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摘要 

 

我們用固有函數展開分析了純量場暗物質暈的模擬。純量場暗物質符合泊松-薛丁格方程

式，在宇宙晚期，當暗物質暈達成均功條件時，我們可以解不隨時間變的薛丁格方程式，並

且得到固有函數跟相對應的機率振福，我們發現機率分布函數的形式可以被古典無碰撞且會

被自身重力影響的系統的機率分布函數描述，另外，我們發展了一個可以解出自洽的密度與

重力位勢符的方法，這些解符合泊松-薛丁格方程式並且是平衡態，他的機率分布函數符合費

米金模型。我們也使用模擬測試以自洽重力位勢造出來的暗物質暈的穩定性。 

 

關鍵詞：暗物質暈、純量場暗物質、分布函數、宇宙學、柏松-薛丁格方程式 
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Eigenfunction expansion for scalar field dark

matter halos

Shan-Chang Lin

Abstract

We analyze the simulation result of non-interacting scalar field dark matter ha-

los using energy eigenfunction expansion. The scalar field dark matter obeys the

Poisson-Schrodinger (SP) equation. At late time, when the dark matter halos are

virialized, we can solve time independent Schrodinger equation and obtain amplitude

of each eigenmode. We find that the distribution function (DF) of the dark matter

halos can be described by models of classical distribution functions, and we develop

a method to solve potential and density of a spherically symmetric Schrödinger-

Poisson system whose distribution function obeys fermionic King model. Also, we

construct artificial dark matter halos using different potentials, and test their sta-

bility. The amplitudes of the artificial halos are generated by fermionic King model.

Keywords

Scalar field dark matter, dark matter halo, probability distribution function, Schrödinger-

Poisson equation
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Chapter 1

Introduction

During last decade, several small scale tensions between standard cold dark mat-

ter(CDM) and observations have received much attention, including cusp-core prob-

lem and missing satellites problem [1]. Simulations of CDM structure formation

found cusp-like density profile in the inner part of halos [2, 3], while observation

found that density profile of the inner region of dwarf galaxies seem to have flat

cores [4–7]. On the other hand, the predicted amount of subhalos by CDM [8] are

much less than the amount of satellite galaxies detected in the Local Group [9].

While this issue may be caused by the limitation of survey methods or the limita-

tion of sensitivity of observational tools, we could consider this problem to be a sign

of discrepancy between CDM model and observations.

The scalar field dark matter(SFDM) was proposed to solve the small scale prob-

lems mentioned above. It can be divided into two categories, with [10,11] or without

self-interaction [12,13]. Among these SFDM model, we are more interested in scalar

field without self-interaction, which is also called fuzzy cold dark matter(FCDM)

or ψ dark matter(ψDM). ψDM particles are extremely light non-relativistic boson

whose masses are around 10−22eV. The mass of ψDM particle is light enough that

the critical temperature of forming Bose-Einstein condensation(BEC) is high enough

to approximate all dark matter particles to be in the BEC state, therefore it can be

described by a single particle wave function under Newtonian approximation. The

uncertainty principle helps ψDM model avoid the formation of halo cusps as well as

suppress the abundance of subhalos. Moreover, ψDM behaves like CDM on large

1
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scale, in which the predictions of CDM agree with observations .

In 2014, first cosmological simulation of ψDM structure formation was performed

by Schive et al [14], showing that ψDM model indeed solve the cusp-core problem

and missing satellite problem simultaneously, while leaving large scale structure

similar to cold dark matter simulation. Base on this work, they found that dark

matter halos are composed of a solitionic core surrounded by a extended halo with

various granule-like structure. The size of these granules are about several kpc. Note

that the density profile in the simulation is different from the analytical solution [15]

and the self-interaction case in Thomas-Fermi approximation [11].

We analyzed dark matter halos in our simulation by eigenfunction expansion,

assuming dark matter halos are spherical-symmetric systems. We find the proba-

bility distribution function, which is defined in section 2.2, can be fitted by several

classical distribution function models which describe self-gravitating collisionless

systems [16]. Moreover, we constructed an artificial halos based on our analysis of

distribution function, and test its stability by simulation. On the other hand, if

we take the distribution function to be the fermionic King model [17], which would

be discuss in section 2.3, we can obtain a series of self-consistent solutions of halo

potential. This method is described in section 2.4. Besides, we calculated the time

correlation function to study the dynamical properties of the granules in dark mat-

ter halos, using the artificial halo we constructed. The results are shown in section

3.4.
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Chapter 2

Equations and methods

2.1 The Schrödinger-Poisson equation

In this section we briefly derive the equation of motion for ψDM . In the non-

relativistic limit, the Einstein-Klein-Gordon (EKG) equation reduce to Schrödinger-

Poisson (SP) equation [18]. The derivation follows the content in [19].

The ψDM is described by the Klein-Gordon equation

�φ+
m2c2

~2
φ = 0 (2.1)

where

� = Dµ(gµν∂ν) =
1√
−g

∂µ(
√
−ggµν∂ν) (2.2)

is the d’Alembertian operator.

