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中文摘要 

 

在顧客透過設施據點取得服務或商品的商業模式下，設施據點數量與位置影

響消費者需求是一個很正常的現象，消費者周遭的設施據點越多；代表消費者能

夠越便利的取得服務或商品，同時有意願使用服務或產品的顧客數量也會增加。

有趣的是，設置一處設施據點不只會影響需求，還會影響其他設施據點對需求的

影響，以 YouBike 為例，在捷運發達的台北，很多使用者利用 YouBike 作為從捷

運站點到實際目的地之間的短程交通工具，因此若在捷運站點與工作區、學校、

居住地之間皆設置站點，將會帶來額外的網路效益。 

在本研究中，我們研究一個供應商該選擇哪些位置設置站點才能夠使其利益

最大化，他需要考慮到的主要因素有兩個，分別為單獨效益以及網路效益，我們

將這兩個效益當作一個凹函數的參數使我們的模型具有邊際效益遞減的效果，最

後考慮各站點的建造成本，我們得到一個不可分的非線性整數規劃問題。 

之後我們證明背包問題為此問題的子問題得到此問題為弱 NP-困難問題，並

提出 ARSA、NGA 兩個演算法。我們由著名的背包問題演算法中獲得靈感，設計出

ARSA 演算法，並證明在特定情況下所提出的解與最佳解相距在一定比例內。NGA

演算法則是簡單的貪婪演算法。最後我們透過數值分析驗證了兩種演算法的表現、

穩定性、計算時間。 

 

 
關鍵字：設施位置、網路效應、內生需求、近似演算法 
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Thesis Abstract 

 

    For those facilities that serve end consumers directly, it is natural that consumer 

demands are affected by the number and locations of facilities. Vehicle sharing system 

provide a good illustration, as more users join the system when there are more rental 

sites. Interestingly, opening a facility not only affects customer demands directly but 

also changes how other facilities affect consumer demands. For example, for a typical 

bike sharing system, users often travel from the subway stations to their offices, schools, 

and home. When there are rental sites at both sides, an additional network effect 

emerges. 

In this study, we investigate the problem of a profit maximizing retailer in selecting 

a set of facilities to build from a given set of locations. We assume that the retailer needs 

to consider two major types of effects: (1) the stand-alone benefit of a single facility 

and (2) the network benefit between two facilities. The sum of these two benefits will 

then be input into a nondecreasing concave function to capture the diminishing 

marginal benefit property. By considering the overall benefit and total cost of building 

facilities, the retailer decides where to build facilities to maximize her profit. The 

problem is then formulated as a nonseparable nonlinear integer program.  

We first prove that the problem is weakly NP-hard. As one of the most common 

method to approach NP-hard problems is to develop heuristic algorithms, we propose 

two algorithms. The first one, which is based on relaxing the integer constraints, is 

called the approximation-relaxation-sorting algorithm (ARSA). The second one, which 

is called the naive greedy algorithm (NGA), is a straightforward greedy algorithm. We 

show that ARSA has different worst-case performance guarantees for some special 

cases of our general problem. We then study the average performance of the two 

algorithms in various scenarios through numerical experiments. 

Keywords: Facility location, network effect, endogenous consumer demands, 

approximation algorithm. 
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Chapter 1

Introduction

1.1 Background and motivation

The world is full of situations that the number of facilities affect how consumers are

willing to buy a product or use a service. In fact, in many cases the consumer demands

may be driven up only if sufficient facilities are distributed.

Vehicle sharing systems provide a good illustration. Even though Zipcar, one of the

most famous car sharing system nowadays, adopts new technologies and flexible renting

plans, a consumer will become a member of Zipcar only if there are usually available

cars nearby her. This happens only if there are enough Zipcar parking spaces in a city.

A similar situation happened to the YouBike bicycle sharing system that is recently

implemented in Taiwan. Even though renting a YouBike is completely free for the first

thirty minutes when it was introduced, the system became a success only after enough

rental sites have been built and enough bicycles have been supplied.

1
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As another example, consider what consumers think when they want to buy a personal

computer or laptop. While prices and functionalities are both important, a consumer

would also evaluate how easy she may find a warranty station when the product is broken.

The distribution of warranty stations thus affects demands. Similar stories range from

opening convenience stores to compete for consumers and building charging or battery

swapping stations for electronic vehicles to attract potential buyers.

Interestingly, opening a facility not only affects the consumers directly but also changes

how other facilities affect consumer demands. The first factor to consider is the interde-

pendence among facilities. The vehicle rental business is an illustrating example. Many

users of public bikes travel from subway stations to their offices, schools, and home.

When there are facilities at both places, e.g., a subway station and one’s office, an addi-

tional source of attractiveness emerges beyond the stand-alone benefit from building each

site individually.1 This is the upside of building one facility. Nevertheless, there is also a

downside of building the facility: the marginal benefit of building facilities is diminishing.

When one’s home/office has been surrounded by many public bike stations, building one

more is not so attractive. All the aforementioned effects should be considered together

when one makes the facility construction decisions.

1It is arguably true that network benefit does not exist in any pair of two facilities, due to for example

the far distance between them. In this case, the network benefit will simply be 0 between this pair of

facilities.

2
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1.2 Research objectives

In this study, we investigate the problem of a profit maximizing retailer or service provider

(hereafter, retailer) in selecting a subset of facilities to build from a given set of locations.

We assume that the retailer needs to consider two major types of effects: (1) the stand-

alone benefit of a single facility and (2) the network benefit between two facilities. The

sum of these two benefits will then be input into a nondecreasing concave function to

capture the diminishing marginal benefit property. By considering the overall benefit and

total cost of building facilities, the retailer decides where to build facilities to maximize

her profit. The problem is then formulated as a nonseparable nonlinear integer program.

