Wi S mERFAE LS )
L

Department of Information Management

College of Management

National Taiwan University

Master Thesis

ZREN A B APRIAR G Y R AL
A Service Facility Location Model with

Endogenous Consumer Demands

FEE I Y
¥ ¥ %

Wei-Hung Liao

pERER s EL
Adviser: Ling-Chieh Kung, Ph.D.

¢ 4 [ 105 & 7

July, 2016

doi:10.6342/NTU201601596



B 328 KPR ~ 182t
DREZEBEGgELTE

#8 B ° A Service Facility Location Model with

Endogenous Consumer Demands

WX ARBE B & (2355 R03725035) A B 3L &4 K2
ﬁm%ﬁ sz (W 3) 2 84msm 0 HEER 105

$6 A2l BATHARZEEERBR IRRME - HFiL
9

Y el
%/L/% \cé

('
¢
5

PIT ¢

doi:10.6342/NTU201601596



Hp
A= B BN - ERESE . A B LR ER 0 R RS

SRR EF R3S A hTm s T AR B P AR Sl

HL o AR gy Pt IV L R B A AR Bt M i
rﬁpiﬂ AR 0 AT LT ':"-i—”}% FEEIrx Qi B FAEY fFuH;:HL'—r_ﬁ’m
I { £ & ef ts w*\m%/\f‘l’y#ﬁ R T S - L F R E AR AR

WP AR L RREIRE  ERB Y RERFLIKTEATHD @3 R A gk
iR B ANt 4 o
ETAAERHATFRIPEP > P LI R E P L RET - BEF S
B AR Eg e BRLBET A il A %L b #E 2 FH AL
2% A BN ERACE el B RS L TR AL RS i fE R

ﬁ%i%ﬂmgﬁﬁﬁw%iﬁ’&ﬁapiwwaﬁﬁﬁzﬁ%{egg@

BRREPE B F I AP Al A - AR BB <]
SETS A R S Sk - R A I L S
A B HeE AR L AERBHL Do

B ARREWADA o LA LA L EA LR
AFAGTEHERLT > T ¥ ARBAAL- FaFELE P b & DB R

AR er I REF AT R ST > w1 EH ) ST HET ko

BT g EF Nt 00 Pz JIe AR R R S inh W

< R AR

doi:10.6342/NTU201601596



W2 S BRI @RI A G S EHR T R RS

F_k

3

BHRFRRA BRDF WA R F B amor AR S R A R F R

~m
E)

AR FleB B IRAEA T 5o b P ABR Y ORIES A S % B

¥
g
=&
o~
-

~=h
&

R W E - ARG BT R B E B v R HRHT fn

WHELF|FE P 2 BFeiEfeiid 1 L FIP F AR TR R
Bofidh 2 B H K B REE o B8 ¥ RECeheEoan s o

EAFETP AP - BERFZERVECERE R R EAE
BA > B ZREYRINIEFE G A B A w5 E P R R AP
Reipd By § (- B dfice Bt AP RA S 5 @R R otk o A
(Y gtz A > AP ED - BT A Zb AR R T o

Z SN HEM A RS SRR RO (E P R RE 5 53 NP-TFERAT 4R -
JUARSACNGA @ B B2 o APd Fran® o PR B2 BT RFE XD

ARSA % B 2 » X EP AR TR T AR D iR B G fRApEE A - L BIR o NGA

Ty

FEARAFENFH R 2 R EAPSERESTRET A AT 2 iR

BGEF @KW E C RRITUE P AT R TFRE

doi:10.6342/NTU201601596



Thesis Abstract

For those facilities that serve end consumers directly, it is natural that consumer
demands are affected by the number and locations of facilities. Vehicle sharing system
provide a good illustration, as more users join the system when there are more rental
sites. Interestingly, opening a facility not only affects customer demands directly but
also changes how other facilities affect consumer demands. For example, for a typical
bike sharing system, users often travel from the subway stations to their offices, schools,
and home. When there are rental sites at both sides, an additional network effect
emerges.

In this study, we investigate the problem of a profit maximizing retailer in selecting
a set of facilities to build from a given set of locations. We assume that the retailer needs
to consider two major types of effects: (1) the stand-alone benefit of a single facility
and (2) the network benefit between two facilities. The sum of these two benefits will
then be input into a nondecreasing concave function to capture the diminishing
marginal benefit property. By considering the overall benefit and total cost of building
facilities, the retailer decides where to build facilities to maximize her profit. The
problem is then formulated as a nonseparable nonlinear integer program.

We first prove that the problem is weakly NP-hard. As one of the most common
method to approach NP-hard problems is to develop heuristic algorithms, we propose
two algorithms. The first one, which is based on relaxing the integer constraints, is
called the approximation-relaxation-sorting algorithm (ARSA). The second one, which
is called the naive greedy algorithm (NGA), is a straightforward greedy algorithm. We
show that ARSA has different worst-case performance guarantees for some special
cases of our general problem. We then study the average performance of the two
algorithms in various scenarios through numerical experiments.

Keywords: Facility location, network effect, endogenous consumer demands,

approximation algorithm.
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Chapter 1

Introduction

1.1 Background and motivation

The world is full of situations that the number of facilities affect how consumers are
willing to buy a product or use a service. In fact, in many cases the consumer demands

may be driven up only if sufficient facilities are distributed.

