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Eigenfunction expansion for scalar field dark
matter halos

Shan-Chang Lin

Abstract

We analyze the simulation result of non-interacting scalar field dark matter ha-
los using energy eigenfunction expansion. The scalar field dark matter obeys the
Poisson-Schrodinger (SP) equation. At late time, when the dark matter halos are
virialized, we can solve time independent Schrodinger equation and obtain amplitude
of each eigenmode. We find that the distribution function (DF) of the dark matter
halos can be described by models of classical distribution functions, and we develop
a method to solve potential and density of a spherically symmetric Schrodinger-
Poisson system whose distribution function obeys fermionic King model. Also, we
construct artificial dark matter halos using different potentials, and test their sta-

bility. The amplitudes of the artificial halos are generated by fermionic King model.
Keywords

Scalar field dark matter, dark matter halo, probability distribution function, Schrédinger-

Poisson equation
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Chapter 1

Introduction

During last decade, several small scale tensions between standard cold dark mat-
ter(CDM) and observations have received much attention, including cusp-core prob-
lem and missing satellites problem [1]. Simulations of CDM structure formation
found cusp-like density profile in the inner part of halos [2, 3], while observation
found that density profile of the inner region of dwarf galaxies seem to have flat
cores [4-7]. On the other hand, the predicted amount of subhalos by CDM [8] are
much less than the amount of satellite galaxies detected in the Local Group [9].
While this issue may be caused by the limitation of survey methods or the limita-
tion of sensitivity of observational tools, we could consider this problem to be a sign

of discrepancy between CDM model and observations.

The scalar field dark matter(SFDM) was proposed to solve the small scale prob-
lems mentioned above. It can be divided into two categories, with [10,11] or without
self-interaction [12,13]. Among these SFDM model, we are more interested in scalar
field without self-interaction, which is also called fuzzy cold dark matter(FCDM)
or ¢ dark matter(¢»DM). »DM particles are extremely light non-relativistic boson
whose masses are around 10722eV. The mass of DM particle is light enough that
the critical temperature of forming Bose-Einstein condensation(BEC) is high enough
to approximate all dark matter particles to be in the BEC state, therefore it can be
described by a single particle wave function under Newtonian approximation. The
uncertainty principle helps ¥ DM model avoid the formation of halo cusps as well as

suppress the abundance of subhalos. Moreover, ¥ DM behaves like CDM on large
1
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2 Chapter 1. Introduction

scale, in which the predictions of CDM agree with observations .

In 2014, first cosmological simulation of 1) D M structure formation was performed
by Schive et al [14], showing that ¢»DM model indeed solve the cusp-core problem
and missing satellite problem simultaneously, while leaving large scale structure
similar to cold dark matter simulation. Base on this work, they found that dark
matter halos are composed of a solitionic core surrounded by a extended halo with
various granule-like structure. The size of these granules are about several kpc. Note
that the density profile in the simulation is different from the analytical solution [15]
and the self-interaction case in Thomas-Fermi approximation [11].

We analyzed dark matter halos in our simulation by eigenfunction expansion,
assuming dark matter halos are spherical-symmetric systems. We find the proba-
bility distribution function, which is defined in section 2.2, can be fitted by several
classical distribution function models which describe self-gravitating collisionless
systems [16]. Moreover, we constructed an artificial halos based on our analysis of
distribution function, and test its stability by simulation. On the other hand, if
we take the distribution function to be the fermionic King model [17], which would
be discuss in section 2.3, we can obtain a series of self-consistent solutions of halo
potential. This method is described in section 2.4. Besides, we calculated the time
correlation function to study the dynamical properties of the granules in dark mat-
ter halos, using the artificial halo we constructed. The results are shown in section

3.4.
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Chapter 2

Equations and methods

2.1 The Schrédinger-Poisson equation

In this section we briefly derive the equation of motion for ¥ DM. In the non-
relativistic limit, the Einstein-Klein-Gordon (EKG) equation reduce to Schrodinger-
Poisson (SP) equation [18]. The derivation follows the content in [19].

The DM is described by the Klein-Gordon equation

m2c?

hQ

O+ F =0 (2.1)

where
1

0= Dyu(g"0,) Z\/?gau(v —99"0,) (2.2)
is the d’Alembertian operator.
In the weak field limit ®/c* << 1, the Friedmann-Robertson-Walker(FRW) met-

ric with scalar perturbation in conformal Newtonian gauge is
2 JT 7% 2 ¢ 2 ¢ P
ds® = g datda” = c*(1 + 20—2)dt —a(t)(1— 20—2)5ijdx dx (2.3)

where a(t) is the scale factor, and ®(Z,t) is the gravitational potential of Newtonian
gravity. Substituting equation 2.3 into equation 2.1, we have the Klein-Gordon

equation

1% 3HOp 1 4 _,  4090¢ 205 m2c?
Bl A Bttt A 4 IO Wit it AR S M
028t2+ c2 Ot a2( +02)v A ot 8t+( +02) h?2

6=0 (24

up to first order of ®/c?, where H = a/a is the Hubble constant.
3
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2.1. The Schrodinger-Poisson equation

We also have Einstein equation

1 81G
Ruy - §g/,LVR = 7Tp,l/ (25)
Assuming ¥ DM dominate the energy density of the Universe, one can obtain
V2o B Y 3H? n
4rGa?2 2 8nG

SH  0d
9% ge 9.
G gr TP (2:6)

with Newtonian gauge for the time-time component of Einstein equation.

