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摘要

在物理和工程學裡，水波的繞射與散射是常見且重要的問題，這篇

論文利用了格林函數和其相關方法，對這兩種問題做了分析和研究。

在水波繞射問題上，海更斯原理常常被當作一個類比，卻沒有數學基

礎，我們利用格林函數的方法推導出水波的狹縫繞射公式，解釋了海

更斯原理，我們的方法和光學裡的克希荷夫繞射公式的推導是類似的。

而對於散射問題，我們假設水底幾乎是平坦的，但具有很小的起伏，

我們同樣利用格林函數的方法，並結合微擾理論，推得出水波被地面

散射的公式，為了驗證這個公式，我們利用其他方法來計算一個特別

的例子，而其計算結果與我們的公式是一致的。
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Abstract

Diffraction and scattering of water wave are common and important prob-
lems in physics and engineering. In this thesis, we use Green’s function
method to analysis the two problems. For diffraction, we apply Green’s func-
tion method to derive the formula of slit diffraction to explain Huygens prin-
ciple, which is usually just an analogy in water wave diffraction. We use the
similar way that Kirchhoff derive his diffraction formula in optics. For scatter-
ing, we assume that the bottom of water is roughly flat with small variations.
We use Green’s function combined with perturbation method and obtain the
formula of the scattering problem. We also use matching method to calculate
a special case and then we find that the result is consistent with our formula.
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Chapter 1

Introduction

Diffraction and scattering of water wave are important problems in engineering and
oceanography. For instance, studying diffraction is crucial to harbor engineering, because
it is necessary to understand the water wave patterns diffracted by breakwaters. Scattering
by bottom topography is widely studied in offshore engineering and oceanography in that
it is needed to know the effects of bottom or artifical stuctures to surface waves. Water
surface wave problems are important but complicated to solve because the mechanism of
water wave is nonlinear. Linear wave theory is a theory for water wave that linearize all
the nonlinear terms and thus make the problems easier to solve, although sometimes it is
still complicated and requires computer simulation.

A simple and intuitive explanation of diffraction waves is Huygens principle. It says
that every point at wave front can be deemed as a source of wave. By Huygens principle,
any diffraction of wave through an aperature can be calculated. In optics, Kirchhoff math-
ematically derived his diffraction formula and showed that Huygens principle is a direct
consequence of his formula [4]. However, in fluid dynamics, Huygens principle of water
wave diffraction is just an analogy. The mechanisms of water wave and optics are totally
different. Therefore, in this thesis, we are going to deal with this problem.

Water surface wave scattering of bottom is extremely difficult to calculate. Most of
the time, either some approximations or numerical computations are needed. In 1972,
Berkhoff proposed mild-slope equation [2], which is well known and widely used today.
Literally, this equation can be used in the case that the slope of bottom is small. Mild-slope
equation can be derived from variational method of water wave. One degree of freedom is
reduced by integrating the Lagrangian of water with respect to the vertical coordinate. The
advantage of this method is that the equation depents only on the horizontal coordinates
so it is simpler to solve and compute.

Another method to solve water wave scattering problem is Green’s function method.
Green’s function method is commonly seen in physics. It can be used if the physical
system has a linear differential equation. For water wave system, John, 1950, derived the
Green’s function and showed that it can be expanded into infinite series [6]. By applying

1
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Green’s identity, the solution of water field is written as an integral of boundary conditions
over the boundaries. Without any further approximations, it turns into an integral equation
problem [9]. To solve the integral equation, numerical computation is necessary.

In this thesis, we discuss diffraction and scattering of three-dimensional water wave.
First, like Kirchhoff’s derivation of diffraction formula, we try to formulate the formula of
flat-bottom water diffraction using Green’s function. And then the phase shift of diffrac-
tion is discussed. Next, we use the already derived Green’s function to further consider the
case of uneven bottom. We apply perturbation method and obtain the formula for bottom
scattering. Thoughout this thesis, we only consider linear wave system, and thus nonlin-
ear terms are omitted. Besides, the effects of both gravity and surface tension on the free
surface are maintained to keep generality.

2
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Chapter 2

Governing Eqautions

In this chapter, we formulate the governing equations of water wave. The derivation
of governing equations can be found in textbooks of fluid dynamics like [1]. At the end
of this chapter, the differential equation and the boundary conditions of water is provided
for subsequent chapters to deal with.

Unlike other derivations using velocity potential Φ, we are going to use pressure as
the main variable. Because we are using linear wave theory, we will see that velocity
potential and pressure have the same differential equation and similar boundary conditions.
However, pressure is a real physical quantity, so it can give us more insights.

Consider a body of water on a solid ground with depth h(x). Assume that the water
is static with a little fluctuation. Without loss of generality, the surface of water is defined
to be at z = 0. So the pressure can defined as

−ρgz + p(r, t),

where −ρgz is the static pressure and p(r, t) is the fluctuation. Here, we use x to denote
two-dimensional vector (x, y) and r to represent three-dimensional vector (x, y, z).

As usual, water is assumed to be an incompressible fluid, that is,

∇r · u = 0, (2.1)

where u is the velocity field. The dynamics of fluid follows the Euler equation

du

dt
= −1

ρ
∇rp.

By chain rule, du
dt

can be rewritten as

du

dt
=
∂u

∂t
+ (u · ∇r)u,

3
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which is nonlinear. Because we have assumed that the fluctuations are small, any higher
order terms are negligible. In this case, the latter term can be discarded. After the elimi-
nation of nonlinear terms, we thus have the linearized Euler equation

∂u

∂t
= −1

ρ
∇rp. (2.2)

Combining (2.1) and (2.2), we can find that p satisfies Lapace equation, i.e.

∇2
rp = 0. (2.3)

The boundary of water has two parts. One is the free surface and the other is the
boundary that water contacts the solids like bottom and walls. The boundary conditions
should be considered separately.

For the boundary between water and solids, the velocity u must be parallel with the
boundary because of the incapability for water particles to penetrate the solids. From the
relationship between u and p in (2.2), it can be inferred that ∇rp must also parallel the
boundary. Therefore, we have the boundary condition

∂p

∂n
= 0, (2.4)

with n the normal vector of the boundary. More explicitly, on z = −h(x), this equation
can be written as

∇xh · ∇xp+
∂p

∂z
= 0. (2.5)

For the free-surface boundary, it’smore complicated because the position of the surface
varies with time. Instead of finding the boundary condition on the real surface, we can
just consider the plane z = 0, which is a fair approximation since the amplitude of water
wave is assumed to be small. On z = 0 plane, by considering the effects of both gravity
and sufrace tension, the pressure satisfies

p = −γ∇2
xζ + ρgζ, (2.6)

where ζ(x) is the height of surface. For the places where ζ > 0, p is the physical pressure.
But for ζ < 0, there is no water particle at z = 0, so the p is an imaginary pressure and is
derived by extrapolation.

In addition, assume that the particles on the surface always stay on the surface, that is,

uz =
dζ

dt
,

with uz the z-component of u. Similar to the way we linearize (2.2), the nonlinear terms
can be eliminated by replacing d with ∂. And then, by substituting the uz into (2.2), we

4
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can obtain another boundary condition

−1

ρ

∂p

∂z
=
∂2ζ

∂t2
. (2.7)

In this thesis, we assume that the system is oscillatingwith angular frequencyω. There-
fore, p(r, t) can be written as p(r, t) = Re [p(r)e−iωt] and so are ζ(x, t) and u(r, t). For
convenience, we solve the complex functions p(r), ζ(x) andu(r) rather that the real ones.
Moreover, with this assumption, the second derivatives of any variables become−ω2, i.e.
∂2

∂t2
= −ω2. So the boundary condition (2.7) can be rewritten as

∂p

∂z
= ρω2ζ. (2.8)

This assumption is made without any loss of generality because our system is totally lin-
earized. We can get a more general solution with respect to time by making the superpo-
sition of all different frequencies ω.

5
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Chapter 3

Flat Bottom Diffraction

In this chapter, we deal with the case that the bottom is flat. We let h(x) = h0 to be a
constant. Therefore, the boundary condiditon (2.5) reduces to a simple form

∂p

∂z

∣∣∣∣
z=−h0

= 0. (3.1)

We will first introduction Green’s method and then apply it to diffraction problems.