Vehicle sharing systems provide a good illustration. Even though Zipcar, one of the
most famous car sharing system nowadays, adopts new technologies and flexible renting
plans, a consumer will become a member of Zipcar only if there are usually available
cars nearby her. This happens only if there are enough Zipcar parking spaces in a city.
A similar situation happened to the YouBike bicycle sharing system that is recently
implemented in Taiwan. Even though renting a YouBike is completely free for the first
thirty minutes when it was introduced, the system became a success only after enough

rental sites have been built and enough bicycles have been supplied.
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As another example, consider what consumers think when they want to buy a personal
computer or laptop. While prices and functionalities are both important, a consumer
would also evaluate how easy she may find a warranty station when the product is broken.
The distribution of warranty stations thus affects demands. Similar stories range from
opening convenience stores to compete for consumers and building charging or battery

swapping stations for electronic vehicles to attract potential buyers.

Interestingly, opening a facility not only affects the consumers directly but also changes
how other facilities affect consumer demands. The first factor to consider is the interde-
pendence among facilities. The vehicle rental business is an illustrating example. Many
users of public bikes travel from subway stations to their offices, schools, and home.
When there are facilities at both places, e.g., a subway station and one’s office, an addi-
tional source of attractiveness emerges beyond the stand-alone benefit from building each
site individually.! This is the upside of building one facility. Nevertheless, there is also a
downside of building the facility: the marginal benefit of building facilities is diminishing.
When one’s home/office has been surrounded by many public bike stations, building one
more is not so attractive. All the aforementioned effects should be considered together

when one makes the facility construction decisions.

Tt is arguably true that network benefit does not exist in any pair of two facilities, due to for example
the far distance between them. In this case, the network benefit will simply be 0 between this pair of

facilities.

d0i:10.6342/NTU201601596



1.2 Research objectives

In this study, we investigate the problem of a profit maximizing retailer or service provider
(hereafter, retailer) in selecting a subset of facilities to build from a given set of locations.
We assume that the retailer needs to consider two major types of effects: (1) the stand-
alone benefit of a single facility and (2) the network benefit between two facilities. The
sum of these two benefits will then be input into a nondecreasing concave function to
capture the diminishing marginal benefit property. By considering the overall benefit and
total cost of building facilities, the retailer decides where to build facilities to maximize

her profit. The problem is then formulated as a nonseparable nonlinear integer program.

We first prove that the problem is weakly NP-hard. As one of the most common
procedure to approach NP-hard problems is to develop heuristic algorithms, we propose
two algorithms. The first one, which is based on relaxing the integer constraints, is
called the approximation-relaxation-sorting algorithm (ARSA). The second one, which
is called the naive greedy algorithm (NGA) in this study, is a straightforward greedy
algorithm. We show that ARSA has different worst-case performance guarantees for
some special cases of our general problem. We then study the average performance of

the two algorithms in various scenarios through numerical experiments.

1.3 Research plan

In Chapter 2, we discuss some related works. In the studies that discuss the facility
location problem, we focus on the works which address their problems on competitive

facility location problems. We also review relevant works in the literature of submodular
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function maximization and approximation algorithms. In Chapter 3, we give a model
formulation for our problem. Moreover, the rationale behind our model setting is also
explained. In Chapter 4, we prove that the problem is weakly NP-hard and find some
conditions under which our algorithm has a performance guarantee. In Chapter 5, we

present the results of a numerical study. Chapter 6 concludes.
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Chapter 2

Literature Review

2.1 Facility location problems

Facility location problems have been widely studied in the past decades (Daskin, 2013;
Owen and Daskin, 1998; Shen et al., 2003). Based on the formats of the objective func-
tions and constraints, the problems are classified to several classes. Six most common

classes are listed below.

1. (Set Cover) Given a set of elements U and a collection of subsets S C 2V, the
problem is to find a minimum cardinality or weighted collection of sets C' C S such

that the union of C'is U.

2. (Max Cover) Given a set of elements U and a collection of subsets S C 2V, the
problem is to find a collection of sets C' C S whose cardinality is no greater than £

such that the weighted sum of the elements in the union of C' is maximized.

3. (k-median) Given a complete undirected graph G = (V, E') with distance d(u,v) for

5
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each pair of vertices u € V and v € V, the problem is to find a subset of vertices
S C V with cardinality no greater than k such that the average distance between

each vertex to its nearest vertex in S is minimized.

4. (k-center) Given a complete undirected graph G = (V| F) with distance d(u,v) for
each pair of vertices u € V and v € V, the problem is to find a subset of vertices
S C V with cardinality no greater than k£ such that the maximum distance between

each vertex to its nearest vertex in S is minimized.

5. (Uncapacitated Facility Location) Given a set of potential facility sites F' and a set
of demand points D, the problem is to find a subset S C F' such that the sum of
the distance between each demand point and its nearest facility in S weighted by

the demand size and the total construction cost of facilities in S is minimized.

6. (Capacitated Facility Location) Given a set of potential facility sites F, a set of
demand points D, the problem is to find a subset S C F' such that the sum of the
distance between each demand point and its nearest facility in S weighted by the
demand size and the total construction cost of facilities in S is minimized. Moreover,

the total amount of demands assigned to a facility in S' cannot exceed its capacity.

While most works in the above six categories are conducted with exogenous consumer
demands, few studies have been devoted to problems with endogenous demands. As
we mentioned in Chapter 1, there are situations in which the interrelationship between
location decisions and demand realization cannot be ignored. This motivates the study
of competitive facility location problems, see, e.g., Aboolian et al. (2007), Berman and
Krass (1998), Berman and Krass (2002), and Wu and Lin (2003). In these studies, the

6
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total market demand, as a function of the number of facilities, is generally assumed to
be increasing for the market expansion effect and concave for the market cannibalization
effect. In this study, we follow this stream and model the consumer demand by a concave

function.

2.2 Submodular function maximization

Maximizing submodular functions is a main issue of many kinds of problems, e.g., the
maximum coverage problem mentioned above. With the importance of the problem,
many studies appear to propose solutions, e.g., Feige et al. (2011), Nemhauser and Wolsey

(1978), and Nemhauser et al. (1978).

