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Abstract

Diffraction and scattering of water wave are common and important prob-
lems in physics and engineering. In this thesis, we use Green’s function
method to analysis the two problems. For diffraction, we apply Green’s func-
tion method to derive the formula of slit diffraction to explain Huygens prin-
ciple, which is usually just an analogy in water wave diffraction. We use the
similar way that Kirchhoff derive his diffraction formula in optics. For scatter-
ing, we assume that the bottom of water is roughly flat with small variations.
We use Green’s function combined with perturbation method and obtain the
formula of the scattering problem. We also use matching method to calculate

a special case and then we find that the result is consistent with our formula.
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Chapter 1
Introduction

Diffraction and scattering of water wave are important problems in engineering and
oceanography. For instance, studying diffraction is crucial to harbor engineering, because
it is necessary to understand the water wave patterns diffracted by breakwaters. Scattering
by bottom topography is widely studied in offshore engineering and oceanography in that
it is needed to know the effects of bottom or artifical stuctures to surface waves. Water
surface wave problems are important but complicated to solve because the mechanism of
water wave is nonlinear. Linear wave theory is a theory for water wave that linearize all
the nonlinear terms and thus make the problems easier to solve, although sometimes it is
still complicated and requires computer simulation.

A simple and intuitive explanation of diffraction waves is Huygens principle. It says
that every point at wave front can be deemed as a source of wave. By Huygens principle,
any diffraction of wave through an aperature can be calculated. In optics, Kirchhoff math-
ematically derived his diffraction formula and showed that Huygens principle is a direct
consequence of his formula [4]. However, in fluid dynamics, Huygens principle of water
wave diffraction is just an analogy. The mechanisms of water wave and optics are totally
different. Therefore, in this thesis, we are going to deal with this problem.

Water surface wave scattering of bottom is extremely difficult to calculate. Most of
the time, either some approximations or numerical computations are needed. In 1972,
Berkhoft proposed mild-slope equation [2], which is well known and widely used today.
Literally, this equation can be used in the case that the slope of bottom is small. Mild-slope
equation can be derived from variational method of water wave. One degree of freedom is
reduced by integrating the Lagrangian of water with respect to the vertical coordinate. The
advantage of this method is that the equation depents only on the horizontal coordinates
so it is simpler to solve and compute.

Another method to solve water wave scattering problem is Green’s function method.
Green’s function method is commonly seen in physics. It can be used if the physical
system has a linear differential equation. For water wave system, John, 1950, derived the

Green’s function and showed that it can be expanded into infinite series [6]. By applying
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Green’s identity, the solution of water field is written as an integral of boundary conditions
over the boundaries. Without any further approximations, it turns into an integral equation
problem [9]. To solve the integral equation, numerical computation is necessary.

In this thesis, we discuss diffraction and scattering of three-dimensional water wave.
First, like Kirchhoff’s derivation of diffraction formula, we try to formulate the formula of
flat-bottom water diffraction using Green’s function. And then the phase shift of diffrac-
tion is discussed. Next, we use the already derived Green’s function to further consider the
case of uneven bottom. We apply perturbation method and obtain the formula for bottom
scattering. Thoughout this thesis, we only consider linear wave system, and thus nonlin-
ear terms are omitted. Besides, the effects of both gravity and surface tension on the free

surface are maintained to keep generality.
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Chapter 2
Governing Eqautions

In this chapter, we formulate the governing equations of water wave. The derivation
of governing equations can be found in textbooks of fluid dynamics like [1]. At the end
of this chapter, the differential equation and the boundary conditions of water is provided

for subsequent chapters to deal with.

Unlike other derivations using velocity potential ®, we are going to use pressure as
the main variable. Because we are using linear wave theory, we will see that velocity
potential and pressure have the same differential equation and similar boundary conditions.

However, pressure is a real physical quantity, so it can give us more insights.

Consider a body of water on a solid ground with depth h(x). Assume that the water
is static with a little fluctuation. Without loss of generality, the surface of water is defined

to be at z = 0. So the pressure can defined as

—pgz +p(r,1),
where —pgz is the static pressure and p(r, t) is the fluctuation. Here, we use x to denote
two-dimensional vector (x, y) and 7 to represent three-dimensional vector (z, y, z).

As usual, water is assumed to be an incompressible fluid, that is,
Ve -u =0, (2.1)

where w 1s the velocity field. The dynamics of fluid follows the Euler equation

du 1
% = —;Vrp.

By chain rule, % can be rewritten as

du Ju
%—EJr(u-Vr)u,
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which is nonlinear. Because we have assumed that the fluctuations are small, any higher
order terms are negligible. In this case, the latter term can be discarded. After the elimi-
nation of nonlinear terms, we thus have the linearized Euler equation

ou 1

AL, v ")
T p D (2.2)

Combining (2.1) and (2.2), we can find that p satisfies Lapace equation, i.e.
VZp = 0. (2.3)

The boundary of water has two parts. One is the free surface and the other is the
boundary that water contacts the solids like bottom and walls. The boundary conditions
should be considered separately.

For the boundary between water and solids, the velocity w must be parallel with the
boundary because of the incapability for water particles to penetrate the solids. From the
relationship between w and p in (2.2), it can be inferred that V,.p must also parallel the

boundary. Therefore, we have the boundary condition

Ip
i — 2.4
an J ( )
with n the normal vector of the boundary. More explicitly, on z = —h(x), this equation
can be written as
dp
Veh - Vep+ — = 0. (2.5)
0z

For the free-surface boundary, it’s more complicated because the position of the surface
varies with time. Instead of finding the boundary condition on the real surface, we can
just consider the plane z = 0, which is a fair approximation since the amplitude of water
wave is assumed to be small. On z = 0 plane, by considering the effects of both gravity
and sufrace tension, the pressure satisfies

p=—7ViC+ pg¢, (2.6)

where ((x) is the height of surface. For the places where ( > 0, p is the physical pressure.
But for ¢ < 0, there is no water particle at z = 0, so the p is an imaginary pressure and is
derived by extrapolation.

In addition, assume that the particles on the surface always stay on the surface, that is,

¢
dt’

Uy =

with u, the z-component of w. Similar to the way we linearize (2.2), the nonlinear terms

can be eliminated by replacing d with 0. And then, by substituting the u, into (2.2), we

4
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can obtain another boundary condition

10p 0%

In this thesis, we assume that the system is oscillating with angular frequency w. There-

fore, p(r, t) can be written as p(r, t) = Re [p(r)e~™!| and so are ((x,t) and u(r,t). For
convenience, we solve the complex functions p(r), ((x) and w(r) rather that the real ones.

