is difficult 

to recruit enough non-cancer patients using high dose opioids (Lin et al., 2010). 

Furthermore, chronic pain per se would also be another inevitable confounding 

co-variate. In human research setting, it is unethical to conduct study by inducing 

opioid tolerance in healthy subjects without pain. Therefore we conducted subsequent 

translational animal studies to illustrate that not only CXCL1 was upregulated in 

morphine tolerant rat but also exogenous CXCL1 decreased morphine analgesic 

efficacy and blocking CXCL1/CXCR2 signaling will restore morphine analgesic 

efficacy. 
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In our human study, the subjects were prospectively recruited through a convenience 

sample. The number of participants in each group was designed to exceed the lower 

bound of large sample interference for clinical research, 30 patients. However, only 

subjects in the opioid tolerant group met a sample size of 30. We barely recruited 10 

age-compatible subjects in the opioid naive group for the following reasons: 

1. Most surgeries of the removal of implant for healed fracture were done under 

intravenous general anesthesia, not spinal anesthesia, in our institute. 

2. Most of our citizens believe lumbar puncture with CSF sampling is bad for their 

spine health and will cause low back pain. 

Zhang et al., have recently noted in a spinal nerve ligation model that CXCL1 

upregulation occurred primarily in reactive astrocytes and paralleled neuropathic pain 

behaviors such as mechanical allodynia and heat hyperalgesia (Zhang et al., 2013). 

Knockdown of CXCL1 mRNA by intrathecal short hairpin RNA lentiviral vector is 

shown to persistently attenuate spinal nerve ligation-induced pain hypersensitivity. 

Since peripheral nerve injury and long-term opioid exposure both turn on 

neuroinflammation manifested by sustained astrocyte activation (Raghavendra et al., 

2002, Johnston et al., 2004), it would be reasonable to hypothesize that modulating 

CXCL1-CXCR2 signaling could be a promising therapeutic approach to attenuate 

opioid tolerance. Directly suppressing astrocyte activation using commercially 



doi:10.6342/NTU201600959

  72

available Ibudilast (a phosphodiesterase inhibitor used for asthma) restores the 

antinociceptive effect of morphine in opioid tolerant lab animals (Lilius et al., 2009).  

This finding further illustrates the potential for control of neuropathic pain and opioid 

tolerance by novel drugs targeting astrocytes. 

To our surprise, we could not find a difference in CSF TNFα level between opioid 

naïve and tolerant subjects despite abundant lab animal data suggesting a difference 

(Shen et al., 2012). Although the assay was very sensitive, the level of CSF TNFα in 

both the naïve and tolerant groups was very low (and even below detection limits in 

some patients), and was comparable to the level reported in patients with lumbar 

stenosis-related radicular pain and complex regional pain syndrome (Alexander et al., 

2005, Ohtori et al., 2011). This finding implies that, just as in the pathogenesis of 

nerve injury-induced neuropathic pain, the pathogenesis of opioid tolerance might 

involve TNFα at the initial stage but not the well-established stage as in our patient 

group (Myers et al., 2006). Although the involvement of CCL2 and CX3CL1 in 

neuropathic pain-associated neuroinflammation has been shown in lab animals 

(Milligan et al., 2008, Abbadie et al., 2009), we could not detect a statistically 

significant difference in CSF levels of CCL2 and CX3CL1 between age compatible 

opioid naïve and tolerant human subjects. 
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In conclusion, our investigation of the levels of various cytokines and chemokines in 

the CSF of opioid-tolerant cancer patients suggests that CXCL1 may be involved in 

the pathogenesis of opioid tolerance. Our animal studies showed that blockade of 

CXCL1/CXCR2 signaling can inhibit the development of morphine tolerance. 

Therefore, CXCL1/CXCR2 may be a new target for developing drugs that attenuate 

morphine tolerance and may be especially useful for treating patients requiring high 

dose opioids. 
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intraperitoneal injection of morphine in rats.  