Nemhauser and Wolsey (1978) provide the best approximation algorithm for maximiz-
ing a submodular set function. More precisely, the problem is to choose k elements from a
subset of given elements that can maximize a given submodular function. The algorithm
combines the concept of exhaustion and greedy search to balance the performance and
computation time. The algorithm first lists all the subsets that have ¢ < k elements. It
next uses a greedy algorithm to select the remaining k —q elements and takes the best one
as the result. After a researcher chooses the parameter ¢, the algorithm’s performance
depends on ¢. Larger ¢ makes the algorithm more precise but also more time-consuming.

The changeable g give the algorithm more flexibility to fit different situations.

Nemhauser et al. (1978) give some definitions to the submodular functions and analyze
different classes of approximation algorithms for submodular set function maximization,
including greedy, R-step greedy, local search, linear programming, heuristic, and partial

7
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enumeration. In particular, they prove a worst-case performance guarantee 1 — % of the

greedy algorithm.

Feige et al. (2011) give examples to some important problems that has submodular
function maximization involved. They also give approximation algorithms better than
before. The algorithms have approximation factor % for non-symmetric cases and % for
symmetric cases. They also prove that the performance on symmetric cases cannot be
better unless P = N P. The most valuable part of these algorithms is that the algorithms

are suitable for any submodular functions.

2.3 Approximation algorithms

We all know that there is no polynomial time algorithms that can solve NP-hard problems
unless P = N P. Some researchers develop heuristic algorithms to find near-optimal solu-
tions. Numerical studies are typically conducted to demonstrate the performance of the
proposed algorithms. In most cases, researchers prefer to have a worst-case performance
guarantee, i.e., a bound to the difference between the solution and the optimal solution,
of a heuristic algorithm. If this is the case, the algorithm is called an approximation

algorithm (Williamson and Shmoys, 2011).

Li et al. (2002) propose a new strategy to linearize the quadratic function in an
assortment problems to improve the computational efficiency of the algorithm. The
objective of an assortment problem is to find a big rectangle with minimum area into
which a given set of small rectangles can be put without overlapping. The key step of

the strategy is using a piecewise linear function to approximate the original quadratic
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function which changes the original nonlinear programming problem to a mixed 0-1 linear

programming problem. The new strategy is faster than those used in previous studies.

Arya et al. (2004) analyze the performance of local search on the metric k-median
problem and uncapacitated facility location problem. For k-median, the traditional local
search has a performance guarantee of 5. This study proposes swaps among p facilities
to improve the performance guarantee to 3+ 2/p. For the uncapacitated facility location
problem, the authors prove that the bound of the local search algorithm is 3. The two

results, 3 + 2/p and 3, are both better than the bounds in previous studies.

Aboolian et al. (2007) try to solve a competitive facility location problem with concave
demand using approximation algorithms. After the formulation, they aware that the
problem is an integer nonlinear problem. They replace the function with a piecewise
linear function to transform the problem to an integer linear problem. They design three
procedures to get the solution of the problem. The first procedure is an exact procedure,
using branch and bound to directly get an exact answer of the original problem. The
second procedure is “a-approximate,” using an integer programming solver to solve the
problem with the piecewise linear objective function. While the piecewise linear function
differs from the original function by a relative error at most «, the procedure also has
error o compare to the optimal solution. The third procedure is greedy. The procedure
is shown to have a bound 1 — % by applying a result in Nemhauser et al. (1978). They

also demonstrate that the bound is tight.
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Chapter 3

Problem Description and

Formulation

3.1 Model

Suppose that there is a set of locations I = {1, 2, ...,n}, |I| = n, at which service facilities

may be built. Let E be the set of all undirected edges [i, j] where i € I, j € I, and i < j.

As |I| = n, we have |E| = "("2_1). For each facility location ¢, the fixed construction
cost of the facility is h; > 0 and the decision variable x; = 1 means there is a facility in
location ¢ and 0 otherwise. Once a facility is built at location ¢, it will not only increase
the demands, but also affect the impact of other facilities. Let s; > 0 be a coefficient for
the facility in location 7 and ¢;; > 0 be a coefficient for the facilities between location i
and j, we assume the effective demand is
g ( Z S;%i + Z tijxixj> ;
el [i,4]eE

11
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where g(+) is a nondecreasing and concave function satisfying g(0) = 0. To facilitate our
discussion, we shall refer to the function g as the demand-boosting function, s; as the
stand-alone benefit, ¢;; as the network benefit, and at some times use “facility " as an

abbreviation of “the facility in location ¢.”

The stand-alone benefit s; measures how a facility at location ¢ may affect the demand
directly. When s; = 0, building a facility at location ¢ does not drive up the sales itself;
when s; is large, however, the demand volume will be largely determined by whether
there is a facility at location i no matter there exists other facilities or not. The network
benefit ¢;; measures how building facilities ¢ and j together may bring up the demand
than there is only facility ¢ or facility j. In some applications, e.g., the distance between
¢ and j is one of the main factors determining t,;. We assume that s; > 0 for all i € I

and t;; > 0 for all [i, j] € E.

The retailer’s question is to make the facility location decision so that the total profit

is maximized. Her complete problem is

xggﬁ} rg ( Z S;x; + Z tij.Til‘j) — Z h;x;

iel li,j]€E iel

where r > 0 is the price for a product or one time of service. Without loss of generality,

we normalize r to 1 to obtain

li.j]€E iel

In this study, we consider the problem in (3.1) as our facility location problem.
In our facility location problem, the objective function consists of two parts, the
net sales revenue and the construction cost. In this region, the effective demand is
9(Xicr SiTit )i jep tijTit;), the demand brought by the stand-alone and network effects

12
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Parameters

1 the set of locations to build facilities at

E the set of all undirected edges connecting a pair of locations
S; the stand-alone benefit of facility 4

tij the network benefit between facilities ¢ and j

h; construction cost of facility ¢

g(S) the effective demand given the sum of all effects S

Decision variables

X 1 if a facility is built at location ¢ or 0 otherwise

Table 3.1: Notations

of those open facilities. This is also the sales revenue after we normalize the price to 1.
The retailer’s problem in (3.1) is to maximize its total profit, which is the net sales

revenue minus the construction costs >,

Table 3.1 lists all the notations mentioned above.