In the weak field limit Φ/c2 << 1, the Friedmann-Robertson-Walker(FRW) met-

ric with scalar perturbation in conformal Newtonian gauge is

ds2 = gµνdx
µdxν = c2(1 + 2

Φ

c2
)dt2 − a(t)(1− 2

Φ

c2
)δijdx

idxj (2.3)

where a(t) is the scale factor, and Φ(~x, t) is the gravitational potential of Newtonian

gravity. Substituting equation 2.3 into equation 2.1, we have the Klein-Gordon

equation

1

c2

∂2φ

∂t2
+

3H

c2

∂φ

∂t
− 1

a2
(1 +

4Φ

c2
)∇2φ− 4

c4

∂Φ

∂t

∂φ

∂t
+ (1 +

2Φ

c2
)
m2c2

~2
φ = 0 (2.4)

up to first order of Φ/c2, where H = ȧ/a is the Hubble constant.

3
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We also have Einstein equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.5)

Assuming ψDM dominate the energy density of the Universe, one can obtain

∇2Φ

4πGa2
=
T 0

0

c2
− 3H2

8πG
+

3H

4πGc2
(
∂Φ

∂t
+HΦ) (2.6)

with Newtonian gauge for the time-time component of Einstein equation.

R0
0 −

1

2
R =

8πG

c4
T 0

0 (2.7)

In the non-relativistic limit, we take the transformation [20]

φ(x, t) =
~
m
e−imc

2t/~ψ(x, t) (2.8)

Here ψ can be interpreted as wave function only in the non-relativistic limit c→∞,

and so does ρ = |ψ|2 which is rest mass density when c → ∞. Substitute equation

(2.8) into Klein-Gordon equation (2.4) and Einstein equation (2.6), we have

i~
∂ψ

∂t
− ~2

2mc2

∂2ψ

∂t2
− 3

2
H

~2

mc2

∂ψ

∂t
+

~2

2ma2
(1 +

4Φ

c2
)∇2ψ

−mΦψ +
3

2
i~Hψ +

2~2

mc4

∂Φ

∂t
(
∂ψ

∂t
− imc2

~
ψ) = 0

(2.9)

and

∇2Φ

4πGa2
= (1− Φ

c2
)|ψ|2 +

~2

2m2c4
(1− 2Φ

c2
)

∣∣∣∣∂ψ∂t
∣∣∣∣2 +

~2

2a2m2c2
(1 +

2Φ

c2
) |∇ψ|2

− ~
mc2

(1− 2Φ

c2
)Im(

∂ψ

∂t
ψ∗)− 3H2

8πG
+

3H

4πGc2
(
∂Φ

∂t
+HΦ)

(2.10)

In the non-relativistic limit c→∞, equation (2.9) and (2.10) reduce to Schrödinger-

Poisson equation

i~
∂ψ

∂t
+

3

2
i~Hψ = − ~2

2ma2
∇2ψ +mΦψ (2.11)

and
∇2Φ

4πGa2
= |ψ|2 − 3H2

8πG
(2.12)

For the homogeneous background wave function ψb(x, t) = ψb(t) and Φb(x, t) = 0,

equation (2.11) and (2.12) become

i~
∂ψb
∂t

= −3

2
i~Hψb (2.13)
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and

|ψb|2 =
3H2

8πG
(2.14)

Therefore,

ψb ∝ a−3/2 (2.15)

and the density

ρb = |ψb|2 ∝ a−3 (2.16)

scales as matter.

We write Schrödinger-Poisson equation into dimensionless equation and assume

the time scale of evolution is much faster than cosmological expansion. Therefore,

the second term of equation (2.11) on the left hand side can be ignored. We have

i~
∂ψ

∂t
= − ~2

2ma2
∇2ψ +mΦψ (2.17)

and
∇2Φ

4πGa2
= |ψ|2 − 3H2

8πG
(2.18)

normalize these equation with normalized length ~ξ ≡ (3
2
H2

0 Ωm0)−1/4(mB/~)1/2, nor-

malized time coordinate τ ≡ (3
2
H2

0 Ωm0)1/2a−2t, normalized comoving density |ψ|2 =

ρ/ρb and normalized potential V = mBa~−1(3
2
H2

0 Ωm0)−1/2Φ, we obtain

i
∂ψ

∂τ
= (−∇

2

2
+ aV )ψ (2.19)

and

∇2V = |ψ|2 − 1 (2.20)

, which is the Schrödinger-Poisson equation.

2.2 Distribution function

From the von Neumann equation

i~
∂ρ

∂t
= [H, ρ] (2.21)

, where ρ is density operator and H is the Hamiltonian of this this system, we know

that if the given system is in a equilibrium state, that is, ∂ρ
∂t

= 0 , the density operator
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has to be an explicit function of Hamiltonian in order to make the right hand side

of equation (2.21) vanish. Moreover, we assume the system is spherical-symmetric

and adopt the treatment of standard quantum mechanics. It means that we have a

set of basis |nlm > which are the eigenkets of Hamiltonian(H), angular momentum

square(L2), and z-component of angular momentum(Lz), and they satisfy

H|nlm >= Enl|nlm > (2.22)

L2|nlm >= ~2l(l + 1)|nlm > (2.23)

Lz|nlm >= ~m|nlm > (2.24)

We consider an ensemble of N identical systems described by the Schrödinger-

Poisson equation. Let ψk(r, t) denote the wave function of the kth system at time

t. It follows the Schrödinger-Poisson equation

i
∂ψk

∂τ
= (−5

2

2
+ aV )ψk (2.25)

and

52V = |ψk|2 − 1 (2.26)

We introduce the complete orthonormal eigenfunctions

Φnlm =< x|nlm > (2.27)

, and the wavefunction can be expanded by this set of functions

ψ(r, τ) =
∑
nlm

anlm(τ)Φnlm(r) (2.28)

, where anlm is the probability amplitudes for a system to be in the states Φnlm. The

density operator ρ̂ is defined by the matrix elements as

ρnlmn′l′m′ =
1

N

N∑
k=1

aknlma
k∗
n′l′m′ (2.29)

The off-diagonal elements vanish because of the postulate of random phases.