*, p < 0.05 as compared with morphine+saline control group at different time points 

tested by Bonferroni posttests. 
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Table 4-1 Subject Characteristics 

 

 Opioid Tolerant Naïve Control 

Age 52.8 (13) 51.5 (13.5) 

Gender 

  Male 

  Female 

 

20 

10 

 

7 

3 

Diagnosis Lung Cancer (6) 

Colorectal Cancer (12) 

Pancreatic Cancer (6) 

Hepatobiliary Cancer (2) 

Breast Cancer (2) 

Sarcoma (2) 

Spinal Anesthesia (10) 

 

Cerebrospinal fluid was collected from opioid-naïve control subject during scheduled 

spinal anesthesia before injecting local anesthetics. 
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In this translational study, we explored the contribution of CXCL12 in the 

pathogenesis of opioid tolerance. First, we analyzed human cerebrospinal fluid 

samples to determine whether CXCL12 is upregulated among opioid tolerant patients. 

In light of those results, we performed a translational study using two clinically 

relevant animal models, a once daily around-the-clock intraperitoneal (i.p.) morphine 

injection paradigm and an intrathecal minipump continuous morphine infusion 

paradigm, to explore if centrally delivered CXCL12 interferes with the time course of 

opioid tolerance.  

 

Results 

Patient Demographics 

From Sep 2012 to Aug 2014, 27 patients with colorectal carcinoma (n = 9), pancreatic 

carcinoma (n = 8), lung carcinoma (n = 5), hepatobiliary carcinoma (n = 2), breast 

carcinoma (n = 2) and sarcoma (n = 1), having ongoing cancer-related pain managed 

by long-term strong opioids, were recruited into the opioid tolerant group. All the 

recruited patients were in the advanced stage but did not show CNS involvement, and 

their cancer pain was well controlled at the time of the CSF sampling. Ten 

age-matched opioid naïve patients were recruited as naïve control subjects. The 

characteristics of the enrolled subjects are summarized in Table 5-1. 
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The CSF Concentration of CXCL12 is Significantly Increased Among Opioid 

Tolerant Patients 

Compared with opioid naïve control subjects, the mean CXCL12 CSF concentration 

was significantly increased among opioid tolerant patients. (naïve control vs opioid 

tolerant: 755 ± 33 pg/mL vs. 892 ± 34 pg/mL; p = 0.03). (Fig 5-1)  

 

Intrathecal Morphine Infusion Increases CXCL12 mRNA expression in Rat 

Spinal Cords 

A continuous intrathecal infusion of morphine (15 g/h　 ) or saline was administered 

for 2 and 5 days using an osmotic pump. The rat spinal cord L4-L5 dorsal horn region 

was identified and isolated for real-time PCR analysis of CXCL12 mRNA expression. 

We found that intrathecal morphine infusions upregulated CXCL12 mRNA 

expression to 3.2 ± 0.7 folds compared to the saline control on Day-2 (n =4 in each 

group, p=0.016) (Fig 5-2. A) and 3.4 ± 0.3 (Fig. 5-2B) folds on Day-5 (n=5 in each 

group, p=0.003) 

 

Intrathecal Administration of CXCL12 Accelerates Morphine Tolerance 

Continuous intrathecal infusion of CXCL12 (3.6 ng/h) was administered using an 

osmotic pump for 24 h before the first i.p. morphine injection. Exogenous CXCL12 

did not decrease morphine analgesic efficacy on Day-1. However, exogenous 

CXCL12 significantly accelerated the onset of tolerance in daily i.p. morphine 
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injection paradigm (Fig 5-3, n=6 for both groups). On Day-2, the %MPE for 10 mg of 

i.p. morphine in CXCL12-infused rats was only 49.5 ± 9.2% while in saline-infused 

control rats it remained 88.1 ± 6.2% (p=0.0003). On Day-3, the MPE was 26.6 ± 

10.2% for CXCL12-infused rats, which was still significantly lower than 

saline-infused control rats (72.3 ± 6.4%, p<0.0001). On Day-4 and thereafter, 

saline-infused control rats developed significant tolerance to i.p. morphine. On these 

days, the difference in %MPE between CXCL12-infused and saline-infused rats were 

no longer statistically significant. The time course of the analgesic effect of i.p. 

morphine was evaluated through Day-1 to Day-5 (Fig. 5-3). 