(2.7)

In the non-relativistic limit, we take the transformation [20]

h
oz, t) = Ee_”’w%/hw(:v,t) (2.8)
Here 1 can be interpreted as wave function only in the non-relativistic limit ¢ — oo,

and so does p = ||> which is rest mass density when ¢ — co. Substitute equation

(2.8) into Klein-Gordon equation (2.4) and Einstein equation (2.6), we have

2 2 2 2
GO0 W Pw 3B 0p  h

ot 2mc? Ot?

4P
(1+ )V
2 g (2.9)
Cmd - gihHw n 2R 8<I>(81/1 _imc

mct Ot ~ Ot h ¥) =0
and
V2P P k2 20 | |? k2 20 )
— = (1—- )| 1— ) |22 - (14+2=
ArGa? ( cQWM + 2m2c4( c? ) ‘ ot + 2a2m202( + c? )1Vl (2.10)
h 26 O 3H2  3H 0
B m02<1 2 )y ot v)

- 871G + A Gc? (E +H)

In the non-relativistic limit ¢ — oo, equation (2.9) and (2.10) reduce to Schrédinger-
Poisson equation

2

h
ZihHy = — 2 P 2.11
8t+QZ v 2ma2vw+m v ( )
and
V2 e 3H?
ArGa? [+l

2.12
8r (2.12)
For the homogeneous background wave function ¢y (z, t) = ¥(t) and ®,(x,t) = 0,
equation (2.11) and (2.12) become

Loy 3.
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2.2. Distribution function 5

and ,
=2 (2.14)
Therefore,
Yy o< a”?? (2.15)
and the density
py = |t|* < a”? (2.16)

scales as matter.

We write Schrodinger-Poisson equation into dimensionless equation and assume
the time scale of evolution is much faster than cosmological expansion. Therefore,

the second term of equation (2.11) on the left hand side can be ignored. We have

TR
and
V2o 5 3H?
v _ 2.1
drGa? [l (G (2.18)

normalize these equation with normalized length € = (2 H3,,0) =4 (mp/h)"/?, nor-
malized time coordinate 7 = (2H3Q,,0)"/%a™%t, normalized comoving density [¢|* =

p/py and normalized potential V = mpah~ (2H3Q0) ~/?®, we obtain

R Ve
and
VAV = [y -1 (2.20)

, which is the Schrodinger-Poisson equation.

2.2 Distribution function

From the von Neumann equation
dp
th— = |H, 2.21
111, (221)
, where p is density operator and H is the Hamiltonian of this this system, we know

o _

; 5 = 0, the density operator

that if the given system is in a equilibrium state, that is

d0i:10.6342/NTU201601603



6 2.2. Distribution function

has to be an explicit function of Hamiltonian in order to make the right hand side
of equation (2.21) vanish. Moreover, we assume the system is spherical-symmetric
and adopt the treatment of standard quantum mechanics. It means that we have a
set of basis |nlm > which are the eigenkets of Hamiltonian(H ), angular momentum

square(L?), and z-component of angular momentum(L,), and they satisfy

Hnlm >= E,|nlm > (2.22)
L*|nlm >= R*I(l + 1)|nlm > (2.23)
L,|nlm >= hm|nlm > (2.24)

We consider an ensemble of N identical systems described by the Schrodinger-
Poisson equation. Let 1*(r,t) denote the wave function of the kth system at time

t. It follows the Schrodinger-Poisson equation

2

k
iaair — (—% +aV)yt (2.25)
and
V= [P -1 (2.26)

We introduce the complete orthonormal eigenfunctions
D, =< z|nlm > (2.27)
, and the wavefunction can be expanded by this set of functions
Y(r,7) = i (T) Pt (1) (2.28)

, where a,,;,, is the probability amplitudes for a system to be in the states ®,,;,,,. The

density operator p is defined by the matrix elements as

N
1 *
Prlmn/U'm’ = N ; aﬁlmafz’l’m’ (229)

The off-diagonal elements vanish because of the postulate of random phases.
We define the distribution function to be the diagonal elements of density operator

expanded by the complete orthonormal set ®,,,(r)

Prlmn/U'm’ = f(En17 l, m)énn’éll’(smm’ (230)

d0i:10.6342/NTU201601603



2.3. Procedure of solving eigenfunctions and amplitudes 7

The physical meaning of the distribution function defined in this way is the proba-
bility of finding the system to be in the state ®,,,.

As we mentioned above, the distribution function may depend on energy eigen-
values (E,;), angular momentum square(L?), and the z-component of angular mo-
mentum. Note that this is similar to the result of Jeans theorem, which states that
any solution of steady state of collisionless Boltzmann equation depends only on the
integrals of motion. And for a spherical symmetric system the integrals of motion
is Hamiltonian, and angular momentum.