Moreover, with this assumption, the second derivatives of any variables become —w?, i.e.

% = —w?. So the boundary condition (2.7) can be rewritten as
dp
z

This assumption is made without any loss of generality because our system is totally lin-
earized. We can get a more general solution with respect to time by making the superpo-

sition of all different frequencies w.

d0i:10.6342/N'TU201600792
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Chapter 3

Flat Bottom Diffraction

In this chapter, we deal with the case that the bottom is flat. We let h(x) = hq to be a

constant. Therefore, the boundary condiditon (2.5) reduces to a simple form

9p

5 = 0. (3.1)

z=—ho

We will first introduction Green’s method and then apply it to diffraction problems.

3.1 Green’s Function Method
A Green’s function G(r, ') is a function that obeys the equation
V2G(r, ') =5(r — 7).

If r is in volume V/, then, from Green’s identity, we have

p(r) = /V p(r)3(r — ) dr’

o / oG ap / /
_ jév (p(r) o M@«)G) da,

where n’ is the normal vector with respect to the boundary 0V'. With this formula, all we

(3.2)

need to solve p is the value and derivative of p on the boundary.
In this section, we first apply this formula to a simple case, a plane wave. And later
on, the method will be used on slit diffraction and uneven bottom problems. Now, assume

that a plane water wave has the form

where k is an unknown constant we need to find.
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First we need to derive the Green’s function for this problem. Considering the fact
that V> (ﬁ) = §(r) and the boundary condition (3.1), we use the methed of image [5]
by defining the Green’s function as

1 1 1
G N=—-—— 33
1(T7T) A <|r’—’r|+|r’—r\)’ ( )
where 7 is the mirror image of point r with respect to the bottom z = —hg, 1.e. 7 =

(,y,—2ho — z). The integral domain V' shoud be the whole space of water, that is, the
region between z = —hy and z = (. However, the boundary of infinity is not defined.

Therefore, we let the integral domain V' to be a vertical cylinder with radius R and bases

AZ

Figure 3.1: The domain of integration V'

on z = 0 and z = —hyg as in figure 3.1. Let R tend to infinity so that V' appoaches the
whole space of water. Applying the Green’s identity (3.2), we have

- ! 8G1 8]? / /
R B AR N I = R ) EER

Obviously, the integral over 2z’ = —hg vanishes due to the symmetry of GG; and the

boundary condition (3.1) of p. And as for the integral of R — o0, although (7 is of order
O(R™!) and the area of integration is O( R), p is an oscillating function, so we assume that
the integral also tends to zero when R approach infinity. And thus only the integral over
2" = 0 remains. Substituting the boundary conditions (2.6) and (2.8) into (3.4), we get

A ) o [ 1 1
== [0z (e )
— pw? ! + ! — | [e®**' 2. (3.5)
CErTE

By transformation of coordinate to polar coordinate with i = |« — ’| and 6 the angle

between vectors k and © — x’, we have

eikm’ ) eilmcos@
d’x’ =e*® pdp do

"l"/ — T’ /L2 + (Z _ Z/)2
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Adopting the equations from integral tables,

/ ez’zcos(T)dT = 27TJ0<1’>7

—T

< zJo(zy) e~
dr = , Rela] >0,
o Va?+zx? Yy )

where J,,(z) is the Bessel function of first kind, we can make the calculation

/ T o ke [T mo(kp)

d
r — 7 0 w4 (z— 2?2 s
—k|z—2|

k

— oreih &

Substituting the result into (3.5), we can obtain

p(r) = %eik-m [(,YkQ +pg)k+pw2} (ekz +efk(2ho+z)).

We have to compare the equation to the orginal assumption ( = Ae’*. By the boundary

condition of water surface (2.6), the equation

A
T (VK> + pg)k + pw?] (1 + e ") = A(vk* + pg)

is shown. And then we derive the equation for %
pw?® = (vk* + pg)k tanh(khy). (3.6)

This is called the dispersion relation of water wave. As a result, p has the form

cosh(k (z + ho))

— A k?2 ik-x
p(r) = A(Yk™ + pg)e cosh (ko)

(3.7)

3.2 Slit Diffraction

In this section, we are going apply Green’s function method to solve slit diffraction
problem. We will follow almost the same procedure in last section, but, because we don’t
know the form of the diffracted wave, unlike the calculations in last section, we will en-
counter an integral integration if we use the Green’s function GG; as in (3.3). Therefore,

another proper Green’s function is needed.
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3.2.1 The Green’s Function

We define Green’s function G (7, ') that satisfies the boundary conditions

oG
(—=vV2 + pg) 82’2 — pw?Gy =0, forz' =0,
0G, (3.8)
o 0, for 2/ = —hy.
So the integral of p% — %Gg over an arbitrary area D on 2z’ = 0 plane becomes

OGQ _ Op ;o B 9 aGQ B 9 ,
LQ@% @ﬁam—é((ﬂQﬂmC&,prQM

_ / V- (vuc2e v, 2 e 39
D 0z 0z

o / 9CAC, D 0G5
-7 ap \On' 0z on’ 0z '

We can see that, with this Green’s function, we don’t need to guess the unknown wave
form of (.

Now let’s find the Green’s function G5 with boundary conditions (3.8). Because the

delta function can written as the Fourier transform

1 : /
dx—a') = 2n)? /ew'(m_’”)dQS,

we let G5 to be

1 ; N
GQ = W/ew.(ww)Gg (S,Z,Z/> dQS, (310)

which is just the Fourier transform of G. So the equation V2 Gy = §(r, r’) becomes

1 is-(x—x') 2 0 ~ 72 / 1 is-(x—x') j2
W (& —S +a D) ng S.:(S(Z—Z)W € d S,
™ z ™

or 22N
<—s2+ 8z’2> Gy =06(z—2'), (3.11)
with the B.C. N
oG ~
(vs* + pg) 5 2 pw?Gy =0, 2 =0,
e 2 (3.12)
=0, Z = —hy.

0

The equation (3.11) has a particular solution < sinh(s(z’ — 2))H (2’ — z), where H(z) is

an unit step function, so we assume G to be the addition of the particular solution and
10
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homogeneous solutions as follows

Gy = ! sinh(s(z" — 2))H (2" — z) + ¢1 cosh(s(z' + hg)) + c2 sinh(s(2' + hg)).

S

Substituting the B.C (3.12), we can obtain ¢, = 0 and

1 (75® + pg)s cosh(sz) + pw® sinh(sz)
s (782 + pg)ssinh(shg) — pw? cosh(shg)

ClL = —

So we have

Gy — % sinh(s(' — 2))H(2' — )

(vs* + pg)s cosh(sz) + pw? sinh(sz) )
— h ho))|. (3.13
(752 + pg)s sinh(shg) — pw? cosh(shy) cosh(s(=" +ho)) |- (3.13)

(G5 is now an integral of a complicated fuction G. 1t can be further expanded to infinite

series, which is shown in appendix A.

