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中文摘要 
在社群網路當中，有相同特性，或是連結較緊密的人，會形成社群網路當中

的群體。有非常多的論文都在探討如何準確找出網路當中的群體。由於社群網路

會隨時間演進而改變，網路當中的群體組成也是日新月異，如何去偵測群體的演

變，已經成為了社群網路分析當中的新議題。有越來越多的論文在研究新的方法，

去偵測或追蹤群體的演變。但我們想要更進一步，不僅要準確預測群體的演化，

還要預測群體會如何演化。這是一個嶄新的研究，我們決定使用林維栩的演算法

(Long-term Evolution Method)去偵測群體的演化，首先利用一個自己設計的人造

網路，來檢驗他的演算法是否正確，以及分析他的演算法的結果。接下來我們將

他的演算法用在 Facebook 和 DBLP，同時套用我們自行定義的群體演化模式，

去偵測這些資料的社群和演化，並且我們更進一步去討論 Facebook的群體演變，

發現群體的演變能夠反映到發生在 Facebook 的事件上。最後，我們利用 Libsvm，

從我們的資料中抽取足夠的 features，去建立預測的模型。預測的結果顯示，我

們所建立的模型有非常好的表現，而我們所抽取的 feature 也的確達到良好的效

果。此外，我們還比較了 SGCI 演算法的預測結果，SGCI 為一偵測群體演化的

演算法，比較的結果顯示出我們所定義的演化模式，以及我們所用的演算法，比

SGCI 更加準確和有代表性。 

 

 

關鍵字：社群網路分析，群體，群體演化，偵測群體演化，預測群體演化，

林維栩，SGCI
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ABSTRACT 

In a social network, a group in which people are similar to each other or have tight 

connections form a community. There are many works trying to precisely detect 

communities in a social network. As the social network change from time to time, the 

communities in the social network keep changing. Detecting community’s evolution 

become a new topic in social network analysis. More and more papers are about finding 

new algorithms to detect or track communities’ evolution. But, we want to go further 

in this topic. We want to not only detect communities’ evolution but predict the 

communities’ evolution. This is a brand new problem, and we decide to take advantage 

of Weiux Lin’s algorithm (Long-term Evolution Method) to detect the communities’ 

evolution. We first generate our synthetic data to verify and analysis the algorithm. We 

apply Weiux’s algorithm on DBLP and Facebook dataset, and use our own defined 

evolution types to analysis the community evolution. We deeply discuss the community 

evolution in Facebook dataset, and find that the communities’ evolution can match to 

the events happening in Facebook. Finally, we use Libsvm, select enough features from 

our detecting data, and build a prediction model. The prediction result shows that our 

model performs pretty well, and the feature we selected help a lot to our prediction 
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model. Besides, we compare our result with SGCI algorithm, which is a community 

evolution detection algorithm. The comparison shows the evolution types we defined 

and the algorithm we used are more accurate and more representative than SGCI. 

 

 

Keywords: social network analysis, community, community evolution, 

community evolution detection, community evolution prediction, Weiux Lin, SGCI 
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Chapter 1  

Introduction 

Social network has kept growing its popularity. It’s common to see more and more 

people join social media. People spend their time on Facebook, Twitter, and other online 

social media. Take Facebook as an example. Facebook started from an online social 

network for students in Harvard University, and for only 12 years it becomes a huge 

and famous online social network with 1.65 billion monthly active users. The growth 

of online social media such as Facebook is so rapid that many works are motivated to 

analyze social network. Social network raises many interesting issues to be investigated 

including how to detect communities in a social network, how to predict a user’s 

preference, how to spread a message fast among users, and etc. To address these issues, 

some applications, like recommendation system or some strategies of advertise 
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products, are introduced and implemented. 

In the analysis of online social network, finding community structure is a well-

known problem. With high concentrations of edges within special groups of nodes and 

low concentrations between these groups, this structure is called “community structure 

[1]”. There are already many studies conducting how to detect communities. In [2], the 

authors summarize many community detection algorithms. 

The connections in social network are always changing, so the communities in 

network is also changing from time to time. A community in present timeslot may be 

merged with other communities and forms a new community in next timeslot. In other 

cases, a community may split into multiple new communities in next timeslot. The 

change of communities is called the evolution of community. Community evolution can 

be used in many ways. For companies, they can track the evolution of a product’s users 

to realize how to adjust their strategy of advertisement. If an advertisement or marketing 

strategy increases number of users and what’s more, attracts the users of other products 

to use the services, it’s clear that the advertising or strategy is useful. As a result, 

detecting community evolution is a growing topic in the researches of social network. 

For example, in [8], it provide a method called SGCI: stable group change identification. 
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It is an algorithm to detect the communities’ change. The word “stable” means by 

default it focus on communities which live more than two timeslots. 

Considering the potential usage of the community evolution detection, we are 

highly interested in addressing the issues of community evolution prediction. It is a 

brand new topic. If we are able to predict the community evolution, we can do more 

than detecting the community evolution. For example, we predict that our costumer will 

split into two groups. One will keep using our product, and the other will change to use 

other company’s product. If we know this information, we can find a solution to prevent 

this happened. We suggest that the community evolution is predictable, and propose a 

method to efficiently predict the community evolution. From now, there are a few 

papers talk about community evolution prediction. In [10], it selecs features to build a 

classification model, and predict whether a community will live or not. In [11], they 

use SGCI and GED as the basic algorithm, and again select features to build a 

classification model. 

To achieve a good community evolution prediction, it is required to have a great 

community evolution detection algorithm. Weiux Lin who is one of our lab provide an 

algorithm for community evolution detection [3]. The algorithm shows its robustness 
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on real world dataset. So, in this work, we use Weiux’s algorithm for evolution detection. 

However, Weiux’s algorithm is not fully verified because the real world dataset does 

not contain ground truth of evolution. Before we use this algorithm, we must first verify 

his algorithm under a fair condition. For example, we can build an artificial graphs 

which contain evolution ground truth to test Weiux’s algorithm. 

In this work, we first verify Weiux’s algorithm by synthetic dataset, and analysis 

his algorithm. We provide a method to generate synthetic for proving the algorithm. 

Then, we apply the Weiux’s algorithm on real world dataset. We change the detection 

result with our own defined evolution types, and shows how we detect events happened 

in Facebook dataset by analysis the evolution types. After detection on real world 

datasets, we select features and build a prediction model to predict the evolution types. 

We propose a process of selecting feature, and prove that the features we selected help 

us predict the evolution. And, the most important, we show that the community 

evolution can be detected. 

The remainder of the thesis is organized as follows. Chapter 2 provides a detail 

introduction of Weiux’ algorithm and the SGCI algorithm. Chapter 3 elaborates our 

method for generating synthetic, our definition or evolution types, how we transfer 
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evolution chains to evolution types, and how we predict community evolution types. 

Chapter 4 is the experiment of synthetic data. We verify Weiux’s algorithm and deeply 

analyze the algorithm in Chapter 4. Chapter 5 contains the experiment of real world 

datasets, which are DBLP and Facebook dataset. We provide a case study on Facebook 

in Chapter 5. In Chapter 6, we do the community evolution prediction on DBLP and 

Facebook dataset, and shows Weiux’s algorithm and our method are better than SGCI. 

Finally, we conclude the findings and contributions of the work in Chapter 7. 
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Chapter 2  

Related Work 

In this chapter, we are going to introduce the community evolution detection we 

will used as our based algorithm and other algorithm we are going to compare with in 

the detection and prediction experiment. Community evolution is a growing topic in 

social network analysis. There are many works provide their community evolution 

detection algorithm. Weiux Lin provide his own algorithm of community evolution 

detection. We decide to use Weiux’s algorithm as our based algorithm. We will first 

introduce his works about community evolution detection. Also, we introduce SGCI, 

which is another algorithm for community evolution detection, since we will compare 

our result with SGCI in detection and prediction. 
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2.1 Weiux’s Short-term Evolution Method 

We first introduce Weiux’s Short-term Evolution Method. It is a method to detect 

community evolution in two graphs in adjacent timeslots. Weiux proposed two kinds 

of evolution detection algorithm. One is his Short-term Evolution Method, and the other 

is his Long-term Evolution Method. We are going to use his Long-term Evolution 

Method as our main algorithm for detection and prediction. Before we talk about the 

Long-Term Evolution Method, we should introduce the Short-term Evolution Method 

since it is the base of the Long-Term Evolution Method. Given two graphs in adjacent 

timeslots, Weiux’s Short-term Evolution can detect the evolution of communities in 

these graphs. The results of his algorithm are sequences of communities, which in this 

work we called it “community evolution chains”. A community evolution chain 

contains many communities in different timeslots. If there are two communities in 

different graphs are in the same evolution chain, the community in the graph at present 

timeslot is evolved from the other community in the graph at previous timeslot. Here 

we describe the notations and the official definition of community evolution chain. 

𝐺(𝑡)  is the graph at timeslot 𝑡 , and 𝐶𝑡(𝑖)  is the i-th community in 𝐺(𝑡) . The 

definition of community evolution chain is below, which 𝑇 is the maximum number 
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of timeslot. 

𝐶ℎ𝑎𝑖𝑛𝑗 = {𝐶𝑡(𝑘)|𝑡 < 𝑇, 𝑘 < Number of communities in 𝐺(𝑡)} 

Weiux’s Short-term Evolution Method takes two graphs as input. It will first apply 

community detection to graphs, and then decide the evolution between communities in 

different graphs. The following is the detail of the process of Short-term Evolution 

Method. 

Step1 Apply community detection on two graphs. As this method is doing 

community evolution detection, we should get communities from graphs first. We will 

use any community detection algorithm to get communities. Figure 2-1 below illustrate 

the process in this step. 