3.2 NP-hardness

We now show that our problem is weakly NP-hard by a reduction from the Knapsack

problem:

Definition 1. A knapsack instance consists of two positive numbers L' and K' and a set
T of items where |T| = n. Item i € T has its value v; and its size ¢;. The question is

whether there is a subset of items S C T such that ), q¢; < L' and ), qv; > K'.

€S

13
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Proposition 1. If g(-) satisfies lim,_,oo L4%2)

W0 = 1 for all positive a and b, our problem in

(3.1) is NP-hard.

Proof. For ease of exposition, we define ¢y = maxer{c;}, cmin = minger{¢}, Vmax =

max;er{v;}, and C' = > ., ¢;. Given a knapsack instance, we first define

el

_ 9(Cr) — g((L' — cmax)7)
g(L'z)

p(z)

for all x > 0. Since the assumption we impose on ¢(-) implies that p(z) goes to 0 as x
approaches infinity, we can find a positive number k such that ¢y, — p(k)L' > 0. With

our k and p(k), we construct our location instance by making

kL' . Umax
2

g(kL') 7?7 G — p(R) L

I=T r=mrry r=

s; = ke \V/'iej, hi:k(rgci—vi) ViEI, tZJZO\V/[Z,j] € F, and K = kK’
Let z(y) be the objective value of the location instance with the solution vector y. We
now prove the equivalence of the two instances below.

Suppose there is a subset of items S such that >, cc; < L' and ) . _qv; > K'. The

former implies >, ¢ s; < kL', which further implies

g(kL) 1 k
9(2&') > L Zsi = r—lzé‘z = E;Cia

ieS icS i€S
where the inequality comes from that g is concave and ¢g(0) = 0. Let y; = 1 if i € S and
0 otherwise. Then
2(y) = 7“9(2&') - Zhi > T2kZC¢ — kZ(?"zci —v) = kai > kK' =K.
ieS ieS ieS ieS ieS
Therefore, y is a feasible solution of the location instance and z(y) > K.

14
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Suppose there exists y satisfying z(y) > K, we now show if > ._, ¢;y; > L', then for all

el
i such that y; = 1, we have y/ = y—e; satisfying z(y') > K, where ¢; = (0, ...,0, 1,0, ...,0),
a vector with the i-th element being 1 and all others being 0. To see this, first note that

since

Zsiyi SZSi:kZQ:kC,

iel el i€l

we have g(>,.; siwi) < g(kC) since g(-) is nondecreasing. In addition, if y; = 1, then

Z Sy, = Z SiYi — Sj = chiyi —kej > k(L —¢;) > k(L' = cmax),
i€l icl i€l

which means g( .., 59;) > g(k(L' — cmax)) since g(-) is nondecreasing. The two obser-

vations then implies

2(y) — 2(y) = 7’9( Z 51?/2) - Z hiy; — 7”9(2 Siyz‘> + Z hiyi

i€l el el el
> 1 g((L = ) = 9(KC) | +
kL' ,
= TQM [g(k(L — Cmax)) — g(k’C’)} + krac; — kv,

= k[ra(e; — o) — 5] = k[ra(emn — p(R)L') — ]

k(Umax — vj) > 0.

Therefore, z(y') > z(y) > K. We may repeatedly remove selected facilities until we have

a solution which satisfies the requirement of the knapsack instance. O]

Observing that the equivalent instance of our problem has no network effect, the

problem with network effect is obviously more difficult.

While we have shown that our problem is weakly NP-hard in general, note that our
assumption on ¢(-) in Proposition 1 is satisfied by many concave functions, such as the
negative exponential function g(z) = 1 — e for all @ > 0, the logarithm function

15
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g(z) =log,(1+ z) for all a > 0, and the kink function

az if z <§
9(z) =

b  otherwise

Whether our problem with ¢(-) violating the assumption in Proposition 1 is NP-hard

remains open to us.

16
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Chapter 4

Analysis

In this chapter, we will propose two algorithms for obtaining a feasible solution to our

facility location problem defined in (3.1). For ease of exposition, let

2(x)=yg ( Z SiTi + Ztija:ixj> — Z hiz;

el eckl el

be the objective value associated with the solution z.

4.1 Approximation-relaxation-sorting algorithm

4.1.1 The algorithm

The first algorithm that we propose has three major steps: approximating the g(-) func-
tion by a kink function, solving the linear relaxation of the program, and sorting and
selecting facilities according to the solution to the linear relaxation. Therefore, we call

this algorithm the approximation-relaxation-sorting algorithm (ARSA).

Let the original problem defined in (3.1) be problem (P°). Given the original g(-)

17
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(Pl) > xARSA—l

(PZ) > xARSA—Z

xARSA

(Pori) with g(*) |—->| (Pori) with gk(~) (P3) |_’|xARSA—3 )|7V'

(P4_) > xARSA—4

Figure 4.1: Flow chart of ARSA

function, ARSA first uniquely defines a kink function

ar ifz< %
g™ (x) = :

B otherwise

where a = ¢'(0), the slope of g at x = 0, and

B:g](zsi—l— > tz-]),

il ieliel it

(4.1)

the maximum possible value of g(-) obtained by building all facilities. We then replace

g(+) by g () to convert (P°") to another nonlinear program.