3.1 Green’s Function Method

A Green’s function G(r, r′) is a function that obeys the equation

∇2
r′G(r, r′) = δ(r − r′).

If r is in volume V , then, from Green’s identity, we have

p(r) =

∫
V

p(r′)δ(r − r′) dr′

=

∮
∂V

(
p (r′)

∂G

∂n′ −
∂p

∂n′ (r
′)G

)
da′,

(3.2)

where n′ is the normal vector with respect to the boundary ∂V . With this formula, all we
need to solve p is the value and derivative of p on the boundary.

In this section, we first apply this formula to a simple case, a plane wave. And later
on, the method will be used on slit diffraction and uneven bottom problems. Now, assume
that a plane water wave has the form

ζ(x) = Aeik·x,

where k is an unknown constant we need to find.

7
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First we need to derive the Green’s function for this problem. Considering the fact
that ∇2

r

( −1
4πr

)
= δ(r) and the boundary condition (3.1), we use the methed of image [5]

by defining the Green’s function as

G1(r, r
′) = − 1

4π

(
1

|r′ − r|
+

1

|r′ − r̄|

)
, (3.3)

where r̄ is the mirror image of point r with respect to the bottom z = −h0, i.e. r̄ =

(x, y,−2h0 − z). The integral domain V shoud be the whole space of water, that is, the
region between z = −h0 and z = 0. However, the boundary of infinity is not defined.
Therefore, we let the integral domain V to be a vertical cylinder with radius R and bases

Figure 3.1: The domain of integration V

on z = 0 and z = −h0 as in figure 3.1. Let R tend to infinity so that V appoaches the
whole space of water. Applying the Green’s identity (3.2), we have

p(r) =

∫
z′=−h0

+

∫
R→∞

+

∫
z′=0

(
p (r′)

∂G1

∂n′ −
∂p

∂n′ (r
′)G1

)
da′. (3.4)

Obviously, the integral over z′ = −h0 vanishes due to the symmetry of G1 and the
boundary condition (3.1) of p. And as for the integral of R → ∞, although G1 is of order
O(R−1) and the area of integration isO(R), p is an oscillating function, so we assume that
the integral also tends to zero when R approach infinity. And thus only the integral over
z′ = 0 remains. Substituting the boundary conditions (2.6) and (2.8) into (3.4), we get

p(r) = − A

4π

∫
z′=0

[ (
γk2 + ρg

) ∂

∂z′

(
1

|r′ − r|
+

1

|r′ − r̄|

)
− ρω2

(
1

|r′ − r|
+

1

|r′ − r̄|

)]
eik·x′

d2x′. (3.5)

By transformation of coordinate to polar coordinate with µ = |x−x′| and θ the angle
between vectors k and x− x′, we have∫

eik·x′

|r′ − r|
d2x′ = eik·x

∫
eikµ cos θ√

µ2 + (z − z′)2
µdµ dθ

8
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Adopting the equations from integral tables,∫ π

−π
eix cos(τ)dτ = 2πJ0(x),∫ ∞

0

xJ0(xy)√
a2 + x2

dx =
e−ay

y
, Re[a] > 0 ,

where Jn(x) is the Bessel function of first kind, we can make the calculation∫
eik·x′

|r′ − r|
d2x′ = 2πeik·x

∫ ∞

0

µJ0(kµ)√
µ2 + (z − z′)2

dµ

= 2πeik·x
e−k|z−z′|

k
.

Substituting the result into (3.5), we can obtain

p(r) =
A

2k
eik·x

[
(γk2 + ρg)k + ρω2

] (
ekz + e−k(2h0+z)

)
.

We have to compare the equation to the orginal assumption ζ = Aeik·x. By the boundary
condition of water surface (2.6), the equation

A

2k

[
(γk2 + ρg)k + ρω2

] (
1 + e−2kh0

)
= A(γk2 + ρg)

is shown. And then we derive the equation for k

ρω2 = (γk2 + ρg)k tanh(kh0). (3.6)

This is called the dispersion relation of water wave. As a result, p has the form

p(r) = A(γk2 + ρg)eik·x
cosh(k (z + h0))

cosh(kh0)
. (3.7)

3.2 Slit Diffraction

In this section, we are going apply Green’s function method to solve slit diffraction
problem. We will follow almost the same procedure in last section, but, because we don’t
know the form of the diffracted wave, unlike the calculations in last section, we will en-
counter an integral integration if we use the Green’s function G1 as in (3.3). Therefore,
another proper Green’s function is needed.

9
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3.2.1 The Green’s Function

We define Green’s function G2(r, r
′) that satisfies the boundary conditions

(−γ∇2
x′ + ρg)

∂G2

∂z′
− ρω2G2 = 0, for z′ = 0,

∂G2

∂z′
= 0, for z′ = −h0.

(3.8)

So the integral of p∂G2

∂z′
− ∂p

∂z′
G2 over an arbitrary area D on z′ = 0 plane becomes∫

D

(
p
∂G2

∂z′
− ∂p

∂z′
G2

)
da′ =

∫
D

((
−γ∇2

x′ + ρg
)
ζ
∂G2

∂z′
− ρω2ζG2

)
da′

=

∫
D

[
−γ∇x′ ·

(
∇x′ζ

∂G2

∂z′
− ζ∇x′

∂G2

∂z′

)]
da′

=− γ

∫
∂D

(
∂ζ

∂n′
∂G2

∂z′
− ζ

∂

∂n′
∂G2

∂z′

)
dl′.

(3.9)

We can see that, with this Green’s function, we don’t need to guess the unknown wave
form of ζ .

Now let’s find the Green’s function G2 with boundary conditions (3.8). Because the
delta function can written as the Fourier transform

δ(x− x′) =
1

(2π)2

∫
eis·(x−x′)d2s,

we let G2 to be
G2 =

1

(2π)2

∫
eis·(x−x′)G̃2 (s, z, z

′) d2s, (3.10)

which is just the Fourier transform of G2. So the equation∇2
r′G2 = δ(r, r′) becomes

1

(2π)2

∫
eis·(x−x′)

(
−s2 + ∂2

∂z′2

)
G̃2d

2s. = δ(z − z′)
1

(2π)2

∫
eis·(x−x′)d2s,

or (
−s2 + ∂2

∂z′2

)
G̃2 = δ(z − z′), (3.11)

with the B.C. 
(γs2 + ρg)

∂G̃2

∂z′
− ρω2G̃2 = 0, z′ = 0,

∂G̃2

∂z′
= 0, z′ = −h0.

(3.12)

The equation (3.11) has a particular solution 1
s
sinh(s(z′ − z))H(z′ − z), where H(z) is

an unit step function, so we assume G̃2 to be the addition of the particular solution and

10
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homogeneous solutions as follows

G̃2 =
1

s
sinh(s(z′ − z))H(z′ − z) + c1 cosh(s(z′ + h0)) + c2 sinh(s(z′ + h0)).

Substituting the B.C (3.12), we can obtain c2 = 0 and

c1 = −1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

.

So we have

G̃2 =
1

s

[
sinh(s(z′ − z))H(z′ − z)

− (γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

cosh(s(z′ + h0))

]
. (3.13)

G2 is now an integral of a complicated fuction G̃2. It can be further expanded to infinite
series, which is shown in appendix A.

3.2.2 Exapmle of a Simple Diffraction Problem

Figure 3.2: The setup for the slit diffraction

The setup of the diffraction problem is shown in figure 3.2. Although the Green’s
function method can be applied to any shape and geometry of walls, we consider only the
simplest case here, i.e. vertical straight walls standing along x = 0 with some apertures
open. The edges of apertures are straight . Assume that in x < 0 side, there is an incident

11
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wave ζ(x) = ζi(x) and, from (3.7), the incident pressure

pi(r) = ζi(x)(γk
2 + ρg)

cosh(k(z + h0))

cosh(kh0)
. (3.14)

In x > 0 space, the diffracted wave is the desired function that we want to solve.

