
doi:10.6342/NTU201601708

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Enginnering and Computer Science

National Taiwan University

Master Thesis

眾數反向圖改寫技術在邏輯合成與驗證之應用

Application of DAG-Aware MIG Rewriting Technique in

Logic Synthesis and Verification

王立為

Li-Wei Wang

指導教授：黃鐘揚教授

Advisor: Chung-Yang (Ric) Huang, Ph.D.

中華民國一百零五年七月

July, 2016



doi:10.6342/NTU201601708

誌誌誌謝謝謝

能完成這份論文，我要感謝我的指導教授黃鐘揚老師，他培養了我對驗證領

域的興趣，並在碩士的兩年間打下深厚的基礎。感謝楊明仁從大三時就各種罩

我，一直記得大三下在網多實驗室趕EDA導論期末報告，那時候還很納悶為什麼

電路一直要畫成三角形；感謝小熊、江弘勛在我碩一修課時提供各種協助，還不

時能屁話一番，感謝范寬，每次聽完你的規畫後就發覺自己落後了一大截需要加

把勁才行。最後我要感謝我的家人，感謝奶奶平常的照顧，感謝爸爸媽媽，總是

放心讓我嘗試各種事情，讓我專心做研究。

i



doi:10.6342/NTU201601708

摘摘摘要要要

眾數反向圖是近年來提出的一種邏輯電路表示法，他將邏輯電路用眾數函數

與反向函數組合而成；他的代數與布林特性讓他在邏輯優化的操作上非常有效

率，比起目前最先進的方法，眾數反向圖的演算法可以得到更佳的結果。在這篇

論文中，我們將無圈有向改寫技術鑲嵌進眾數反向圖，並將其應用在邏輯合成與

驗證領域。在邏輯合成方面，實驗結果顯示高度優化的眾數反向圖仍可被我們的

演算法再優化；在資料路徑驗證方面，我們的演算法可以提高資料路徑分析的品

質，並有效的減少正規驗證所需的時間。

關鍵字:眾數反向圖、邏輯合成、資料路徑驗證

ii



doi:10.6342/NTU201601708

Abstract

A Majority-Inverter Graph (MIG) is a recently introduced logic representation form

which manipulates logic by using only 3-input majority function (MAJ) and inversion

function (INV). Its algebraic and Boolean properties enables efficient logic optimiza-

tions. In particular, MIG algorithms obtained significantly superior synthesis results as

compared to the state-of-the-art approaches based on AND-inverter graphs and commer-

cial tools. In this thesis, we integrate the DAG-aware rewriting technique, a fast greedy

algorithm for circuit compression, into MIG and apply it not only in the logic synthesis but

also verification. Experimental results on logic optimization show that heavily-optimized

MIGs can be further reduced by 20.4% of network size while depth preserved. Experi-

mental results on datapath verification also show the effectiveness of our algorithm. With

our MIG rewriting applied, datapath analysis quality can be improved with the ratio 3.16.

Runtime for equivalence checking can also be effectively reduced.

Index Terms - Majority-Inverter Graph, Logic Synthesis, Datapath Verification
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Chapter 1 Introduction

As semiconductor technology relentlessly pursues the path described by Moore’s

law, the challenges of SoC design continue to grow dramatically. We are moving from

chips with millions of gates to ones with billions of gates. The task of designing such

complex systems is daunting. Among different stages of design flow, logic synthesis

and verification can be regarded as the most crucial one. In this context, efficient rep-

resentation of Boolean functions are key features and many effective data structures and

algorithms have been proposed for these tasks [1,2].

In the recent years, a novel homogeneous logic representation named Majority-

Inverter Graph (MIG) has been proposed [3,4], which operates logic by using only ma-

jority (MAJ) and inversion (INV). The major advantage of homogeneous logic represen-

tations is that they simplify manipulation algorithms significantly and particularly enable

an efficient implementation of them. A complete axiomatic and algebraic transformation

system is proposed to support manipulation on MIGs. To extend the capabilities, MIG

Boolean methods are also exploited. MIG algebraic and Boolean methods together at-

tain better optimization quality compared to And-Inverter Graph (AIG). Because of these

reasons, MIG is believed to be a promising data structure to push the progress of logic

synthesis further.