We define the distribution function to be the diagonal elements of density operator

expanded by the complete orthonormal set Φnlm(r)

ρnlmn′l′m′ = f(Enl, l,m)δnn′δll′δmm′ (2.30)
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The physical meaning of the distribution function defined in this way is the proba-

bility of finding the system to be in the state Φnlm.

As we mentioned above, the distribution function may depend on energy eigen-

values (Enl), angular momentum square(L2), and the z-component of angular mo-

mentum. Note that this is similar to the result of Jeans theorem, which states that

any solution of steady state of collisionless Boltzmann equation depends only on the

integrals of motion. And for a spherical symmetric system the integrals of motion

is Hamiltonian, and angular momentum.

Practically, we do not have ensembles which have the same halo mass in our

simulations, thus we adopt the idea that the ensemble average of the amplitude

squares will be the average of the amplitude squares over those states which have

approximately the same eigenvalues. For example, if the distribution function only

depends on energy eigenvalues, the distribution function will be computed by

f(E) =

∑
Enl≈E |anlm|

2

g(E)
(2.31)

where g(E) is the density of states, that is, the number of states whose energy

eigenvalues are in the neighborhood of energy E.

If the distribution function depends on both energy and L2

f = f(E,L2) (2.32)

, then the distribution function will be

f(E,L2) =

∑
Enl≈E,~l(l+1)≈L2 |anlm|2

g(E,L2)
(2.33)

where g(E,L2) again represents the density of states near E and L2.

2.3 Procedure of solving eigenfunctions and am-

plitudes

In this section, we introduce our method of solving radial eigenfunction by computer

program, and some details we should notice when adopt this procedure.
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First, we have spatial information of wave function ψ(x, t) in a three dimensional

simulation box at a certain time(usually at red shift zero). We only analyze the

region inside the virial radius of halos. We adopt the definition that virial radius is

the radius whose enclosed average density is 347 times background matter density[].

Next, we calculate the density profile of halos, while let density outside virial

radius be zero. We extend our calculation domain of eigenfunction to about ten

times of the virial radius, and compute gravitational potential by Green function

method.

V (r) = −G
∫

ρ(r′)∣∣∣~r′ − ~r∣∣∣r′2 sin θdθdφdr′ (2.34)

where G is the Newton constant. Note that equation (2.34) implies

lim
r→∞

V (r) = 0 (2.35)

because we neglect the boundary term. Also, because we set density outside the

virial radius be zero, the potential outside the virial radius is

V (r) = −GMvir

r
for r > rvir (2.36)

, where Mvir is the mass enclosed by virial radius.

Next, we solve the eigenfunction of hamiltonian operator

H = −∇
2

2
+ aV (2.37)

, using separation of variable and standard treatment of spherical system in quantum

mechanics textbook. We have

ψ(r, θ, φ) = R(r)Y m
l (θ, φ) (2.38)

where Y m
l (θ, φ) is the spherical harmonics, which satisfies

sinθ
∂

∂θ
(sinθ

∂Y m
l

∂θ
) +

∂2Y m
l

∂φ
= −l(l + 1)sin2θY m

l (2.39)

and R(r) = u(r)/r is the radial wave function, where u(r) satisfies

−1

2

d2u

dr2
+ (aV (r) +

l(l + 1)

2r2
)u = Eu (2.40)
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We use the package LAPACK [21] to calculate equation (2.40), and use finite

difference method, that is,

−1

2

1

(∆r)2
(ui+2 − 2ui+1 + ui) + Veffui+1 = Eui+1 (2.41)

where Veff = aV (r) + l(l+1)
2r2

is the effective potential. Finally, we normalize the

solution such that ∫ rm

0

|R|2r2dr = 1 (2.42)

where rm is the maximum radius of our calculation domain.

For some quantum number l, we could obtain many eigenfunctions with different

eigenvalue. Label these eigenfunctions from the lowest eigenvalue to the highest, we

have another quantum number. Thus the eigenfunctions can be label by three

quantum number n, l, and m,

Φnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ) (2.43)

which is analogous to the hydrogen atom.

Note that we set the upper limit of eigenvalues to be −GMvirmB/rvir when

solving equation (2.41) for two reasons. First, the potential outside the virial radius

is not correct because we artificially set the density outside be zero. Second, we can

not let the upper limit of eigenvalues be zero because our radius domain is finite.

There is a constraint of upper limit of eigenvalues for radial equation (2.40) in finite

domain, see reference [22].