The boundary conditions on the wall is the same as that on the bottom, ∂p
∂n

= 0. For
this reason, we define a new Green’s function

G3(r, r
′) = G2(r, r

′) +G2(r, r̄
′), (3.15)

where r̄′ is the mirror image point of r′ with respect to the x′ = 0 plane, so that it satisfies

∂G3

∂x′

∣∣∣∣
x′=0

= 0. (3.16)

Now that we have theGreen’s function, it’s time to apply (3.2) to calculate the diffracted
wave. The integral domain V in (3.2) is selected as a half vertical cylinder with its center
at the origin and radius R. As R tends to infinity, V will approach the whole space of
water in x > 0. Therefore, (3.2) can be written as

p(r) =

∫
z′=−h0

+

∫
x′=0

+

∫
z′=0

+

∫
R→∞

(
p
∂G3

∂n′ −
∂p

∂n′G3

)
da′. (3.17)

The integral over z′ = −h0 vanishes because ∂p
∂z′

and ∂G3

∂z′
are 0. The integral over z′ = 0

can be replaced by equation (3.9), and then we get

p(r) =

∫
x′=0

+

∫
R→∞

[ ∫ 0

−h0

(
p
∂G3

∂n′ −
∂p

∂n′G3

)
dz′

− γ

(
∂ζ

∂n′
∂G3

∂z′
− ζ

∂

∂n′
∂G3

∂z′

)
z′=0

]
dl′. (3.18)

We can argue that the integral of R → ∞ will tend to 0 as R goes to ∞. Because in
the diffraction region, x > 0, there is only outgoing wave, we must have the relation

∂p

∂R
− ikp = O

(
R− 3

2

)
, (3.19)

for R very far away from the apertures. From the expanded Green’s function (A.6) in
appendix A, G3 also has the following relation

∂G3

∂R
− ikG3 = O

(
R− 3

2

)
, (3.20)

whenR → ∞. By combining (3.19) and (3.20), we can see that p∂G3

∂R
− ∂p

∂R
G3 = O(R−2).

12
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So the whole integral over R → ∞ vanishes, and (3.18) becomes

p(r) =

∫
aperature

∂ζi
∂x′

(
γk2 + ρg

cosh(kh0)

∫ 0

−h
cosh(k(z′ + h0))G3 dz

′ + γ
∂G3

∂z′

∣∣∣∣
z′=0

)
dy′.

(3.21)
Expand G3 with G̃2. From integral tables,∫

cosh(α) cosh(β)dz =
1

a2 − b2
(
a sinh(α) cosh(β)− b cosh(α) sinh(β)

)
, and∫

sinh(α) cosh(β)dz =
1

a2 − b2
(
a cosh(α) cosh(β)− b sinh(α) sinh(β)

)
,

where α = az + c and β = bz + d, we can find out

∫ 0

−h
cosh(k(z′ + h0)) G3|x′=0 dz

′

=
2

(2π)2

∫
eis·(x−x′)

[∫ 0

−h
cosh(k(z′ + h0))G̃2 dz

′
]
d2s

=
2

(2π)2

∫
eis·(x−x′)

s2 − k2

[
− cosh(k(z + h0))

+ cosh(s(z + h0))
(γs2 + ρg)k sinh(kh0)− ρω2 cosh(kh0)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

]
d2s (3.22)

and

∂G3

∂z′

∣∣∣∣
x′,z′=0

=
2

(2π)2

∫
eis·(x−x′)∂G̃2

∂z′
d2s

=
2

(2π)2

∫
eis·(x−x′) −ρω2 cosh(s(z + h0))

(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)
d2s.

(3.23)

Finally, we can calculate the result by joining (3.22) and (3.23) with (3.21). Actually,
most terms will be eliminated after combination, and only a simple form ramains:

p(r) =
−2

(2π)2
(γk2 + ρg)

cosh(k(z + h0))

cosh(kh0)

∫
aperture

∂ζi
∂x′

∫
eis·(x−x′)

s2 − k2
d2s dy′.

From integral table, the integral of d2s becomes∫
eis·(x−x′)

s2 − k2
d2s = 2π

∫
sJ0(s|x− x′|)

s2 − k2
ds = iπ2H

(1)
0 (s|x− x′|), (3.24)

whereH(1)
n (z) is the Hankel function of first kind. As a result, we arrive at the diffraction

formula of pressure,

p(r) = − i

2
(γk2 + ρg)

cosh(k(z + h0))

cosh(kh0)

∫
aperture

∂ζi
∂x′

H
(1)
0 (k|x− x′|)dy′, (3.25)

13
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and surface height

ζ(x) = − i

2

∫
aperture

∂ζi
∂x′

H
(1)
0 (k |x− x′|)dy′. (3.26)

3.3 Phase Shift

In optics, Rubinowicz’ diffraction theory [10] infers that there is a phase shift near the
border of iluminated region. In this section, we are going to repeat the process in optics
and find that there is also a phase shift in diffraction of water wave.

3.3.1 Rewrite the Diffraction Formula

Area

Figure 3.3: Diffraction of cylindrical wave

We consider the diffraction of a point source by a single slit. The diffraction setup is
defined as in figure 3.3. Let S be the source of a cylindrical wave, generating the wave
function

ζi(x) = AH
(1)
0 (krSx),

where the notation rPQ represent the vector pointing form point P to Q and rPQ is the
length of the vector. E1 and E2 are the edge points of the slit. L0 denotes the line segment
of aperture. L3 is an arc of a circle with its center at S. L1 and L2 are staight lines extented
from the line segment of the source and the edges of aperture, so the Area bounded by
curves Lis is the “illuminated” region of water wave.

We follow the method of Rubinowicz. Define a two dimentional Green’s function to
be as

G4(x,x
′) = − i

4

(
H

(1)
0 (k|x− x′|) +H

(1)
0 (k|x̄− x′|)

)
, (3.27)

where x̄ is a symmetric point of x with respect to x = 0. This is a Green’s function
because (∇2

x + k2)
(
− i

4
H

(1)
0 (k|x− x′|)

)
= δ(x−x′). Therefore, from Green’s identity,

14
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we have∫
Area

ζi(x
′)δ(x− x′)d2x′ =

∫
Area

ζi
(
∇2

x′ + k2
)
G4 d

2x′

=

∫
L0+L1+L2+L3

(
ζi
∂G4

∂n′ −
∂ζi
∂n′G4

)
dl′,

(3.28)

where we have used the equation (∇2
x + k2)ζi(x) = 0.

The left-hand side of (3.28) is ζi(x) if x ∈ Area and 0 if x /∈ Area. From the diffrac-
tion formula (3.26), the integral over L0 is exactly the diffracted ζ:∫

L0

(
ζi
∂G4

∂n′ −
∂ζi
∂n′G4

)
dl′ = − i

2

∫
aperture

∂ζi
∂x′

H
(1)
0 (k|x− x′|)dy′

= ζ(x).

And by applying the same argument in previous section, the integral over L3 will vanish
when the curve L3 tends to be infinitely far from the aperture. In integrals of L1 and L2,
∂ζi
∂n′ = 0 because the incident wave is a circular wave. As a result, (3.28) can be rearranged
to be

ζ(x) =

{
ζi(x), x ∈ Area,
0, x /∈ Area,

−
∫
L1+L2

ζi
∂G4

∂n′ dl
′. (3.29)

Substituting (3.27) into the derivative of G4, we can get

∂G4

∂n′ = ∇x′G4 · n̂′

= − i

4

(
r̂xx′

dH
(1)
0 (krxx′)

drxx′
+ r̂x̄x′

dH
(1)
0 (krx̄x′)

drx̄x′

)
· n̂′.

Replace r̂xx′ with rxx′
rxx′

, and then

n̂′ · rxx′ = n̂′ · (rxE + rEx′) = n̂′ · rxE.

Because n̂i is a normal vector perpendicular to line Li, n̂′ · rEx′ = 0. From figure 3.3, it
can be easily seen that

n̂1 = ẑ × r̂SE1, and

n̂2 = −ẑ × r̂SE2.