 

Figure 2-1 Step 1 of Short-term Evolution Method 

Step2 Calculate the similarity of communities between two graphs. If the 
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similarity is larger than threshold, add an edge between the communities. After we 

detect the communities in two graphs, we will calculate the similarity between 

communities in different timeslot. If two communities in the adjacent graphs are very 

similar, the community in the graph of latest timeslot may be evolved from the other 

community in the graph of previous timeslot. In this step, there are two arguments in 

the algorithm, p-core and threshold. When we calculate communities’ similarity, we 

may not need to compare all the nodes in communities. Instead, the algorithm calculates 

the similarity of two communities only considering the important nodes in two 

communities. P-core is the argument to control how many important nodes we need to 

consider. The following is the definition of p-core from Weiux’s paper. Consider a set 

of nodes S = {v1, v2, . . . , vn} in a graph G. Suppose that deg(vi) ≥ deg(vi+1) for 1 ≤ i 

≤ n - 1, where deg(vi) is be the degree of node vi. For 0 ≤ p ≤ 1, let n(p) be the smallest 

integer such that more than np nodes in S are connected by the set of nodes {v1, . . . , 

vn(p)}. The set of nodes {v1, . . . , vn(p)} is called the p-core of S. Threshold is another 

argument. If the similarity of two communities is larger than threshold, the argument 

will consider they have some relationship of evolution and add a link between the 

communities. Figure 2-2 illustrate the Step2. 
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Figure 2-2 Step 2 of Short-term Evolution Method 

Step3 Generate a bipartite graph, which each node in the graph is a 

community. In this step, we will construct a bipartite graph. Each node in this graph is 

the communities in the original two graph. The edges between nodes in this new 

bipartite graph are the links set in Step2. The following Figure 2-3 is the illustration of 

Step3. 
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Figure 2-3 Step 3 of Short-term Evolution Method 

Step4 Apply the community detection on the bipartite graph. The results are 

the evolution chains. This step is the most important step in Weiux’s algorithm. The 

result of community detection on this bipartite graph is the community evolution chain 

because nodes in this bipartite graph is the communities in original two graph. The 

nodes in same a community in this bipartite graph means these nodes, which were 

communities in original two graphs, are very close with each other. As a result, the 

communities in a community evolution chain means they have relationship in evolution. 

Figure 2-4 illustrate the Step4. 
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Figure 2-4 Step 4 of Short-term Evolution Method 

In Weiux’s Short-term Evolution Method, he also provide his definition of 

evolution types. However, we will provide our own definition of evolution types and a 

method to transfer the evolution chain to evolution types. As a result, we will talk about 

the evolution types in next chapter. 

2.2 Weiux’s Long-term Evolution Method 

Based on the Short-term Evolution Method, Weiux designed there kinds of Long-

term Evolution Method. These three methods can detect community evolution in graphs 

in several timeslots. The first one, named LM1, is similar to Short-term Evolution, but 

it apply the community detection in many graphs in many timeslot, and construct the 
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multipartite graph instead of bipartite graph in Short-term Evolution Method. The 

second one, named LM2, does community evolution detection in multiple timeslots by 

using Short-term Evolution Method many times in every two adjacent timeslots, and 

combining all the results. The third one, named LM3, is very similar to LM1. However, 

LM3 adds links in communities which are not only in adjacent timeslots but across 

timeslots. The LM3 build a new graph but not a new multipartite graph. For choosing 

a simple but useful algorithm, we decide to use LM1 as our main algorithm for 

community evolution detection in this work. 

2.3 SGCI Algorithm 

SGCI algorithm is a community evolution detection proposed by B. Gliwa, S. 

Saganowski, A. Zygmunt, P. Bro?dka, P. Kazienko, and J. Kozlak. SGCI stands for 

Stable Group Change Identification. The algorithm can be split in the following steps: 

Step 1. Identification of fugitive groups in the separate time periods 

Step 2. Identification of group continuation – assigning transitions between groups 

in adjacent time steps. 

Step 3. Separation of the stable groups (lasting for at least three subsequent time 

steps). 
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Step 4. Identification of types of group changes. Assigning events from the list 

describing the change of the state of the group to the transitions 

In Step2, it use a measure called modify Jaccard to judge is there a transitions 

between groups. The definition of modify Jaccard is 𝑀𝐽(𝐴, 𝐵) = max (
𝐴∩𝐵

𝐴
,

𝐴∩𝐵

𝐵
) , 

where A and B are two groups. Because of this simple but useful measurement, the 

computation time of SGCI algorithm is very short compare to other algorithm. In Step4, 

there are 8 events in SGCI’s definition. They are “Split”, “Deletion”, “Merge”, 

“Addition”, “Split_Merge”, “Decay”, “Constancy”, and “Chang Size”.  
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Chapter 3  

Our Method 

In this chapter, we talk about how we do the community evolution detection and 

prediction, including our definition of evolution types. We also introduce how we 

transfer evolution chains to evolution types, and how we predict community evolution 

types. Before we do the community detection, we examine our evolution detection 

algorithm with our own synthetic dataset. In order to address these issues, in this chapter 

we as well introduce how we generate our synthetic data, and how we measure the 

correctness of Long-term Evolution Method. 

3.1 Synthetic Data Generator 

We use our own synthetic data to test Weiux’s algorithm, so in this section we talk 

about how we generate the synthetic data. As we want to verify Weiux’s algorithm is 
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robust and can correctly detect the evolution, we are supposed to have datasets with 

evolution ground truth to judge performance. To our best knowledge, there is no real 

world dataset containing the ground truth of community evolution, so it is required to 

generate a synthetic dataset on our own and assign the community evolution manually. 

If Long-term Evolution Method can precisely detect the community evolution in the 

synthetic dataset, then it indicates that this algorithm is useful and correct. 

Our synthetic data generator is based on the Stochastic Block Model [4], which is 

a widely used model for generating synthetic dataset with community ground truth. For 

a simple Stochastic Block Model, each of nodes will be assigned to one of 𝐾 

communities. Assume node 𝑖 is in community 𝐶𝑖 and node 𝑗 is in community 𝐶𝑗. 

An edge is placed between node 𝑖 and node 𝑗 with probability 𝜓𝐶𝑖𝐶𝑗
. We can define 

a 𝐾 × 𝐾  matrix 𝜓  to construct all the edges [5]. Here we define 𝜓𝐶𝑖𝐶𝑗
= 𝑝𝑖𝑛  if 

𝐶𝑖 = 𝐶𝑗, otherwise 𝜓𝐶𝑖𝐶𝑗
= 𝑝𝑜𝑢𝑡. 

To build a simple but representative synthetic data, we only consider two kinds of 

community evolution – “merge” and “split” in our synthetic data. We first generate a 

graph with community by the Stochastic Block Model. After generating one graph, we 

assign which communities should merge and which communities should split. Finally, 
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we generate a new graph followed by our evolution assignment. The following content 

is the detail of the synthetic data generator. 

Step1 Generate one graph by Stochastic Block Model. In this step, we generate 

graph by Stochastic Block Model with two probabilities, 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡. If two nodes 

are in the same community, there will be an edge connecting two nodes with probability 

equal to 𝑝𝑖𝑛. On the other hand, if two nodes are in different communities, there will 

be an edge connecting two nodes with probability equal to 𝑝𝑜𝑢𝑡. To generate graphs 

with community structure, the constraint is that 𝑝𝑖𝑛  should be larger than 𝑝𝑜𝑢𝑡 , 

because the definition of community is the connection between nodes in same 

community is larger than connection between nodes in different community. 

Throughout this step, we will set number of communities, and number of nodes in each 

community. With 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡, we can generate a graph with community ground truth 

based on Stochastic Block Model. 

Step2 Assign community evolution. In this step, we decide which community 

should merge or split in next timeslot. We first separate communities into two groups. 

The community in the first group are going to merge with each other in next time slot, 

and the community in the second group are going to split into two communities. For 
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example, we can assign community 1.1 and community 1.2 to merge into community 

2.1, and assign community 1.3 to split into community 2.2 and community 2.3, where 

community a.b means the b-th community in timeslot a. In this example, community 

1.1, community 1.2, and community 2.1 are in the same evolution chain. For easy 

computation and analysis, there will be only two communities becoming one or one 

community becoming two. There are no three or more communities merging into one 

or one community split into three or more communities. In this step, we also decide the 

evolution in the timeslot after next timeslot. If two communities are merging into one 

community in next timeslot, the merged community will split into two communities in 

the timeslot after next timeslot. For example, if community 1.1 and community 1.2 

merge into community 2.1, then community 2.1 will, as our design, split into 

community 3.1 and community 3.2. The reason why we choose to specify the merged 

group should split in next timeslot is to make this synthetic data simple and reduce the 

time for generating community evolution. 

Step3 Move nodes to new communities and reconstruct the graph. After we 

assign the community evolution, we move nodes from original communities to new 

communities one by one and reconstruct a new graph. We move nodes from the 
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communities in present timeslot to the communities we assigned in next timeslot. Every 

node object will have a variable about which community the node is in. By change 

value of this variable, we move the node to new community. When a node is moved to 

a new community, some of its edges should be reconstructed with the same probability 

used in constructing Stochastic Block Model in Step1. The edges which will be 

reconstructed will be mentioned later. There are two possible evolution of communities: 

merge and split. For two communities which will merge into a new community, nodes 

will break their edges with the community and the community they are going to merged 

with. The edge connecting in the new community will be generated with probability 

equal to 𝑝𝑖𝑛. For example, if a node is originally in community 1.1 and it is assigned 

to merge with community 1.2 into community 2.1, the node will break all the edges 

connecting to nodes in community 1.1 and community 1.2 but remain the edges 

connecting to other communities. The edges in community 2.1 will reconstruct with the 

probability equal to 𝑝𝑖𝑛. For a community that will split into two communities, nodes 

in the community will break their edges with each other, and the edges connecting 

between the two new communities will be assigned with the probability 𝑝𝑜𝑢𝑡 . For 

example, if a node is originally in community 1.3 and community 1.3 is going to split 
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into community 2.2 and community 2.3, the node will break all the edges connecting 

to nodes in community 1.3. The edges connecting between nodes in community 2.2 and 

nodes in community 2.3 will be generated with probability 𝑝𝑜𝑢𝑡. It is notable that edges 

should be unchanged if they connect two nodes from different communities which 

won’t merge together. For example, if community 1.1 merges with community 1.2, the 

edges connecting nodes in community 1.1 and nodes in communities other than 

community 1.2 should keep unchanged. After all nodes are moved to new communities 

respectively and all edges are reconstructed with the probability set in Step 1, we get a 

new graph with new communities, new edges, and community evolution ground truth. 