By using the orthogonality of eigenfunctions,∫
Φnlm(r, θ, φ)Φ∗n′l′m′(r, θ, φ)d3r = δnn′δll′δmm′ (2.44)

we can solve the amplitudes of each eigenfunction.

ψ(r, θ, φ) =
∑
nlm

anlmΦnlm(r, θ, φ) (2.45)

where

anlm =

∫
ψ(r, θ, φ)Φ∗nlm(r, θ, φ)d3r (2.46)

After we have the information of amplitudes, we can compute distribution function

in terms of section 2.2.
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2.4. Models of distribution function for classical collisionless

self-gravitating system

2.4 Models of distribution function for classical

collisionless self-gravitating system

In classical kinetic theory, we can define distribution function for single particle in

the phase space

f = f(~x,~v, t) (2.47)

such that f(~x,~v, t)d3xd3v is the probability of finding the particle near the position

~x and velocity ~v at time t. The equation govern the distribution function is the

Boltzmann transfer equation

∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~̇v
=

(
∂f

∂t

)
coll

(2.48)

where the right hand side of equation (2.48) is due to collision with other particles.

If the particle is collisionless, we have

∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~̇v
= 0 (2.49)

for system with gravitation potential Φ(~x, t), equation (2.49) becomes

∂f

∂t
+ ~̇x · ∂f

∂~x
− ∂Φ

∂~x
· ∂f
∂~̇v

= 0 (2.50)

, which is called collisionless Boltzmann equation. For classical collisionless system

with self gravity, there is no distribution function can maximize entropy of a system

with energy E and total mass M. Accordingly, those system can only reach dynamical

equilibrium rather than thermal equilibrium, and the distribution function will not

be Maxwell-Boltzmann distribution. In fact, the distribution function of collisionless

self-gravitating system is determined by initial condition and dynamical processes

occurred [16].

Jeans theorem states that any steady-state solution of the collisionless Boltzmann

equation depends on the phase-space coordinate only through integrals of motion in

the given potential, and any function of the integrals yields a steady-state solution

of the collisionless Boltzmann equation [16]. For a spherically symmetric system,

Hamiltonian H and three components of angular momentum ~L is the integrals of
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motion. As a result, the distribution function of a spherically symmetric system

depends on H and ~L, that is,

f = f(H, ~L) (2.51)

There are several widely-used models of distribution function which satisfy the

collisionless Boltzmann equation (2.50) and Poisson’s equation

∇2Φ = 4πGρ (2.52)

, where ρ =
∫
fd3v.

2.4.1 Distribution function depends on energy

Now we consider distribution function only depends on the Hamiltonian H, f =

f(H). First, we introduce Hernquist model [23], which is written as

fH(H) =
1√

2(2π)3(GMa)3/2

√
Ẽ

(1− Ẽ)2

[
(1− 2Ẽ)(8Ẽ2 − 8Ẽ − 3) +

3 sin−1
√
Ẽ√

Ẽ(1− Ẽ)

]
(2.53)

, where a and M is parameters, G is gravitation constant and Ẽ ≡ − aH
GM

.

Another example is the Jaffe model [24], the distribution function of Jaffe model

is

fJ(H) =
1

2π3(GMa3/2)

[
F−

(√
2Ẽ
)
−
√

2F−

(√
Ẽ
)
−
√

2F+

(√
Ẽ
)

+ F+

(√
2Ẽ
)]

(2.54)

where F±(z) is Dawson’s integral defined as

F±(z) = e∓z
2

∫ z

0

dye±y
2

(2.55)

The third one is Wilson’s model [25], which is

fW =

A
[
e−β(E−Ec) − 1 + β (E − Ec)

]
, if E ≤ Ec

0, otherwise

(2.56)

where Ec is the escape energy, which is the largest available energy of particles in

this system, β and A are parameters. Note that the escape energy should be smaller

than zero because we set the energy of a particle at rest at infinite to be zero.
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self-gravitating system

Finally, we introduce King model [26] and fermionic King model. King model

were first introduced by Michie [27] while were spread by King. The distribution

function of King model is

fKing =

A(e−β(E−Ec) − 1), if E ≤ Ec

0, otherwise

(2.57)

where Ec is again the escape energy. King model differ from Maxwell-Boltzmann

distribution only by a constant, but this difference is important when we deal with

self-gravitating system. King model describe a self-gravitating system with finite

mass and finite radius, where the density drop to zero. While Maxwell-Boltzmann

distribution result in infinite mass systems, whose density decrease as r−2 at large

radius.

On the other hand, fermionic King model was introduced by Ruffini and Stella

[28], and can be derived from kinetic theory [17]. The distribution function of

fermionic King model reads

fFK =

A
e−β(E−Ec)−1
e−β(E−Ec−µ)+1

, if E ≤ Ec

0, otherwise

(2.58)

Fermionic King model may describe systems composed of fermion or systems

which have experienced violent relaxation [29]. Violent relaxation happens when

the potential of collisionless system depends on both space and time, and lead to a

Fermi-Dirac type distribution function. However, Fermi-Dirac distribution function

couple with gravity will result in infinite mass. Fermionic King model may provide

a more realistic distribution function because it describe a finite mass system, while

leaving particles with energy E � Ec distribute as Fermi-Dirac distribution.