Practically, we do not have ensembles which have the same halo mass in our
simulations, thus we adopt the idea that the ensemble average of the amplitude
squares will be the average of the amplitude squares over those states which have
approximately the same eigenvalues. For example, if the distribution function only

depends on energy eigenvalues, the distribution function will be computed by

. ZEnle | @i

(B = =B (231)

where g(E) is the density of states, that is, the number of states whose energy
eigenvalues are in the neighborhood of energy E.

If the distribution function depends on both energy and L2
f=Ff(EBL? (2.32)

, then the distribution function will be

> BB (i1 )~re [Gntm|?
g(E, L?)

f(E,L*) = (2.33)

where g(E, L?) again represents the density of states near £ and L.

2.3 Procedure of solving eigenfunctions and am-

plitudes

In this section, we introduce our method of solving radial eigenfunction by computer

program, and some details we should notice when adopt this procedure.

d0i:10.6342/NTU201601603



8 2.3. Procedure of solving eigenfunctions and amplitudes

First, we have spatial information of wave function ¢ (z, t) in a three dimensional
simulation box at a certain time(usually at red shift zero). We only analyze the
region inside the virial radius of halos. We adopt the definition that virial radius is
the radius whose enclosed average density is 347 times background matter density(].

Next, we calculate the density profile of halos, while let density outside virial
radius be zero. We extend our calculation domain of eigenfunction to about ten
times of the virial radius, and compute gravitational potential by Green function

method.

Vi(r) = —G/ f(rl)ﬁ) 7% sin OdOdpdr’ (2.34)

r—r

where G is the Newton constant. Note that equation (2.34) implies

lim V(r) =0 (2.35)

r—00

because we neglect the boundary term. Also, because we set density outside the

virial radius be zero, the potential outside the virial radius is

Mm’r
Vi(r)= & . for > 1y, (2.36)

, where M,;, is the mass enclosed by virial radius.
Next, we solve the eigenfunction of hamiltonian operator
2

v
H=—— +aV (2.37)

, using separation of variable and standard treatment of spherical system in quantum

mechanics textbook. We have

U(r,0,9) = R(r)Y,™(0,¢) (2.38)

where Y;™(0, ¢) is the spherical harmonics, which satisfies

ay;m 82 Yzm

54 )+ 90 = —I(I + 1)sin*0Y;™ (2.39)

sz‘n@2 (sind

00
and R(r) = u(r)/r is the radial wave function, where u(r) satisfies

1 d*u [(I+1)
—5gz (aV(r) + 52 Ju= Eu (2.40)
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2.3. Procedure of solving eigenfunctions and amplitudes 9

We use the package LAPACK [21] to calculate equation (2.40), and use finite
difference method, that is,

11
( ) (uz+2 - 2u1+1 + ul) + ‘/effuerl Euerl (241)
where Vg = aV(r) + (l;) is the effective potential. Finally, we normalize the
solution such that
/ |R|*r2dr =1 (2.42)
0

where r,, is the maximum radius of our calculation domain.

For some quantum number 1, we could obtain many eigenfunctions with different
eigenvalue. Label these eigenfunctions from the lowest eigenvalue to the highest, we
have another quantum number. Thus the eigenfunctions can be label by three

quantum number n, 1, and m,

(I)nlm (7’, 97 ¢) = Rnl(r)yim(ev (b) (2'43)

which is analogous to the hydrogen atom.

Note that we set the upper limit of eigenvalues to be —GM,;,mp/r,; when
solving equation (2.41) for two reasons. First, the potential outside the virial radius
is not correct because we artificially set the density outside be zero. Second, we can
not let the upper limit of eigenvalues be zero because our radius domain is finite.
There is a constraint of upper limit of eigenvalues for radial equation (2.40) in finite
domain, see reference [22].

By using the orthogonality of eigenfunctions,

/ q)nlm (7“, 0, QZS) @fl,l,m,(r, Q, Qb)dgT = 6nn’5ll’5mm’ (244)

we can solve the amplitudes of each eigenfunction.

7’ 0 ¢ Zanlm nlm T, 0 ¢> (245)
nlm
where
Aplm = /w(ﬁ 97 ¢)(I):;lm<ra 97 (b)dgr (246)

After we have the information of amplitudes, we can compute distribution function

in terms of section 2.2.
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2.4. Models of distribution function for classical collisionless
10 self-gravitating system

2.4 Models of distribution function for classical

collisionless self-gravitating system

In classical kinetic theory, we can define distribution function for single particle in

the phase space

f=1@v.1) (2.47)
such that f(Z,,t)d>zd3v is the probability of finding the particle near the position
Z and velocity ¢ at time t. The equation govern the distribution function is the
Boltzmann transfer equation

of . of - Of of
of , . of . of _(0f 2.4
ot T ar TV 5 (m)mn (2.48)

where the right hand side of equation (2.48) is due to collision with other particles.
If the particle is collisionless, we have

Of = Of = Of _

G T g e =0 (2.49)

for system with gravitation potential ®(Z,t), equation (2.49) becomes

of . of 0% Of _

% 5 5% 50 0 (2.50)
, which is called collisionless Boltzmann equation. For classical collisionless system
with self gravity, there is no distribution function can maximize entropy of a system
with energy E and total mass M. Accordingly, those system can only reach dynamical
equilibrium rather than thermal equilibrium, and the distribution function will not
be Maxwell-Boltzmann distribution. In fact, the distribution function of collisionless
self-gravitating system is determined by initial condition and dynamical processes
occurred [16].