By applying these procedures, the probability of the connection between two nodes in 

same communities and the probability of connection between two nodes in different 

communities remain the same with the probability we used in Step1. Besides, the 

connections between communities that do not evolve together will remain the same, 

which is more reasonable and more realistic for community evolution. 

Step4 Adding core nodes and noise. In this step, we modify the synthetic data by 

setting some nodes as core nodes in communities and adding some noise when moving 

nodes to new communities. To make the synthetic data more similar to the real world 
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case, we add noise. The noise we add in synthetic is that nodes may randomly move to 

communities other than we assigned. We use a probability called “correctly migration 

probability” to control the noise. The lager the correctly migration probability is, the 

less the noise is, and the more stable the evolution is. Core nodes is to simulate the core 

structure in communities. There are two key point about the core nodes in new synthetic 

data: (1) core nodes will connect to all the nodes in the same community, and (2) core 

nodes will always go to the correct communities we assigned in evolution. Because the 

core nodes will move to new communities correctly, the noise we added in new 

synthetic data will not affect to the core nodes. 

Step5 Repeat Step2 to Step4 to get required number of graphs. After Step4, 

we will get a new graph for 1st evolution, and we also assign the 2nd evolution in step2. 

Repeat Step2 to Step4 will give us one more graphs and the pattern of 3rd evolution. 

3.2 Measure Correctness of Evolution Detection 

To judge how well Weiux’s algorithm is, we use normalized mutual information 

to evaluate the community evolution detection result. Because the algorithm we used 

(LM1) generate the community evolution chain instead of community evolution type, 

we cannot just compare the evolution type of the detection result and the ground truth. 
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As a result, we need a method to calculate the precision of the evolution chain we 

detected. In the algorithm LM1, LM2, and LM3, the last step of these algorithms are 

the same. In the final step of these algorithms, they apply a community detection on the 

bipartite graph or multipartite graph to get community evolution chain, so the evolution 

chain we detected is actually the communities in these graphs. Finding communities in 

graphs is a famous problem in online social network analysis. Many works manage to 

find community detection algorithm and they need a method to evaluate their algorithm. 

Normalized mutual information [12] is one of the common used algorithm to compare 

the community detection result and the community ground truth. In Chapter 3, we know 

the evolution chains are the communities detected from the bipartite or multipartite 

graphs. We can therefore use normalized mutual information as the measurement of our 

result. 

3.3 Definition of Evolution Types 

We propose our own defined evolution types in this work. Most community 

evolution detection algorithms try to detect the evolution type, which is very different 

from the way in Weiux’s algorithm. To compare the result with other algorithm, one 

way is to generate the evolution types rather than the evolution chains. Evolution type 
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is much easier to read and analysis than evolution chain. The output of Long-term 

Evolution Method is evolution chain so we propose a method to transform evolution 

chain into evolution type. First, we define 7 types of evolution types. They are “Birth”, 

“Merge”, “Split”, “Growth”, “Shrink”, “Continue”, and “Death”. The following is the 

concept of each evolution type. 

Birth “Birth” is the evolution type which means the community is just appear in 

the present timeslot. No community is in its history. When we concentrate in what 

happened to a community before, this evolution type is one of the possible case. 

However, if we focus on what happens to a community next timeslot, this evolution 

type will never be the answer because that will break our concept: no community is in 

its history. 

Merge This evolution type indicates that a community is merged form other 

communities or it will merge with other communities. It depends on which timeslot we 

are talking about. If we are talking about what happened to a community before, “Merge” 

means this community is merge from communities in previous timeslot. If we are 

talking about what will happen to a community, “Merge” means this community is 

going to merge with other communities in the present timeslot and become new 
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communities in next timeslot. 

Split This evolution means a community is split form communities in previous 

timeslot or a community will split into multiple communities in next timeslot. Again, it 

depends on which timeslot we are focus on. 

Growth The type “Growth” is quite different from “Merge” and “Split”. “Merge” 

and “Split” involve the number of communities changed from previous timeslot to 

present timeslot or will change from present timeslot to next timeslot. “Growth” means 

that number of nodes in communities increased when communities evolved to present 

timeslot, or number of nodes in communities will increase when communities evolve 

to next timeslot. 

Shrink This evolution type is a contrary case of “Growth”. The number of 

communities have never changed. However, number of nodes in communities 

decreased when communities evolved to present timeslot, or number of nodes in 

communities will decrease when communities evolve to next timeslot. 

Continue This evolution type means that the number of communities have never 

changed, like “Growth” and “Shrink”, but number of nodes in communities remains the 

same or no significant change when communities evolved to present timeslot or when 
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communities evolve to next timeslot. We talk about how to distinguish significant 

change or not in Section 3.4. 

Death This evolution type is a contrary case of “Birth”. A community is given the 

evolution type “Death” as it will disappear in next timeslot and the evolution of this 

community will end in the present timeslot. No other community in next timeslot is 

evolved from this community. Different from the type “Birth”, this evolution type can 

only happen when we talk about a community’s future. If we focus on what happens to 

a community before, this evolution type will never be the possible type of this 

community. No community is evolved from a “Death” community. 

3.4 Method to Transfer Evolution Chain to Evolution Types 

In this section, we give a method to transfer the detected evolution chain into 

evolution type we defined in Section 3.3. Because most works focus on what happens 

next to a community, we focus on the future of communities as well. As a result, “Birth” 

will not appear in this method. In this method, we first decide whether communities are 

“Death” or not. If the communities are not “Death”, then next step we see if 

communities are “Merge” or “Split”. If communities are neither “Merge” nor “Split”, 

we will calculate the total number of nodes in communities to judge the communities 
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belonging to “Growth”, “Shrink”, or “Continue”. The following is the detail of the 

procedure. 

Step1 Decide evolution type is “Death” or not. Given a community evolution 

chain, there are many communities in the chain. If a community is in the last timeslot 

of the community evolution chain, this community will be given a type “Death” since 

no community is in next timeslot. For example, if there is an evolution chain “12:3, 

22:4, 35:4”, the evolution type of community indexed 22 and community indexed 35 

will be “Death” because there is no other community in this chain which time index is 

5. And, for the community indexed 12, the evolution type of it is not “Death” because 

in this chain there are two communities (community 22 and community 35) which are 

in the following time slot (time index 4). If a community is not “Death”, then we go to 

the next step. 

Step2 Decide evolution type is “Merge” or “Split”. In this step, we will calculate 

the number of communities in each timeslot in an evolution chain, and compare the 

numbers between each timeslot. If the number of communities in a given timeslot is 

less than the number of communities in the next timeslot, the evolution types of 

communities in given timeslot will be “Split”. Otherwise, the evolution type will be 
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“Merge”. For example, if there is an evolution chain “12:3, 22:4, 35:4”, we can 

calculate the number of communities in time index 3 and in time index 4. There is one 

community whose time index is 3 in this chain, and there are two communities whose 

time index is 4 in this chain. Then, we can compare the number of communities in time 

index 3 and the number of communities in time index 4. The number of communities 

in time index 3 is less than that in time index 4, so the community in time index 3 will 

be given a type “Split”. “Merge” and “Split” are sometimes having different definition. 

One may consider that only multiple communities merge into one community is called 

“Merge”. However, others may think that large number of communities merging into 

small number of communities can be called “Merge”. To make our transferring method 

more flexible, we used a factor 𝛼 to control the rule we used to decide “Merge” and 

“Split”. We used an example to show how the factor controls the decision. Given 𝑥 is 

the number of communities in the present timeslot, and 𝑦  is the number of 

communities in next timeslot, the possible evolution type of communities in the present 

timeslot is in the Table 3-1. 

Table 3-1 Rule of deciding “Merge” or “Split”  

Compare 𝑥 and 𝑦 Evolution Type 
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𝑥 > 𝛼𝑦 Merge 

𝑥 <
1

𝛼
𝑦 Split 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 Growth, Shrink, or Continue 

If 
1

𝛼
𝑦 < 𝑥 < 𝛼𝑦, then we go to next step to decide the evolution type is “Growth”, 

“Shrink”, or “Continue”. 