 

Morphine Tolerance Can be Modulated by Targeting CXCL12/CXCR4 

Signaling 

Since intrathecal exogenous CXCL12 infusion accelerated tolerance development in 

daily i.p. morphine paradigm, we co-infused morphine with CXCL12, CXCL12 

neutralizing antibody or CXCL12 receptor (CXCR4) antagonist AMD3100, 

intrathecally using osmotic pumps to mimic the intrathecal morphine infusion in 

clinical scenarios. As shown in Fig. 5-4, the analgesic efficacy of 15 μg/h intrathecal 

morphine infusion declined gradually. %MPEs for morphine only infusion group (n=6) 

were 43.4 ± 6.4%, 17.5 ± 2.4%, 4.4 ± 1.5%, 3.6 ± 1.3% and 1.7 ± 1.9% on Day-1 to 
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Day-5, respectively. Co-administration of morphine with CXCL12 further accelerated 

the development of morphine tolerance. The MPE in rats receiving 

CXCL12/morphine co-infusion (n=5) rapidly declined to 9.4 ± 7.1% on Day-1 

(p<0.0001), which was significantly lower than morphine only infusion group. On the 

other hand, co-infusion with CXCL12-Ab plus morphine (n=5) delayed the induction 

of morphine tolerance. Posttests showed significantly higher %MPEs with 

CXCL12-Ab/morphine co-infusion than morphine alone on Day-1 (72.5 ± 11.6%, 

p<0.0001) and Day-2 (47.6 ± 11.3%, p<0.0001).  

Another set of experiments showed that the analgesic efficacy of intrathecal morphine 

was persistently preserved by the co-administration of AMD3100 (Fig. 5-5). The 

%MPEs in rats receiving morphine co-infusion with AMD3100 vs. morphine infusion 

only (n=6 in both groups) were as follows: Day-1, 65.8±12.3% vs 46.9±8.4%, p=0.28; 

Day-2, 59.1 ± 9.6% vs. 19.4 ± 3.1%, p=0.0005; Day-3, 47.8 ± 11.4% vs. 9.4 ± 4.9%, 

p=0.0007; Day-4, 33.0 ± 4.6% vs. 3.1 ± 2.9%, p=0.01; and Day-5, 27.9 ± 4.1% vs. 0.9 

± 1.6%, p=0.03 (Fig 5-5). 

 

Discussion 

CXCL12, also commonly known as stromal cell-derived factor 1 (SDF-1), belongs to 

the CXC subfamily of chemokine. Our CSF study provides human evidence of 

significantly upregulated CXCL12 levels among opioid tolerant patients, which is 
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complemented by experimental results on lab animals. These findings imply that 

CXCL12/CXCR4 signaling might contribute to the pathogenesis of opioid tolerance 

in both rodents and humans. 

 

Although the CXCL12 levels of our opioid naïve subjects are comparable with 

previous research (Fischer et al., 2009), it may be argued that they are still relatively 

high, and that the difference between the naïve and tolerant patient groups, though 

statistically significant, is not vast. Since CXCL12/CXCR4 is widely distributed in 

the central nervous system (Reaux-Le Goazigo et al., 2012, Reaux-Le Goazigo et al., 

2013) and is involved in multiple essential physiological functions, including 

plasticity processes during development and multiple normal and pathological 

conditions, maintaining a certain signaling level is vital (Reaux-Le Goazigo et al., 

2013, Guyon 2014). Elevated CXCL12 levels have been linked to cancers with central 

nervous system involvement (Groves et al., 2009). In the current study, we recruited 

opioid tolerant patients without image study evidence of central nervous system 

metastatic lesions to eliminate this potential confounding factor. In light of our 

aforementioned clinical observations, we designed translational animal experiments. 