We first prove that the problem is weakly NP-hard. As one of the most common

procedure to approach NP-hard problems is to develop heuristic algorithms, we propose

two algorithms. The first one, which is based on relaxing the integer constraints, is

called the approximation-relaxation-sorting algorithm (ARSA). The second one, which

is called the naive greedy algorithm (NGA) in this study, is a straightforward greedy

algorithm. We show that ARSA has different worst-case performance guarantees for

some special cases of our general problem. We then study the average performance of

the two algorithms in various scenarios through numerical experiments.

1.3 Research plan

In Chapter 2, we discuss some related works. In the studies that discuss the facility

location problem, we focus on the works which address their problems on competitive

facility location problems. We also review relevant works in the literature of submodular

3
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function maximization and approximation algorithms. In Chapter 3, we give a model

formulation for our problem. Moreover, the rationale behind our model setting is also

explained. In Chapter 4, we prove that the problem is weakly NP-hard and find some

conditions under which our algorithm has a performance guarantee. In Chapter 5, we

present the results of a numerical study. Chapter 6 concludes.

4
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Chapter 2

Literature Review

2.1 Facility location problems

Facility location problems have been widely studied in the past decades (Daskin, 2013;

Owen and Daskin, 1998; Shen et al., 2003). Based on the formats of the objective func-

tions and constraints, the problems are classified to several classes. Six most common

classes are listed below.

1. (Set Cover) Given a set of elements U and a collection of subsets S ⊂ 2U , the

problem is to find a minimum cardinality or weighted collection of sets C ⊆ S such

that the union of C is U .

2. (Max Cover) Given a set of elements U and a collection of subsets S ⊂ 2U , the

problem is to find a collection of sets C ⊆ S whose cardinality is no greater than k

such that the weighted sum of the elements in the union of C is maximized.

3. (k-median) Given a complete undirected graph G = (V,E) with distance d(u, v) for

5
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each pair of vertices u ∈ V and v ∈ V , the problem is to find a subset of vertices

S ⊂ V with cardinality no greater than k such that the average distance between

each vertex to its nearest vertex in S is minimized.

4. (k-center) Given a complete undirected graph G = (V,E) with distance d(u, v) for

each pair of vertices u ∈ V and v ∈ V , the problem is to find a subset of vertices

S ⊂ V with cardinality no greater than k such that the maximum distance between

each vertex to its nearest vertex in S is minimized.

5. (Uncapacitated Facility Location) Given a set of potential facility sites F and a set

of demand points D, the problem is to find a subset S ⊆ F such that the sum of

the distance between each demand point and its nearest facility in S weighted by

the demand size and the total construction cost of facilities in S is minimized.

6. (Capacitated Facility Location) Given a set of potential facility sites F , a set of

demand points D, the problem is to find a subset S ⊆ F such that the sum of the

distance between each demand point and its nearest facility in S weighted by the

demand size and the total construction cost of facilities in S is minimized. Moreover,

the total amount of demands assigned to a facility in S cannot exceed its capacity.

While most works in the above six categories are conducted with exogenous consumer

demands, few studies have been devoted to problems with endogenous demands. As

we mentioned in Chapter 1, there are situations in which the interrelationship between

location decisions and demand realization cannot be ignored. This motivates the study

of competitive facility location problems, see, e.g., Aboolian et al. (2007), Berman and

Krass (1998), Berman and Krass (2002), and Wu and Lin (2003). In these studies, the

6
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total market demand, as a function of the number of facilities, is generally assumed to

be increasing for the market expansion effect and concave for the market cannibalization

effect. In this study, we follow this stream and model the consumer demand by a concave

function.

2.2 Submodular function maximization

Maximizing submodular functions is a main issue of many kinds of problems, e.g., the

maximum coverage problem mentioned above. With the importance of the problem,

many studies appear to propose solutions, e.g., Feige et al. (2011), Nemhauser and Wolsey

(1978), and Nemhauser et al. (1978).

Nemhauser and Wolsey (1978) provide the best approximation algorithm for maximiz-

ing a submodular set function. More precisely, the problem is to choose k elements from a

subset of given elements that can maximize a given submodular function. The algorithm

combines the concept of exhaustion and greedy search to balance the performance and

computation time. The algorithm first lists all the subsets that have q < k elements. It

next uses a greedy algorithm to select the remaining k−q elements and takes the best one

as the result. After a researcher chooses the parameter q, the algorithm’s performance

depends on q. Larger q makes the algorithm more precise but also more time-consuming.

The changeable q give the algorithm more flexibility to fit different situations.

Nemhauser et al. (1978) give some definitions to the submodular functions and analyze

different classes of approximation algorithms for submodular set function maximization,

including greedy, R-step greedy, local search, linear programming, heuristic, and partial

7
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enumeration. In particular, they prove a worst-case performance guarantee 1− 1
e

of the

greedy algorithm.

Feige et al. (2011) give examples to some important problems that has submodular

function maximization involved. They also give approximation algorithms better than

before. The algorithms have approximation factor 2
5

for non-symmetric cases and 1
2

for

symmetric cases. They also prove that the performance on symmetric cases cannot be

better unless P = NP . The most valuable part of these algorithms is that the algorithms

are suitable for any submodular functions.

2.3 Approximation algorithms

We all know that there is no polynomial time algorithms that can solve NP-hard problems

unless P = NP . Some researchers develop heuristic algorithms to find near-optimal solu-

tions. Numerical studies are typically conducted to demonstrate the performance of the

proposed algorithms. In most cases, researchers prefer to have a worst-case performance

guarantee, i.e., a bound to the difference between the solution and the optimal solution,

of a heuristic algorithm. If this is the case, the algorithm is called an approximation

algorithm (Williamson and Shmoys, 2011).