Step3 Decide evolution type is “Growth”, “Shrink”, or “Continue”. In this 

step, we compare the number of nodes in communities. We will calculate the total 

number of nodes in communities in each timeslot, and compare the numbers between 

each timeslot. If the total number of nodes in a timeslot is larger than the total number 

of nodes in its next timeslot, the communities in this timeslot will be given the type 

“Shrink.” In contrast, if the total number of nodes in a timeslot is smaller than the total 

number of nodes in its next timeslot, the communities in this timeslot will be given the 

type “Growth”. Other cases besides these two will be the type “Continue”. For example, 

there is an evolution chain “35:3, 36:3, 50:4, 51:4”. Given the number of communities 

in time index 3 is two and the number of communities in time index 4 is also two, the 

evolution type of communities in time index 3 is neither “Merge” nor “Split”. We have 

to decide the evolution type of communities in time index 3. Assume the number of 
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nodes in community 35, 36, 50, 51 is 20, 20, 10, 10. The total number of nodes in 

communities in time index 3 is 20 + 20 = 40, and the total number of nodes in 

communities in time index 4 is 10 + 10 = 20. Because the total nodes in time index 3 is 

larger than that in time index 4 (40 > 20), the evolution type of community 35 and 

community 36 should be “Shrink.” There is a problem that one may think the 

community with 40 nodes which become a new community with 39 nodes should not 

be given the type “Shrink” since there is only one node difference. Again, to make our 

method more flexible, we use a factor 𝛽  to control the decision of “Growth” and 

“Shrink”. The following Table 3-2 shows how the factor 𝛽  control the decision. 

Assume the total number of nodes in a timeslot is 𝑥 and the total number of nodes in 

its next timeslot is 𝑦. 

Table 3-2 Rule of deciding “Shrink”, “Growth”, or “Continue” 

Compare 𝑥 and 𝑦 Evolution Type 

𝑥 > 𝛽𝑦 Shrink 

𝑥 <
1

𝛽
𝑦 Growth 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 Continue 

Given a community evolution chain, we can apply our method Step1 to Step 3 in 
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each timeslot and give every community in each timeslot a proper evolution type. All 

we need are evolution chains and the number of nodes in each community. By adjust 

the factor 𝛼 and 𝛽, we can affect the decision of evolution types. 

3.5 Method for Community Evolution Prediction 

For predicting community evolution, we propose a method to predict our evolution 

types. Although Weiux’s algorithm generates evolution chains, it is difficult to predict 

which communities will be in next timeslot in a chain. As a result, we switch to predict 

the evolution types. To predict the evolution type, we decide to use Libsvm [9] to build 

a classification model. Chih-Chung Chang and Chih-Jen Lin propose the Libsvm, a 

library for support vector machines. It is a tool which can perform support vector 

classification, regression, and distribution estimation. This tool makes the usage of 

SVM much simpler. There are many interfaces and extensions to Libsvm. We use the 

Libsvm interfaces in R because R is a convenient and powerful tool to analyze the data. 

As we want to build a prediction model with SVM, we have to select features from the 

data. In next section, we show the details of how we select the features and which 

features we pick. 
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3.6 Features Selection for Community Evolution Prediction 

We select many kinds of features for the classification. In our prediction model, 

the evolution types of communities are the predicting target. To build a classification 

model, we select 310 features for each community. The 310 features can be classified 

into 4 different groups. There are features about communities, features about the 

difference between previous communities, features about the evolution chains, and 

features about the previous evolution types. The following content is the detail of these 

4 groups of features. 

3.6.1 Features about communities 

The features about communities are communities’ index, time index, size, density, 

cohesion, leadership, closeness of nodes, degree of nodes, and betweenness of nodes. 

There are 51 features in this group, which are feature 1 to feature 51. The explanations 

for the features are presented below. 

Index – Each community is given an index. This index never repeats for 

communities in all timeslot. The community index is not a random number but a 

number start from 0 and always increase. As a result, the communities in present 

timeslot will have their index smaller than the index of communities in next timeslot.  
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Time index – This feature represents which time slot a community is in. The time 

index is start from 0. 

Size – The number of nodes in the group. 

Density – This feature represents how many connections between nodes in a 

community verse the maximum possible connections between nodes in this community. 

The equation is below: 

Density =
∑ ∑ 𝑎(𝑖, 𝑗)𝑗𝑖

𝑛(𝑛 − 1)
 

Cohesion – A measurement of the strength of connections inside a community 

versus the strength of connections outside this community. The equation is as below, 

where 𝑤(𝑖, 𝑗) is weight of the connection between node 𝑖 and node 𝑗 and 𝑁 is the 

total number of nodes in graph. 

Cohesion =

∑ ∑ 𝑤(𝑖, 𝑗)𝑗∈𝐶𝑖∈𝐶

𝑛(𝑛 − 1)
∑ ∑ 𝑤(𝑖, 𝑗)𝑗∉𝐶𝑖∈𝐶

𝑁(𝑁 − 𝑛)

 

Leadership – A measurement of the centralization of a community. The equation 

is as below, where d𝑚𝑎𝑥  is the maximum degree in the community and d𝑖  is the 

degree of the i-th node in the community.  

Leadership = ∑
d𝑚𝑎𝑥 − d𝑖

(𝑛 − 2)(𝑛 − 1)

𝑛

𝑖=1

 

Closeness of nodes – The closeness is a node measure in inverse of how far a node 
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is from other nodes. Here the “other nodes” means the other nodes is the same 

community. A node’s closeness toward its community is define as: 

Closeness(𝑖) =
1

∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶
 

where 𝑑(𝑖, 𝑗)  is the shortest distance between node 𝑖  and node 𝑗 . Given a 

community, we can calculate the sum, the maximum, the minimum, the average, and 

the standard deviation of the closeness of all nodes. In our feature selection, we 

calculate more closeness measure of a community. In addition to calculate closeness 

with all nodes in a community, we pick the leaders, the outermost nodes, and the core 

nodes of this community. The leaders of a community are defined by the closeness of 

nodes. If a node’s closeness is larger than the mean of the closeness plus two times of 

standard deviation of closeness of all nodes, it is the leader of its community. The 

outermost nodes are, in contrary, the nodes which closeness are smaller than the mean 

of the closeness minus two times of standard deviation of closeness of all nodes. The 

definition of core nodes is the same as our detection algorithm. So, in selecting 

communities’ closeness measure, we consider 4 groups of nodes in communities and 

each group we calculate 5 different measure of closeness. We get 4 × 5 = 20 features 

in calculating closeness of nodes. 



doi:10.6342/NTU201601504

 34 

Degree of nodes – Degree is a node measure. It represents how many links a node 

has between the node and other nodes. Here the “other nodes” means the other nodes 

belong to the same community. In calculating the degree of nodes, we do the same thing 

in calculating closeness of nodes. We pick 4 groups of nodes in a community, which 

are leaders, outermost nodes, core nodes, and all nodes. The definition of leaders and 

outermost nodes are the same as in calculating closeness of nodes. We calculate the 

sum, the maximum, the minimum, the mean, and the standard deviation of degree of 

these 4 groups. We get 20 features in calculating degree of nodes. 

Betweenness of nodes – Betweenness is a node measure. The betweenness of a 

node represents the number of shortest path from nodes in a community pass through 

this node. The equation is below, which 𝜎𝑗𝑘 is number of shortest path from node 𝑗 

and node 𝑘 and 𝜎𝑗𝑘(𝑖) is number of shortest path from node 𝑗 and node 𝑘 through 

node 𝑖. 

Betweenness(𝑖)= ∑
𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘
𝑗≠𝑘≠𝑖

 

In calculating the betweenness of nodes, we consider all nodes in a community. 

We calculate the sum, the maximum, the minimum, the mean, and the standard 

deviation of betweenness of all nodes. 
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3.6.2 Features about difference between previous communities 

In an evolution chain, there are many communities in different timeslots. In 

Section 3.6.1 we select the features from communities. In this section we calculate the 

differences of features between communities in different timeslot. Here we use an 

example to show how to calculate the difference of features. Suppose there is an 

evolution chain “35:3, 36:3, 50:4”. From Section 3.6.1, we get the size of communities 

are 15, 20, and 40. The differences of the feature “size” between community 50 and the 

communities in its previous timeslot (which is community 35 and 36) are 25 and 20. 

For each feature, except for community index and time index, in Section 3.6.1, we can 

get a list of differences of feature because the communities in previous timeslot may be 

more than one, just like the example. For every lists of differences of feature selected 

in Section 3.6.1, we can calculate their sum, maximum, minimum, mean, and standard 

deviation. So, there are (51 − 2) × 5 = 245 features which is about the differences 

of features in Section 3.6.1. We add three more features. The first added feature 

represents the percentage of the nodes in a community are new nodes which are not in 

the previous timeslot. The second feature is the percentage of the nodes which are in 

previous timeslot but not in this community in present timeslot. The third one is the 
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percentage of nodes in a community that has already appeared in previous timeslot. The 

third feature is equal to 1.0 minus the first feature. By adding these three features, we 

get 245 + 3 = 248 features in this section, which are feature 52 to feature 299. 

3.6.3 Features about evolution chains 

As our community evolution detection algorithm detect the evolution chains, 

features of evolution chains may play an important role in prediction. So, we consider 

to add the feature of the evolution chain to our feature selection. To calculate the 

features of an evolution chain, we first construct a list in which each element is the 

number of communities in each timeslot. For example, given an evolution chain “35:3, 

36:3, 50:4, 63:5”, we will construct the list [2, 1, 1] which represents there are two 

communities in time index 3, one community in time index 4, and one community in 

time index 5. Then, we calculate the sum, the maximum, the minimum, the mean, and 

the standard deviation of the list. Besides, we also calculate the size of the list and the 

number of communities in the same timeslot. When we select the features, it is 

important that we do not select the feature which contains the answer of the evolution. 

So, when we construct the list from an evolution chain, we consider which timeslot of 

a community we are calculate now. For example, in the previous example, we get the 
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list [2, 1, 1] from the evolution chain “35:3, 36:3, 50:4, 63:5”. If we are selecting the 

features of community 36, the list will be [2]. However, if we are selecting the features 

of community 50, the list will be [2, 1] because we cannot tell the answer that whether 

there will be a community 63 in next timeslot. There are 7 features about the evolution 

chain, which are feature 300 to feature 306. 