In this thesis, we integrate the DAG-aware rewriting technique [5,6], a fast greedy

algorithm for circuit compression proposed for years, into MIG and apply it not only in the

logic synthesis but also verification dimension. The main idea of DAG-aware rewriting is

to enumerate all 4-input subgraphs rooted at a given node and replace it with a precom-

puted advantageous subgraph. In order to find 4-input subgraphs, we adopt a SMT-based

1
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algorithm to automate the process of subgraph generation. Then, various MIG rewriting

strategies are proposed to achieve different goals.

In summary, the main contributions of this thesis are:

• Strengthen the SMT-based algorithm to find minimum-size subgraphs

• Combine the DAG-aware rewriting algorithm with MIGs

• Propose different rewriting strategies to fit different targets

• Better synthesis results compared to the previous works on MIG

• Pioneer in applying MIGs to the domain of verification

The remainded of this thesis is organized as follows. Chapter 2 provides some

significant preliminaries related to this thesis. Chapter 3 describes our framework and

DAG-aware MIG rewriting algorithm. Chapter 4 introduces how to apply our rewriting

algorithm to logic synthesis and verification domains. Chapter 5 shows the experimental

results. Chapter 6 concludes the thesis.

2
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Chapter 2 Preliminaries

2.1 Function Classification

For a given number of input variables, there is a well-defined number of Boolean

functions. This number is given by 22n , where n is the number of input variables. In order

to reduce the search space of functions, they are classified into different classes set of

functions. In this section, we review some concepts for classification of n-input Boolean

functions, including P and NPN equivalence classes [7].

2.1.1 The Concept of P Class

The fact that many different 2-input functions may have the same gate-level imple-

mentations naturally introduces the concept of P equivalence. Two functions f(x1, ..., xn)

and g(x1, ..., xn) are P-equivalent if there exists a permutation σ ∈ Sn such that f(x1, ...xn) =

g(xσ(1), ..., xσ(n)), i.e., g can be made equivalent to f by permuting inputs. P-equivalence

is an equivalence relation that partitions the set of all Boolean functions over n vraiables

into a smaller set of P classes. For example, there are 222 = 16 different 2-input functions

while there are only 12 different 2-input P classes. Among these 12 classes, four of them

are composed by 2 functions and eight of them are composed by only one function.

2.1.2 The Concept of NPN Class

Two functions f(x1, ..., xn) and g(x1, ..., xn) are NPN-equivalent if there exists a per-

mutation σ ∈ Sn and polarities p, p1, ..., pn in B such that f(x1, ...xn) = gp(xp1σ(1), ..., x
pn
σ(n)),

3
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i.e., g can be made equivalent to f by negating inputs, permuting inputs, or negating the

output. Similar to P-equivalence, NPN-equivalence is an equivalence relation that parti-

tions the set of all Boolean functions over n variables into a smaller set of NPN classes.

As an example all 22n Boolean functions over n variables can be partitioned into 2, 4, 14,

222, 616126 NPN classes for n = 1, 2, 3, 4, 5. As the representative of each NPN class,

we take the function with the smallest truth table, when truth tables are viewed as a binary

number of 2n bits. Number of P classes and NPN classes is summarized in Table 2.1.