Jeans theorem states that any steady-state solution of the collisionless Boltzmann
equation depends on the phase-space coordinate only through integrals of motion in
the given potential, and any function of the integrals yields a steady-state solution
of the collisionless Boltzmann equation [16]. For a spherically symmetric system,

Hamiltonian H and three components of angular momentum L is the integrals of

d0i:10.6342/NTU201601603



2.4. Models of distribution function for classical collisionless
self-gravitating system 11

motion. As a result, the distribution function of a spherically symmetric system
depends on H and E, that is,
f=f(H1L) (2:51)

There are several widely-used models of distribution function which satisfy the

collisionless Boltzmann equation (2.50) and Poisson’s equation
V20 = 47Gp (2.52)

, where p = [ fd%v.

2.4.1 Distribution function depends on energy

Now we consider distribution function only depends on the Hamiltonian H, f =

f(H). First, we introduce Hernquist model [23], which is written as

1 VE s
Fu(H) ~ e G L < £ [(1 —28)(8E% — 8€ — 3) +

3sin-WE ]
VE(1 - &)
(2.53)

, where a and M is parameters, G is gravitation constant and £ = —g—ﬁ.

Another example is the Jaffe model [24], the distribution function of Jaffe model
1S

fH) = — [F_ (\/ﬁ) _\Var. (\/E) —V2F, (x/E) oy (@)}

)= 213 (GMa’/?)

(2.54)
where Fy(z) is Dawson’s integral defined as
Fi(z) =™ / dye™V’ (2.55)
0
The third one is Wilson’s model [25], which is
AlePE-E) 14+ 3(E-E,)], if E<E,
fw = (2.56)

0, otherwise

where F. is the escape energy, which is the largest available energy of particles in
this system, 5 and A are parameters. Note that the escape energy should be smaller

than zero because we set the energy of a particle at rest at infinite to be zero.

d0i:10.6342/NTU201601603



2.4. Models of distribution function for classical collisionless
12 self-gravitating system

Finally, we introduce King model [26] and fermionic King model. King model
were first introduced by Michie [27] while were spread by King. The distribution

function of King model is

A(e PE=E) 1) if E<E,
JKing = (2.57)

0, otherwise
where FE. is again the escape energy. King model differ from Maxwell-Boltzmann
distribution only by a constant, but this difference is important when we deal with
self-gravitating system. King model describe a self-gravitating system with finite
mass and finite radius, where the density drop to zero. While Maxwell-Boltzmann

distribution result in infinite mass systems, whose density decrease as r—2

at large
radius.

On the other hand, fermionic King model was introduced by Ruffini and Stella
[28], and can be derived from kinetic theory [17]. The distribution function of
fermionic King model reads

e—B(E—Ee) _q
e~ B(E—Ec—p) 417

it E<FE,

frk = (2.58)

0, otherwise

Fermionic King model may describe systems composed of fermion or systems
which have experienced violent relaxation [29]. Violent relaxation happens when
the potential of collisionless system depends on both space and time, and lead to a
Fermi-Dirac type distribution function. However, Fermi-Dirac distribution function
couple with gravity will result in infinite mass. Fermionic King model may provide
a more realistic distribution function because it describe a finite mass system, while

leaving particles with energy F < FE, distribute as Fermi-Dirac distribution.

2.4.2 Distribution function depends on energy and L?

Systems with distribution function of the form f = f(H, L) are also spherically

symmetric, but anisotropic in velocity distribution. That is,
7403 (2.59)

d0i:10.6342/NTU201601603



2.5. Solving self-consistent solutions of fermionic King model 13

Since the simulations of ¥ DM show anisotropic in derivatives at outer radius(see
figure 2.1 for example), we expect that the distribution function may depend on
angular momentum square L.

First we introduce Osipkov-Merritt models [16], the distribution function de-

pends on H and L only through the combination

0=-p- Y (2.60)

_ 2_702,
where r, is a constant, called the anisotropy radius. By replacing the Hamiltonian
with Q for distribution function mentioned in section 2.4.1, we obtain Osipkov-
Merritt models.

Another model we want to consider is Michie model, which is an extension of
King model to include anisotropy, defined by the distribution function

Ae=PL?/(2rd) (e=BE-Ee) _ 1) if E < E,
Far = (2.61)

0, otherwise
where A and 3 are parameters, In the limit r, — oo this distribution function reduce
to King model(equation 2.57), and for £ — E. < o

f = pl(2#02)_3/26_L2/(2T302)e_(E_EC)/"2 = Ae, (2.62)

which is the Osipkov-Merritt models.