3.2.2 [Exapmle of a Simple Diffraction Problem

Figure 3.2: The setup for the slit diffraction

The setup of the diffraction problem is shown in figure 3.2. Although the Green’s
function method can be applied to any shape and geometry of walls, we consider only the
simplest case here, i.e. vertical straight walls standing along x = 0 with some apertures

open. The edges of apertures are straight . Assume that in x < 0 side, there is an incident

11
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wave ((x) = (;(x) and, from (3.7), the incident pressure

pir) = Gla) (o + pg) e ) Gi14)

In x > 0 space, the diffracted wave is the desired function that we want to solve.

The boundary conditions on the wall is the same as that on the bottom, gp = 0. For
this reason, we define a new Green’s function
Gs(r,r') = Ga(r,r") + Go(r, 7), (3.15)

where 7’ is the mirror image point of »’ with respect to the 2’ = 0 plane, so that it satisfies

0G5
ox' |,

x'=0

—0. (3.16)

Now that we have the Green’s function, it’s time to apply (3.2) to calculate the diffracted
wave. The integral domain V' in (3.2) is selected as a half vertical cylinder with its center
at the origin and radius R. As R tends to infinity, V' will approach the whole space of

water in x > 0. Therefore, (3.2) can be written as

z/ +/ +/ +/ (paGf - a—p,G3> dd'. (3.17)
z'=—ho z'=0 2'=0 R—o0 on on

The integral over 2/ = —h vanishes because ap, and 8G3 are 0. The integral over 2z’ = 0

can be replaced by equation (3.9), and then we get

0/ 9Gs  p
= — d /
/+/W[/ (pan' o’ ) :

_7<85 Gy 9 8G3> 1611’. (3.18)
2'=0

on' 0z on' 0z

We can argue that the integral of R — oo will tend to 0 as R goes to co. Because in
the diffraction region, = > 0, there is only outgoing wave, we must have the relation

% —1tkp =0 (R ) , (3.19)

for R very far away from the apertures. From the expanded Green’s function (A.6) in

appendix A, (G5 also has the following relation

% kG =0 (R*%> , (3.20)

when R — oo. By combining (3.19) and (3.20), we can see thatpaG3 G3 =O(R™?).

12
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So the whole integral over R — oo vanishes, and (3.18) becomes

G ((Ak* + pg / ° , , 0Gs
- — h(k(z' + h d
p(r) lperature (91" (COSh(kho) —_h cos ( <Z + 0))G3 zZ + Y 82’

) dy’.
2'=0

(3.21)
Expand G5 with G,. From integral tables,

/cosh(a) cosh(B)dz = ;bz(a sinh(c) cosh(8) — bcosh(c) sinh(3)), and

/sinh(a) cosh(B)dz = ! (acosh(a) cosh(B) — bsinh(a) sinh(3)),

a2 — b2

where a = az + cand 8 = bz + d, we can find out

0
/ cosh(k(z' + ho)) G3|,_, d=’

2 : p 0 ~
— > /e”'(w_m) {/ cosh(k(2' + ho))Gadz' | d*s

h

2 gis (@=a')
= 2 / o [— cosh(k(z + hy))
(vs% + pg)k sinh(kho) — pw? cosh(khg)

h h d’s (3.22
+ cosh(s(z + o)) (8% + pg)s sinh(shgy) — pw? cosh(shy) s (322
and
0Gs 2 / o2)0G2
— eis(z—a) 272 124
02 |y ey (2m)? 0z (3.23)
2 /eis,(w_w,) —pw? cosh(s(z + hy)) s
-~ (2m)? (vs2 + pg)s sinh(shg) — pw? cosh(shg)

Finally, we can calculate the result by joining (3.22) and (3.23) with (3.21). Actually,

most terms will be eliminated after combination, and only a simple form ramains:

-9 cosh(k(z + hy)) / a¢; / ois (z—a)
B K - d’sdy.
p("") (271')2 (7 + pg) COSh(kho) pertue B 2 _ 2 sdy

From integral table, the integral of d?s becomes

is-(x—x') J( | _ /|)
e sJo(s|lex — @ ) 1
[ pts=on [ i n e - ). 624

where H\" (z) is the Hankel function of first kind. As a result, we arrive at the diffraction

formula of pressure,

?

2

cosh(k(z + h a¢; P
p(r) = — L (312 4 pg) SO T o)) / SO (Me — 2 )dy,  (3.25)
aperture

cosh(khg) oz

13
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and surface height

1 G (1) Y,
o) =g [ Gt ke~ (3:26)

3.3 Phase Shift

In optics, Rubinowicz’ diffraction theory [10] infers that there is a phase shift near the
border of iluminated region. In this section, we are going to repeat the process in optics

and find that there is also a phase shift in diffraction of water wave.

3.3.1 Rewrite the Diffraction Formula

N L
Ey
ig:::I:"' Lo °X Ls
e 1 Area
By
Ly

Figure 3.3: Diffraction of cylindrical wave

We consider the diffraction of a point source by a single slit. The diffraction setup is
defined as in figure 3.3. Let S be the source of a cylindrical wave, generating the wave
function

G(@) = AHS (krsa),

where the notation 7 p¢ represent the vector pointing form point P to ) and rp is the
length of the vector. F; and E are the edge points of the slit. L denotes the line segment
of aperture. Ls is an arc of a circle with its center at S. L, and L, are staight lines extented
from the line segment of the source and the edges of aperture, so the Area bounded by
curves L;s is the “illuminated” region of water wave.

We follow the method of Rubinowicz. Define a two dimentional Green’s function to

be as
Gu(@, @) = =7 (H" (ke — @'l) + H" (klz — 2/))) (3.27)

where & 1s a symmetric point of « with respect to x = 0. This is a Green’s function
because (V2 + k?) (—ﬁHél)(Mw — :n/|)> = §(x — x'). Therefore, from Green’s identity,

14
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we have

G@)o(@ — 2\ = | G (V2 + k) Gy da
Area Area (3 v 8)

/ ( aG?_agG)dl,
Lo+L1+L2+L3 a on/’

where we have used the equation (V2 + k2)(;(x) = 0.

The left-hand side of (3.28) is (;(x) if ¢ € Area and 0 if ¢ Area. From the diffrac-
tion formula (3.26), the integral over Ly is exactly the diffracted ¢:

8G4 8@ ’r i 8<1 (1) / /
[ (65 = ) = =3 [ Gt e =y

= ((@).