15
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Therefore, (3.29) turns to be

ζ(x) =

{
ζi(x), x ∈ Area,
0, x /∈ Area,

+
i

4
Aẑ ·

(
(r̂SE1 × rxE1)

∫
L1

1

rxx′
H

(1)
0 (krSx′)

∂H
(1)
0 (krxx′)

∂rxx′
dl′ + [x → x̄]

)
−[1 → 2] ,

(3.30)

where [a→ b] denotes the same term as the previous one but with a replaced by b.

3.3.2 Approximation of The Integral

Figure 3.4: Symbols and parameters for solving integral (3.31)

The integral in (3.30) cannot be exactly solved, so we need some approximations. Let
I be the integral we are focusing on:

I =

∫ ∞

µ

H
(1)
0 (kξ)

1

rxx′

dH
(1)
0 (krxx′)

drxx′
dξ, (3.31)

where ξ = rSx′ and µ = rSE as shown in figure 3.4. To make an approximation, observe
that Hankel functions have the asympotic form

H(1)
n (z) ≈

√
2

πz
ei(z−

nπ
2
−π

4 ),

for z ≫ 1. We assume that kµ ≫ 1 and kν| sin θ| ≫ 1, so either k is very large or the
measured point is far from the boundary, and we have the approximation of I:

I ≈ 2

π

∫ ∞

µ

1√
ξr3xx′

eik(ξ+rxx′ )dξ. (3.32)

16
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We are still unable to exactly solve the integral, so we will further do some approx-
imations. First, make the change of variable η = ξ + rxx′ so that the exponent is in a
simple form. By substituting these equations ξ = 1

2

η2−r2Sx

η−rSN
, rxx′ = 1

2
(η−rSN )2+rNx

η−rSN
and

dη
dξ

= η−rSN

rxx′
back to (3.32), the result of change of variable is

I ≈ 4

π

∫ ∞

µ+ν

eikη√
(η2 − r2Sx)

(
(η − rSN)

2 + r2Nx

)dη.

Next, let g(η) = 4
π

1√
(η2−r2Sx)((η−rSN )2+r2Nx)

be the integrand and let η0 = µ + ν. By

integration by parts,∫ ∞

η0

g(η)eikηdη = −g(η0)
eikη0
ik

−
∫ ∞

η0

g′(η)
eikη

ik
dη.

Let the former term in the right hand side be denoted by I0 and the latter term by ϵ. We
will show that, in some circumstances, I ≈ I0 is a fair approximation. In other words, the
error ϵ is small enough compared to I0. To demonstrate the estimation of ϵ, integrate it by
parts:

ϵ = g′(η0)
eikη0
(ik)2

+

∫ ∞

η0

g′′(η)
eikη

(ik)2
dη.

Therefore,

|ϵ| ≤
∣∣∣∣g′(η0)k2

∣∣∣∣+ ∣∣∣∣∫ ∞

η0

g′′(η)
eikη

(ik)2
dη.

∣∣∣∣
≤ 1

k2
|g′(η0)|+

1

k2

∫ ∞

η0

|g′′(η)| dη.
(3.33)

After direct calculation, we can find that

g′(η) =
−4

π

 η√
(η2 − r2Sx)

3 ((η − rSN)2 + r2Nx)
+

η − rSN√
(η2 − r2Sx) ((η − rSN)2 + r2Nx)

3


< 0,

g′′(η) =
12

π

 η2√
(η2 − r2Sx)

5 ((η − rSN)2 + r2Nx)
+

(η − rSN)
2√

(η2 − r2Sx) ((η − rSN)2 + r2Nx)
5


> 0,

for any η ∈ [η0,∞). Now the integral in (3.33) can be calculated and the result is

|ϵ| ≤ − 2

k2
g′(η0).

17
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If we assume that 2|g′(η0)| ≪ k|g(η0)|, and then we must have |ϵ| ≪ |I0|. To see in what
condition it is the case, expand 2

k

∣∣∣g′(η0)g(η0)

∣∣∣≪ 1 in terms of µ, ν and θ:

µ+ ν

kµν(1− cos θ)
+

1

kν
≪ 1.

Since the assumption kν| sin θ| has been made for the approximation (3.32), the inequality
above becomes

1− cos θ ≫ 1

kµ
+

1

kν
.

In sum, the approximation

I ≈ I0 =
2i

πk

eik(µ+ν)√
µν3(1− cos θ)

is valid under the assumptions: kν| sin θ| ≫ 1, kµ≫ 1 and 1− cos θ ≫ 1
kµ

+ 1
kν
.

Finally, the diffraction formula (3.30) becomes

ζ(x) ≈

{
ζi(x), x ∈ Area,
0, x /∈ Area,

+
A

2π
ẑ ·

(
r̂SE1 × r̂E1x

1 + r̂SE1 · r̂E1x

eik(rSE1
+rE1x

)√
krSE1

√
krE1x

+ [x → x̄]

)
− [1 → 2] .

(3.34)

A phase shift near the boundary can be deduced from the result. For x ∈ Area, the phase
of the diffracted wave is dominated by the phase of the incident wave ζi, i.e. ei(krSx−π

4
).

However the phase in x /∈ Area is approximately eik(rSE+rEx). Therefore, there is a π
4

phase shift near the boundary.

3.3.3 Simulations

To visualize the phase shift and to test our approximation, we are going to numeri-
cally compute the diffraction formula (3.26). But first, we apply the scale transformation
ζ(x) → ζ(kx) and x → x

k
so we have

ζ(x) = − i

2

∫
aperture

∂ζi
∂x′

H
(1)
0 (|x− x′|)dy′. (3.35)

The mehtod of numerical integration we implement is trapezoidal rule. We divide the
intevals by half until the error is less than 0.001. We set the upper edge of aperature E1 to
be at (0, 0). and let lower edge E2 to be far away from E1 in order that we can compare
only the effect of E1 instead of E2. So in this case, we set it to be at (0,−2000).

We consider three cases of source points: (−100, 0), (−100,−50) and (−100, 50).
The phase of diffracted wave with source point (−100, 0) is shown in figure 3.5. The line
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in the middle of the image is the boundary L1.
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Figure 3.5: The phase of diffraction wave with source at (−100, 0)

To compare to (3.34), we subtract the computed phase by the length of path from the
source to distination. So in the illuminated region, subtract it by rSx and, in the outter
region, by rSE1 + rE1x. We have the results shown in figure 3.6 to figure 3.8 with three
different source points.
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Figure 3.6: Phase shift with source at (−100, 0)

We can see that, for the outter region, the difference is approximately 0, and for the
inner region, the difference is approximately −π

4
. The difference near the boundary is

quite large, but our approximation (3.34) is only valid at the points far from the boundary.
So, indeed, there is an approximately π

4
phase shift.
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Figure 3.7: Phase shift with source at (−100,−50)
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Figure 3.8: Phase shift with source at (−100, 50)
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Chapter 4

Uneven Bottom Scattering

In this chapter, we let the depth h of water be a function of x instead of a constant.
However, we only deal with those problems that the variation of h is small, so we can use
perturbation method to approximate. We use perturbation theory together with Green’s
function to find the formula of water wave scattering by the bottom.

4.1 Perturbation Method

We assume that the fucntion of the bottom is z = −h(x) = −h0 + h1(x), where h0
is a constant. Let p(r) = p0(r) + p1(r) and ζ(x) = ζ0(x) + ζ1(x), where p0 and ζ0 are
the unperturbed terms, i.e. p0 and ζ0 are the solutions with h(x) = −h0. p1 and ζ1 are the
perturbed terms. We must assume that the magnitude of p1 and ζ1 are smaller than that of
p0 and ζ0.

From chapter 2, the differential equation and boundary conditons of p and ζ are

∇2
rp = 0,

p = (−γ∇2
x + ρg) ζ, z = 0,

∂p

∂z
= ρω2ζ, z = 0,

∇xh · ∇xp+
∂p

∂z
= 0, z = −h(x).

(4.1)

But for p0 , the only difference is the last boundary condtion, i.e.

∇2
rp0 = 0,

p0 = (−γ∇2
x + ρg) ζ0, z = 0,

∂p0
∂z

= ρω2ζ0, z = 0,

∂p0
∂z

= 0, z = −h0.