The distribution function of simulation halos as well as the results of fitting with
models in this section are shown in section 3.1. Although the Schrédinger-Poisson
system is quantum system, which can not be described by collisionless Boltzmann
equation(equation 2.50), the distribution function can be fitted by those classical

models fairly well.

2.5 Solving self-consistent solutions of fermionic
King model

Our goal is to create spherically symmetric stable halos for given halo masses with

some parameters for a certain distribution function. We apply the recipe describe

d0i:10.6342/NTU201601603



14 2.5. Solving self-consistent solutions of fermionic King model

in this section for fermionic King model, and we will discuss how the parameters
affect the density profile in section 3.2.

A self-consistent solution satisfies equations

h2

~ 53 V2P, + MOP, = Eny @i (2.63)
0= Gin®uim (2.64)
nlm
V20 = dnGa’p = 4nGa? [y |? (2.65)
< Anim iy >en= Frr(Ent)Onn 0w Smmy (2.66)

, where <>, denote the ensemble average , fry is the fermionic King model dis-
tribution function(equation 2.58), a is scale factor and a,;,, is amplitudes of eigen-
modes. Note that here the density is dimensionless and normalized with background
matter density, and we ignore —1 in Poisson’s equation because density inside virial
radius is roughly few hundreds of background density.

We will depict the main idea and describe details in the next few paragraphs.The
idea is simple and straightforward. First, guess a initial potential ®;, and solve the
eigenvalues equation (2.63). Next, generate amplitude according to equation (2.66).
Here we do not use random number to generate amplitudes, simply set all ampli-
tudes anm :m . Third step is generating wave function and potential @,
by equation (2.64) and (2.65). As one may expect, the output potential @, will not
be the same with input potential ®;,. Therefore, we adopt time independent pertur-
bation theory, changing the energy F,; to E,; + AFE,,, generating amplitudes again
and obtaining another potential ®,.,. Then use the potential ®, to solve equa-
tion (2.63), and repeat these steps until the potential converge to a self-consistent
solution, that is, ®;, = ®,,;. We found that this procedure converge rapidly if
the parameters of initial input potential is suitable and diverge otherwise. It will
converge within ten iterations if we guess the right parameters of initial potential.

First we will briefly describe how to create initial potential. For a given halo
mass, there is a core-halo relation found by simulation [30]. Thus we have soliton
mass correspond to this halo mass and a core radius defined as the radius where

density decrease to half of the central density. According to [14], soliton density
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profile can be approximated by

 L9(mp/10"eV)2(r. /kpc) 4
ps(r) = [1+9.1x 10-2(r/r,)?]8

(2.67)

, where r. is the core radius. On the other hand, We use Navarro Frenk White
(NFW) profile [2], which is a good fitting function to density profile of cold dark
matter in cosmological simulation, as the initial halo density profile. NFW profile

reads

pnrw (1) = Lz (2.68)

&1+ %)
, where r, is the scale radius and pg is the characteristic density. NFW profile
have two parameters, ry and py, which can be transform to halo mass M), and

concentration parameter ¢ defined as

Rvir
Ry

CcC =

(2.69)

where R,; is virial radius. With given halo mass, the number of parameters reduce
to one. The initial potential is constructed by pasting soliton profile with NFW
profile, i.e.

PO(r) = O(re — 1)ps(r) + O(r — 1) pypw (1) (2.70)
, where r. is the radius where soliton density profile equals to NFW profile. Fi-
nally, substitute this initial density profile into equation (2.34), we obtain the initial
potential.

We use the time independent perturbation theory to find the self-consistent so-

lution. Firstly, we have zeroth order Hamiltonian Hy = —3 512&2 V2 + m®;,. we set
the first order Hamiltonian be H = —5 :7,2112 V2 + m®yy, hence the first order Hamil-

tonian is H; = m(®Poy — Pin). The perturbation theory tells that the first order

perturbation in energy is
AE, =< nlm|H|nlm > (2.71)

where

Ho|nlm >= Ey|nlm > (2.72)

, the shift of energy will change the amplitudes because the fermionic King distri-

bution depends on energy.
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16 2.6. Method of constructing artificial halos

We also set a criterion of self-consistent solution. Let the function

D(®;, ®5) = R/ {05 (I)l+(1))2>rdr (2.73)

denote the difference between two potentials. If D(®y,, Poy) < 0.01 we recognize

the solution as self-consistent solution.