And by applying the same argument in previous section, the integral over L3 will vanish

when the curve L3 tends to be infinitely far from the aperture. In integrals of L, and Lo,

gf;, = ( because the incident wave is a circular wave. As aresult, (3.28) can be rearranged
to be
(), € Area, oG
((z) = Glz), = _ / G2dl. (3.29)
0, T ¢ Area, Li+Lo on
Substituting (3.27) into the derivative of G4, we can get
0G4 .
on' = Vo Gy 1
: gD ) W (Lo
_ _i 'f'mm’d 0 (krw:c ) + "A"izc’ dHO (krw:c ) A
4 d?"gcw/ driw’

Replace 7., with 22 and then

:Z)ZB

~/

A/ A~/
N Toe =N - (Top +TEw) =N - Trp.

Because 7; is a normal vector perpendicular to line L;, 7’ - 7z, = 0. From figure 3.3, it

can be easily seen that
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Therefore, (3.29) turns to be

) Gi(x), x € Area,
(@) = { 0, x ¢ Area,

; (1)
1 H k xx’ B
+iAz ((%SEI X erl)/ Hé”(krSm,)% dl' + [z — a:]) (1o Y

4 L, Taa’ Taa!

(3.30)

where [a — b] denotes the same term as the previous one but with a replaced by b.

3.3.2 Approximation of The Integral

Figure 3.4: Symbols and parameters for solving integral (3.31)

The integral in (3.30) cannot be exactly solved, so we need some approximations. Let

I be the integral we are focusing on:

00 (1)
1= [ apmg e Ml ge (331)
1

Tex! drmm’

where £ = rg, and p = rgg as shown in figure 3.4. To make an approximation, observe

that Hankel functions have the asympotic form

for z > 1. We assume that kx> 1 and kv|sinf| > 1, so either k is very large or the

measured point is far from the boundary, and we have the approximation of I:

k(E+raar) ¢ (3.32)

7 2 /OO 1
~ = ——e
T M V grim’
16
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We are still unable to exactly solve the integral, so we will further do some approx-

imations. First, make the change of variable = & + r,, so that the exponent is in a

simple form. By substituting these equations & = %%, Tow = %W# and
Z—g = 113K back to (3.32), the result of change of variable is
ikn
/ © dn.
2
\/77 —r2,) ((n—7rsn)” +13z)
Next, let g(n) = 2 1 be the integrand and let 5y = p + v. By

\/(WQ—Tsm) ((-rsn)*+r3,)
integration by parts,

[e%S) iknd eikno o0 , eikn p
| stmeran = —otm) % = | g San

1o

Let the former term in the right hand side be denoted by [, and the latter term by €. We
will show that, in some circumstances, I = [ is a fair approximation. In other words, the

error € is small enough compared to /. To demonstrate the estimation of ¢, integrate it by

parts:
. ezkn() 00 Y eikn P
€E=4g (UO)W +/n0 g"(n) (ik)? n.
Therefore,
g,<770> /OO Vi eikn
dn.
el < |52 |+ . g (77>(Z.k,)2 n

(3.33)

e — 7 + 1N
T AV =13, (0 —rsn)? + 73,) \/(772 —r2) ((n —rsn)? +1%,)°
<0,
12 2 - ’
g'(n) = — ! - 1~ Ton)

TAVOP =TSP O =P R fop =) (- ren ) + R’

for any 7 € [19, 00). Now the integral in (3.33) can be calculated and the result is

2
el < —59'n).

17
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If we assume that 2|¢’(19)| < k|g(n0)|, and then we must have |¢| < |Iy|. To see in what
70

g'(
g(no

condition it is the case, expand % 2 )) ‘ < 1 in terms of p, v and 6:

ptv Loy
kuv(l —cosf) kv '

Since the assumption kv| sin §| has been made for the approximation (3.32), the inequality

above becomes

1 1
1 —cost > —+ —
PR
In sum, the approximation
2 eik(,u—i—y)

~

T ﬁ\/,Lw3(1 — cos )

is valid under the assumptions: kv|siné| > 1, ky > land 1 — cosd > ﬁ + =

Finally, the diffraction formula (3.30) becomes

(@) ~ { G(x), x € Area,

0, x ¢ Area, 334

A | Psp, X Ppg  €FUsEiTEe) . 159 539
+ ==z [x—x] | —[1—2].

27 L+ 7sg,  TE2 \/kTsE, \/krElw

A phase shift near the boundary can be deduced from the result. For € Area, the phase
of the diffracted wave is dominated by the phase of the incident wave (;, i.e. e'F"s==7),
However the phase in & ¢ Area is approximately e**("s#+75=)  Therefore, there is a 1
phase shift near the boundary.

3.3.3 Simulations

To visualize the phase shift and to test our approximation, we are going to numeri-
cally compute the diffraction formula (3.26). But first, we apply the scale transformation
((x) — ((kx) and  — T so we have

(@)= —5 /apm gii HY |z — 2'|)dy'. (3.35)
The mehtod of numerical integration we implement is trapezoidal rule. We divide the
intevals by half until the error is less than 0.001. We set the upper edge of aperature £ to
be at (0,0). and let lower edge E> to be far away from F; in order that we can compare
only the effect of F; instead of F». So in this case, we set it to be at (0, —2000).
We consider three cases of source points: (—100,0), (—100, —50) and (—100, 50).
The phase of diffracted wave with source point (—100, 0) is shown in figure 3.5. The line

18
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in the middle of the image is the boundary ;.

(SIE]

phase

\ ™
%.
0 10 20 30 40 50 60 70 80 90 100

X

Figure 3.5: The phase of diffraction wave with source at (—100,0)

To compare to (3.34), we subtract the computed phase by the length of path from the
source to distination. So in the illuminated region, subtract it by rg, and, in the outter

region, by 7sg, + rg,z. We have the results shown in figure 3.6 to figure 3.8 with three

IO

different source points.

0|3

phase

ISH

3

0 10 20 30 40 50 60 70 80 90 100

X

Figure 3.6: Phase shift with source at (—100, 0)

We can see that, for the outter region, the difference is approximately 0, and for the
inner region, the difference is approximately —7. The difference near the boundary is
quite large, but our approximation (3.34) is only valid at the points far from the boundary.
So, indeed, there is an approximately 7 phase shift.