Here we further talk about each feature in this group. Feature 300 is the sum of the 

list we mentioned before. The large value means this chain is very big and contains 

many communities. Feature 301 and Feature 302 are the maximum and the minimum 

of the list. Feature 303 is the mean of the list, which means in average how many 

communities in each timeslot. Feature 304 is the standard deviation of the list. If the 

value is high, it means that the changes in number of communities is big, and this 

evolution chain is very unstable. Feature 305 is the number of communities in the same 

timeslot. Feature 306 is the size of the list. This value means how long an evolution 

chain is. The larger the value is, the longer the evolution chain lives, which implies that 

the evolution chain may be still alive in next timeslot. 

3.6.4 Features about the previous evolution type 

The final group of features is the features about the previous evolution type. Every 
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community will have two evolution types. One is what the community is from, the other 

is what will happen to the community. If a community is the result of two communities 

merging with each other in previous timeslot, this community’s previous evolution type 

is “Merge”. The previous evolution type will be one of “Birth”, “Merge”, “Split”, 

“Growth”, “Shrink”, and “Continue”. It is notable that the type “Death” is not a possible 

type in previous evolution type. This is mentioned in Section 3.3. We also add three 

different features in this group. The first one represents whether a community is 

survived from previous timeslot. The second one represents whether a community’s 

members increased compared to the previous timeslot. The third one represents if a 

community merged or not from previous timeslot. These three features are recorded 

with the value type of “true” or “false”. In Chapter 6, we not only predict the evolution 

types, but also predict whether a community will live, whether a community will 

growth, and whether a community will merge. As a result, we add these three features 

as the input features. This will be discussed in Section 6.1. Because it is impossible for 

a community evolves form a “Death” community and, as a result, the feature of whether 

a community will live is always true. In the prediction model, we will remove this 

feature for it is helpless. Before we remove this feature, there are 4 features in this group, 
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which are feature 307 to feature 310. 
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Chapter 4  

Synthetic Dataset Experiment 

In this chapter, we use the synthetic data we generate to test the evolution detection 

algorithm. In Chapter 2, we talk about the Long-term Evolution Method designed by 

Weixu Lin, and we decide to use this method as our main algorithm to do more 

evolution analysis and evolution prediction. However, his algorithm is not fully verified. 

In this chapter, we try to verify our long term evolution algorithm (LM1) by testing it 

with some datasets which contain evolution ground truth. We are also interesting in the 

two main parameters in the algorithm, p-core and threshold, so we conduct the 

experiment to show the impact of these two parameters and the detection result. 

4.1 Experiment Result 

In section 3.1 and section 3.2, we generate the synthetic data with ground truth 
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and the measurement for judging Long-term Evolution Method. In our synthetic data, 

we set 4 communities, and each community contains 20 nodes. The nodes connect with 

each other in the same communities with probability 0.9, which is 𝑝𝑖𝑛. The nodes in 

different communities connect with each other with probability 0.1, which is 𝑝𝑜𝑢𝑡 in 

Stochastic Block Model. We generate 6 graphs which have 5 times evolution. We set 

the probability of correct migration to 1.0, which means there is no noise. We do not 

add core node in this experiment. We would like to see how Long-term Evolution will 

perform if communities contain no core node. For the arguments of Long-term 

Evolution Method, we set p-core as 0.2 and threshold as 0.05. In this algorithm, the first 

step is applying community detection on each graphs. Here we use community ground 

truth instead of apply community detection in the first step of this algorithm because 

we want to evaluate our evolution detection algorithm. The error of community 

detection will impact the result of evolution detection. As we just want to judge how 

well our evolution detection algorithm is, we control the community detection to 100% 

correct by using community ground truth. The result is shown below. 

Table 4-1 Evolution chains detected by Long-term Evolution Method 

Chain Index Community Evolution Chain 
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0 0:0, 1:0, 4:1, 10:2 

1 3:0, 7:1, 12:2 

2 8:1 

3 2:0, 5:1, 6:1, 11:2, 14:3 

4 9:2, 13:3, 18:4, 19:4, 22:5 

5 16:3, 17:3, 21:4, 25:5 

6 15:3, 20:4, 23:5, 24:5 

7 26:5 

Table 4-1 is the result of Long-term Evolution Method. There are 8 chains detected 

by the algorithm. In each chains, there are several communities in each time index. The 

syntax of each element in a evolution chain is <Community Index> : <Time Index>. 

For example, in the first evolution chain, 1:0 means there is a community which index 

is 1 and time index is 0 in this chain. The evolution ground truth is shown in Table 4-2. 

Table 4-2 Ground truth of evolution chain in synthetic data 

Chain Index Community Evolution Chain 

0 0:0, 1:0, 4:1, 9:2, 10:2, 13:3, 18:4, 19:4, 22:5 

1 2:0, 5:1, 6:1, 11:2, 14:3, 15:3, 20:4, 23:5, 24:5 
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2 3:0, 7:1, 8:1, 12:2, 16:3, 17:3, 21:4, 25:5, 26:5 

As we can see, the community evolution chains between Long-term Evolution 

Method and the ground truth are different. However, we still can show some correctness 

of this algorithm. 

Because the result is not so well, we try to modify some argument in this algorithm. 

We modify p-core to 1.0, which means we consider no core nodes in communities (or 

every node is core node) and the algorithm will calculate similarity of communities 

considering all nodes in communities. The result is in Table 4-3. 

Table 4-3 Evolution chains detected by LM1 with new arguments 

Chain Index Community Evolution Chain 

0 0:0, 1:0, 4:1, 9:2, 10:2, 13:3, 18:4, 19:4, 22:5 

1 2:0, 5:1, 6:1, 11:2, 14:3, 15:3, 20:4, 23:5, 24:5 

2 3:0, 7:1, 8:1, 12:2, 16:3, 17:3, 21:4, 25:5, 26:5 

The result is just the same as the ground truth. The normalized mutual information 

of the result is 100%, which means the result is 100% correct. The normalized mutual 

information shows that the evolution chains we detected are totally correct, and verifies 

that Long-term Evolution Method is correct. The reason why we get perfect result when 
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we choose p-core as 1.0 is our synthetic data have no core structure in communities. 

Choosing p-core to 0.2 is not a good choice in this synthetic data. In most of the real 

world dataset, communities will contain some core nodes. As a result, we need a new 

synthetic dataset which contains core structure in communities. Besides, this synthetic 

data has almost no noise. The only noise in this synthetic is from the Stochastic Block 

Model. We set 𝑝𝑖𝑛  to 0.9 so the nodes in the same communities may have no 

connection with probability 0.1. In the real world data, the community evolution is more 

complicated and has many noise. As a result, we do a new experiment to test a more 

complicated evolution and analyze the p-core’s impact. 

4.2 Experiment Result with Cores and Noise 

In this experiment, we want to investigate the impact of p-core and threshold. We 

add core nodes for analyze the impact of p-core. Also, we add noise in the synthetic 

dataset in this experiment. We start from analysis the p-core’s impact. We set 𝑝𝑖𝑛 to 

0.5, 𝑝𝑜𝑢𝑡 to 0.1, and the correctly migration probability from 1.0 to 0.1. There are 8 

communities in the new synthetic data, and each of them contains 40 nodes. For the 40 

nodes in each community, 4 of them are set to be core nodes. We test Long-term 

Evolution Method with p-core from 1.0 to 0.1 and threshold equal to 0.05. We plot the 
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normalized mutual information in Figure 4-1. 

 

Figure 4-1 NMI to p-core and correctly migration probability 

In Figure 4-1, we can see that when the correctly migration probability is large, p-

core do little impact to the normalized mutual information. However, when the 

correctly migration probability is getting smaller, selecting smaller p-core can improve 

the result. The reason is that the nodes will have larger probability to randomly migrate 

to wrong communities. The better way for Long-term Evolution Method is to calculate 

the similarity of communities by considering only the core nodes because core nodes 

will not migrate to wrong communities. When we choose smaller p-core, we have 

greater chance to select the core nodes in communities so as to do a correct evolution 

detection. The figure shows that choosing p-core to 0.3 or 0.2 give us better result in 
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most of the cases. So, in testing the real world dataset in Chapter 5, we select p-core to 

be 0.2. Selecting smaller value of p-core also means that the algorithm will compute 

less nodes when calculating the similarity of communities, and reduce the running time. 

The following Figure 4-2 is the computing time when choosing different value of p-

core. We can see that the computing time decreases as we choose lower p-core. 

 

Figure 4-2 Execution time to the p-core 

Now we switch to analysis the impact of threshold. We set p-core to 1.0 and 

correctly migration probability to 0.5, threshold from 1.0 to 0.1, and other arguments 

are the same with what we set in analyzing p-core. The Figure 4-3 below shows the plot 

of normalized mutual information to the threshold. 
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Figure 4-3 Normalized mutual information to the threshold 

As Figure 4-3 shows, when the threshold is less than 0.5, the values of normalized 

mutual information are stocked at 60%. But, as soon as we set the threshold larger than 

0.5, the values of normalized mutual information jump to 100%. The threshold acts like 

a barrier. The result shows that we should not set threshold to large so in the following 

real world dataset experiment we set threshold to 0.05. The threshold value 0.05 has 

also been used in [3] when testing real world dataset. 
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Chapter 5  

Real World Dataset Experiment 

This chapter is about the real world datasets on Long-term Evolution Method. In 

Chapter 4, we verify this algorithm is correct, and knowing how the p-core and 

threshold impact the detection result. In this chapter, we test the algorithm with the real 

world datasets including Facebook dataset [6] and DBLP dataset [7]. After testing the 

real world datasets, we should know how well Long-term Evolution Method is when it 

comes to the real case. Because of no ground truth in real world datasets, we need to do 

some case study and compare our result with other algorithm to evaluate this algorithm. 