2.6 Method of constructing artificial halos

We have created several artificial halo and test their behavior in simulations. The
method of constructing artificial halos will be shortly describe in this section. First,
solve eigenfunctions and eigenvalues by equation (2.63), either use self-consistent
solution or use potential obtain from simulation. Second, amplitudes follow equation
(2.66), thus we generate amplitudes as two dimensional Gaussian distribution in the
complex plane. Namely, the distribution of amplitudes a = a, +ia; of certain energy

E is

1 a? + a?
)= E T 74
fla,,a;) 553 CXP ( 5,2 ) (2.74)
where
1

and frg is the distribution function of fermionic King model. From equations (2.74)

and (2.75), we can easily obtain the ensemble average of amplitudes square

<la*> = /f(ar,ai)(az + a?)da,da;

00 1 7‘2 9
= / S€xp | —5— | r 2mrdr
0 270 202

= 202

= fri(E) (2.76)

and

<aay > = /f(ah-, a1;) f(agr, ag;)(arraor + ariag; + i(aas, + agias,))day,daydag,day;

= 0. (2.77)
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2.7. Time correlation function 17

The last step is constructing wave function by equation (2.64). Note that we set
ground state amplitude in another way. Because we know the core mass already,

the amplitude square of ground state is fixed. We only have to give a phase to it.

2.7 Time correlation function

Another important issue we want to consider is the dynamical behavior of

granules, therefore we introduce the time correlation function, which is defined as

Corr(t) = /h ll5(F, 0)(7, 7)d>r (2.78)
and
574y = L tﬁ) (; f)(ﬁ H (2.79)

where p(7,t) is the density. The label shell denote that we only integrate through a
thin spherical shell with radius r, and the averaged density p is also averaged in the
thin shell. The reason we average over a thin shell is that if we average the whole
volume the inner region will dominate the result. Conceptually, the time correlation
function measure the averaged time which the overdensity need to move away from
its original position. The results of correlation function for different radius are shown

in section 3.4.
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Density slice of 1y DM halo

Figure 2.1
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Chapter 3

Results

3.1 Probability distribution function

We fit the distribution function by minimizing

Eoy (DFi — f(Ei,li))z (3.1)

0;

i

where

1
0i= ——/<y?t > — <y >2 (3.2)

n; — 1
is the standard error, DF; is the average of amplitudes in the " bin, E; and [;
is the energy and angular momentum quantum number of the #** bin, and y is
the amplitude square. We analyze five halos and several models, the results are
summarized in table 3.1 to 3.5. The reduced x? is defined as
2

X
degrees of freedom

Xred = (33)

Note that we exclude the bins in which there is only one eigenvalue. We also
exclude several high energy bins in some cases, because higher energy modes have
larger probabilities at large radius, and we expect the region of halos near virial
radius may not be in equilibrium yet. Figure 3.1 to figure 3.5 shows the energy
distribution function obtain from simulation and the fitting results, different figures
show different halos in our simulation. We think it is safe to say that there is no

dramatic difference of reduced x? between these models. We also observe ambiguity
19
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20 3.1. Probability distribution function

10?2 Run03 Halo01_06 time072
— fermionic King
; : — King
107k — Jaffe E
—  Wilson
Hernquist
c 10°E ) d .
o simulation
k]
5
§ 107} -
=
=
a
T 10°L |
107 _
10-8 | ".
-0.1 0.0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
energy

Figure 3.1: Fitting models with energy distribution function, the error bar

represent standard error.

when fitting models. We are not sure whether we could obtain global minimum of

x?, which need a good guess of initial parameters.

Figure 3.6 to figure 3.5 show the fitting result of Osipkov-Merritt King models.
We plot distribution function as two dimensional color map to show the simulation
data, model, and residual. We also show the distribution function as function of
Q which is defined by equation (2.60). We can see in these figures that for some
angular momentum 1, the lowest energy eigenvalue become higher when 1 increase.
There is no data in the bottom-right shadow region in figure 3.6a. Due to this
limitation, it is hard to tell whether the distribution function of simulation halos

depends on angular momentum or not.

Moreover, we test the postulate of random phases for several energy bins. Figure
3.8 shows the amplitudes with —1.0 < E < —0.95 in complex plane, every dot

represent an amplitude of a eigenstate. It is clear that the simulation halos satisfy
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21

model X%, bins degrees of freedom parameters
King 36.17 60 46 (A,8,Ee)
fermionc King 36.97 60 45 (A,B,E. 1)
Jaffe 25.26 60 46 (a,GM,E,)
Wilson 22.96 60 46 (A,B,E.)
Hernquist 25.26 60 46 (a,GM,E,)
Osipkov-Merritt King 4.54 60 x 99 1400 (A,B,Ec,rq)
Michie
Table 3.1: Run03 Halo01_06 time072

model X%, bins degrees of freedom parameters
King 11.80 50 33 (A,B,E.)
fermionic King 12.17 50 32 (A,B,E,1)
Jaffe 9.29 50 33 (a,GM,E,)
Wilson 8.26 50 33 (A,B,E.)
Hernquist 6.8 50 33 (a,GM,E,)
Osipkov-Merritt King 64.87 50 x 40 421 (A,B,Ecrq)

Table 3.2: Run03 Halo05 time072

model X%, bins degrees of freedom parameters
King 6.50 70 43 (A, B, E,)
fermionic King 3.82 70 42 (A,B,E.,1)
Jaffe 6.72 70 43 (a,GM, E,)
Wilson 6.81 70 43 (A,B,E.)
Hernquist 73 70 43 (a,GM,E,)