19
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Figure 3.7: Phase shift with source at (—100, —50)

-20
B
-40 _m
1
-60

10 20 30 40 50 60 70 80 90 100

X

w\:\

phase

Figure 3.8: Phase shift with source at (—100, 50)
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Chapter 4
Uneven Bottom Scattering

In this chapter, we let the depth A of water be a function of x instead of a constant.
However, we only deal with those problems that the variation of / is small, so we can use
perturbation method to approximate. We use perturbation theory together with Green’s

function to find the formula of water wave scattering by the bottom.

4.1 Perturbation Method

We assume that the fucntion of the bottom is z = —h(x) = —hy + hy(x), where hg
is a constant. Let p(r) = po(r) + p1(r) and {(x) = (o(x) + (1 (x), where py and (, are
the unperturbed terms, i.e. py and (j are the solutions with h(x) = —hg. p; and (; are the
perturbed terms. We must assume that the magnitude of p; and (; are smaller than that of
po and Co.

From chapter 2, the differential equation and boundary conditons of p and ( are

[ Vip=0,
0 4.1
_p = pWQCa Z = 07 ( )
0z 5
Vazh - Vgp + (9_§ =0, z=—h(z)
But for pg , the only difference is the last boundary condtion, i.e.
pr(] = Oa
po = (=7Vz +p9) G, z=0,
0
ﬁ - prCOJ Z = 07 (42)
0z
Ipo
— =0 = —hy.
\ 0z ’ : 0

21
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By comparing the two collections of equations above, we can have, for p; and (3,

v’l?pl - 07
p1:(—7V§+pg)C1, ZZO?
o = pw?(y, z=0. (43)
0z
0
\ % ~ V- (hlvmpo) , 2= —hy.

The derivations of the first three equations are trivial but that of the last equation requires

some additional assumptions and approximations.

From (4.1), the boundary condition on the bottom is

0 0
—Vzhy - Vepr + S/ Vehi - Vepo — ﬁ, atz = —ho + M (4.4)
0z 0z
We assume that |V, hq| < 1 so, to the lowest order, the left-hand side of (4.4) is % ‘Z:_ By
For the right-hand side, from the mean value theorem,
0
va:p0|zz_h0+h1 = va:p0|zz_h0 + hla_vmp[) ) (4.5)
< z=—ho+x
0 0? h? &3
o = I 222 , (4.6)
aZ z=—hgo+h1 aZ z=—ho 2 az z:—ho—i—X’

where x and X’ are some values between 0 and h;. If py is a plane wave or a cylindrical

wave, we can write down

cosh(k(z + hy))
cosh(khy)

po = Go(vK* + pg) = Po|z=—n, cosh(k(z + ho)).

We add an assumption |kh;| < 1, so the latter terms of the right-hand sides of (4.5) and
(4.6) become

0 )
hla—Vmpo == hlvmp0|z:_h0 X kSIHh(kX)
z z=—ho+x
~ (kh1)? Vapol.__p,
and
1 &y ),
2 023 2=—ho+x’ - 2 ' 02? z=—hgo

They are both of order O((khy)?). Therefore, for both (4.5) and (4.6), the latter terms are

much smaller than the former terms in the right-hand sides.

22
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As a result, (4.4) becomes, at z = —hy,

Op a2100
— & V,hy - Vgpo — h
G 1 Po 1 9.2

= v:c : (hlvacp) ;

which is the boundary condition (4.3).
With the unperturbed pressure py given, (4.3) lets us find the first order correction.

We can further apply Green’s function method to the boundary conditions. We use the
Green’s function G (7, r’) defined in (3.8), Integrate the Green’s idendity (3.2) over the
whole space between z = 0 and z = —hg and assume the integral at infinity vanishes, and

then we have

o
b= /ZIZ_hO 0z Gy(r, 1) daf

(4.8)
pr—y / vil:/ . (h‘l (ml)vwlpo(’r'/)) GQ(T‘, 'r,) dzwl
z'=—hg

4.2 Scattering on Periodic Bottom

Now that we have the scattering formula, let’s consider a simple problem. Let (, be an

ik-a cosh(k(z+ho))
cosh(khg) °

Let the bottom be hy = Bcos(k - ¢) = Z(e’® 4 ¢7**). Note that, according to the
previous section, to make the approximation valid, Bk < 1 and Bk < 1 should be
fulfilled.

From (3.10) and (3.13), we have the Green’s function

ik-x

incident plane wave Ae*® and thus the incident pressure py = A(vk*+pg)e

Gl 1 /eis~(:v—w’) 1 (ys* + pg)scosh(sz) + pw?sinh(sz) s
2lef==ho = (972 s (ys2 + pg)s sinh(shg) — pw? cosh(shy)

1K-T —iK-T

Calculate e"** and e separetely. Substitute the Green’s function above into the inte-

gral
/ V- (em'm/szeik"”/) Gy(r,r') d°x’, 4.9)
z'=—hg

and integrate &’ prior to integrating s. There will be an integral that contains [ gilkth=s)a’ 2q00
which has the result (27)% 6%(k + k — s). We can thus obtain that (4.9) is

owl (78?2 + pg)scosh(sz) + pw?sinh(sz)
k-(k ) k—s)e™*— d
(k- (k +r)) / (e + s)e s (vs? + pg)s sinh(shg) — pw? cosh(shg)

(& 3)1 (vs% + pg)s cosh(sz) + pw? sinh(sz) i
B s (vs%? + pg)s sinh(shg) — pw? cosh(shg)

s=k+k .
23
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Finally, the perturbed pressure is

_AB K + pg

P=5 coshlih)

% ((k . 3)1 (vs* + pg)s cosh(sz) + pw? sinh(sz) ei”>
s (vs% + pg)s sinh(shg) — pw? cosh(shy)

+
s=k+k

)
s=k—k

(4.10)

and the surface is

_ !
Cpw? Oz
_ AB
~ 2k sinh(kho)
1 (vs® + pg)scosh(sz) + pw?sinh(sz) ;. .
x| (k-s)- _ e
s (vs? + pg)s sinh(shg) — pw? cosh(shy)

G

z=0

+
s=k+k

s=k—k

(4.11)

We can see that the first order correction of scattering wave has wave vector k + k.
This is called the class I Bragg condition [7]. In cases that |k + k| = k or |k — k| = k, the
denominator becomes 0 and so the amplitude tends to infinite large. This is called the class
I Bragg resonance [7]. The value of the amplitude becomes unrealistic infinity because,
in this case, the area of rippled bottom is infinite. If the rippled shape only occupies finite
area of bottom, it can be calculated using the method introduced in next section and should

have finite amplitude.

4.3 Scattering on Any Topography of Bottom

In this section, we are going to find the general formula of scattering whatever the
form of i 1s. The formula will be compared to the other method discussed in appendix B

and we will find that they are consistent.