2.4.2 Distribution function depends on energy and L2

Systems with distribution function of the form f = f(H,L) are also spherically

symmetric, but anisotropic in velocity distribution. That is,

v2
r 6= v2

θ (2.59)
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Since the simulations of ψDM show anisotropic in derivatives at outer radius(see

figure 2.1 for example), we expect that the distribution function may depend on

angular momentum square L2.

First we introduce Osipkov-Merritt models [16], the distribution function de-

pends on H and L only through the combination

Q ≡ −E − L2

2r2
a

, (2.60)

where ra is a constant, called the anisotropy radius. By replacing the Hamiltonian

with Q for distribution function mentioned in section 2.4.1, we obtain Osipkov-

Merritt models.

Another model we want to consider is Michie model, which is an extension of

King model to include anisotropy, defined by the distribution function

fM =

Ae
−βL2/(2r2a)(e−β(E−Ec) − 1), if E ≤ Ec

0, otherwise

(2.61)

where A and β are parameters, In the limit ra →∞ this distribution function reduce

to King model(equation 2.57), and for E − Ec � σ2

f ≈ ρ1(2πσ2)−3/2e−L
2/(2r2aσ

2)e−(E−Ec)/σ2

= AeQ, (2.62)

which is the Osipkov-Merritt models.

The distribution function of simulation halos as well as the results of fitting with

models in this section are shown in section 3.1. Although the Schrödinger-Poisson

system is quantum system, which can not be described by collisionless Boltzmann

equation(equation 2.50), the distribution function can be fitted by those classical

models fairly well.

2.5 Solving self-consistent solutions of fermionic

King model

Our goal is to create spherically symmetric stable halos for given halo masses with

some parameters for a certain distribution function. We apply the recipe describe



doi:10.6342/NTU201601603

14 2.5. Solving self-consistent solutions of fermionic King model

in this section for fermionic King model, and we will discuss how the parameters

affect the density profile in section 3.2.

A self-consistent solution satisfies equations

− ~2

2ma2
∇2Φnlm +mΦΦnlm = EnlΦnlm (2.63)

ψ =
∑
nlm

anlmΦnlm (2.64)

∇2Φ = 4πGa2ρ = 4πGa2 |ψ|2 (2.65)

< anlma
∗
n′l′m′ >en= fFK(Enl)δnn′δll′δmm′ (2.66)

, where <>en denote the ensemble average , fFK is the fermionic King model dis-

tribution function(equation 2.58), a is scale factor and anlm is amplitudes of eigen-

modes. Note that here the density is dimensionless and normalized with background

matter density, and we ignore −1 in Poisson’s equation because density inside virial

radius is roughly few hundreds of background density.

We will depict the main idea and describe details in the next few paragraphs.The

idea is simple and straightforward. First, guess a initial potential Φin and solve the

eigenvalues equation (2.63). Next, generate amplitude according to equation (2.66).

Here we do not use random number to generate amplitudes, simply set all ampli-

tudes anlm =
√
fFK(Enl). Third step is generating wave function and potential Φout

by equation (2.64) and (2.65). As one may expect, the output potential Φout will not

be the same with input potential Φin. Therefore, we adopt time independent pertur-

bation theory, changing the energy Enl to Enl + ∆Enl, generating amplitudes again

and obtaining another potential Φper. Then use the potential Φper to solve equa-

tion (2.63), and repeat these steps until the potential converge to a self-consistent

solution, that is, Φin = Φout. We found that this procedure converge rapidly if

the parameters of initial input potential is suitable and diverge otherwise. It will

converge within ten iterations if we guess the right parameters of initial potential.

First we will briefly describe how to create initial potential. For a given halo

mass, there is a core-halo relation found by simulation [30]. Thus we have soliton

mass correspond to this halo mass and a core radius defined as the radius where

density decrease to half of the central density. According to [14], soliton density
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profile can be approximated by

ρs(r) ≈
1.9(mB/10−23eV )−2(rc/kpc)

−4

[1 + 9.1× 10−2(r/rc)2]8
(2.67)

, where rc is the core radius. On the other hand, We use Navarro Frenk White

(NFW) profile [2], which is a good fitting function to density profile of cold dark

matter in cosmological simulation, as the initial halo density profile. NFW profile

reads

ρNFW(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 (2.68)

, where rs is the scale radius and ρ0 is the characteristic density. NFW profile

have two parameters, rs and ρ0, which can be transform to halo mass Mh and

concentration parameter c defined as

c =
Rvir

Rs

(2.69)

where Rvir is virial radius. With given halo mass, the number of parameters reduce

to one. The initial potential is constructed by pasting soliton profile with NFW

profile, i.e.

ρ(0)(r) = Θ(re − r)ρs(r) + Θ(r − re)ρNFW (r) (2.70)

, where re is the radius where soliton density profile equals to NFW profile. Fi-

nally, substitute this initial density profile into equation (2.34), we obtain the initial

potential.