(4.2)
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By comparing the two collections of equations above, we can have, for p1 and ζ1,

∇2
rp1 = 0,

p1 = (−γ∇2
x + ρg) ζ1, z = 0,

∂p1
∂z

= ρω2ζ1, z = 0.

∂p1
∂z

≈ ∇x · (h1∇xp0) , z = −h0.

(4.3)

The derivations of the first three equations are trivial but that of the last equation requires
some additional assumptions and approximations.

From (4.1), the boundary condition on the bottom is

−∇xh1 · ∇xp1 +
∂p1
∂z

= ∇xh1 · ∇xp0 −
∂p0
∂z

, at z = −h0 + h1 (4.4)

We assume that |∇xh1| ≪ 1 so, to the lowest order, the left-hand side of (4.4) is ∂p1
∂z

∣∣
z=−h0

.

For the right-hand side, from the mean value theorem,

∇xp0|z=−h0+h1 = ∇xp0|z=−h0 + h1
∂

∂z
∇xp0

∣∣∣∣
z=−h0+χ

, (4.5)

∂p0
∂z

∣∣∣∣
z=−h0+h1

= h1
∂2p0
∂z2

∣∣∣∣
z=−h0

+
h21
2

∂3p0
∂z3

∣∣∣∣
z=−h0+χ′

, (4.6)

where χ and χ′ are some values between 0 and h1. If p0 is a plane wave or a cylindrical
wave, we can write down

p0 = ζ0(γk
2 + ρg)

cosh(k(z + h0))

cosh(kh0)
= p0|z=−h0 cosh(k(z + h0)).

We add an assumption |kh1| ≪ 1, so the latter terms of the right-hand sides of (4.5) and
(4.6) become

h1
∂

∂z
∇xp0

∣∣∣∣
z=−h0+χ

= h1∇xp0|z=−h0 × k sinh(kχ)

≈ (kh1)
2 ∇xp0|z=−h0 ,

and
h21
2

∂3p0
∂z3

∣∣∣∣
z=−h0+χ′

≈ (kh1)
2

2
h1
∂2p0
∂z2

∣∣∣∣
z=−h0

.

They are both of order O((kh1)2). Therefore, for both (4.5) and (4.6), the latter terms are
much smaller than the former terms in the right-hand sides.
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As a result, (4.4) becomes, at z = −h0,

∂p1
∂z

≈ ∇xh1 · ∇xp0 − h1
∂2p0
∂z2

= ∇xh1 · ∇xp0 + h1∇2
xp0

= ∇x · (h1∇xp) ,

(4.7)

which is the boundary condition (4.3).

With the unperturbed pressure p0 given, (4.3) lets us find the first order correction.
We can further apply Green’s function method to the boundary conditions. We use the
Green’s function G2(r, r

′) defined in (3.8), Integrate the Green’s idendity (3.2) over the
whole space between z = 0 and z = −h0 and assume the integral at infinity vanishes, and
then we have

p1 =

∫
z′=−h0

∂p1
∂z′

G2(r, r
′) d2x′

=

∫
z′=−h0

∇x′ ·
(
h1(x

′)∇x′p0(r
′)
)
G2(r, r

′) d2x′.

(4.8)

4.2 Scattering on Periodic Bottom

Now that we have the scattering formula, let’s consider a simple problem. Let ζ0 be an
incident planewaveAeik·x and thus the incident pressure p0 = A(γk2+ρg)eik·x cosh(k(z+h0))

cosh(kh0) .
Let the bottom be h1 = B cos(κ · x) = B

2
(eiκ·x + e−iκ·x). Note that, according to the

previous section, to make the approximation valid, Bk ≪ 1 and Bκ ≪ 1 should be
fulfilled.

From (3.10) and (3.13), we have the Green’s function

G2|z′=−h0 = − 1

(2π)2

∫
eis·(x−x′)1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

d2s.

Calculate eiκ·x and e−iκ·x separetely. Substitute the Green’s function above into the inte-
gral ∫

z′=−h0
∇x′ ·

(
eiκ·x′∇x′eik·x′)

G2(r, r
′) d2x′, (4.9)

and integratex′ prior to integrating s. Therewill be an integral that contains
∫
ei(κ+k−s)·x′

d2x′,
which has the result (2π)2 δ2(κ+ k − s). We can thus obtain that (4.9) is

(k · (k + κ))

∫
δ(κ+ k − s)eis·x

1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

d2s

= (k · s)1
s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

eis·x
∣∣∣∣
s=k+κ

.
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Finally, the perturbed pressure is

p1 =
AB

2

γk2 + ρg

cosh(kh0)

×
(
(k · s)1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

eis·x
) ∣∣∣∣

s=k+κ

+

∣∣∣∣
s=k−κ

,

(4.10)

and the surface is

ζ1 =
1

ρω2

∂p1
∂z

∣∣∣∣
z=0

=
AB

2k sinh(kh0)

×
(
(k · s)1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

eis·x
) ∣∣∣∣

s=k+κ

+

∣∣∣∣
s=k−κ

.

(4.11)

We can see that the first order correction of scattering wave has wave vector k ± κ.
This is called the class I Bragg condition [7]. In cases that |k+κ| = k or |k−κ| = k, the
denominator becomes 0 and so the amplitude tends to infinite large. This is called the class
I Bragg resonance [7]. The value of the amplitude becomes unrealistic infinity because,
in this case, the area of rippled bottom is infinite. If the rippled shape only occupies finite
area of bottom, it can be calculated using the method introduced in next section and should
have finite amplitude.

4.3 Scattering on Any Topography of Bottom

In this section, we are going to find the general formula of scattering whatever the
form of h1 is. The formula will be compared to the other method discussed in appendix B
and we will find that they are consistent.

To make a formula that works for any h1, substitute the Green’s function (A.5) in
appendix A into (4.8), and we can get

p1 =
i

2

∫
∇x′ ·

(
h1∇x′p0|z′=−h0

) ∞∑
j=0

1

kj

dkj
dh0

H
(1)
0 (kj|x− x′|) cosh

(
kj(z + h0)

)
d2x′,

where kjs are wave numbers that satisfy the dispersion relation (3.6). There are infinite
kjs because most of them are imaginary numbers, except for two values: ±k. Let k0 be
the only real positive value, k. If h1(x) decays faster thanO(r−

1
2 ), by integration by parts,
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we have

p1 = − i

2

∫
h1∇x′p0|z′=−h0 ·

∞∑
j=0

1

kj

dkj
dh0

∇x′H
(1)
0 (kj|x− x′|) cosh

(
kj(z + h0)

)
d2x′.

(4.12)
By replacing p0with ζ0(γk2+ρg) cosh(k(z+h0))cosh(kh0) and applying the relation ζ1 = 1

ρω2
∂p1
∂z

∣∣
z=−h0

,
the surface scattering wave appears to be

ζ1 =
−i

2k sinh(kh0)

∫
h1∇x′ζ0 ·

∞∑
j=0

dkj
dh0

∇x′H
(1)
0 (kj|x− x′|) sinh(kjh0) d2x′.

If the distance of x and x′ are very far such that |kj(x− x′)| ≫ 1 for any j, all terms
but j = 0 decay faster than exponential decay. Thus, only the term of k0 remains:

p1 = − i

2k

dk

dh0
cosh

(
k(z + h0)

) ∫
h1∇x′p0|z′=−h0 · ∇x′H

(1)
0 (k|x− x′|) d2x′.

And the suface is

ζ1 = − i

2k

dk

dh0

∫
h1∇x′ζ0 · ∇x′H

(1)
0 (k|x− x′|) d2x′. (4.13)

So far, we have converted a three-dimensional water wave scattering to a two-dimensional
integral, which is much easier to calculate and numerically compute. And more impor-
tantly, its form is neat and simple.