To make a formula that works for any h;, substitute the Green’s function (A.5) in

appendix A into (4.8), and we can get

i =, 1 dk;
=g / AV (hlvm/po|2/:,h0) E_dh] H(gl)(k:j]w — 2'|) cosh (kj(z + ho)) ',
j=0 "7 70

where £;s are wave numbers that satisfy the dispersion relation (3.6). There are infinite
k;s because most of them are imaginary numbers, except for two values: +£. Let &y be

the only real positive value, k. If h; (x) decays faster than O(r_% ), by integration by parts,
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we have

' 1 dk;
pl = —1 / hlvw/polz/:fho J V /H (k ’w — X |) COSh (/@(Z + h[))) d2wl.
2 k} dhg
4.12)
cosh(k(z+ho)) 1 Opi

By replacing po with (o (7% +pg) —cosh(Ro) and applying the relation (; = —5 =+

w2 0z |z~—h0’

the surface scattering wave appears to be

—i = dk;
= VG- 7, HSY (k| — a'|) sinh(k;ho) d*a'.
2ksmh(k,m)/ DM (kyla — @) sinh(k; ho) de

If the distance of « and x’ are very far such that |k;(x — «’)| > 1 for any j, all terms
but ; = 0 decay faster than exponential decay. Thus, only the term of %j remains:

p1 = —=———cosh (k(z + hg)) /hlvw'po|z'=—ho -V Hy (Kl — o)) Pa.

And the suface is

i dk 1)
=——— [ MVl VwHy (klx — '|) . 4.13
G % dhg 1V o o (klz—a')d°x ( )
So far, we have converted a three-dimensional water wave scattering to a two-dimensional
integral, which is much easier to calculate and numerically compute. And more impor-

tantly, its form is neat and simple.

We can compare our result (4.12) with the appendix B. In appendix B, we put a lot
of effort using matching method to find scattering of water wave over a pillbox-shaped
obstacle on uniform bottom. Under the assumptions that the incident wave is a plane wave
po = Ae*® cosh(k(z + hg)) and that the radius § R and height 6/ of the pillbox are small,
the result is shown in (B.22). Here, we can use the formula developed in this section to

this problem. From (4.12), by setting h; () = dh in the region || < 0 R, we can get

] -~ 1 dk;
pL A — %A(WéRz)éh (Vw/e”” k; dhj Vo Hy (kjlx — x'|) cosh (kj(z + hO)))
Jj=0 x’'=0
~— %A(mSRZ)éh
> 1 dk; o L /
« Z k_jd_hz) (em ik Fa |k H (kj|;v —x |)) - cosh(k;(z + hy)).

Let the symbol ¢ denote the angle between vectors  — s’ and 2. And then we have
5R 6hz ) (k; (kjlz|) cosh(k;(z + ho)) cos ¢,
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which is exactly same as the scattered wave in (B.22). Therefore, the two methods are
consistent.

Another thing worth mentioning is that we can find the term in a simple phys-
ical system, which is why we didn’t expand this term explicitly. Assume that we now
deal with the problem of a vibrating membrane. The displacement of the membrane fol-
lows Helmholtz equation (V? + k?)¥ = 0. However, assume that on some parts of the
membrane, k is not a constant but variates with position. The variation is little, so we let

k = ko + dk(x) in those regions with kq a constant, as shown in figure 4.1.

k(ZB) = k()

k(x) = ko + dk(x)

Figure 4.1: The two-dimensional membrane

We apply the perturbation method by setting ¥ = W, + §V, and thus the equations
(V2+Ek2)Uo = 0and (V?+ (ko +0k)?) W should be satisfied. To lowest order, 6 follows
the equation

(V2 4+ k3) 00 = —2k, k.

If Uy is given, 0¥ can be solved by Green’s function method. The Green’s function of
Helmholtz equation is — ’H kol — '), so

ov = 5 /k’o 6]43\1/0 (]{?0’13 /’)dQQZ/.
After substituting k3 W, = —V?W and integration by parts, it turns into

' k
o = %/V'\IIO -V ((]1 HO (ko|lw — @ |)> d*z'.

If the slope of §k is small so that [Vdk| < k2, then we have

ok
5 = o Vo V'H W (Kol — ') d*'. (4.14)
0
This result looks very similar to the equation (4.13). In fact, we can rewrite 0k and

show that

dk dk
k= ""Ah=——"h
d dh dhg -

And thus we can see that (4.13) is equivalent to (4.14).
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Chapter 5
Conclusion

In this thesis, we discussed diffraction and scattering of water surface wave. For
diffraction, we assumed that the bottom of water is flat and we used Green’s function
method to find the formula of diffraction, which is similar to the derivation of Kirchhoff’s
diffraction formula in optics. We considered the problem of slit diffraction with the walls
straight. By applying the tricks of Rubinowicz, we showed that there is a phase shift 7§
in diffraction region. And we numerically computed the diffraction wave and visually
demonstrated the phase shift.

For scattering, we adopted perturbation method combined with Green’s function method
to obtain the formula of scattering. We calculated rippled bottom scattering and got the
so called class I Bragg condition. We also derive the scattering formula for any topology
of bottom. In the end, we used other method like matching method to compute a pillbox

shaped bottom and showed that the two methods are equivalent.
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Appendix A

Expansion of Green’s function

In this appendix, we are going to expand the Green’s function (G5, which is (3.10)
together with (3.13), to infinite series. The first expansion of Green’s function of water

wave is derived by John, 1950 [6]. Here, our calculation includes surface tension.

First, we can rewrite the Gs. For 2/ < z, the step function H(z' — 2) is 0, so

N 1 (vs? + pg)scosh(sz) + pw? sinh(sz) /
Gy =—= X .
2 s (vs? + pg)ssinh(shg) — pw? cosh(shyg) cosh(s(2' + hg))

And for 2’ > z, after a little calculations, we can find that

(vs® + pg)s cosh(sz) + pw? sinh(sz)
(752 + pg)s sinh(shg) — pw? cosh(shg)
1 (vs*+ pg)scosh(sz’) + pw? sinh(sz’)

s (vs? + pg)ssinh(shg) — pw? cosh(shy) cosh(s(z + o))

Gy = é sinh(s(2' — 2)) — cosh(s(2' 4 hy))

The above two expressions can be combined and become the expression below

~ 1 (vs* + pg)scosh(szs) + pw? sinh(szs.)
Gy = —= h h A.l
2 s (vs% + pg)s sinh(shg) — pw? cosh(shg) cosh(s(z< + ho)), (A1)

where z_ denotes the smaller of z and 2’ while z-. the larger one.