Li et al. (2002) propose a new strategy to linearize the quadratic function in an

assortment problems to improve the computational efficiency of the algorithm. The

objective of an assortment problem is to find a big rectangle with minimum area into

which a given set of small rectangles can be put without overlapping. The key step of

the strategy is using a piecewise linear function to approximate the original quadratic

8
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function which changes the original nonlinear programming problem to a mixed 0-1 linear

programming problem. The new strategy is faster than those used in previous studies.

Arya et al. (2004) analyze the performance of local search on the metric k-median

problem and uncapacitated facility location problem. For k-median, the traditional local

search has a performance guarantee of 5. This study proposes swaps among p facilities

to improve the performance guarantee to 3 + 2/p. For the uncapacitated facility location

problem, the authors prove that the bound of the local search algorithm is 3. The two

results, 3 + 2/p and 3, are both better than the bounds in previous studies.

Aboolian et al. (2007) try to solve a competitive facility location problem with concave

demand using approximation algorithms. After the formulation, they aware that the

problem is an integer nonlinear problem. They replace the function with a piecewise

linear function to transform the problem to an integer linear problem. They design three

procedures to get the solution of the problem. The first procedure is an exact procedure,

using branch and bound to directly get an exact answer of the original problem. The

second procedure is “α-approximate,” using an integer programming solver to solve the

problem with the piecewise linear objective function. While the piecewise linear function

differs from the original function by a relative error at most α, the procedure also has

error α compare to the optimal solution. The third procedure is greedy. The procedure

is shown to have a bound 1 − 1
e

by applying a result in Nemhauser et al. (1978). They

also demonstrate that the bound is tight.

9
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Chapter 3

Problem Description and

Formulation

3.1 Model

Suppose that there is a set of locations I = {1, 2, ..., n}, |I| = n, at which service facilities

may be built. Let E be the set of all undirected edges [i, j] where i ∈ I, j ∈ I, and i < j.

As |I| = n, we have |E| = n(n−1)
2

. For each facility location i, the fixed construction

cost of the facility is hi > 0 and the decision variable xi = 1 means there is a facility in

location i and 0 otherwise. Once a facility is built at location i, it will not only increase

the demands, but also affect the impact of other facilities. Let si ≥ 0 be a coefficient for

the facility in location i and tij ≥ 0 be a coefficient for the facilities between location i

and j, we assume the effective demand is

g

(∑
i∈I

sixi +
∑

[i,j]∈E

tijxixj

)
,

11
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where g(·) is a nondecreasing and concave function satisfying g(0) = 0. To facilitate our

discussion, we shall refer to the function g as the demand-boosting function, si as the

stand-alone benefit, tij as the network benefit, and at some times use “facility i” as an

abbreviation of “the facility in location i.”

The stand-alone benefit si measures how a facility at location i may affect the demand

directly. When si = 0, building a facility at location i does not drive up the sales itself;

when si is large, however, the demand volume will be largely determined by whether

there is a facility at location i no matter there exists other facilities or not. The network

benefit tij measures how building facilities i and j together may bring up the demand

than there is only facility i or facility j. In some applications, e.g., the distance between

i and j is one of the main factors determining tij. We assume that si ≥ 0 for all i ∈ I

and tij ≥ 0 for all [i, j] ∈ E.

The retailer’s question is to make the facility location decision so that the total profit

is maximized. Her complete problem is

max
xi∈{0,1}

rg

(∑
i∈I

sixi +
∑

[i,j]∈E

tijxixj

)
−
∑
i∈I

hixi

where r > 0 is the price for a product or one time of service. Without loss of generality,

we normalize r to 1 to obtain

max
xi∈{0,1}

g

(∑
i∈I

sixi +
∑

[i,j]∈E

tijxixj

)
−
∑
i∈I

hixi (3.1)

In this study, we consider the problem in (3.1) as our facility location problem.

In our facility location problem, the objective function consists of two parts, the

net sales revenue and the construction cost. In this region, the effective demand is

g(
∑

i∈I sixi+
∑

[i,j]∈E tijxixj), the demand brought by the stand-alone and network effects

12
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Parameters

I the set of locations to build facilities at

E the set of all undirected edges connecting a pair of locations

si the stand-alone benefit of facility i

tij the network benefit between facilities i and j

hi construction cost of facility i

g(S) the effective demand given the sum of all effects S

Decision variables

xi 1 if a facility is built at location i or 0 otherwise

Table 3.1: Notations

of those open facilities. This is also the sales revenue after we normalize the price to 1.

The retailer’s problem in (3.1) is to maximize its total profit, which is the net sales

revenue minus the construction costs
∑

i∈I hixi.

Table 3.1 lists all the notations mentioned above.

3.2 NP-hardness

We now show that our problem is weakly NP-hard by a reduction from the Knapsack

problem:

Definition 1. A knapsack instance consists of two positive numbers L′ and K ′ and a set

T of items where |T | = n. Item i ∈ T has its value vi and its size ci. The question is

whether there is a subset of items S ⊂ T such that
∑

i∈S ci ≤ L′ and
∑

i∈S vi ≥ K ′.

13
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Proposition 1. If g(·) satisfies limx→∞
g(ax)
g(bx)

= 1 for all positive a and b, our problem in

(3.1) is NP-hard.

Proof. For ease of exposition, we define cmax = maxi∈T{ci}, cmin = mini∈T{ci}, vmax =

maxi∈T{vi}, and C =
∑

i∈I ci. Given a knapsack instance, we first define

ρ(x) =
g(Cx)− g((L′ − cmax)x)

g(L′x)

for all x > 0. Since the assumption we impose on g(·) implies that ρ(x) goes to 0 as x

approaches infinity, we can find a positive number k such that cmin − ρ(k)L′ > 0. With

our k and ρ(k), we construct our location instance by making

I = T, r = r1r2, r1 =
kL′

g(kL′)
, r2 =

vmax

cmin − ρ(k)L′
,

si = kci ∀i ∈ I, hi = k(r2ci − vi) ∀i ∈ I, tij = 0 ∀[i, j] ∈ E, and K = kK ′.