Table 3.3: Run03 Halo02_03 time072
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22 3.1. Probability distribution function
model X%.4 bins degrees of freedom
King 6.62 50 36 (A, 8,E,)
fermionic King 6.80 50 35 (A,B,E.,1)
Jaffe 7.08 50 36 (a,GM, E,)
Wilson 7.42 50 36 (A,B,E.)
Hernquist 8.48 50 36 (a,GM, E,)
Osipkov-Merritt King 6.96 50 x 40 422

Table 3.4: Run05 Halo01 time072

model X%y  bins DoF  parameters
King 122.83 60 43

fermionic King 121.55 60 42 A E. 1)
Jaffe 127.74 60 43 a,GM, E.)
Wilson 132.23 60 43

Hernquist 137.45 60 43 a,GM,E,)
Osipkov-Merritt King 6.96 50 x 40 422

Michie 3311 60x94 1147 (p1,0% 70, E.)

Table 3.5: Run05 Halo06 time072
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107 Run03 Halo05 time072
— fermionic King
. — King
107} — Jaffe 1

—  Wilson
Hernquist
+ « simulation

distribution function

10°®

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00
energy

Figure 3.2: Fitting models with energy distribution function

the random phases assumption.

3.2 Self-consistent solution of fermionic King model

In this section we will show several examples of self-consistent solution of potential
and density with different parameters, and illustrate the effects of changing the
value of them. Also we compare self-consistent solution of density with simulation
density, and find a density solution which are very close to the simulation one. It
turns out that the parameters of this solution fit the distribution function obtained
from simulation fairly well.

We first show a series of self-consistent solution of density and potential with
1 = —2.5 but different (3, setting escape energy to zero because the upper limit of
eigenvalues is —G M,;,m /1, and the exact value of escape energy would not affect

much if it is higher than the upper limit. Figure 3.9 to figure 3.14 shows the density
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10?2 Run03 Halo02_03 time072
— fermionic King
; — King
107k — Jaffe E
Wilson
Hernquist
c 10°E ) d .
8 simulation
§ 107}
=
=
a
T 10°}
107
10'8 1 | | |
-2.5 -2.0 -1.5 -1.0
energy

Figure 3.3: Fitting models with energy distribution function, we exclude

nine highest bins for this case

profile and potential of self-consistent solution with parameter § = 3.2 to 5 = 4.0.
We restrict our discussion to Run03 Halo02_03, which is the most massive halos we
could obtain from simulation so far. The mass of this halo is about 7 x 1019M,
and it does not follow the core-halo relation mentioned in section 2.5. Therefore we

make a larger soliton in order to compare simulation with self-consistent solution.

We can see from these figures that when (8 increase the potential of self-consistent
solution becomes shallower. The reason is that we interpret (3 as inverse temperature,
and if temperature is higher the potential should be deeper to satisfy virial condition,
which state that potential energy plus two times of kinetic energy is zero for a self-
gravity system. On the other hand, figure 3.16 shows density profile and potential
of the same 3 = 3.4 but different chemical potential p. We can see that chemical
potential reduce the logarithm slope of the most inner part of halos while the density

within 7 ~ 1072 to » ~ 1073 increase because total mass is fixed. As one may
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107 Run05 Halo01 time072
— fermionic King
; . — King
107 ¢ — Jaffe E
—  Wilson
Hernquist
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0 + + simulation
©
=
= s
5 10° ]
g L s
=
7
T 10}
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Figure 3.4: Fitting models with energy distribution function, we exclude

nine highest bins for this case

expect from distribution function, the existence of chemical potential suppress the
amplitudes square of eigenmodes whose energy are below it. These eigenmodes
contribute to the inner part of halos thus chemical potential suppress the inner

slope of their density profile.

We substitute f = 3.4 and p = —2.5 (fig. 3.10) into fermionic King model,
calculating the reduced y? using simulation data of distribution function, and find
that x2,, = 5.85. The result is shown in figure 3.17. On the other hand, we construct
a self-consistent solution with parameter obtained by direct fitting, which is § =
3.45550182 and p = —1.95725734. Figure 3.18 shows the density and potential for
this solution and simulation data. The deviation of this solution from simulation
may reflect the fact that we can not precisely obtain the parameters of distribution
function because the number of states for lower excited states is too small, which

makes large uncertainty about the mean of lower excited states.
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107 Run05 Halo06 time072
. — fermionic King
— King
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] simulation
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5
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T 10°} . i
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Figure 3.5: Fitting models with energy distribution function. We exclude

nine highest bins for this case

3.3 Artificial halos

In this section we show some images of simulation and artificial halos and discuss
the stability of artificial halos. We construct three artificial halos using potential ob-
tained by (a)simulation, (b)soliton plus NFW profile, and (c) self-consistent solution
with parameters § = 3.4 and p = —2.5. Figure 2.1 shows the z = 0 slices of density,
real part and imaginary part of wave function of simulation halo Run03 Halo02_03.
And figure 3.19 shows corresponding slices of artificial halo construct by simulation
potential. This potential is calculated form density profile of Run03 Halo02_03,
which is the most massive halo we have. Finally, figure 3.20 shows artificial halo
using potential of self-consistent solution.