Next, we can expand the Green’s function by its partial fraction expansion. Let

f(s) = (ys* + pg)ssinh(shg) — pw? cosh(shg), and (A.2)
g(s) = ((732 + pg)scosh(szs) + pw? sinh(sz>)) cosh(s(z< + hy)). (A.3)

Because |z~ | + |2« + ho| < |ho|, f(s) grows faster than g(s) when s goes to infinity. And

it can be proven that fc 3’[8 ds < oo, for some closed loops C' in complex plane that tends
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to the infinity. Therefore, £ ( ) can be expanded as
9(s) (9(8) )
=L = PP(=—"=:s=k;), (A.4)
7o)~ 2P sy =

where PP (F(z); z = ) denotes the principal part of F'(z) at z = 2, and k;s are the poles
of ¢ g

Because g(s) has no sigularity, k;s are the roots of f(s). f(s) has one positive real root
k, which statifies the dispersion relation (3.6). In addition, f(s) also has infinite imaginary

roots, which can be easily seen by setting s = ¢0 and thus

flio) = (yo* — pg)osin(ahgy) — pw? cos(ahy).

f ( ) only has simple poles because the roots of f(s) are all simple. Therefore, (A.4) turns

9(s) ¢ : $
m_;s—kj’ Wlthcj_27mf{fs

As f(s) is an even function, —k; is also a root of it. But g(s) is an odd function, so

into

g(s)
f(s)

is
also an odd function and it can be rewritten as

s > > 2s¢;
(s) Zs k; S—i—/{: ZSQ—/’{;]Z’

7=0 J Jj=0

where the summation sums over all root pairs rather than every single root. Here, we

define ky as the only positive real root, k, and the other £;s as the imaginary roots.

Using Cauchy’s integral formula, we can find that

1 (5w —k) . g(s) g9(k;)
= ds = lim =—=—~(s — k;) = )
g 2me S — k?j ° Si}l};l] (8) (8 j) f/(kj)
And thus we have
Gy = ——

If we regard h as a variable and define a function f (s, hg) that has the same expression

as f(s), then, by direct computation, we can see that

g(k;) = [(vk3 + pg)k; cosh(k;jhg) — pw? sinh(k;hg)] cosh(k;(z + hg)) cosh(k;(2' + ho))

— 1 0f (k. ho) cosh(k;(z + ho)) cosh(k; (2" + ho)).
K, Oho
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As a result, it leads to

F(kj,ho)

2
% afi”%o) gz ©oshl( + ) coshis (= )

1 dk; 2 ,
Z Fdh TR cosh(kj(z + ho)) cosh(k;(z + ho)).

Finally, by the integral equation (3.24), we can obtain

1 is(x—x') v 32
Gy = (%)Q/e @Gy d’s

(A.5)

=3 Z ,fl ;lij H§Y (kjla — ') cosh(k; (2 + ho)) cosh(k; (=" + ho)).

For the case that |« — /| is very large, the term of & becomes the dominant term becasue
Hél)(ia) x Ko(o). Koy(z) is the modified Bessel function of first kind, which decays

faster than exponential function on real axis. Consequently, it can be approximated that

dk
Gy ~ i%}[(l)(kﬂw — &'|) cosh(k(z + hg)) cosh(k(2' + hg)), (A.6)

for klz — 2’| > 1.
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Appendix B

Pillbox Scattering

In this appendix, we consider the scattering problem of water wave over a pillbox on a
flat bottom. We will use matching method to derive the scattered wave. However, it will
be extremely difficult to exactly find the solution, so we will make some approximations.

The problem is defined as shown in figure B.1. A pillbox-shaped obstacle is lying in a
water with constant depth h. The pillbox has radius R and the height of water above it is

~

h. The space of water body can be split into two partitions: one is a cylinder right above

Figure B.1: Pillbox scattering

the pillbox and the other is the space outside the cylinder. Each partition of the water

have the governing equation and boundary conditions described in (4.1), with h(x) = —h
for outside and h(x) = — for inside. If we adopt the cylindrical coordinate (g, ¢, 2),
then, on o = R, where the inside and outside connect, we have these additional boundary
conditions
Ip Ip >

p’g:RJr :p‘Q:R*7 R = A ) —h<Z<0,

5 001y 00y (B.1)

op =0, —h<z<—h

do o=R+
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We use separation of variable to solve the expressions of pressure of inside and outside
cylinder respective and adopt matching method to connect them. Let X (x)Z(z) be a so-
lution of (4.1) with h(x) = h = const. Substituting it into (4.1), we can get the eigenvalue
problems V2X,; = —k?X; and Z! = k?Z; and the boundary condtiions for Z;

k2 7! = pw*Z;, =0,
{ (VE? + pg) Z] = pw z (B.2)

Zl =0, z = —h.
Therefore, Z; o< cosh(k;(z + h)) with k; satisfying its dispersion relation.

The boundary conditions contain eigenvalues so the Sterm-Liouville theorem cannot
be applied to these eigenfunctions. Fortunely, this paper [11] finds that these kinds of
eigenfunctions still have orthogonality by defining a new inner product. In this case, the

inner product is difined as

(f(z >h_/ f(z dz+ f(O)g'(O). (B.3)

We can see the orthogonality by doing the calculations

0 0
(k} — k) / ZiZjdz = / (2] Z; — 2,2}) d=
—h —h
= Zi(0)2;(0) = Z:(0)Z;(0)
gl
= —W(lﬂz — k2)Z(0)Z;(0).

Adding the right-hand side back to the left-hand side, we can see that <Zi, Zj> = 0 for
ki # kj. Butfori = j, (Z;, Z;) > 0 is always positive. Therefore, we can define
the orthonormal bases ¢;(z) and q/bi(z) and their corresponding inner products (-, -) , and

(-, )7 respectively.

By further separation of variable, X () can be expanded by products of Bessel func-
tions and trigonometric functions Because p is the linear combination of the all possible

solutions X (x)Z(z), we can set p as

plo,p,2) = i P(0,2)e™?,
while
Po(0,2) = AnJn(ko)do(2 +Zam W(k;0)ps(2), 0> R, (B.4)
= ibniJn(Eig>$i<z>, o< R (B.5)
=0
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Here, we assume that A, is the coefficient of incident wave and ky = k is the positive real

eigenvalue.