 

In our rodent study, after intrathecal infusion of morphine for as short as 2 days, the 
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CXCL12 mRNA was significantly upregulated in the spinal cord dorsal horn tissue 

and could last throughout the study period for 5 days when opioid tolerance was well 

established and morphine analgesic effects were markedly reduced as shown in Fig 

5A and 5B. These evidences indicated that centrally delivered morphine can induce 

rapid and robust upregulation of CXCL12/CXCR4 signaling. Although the time 

course of opioid tolerance experiments was much faster (within 5 days) than in 

clinical setting, both lab animal (Kissin et al., 1991) and human studies (Chia et al., 

1999) provided evidence that opioid tolerance might be initiated shortly after opioid 

exposure and may persist for a long time. Continuous intrathecal administration of 

low dose CXCL12 accelerated morphine tolerance but did not affect acute morphine 

antinociception. After a daily 10 mg morphine i.p. injection, the analgesic potency in 

the control rats gradually declined to 88.1% on Day-2 and 72.3% on Day-3. Whereas 

when CXCL12 intrathecal infusion was administered for 24 h before the first bolus of 

i.p. morphine, the analgesic potency rapidly declined to 49.5% on Day-2 and 26.6% 

on Day-3. We then utilized an even lower dose of CXCL12 to test the hypothesis that 

upregulated CXCL12 could accelerate tolerance and counteract the morphine 

analgesic effect in a more clinically important intrathecal morphine infusion model. 

Intrathecal continuous infusion of morphine in rats caused rapid analgesic tolerance 

within 24 h, as previously reported (Lin et al., 2015). In these control rats, the 
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analgesic effect was 43.4% on Day-1 and declined thereafter. Co-infusion of 

morphine with CXCL12 (1.2 ng/h) significantly accelerated tolerance induction, 

while co-infusion with CXCL12-Ab or AMD3100 inhibited the development of 

tolerance. Previous studies have shown that a single injection of CXCL12 (up to 100 

ng) directly into the periaqueductal grey matter decreases the analgesic response of 

selective Mu opioid receptor agonist-DAMGO (Szabo et al., 2002), morphine, and 

Delta opioid receptor agonist-DPDPE (Chen et al., 2007), without affecting the basal 

tail flick response. In the present study, we utilized much lower CXCL12 doses 

compared to aforementioned researches. The acute antinociception effect of morphine 

was not affected. However, tolerance development was accelerated by the very low 

doses of exogenous CXCL12. The CXCR4 antagonist, AMD3100, has been reported 

to partially reverse established neuropathic pain (Dubovy et al., 2010), as well as 

morphine-induced tactile hyperalgesia when delivered peripherally, but the effect only 

last for hours (Wilson et al., 2011). Since intrathecal administration AMD3100 does 

not influence motor function (Luo et al., 2014) and can directly block CXCR4 

downstream signaling, we concluded from the current study that continuous infusion 

of AMD3100 can persistently suppress opioid tolerance. Therefore, inhibition of 

CXCL12/CXCR4 signaling could be a drug target for prevention of opioid tolerance. 
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There are several limitations to our study. In our human study we recruited only 

opioid tolerant cancer patients. It is indeed very difficult to interpret whether the 

up-regulation of CXCL12 is related to cancer or to opioid-induced neuroinflammation. 

We tried to minimize this confounding factor by recruiting patients that had no CNS 

involvement. Theoretically, chronic non-cancer pain patients might be a better target 

population for chronic pain, or opioid tolerance research, because of their longer 

survival period and better physical status. However, in our society, NSAIDs and weak 

opioids are used to control most neuropathic pain and chronic musculoskeletal pain. 

In our practice, strong opioid use for chronic non-cancer pain is very limited and it is 

difficult to recruit enough non-cancer patients using high dose opioids (Cheng et al., 

2015). On the other hand, chronic pain per se might also induce neuroinflammation. 

This is another inevitable confounding covariate (Grace et al., 2014, Ji et al., 2014). It 

is unethical to conduct human studies in which long-term opioid tolerance is induced 

in healthy volunteers without chronic pain. Therefore, well designed translational 

animal studies are conducted to study the role of CXCL12 in opioid tolerance. 