We use the time independent perturbation theory to find the self-consistent so-

lution. Firstly, we have zeroth order Hamiltonian H0 = − ~2
2ma2
∇2 + mΦin. we set

the first order Hamiltonian be H = − ~2
2ma2
∇2 +mΦout, hence the first order Hamil-

tonian is H1 = m(Φout − Φin). The perturbation theory tells that the first order

perturbation in energy is

∆Enl =< nlm|H1|nlm > (2.71)

where

H0|nlm >= Enl|nlm > (2.72)

, the shift of energy will change the amplitudes because the fermionic King distri-

bution depends on energy.
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We also set a criterion of self-consistent solution. Let the function

D(Φ1,Φ2) =
1

R

∫ R

0

[
(Φ1 − Φ2)

0.5(Φ1 + Φ2)

]2

dr (2.73)

denote the difference between two potentials. If D(Φin,Φout) < 0.01 we recognize

the solution as self-consistent solution.

2.6 Method of constructing artificial halos

We have created several artificial halo and test their behavior in simulations. The

method of constructing artificial halos will be shortly describe in this section. First,

solve eigenfunctions and eigenvalues by equation (2.63), either use self-consistent

solution or use potential obtain from simulation. Second, amplitudes follow equation

(2.66), thus we generate amplitudes as two dimensional Gaussian distribution in the

complex plane. Namely, the distribution of amplitudes a = ar+ iai of certain energy

E is

f(ar, ai) =
1

2πσ2
exp

(
−a

2
r + a2

i

2σ2

)
(2.74)

where

σ =

√
1

2
fFK(E) (2.75)

and fFK is the distribution function of fermionic King model. From equations (2.74)

and (2.75), we can easily obtain the ensemble average of amplitudes square

< |a|2 > =

∫
f(ar, ai)(a

2
r + a2

i )dardai

=

∫ ∞
0

1

2πσ2
exp

(
− r2

2σ2

)
r22πrdr

= 2σ2

= fFK(E) (2.76)

and

< a1a
∗
2 > =

∫
f(a1r, a1i)f(a2r, a2i)(a1ra2r + a1ia2i + i(a1ia2r + a2ia1r))da1rda1ida2rda2i

= 0. (2.77)
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The last step is constructing wave function by equation (2.64). Note that we set

ground state amplitude in another way. Because we know the core mass already,

the amplitude square of ground state is fixed. We only have to give a phase to it.

2.7 Time correlation function

Another important issue we want to consider is the dynamical behavior of

granules, therefore we introduce the time correlation function, which is defined as

Corr(τ) =

∫
shell

δ(~r, 0)δ(~r, τ)d3r (2.78)

and

δ(~r, t) =
ρ(~r, t)− ρ̄(~r, t)

ρ̄(~r, t)
, (2.79)

where ρ(~r, t) is the density. The label shell denote that we only integrate through a

thin spherical shell with radius r, and the averaged density ρ̄ is also averaged in the

thin shell. The reason we average over a thin shell is that if we average the whole

volume the inner region will dominate the result. Conceptually, the time correlation

function measure the averaged time which the overdensity need to move away from

its original position. The results of correlation function for different radius are shown

in section 3.4.
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(a)

(b)

(c)

Figure 2.1: Density slice of ψDM halo
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Chapter 3

Results

3.1 Probability distribution function

We fit the distribution function by minimizing

χ2 =
∑
i

(
DFi − f(Ei, li)

σi

)2

(3.1)

where

σi =
1

ni − 1

√
< y2 > − < y >2 (3.2)

is the standard error, DFi is the average of amplitudes in the ith bin, Ei and li

is the energy and angular momentum quantum number of the ith bin, and y is

the amplitude square. We analyze five halos and several models, the results are

summarized in table 3.1 to 3.5. The reduced χ2 is defined as

χred =
χ2

degrees of freedom
(3.3)

Note that we exclude the bins in which there is only one eigenvalue. We also

exclude several high energy bins in some cases, because higher energy modes have

larger probabilities at large radius, and we expect the region of halos near virial

radius may not be in equilibrium yet. Figure 3.1 to figure 3.5 shows the energy

distribution function obtain from simulation and the fitting results, different figures

show different halos in our simulation. We think it is safe to say that there is no

dramatic difference of reduced χ2 between these models. We also observe ambiguity

19
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Figure 3.1: Fitting models with energy distribution function, the error bar

represent standard error.

when fitting models. We are not sure whether we could obtain global minimum of

χ2, which need a good guess of initial parameters.

Figure 3.6 to figure 3.5 show the fitting result of Osipkov-Merritt King models.

We plot distribution function as two dimensional color map to show the simulation

data, model, and residual. We also show the distribution function as function of

Q which is defined by equation (2.60). We can see in these figures that for some

angular momentum l, the lowest energy eigenvalue become higher when l increase.

There is no data in the bottom-right shadow region in figure 3.6a. Due to this

limitation, it is hard to tell whether the distribution function of simulation halos

depends on angular momentum or not.