We can compare our result (4.12) with the appendix B. In appendix B, we put a lot
of effort using matching method to find scattering of water wave over a pillbox-shaped
obstacle on uniform bottom. Under the assumptions that the incident wave is a plane wave
p0 = Aeikx cosh(k(z + h0)) and that the radius δR and height δh of the pillbox are small,
the result is shown in (B.22). Here, we can use the formula developed in this section to
this problem. From (4.12), by setting h1(x) = δh in the region |x| ≤ δR, we can get

p1 ≈− i

2
A(πδR2)δh

(
∇x′eikx′ ·

∞∑
j=0

1

kj

dkj
dh0

∇x′H
(1)
0 (kj|x− x′|) cosh

(
kj(z + h0)

))∣∣∣∣∣
x′=0

≈− i

2
A(πδR2)δh

×
∞∑
j=0

1

kj

dkj
dh0

(
eikx′ikx̂ · x− x′

|x− x′|
kjH

(1)
1 (kj|x− x′|)

)∣∣∣∣
x′=0

cosh(kj(z + h0)).

Let the symbol φ denote the angle between vectors x− s′ and x̂. And then we have

p1 ≈
Aπk

2
(δR)2δh

∞∑
j=0

dkj
dh0

H
(1)
1 (kj|x|) cosh(kj(z + h0)) cosφ,
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which is exactly same as the scattered wave in (B.22). Therefore, the two methods are
consistent.

Another thing worth mentioning is that we can find the term dkj
dh0

in a simple phys-
ical system, which is why we didn’t expand this term explicitly. Assume that we now
deal with the problem of a vibrating membrane. The displacement of the membrane fol-
lows Helmholtz equation (∇2 + k2)Ψ = 0. However, assume that on some parts of the
membrane, k is not a constant but variates with position. The variation is little, so we let
k = k0 + δk(x) in those regions with k0 a constant, as shown in figure 4.1.

Figure 4.1: The two-dimensional membrane

We apply the perturbation method by setting Ψ = Ψ0 + δΨ, and thus the equations
(∇2+k20)Ψ0 = 0 and (∇2+(k0+δk)

2)Ψ should be satisfied. To lowest order, δΨ follows
the equation (

∇2 + k20
)
δΨ = −2k0 δkΨ0.

If Ψ0 is given, δΨ can be solved by Green’s function method. The Green’s function of
Helmholtz equation is − i

4
H

(1)
0 (k0|x− x′|), so

δΨ =
i

2

∫
k0 δkΨ0H

(1)
0 (k0|x− x′|)d2x′.

After substituting k20Ψ0 = −∇2Ψ and integration by parts, it turns into

δΨ =
i

2

∫
∇′Ψ0 · ∇′

(
δk

k0
H

(1)
0 (k0|x− x′|)

)
d2x′.

If the slope of δk is small so that |∇δk| ≪ k20, then we have

δΨ =
i

2

∫
δk

k0
∇′Ψ0 · ∇′H

(1)
0 (k0|x− x′|)d2x′. (4.14)

This result looks very similar to the equation (4.13). In fact, we can rewrite δk and
show that

δk =
dk

dh
∆h = − dk

dh0
h1.

And thus we can see that (4.13) is equivalent to (4.14).
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Chapter 5

Conclusion

In this thesis, we discussed diffraction and scattering of water surface wave. For
diffraction, we assumed that the bottom of water is flat and we used Green’s function
method to find the formula of diffraction, which is similar to the derivation of Kirchhoff’s
diffraction formula in optics. We considered the problem of slit diffraction with the walls
straight. By applying the tricks of Rubinowicz, we showed that there is a phase shift π

4

in diffraction region. And we numerically computed the diffraction wave and visually
demonstrated the phase shift.

For scattering, we adopted perturbationmethod combinedwithGreen’s functionmethod
to obtain the formula of scattering. We calculated rippled bottom scattering and got the
so called class I Bragg condition. We also derive the scattering formula for any topology
of bottom. In the end, we used other method like matching method to compute a pillbox
shaped bottom and showed that the two methods are equivalent.
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Appendix A

Expansion of Green’s function

In this appendix, we are going to expand the Green’s function G2, which is (3.10)
together with (3.13), to infinite series. The first expansion of Green’s function of water
wave is derived by John, 1950 [6]. Here, our calculation includes surface tension.

First, we can rewrite the G̃2. For z′ < z, the step function H(z′ − z) is 0, so

G̃2 = −1

s

(γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

cosh(s(z′ + h0)).

And for z′ > z, after a little calculations, we can find that

G̃2 =
1

s

[
sinh(s(z′ − z))− (γs2 + ρg)s cosh(sz) + ρω2 sinh(sz)

(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)
cosh(s(z′ + h0))

]
= −1

s

(γs2 + ρg)s cosh(sz′) + ρω2 sinh(sz′)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

cosh(s(z + h0)).

The above two expressions can be combined and become the expression below

G̃2 = −1

s

(γs2 + ρg)s cosh(sz>) + ρω2 sinh(sz>)
(γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0)

cosh(s(z< + h0)), (A.1)

where z< denotes the smaller of z and z′ while z> the larger one.

Next, we can expand the Green’s function by its partial fraction expansion. Let

f(s) = (γs2 + ρg)s sinh(sh0)− ρω2 cosh(sh0), and (A.2)

g(s) =
(
(γs2 + ρg)s cosh(sz>) + ρω2 sinh(sz>)

)
cosh(s(z< + h0)). (A.3)

Because |z>|+ |z<+h0| < |h0|, f(s) grows faster than g(s) when s goes to infinity. And
it can be proven that

∮
C
g(s)
f(s)

ds <∞, for some closed loops C in complex plane that tends
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to the infinity. Therefore, g(s)
f(s)

can be expanded as

g(s)

f(s)
=
∑
j

PP
(
g(s)

f(s)
; s = kj

)
, (A.4)

where PP (F (z); z = z0) denotes the principal part of F (z) at z = z0 and kjs are the poles
of g(s)

f(s)
[8].

Because g(s) has no sigularity, kjs are the roots of f(s). f(s) has one positive real root
k, which statifies the dispersion relation (3.6). In addition, f(s) also has infinite imaginary
roots, which can be easily seen by setting s = iσ and thus

f(iσ) = (γσ2 − ρg)σ sin(σh0)− ρω2 cos(σh0).

g(s)
f(s)

only has simple poles because the roots of f(s) are all simple. Therefore, (A.4) turns
into

g(s)

f(s)
=
∑
j

cj
s− kj

, with cj =
1

2πi

∮
g(s)

f(s)
ds.

As f(s) is an even function, −kj is also a root of it. But g(s) is an odd function, so g(s)
f(s)

is
also an odd function and it can be rewritten as

g(s)

f(s)
=

∞∑
j=0

cj
s− kj

+
cj

s+ kj
=

∞∑
j=0

2scj
s2 − k2j

,

where the summation sums over all root pairs rather than every single root. Here, we
define k0 as the only positive real root, k, and the other kjs as the imaginary roots.

Using Cauchy’s integral formula, we can find that

cj =
1

2πi

∮ g(s)
f(s)

(s− kj)

s− kj
ds = lim

s→kj

g(s)

f(s)
(s− kj) =

g(kj)

f ′(kj)
.

And thus we have
G̃2 = −1

s

∑
j

g(kj)

f ′(kj)

2s

s2 − k2j
.

If we regard h0 as a variable and define a function f(s, h0) that has the same expression
as f(s), then, by direct computation, we can see that

g(kj) =
[
(γk2j + ρg)kj cosh(kjh0)− ρω2 sinh(kjh0)

]
cosh(kj(z + h0)) cosh(kj(z′ + h0))

=
1

kj

∂f(kj, h0)

∂h0
cosh(kj(z + h0)) cosh(kj(z′ + h0)).
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As a result, it leads to

G̃2 = −
∞∑
j=0

1

kj

∂f(kj ,h0)

∂h0
∂f(kj ,h0)

∂kj

2

s2 − k2j
cosh(kj(z′ + h0)) cosh(kj(z + h0))

=
∞∑
j=0

1

kj

dkj
dh0

2

s2 − k2j
cosh(kj(z′ + h0)) cosh(kj(z + h0)).

Finally, by the integral equation (3.24), we can obtain

G2 =
1

(2π)2

∫
eis·(x−x′)G̃2 d

2s

=
i

2

∞∑
j=0

1

kj

dkj
dh0

H
(1)
0 (kj|x− x′|) cosh(kj(z + h0)) cosh(kj(z′ + h0)).