In this chapter, we use our method to change evolution chains into evolution types: 

Continue, Merge, Split, Growth, Shrink, Death, and Birth. These types will be used to 

compare to other algorithm and do prediction in Chapter 6. 
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5.1 Experiment on DBLP 

We test Long-term Evolution Method with DBLP dataset first. The DBLP dataset 

is a co-author network. We clean up the DBLP dataset by remove the nodes who have 

published number of papers less than five. After the cleaning up, we separate the DBLP 

dataset by years and change it to graphs. Each graph contains data for two years. There 

is a 50% overlap, which is a year overlap, between each graphs. For example, the first 

graph contains the data in the first and second year, and the second graph contains the 

data in second and third year. We get 11 graphs which cover the data from D.C. 1995 

to 2005. There are 148334 nodes and 1210663 edges in graphs. The reason making the 

graphs with some overlap is that it will make us much more easily to catch the 

communities’ evolution. This is more important when we test the algorithm with 

Facebook dataset because the Facebook dataset is much smaller than DBLP dataset. 

The nodes and communities in each graph in Facebook dataset is smaller than that in 

DBLP dataset so that it makes the Facebook dataset more difficult to detect the 

evolution. 

Based on the knowledge we learn from Chapter 4, we can set a proper value of p-

core and threshold for Long-term Evolution Method. From the experiment in Chapter 
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4, we set p-core to 0.2 and threshold to 0.05. We run this algorithm on DBLP dataset 

and it takes 174999 second (without the time of reading graphs) to finish the 

computation. There are 83301 communities, 32038 evolution chains in the result. To 

realize the result, we transfer the evolution chains to evolution type we defined. By 

setting the 𝛼 = 1 and 𝛽 = 1, we list the evolution types’ distribution in Table 5-1, 

and plot the distribution in Figure 5-1. We also remove the evolution types of 

communities in last timeslot because the evolution types of communities in last timeslot 

is always “Death”. We have only 11 graphs so the evolution types of communities in 

11th graphs are all “Death” 

Table 5-1 Number of each types in Long-term Evolution Method in DBLP 

 # of Event 
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Figure 5-1 Pie chart of types in Long-term Evolution Method in DBLP 

As we can see, the “Death” and “Continue” are the most of the evolution types. 

Other types are distributed very evenly. Because of there is no ground truth in 

community detection and community evolution in DBLP dataset, the only way we can 

do is to do some case study. In [3], it shows many case about DBLP dataset, Enron 

dataset, and U.S. Senate dataset, and proves his algorithm perform well on real world 

dataset, so we will not go further case studying on DBLP dataset. Instead, we compare 

our result with SGCI, which is one of the famous evolution detection algorithm. The 

evolution types in SGCI are “Addition”, “Change Size”, “Constancy”, “Decay”, 

“Deletion”, “Merge”, “Split”, and “Split Merge”. The type “Merge” and “Split” is the 

# of Event In Our Types

CONTINUE DEATH MERGE SPLIT SHRINK GROWTH
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same as our definition of “Merge” and “Split”. Our types “Growth” and “Shrink” are 

similar to types “Addition”, “Deletion”, and “Change Size” in SGCI. The type “Decay” 

is the same as the type “Death” in our definition. The distribution of SGCI is shown in 

Table 5-2 and Figure 5-2. 

Table 5-2 Number of each types in SGCI in DBLP 

 # of Event in SGCI 
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Figure 5-2 Pie chart of types in SGCI in DBLP 

As the Figure 5-2 shows, the distribution of evolution types of SGCI is very 

uneven. The possible reason is that it has 8 different types but we only have 6, and the 

definition of types is different from us. In Table 5-3 we list the comparison of types in 

SGCI and types in our definition. 

Table 5-3 Comparison of our types and SGCI types in DBLP 

 Our Type 

# of Event in SGCI

Addition Change Size Constancy Decay

Deletion Merge Split Split_Merge
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Continue Death Growth Shrink Merge Split 

SGCI 

Type 

Constancy 21606 132 196 148 1306 990 

Decay 145 18737 282 121 981 2711 

Change 

Size 

70 1124 6455 4530 2290 1860 

Addition 5 1386 86 44 581 912 

Deletion 0 2 41 17 344 392 

Merge 39 1456 670 48 555 1320 

Split 9 113 38 449 647 228 

Split_Merge 0 8 2 27 35 23 

The result shows that, except for types “Decay” and “Constancy” are almost match 

our types “Death” and “Continue”, other types does not match very well. It is because 

the other types’ definition is different from us. We cannot tell which algorithm is better 

for each algorithm has their own definition of evolution types. We will have a further 

discussion of each factor in Chapter 6 when it comes to predicting evolution types. 

5.2 Experiment on Facebook 

After testing Long-term Evolution Method with DBLP dataset, we do it again with 
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Facebook dataset. Facebook dataset is a posting dataset. When a user posts something 

on the other user’s wall, there is a link between them. Same as the experiment on DBLP 

dataset, we separate Facebook Dataset into 17 graphs by every four months starting 

from Feb. 2006. There is a two-month overlap between each graphs. There are total 

45613 nodes and 1559167 edges in these graphs. 

We perform Long-term Evolution Method on Facebook dataset and get 9985 

communities and 5672 evolution chains in total. Again, we transfer the evolution chain 

to evolution type with 𝛼 = 1  and 𝛽 = 1 , and remove the evolution types of 

communities in last timeslot. The following Table 5-4 and Figure 5-3 is the distribution 

of the evolution types of Facebook dataset. 

Table 5-4 Number of each types in Long-term Evolution Method in Facebook 

 # of Event 

Continue 3036 

Death 4610 

Merge 533 

Split 655 

Shrink 313 
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Growth 838 

 

Figure 5-3 Pie chart of types in Long-term Evolution Method in Facebook 

The two major evolution types in the result are still “Death” and “Continue”, and 

“Death” is almost the half of the total types. We also perform SGCI on Facebook dataset. 

Table 5-5 and Figure 5-4 is the result of SGCI. 

Table 5-5 Number of each types in SGCI in Facebook 

 # of Event in SGCI 
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Figure 5-4 Pie chart of types in SGCI in Facebook 

In Table 5-5 and Figure 5-4, we can find that the distribution of the types is more 

uneven than us, which is the same phenomenon we see in the experiment of DBLP 

dataset. As what we did in testing DBLP dataset, we list the comparison of types in 

SGCI and types we defined in Table 5-6. 

Table 5-6 Comparison of our types and SGCI types in Facebook 

 

Our Type 

Continue Death Growth Shrink Merge Split 

SGCI 

Type 

Constancy 3028 2 4 2 53 35 

Decay 3 4101 4 2 310 488 

# of Event in SGCI

Addition Change Size Constancy

Decay Deletion Merge

Split
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Change 

Size 

2 58 507 297 97 81 

Addition 1 425 4 2 46 84 

Deletion 0 0 2 1 119 98 

Merge 2 23 12 1 6 49 

Split 0 1 0 8 24 3 

The communities with types “Constancy” is almost the same as communities with 

types “Continue” in our definition. The type “Decay” is detected as “Death” in our 

types. The types “Growth” and “Shrink” in our result are mostly detected as “Change 

Size” in SGCI. It is matched our knowledge about “Change Size” in SGCI as we 

mention that our types “Growth” and “Shrink” are similar to types “Addition”, 

“Deletion”, and “Change Size” in SGCI. However, other types are not matched. 

5.3 Case Studying in Facebook Dataset 

We do the case studying on Facebook dataset by analysis the distribution of 

evolution types in different timeslots, and matching the events of Facebook with the 

detection result. Although [3] contains many case studying to support Long-term 

Evolution Method, it didn’t apply the algorithm on Facebook dataset. As a result, in this 
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section, we try to analysis the evolution in Facebook dataset and support this algorithm 

and our method of transferring evolution chain to evolution type. Facebook is a great 

company and is still growing bigger. We can find the history of the Facebook on the 

Internet. We may able to link the evolution of Facebook dataset we detected to what 

actually happened to Facebook in its history. To further understand the evolution of 

Facebook dataset, we do case study by plotting the distribution of evolution types in 

each timeslot. Figure 5-5 is the distribution of types in each timeslot. It shows how 

many percentages of each types in each timeslot. 

 

Figure 5-5 Percentages of evolution types in each timeslot in Facebook 
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There are two interesting points in this plot. First, in the second timeslot which 

time index is 1, we can see the percentages of type “Split” is much larger than its 

previous timeslot. Second, in the 14th timeslot which time index is 13, the percentages 

of type “Split” is again much larger than its previous timeslot. In the second timeslot, 

it contains the data from 2006/4 to 2006/7. In 2006/9, Facebook was opened to everyone 

at least 13 years old with a valid email address. The possible reason why the type “Split” 

become larger is the nodes in 2006/4 ~ 2006/7 will break their own communities 

because more friends are join the Facebook and they want to form new communities 

with new join friends. In the 14th timeslot, it contains data from 2008/4 to 2008/7. In 

2008/7, Facebook was fully opened to China users due to 2008 Summer Olympic 

Games at Beijing. So, again, the structure of Facebook communities changed a lot at 

this period because of the same reason: new friends, in this case Chinese users, were 

join to Facebook. As we know that China finally block the Facebook in the late 2008, 

we may be able to see another big changes happened in community evolution types in 

Facebook if we have more data. 
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Chapter 6  

Community Evolution Prediction 

We use the detection result in Chapter 5, and build a prediction model for 

community evolution in this chapter. In Chapter 5, we test Long-term Evolution Method 

with real world datasets, and give a method to transfer community evolution chains to 

community evolution types. Long-term Evolution Method can do perfect detection. In 

this chapter, we want to do more – predict the evolution types. We want to show that 

evolution is predictable and our method help us to reach the goal. 