As ¢¥(x) = min{ax, B}, the nonlinear objective function can now be linearized by

introducing a new variable p and two new constraints. We also replace z;x; by a new

variable y;; to eliminate products between decision variables. For any slope a, we can

get an equivalent problem by setting the slope a to 1 and all stand-alone and network

benefits to a times larger. Therefore, we normalize a to 1 without loss of generality.

18
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The equivalent linear integer program is

i€l
st. p<B
P siwit > iy
iel li.jl€E

vij <wx V[i,jler
vij <wx; Vi,jleFr
r; € {0,1} Viel
yij € {0,1} V[, j] € E.
We call this integer program (P). For this integer program, ARSA then creates n sub-

problems by adding the following constraint

to the kth subproblem, k£ = 1,2,...,n. We call the kth subproblem (Py). The optimal
solution of (P) is the best set contains exact k locations. Obviously, the best among
the optimal solutions to (Py), k = 1,...,n, is an optimal solution to (P). Our strategy is
to obtain a near-optimal solution for each (FPy). Then the best among our near-optimal

solutions for (Py)s will also be near-optimal to (P).

To find an integer solution for (Py), ARSA first relaxes the integer constraints on x;s
and y;;s to obtain its linear relaxation, whose optimal solution can be found in polynomial

time. Let z¥ be the value of z; in an optimal solution to (P¥).

The last step is to sort candidate locations by ¥ in the descending order. Let xl(“l) >

x’é) > e > x’(fn), where ties are broken arbitrarily, ARSA then compares two solutions.
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The first solution is simply choosing facilities (1), (2), ..., and (k). The second solution is
to choose facilities (1), (2), ..., (k—1), and (k+1). ARSA compares the objective values
achieved by the two solutions (with respect to the original function g(-), not ¢*(+)) and

reports the better one to be a feasible integer solution to (F).

By repeating this for all subproblems, we obtain n solutions that are feasible to (P)
as well as (P°"). We finally choose the best solution among these n candidate solutions.

Algorithm 1 is the pseudocode describing ARSA.

4.1.2 Worst-case performance analysis

In this section, we will prove two worst-case performance guarantees when ARSA is
applied to two special cases of our facility location problem. To describe the two special

cases, we state three assumptions below.

Assumption 1. g(-) is the kink function g% () in (4.1) for some a >0 and B > 0.

Note that under this assumption, it is without loss of generality to assume that there
is no location whose s; > %. If such a location exists, an optimal solution will either
contain only this location or does not contain it. We may thus safely remove this location
for a while, solve the remaining problem, and at the end check whether selecting only

this location is actually the best option.

Another assumption we need for ARSA to have a worst-case performance guarantee

is the following.
Assumption 2. The net stand-alone benefits s; — h;, © € I, satisfy
I?Ea[X{SZ' - hz} > 0.
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Algorithm 1 approximation-relaxation-sorting algorithm (ARSA)

1: Find the kink function ¢*(-) that approximate g(-). Replace g(-) by ¢’ (:) to obtain
the problem (P).

2: Split the problem to n subproblems, one with an additional constraint ) ., x; = k,
k =1,...,n. Let the subproblems be (P,), ..., and (P,).

3: for k from 1 to n do

4: Relax the integer constraints in (FPy).

5: Solve the relaxation of (P;). Let 2 be the value of z; in the optimal solution.

6: Sort locations so that m’(fl) > .- -x’(“n), where ties are broken arbitrarily.

7 Construct a solution 7 such that Z;) =--- = Zy) = 1 and 0 otherwise.

8: Construct a solution & such that Z(;) = -+ = Z(4—1) = Z41) = 1 and 0 otherwise.

9: if 2(z) > z(z) then

10: Report & as the proposed solution for (FPy).
11: else

12: Report & as the proposed solution for (FPy).
13: end if

14: end for

15: Report the best solution among the proposed solutions for the n subproblems.
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This assumption says that the most positive net stand-alone benefit is greater than
zero. In other words, there must be some facility which can bring profit itself. With this

assumption, we know that the maximum benefit of building only one facility is positive.

Under Assumption 2, we define a ratio that directly affects our worst-case performance

guarantee.

Definition 2. For an instance of our facility location problem in (3.1), we define its

critical ratio as

~ minger{s; — hi}

r= .
max;er{s; — hi}

Note that r is readily available when an instance of our facility location problem is
given. Also note that according to our definition, r is negative if s; — h; > 0 for all i € I
or positive if there is at least one location whose net stand-alone benefit s; — h; < 0.

Finally, we have r > —1. r = —1 if and only if s; — h; are identical for all 7 € I.

Finally, we need all network benefits to be equal. One example in which the assump-
tion may be valid is to build car/bike sharing stations where a drive/ride between any

two locations are equally possible. The next assumption formalize this requirement.