Moreover, we test the postulate of random phases for several energy bins. Figure

3.8 shows the amplitudes with −1.0 < E < −0.95 in complex plane, every dot

represent an amplitude of a eigenstate. It is clear that the simulation halos satisfy
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model χ2
red bins degrees of freedom parameters

King 36.17 60 46 (A,β,Ec)

fermionc King 36.97 60 45 (A,β,Ec,µ)

Jaffe 25.26 60 46 (a,GM,Ec)

Wilson 22.96 60 46 (A,β,Ec)

Hernquist 25.26 60 46 (a,GM,Ec)

Osipkov-Merritt King 4.54 60× 99 1400 (A,β,Ec,ra)

Michie

Table 3.1: Run03 Halo01 06 time072

model χ2
red bins degrees of freedom parameters

King 11.80 50 33 (A,β,Ec)

fermionic King 12.17 50 32 (A,β,Ec,µ)

Jaffe 9.29 50 33 (a,GM,Ec)

Wilson 8.26 50 33 (A,β,Ec)

Hernquist 6.8 50 33 (a,GM,Ec)

Osipkov-Merritt King 64.87 50× 40 421 (A,β,Ec,ra)

Table 3.2: Run03 Halo05 time072

model χ2
red bins degrees of freedom parameters

King 6.50 70 43 (A, β,Ec)

fermionic King 3.82 70 42 (A,β,Ec,µ)

Jaffe 6.72 70 43 (a,GM,Ec)

Wilson 6.81 70 43 (A,β,Ec)

Hernquist 7.3 70 43 (a,GM,Ec)

Table 3.3: Run03 Halo02 03 time072
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model χ2
red bins degrees of freedom

King 6.62 50 36 (A, β,Ec)

fermionic King 6.80 50 35 (A,β,Ec,µ)

Jaffe 7.08 50 36 (a,GM,Ec)

Wilson 7.42 50 36 (A,β,Ec)

Hernquist 8.48 50 36 (a,GM,Ec)

Osipkov-Merritt King 6.96 50× 40 422

Table 3.4: Run05 Halo01 time072

model χ2
red bins DoF parameters

King 122.83 60 43 (A, β,Ec)

fermionic King 121.55 60 42 (A,β,Ec,µ)

Jaffe 127.74 60 43 (a,GM,Ec)

Wilson 132.23 60 43 (A,β,Ec)

Hernquist 137.45 60 43 (a,GM,Ec)

Osipkov-Merritt King 6.96 50× 40 422

Michie 33.11 60×94 1147 (ρ1, σ
2, ra, Ec)

Table 3.5: Run05 Halo06 time072
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Figure 3.2: Fitting models with energy distribution function

the random phases assumption.

3.2 Self-consistent solution of fermionic King model

In this section we will show several examples of self-consistent solution of potential

and density with different parameters, and illustrate the effects of changing the

value of them. Also we compare self-consistent solution of density with simulation

density, and find a density solution which are very close to the simulation one. It

turns out that the parameters of this solution fit the distribution function obtained

from simulation fairly well.

We first show a series of self-consistent solution of density and potential with

µ = −2.5 but different β, setting escape energy to zero because the upper limit of

eigenvalues is −GMvirm/rvir, and the exact value of escape energy would not affect

much if it is higher than the upper limit. Figure 3.9 to figure 3.14 shows the density
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Figure 3.3: Fitting models with energy distribution function, we exclude

nine highest bins for this case

profile and potential of self-consistent solution with parameter β = 3.2 to β = 4.0.

We restrict our discussion to Run03 Halo02 03, which is the most massive halos we

could obtain from simulation so far. The mass of this halo is about 7 × 1010M�,

and it does not follow the core-halo relation mentioned in section 2.5. Therefore we

make a larger soliton in order to compare simulation with self-consistent solution.

We can see from these figures that when β increase the potential of self-consistent

solution becomes shallower. The reason is that we interpret β as inverse temperature,

and if temperature is higher the potential should be deeper to satisfy virial condition,

which state that potential energy plus two times of kinetic energy is zero for a self-

gravity system. On the other hand, figure 3.16 shows density profile and potential

of the same β = 3.4 but different chemical potential µ. We can see that chemical

potential reduce the logarithm slope of the most inner part of halos while the density

within r ∼ 10−3 to r ∼ 10−3 increase because total mass is fixed. As one may
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Figure 3.4: Fitting models with energy distribution function, we exclude

nine highest bins for this case

expect from distribution function, the existence of chemical potential suppress the

amplitudes square of eigenmodes whose energy are below it. These eigenmodes

contribute to the inner part of halos thus chemical potential suppress the inner

slope of their density profile.

We substitute β = 3.4 and µ = −2.5 (fig. 3.10) into fermionic King model,

calculating the reduced χ2 using simulation data of distribution function, and find

that χ2
red = 5.85. The result is shown in figure 3.17. On the other hand, we construct

a self-consistent solution with parameter obtained by direct fitting, which is β =

3.45550182 and µ = −1.95725734. Figure 3.18 shows the density and potential for

this solution and simulation data. The deviation of this solution from simulation

may reflect the fact that we can not precisely obtain the parameters of distribution

function because the number of states for lower excited states is too small, which

makes large uncertainty about the mean of lower excited states.
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Figure 3.5: Fitting models with energy distribution function. We exclude

nine highest bins for this case

3.3 Artificial halos

In this section we show some images of simulation and artificial halos and discuss

the stability of artificial halos. We construct three artificial halos using potential ob-

tained by (a)simulation, (b)soliton plus NFW profile, and (c) self-consistent solution

with parameters β = 3.4 and µ = −2.5. Figure 2.1 shows the z = 0 slices of density,

real part and imaginary part of wave function of simulation halo Run03 Halo02 03.