Let z(y) be the objective value of the location instance with the solution vector y. We

now prove the equivalence of the two instances below.

Suppose there is a subset of items S such that
∑

i∈S ci ≤ L′ and
∑

i∈S vi ≥ K ′. The

former implies
∑

i∈S si ≤ kL′, which further implies

g
(∑

i∈S

si

)
≥ g(kL′)

kL′

∑
i∈S

si =
1

r1

∑
i∈S

si =
k

r1

∑
i∈S

ci,

where the inequality comes from that g is concave and g(0) = 0. Let yi = 1 if i ∈ S and

0 otherwise. Then

z(y) = rg
(∑

i∈S

si

)
−
∑
i∈S

hi ≥ r2k
∑
i∈S

ci − k
∑
i∈S

(r2ci − vi) = k
∑
i∈S

vi ≥ kK ′ = K.

Therefore, y is a feasible solution of the location instance and z(y) ≥ K.

14
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Suppose there exists y satisfying z(y) ≥ K, we now show if
∑

i∈I ciyi > L′, then for all

i such that yi = 1, we have y′ = y−ei satisfying z(y′) ≥ K, where ei = (0, ..., 0, 1, 0, ..., 0),

a vector with the i-th element being 1 and all others being 0. To see this, first note that

since ∑
i∈I

siyi ≤
∑
i∈I

si = k
∑
i∈I

ci = kC,

we have g(
∑

i∈I siyi) ≤ g(kC) since g(·) is nondecreasing. In addition, if yj = 1, then

∑
i∈I

siy
′
i =

∑
i∈I

siyi − sj = k
∑
i∈I

ciyi − kcj > k(L′ − cj) ≥ k(L′ − cmax),

which means g(
∑

i∈I siy
′
i) > g(k(L′ − cmax)) since g(·) is nondecreasing. The two obser-

vations then implies

z(y′)− z(y) = rg
(∑

i∈I

siy
′
j

)
−
∑
i∈I

hiy
′
i − rg

(∑
i∈I

siyi

)
+
∑
i∈I

hiyi

> r
[
g(k(L′ − cmax))− g(kC)

]
+ hj

= r2
kL′

g(kL′)

[
g(k(L′ − cmax))− g(kC)

]
+ kr2cj − kvj

= k
[
r2

(
cj − ρ(k)L′

)
− vj

]
≥ k

[
r2

(
cmin − ρ(k)L′

)
− vj

]
= k(vmax − vj) ≥ 0.

Therefore, z(y′) > z(y) ≥ K. We may repeatedly remove selected facilities until we have

a solution which satisfies the requirement of the knapsack instance.

Observing that the equivalent instance of our problem has no network effect, the

problem with network effect is obviously more difficult.

While we have shown that our problem is weakly NP-hard in general, note that our

assumption on g(·) in Proposition 1 is satisfied by many concave functions, such as the

negative exponential function g(z) = 1 − e−az for all a > 0, the logarithm function

15
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g(z) = loga(1 + z) for all a > 0, and the kink function

g(z) =


az if z < b

a

b otherwise

.

Whether our problem with g(·) violating the assumption in Proposition 1 is NP-hard

remains open to us.
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Chapter 4

Analysis

In this chapter, we will propose two algorithms for obtaining a feasible solution to our

facility location problem defined in (3.1). For ease of exposition, let

z(x) = g

(∑
i∈I

sixi +
∑
e∈E

tijxixj

)
−
∑
i∈I

hixi

be the objective value associated with the solution x.

4.1 Approximation-relaxation-sorting algorithm

4.1.1 The algorithm

The first algorithm that we propose has three major steps: approximating the g(·) func-

tion by a kink function, solving the linear relaxation of the program, and sorting and

selecting facilities according to the solution to the linear relaxation. Therefore, we call

this algorithm the approximation-relaxation-sorting algorithm (ARSA).

Let the original problem defined in (3.1) be problem (P ori). Given the original g(·)

17
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Figure 4.1: Flow chart of ARSA

function, ARSA first uniquely defines a kink function

gK(x) =


ax if x ≤ B

a

B otherwise

, (4.1)

where a = g′(0), the slope of g at x = 0, and

B = g

(∑
i∈I

si +
∑

i∈I,i∈I,i6=J

tij

)
,

the maximum possible value of g(·) obtained by building all facilities. We then replace

g(·) by gK(·) to convert (P ori) to another nonlinear program.

As gK(x) = min{ax,B}, the nonlinear objective function can now be linearized by

introducing a new variable p and two new constraints. We also replace xixj by a new

variable yij to eliminate products between decision variables. For any slope a, we can

get an equivalent problem by setting the slope a to 1 and all stand-alone and network

benefits to a times larger. Therefore, we normalize a to 1 without loss of generality.

18
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The equivalent linear integer program is

max
xi,p

p−
∑
i∈I

hixi

s.t. p ≤ B

p ≤
∑
i∈I

sixi +
∑

[i,j]∈E

tijyij

yij ≤ xi ∀[i, j] ∈ E

yij ≤ xj ∀[i, j] ∈ E

xi ∈ {0, 1} ∀i ∈ I

yij ∈ {0, 1} ∀[i, j] ∈ E.