From these figures, we can see that simulation halo is anisotropic in outer region
compare with artificial halo, and both of them are isotropic in inner region. This re-

sult shows evidence that distribution function should depend on angular momentum
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Simulation Model
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0.0 Residual/Model 10! 102 DF versus -Q, bin number=50

Distribution Function(L~2/2/ra"2)
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(c) (d)

Figure 3.6: OM King model Run03 Halo01_06 time072

or it is not virialized in the outer region, while direct fitting face the challenge that
is hard to determine the dependence of angular momentum, which was discussed in

section 3.1.

We also shows the evolution of density profile by running simulation for about
one free-fall time at virial radius. Figure 3.21 shows the evolution of simulation halo
Run03 Halo02_03 and artificial halo made by simulation potential. They evolve
roughly the same way, a stable outer halo with an oscillating soliton, while the
density of inner part of artificial halo decrease to form a more stable configuration
in very short time. This may be caused by the fact that simulation potential and
parameters of artificial are not self-consistent. On the other hand, the evolution of
artificial halo made by self-consistent solution is shown in figure 3.22(black curve).
The whole halo is stable and soliton also oscillate, but with a smaller amplitude

compare with simulation halo. We also show the evolution of artificial halo made by
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Figure 3.7: OM King model Run03 Halo05 time072

soliton plus NFW potential. It relax into more stable configuration within a free-fall

time at virial radius.

3.4 Time correlation function

The result of time correlation function defined in section 2.7 are shown in figure
3.23. We use self-consistent solution with § = 3.4 and p = —2.5. r; to rg denote
radius of shells in which we calculate correlation function. We take log spacing in
this case and the largest radius rg is about half of the virial radius. The width of
the shells is ﬁ virial radius, around 3 grids of our simulation box. The unit of time
is 1/6 ground state period. Note that we exclude ground state when we calculate

correlation function. We can see from this figure that the inner most radius r; have

a strong correlation after one hundred steps. As radius increase, the correlation after
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Figure 3.8

first drop gradually decay. This feature is caused by the fact that lower excited states
are dominant at small radius, and there are no enough states to make correlation

function drop to zero.
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10° density profile
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Figure 3.9: (a)density profile of self-consistent solution(green) and simula-
tion halo(blue). (b)input(red) and output(green) potential of fifth iteration

compare with simulation halo(blue)
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10° density profile
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Figure 3.10: (a)density profile of self-consistent solution(green) and sim-
ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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10° density profile
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Figure 3.11: (a)density profile of self-consistent solution(green) and sim-
ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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Figure 3.12: (a)density profile of self-consistent solution(green) and sim-
ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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10° density profile
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Figure 3.13: (a)density profile of self-consistent solution(green) and sim-
ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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Figure 3.14: (a)density profile of self-consistent solution(green) and sim-
ulation halo(blue). (b)input(red) and output(green) potential of fifth iter-

ation compare with simulation halo(blue)
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Figure 3.15: (a)density profile of self-consistent solution with different /.

10 10° 10?

(b)output potential of self-consistent solution with different 3.
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Figure 3.16: (a)density profile of self-consistent solution with different p.

(b)output potential of self-consistent solution with different
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Figure 3.17: Distribution function fitted by § = 3.4, u = —2.5,

E. = 0(red) compare with direct fitting(green).
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Figure 3.18: Self-consistent solution with parameters obtained from
fitting(a)density profile of self-consistent solution(green) and simulation
halo(blue). (b)input(red) and output(green) potential of fifth iteration com-

pare with simulation halo(blue). doi:10.6342/NTU201601603
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Figure 3.19: Density slice of 1y DM halo
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Figure 3.20: Density slice of DM halo
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Figure 3.21: Density profile evolves about one free-fall time at virial radius.
Here the red curve denote artificial halo construct by simulation potential,
and blue curves denote simulation halo. Soliton oscillate in both cases and

the outer part of halos are stable as well.
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Figure 3.22: Density profile evolves about one free-fall time at virial radius.

The Arti-Old denote the artificial halo constructed by soliton plus NFW

potential. Arti-New denote artificial halo constructed by self-consistent so-

lution potential with 8 = 3.4 and © = —2.5. The self-consistent solution

halo is stable while with soliton oscillate slightly compare to simulation halo.

While soliton plus NFW halo need time to relax to a steady state.
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Figure 3.23: Time correlation function of self-consistent solution with

B=34and p=-25

d0i:10.6342/NTU201601603



Chapter 4

Conclusion

To conclude, we have shown that the probability distribution function of a spher-
ically symmetric ¢ dark matter halo which obeys Schrodinger-Poisson equation at
late time can be describe by several classical distribution function models. More-
over, we show that we can obtain self-consistent solutions of density and potential
of DM by utilizing some technics as well as fermionic King model. The artificial
halos construct by self-consistent solution is stable and similar with simulation halo
for the region whose radius is smaller than one third of virial radius, while fail to
represent simulation halo at large radius. We also calculate time correlation function

for this halo, and find that the correlation time increase as radius increase.
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