 

Conclusions 

The CXCL12/CXCR4 pathway contributes to the pathogenesis of opioid tolerance. 

Our study indicates that intervening with CXCL12/CXCR4 signaling has therapeutic 

potential for opioid tolerance. 
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CXCL12 co-treatment vs. morphine control groups: 49.5 ± 9.2% vs. 88.1 ± 6.2% on 

Day-2, p=0.0003; 26.6 ± 10.2% vs. 72.3 ± 6.4% on Day-3, p<0.0001)  

Data are presented as means ± SEM.  

Statistical analysis was done by 2-way ANOVA with repeated measures followed by t 

test for each time points with Bonferroni correction of the p values (n = 6 for each 

group)  

The asterisk (*) denote statistical significance compared with morphine control group 

at different time points and tested using the Bonferroni posttests. 

Maximal possible antinociceptive effect (%MPE) was calculated by comparing the 

latency before [baseline (BL)] and after drug injection (TL), using the equation:  

% MPE = [(TL-BL)/(cutoff time-BL)]×100. 
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Each point represents the mean ± SEM for 6 animals in morphine control group and 5 

animals in morphine +CXCL12 and morphine + CXCL12 Ab group. 

Statistical analysis was done by 2-way ANOVA with repeated measure followed by t 

test at each time points with Bonferroni correction of the p values to compare with 

morphine control group. 

*, # represent statistical significance compared with morphine control group at 

different time points and tested using the Bonferroni posttests. 
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Statistical analysis was done by 2-way ANOVA with repeated measure followed by t 

test for each time points with Bonferroni correction of p values 

* represents statistical significance as compared with the morphine group, tested using 

Bonferroni posttests. 

Maximal possible antinociceptive effect (%MPE) was calculated by comparing the 

latency before [baseline (BL)] and after drug injection (TL), using the equation:  

% MPE = [(TL-BL)/(cutoff time-BL)]×100. 
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Chronic unremitting pain is not only a disease entity but also a major socioeconomic 

burden to our society. Opioid therapy remains the most effective and widely accepted 

treatment strategy for the management of moderate to severe pain, especially cancer 

related severe pain. 

From clinical perspective, we have developed comprehensive intraspinal morphine 

infusion therapy protocol to provide our patients high quality, easy-to-care pain 

management during our early phase study period. As clinicians and educators, we 

further share our experience to colleagues and medical personnel in Taiwan through 

continuous medical education activities and seminars in terms of proper patient 

selection criteria, intraspinal trial infusion protocol, pump implantation surgery details, 

complication management and long term follow-up programs. In parallel to more 

effective analgesia, we are still bothered by the problems from opioid tolerance that 

complicate our patient care. Opioid analgesic tolerance, by definition, the efficacy of 

long-term opioid is progressively attenuated thus dosage escalation is needed to 

provide same level of pain relief for chronic pain patients. Either frequent dosage 

adjustment or increased severity of opioid related side effects will significantly impair 

patients’ satisfaction and quality of life. 

In our "reverse" translational studies, we discovered that CXCL1 and CXCL12 were 

significantly up-regulated among opioid-tolerant patients and positively correlated 
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with daily opioid dosage. Then we translated these clinical findings to animal model 

study. In our translational rat experiment, after induction of opioid tolerance by 

intrathecal morphine infusion that mimicking intrathecal morphine infusion therapy in 

clinical scenario, the lumbar spinal cord CXCL1 and CXCL12 messenger RNA was 

significantly upregulated as in opioid tolerant humans. Although exogenous very low 

dose CXCL1 and CXCL12 infusion alone did not affect baseline behavior, the 

analgesic efficacy of intraperitoneal injection of morphine dropped significantly. After 

establishing tolerance by intrathecal continuous infusion of morphine, opioid 

tolerance development was markedly accelerated by co-administration of exogenous 

CXCL1 and CXCL12. On the contrary, tolerance was attenuated by co-administration 

of ligand neutralizing antibodies or receptor antagonists.  