And figure 3.19 shows corresponding slices of artificial halo construct by simulation

potential. This potential is calculated form density profile of Run03 Halo02 03,

which is the most massive halo we have. Finally, figure 3.20 shows artificial halo

using potential of self-consistent solution.

From these figures, we can see that simulation halo is anisotropic in outer region

compare with artificial halo, and both of them are isotropic in inner region. This re-

sult shows evidence that distribution function should depend on angular momentum
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(a) (b)

(c) (d)

Figure 3.6: OM King model Run03 Halo01 06 time072

or it is not virialized in the outer region, while direct fitting face the challenge that

is hard to determine the dependence of angular momentum, which was discussed in

section 3.1.

We also shows the evolution of density profile by running simulation for about

one free-fall time at virial radius. Figure 3.21 shows the evolution of simulation halo

Run03 Halo02 03 and artificial halo made by simulation potential. They evolve

roughly the same way, a stable outer halo with an oscillating soliton, while the

density of inner part of artificial halo decrease to form a more stable configuration

in very short time. This may be caused by the fact that simulation potential and

parameters of artificial are not self-consistent. On the other hand, the evolution of

artificial halo made by self-consistent solution is shown in figure 3.22(black curve).

The whole halo is stable and soliton also oscillate, but with a smaller amplitude

compare with simulation halo. We also show the evolution of artificial halo made by
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(a) (b)

(c) (d)

Figure 3.7: OM King model Run03 Halo05 time072

soliton plus NFW potential. It relax into more stable configuration within a free-fall

time at virial radius.

3.4 Time correlation function

The result of time correlation function defined in section 2.7 are shown in figure

3.23. We use self-consistent solution with β = 3.4 and µ = −2.5. r1 to r9 denote

radius of shells in which we calculate correlation function. We take log spacing in

this case and the largest radius r9 is about half of the virial radius. The width of

the shells is 1
300

virial radius, around 3 grids of our simulation box. The unit of time

is 1/6 ground state period. Note that we exclude ground state when we calculate

correlation function. We can see from this figure that the inner most radius r1 have

a strong correlation after one hundred steps. As radius increase, the correlation after
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Figure 3.8

first drop gradually decay. This feature is caused by the fact that lower excited states

are dominant at small radius, and there are no enough states to make correlation

function drop to zero.
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(a)

(b)

Figure 3.9: (a)density profile of self-consistent solution(green) and simula-

tion halo(blue). (b)input(red) and output(green) potential of fifth iteration

compare with simulation halo(blue)
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(a)

(b)

Figure 3.10: (a)density profile of self-consistent solution(green) and sim-

ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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(a)

(b)

Figure 3.11: (a)density profile of self-consistent solution(green) and sim-

ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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(a)

(b)

Figure 3.12: (a)density profile of self-consistent solution(green) and sim-

ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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(a)

(b)

Figure 3.13: (a)density profile of self-consistent solution(green) and sim-

ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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(a)

(b)

Figure 3.14: (a)density profile of self-consistent solution(green) and sim-

ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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(a)

(b)

Figure 3.15: (a)density profile of self-consistent solution with different β.

(b)output potential of self-consistent solution with different β.
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(a)

(b)

Figure 3.16: (a)density profile of self-consistent solution with different µ.

(b)output potential of self-consistent solution with different µ
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38 3.4. Time correlation function

Figure 3.17: Distribution function fitted by β = 3.4, µ = −2.5, and

Ec = 0(red) compare with direct fitting(green).
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(a)

(b)

Figure 3.18: Self-consistent solution with parameters obtained from

fitting(a)density profile of self-consistent solution(green) and simulation

halo(blue). (b)input(red) and output(green) potential of fifth iteration com-

pare with simulation halo(blue).
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40 3.4. Time correlation function

(a)

(b)

(c)

Figure 3.19: Density slice of ψDM halo
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(a)

(b)

(c)

Figure 3.20: Density slice of ψDM halo
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42 3.4. Time correlation function

Figure 3.21: Density profile evolves about one free-fall time at virial radius.

Here the red curve denote artificial halo construct by simulation potential,

and blue curves denote simulation halo. Soliton oscillate in both cases and

the outer part of halos are stable as well.
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Figure 3.22: Density profile evolves about one free-fall time at virial radius.

The Arti-Old denote the artificial halo constructed by soliton plus NFW

potential. Arti-New denote artificial halo constructed by self-consistent so-

lution potential with β = 3.4 and µ = −2.5. The self-consistent solution

halo is stable while with soliton oscillate slightly compare to simulation halo.

While soliton plus NFW halo need time to relax to a steady state.
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44 3.4. Time correlation function

Figure 3.23: Time correlation function of self-consistent solution with

β = 3.4 and µ = −2.5
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Chapter 4

Conclusion

To conclude, we have shown that the probability distribution function of a spher-

ically symmetric ψ dark matter halo which obeys Schrödinger-Poisson equation at

late time can be describe by several classical distribution function models. More-

over, we show that we can obtain self-consistent solutions of density and potential

of ψDM by utilizing some technics as well as fermionic King model. The artificial

halos construct by self-consistent solution is stable and similar with simulation halo

for the region whose radius is smaller than one third of virial radius, while fail to

represent simulation halo at large radius. We also calculate time correlation function

for this halo, and find that the correlation time increase as radius increase.
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