Assumption 3. There is a constant t > 0 such that the network benefits t;;, [i,j] € E,

satisfy

Before proving that ARSA has a worst-case performance guarantee under our three
assumptions, we first prove Lemma 1. It states that, under Assumption 3, an optimal

solution to the relaxation of subproblem (F}) has either zero or two x¥s that are fractional.
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Lemma 1. Suppose that Assumption 3 is satisfied. An optimal solution to the relaz-
ation of subproblem (Py) has either zero or two fractional components. If there are two

fractional components, we have

> s+ t(@) = B.

iel
Proof. First, note that Assumption 3 and the additional constraint ) ., x; = k together

make the relaxation of subproblem (P;) become

max p— Z h;x;

wb il
k(k—1)
.t < T _—
S p < Z s;x; + ( 5 )t
el
p<B
IR
iel

x; €[0,1] Viel,
where the variable y;; is not needed anymore, and the total network benefit is exactly
(@)t regardless of which £ locations are selected. We then follow the idea of Caprara
et al. (2000) to prove this result. For our linear program with n + 1 variables, at least
n + 1 constraints are binding at an optimal extreme point solution. If at least three x;s
are fractional, we will have at most n — 3 constraints binding in the set of constraints
x; € [0,1]. The maximum number of binding constraints is thus n, which is not enough.
If exactly two x;s are fractional, the first three constraints must all be binding, and the
right-hand-side values of the first two constraints must be identical. Because ), x;
must be an integer, there is no solution with only one fractional z;. Finally, no fractional

variable is also a possible outcome. O
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With Lemma 1, we are now ready to prove that ARSA is a ﬁ—approximation algo-

rithm for our facility location problem when our three assumptions hold.

Proposition 2. Suppose that Assumptions 1, 2, and 3 hold. For the problem defined in
(8.1), let z* and 2’ be the objective values of an optimal solution and the solution reported

. 2/ 1
by ARSA, respectively. We then have % > 5.

Proof. Let z; denotes the objective value of an optimal solution to subproblem (P) (with

constraint Y., z; = k) and z};¥ denote that to its relaxation. Note that

 Inax {7) >  nax {z;} =2". (4.2)

=1,..., =1,...,

Our plan is to prove that, for each subproblem (F;), at least one of ARSA’s n solutions
will be at least one-third as good as an optimal solution to the relaxation. More precisely,

let xLP—k

and 24f54=F be an optimal solution to the relaxation of (P;) and the solution
reported by ARSA, we will show that

_ 1 _ 1
max {z(xARSA k)} > Q—Hz(xLP My = Q—Hz,fp Vk=1,..,n. (4.3)

Combining (4.2) and (4.3), we will be able to complete the proof.

We now prove (4.3). From lemma 1, we know 2~ has either two or no fractional

value. If it has no fractional value, ARSA obviously selects the optimal solution to make

pARSA=k — 4 LP=k and achieves 21¥. Now suppose that there are two fractional variables,
say, o+ 7% and 2277F. Without loss of generality, let z27% = ¢ = 1 — 227" for some

c € (0,1) and s; > sy. Let Lo be the set of k — 1 locations with xfp_k = 1. For the

relaxation, we know

7P = Z(sZ —h;) +c(s1—h1) + (1 —c)(s2 — ha).

i€Lg
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ARSA will select the k& — 1 locations in Ly and either location 1 or location 2 to form a
solution. Let L; = Ly U {1} be the former solution and Ly = Ly U {2} be the latter. If
location 2 is selected, because s; > s9, we have

ZSZ' + 1T < Zsfpikl’i + T, = B,

i€Lo el

i.e., the total benefit obtained in the solution L, does not exceed B. Therefore, we have

Z(fARSA?k) = Z(Sl — hl) + <S2 — hQ)

i€Lg

The difference is
Zlgp - Z(Q?ARSA*IC) = C((Sl — h1> — (52 — hg)) S (81 — h1> — (52 — hg)

Obviously, s; — h; < max;er{x; — h;}. Moreover, according to Assumption 2, we have
—(sy—hy) < rmaxer{z;—h;}. Therefore, we have z(zAR94~%) 4 (14r) max;e {z; — hi} >

2EP . As maxger{z; — h;} is the solution reported by ARSA for (P;), we have

Z(xARSA_k) + (1 +T>Z($ARSA_1) > Z}fP’

which implies that max{z(xA85A=k) »(xARSA-1)1 > Z—}FTZIfP. This implies (4.3) and thus

completes the proof. O

Note that if s;—h; > 0 for all i € I, we have r < 0 and thus the performance guarantee
2_}rr > % In this case, ARSA is guaranteed to perform pretty well. If there is at least one
location such that s; — h; < 0, we have r > 0. If that negative s; — h; is far below 0, our
r will be large and the guarantee would be small. Finally, note that » = —1 if and only if
all s; — h; are identical. In this case, indeed ARSA will obtain the optimal solution (and
that is why the performance guarantee is 1).
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We next prove that ARSA is a %—approximation algorithm for our facility location
problem in another special case. We first state another assumption, which is a stronger

one than Assumption 3.

Assumption 4. The network benefits t;;, [i,j] € E, satisfy

We now start proving ARSA has performance greater than max{%, ﬁ}

under Assumptions 1 and 4. Note that now Assumption 2 is not needed.

Proposition 3. Suppose that Assumptions 1 and 4 hold. For the problem defined in
(8.1), let z* and 2z’ be the objective values of an optimal solution and the solution reported

by ARSA, respectively. We then have j—/ > max{%, ﬁ}

Proof. Due to the similarity between this proof and the previous one, we only describe
the different part. Let Fy = {i : s; — h; < 0} while N is the abbreviation of “negative.”
Since t = 0, the optimal solution of the integer problem does not contain any facility in

Fy.

Suppose the optimal solution contains k facilities. For the subproblem (Py), we know
that 2LF > z*. And the optimal solution x* also contains no facility in Fly.

LP _ (g ARSA=K)

We now have a new bound of the difference between z , which is

2" = 2@ = ¢((s1 = ha) = (52— h2))
< (s; — hy) + max{0,r} mealx{xi — hi}
< (1 + max{0,7}) mealx{wi — hi},
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where the first inequality comes from the fact that sy — hy > 0; otherwise, it will not be

set to be a positive value when solving the relaxation of (Py). It then follows that
2(zAPSARY 1 (1 4 max{0, r}) (a5 > LLP

and thus max{z(z#547F) 2(zARA-1)} > max{}, 71=}2f". This completes the proof.