Table 2.1: Number of P Classes and NPN Classes for 1-4 Input Functions

# of inputs functions P classes NPN classes
1 4 4 2
2 16 12 4
3 256 80 14
4 65536 3984 222

2.2 Formal Verification

In the design flow, to prevent the situation that bugs escape from our detection and

buggy designs are passed to the later flow, formal verification [8,9] are developed rapidly

in the past twenty years. To be more specific, a technique called equivalence checking

[10] plays an important role to check if two circuits at different design stages exhibit

the same behaviors. Formal engines such as binary decision diagram (BDD) [11] and

boolean satisfiability solver (SAT) [12] are therefore extensively used in the verification

domain. In this section, we briefly introduce the combinational equivalence checking

(CEC) technique, which is an essential step in the modern design flow. Then, a circuit

analysis technique for the arithmetic design, called datapath analysis [13], is discussed.

4
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2.2.1 Combinational Equivalence Checking

The process to prove that two circuits exhibit the same behaviors under possible

condition is called equivalence checking. Most modern designs, however, are in intrinsi-

cally sequential. This seqential property makes the equivalence checking process almost

impossible in the reasonable time due to complexity issue. To avoid the problem, we usu-

ally adopt the assumption of combinational equivalence, i.e., comparing not only outputs

but also registers, which is valid for most logic optimization. Under the assumption, the

equivalence checking problem is deeply simplified and the process to prove the property

under the assumption is called combinational equivalence checking. Since the scalability

of BDD is much poorer than SAT and almost cannot be applied to modern design, only

the SAT-based CEC is discussed in the following paragraph.

To embed SAT solver as the formal engine in the CEC process, two circuits are

modeled as a combinational miter and formulated as a decision problem asking if there

is an input assignment such that the output would be one. The combinational miter is

constructed from two circuits to be checked by sharing corresponding PIs together

and adding an XOR gate on corresponding POs pairs. Connecting the outputs of all

XOR gates to an OR gate drives the only one output of the combinational miter. As

our previous discussion on combinational equivalence assupmtion, registers’ inputs are

regarded as pseudo primary outputs (PPOs) and registers’ outputs are regarded as pseudo

primary inputs and connected to their counterparts. Figure 2.1 shows a combinational

miter.

Then, Tseitin transformation [14] is applied to produce CNFs from the combina-

tional miter. By querying the solver whether there is an input assignment such that the

5
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Figure 2.1: Combinational Equivalence Checking

output is true, we can conclude that the two circuits are equivalent or not. If the SAT

solver returns a satisfiable result, we know that the two circuits are not equivalent and

can fetch the input assignment from the solver to find out the cause of their difference.

If the SAT solve return a unsatisfiable result, i.e., there is no input assignment such that

the ouput is true, we can say that two circuits are formally proven to be combinational

equivalent.

There are a lot of techniques proposed for speeding up SAT-based CEC process in the

past years [10,15]. Among them, functionally reduced AND-INV graphs [16], abbreviated

as FRAIG, is the most effective algorithm to speed up the process. The algorithm is

summarized in Alg. 1.

In FRAIG, simulation technique is integrated to detect potential internal equivalence,

referred to as functionally equivalent candidates (FECs), in the circuit. With these FECs,

6
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we can guide the SAT solver to learn and prove the property in a bottom-up manner, which

strongly alleviates the complexity of SAT solving from exponential time to amortized

constant time. Upon the FRAIG completed, the miter circuit will be reduced to a constant

zero if the two circuits are combinational equivalent.

Algorithm 1 Functionally Reduced And-Inverter Graph
1: function FRAIG(Network miter)
2: solver ← initProofModel(miter)
3: classes← randomSimulate(miter)
4: for each node in the miter in a topological order do
5: // collect functionally equivalent candidate
6: fec← getFEC(classes, node)
7: if fec = null then continue
8: for each candidate C in fec do
9: if satCheckEquivalent(solver, node, C) = UNSAT then

10: // interanl equivalence
11: mergeEqualPair(miter, node, C)
12: else
13: pattern← getSatPattern(solver)
14: classes← simulateBySatPattern(pattern)

2.2.2 Datapath Analysis

In the previous section, we briefly introduce how to verify two circuits by CEC. In

fact, with effective SAT-based CEC techniques, modern designs with more than a million

gates can be verified within an hour.