We call this integer program (P ). For this integer program, ARSA then creates n sub-

problems by adding the following constraint

∑
i∈I

xi = k

to the kth subproblem, k = 1, 2, ..., n. We call the kth subproblem (Pk). The optimal

solution of (Pk) is the best set contains exact k locations. Obviously, the best among

the optimal solutions to (Pk), k = 1, ..., n, is an optimal solution to (P ). Our strategy is

to obtain a near-optimal solution for each (Pk). Then the best among our near-optimal

solutions for (Pk)s will also be near-optimal to (P ).

To find an integer solution for (Pk), ARSA first relaxes the integer constraints on xis

and yijs to obtain its linear relaxation, whose optimal solution can be found in polynomial

time. Let xki be the value of xi in an optimal solution to (P k).

The last step is to sort candidate locations by xki in the descending order. Let xk(1) ≥

xk(2) ≥ · · · ≥ xk(n), where ties are broken arbitrarily, ARSA then compares two solutions.
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The first solution is simply choosing facilities (1), (2), ..., and (k). The second solution is

to choose facilities (1), (2), ..., (k− 1), and (k+ 1). ARSA compares the objective values

achieved by the two solutions (with respect to the original function g(·), not gK(·)) and

reports the better one to be a feasible integer solution to (Pk).

By repeating this for all subproblems, we obtain n solutions that are feasible to (P )

as well as (P ori). We finally choose the best solution among these n candidate solutions.

Algorithm 1 is the pseudocode describing ARSA.

4.1.2 Worst-case performance analysis

In this section, we will prove two worst-case performance guarantees when ARSA is

applied to two special cases of our facility location problem. To describe the two special

cases, we state three assumptions below.

Assumption 1. g(·) is the kink function gK(·) in (4.1) for some a > 0 and B > 0.

Note that under this assumption, it is without loss of generality to assume that there

is no location whose si >
B
a

. If such a location exists, an optimal solution will either

contain only this location or does not contain it. We may thus safely remove this location

for a while, solve the remaining problem, and at the end check whether selecting only

this location is actually the best option.

Another assumption we need for ARSA to have a worst-case performance guarantee

is the following.

Assumption 2. The net stand-alone benefits si − hi, i ∈ I, satisfy

max
i∈I
{si − hi} > 0.
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Algorithm 1 approximation-relaxation-sorting algorithm (ARSA)

1: Find the kink function gK(·) that approximate g(·). Replace g(·) by gK(·) to obtain

the problem (P ).

2: Split the problem to n subproblems, one with an additional constraint
∑

i∈I xi = k,

k = 1, ..., n. Let the subproblems be (P1), ..., and (Pn).

3: for k from 1 to n do

4: Relax the integer constraints in (Pk).

5: Solve the relaxation of (Pk). Let xki be the value of xi in the optimal solution.

6: Sort locations so that xk(1) ≥ · · ·xk(n), where ties are broken arbitrarily.

7: Construct a solution x̄ such that x̄(1) = · · · = x̄(k) = 1 and 0 otherwise.

8: Construct a solution x̂ such that x̂(1) = · · · = x̂(k−1) = x̂(k+1) = 1 and 0 otherwise.

9: if z(x̄) > z(x̂) then

10: Report x̄ as the proposed solution for (Pk).

11: else

12: Report x̂ as the proposed solution for (Pk).

13: end if

14: end for

15: Report the best solution among the proposed solutions for the n subproblems.
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This assumption says that the most positive net stand-alone benefit is greater than

zero. In other words, there must be some facility which can bring profit itself. With this

assumption, we know that the maximum benefit of building only one facility is positive.

Under Assumption 2, we define a ratio that directly affects our worst-case performance

guarantee.

Definition 2. For an instance of our facility location problem in (3.1), we define its

critical ratio as

r = −mini∈I{si − hi}
maxi∈I{si − hi}

.

Note that r is readily available when an instance of our facility location problem is

given. Also note that according to our definition, r is negative if si − hi > 0 for all i ∈ I

or positive if there is at least one location whose net stand-alone benefit si − hi < 0.

Finally, we have r ≥ −1. r = −1 if and only if si − hi are identical for all i ∈ I.

Finally, we need all network benefits to be equal. One example in which the assump-

tion may be valid is to build car/bike sharing stations where a drive/ride between any

two locations are equally possible. The next assumption formalize this requirement.

Assumption 3. There is a constant t ≥ 0 such that the network benefits tij, [i, j] ∈ E,

satisfy

tij = t ∀[i, j] ∈ E.

Before proving that ARSA has a worst-case performance guarantee under our three

assumptions, we first prove Lemma 1. It states that, under Assumption 3, an optimal

solution to the relaxation of subproblem (Pk) has either zero or two xki s that are fractional.
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Lemma 1. Suppose that Assumption 3 is satisfied. An optimal solution to the relax-

ation of subproblem (Pk) has either zero or two fractional components. If there are two

fractional components, we have

∑
i∈I

sixi + t

(
k(k − 1)

2

)
= B.

Proof. First, note that Assumption 3 and the additional constraint
∑

i∈I xi = k together

make the relaxation of subproblem (Pk) become

max
xi,p

p−
∑
i∈I

hixi

s.t. p ≤
∑
i∈I

sixi +

(
k(k − 1)

2

)
t

p ≤ B∑
i∈I

xi = k

xi ∈ [0, 1] ∀i ∈ I,

where the variable yij is not needed anymore, and the total network benefit is exactly

(k(k−1)
2

)t regardless of which k locations are selected. We then follow the idea of Caprara

et al. (2000) to prove this result. For our linear program with n + 1 variables, at least

n + 1 constraints are binding at an optimal extreme point solution. If at least three xis

are fractional, we will have at most n − 3 constraints binding in the set of constraints

xi ∈ [0, 1]. The maximum number of binding constraints is thus n, which is not enough.