6.1 Experiment on Facebook Dataset 

We first predict the communities’ evolution in Facebook dataset. In Chapter 5, we 

apply Long-term Evolution Method on Facebook dataset and get 9985 communities 

and 5672 evolution chains. To build a more precise prediction, we remove the 
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communities which survive for no more than 2 timeslots. The communities which 

survive for very short timeslots may be unpredictable. After we remove the short-life 

communities, we have 4235 communities. Our predicting target is the evolution types. 

Before we start our model training, we should notice the distribution of the evolution 

types in training and testing set. Table 6-1 is the distribution of types. 

Table 6-1 Number of evolution types in training/testing set in Facebook 

 # of Event 

Continue 1388 

Death 760 

Merge 652 

Split 828 

Shrink 257 

Growth 350 

As we can see, the distribution of 4235 communities is uneven. As a result, we 

should first evenly and randomly sample each evolution types to get an unbiased 

prediction model. We sample 257 data for every types, pick 80% of data as the training 

set, and use the feature we select in Section 3.6 to train the prediction model. Then, we 
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use the remaining 20% data as the testing set to test our model. The prediction result is 

below in Table 6-2. 

Table 6-2 Predicting 6 evolution types in Facebook 

 

Ground Truth 

Continue Death Growth Merge Shrink Split 

Prediction 

Result 

Continue 0 0 0 0 0 0 

Death 30 38 13 1 0 2 

Growth 18 2 15 0 2 0 

Merge 0 0 0 38 0 10 

Shrink 4 8 12 0 59 1 

Split 0 0 0 7 0 49 

The accuracy of the prediction is 64.40%. It seems like the performance is not very 

well. However, if we consider the accuracy of randomly prediction which is only 

16.67%, it is still far better than random. 

The accuracy of predicting 6 evolution types is only 64.40%. The result may 

because of the difficulty of prediction. Predicting 6 evolution types may be too difficult. 

So, we try to build the prediction models to the different but much easy targets: whether 
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a community will live, whether a community will grow, and whether a community will 

merge. Same as the prediction model target to 6 evolution types, we first evenly sample 

the training/testing set, pick 80% of data as training set, and use the feature we select 

in Section 3.6 to train the prediction model. The following three tables, which are Table 

6-3, Table 6-4, and Table 6-5, are the testing result of three prediction models. 

Table 6-3 Predicting live or not in Facebook 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 108 49 68.79 % 

True 0 78 100 % 

Recall 100 % 61.42 %  

 

Table 6-4 Predicting grow or not in Facebook 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 346 80 81.22 % 

True 12 224 94.92 % 
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Recall 96.65 % 73.68 %  

 

Table 6-5 Predicting merge or not in Facebook 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 120 9 93.02 % 

True 17 115 87.12 % 

Recall 87.59 % 92.74 %  

In the Table 6-4, the accuracy of predicting live or not in Facebook dataset is 

79.15%, which is pretty well. When we are predicting whether a community grow or 

not, we only consider the communities which will survive in next timeslot. As a result, 

the training set and testing set is different from those in predicting 6 evolution types 

and in predicting live or not. The accuracy of predicting a community growth or not is 

86.10%, which is better than the accuracy of predicting live or not, and much better 

than predicting 6 evolution types. When we predicting a community merge or not, we 

only consider the communities that will survive as well. The accuracy of predicting 

merge or not is 90.04%. Only 10 of 100 will predict incorrectly. It infers that predicting 
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these answers is easier than predicting 6 types. Additionally, the communities which 

will survive is more predictable since the results of predicting growth or not and merge 

or not are better than the result of predicting live or not. 

To see if there is overfitting problem in our model, we calculate the training 

accuracy of each prediction. We show the training accuracy in the below Table 6-6. We 

can see that the training accuracy is almost equal to the testing accuracy in each 

prediction. As a result, it shows that there is no overfitting problem in our models. 

Table 6-6 Testing accuracy and training accuracy of prediction in Facebook 

 Testing Accuracy Training Accuracy 

Predict 6 evolution types 64.40 % 63.67 % 

Predict live or not 79.15 % 79.55 % 

Predict grow or not 86.10 % 86.58 % 

Predict merge or not 90.04 % 90.22 % 

It is interesting to know which features are important in our prediction model, for 

we select more than 300 features. The support vector machine algorithm will apply the 

kernel method, mapping the input features into high-dimensional feature spaces by 

kernel function, so it is difficult for us to know which algorithm is the most important. 
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Consequently, we use random forest to train a new model and show the importance of 

each features. The following Figure 6-1 is the features importance of the random forest 

model of 6 evolution types in Facebook. 

 

Figure 6-1 Features importance in predicting 6 evolution types in Facebook 

As Figure 6-1 shows, the top 7 most important features are feature 300, feature 

306, feature 303, feature 301, feature 305, feature 302, and feature 216. Recall that in 

Section 3.6.3, features from feature 300 to feature 306 are the features about evolution 

chains. It means that the evolution chains which are detected by Long-term Evolution 

Method do help a lot in the prediction model of predicting 6 evolution types. We keep 

move on to plot the features importance of other prediction models in Figure 6-2, Figure 
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6-3, and Figure 6-4. 

 

Figure 6-2 Features importance in predicting live or not in Facebook  
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Figure 6-3 Features importance in predicting grow or not in Facebook 

 

 

Figure 6-4 Features importance in predicting merge or not in Facebook 
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We only plot the top 7 most important features in each model. Although in each 

prediction model, the order of the most important features is not the same with each 

other, we still can see most of the features in the top 7 important features are features 

about evolution chain. It shows that our detection algorithm is useful. We can use the 

features of evolution chain detected by Long-term Evolution Method to build a good 

prediction model.  

6.2 Experiment on DBLP Dataset 

In this section, we show the result of prediction on DBLP dataset. We get 83301 

communities and 32038 evolution chains in DBLP dataset when we apply our detection 

algorithm on the dataset in Chapter 5. Similarly, we remove the communities which 

survive no more than two timeslots. Before we build the predicting models, we sample 

the training and testing set evenly so as to get an unbiased model. By selecting 80% of 

data as training set, we train SVM models and test them with the remaining 20% of 

data. We first show the result of predicting 6 evolution types in Table 6-7. 

Table 6-7 Predicting 6 evolution types in DBLP 

 

Ground Truth 

Continue Death Growth Merge Shrink Split 
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Prediction 

Result 

Continue 577 135 447 49 18 23 

Death 147 498 115 4 56 7 

Growth 51 5 82 16 37 2 

Merge 0 1 30 673 21 157 

Shrink 146 263 201 98 747 63 

Split 20 34 61 133 33 662 

The accuracy of prediction is 57.36%, which is worse than the result of predicting 

6 evolution types in Facebook dataset. The DBLP dataset contains more nodes and more 

edges than Facebook dataset, so the DBLP dataset may be more complicate than 

Facebook and make the prediction more difficult. However, the result 57.36% is still 

much better than randomly predicting. We move on to shows the results of predicting 

live or not, grow or not, and merge or not in following table. 

Table 6-8 Predicting live or not in DBLP 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 959 335 74.11 % 

True 50 722 93.52 % 
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Recall 95.04 % 68.30 %  

 

Table 6-9 Predicting grow or not in DBLP 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 2880 1397 67.24 % 

True 275 1692 86.02 % 

Recall 91.28 % 54.78 %  

 

Table 6-10 Predicting merge or not in DBLP 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 1125 215 83.96 % 

True 223 1120 83.40 % 

Recall 83.46 % 83.90 %  

The accuracy of predicting live or not in DBLP is 81.36%, which is slightly better 

than the result in Facebook. The accuracy of predicting grow or not and merge or not 
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are 73.22% and 83.67%. The results of predicting grow or not and merge or not are 

both worse than that in Facebook. It is the same phenomenon with the result of 

predicting 6 evolution types. The reason is that the DBLP dataset is more complicate 

and more difficult to predict because DBLP dataset has more nodes and more edges. 

It is noted that the result of predicting merge or not is always the best no matter in 

Facebook or DBLP. “Merge” and “Split” are the types that are very obvious and very 

easy to realize and to detect. Given a community evolution chain, we can easily tell 

whether a community type is “Merge” or not. We think that is the answer to the question 

why the result of predicting a community merge or not is so well. 

Again, we list the training accuracy and testing accuracy of prediction in DBLP to 

see if there is overfitting problem in our model. Table 6-11 shows that the training 

accuracy is very similar to the testing accuracy so there is no overfitting problem in our 

models. 

Table 6-11 Testing accuracy and training accuracy of prediction in DBLP 

 Testing Accuracy Training Accuracy 

Predict 6 evolution types 57.36% 60.26 % 

Predict live or not 81.36% 74.91 % 
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Predict growth or not 73.22% 74.95 % 

Predict merge or not 83.67% 85.97 % 

Next step, we want to see the importance of features. Because from Facebook 

dataset we know that the features of evolution chains in very important in models, we 

want to know that if this is the same with DBLP dataset. We use random forest to build 

a new model, which is the same process in experiment on Facebook dataset, and plot 

the importance of features. Figure 6-5 is the features importance in predicting 6 

evolution types in DBLP. 

 

Figure 6-5 Features importance in predicting 6 evolution types in DBLP 
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The top 7 important features are feature 300, feature 306, feature 305, feature 303, 

feature 301, feature 304, and feature 302. All of them are the features of evolution 

chains. It proves that the features of evolution chain do help the prediction. The features 

importance of other prediction models is plot in the following Figure 6-6, Figure 6-7, 

and Figure 6-8. 