(A.5)

For the case that |x−x′| is very large, the term of k0 becomes the dominant term becasue
H

(1)
0 (iσ) ∝ K0(σ). K0(z) is the modified Bessel function of first kind, which decays

faster than exponential function on real axis. Consequently, it can be approximated that

G2 ≈
i

2k

dk

dh0
H

(1)
0 (k|x− x′|) cosh(k(z + h0)) cosh(k(z′ + h0)), (A.6)

for k|x− x′| ≫ 1.
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Appendix B

Pillbox Scattering

In this appendix, we consider the scattering problem of water wave over a pillbox on a
flat bottom. We will use matching method to derive the scattered wave. However, it will
be extremely difficult to exactly find the solution, so we will make some approximations.

The problem is defined as shown in figure B.1. A pillbox-shaped obstacle is lying in a
water with constant depth h. The pillbox has radius R and the height of water above it is
ĥ. The space of water body can be split into two partitions: one is a cylinder right above

Figure B.1: Pillbox scattering

the pillbox and the other is the space outside the cylinder. Each partition of the water
have the governing equation and boundary conditions described in (4.1), with h(x) = −h
for outside and h(x) = −ĥ for inside. If we adopt the cylindrical coordinate (ϱ, φ, z),
then, on ϱ = R, where the inside and outside connect, we have these additional boundary
conditions 

p|ϱ=R+ = p|ϱ=R− ,
∂p

∂ϱ

∣∣∣∣
ϱ=R+

=
∂p

∂ϱ

∣∣∣∣
ϱ=R−

, −ĥ < z < 0,

∂p

∂ϱ

∣∣∣∣
ϱ=R+

= 0, −h < z < −ĥ.
(B.1)
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We use separation of variable to solve the expressions of pressure of inside and outside
cylinder respective and adopt matching method to connect them. Let X(x)Z(z) be a so-
lution of (4.1) with h(x) = h = const. Substituting it into (4.1), we can get the eigenvalue
problems∇2

xXi = −k2iXi and Z ′′
i = k2iZi and the boundary condtiions for Zi{

(γk2i + ρg)Z ′
i = ρω2Zi, z = 0,

Z ′
i = 0, z = −h.

(B.2)

Therefore, Zi ∝ cosh(ki(z + h)) with ki satisfying its dispersion relation.

The boundary conditions contain eigenvalues so the Sterm-Liouville theorem cannot
be applied to these eigenfunctions. Fortunely, this paper [11] finds that these kinds of
eigenfunctions still have orthogonality by defining a new inner product. In this case, the
inner product is difined as

⟨
f(z), g(z)

⟩
h
≡
∫ 0

−h
f(z)g(z)dz +

γ

ρω2
f ′(0)g′(0). (B.3)

We can see the orthogonality by doing the calculations

(k2i − k2j )

∫ 0

−h
ZiZjdz =

∫ 0

−h

(
Z ′′
i Zj − ZiZ

′′
j

)
dz

= Z ′
i(0)Zj(0)− Zi(0)Z

′
j(0)

= − γ

ρω2
(k2i − k2j )Z

′
i(0)Z

′
j(0).

Adding the right-hand side back to the left-hand side, we can see that
⟨
Zi, Zj

⟩
= 0 for

ki ̸= kj . But for i = j,
⟨
Zi, Zi

⟩
> 0 is always positive. Therefore, we can define

the orthonormal bases ϕi(z) and ϕ̂i(z) and their corresponding inner products
⟨
·, ·
⟩
h
and⟨

·, ·
⟩
ĥ
respectively.

By further separation of variable, X(x) can be expanded by products of Bessel func-
tions and trigonometric functions Because p is the linear combination of the all possible
solutions X(x)Z(z), we can set p as

p(ϱ, φ, z) =
∞∑

n=−∞

Pn(ϱ, z)einφ,

while

Pn(ϱ, z) = AnJn(kϱ)ϕ0(z) +
∞∑
i=0

aniH
(1)
n (kiϱ)ϕi(z), ϱ > R, (B.4)

Pn(ϱ, z) =
∞∑
i=0

bniJn(k̂iϱ)ϕ̂i(z), ϱ < R. (B.5)
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Here, we assume thatAn is the coefficient of incident wave and k0 = k is the positive real
eigenvalue.

Next, we need to find the coefficients ani and bni. The procedure below is inspired by
[3]. Let Un(z) ≡ ∂Pn

∂ϱ

∣∣∣
ϱ=R

. Form the boundary condition (B.1), we have

Un(z) = AnkJ
′
n(kR)ϕ0(z) +

∞∑
i=0

anikiH
(1)′
n (kiR)ϕi(z),

Un(z) =
∞∑
i=0

bnik̂iJ
′
n(k̂iR)ϕ̂i(z).

Still form (B.1), Un(z) = 0 when −h < z < −ĥ and therefore
⟨
·, Un

⟩
h
=
⟨
·, Un

⟩
ĥ
. After

applying inner product on both sides,

⟨
ϕj, Un

⟩
ĥ
=
⟨
ϕj, Un

⟩
h
= AnkJ

′
n(kR)δj0 + anjkjH

(1)′
n (kjR), (B.6)⟨

ϕ̂j, Un
⟩
ĥ
= bnj k̂jJ

′
n(k̂jR). (B.7)

If we expand Un in basis ϕ̂i, that is Un =
∑∞

i=0 cniϕ̂i, it can be seen that
⟨
ϕj, Un

⟩
ĥ
=∑∞

i=0 cni
⟨
ϕj, ϕ̂i

⟩
ĥ
and

⟨
ϕ̂j, Un

⟩
ĥ
= cnj , so

⟨
ϕj, Un

⟩
ĥ
=
∑∞

i=0

⟨
ϕ̂i, Un

⟩
ĥ

⟨
ϕj, ϕ̂i

⟩
ĥ
. By

substituting (B.6) and (B.7) into this equation, the relation of anj and bnj comes out:

AnkJ
′
n(kR)δj0 + anjkjH

(1)′
n (kjR) =

∞∑
i=0

bnik̂iJ
′
n(k̂iR)

⟨
ϕj, ϕ̂i

⟩
ĥ
. (B.8)

Apply
⟨
ϕ̂j, ·

⟩
ĥ
on both sides of p|ϱ=R+ = p|ϱ=R− from (B.1). And another relation of

ani and bni appears:

AnJn(kR)
⟨
ϕ̂j, ϕ0

⟩
ĥ
+

∞∑
i=0

aniH
(1)
n (kiR)

⟨
ϕ̂j, ϕi

⟩
ĥ
= bnjJn(k̂jR). (B.9)

Eliminate bni by combining (B.8) and (B.9). We finally obtain the equation of coffecient
ani:

anikiH
(1)′
n (kiR)−

∞∑
j=0

anjH
(1)
n (kjR)

(
∞∑
l=0

k̂lJ
′
n(k̂lR)

Jn(k̂lR)

⟨
ϕi, ϕ̂l

⟩
ĥ
.
⟨
ϕ̂l, ϕj

⟩
ĥ

)

= AnJn(kR)
∞∑
l=0

(
k̂lJ

′
n(k̂lR)

Jn(k̂lR)

⟨
ϕi, ϕ̂l

⟩
ĥ
.
⟨
ϕ̂l, ϕ0

⟩
ĥ

)
− AnkJ

′
n(kR)δi0 (B.10)

The values of the coefficients can only be computed numerically. We are not going
to do this so we make two approximations below. First, we let h − ĥ ≡ δh to be a small
length. We can see that, if δh = 0, then

⟨
ϕi, ϕ̂j

⟩
ĥ
= δij and ani = 0, so ani is of order
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O(δh). In addition, defineMij such that⟨
ϕi, ϕ̂j

⟩
ĥ
= δij +Mijδh+O(δh2). (B.11)

Thus, to the lowest order of δh, (B.10) turns into

ani =
AnJn(kR)

H
(1)
n (kiR)

(
k̂J ′

n(ĥR)

Jn(k̂R)
− kJ ′

n(kR)
Jn(kR)

)
δi0 +

(
ĥiJ

′
n(k̂iR)

Jn(k̂iR)
M0i +

k̂J ′
n(k̂R)

Jn(k̂R)
Mi0

)
δh

kiH
(1)′
n (kiR)

H
(1)
n (kiR)

− k̂iJ ′
n(k̂iR)

Jn(k̂iR)

. (B.12)

The next assumption we would like to make is that R is small such that |kiR| ≪ 1.
We set R = δR in order to reminder ourself that it is a small value. Consider the fact that,
for n ̸= 0, Jn(z) ∝ zn and H(1)

n (z) ∝ z−n when z ≪ 1, so J ′
n(z)
Jn(z)

≈ n
z
and H

(1)′
n (z)

H
(1)
n (z)

≈ −n
z
.