If exactly two xis are fractional, the first three constraints must all be binding, and the

right-hand-side values of the first two constraints must be identical. Because
∑

i∈I xi

must be an integer, there is no solution with only one fractional xi. Finally, no fractional

variable is also a possible outcome.
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With Lemma 1, we are now ready to prove that ARSA is a 1
2+r

-approximation algo-

rithm for our facility location problem when our three assumptions hold.

Proposition 2. Suppose that Assumptions 1, 2, and 3 hold. For the problem defined in

(3.1), let z∗ and z′ be the objective values of an optimal solution and the solution reported

by ARSA, respectively. We then have z′

z∗
≥ 1

2+r
.

Proof. Let z∗k denotes the objective value of an optimal solution to subproblem (Pk) (with

constraint
∑

i∈I xi = k) and zLPk denote that to its relaxation. Note that

max
k=1,...,n

{zLPk } ≥ max
k=1,...,n

{z∗k} = z∗. (4.2)

Our plan is to prove that, for each subproblem (Pk), at least one of ARSA’s n solutions

will be at least one-third as good as an optimal solution to the relaxation. More precisely,

let xLP−k and xARSA−k be an optimal solution to the relaxation of (Pk) and the solution

reported by ARSA, we will show that

max
k=1,...,n

{
z(xARSA−k)

}
≥ 1

2 + r
z(xLP−k) =

1

2 + r
zLPk ∀k = 1, ..., n. (4.3)

Combining (4.2) and (4.3), we will be able to complete the proof.

We now prove (4.3). From lemma 1, we know xLP−k has either two or no fractional

value. If it has no fractional value, ARSA obviously selects the optimal solution to make

xARSA−k = xLP−k and achieves zLPk . Now suppose that there are two fractional variables,

say, xLP−k1 and xLP−k2 . Without loss of generality, let xLP−k1 = c = 1 − xLP−k2 for some

c ∈ (0, 1) and s1 ≥ s2. Let L0 be the set of k − 1 locations with xLP−ki = 1. For the

relaxation, we know

zLPk =
∑
i∈L0

(si − hi) + c(s1 − h1) + (1− c)(s2 − h2).
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ARSA will select the k − 1 locations in L0 and either location 1 or location 2 to form a

solution. Let L1 = L0 ∪ {1} be the former solution and L2 = L0 ∪ {2} be the latter. If

location 2 is selected, because s1 ≥ s2, we have

∑
i∈L2

si + Tk <
∑
i∈I

sLP−ki xi + Tk = B,

i.e., the total benefit obtained in the solution L2 does not exceed B. Therefore, we have

z(xARSA−k) =
∑
i∈L0

(si − hi) + (s2 − h2).

The difference is

zLPk − z(xARSA−k) = c((s1 − h1)− (s2 − h2)) ≤ (s1 − h1)− (s2 − h2).

Obviously, s1 − h1 ≤ maxi∈I{xi − hi}. Moreover, according to Assumption 2, we have

−(s2−h2) ≤ rmaxi∈I{xi−hi}. Therefore, we have z(xARSA−k)+(1+r) maxi∈I{xi−hi} ≥

zLPk . As maxi∈I{xi − hi} is the solution reported by ARSA for (P1), we have

z(xARSA−k) + (1 + r)z(xARSA−1) ≥ zLPk ,

which implies that max{z(xARSA−k), z(xARSA−1)} ≥ 1
2+r

zLPk . This implies (4.3) and thus

completes the proof.

Note that if si−hi > 0 for all i ∈ I, we have r < 0 and thus the performance guarantee

1
2+r

> 1
2
. In this case, ARSA is guaranteed to perform pretty well. If there is at least one

location such that si − hi < 0, we have r > 0. If that negative si − hi is far below 0, our

r will be large and the guarantee would be small. Finally, note that r = −1 if and only if

all si − hi are identical. In this case, indeed ARSA will obtain the optimal solution (and

that is why the performance guarantee is 1).
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We next prove that ARSA is a 1
2
-approximation algorithm for our facility location

problem in another special case. We first state another assumption, which is a stronger

one than Assumption 3.

Assumption 4. The network benefits tij, [i, j] ∈ E, satisfy

tij = 0 ∀[i, j] ∈ E.

We now start proving ARSA has performance greater than max{1
2
, 1
2+r
}

under Assumptions 1 and 4. Note that now Assumption 2 is not needed.

Proposition 3. Suppose that Assumptions 1 and 4 hold. For the problem defined in

(3.1), let z∗ and z′ be the objective values of an optimal solution and the solution reported

by ARSA, respectively. We then have z′

z∗
≥ max{1

2
, 1
2+r
}.

Proof. Due to the similarity between this proof and the previous one, we only describe

the different part. Let FN = {i : si − hi < 0} while N is the abbreviation of “negative.”

Since t = 0, the optimal solution of the integer problem does not contain any facility in

FN .

Suppose the optimal solution contains k facilities. For the subproblem (Pk), we know

that zLPk > z∗. And the optimal solution xk also contains no facility in FN .

We now have a new bound of the difference between zLPk − z(xARSA−k), which is

zLPk − z(xARSA−k) = c((s1 − h1)− (s2 − h2))

≤ (s1 − h1) + max{0, r}max
i∈I
{xi − hi}

≤ (1 + max{0, r}) max
i∈I
{xi − hi},
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where the first inequality comes from the fact that s2 − h2 ≥ 0; otherwise, it will not be

set to be a positive value when solving the relaxation of (Pk). It then follows that

z(xARSA−k) + (1 + max{0, r})z(xARSA−1) ≥ zLPk

and thus max{z(xARSA−k), z(xARSA−1)} ≥ max{1
2
, 1
2+r
}zLPk . This completes the proof.