Next, we need to find the coefficients a,,; and b,;. The procedure below is inspired by
_ 9P,
[3]. Let Uy,(2) = ' ,

. Form the boundary condition (B.1), we have
=R

Un(2) = Ak}, (kR)do(2) + Y aniki H' (ki R) (),

1=0

=0

Still form (B.1), U,(z) = 0 when —h < z < —h and therefore <-, U">h = <-, Un>ﬁ. After
applying inner product on both sides,

(65, Un); = (¢, Un), = Ak (kR)jo + anik; HV' (ks R), (B.6)

If we expand U, in basis &5\1-, that is U,, = Z?io cmggi, it can be seen that <gz5j, Un>ﬁ =

S0 cni( @5y i)z and (65, Un)y = ey 50 (05, Un)y = 0020 (60 Un)z (@5, i)z By

substituting (B.6) and (B.7) into this equation, the relation of a,,; and b,,; comes out:

ApkJ (KRS0 + anjk; HY (k; R) mek T (kiR) {5, 1) (B.8)

Apply <$j, )7 on both sides of p|,—g+ = p|,—r- from (B.1). And another relation of

ay; and b,,; appears:

n(kR) <¢],¢o>h+2am V(k:iR){(Bj, b1 )7 = bugJu(k; R). (B.9)

Eliminate b,,; by combining (B.8) and (B.9). We finally obtain the equation of coffecient

QApi-

- Ky J! (K
wiki YV (ki R) =~ an;HY (k; R (s &
ot ) = 3050 (3 BB 5 )

=0

= (k! (k ~ ,
= A Ju(kR) ; (%(%M -<¢l,¢0>g> — AnkJ, (kR)d;  (B.10)

The values of the coefficients can only be computed numerically. We are not going
to do this so we make two approximations below. First, we let h — h = 5h to be a small
length. We can see that, if 62 = 0, then <q§i, $j>ﬁ = 0;; and a,,; = 0, S0 ay; is of order
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O(6h). In addition, define M;; such that

<¢i> $j>’ﬁ = 0;; + M;;0h + O(6h?). (B.11)

Thus, to the lowest order of 9/, (B.10) turns into

kJL(hR) _ kJL(KR)\ 5 hidl (kiR) nr kJL(KR) g r
Ay (kR) < Jn(kR) — Jn(kR) > 0io + ( T (ki R) Mo + Jn(kR) M; ) gL
N HTSI)(]{;Z.R) kiHS' (ki R) _ kiJi(kiR)
=Y (ks R) Jn(kiR)

ni

(B.12)

The next assumption we would like to make is that R is small such that |k;R| < 1.

We set R = 0 R in order to reminder ourself that it is a small value. Consider the fact that,
’ (1)/

forn # 0, J,(z) o 2" and Hél)(z) x 27" when z < 1, so J”(z) ~ 2 and Hy () o

Tn(z)
Therefore, (B.12) can be approximated as

1 A, J,(k6R)

b ) (Mio + My;) 6h, n # 0. (B.13)

However, forn = 0, Jy(2) o« 1 — (5)2 and Hél)(z) o« In(z) when z < 1, and thus

Jy(z 2 a7 (z ;
JEEZ§ ~ —Z and H(z()l)((z)) ~ er}(z). In this case,
2
agy ~ W(SW In(kodR) (EM — k2M00) Sh, (B.14)
HY (kOR) 2 dh
Ao Jo (kS 1
ag; ~ —M(S}? In(k;0R) = (ki Mo; + k> Mig) 6h, i # 0. (B.15)
Hy" (ki6R) 2

Now, we have the approximations of a;;. The only thing that is left to be found is 1/;;.
From (B.11), we can calculate M;; by

M, = — A (B.16)

Oh oy

Let v;(z) be co;(z), where c is an arbitrary constant. Likewise, 1; a function proportional
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to g@ The inner product of the two functions is calculated as follows:

~ 0 ~ ~
<¢i,¢j>g = /ﬁ P dz + l%’,(o) ;(0)

-5 ! - / (it - %@)ldwﬁ@/}i(@)zw)

L (@ 2 000) — S (=T ) + w0
= s (at® ~ EMOT0) v ) + 00
1

-l 7)dy ().

(B.17)

For i # j, form (B.16) and (B.17),

Mij - — a<¢“—/§b\]>ﬁ
oh sy
0 1
- £< R ))
1 ~
=~ (A1)
k2

=~z 2 0(=Mei(=h).

Therefore, Mio+ Mo; = —do(—h)¢s(—h) and k7 M;; + k7 M;; = 0. From (B.13), we have

1 AuJu(KOR)

and from (B.14),
ap; = O, for ¢ 7é 0.

For M;;, because ¢;(z) = Vi(z) , (B.16) can be rewritten as

A/ (Yisi)

Ol \ (i) (B tidg ) |
1
= <q7/1“¢1> ( <¢za¢z>h - §%<¢zawz> > -
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of
(r) o7 dx, we have

-2 ([} wdts+ oo

: 0
Because of the relation - [\ f(z,7)dz = —g/(7) f( )+ fg

0 ~
ARG

Similarily,

0 , ~ ~

= Yi(—=h)i(—h) + 2 <¢z‘, &
h 0

a >
h h=h

Therefore, substituting these results back into M;;, we can get

M= LHENT Ly (B.19)

2 (i, i), 2

To find out what ¢;(—h)? is, calculate (¢, ¢;), ,

(1), = lim (v 00y
—Ui(=h)vu(=h)

lim

E—)h k? — kzz
k; dh )

- 5 d_k:ld]z ( ) )

(B.20)
We can easily calculate and derive, from (B.14) and (B.19),

CL()O:O

So far, we have found out ay; = 0 for any ¢ and a,,; as in (B.18). For all nonzero n, a,,;
has order, in terms of R, O(§ R*"). And thus, to lowest order of R,

p~ Z Andn(ko)do(2)e™ + ) ZamH( kj0)o;(2)e™?,
n=—o0o n==x1 j=0

where

a415 = 8 Ailkk ((SR) oh ¢0( )(b](—h), n 7£ 0,
because J;(z) ~ Z and H\V(2) ~ —2 when z < 1.
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We consider the case that the incident wave is a plane wave

po = Ae’*® cosh(k(z + h)) = Aeikqu(()—(_zfi). (B.21)

Due to the expansion e** = Y>> "], (ko)e™?, we can see that A, = i" and

L
n—=——oo ¢0(7h)’
then

" A ik Po(2) Am 2
~ Ae o) Z —Hk; (OR) ShH™M (k;0)0;(—h);(2) cos .

By using the equation of ¢;(—h)? in (B.20), we finally have the approximation

gk P0(2) Ar dk; ) ;(2)
~ Ae ¢0(_h)+2—k(6R) o 1 (ko )%( D hd

=0

~ Ae® cosh(k(z + h)) + @ (6R)*6h Z (kjo) cosh(k;(z + h)) cos ¢.

(B.22)
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