Based our current results, we will keep working on the following projects: 

A. To further elucidate the mechanism underlying how opioid triggers CXCL1 and 

CXCL12 upregulation. Is it involved in non-stereoselective TLR4 activation 

prosposed by or specific chemokine over production is the downstream product of 

MOR activation and through what molecular mechanisms? 

B. Since CXCL1 and CXCL12 are upregulated in both opioid-tolerant patients and 

rodents and in parallel the onset and extent of opioid tolerance was affected by 

intervening intrathecal CXCL1/CXCR2 and CXCL12/CXCR4 signaling pathway. 
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Therefore, the CXCL1/CXCR2 and CXCL12/CXCR4 signal pathways may be 

novel drug targets for the potential treatment of opioid tolerance. If possible, we 

will collaborate with other labs to further screen and validate small compounds of 

CXCR2 and CXCR4 blockers and hopefully can introduce them into early phase 

clinical trial. 

Based on our current study paradigm, we first discover potential biomarkers of 

opioid tolerance and do following “reverse” translational studies in lab animal. 

During these years we have already collected many human CSF samples thus we 

can keep on screening potential molecular targets not only chemokines but also 

other cytokines or soluble factors that may or even may not be involved in 

neuroinflammation process. For example, recently, our lab has discovered 

leukemia inhibitory factor (LIF) was also upregulated among opioid tolerant 

patients and animals. However, in translational lab animal research, we found that 

exogenous LIF can potentiate morphine acute antinociceptive effects and attenuate 

tolerance development (Tu et al., in press). These findings are completely in the 

opposite direction of our results that implies during opioid tolerance and 

neurinflammation, there should be other physiological adaptations to 

counterbalance the proinflammatory cascades. These counterbalance factors 

would be also important for future drug development. 
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From lab animal research in recent decades, neuropathic pain and opioid tolerance 

share a lot of common pathogenic mechanisms, for example, dysregulated 

neuroinflammation. Since neuropathic pain is extremely difficult to treat and 

poorly responds to all currently available therapeutic approaches including strong 

opioids and neuromodulatory agents such as tricyclic antidepressants and calcium 

channel modulators, for example, pregabalin. New treatment for neuropathic pain 

is urgently needed. In the following year, we will follow the same study paradigm 

to facilitate exploration of biomarkers and pathogenesis then translate into lab 

animal research. First, we can screen our current available CSF sample bank for 

patients with predominantly neuropathic pain features such as burning, tingling, 

electric shooting pain patters with compatible image evidence such as tumor 

external compression or direct invasion of nerve trunk or plexus. While concurrent 

use of strong opioids in the severe pain patient population is inevitable, careful 

study design is paramount. Following our current study result, theoretically, 

chemo/cytokine perturbation might come from opioid tolerance or neuropathic 

pain or both. We thus can compare their CSF sample retrieved during different 

time points and compare with healthy volunteers. If one specific biomarker is 

obviously different from healthy control but stay the same level between different 

opioid dosages, then the biomarker is for neuropathic pain. If the biomarker is 
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different from healthy control but also different between opioid dosage, then the 

biomarker is for opioid tolerance. Since most of current neuropathic pain model 

might not mimic clinical scenario, for example, spared nerve injury neuropathic 

pain model, 2 branches of sciatic nerve have to be sectioned and test the behavior 

on sural nerve territory. Most of the nerve injury related neuropathic pain in 

clinical setting the nerve injury site is usually very vague. On the contrary, most of 

cancer related neuropathic pain has direct image evidence of site of nerve injury. 

Therefore, we will develop neuropathic cancer pain model by implanting 

exnograft to the lumbar or sacral plexus area and do following researches. This 

project would be our labs mid to long term project. 

In conclusion, our research provided both human and lab animal evidence to show 

that CXCL1/CXCR2 and CXCL12/CXCR4 signaling pathway may be involved in 

the pathogenesis of opioid tolerance. Hopefully we can provide a new insight of 

further research and new drug discovery strategy to combat opioid tolerance and 

neuropathic pain. 
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