O

4.2 Naive greedy algorithm

We here present another algorithm, the naive greedy algorithm (NGA). In each iteration,
NGA selects the facility which brings most profit at that moment. It terminates when
there is no facility bringing a positive profit in that turn. Different from ARSA, We are
unable to show that NGA has a worst-case performance guarantee. The pseudocode of

NGA is listed in Algorithm 2.

Algorithm 2 Naive greedy algorithm
et R=¢, P(R) = Tg(ZjeR sj + Ziel,jel,z’yéj tijij) — ZjeR h;.

—_

2: repeat

3: choose a facility j with the highest positive P(RU{j}) — P(R).

e

R+ RU{j}
5: until each remaining facility k satisfies P(RU{k}) — P(R) <0

6: return R
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Chapter 5

Numerical Study

5.1 Solution performance

To understand how the algorithm performs in the problem, we compare the result given
by the algorithm to the naive greedy algorithm. Different factors are adopted to observe
the performances under different circumstances. The first factor is the problem scale. We
consider four scenarios, each with n = 10, n = 20, n = 50, n = 100. The second factor
is the stand-alone benefit distribution. The two scenarios are random distribution and
deterministic. The third factor is the network benefit distribution. The three scenarios
are uniform value, zero, and random. The last factor is the form of the ¢ function with
two scenarios, kink and smooth. The four factors generate 48 scenarios together, each of

which has 100 instances. We adopt the following settings for each scenario:

e problem scale: scenario small: n = 10; scenario medium: n = 20; scenario large:
n = 50; scenario extremely large: n = 100.
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e stand-alone benefit distribution: scenario random: s ~ U(0,100); scenario deter-

ministic: s = V.

e network benefit distribution: scenario uniform value: ¢;; = tV[i, j] € E,t ~ U(0,20);

scenario random: t¢;; ~ U(0,20)V[i, j] € E; scenario zero: t;; = 0V[i, j| € E.

e function form: scenario kink: g(x) = min{z, K}; scenario smooth: g(z) = K(1 —

e® ) where K is a parameter we set according to the scenarios.

We discuss the parameter K further more. The kink function is a piece-wise linear
function which has form g(z) = max {z, K}. If K is too small, the optimal solution
won’t choose any facilities. So we set K at the average of the sum of the stand-alone

benefit and the network benefit when choosing 0.6n facilities.

After generating those 48 scenarios, some scenarios are trivial to solve. For the sce-
narios with s = v/h, t;; = t or t;; = 0, and g is kink, we observe that h; > h; iff
s; — h; < s; — hj. Since there is no different when choosing different facility when the
number of facilities is fixed, choose the facility with smaller h is always better. So we

simply remove those 8 scenarios.

We solve the problems with the solver CPLEX. The analysis is run on a personal
computer with Windows 7, 12G RAM, and Intel i5-4570 3.2 GHz CPU. We use Java to

implement our algorithm and invoke CPLEX.

There is one thing that should also be aware that cplex cannnot solve the scenarios
with n = 100 and n = 50 within a tolerable time when the problem is ILP (integer linear
programming problem). We linear relax the problem instead to get the upper bound
of the optimal value. The scenarios with the g function is smooth are nonlinear integer

30

d0i:10.6342/NTU201601596



programs which cannot be solved by any solver. We use exhaustive method to search for
optimal solutions instead when n = 10 and n = 20. When n = 50 and n = 100, we relax

the integer constraint and use minos to solve the exponential program.

In table 5.1, we realize that the performance of our algorithm become worse when the
problems become larger, but back to a high level performance when it comes to extremely
large. The performance of NGA has the same pattern, too. The main reason is that when
the problems become larger, their is more combination of facilities to build which makes
ARSA and NGA difficult to give a better solution. On the other hand, when it comes to
extremely large scenario, choosing one facility wrong does not affect the performance so
much. It is also the reason that the minimum performance of ARSA goes up when the

problem is larger.

Average Minimum
Problem Scale
ZARSA ZNGA ZARSA ZNGA
Small 0.9030 0.8741 0.5247 0.6106
Medium 0.8455 0.7745 0.6834 0.6709
Large 0.8253 0.6961 0.6965 0.5448
Extremely Large | 0.8957 0.7977 0.7713 0.5793

Table 5.1: Numerical results of problem scale

Table 5.2 shows that ARSA performs a little worse than NGA on random scenario,
while it performs much better on deterministic case. When the stand-alone benefit is
deterministic, the network benefit is the only matter thing. Since NGA cannot take the
network benefit into consideration, it is the reason that it performs so bad on deterministic
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case.

Stand-alone benefit distribution

Average Minimum
ZARSA ZNGA ZARSA ZNGA
z* z* z* z*

Random

Deterministic

0.8912 0.9286 0.6982 0.8419

0.8317 0.5711 0.6252 0.2406

Table 5.2: Numerical results of stand-alone benefit distribution

In table 5.3, we can see that NGA is better than ARSA when there is no network

benefit, while the other two is not. The reason is similar to last table. NGA cannot

consider the network effect while ARSA is designed for this case. The two algorithms

both performs worst in the random scenario is reasonable. Randomness is always the

reason to the errors.

Network benefit distribution

Average Minimum
ZARSA ZNGA ZARSA ZNGA
z* z* z* z*

Uniform value

Random

Zero

0.9055 0.7775 0.6803 0.5362

0.7933 0.6758 0.5262 0.4288

0.9280 0.9401 0.8480 0.8967

Table 5.3: Numerical results of network benefit distribution

While ARSA has one more process finding the kink function to approximate the

smooth function, the decrease on the performance is acceptable.

Note that the kink

function to approximate the smooth function is weak because we approximate it from

above which generates much difference. We can easily get a better performance if we
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have a stronger approximate kink function. Though the approximation method is weak,

ARSA performs so well on the smooth scenario, having average performance 0.81.