4.2 Naive greedy algorithm

We here present another algorithm, the naive greedy algorithm (NGA). In each iteration,

NGA selects the facility which brings most profit at that moment. It terminates when

there is no facility bringing a positive profit in that turn. Different from ARSA, We are

unable to show that NGA has a worst-case performance guarantee. The pseudocode of

NGA is listed in Algorithm 2.

Algorithm 2 Naive greedy algorithm

1: let R = φ, P (R) = rg(
∑

j∈R sj +
∑

i∈I,j∈I,i6=j tijxij)−
∑

j∈R hj.

2: repeat

3: choose a facility j with the highest positive P (R ∪ {j})− P (R).

4: R← R ∪ {j}

5: until each remaining facility k satisfies P (R ∪ {k})− P (R) < 0

6: return R
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Chapter 5

Numerical Study

5.1 Solution performance

To understand how the algorithm performs in the problem, we compare the result given

by the algorithm to the naive greedy algorithm. Different factors are adopted to observe

the performances under different circumstances. The first factor is the problem scale. We

consider four scenarios, each with n = 10, n = 20, n = 50, n = 100. The second factor

is the stand-alone benefit distribution. The two scenarios are random distribution and

deterministic. The third factor is the network benefit distribution. The three scenarios

are uniform value, zero, and random. The last factor is the form of the g function with

two scenarios, kink and smooth. The four factors generate 48 scenarios together, each of

which has 100 instances. We adopt the following settings for each scenario:

� problem scale: scenario small: n = 10; scenario medium: n = 20; scenario large:

n = 50; scenario extremely large: n = 100.

29



doi:10.6342/NTU201601596

� stand-alone benefit distribution: scenario random: s ∼ U(0, 100); scenario deter-

ministic: s =
√
h.

� network benefit distribution: scenario uniform value: tij = t∀[i, j] ∈ E, t ∼ U(0, 20);

scenario random: tij ∼ U(0, 20)∀[i, j] ∈ E; scenario zero: tij = 0∀[i, j] ∈ E.

� function form: scenario kink: g(x) = min{x,K}; scenario smooth: g(x) = K(1 −

e
−x
K ) where K is a parameter we set according to the scenarios.

We discuss the parameter K further more. The kink function is a piece-wise linear

function which has form g(x) = max {x,K}. If K is too small, the optimal solution

won’t choose any facilities. So we set K at the average of the sum of the stand-alone

benefit and the network benefit when choosing 0.6n facilities.

After generating those 48 scenarios, some scenarios are trivial to solve. For the sce-

narios with s =
√
h, tij = t or tij = 0, and g is kink, we observe that hi > hj iff

si − hi < sj − hj. Since there is no different when choosing different facility when the

number of facilities is fixed, choose the facility with smaller h is always better. So we

simply remove those 8 scenarios.

We solve the problems with the solver CPLEX. The analysis is run on a personal

computer with Windows 7, 12G RAM, and Intel i5-4570 3.2 GHz CPU. We use Java to

implement our algorithm and invoke CPLEX.

There is one thing that should also be aware that cplex cannnot solve the scenarios

with n = 100 and n = 50 within a tolerable time when the problem is ILP (integer linear

programming problem). We linear relax the problem instead to get the upper bound

of the optimal value. The scenarios with the g function is smooth are nonlinear integer
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programs which cannot be solved by any solver. We use exhaustive method to search for

optimal solutions instead when n = 10 and n = 20. When n = 50 and n = 100, we relax

the integer constraint and use minos to solve the exponential program.

In table 5.1, we realize that the performance of our algorithm become worse when the

problems become larger, but back to a high level performance when it comes to extremely

large. The performance of NGA has the same pattern, too. The main reason is that when

the problems become larger, their is more combination of facilities to build which makes

ARSA and NGA difficult to give a better solution. On the other hand, when it comes to

extremely large scenario, choosing one facility wrong does not affect the performance so

much. It is also the reason that the minimum performance of ARSA goes up when the

problem is larger.

Problem Scale

Average Minimum

zARSA

z∗
zNGA

z∗
zARSA

z∗
zNGA

z∗

Small 0.9030 0.8741 0.5247 0.6106

Medium 0.8455 0.7745 0.6834 0.6709

Large 0.8253 0.6961 0.6965 0.5448

Extremely Large 0.8957 0.7977 0.7713 0.5793

Table 5.1: Numerical results of problem scale

Table 5.2 shows that ARSA performs a little worse than NGA on random scenario,

while it performs much better on deterministic case. When the stand-alone benefit is

deterministic, the network benefit is the only matter thing. Since NGA cannot take the

network benefit into consideration, it is the reason that it performs so bad on deterministic
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case.

Stand-alone benefit distribution

Average Minimum

zARSA

z∗
zNGA

z∗
zARSA

z∗
zNGA

z∗

Random 0.8912 0.9286 0.6982 0.8419

Deterministic 0.8317 0.5711 0.6252 0.2406

Table 5.2: Numerical results of stand-alone benefit distribution

In table 5.3, we can see that NGA is better than ARSA when there is no network

benefit, while the other two is not. The reason is similar to last table. NGA cannot

consider the network effect while ARSA is designed for this case. The two algorithms

both performs worst in the random scenario is reasonable. Randomness is always the

reason to the errors.

Network benefit distribution

Average Minimum

zARSA

z∗
zNGA

z∗
zARSA

z∗
zNGA

z∗

Uniform value 0.9055 0.7775 0.6803 0.5362

Random 0.7933 0.6758 0.5262 0.4288

Zero 0.9280 0.9401 0.8480 0.8967

Table 5.3: Numerical results of network benefit distribution

While ARSA has one more process finding the kink function to approximate the

smooth function, the decrease on the performance is acceptable. Note that the kink

function to approximate the smooth function is weak because we approximate it from

above which generates much difference. We can easily get a better performance if we
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have a stronger approximate kink function. Though the approximation method is weak,

ARSA performs so well on the smooth scenario, having average performance 0.81.