Therefore, (B.12) can be approximated as

ani ≈ −1

2

AnJn(kδR)

H
(1)
n (kiδR)

(Mi0 +M0i) δh, n ̸= 0. (B.13)

However, for n = 0, J0(z) ∝ 1 −
(
z
2

)2 and H(1)
0 (z) ∝ ln(z) when z ≪ 1, and thus

J ′
0(z)

J0(z)
≈ − z

2
and H

(1)′
0 (z)

H
(1)
0 (z)

≈ 1
z ln(z) . In this case,

a00 ≈
A0J0(kδR)

H
(1)
0 (kδR)

δR2 ln(k0δR)
(
1

2

d(k2)

dh
− k2M00

)
δh, (B.14)

a0i ≈ −A0J0(kδR)

H
(1)
0 (kiδR)

δR2 ln(kiδR)
1

2

(
k2iM0i + k2Mi0

)
δh, i ̸= 0. (B.15)

Now, we have the approximations of aij . The only thing that is left to be found isMij .
From (B.11), we can calculateMij by

Mij = −
∂
⟨
ϕi, ϕ̂j

⟩
ĥ

∂ĥ

∣∣∣∣∣
ĥ=h

. (B.16)

Let ψi(z) be cϕi(z), where c is an arbitrary constant. Likewise, ψ̂i a function proportional
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to ϕ̂i. The inner product of the two functions is calculated as follows:

⟨
ψi, ψ̂j

⟩
ĥ
=

∫ 0

−ĥ
ψiψ̂j dz +

γ

ρω2
ψ′
i(0)ψ̂

′
j(0)

=
1

k2i − k̂2j

∫ 0

−ĥ

(
ψ′
iψ̂j − ψiψ̂

′
j

)′
dz +

γ

ρω2
ψ′
i(0)ψ̂

′
j(0)

=
1

k2i − k̂2j

(
γ

ρω2
(k̂2j − k2i )ψ

′
i(0)ψ̂

′
j(0)− ψ′

i(−ĥ)ψ̂j(−ĥ)
)
+

γ

ρω2
ψ′
i(0)ψ̂

′
j(0)

= − 1

k2i − k̂2j
ψ′
i(−ĥ)ψ̂j(−ĥ).

(B.17)

For i ̸= j, form (B.16) and (B.17),

Mij = −
∂
⟨
ϕi, ϕ̂j

⟩
ĥ

∂ĥ

∣∣∣∣∣
ĥ=h

=
∂

∂ĥ

(
1

k2i − k̂2j
ϕ′
i(−ĥ)ϕ̂j(−ĥ)

)∣∣∣∣∣
ĥ=h

= − 1

k2i − k2j

(
ϕ′′
i (−h)ϕ̂j(−h)

)
= − k2i

k2i − k2j
ϕi(−h)ϕj(−h).

Therefore,Mi0+M0i = −ϕ0(−h)ϕi(−h) and k2iMji+k
2
jMij = 0. From (B.13), we have

ani ≈
1

2

AnJn(kδR)

H
(1)
n (kiδR)

ϕ0(−h)ϕi(−h) δh, n ̸= 0, (B.18)

and from (B.14),
a0i = 0, for i ̸= 0.

ForMii, because ϕi(z) = ψi(z)√
⟨ψi,ψi⟩

, (B.16) can be rewritten as

Mii = − ∂

∂ĥ

 ⟨
ψi, ψ̂i

⟩
ĥ√⟨

ψi, ψi
⟩
h

√⟨
ψ̂i, ψ̂i

⟩
ĥ


∣∣∣∣∣∣∣
ĥ=h

= − 1⟨
ψi, ψi

⟩
h

(
∂

∂ĥ

⟨
ψi, ψ̂i

⟩
ĥ
− 1

2

∂

∂ĥ

⟨
ψ̂i, ψ̂i

⟩
ĥ

)∣∣∣∣
ĥ=h
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Because of the relation d
dτ

∫ 0

g(τ)
f(x, τ)dx = −g′(τ)f(g(τ), τ) +

∫ 0

g(τ)
∂f
∂τ
dx, we have

∂

∂ĥ

⟨
ψi, ψ̂i

⟩
ĥ

∣∣∣∣
ĥ=h

=
∂

∂ĥ

(∫ 0

−ĥ
ψiψ̂i dz +

γ

ρω2
ψ′
i(0)ψ̂

′
i(0)

)∣∣∣∣
ĥ=h

= ψi(−h)ψi(−h) +

⟨
ψi,

∂ψ̂i

∂ĥ

∣∣∣∣∣
ĥ=h

⟩
.

Similarily,
∂

∂ĥ

⟨
ψ̂i, ψ̂i

⟩
ĥ

∣∣∣∣
ĥ=h

= ψi(−h)ψi(−h) + 2

⟨
ψi,

∂ψ̂i

∂ĥ

∣∣∣∣∣
ĥ=h

⟩
.

Therefore, substituting these results back intoMij , we can get

Mii = −1

2

ψi(−h)2⟨
ψi, ψi

⟩
h

= −1

2
ϕi(−h)2. (B.19)

To find out what ϕi(−h)2 is, calculate
⟨
ψi, ψi

⟩
h
,

⟨
ψi, ψi

⟩
h
= lim

ĥ→h

⟨
ψi, ψ̂i

⟩
ĥ

= lim
ĥ→h

−ψ′
i(−ĥ)ψ̂i(−ĥ)
k2i − k̂2i

= −ki
2

dh

dki
ψi(−h)2,

where we have used (B.17) and L’Hopital’s rule. so

ϕi(−h)2 = − 2

ki

dki
dh

. (B.20)

We can easily calculate and derive, from (B.14) and (B.19),

a00 = 0

So far, we have found out a0i = 0 for any i and ani as in (B.18). For all nonzero n, ani
has order, in terms of δR, O(δR2n). And thus, to lowest order of δR,

p ≈
∞∑

n=−∞

AnJn(kϱ)ϕ0(z)einφ +
∑
n=±1

∞∑
j=0

anjH
(1)
n (kjϱ)ϕj(z)einφ,

where
a±1j =

iπ

8
A±1kkj(δR)

2δh ϕ0(−h)ϕj(−h), n ̸= 0,

because J1(z) ≈ z
2
and H(1)

1 (z) ≈ − 2i
πz

when z ≪ 1.
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We consider the case that the incident wave is a plane wave

p0 = Aeikx cosh(k(z + h)) = Aeikx
ϕ0(z)

ϕ0(−h)
. (B.21)

Due to the expansion eikx =
∑∞

n=−∞ inJn(kϱ)einφ, we can see that An = in A
ϕ0(−h) , and

then

p ≈ Aeikx
ϕ0(z)

ϕ0(−h)
−

∞∑
j=0

Aπ

4
kkj(δR)

2δhH
(1)
1 (kjϱ)ϕj(−h)ϕj(z) cosφ.

By using the equation of ϕj(−h)2 in (B.20), we finally have the approximation

p ≈ Aeikx
ϕ0(z)

ϕ0(−h)
+

∞∑
j=0

Aπ

2
k(δR)2δh

dki
dh

H
(1)
1 (kjϱ)

ϕj(z)

ϕj(−h)
cosφ

≈ Aeikx cosh(k(z + h)) +
Aπk

2
(δR)2δh

∞∑
j=0

dki
dh

H
(1)
1 (kjϱ) cosh(kj(z + h)) cosφ.

(B.22)
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