 

Figure 6-6 Features importance in predicting live or not in DBLP 
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Figure 6-7 Features importance in predicting grow or not in DBLP 

 

 

Figure 6-8 Features importance in predicting merge or not in DBLP 
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In the plots in Figure 6-6, Figure 6-7, and Figure 6-8, we can see that most of the 

top 7 important features are still features of evolution chains. There is an interesting 

thing. If we take a look at the top two most important features in predicting 6 evolution 

types in DBLP and that in Facebook, we can find that they are the same. The top two 

most important features in predicting 6 types in DBLP and Facebook are feature 300 

and feature 306, and the order of these two feature are also the same. The same situation 

happens in predicting live or not in DBLP and Facebook. 

Feature 306 is the most important feature in predicting live or not, which is match 

to the definition of feature 306. We have mentioned that feature 306 is about how long 

an evolution chain have lived. The results in Figure 6-2 and Figure 6-6 tell that how 

long an evolution chain have lived is highly correlated with whether a community in 

this chain will be still alive in next timeslot. This observation really make sense. If we 

see an evolution chain which lives many timeslot, we can guess that it will keep alive. 

In predicting grow or not, the feature 305 is the most important feature in 

Facebook and the second important feature in DBLP. However, in predicting grow or 

not in DBLP dataset, the feature 305 and feature 303 are almost the same importance 

so we can even say that the 305 is also the most important feature in predicting grow 
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or not in DBLP dataset. As a result, feature 305 is the most important feature in both 

DBLP and Facebook dataset when predicting a community growth or not. From these 

phenomena, it shows that the prediction models are the same is some aspect no matter 

which dataset we are going to predict. What makes a community live, growth, or other 

possible evolution may be independent from datasets in some aspect. 

To further realize how the features of evolution chains help us predict the 

community evolution, we compare the original result in DBLP dataset with the result 

of training model without these features and the result of training model with only these 

features. The comparison is in Table 6-12. 

Table 6-12 Compare the accuracy of prediction with or without chains’ feature 

 

With chains’ 

features 

Without chains’ 

features 

With only 

chains’ features 

Predict 6 evolution 

types 

57.36% 53.03% 51.08 % 

Predict live or not 81.36% 80.78% 87.46 % 

Predict growth or 

not 

73.22% 71.44% 71. 67 % 
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Predict merge or 

not 

83.67% 81.74% 85.39 % 

It is obvious that the accuracy of prediction model without chains’ features are all 

worse than model with chains’ features. The results have no significant differences 

because in features we mention in Section 3.6.2, it contains some information about the 

evolution chain though not very much. The prediction result of the model with only 

evolution chains’ features is only slightly worse than original result. In some case, the 

model with only evolution chains’ features is even better. The reason may be we do not 

pay lots of tension on tuning the argument of SVM. But, from the result, we still can 

confirm that features of evolution chains do help us predict the community evolution. 

From all the result above, we can prove that the evolution of community is 

predictable since all the predictions is much better than random, no matter in Facebook 

dataset or in DBLP dataset. Additionally, the evolution chain, which is detected by 

Long-term Evolution Method, help us to do the prediction, and we get good 

performance in prediction. We keep doing more prediction to show that our evolution 

detection algorithm and our definition of evolution types can do better prediction than 

some other algorithm. 
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6.3 Compare Prediction Result with SGCI 

We compare our evolution detection result with the SGCI algorithm in Chapter 5, 

so we are also interesting about the evolution prediction of the SGCI, and if Long-term 

Evolution Method and our defined types are better than SGCI. Considering the DBLP 

dataset, we replace the evolution types we detected with the SGCI types, and make it 

as the new prediction target. We use the same features selected in Section 3.6. but 

eliminate the evolution chains’ features. Because the features of evolution chain may 

not fit SGCI algorithm, we should select some general features like size or density of a 

community. To do a fairly comparison, we will compare the SGCI result with our 

prediction result which is trained without evolution chains’ features. Other steps are the 

same as that in Section 5.1. The result is shown in Table 6-13. 

Table 6-13 Predicting SGCI types in DBLP 

 Ground Truth 

Predict 

Result 

 Addition 

Chang 

size 

Constancy Decay Deletion Merge Split 

Addition 71 23 7 19 0 32 18 

Change 5 21 12 7 0 17 10 
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size 

Constancy 10 42 120 38 0 22 0 

Decay 15 38 21 69 0 24 4 

Deletion 4 2 0 5 144 2 4 

Merge 6 9 10 13 0 31 1 

Split 37 44 5 11 0 40 94 

The accuracy of predicting 7 SGCI types in DBLP is 49.33%, which is worse than 

our result of predicting 6 types in DBLP. It is not very clear which detection is better 

because predicting 7 types should be more difficult than predicting 6 types. So, we go 

further to compare other prediction: predicting whether a community will live and 

whether a community will merge. With the SGCI types, a community will live if its 

evolution type is not “Decay”, and a community will merge if its evolution type is 

“Merge”. The result is in Table 6-14 and Table 6-15. 

Table 6-14 Predicting live or not according to SGCI in DBLP 

 

Ground Truth 

Precision 

False True 

Prediction False 1388 719 65.88 % 
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Result True 273 980 78.21 % 

Recall 83.56 % 57.68 %  

 

Table 6-15 Predicting merge or not according to SGCI in DBLP 

 

Ground Truth 

Precision 

False True 

Prediction 

Result 

False 365 267 57.75 % 

True 146 301 67.34 % 

Recall 71.43 % 52.99 %  

The accuracy of predicting live or not and predicting merge of not according to 

SGCI types are 70.48 % and 61.72 %. We use a table to show the comparison between 

our prediction result and the predicting result of SGCI. 

Table 6-16 Compare the accuracy of prediction according to different types 

 According to our types According to SGCI types 

Predicting multiple types 53.03 % 49.33 % 

Predicting live or not 80.78 % 70.48 % 

Predicting grow or not 71.44 % - 
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Predicting merge or not 81.74 % 61.72 % 

Note that we do not predict a community grow or not because if a community will 

grow, the evolution type of this community according to SGCI may be “Change Size” 

or “Addition”. However, a community with evolution type “Change Size” according to 

SGCI may be “Growth” or “Shrink” in our types’ definition, so we skip this prediction. 

It is obvious that our accuracy is higher, especially in predicting merge or not. We may 

attribute the worse prediction in SGCI types to the difficulty of prediction more types 

than us. However, the prediction of live or not and merge or not is very fair. We get 

much better accuracy in the two prediction. We can say that our evolution types, which 

come from the evolution chain we detected and transfer by our method, is more 

preventative since we get better performance in evolution prediction. 
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Chapter 7  

Conclusion 

In this work, we use the algorithm proposed by Weixu Lin to do community 

evolution detection and community evolution prediction. We first build a synthetic data 

generator based on Stochastic Block Model to test Weiux’s Long-term Evolution 

Method. Our synthetic data generate can simulate the core structure in a community 

and noise in community evolution. To give a good measure to judge the algorithm, we 

suggest to use normalize mutual information as a measure of community evolution 

chain detection. Based on the synthetic data and the measure, we officially verify Long-

term Evolution Method is correct, and we analysis the two arguments of the algorithm 

so that we get the knowledge of how to set up p-core and threshold to get better 

performance. When there is core structure in communities, selecting p-core to catch the 
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core nodes and lower threshold can improve the detection. After we get some 

knowledge of Long-term Evolution Method, we perform the algorithm on DBLP and 

Facebook dataset. To make the detection result more comprehensive and compare with 

other detection algorithm, we define our evolution types and propose a method to 

transfer evolution chains detected by Long-term Evolution Method to the evolution 

types we defined. This method can be adjusted by two factors which make the method 

flexible. We provide a case study on Facebook dataset according to our evolution types, 

and shows that we can match some events happened to Facebook with the changes in 

evolution types we defined. By analyzing the evolution types we detected, we can get 

more information in datasets. After we have done the detection on Facebook and DBLP 

dataset, we move on to do community prediction on these datasets. We use Libsvm with 

R to build a classification model. We select 4 kinds of features including features about 

communities, features about the difference between previous communities, features 

about the evolution chains, and features about the previous evolution types, and we get 

totally 307 features as our input features. The prediction result is pretty well. From the 

result of the prediction, we show that the community evolution is predictable and the 

evolution chain detected by Long-term Evolution Method help a lot in prediction. We 
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also compare the prediction result with the SGCI algorithm, by replacing our evolution 

types with SGCI types. The prediction according to our types is much better than that 

according to SGCI types, which means that our evolution types is more representative 

and so that more predictable than SGCI. Our work’s contributions are we propose a 

synthetic data generator which have evolution ground truth and core structure, provide 

a measure for accuracy of evolution chain, define our own evolution types, give a 

method to transfer evolution chain to our types, provide features we selected for 

community evolution prediction, and finally prove the evolution is predictable with the 

help of evolution chains’ features. 

Community evolution prediction is still a growing topic, so there are still lots of 

works can be done in the future. The main future work of community evolution 

prediction is finding solutions to get better prediction result. For example, Recurrent 

Neural Network (RNN) can be a useful algorithm that help us get better prediction 

result. RNN can learn the evolution of features so it may help us predict evolution. 

Deep learning is a useful skill. It is start to be used in many places. For example, Google 

train a Go AI with deep learning and win 4 of 5 games in the contest with Lee Sedol. 

Deep learning may also help the community evolution prediction. It can be a great 
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future work to predict evolution with deep learning skill. We select lots of feature about 

a community to predict the communities’ types. However, there might be some features 

which are not as general as features like size or density of a community. We can call 

these features as “latent vector”. The concept of latent vector has been used in 

recommendation system. Users may contain latent vector which impact their rating so 

we can use latent vectors of users to predict their rating. Maybe communities also 

contain their own latent vector which impact their evolution. Finding communities’ 

latent vectors and using them to predict evolution are interesting future works. 
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