Function form

Average Minimum

zARSA

z∗
zNGA

z∗
zARSA

z∗
zNGA

z∗

Kink 0.9545 0.8379 0.8020 0.6733

Smooth 0.8093 0.7511 0.5803 0.5534

Table 5.4: Numerical results of function form

5.2 Time complexity

The time complexity needed to solve a LP is O(n3) where n is the number of the con-

straints. For a problem with n candidate location, ARSA need to solve n LP problems,

each of which has O(n) constraints. The time complexity of ARSA is then O(n4). Figure

5.1 and table 5.5 help us verify it.

We have all the factors the same as the last section but the problem scale and the

function form. The problem scale is set to be 10, 20, ..., 100. We compare the two

computing time of ARSA and solving the ILP with cplex. Because the smooth function

form is not solvable with cplex, we remove the scenario. The average computing time

among all the scenarios is then calculated. Since the computing time is too large to solve

a ILP using cplex when n > 60, we did not collect the data of this part.
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Figure 5.1: Average computing time of ARSA
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n 10 20 30 40 50

ARSA (ms) 123.95 273.0917 527.5417 1031.55 2036.3917

ILP (ms) 23.8167 77.9667 112.6 459.4667 4450.5333

n 60 70 80 90 100

ARSA (ms) 3830.3417 7026.9167 12446.1417 22501.9583 29251.1

ILP 49754.4833 - - - -

Table 5.5: Numerical results of function form
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In vehicle renting systems, network effect has a critical impact to the value of facilities.

We capture this important effect into our facility location model. After showing that the

problem is weakly NP-hard, we set our target to developing an approximation algorithm.

In general intuitions, a simple greedy cannot take the network effect into consideration. A

special designed algorithm is then needed. Our algorithm gives performance guarantee in

a special case. To test the applicability, a numerical analysis is conducted. In numerical

analysis, network effect increase the difficulty of getting the better solution to algorithms.

The minimum performance is low because of the difficulty. Although our algorithm cannot

give performance guarantee to all the cases, we still capture the important network effect

into our model. The algorithm also helps us understand more about the problem.
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6.2 Future work

Though our algorithm has been showed to be effective here, there are still some directions

to improve it. First, the most difficult and valuable part that we can research in future

is to change the algorithm from an approximation algorithm under special conditions

to all cases. We make some assumption to prove the bound of this a little complicated

algorithm. There may be a bound that can be proved with a more reasonable assumption

or just no assumption. Second, we have some numerical study here, but the algorithm is

not applied to any practical data. The performance may not be that excellent when it

comes to real. Third, our algorithm first find the piece-wise linear function to approximate

the original function, which makes our algorithm not accurate enough. We wonder if there

is some other way to change the non-linear function to a linear form which does not loss

lots of accuracy. Fourth, due to the market cannibalization, the network effect may be

negative. We do not consider this situation while it may exist in real world. Under this

case, we don not know our algorithm has a performance guarantee or not. Finally, the

problem is proved to be weakly NP-hard by the reduction from knapsack. A pseudo

polynomial algorithm which uses dynamic programming technique may be designed to

find an exact solution.
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Appendix A

Results of Numerical Experiments
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Problem Stand-alone Network Function Average Minimum

scale benefit benefit form zARSA

z∗
zNGA

z∗
zARSA

z∗
zNGA

z∗

S R U K 0.9612 0.9862 0.7905 0.8612

S R U S 0.9577 0.9981 0.4403 0.8075

S R Z K 0.9746 0.9955 0.8141 0.8724

S R Z S 0.9792 1 0.7807 1

S R R K 0.9051 0.981 0.4212 0.5645

S R R S 0.8456 1 0 1

S D U S 1 0.71 1 0

S D Z S 1 1 1 1

S D R K 0.705 0.4502 0 0

S D R S 0.7019 0.62 0 0

M R U K 0.9738 0.9837 0.8868 0.9099

M R U S 0.966 0.9998 0.8419 0.9791

M R Z K 0.9851 0.9987 0.8972 0.9671

M R Z S 0.9702 0.9998 0.833 0.9876

M R R K 0.9553 0.9756 0.834 0.8857

M R R S 0.6126 0.9997 0 0.9799

M D U S 1 0.37 1 0

M D Z S 1 1 1 1

M D R K 0.8959 0.1874 0.5411 0

M D R S 0.0959 0.2302 0 0

L R U K 0.9858 0.9754 0.9284 0.9474

L R U S 0.7111 0.7229 0.4343 0.4636

L R Z K 0.9869 0.994 0.9373 0.9556

L R Z S 0.6235 0.6477 0.5259 0.5572

L R R K 0.9875 0.9672 0.9539 0.9405

L R R S 0.6953 0.7471 0.6134 0.6742

L D U S 0.6916 0.261 0.2542 0

L D Z S 0.9978 0.9978 0.9091 0.9091

L D R K 0.9777 0.3942 0.9373 0

L D R S 0.5957 0.2539 0.4713 0

E R U K 0.995 0.9807 0.9633 0.9365

E R U S 0.8281 0.8335 0.4837 0.5292

E R Z K 0.9924 0.9964 0.9657 0.9717

E R Z S 0.627 0.6523 0.5718 0.5982

E R R K 0.9967 0.975 0.9894 0.9602

E R R S 0.8726 0.8768 0.8498 0.8556

E D U S 0.7962 0.5091 0.141 0

E D Z S 0.999 0.999 0.9412 0.9412

E D R K 0.9934 0.5556 0.9722 0

E D R S 0.8567 0.5986 0.8352 0

Table A.1: The average and minimum performances of ARSA and NGA in all scenarios
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