Average Minimum
Function form
ZARSA ZNGA ZARSA ZNGA
Kink 0.9545 0.8379 0.8020 0.6733
Smooth 0.8093 0.7511 0.5803 0.5534

Table 5.4: Numerical results of function form

5.2 Time complexity

The time complexity needed to solve a LP is O(n?®) where n is the number of the con-
straints. For a problem with n candidate location, ARSA need to solve n LP problems,
each of which has O(n) constraints. The time complexity of ARSA is then O(n*). Figure

5.1 and table 5.5 help us verify it.

We have all the factors the same as the last section but the problem scale and the
function form. The problem scale is set to be 10, 20, ..., 100. We compare the two
computing time of ARSA and solving the ILP with cplex. Because the smooth function
form is not solvable with cplex, we remove the scenario. The average computing time
among all the scenarios is then calculated. Since the computing time is too large to solve

a ILP using cplex when n > 60, we did not collect the data of this part.
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Figure 5.1: Average computing time of ARSA
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n 10 20 30 40 50
ARSA (ms) 123.95 273.0917  527.5417 1031.55  2036.3917

ILP (ms) 23.8167 77.9667 112.6 459.4667  4450.5333

n 60 70 80 90 100
ARSA (ms) | 3830.3417 7026.9167 12446.1417 22501.9583  29251.1

ILP 49754.4833 - - - -

Table 5.5: Numerical results of function form
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In vehicle renting systems, network effect has a critical impact to the value of facilities.
We capture this important effect into our facility location model. After showing that the
problem is weakly NP-hard, we set our target to developing an approximation algorithm.
In general intuitions, a simple greedy cannot take the network effect into consideration. A
special designed algorithm is then needed. Our algorithm gives performance guarantee in
a special case. To test the applicability, a numerical analysis is conducted. In numerical
analysis, network effect increase the difficulty of getting the better solution to algorithms.
The minimum performance is low because of the difficulty. Although our algorithm cannot
give performance guarantee to all the cases, we still capture the important network effect
into our model. The algorithm also helps us understand more about the problem.

37

d0i:10.6342/NTU201601596



6.2 Future work

Though our algorithm has been showed to be effective here, there are still some directions
to improve it. First, the most difficult and valuable part that we can research in future
is to change the algorithm from an approximation algorithm under special conditions
to all cases. We make some assumption to prove the bound of this a little complicated
algorithm. There may be a bound that can be proved with a more reasonable assumption
or just no assumption. Second, we have some numerical study here, but the algorithm is
not applied to any practical data. The performance may not be that excellent when it
comes to real. Third, our algorithm first find the piece-wise linear function to approximate
the original function, which makes our algorithm not accurate enough. We wonder if there
is some other way to change the non-linear function to a linear form which does not loss
lots of accuracy. Fourth, due to the market cannibalization, the network effect may be
negative. We do not consider this situation while it may exist in real world. Under this
case, we don not know our algorithm has a performance guarantee or not. Finally, the
problem is proved to be weakly NP-hard by the reduction from knapsack. A pseudo
polynomial algorithm which uses dynamic programming technique may be designed to

find an exact solution.
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Appendix A

Results of Numerical Experiments
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Problem Stand-alone Network Function Average Minimum
scale benefit benefit form ZA;SA ZZSA ZA;SA Zl\;fA

S R U K 0.9612 0.9862 0.7905 0.8612
S R U S 0.9577 0.9981 0.4403 0.8075
S R 7 K 0.9746 0.9955 0.8141 0.8724
S R 7 S 0.9792 1 0.7807 1
S R R K 0.9051 0.981 0.4212 0.5645
S R R S 0.8456 1 0 1
S D U S 1 0.71 1 0
S D 7 S 1 1 1 1
S D R K 0.705  0.4502 0 0
S D R S 0.7019  0.62 0 0
M R U K 0.9738 0.9837 0.8868 0.9099
M R U S 0.966 0.9998 0.8419 0.9791
M R 7 K 0.9851 0.9987 0.8972 0.9671
M R Z S 0.9702 0.9998 0.833 0.9876
M R R K 0.9553 0.9756 0.834 0.8857
M R R S 0.6126 0.9997 0 0.9799
M D U S 1 0.37 1 0
M D 7 S 1 1 1 1
M D R K 0.8959 0.1874 0.5411 0
M D R S 0.0959 0.2302 0 0
L R U K 0.9858 0.9754 0.9284 0.9474
L R U S 0.7111 0.7229 0.4343 0.4636
L R 7 K 0.9869 0.994 0.9373 0.9556
L R 7 S 0.6235 0.6477 0.5259 0.5572
L R R K 0.9875 0.9672 0.9539 0.9405
L R R S 0.6953 0.7471 0.6134 0.6742
L D U S 0.6916 0.261 0.2542 0
L D 7 S 0.9978 0.9978 0.9091 0.9091
L D R K 0.9777 0.3942 0.9373 0
L D R S 0.5957 0.2539 0.4713 0
E R U K 0.995 0.9807 0.9633 0.9365
E R U S 0.8281 0.8335 0.4837 0.5292
E R Z K 0.9924 0.9964 0.9657 0.9717
E R 7 S 0.627 0.6523 0.5718 0.5982
E R R K 0.9967 0.975 0.9894 0.9602
E R R S 0.8726 0.8768 0.8498 0.8556
E D U S 0.7962 0.5091 0.141 0
E D 7 S 0.999 0.999 0.9412 0.9412
E D R K 0.9934 0.5556 0.9722 0
E D R S 0.8567 0.5986 0.8352 0

Table A.1: The average and minimum performances of ARSA and NGA in all scenarios
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