Nevertheless, there is still a situation that CEC can not be finished in a reasonable

time. To be more specific, the problem of verifying non-standard, bit-optimized embed-

ded arithmetic circuits remains open [17]. Importance of arithmetic verification problem

grows with an increased use of arithmetic modules in embedded systems to perform com-

putation intensive tasks in multimedia, signal processing, and cryptography applications.

7
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In this section, we will demonstrate why SAT-based CEC fails to verify the arithmetic

design. Then a acceptable method, called datapath analysis for solving the arithmetic

design verification problem is introduced.

To begin with, we show the typical verification flow in the figure 2.2. The target

circuits under verification are RT-Level design and optimized gate-level netlist, labeled

with golden and revised respectively. We want to verify that whether there are mistakes

in the process of logic synthesis or not. To convert the golden design into a logic network,

quick synthesis is applied to the golden design. Note that no optimization technique is

integrated in this step. Also, proof by construction technique guarantees the correctness

of the process.

Figure 2.2: Typical Verification Flow

In most cases, we can apply CEC now to know whether the designs are equivalent

or not. As mentioned above, however, verification for arithmetic designs often fail in this

step. To avoid sticking into the situation, datapath analysis method is recommanded to

be applied before CEC.

To explain why the CEC fails and how datapath analysis resolves the problem, we

demonstrate a simple example in figure 2.3.

8
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Figure 2.3: Verifying Arithmetic Circuit With Datapath Analysis

We can see that the golden design is a simple adder for 4 input with arbitrary bit

width. After logic synthesis, the optimized netlist is in a balanced addition tree structure.

Also, input delay may be specified by the designer so the addition ordering is not as

straightforward as presented in the golden design. On the other hand, the verification

tool makes a quick synthesis according to the golden design and simply construct a linear

adder chain.

From the perspective of logic network, the similarity between these two circuits is

extremely poor, that is, there isn’t any interanl equivalence between two designs. The

only equivalent points are the outputs, and the SAT solver has no choice but to solve the

solid combinational miter from scratch without any implication guidance, leading to a

inevitable exponential result.

We know that the main reason is the great difference between two designs and that

there is still some useful information neglected in the flow. With those information, the

verification tool can synthesize a possibly more similar netlist for CEC. To be more spe-

9
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cific, in figure 2.3, datapath analysis method collects both worl-level datapath informa-

tion in RTL design and circuit structure information in the optimized netlist and analyzes

them with some effective techniques. After analysis, if succeeds, the verification tool can

concludes that the addition tree is in the form of ((A+C)+(B+D)) and re-synthesizes the

golden RTL design according to the analysis result. Finally, the CEC can be excuted in a

smoother manner.

As the previous example presented, it sounds that with the datapath analysis method,

arithmetic verification problem can be resolved easily. In some cases, however, the anal-

ysis alogrithm fails to conclude the exact datapath structure of the optimized netlist due

to some difficulties such as excessive optimization or arithmetic points missing. We will

discuss more detail in the chapter 4.

2.3 Previous Work on Majority-Inverter Graph

A Majority-Inverter Graph (MIG) is a recently introduced logic representation ma-

nipulating the ternary majority function as logic operation. Due to their simplicity and ho-

mogeneity, MIGs simplify manipulation algorithms significantly and particularly enable

an efficient implementation of them. A consistent MIG algebraic system is introduced

to support logic manipulation. By using these algebra axioms, it is possible to reach all

points in the representation space. Also, MIG Boolean methods such as error insertion

and don’t care condition are proposed to enable logic optimization with a global view.

MIG algebraic and Boolean methods together attain better synthesis quality. In particular,

when considering logic depth reduction, MIG algorithms obtained superior synthesis re-

sults as compared to the state-of-the-art approaches based on And-Inverter Graph (AIG).

10
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This section gives a background on MIG logic representation as well as some notable

properties. Then, MIG algebraic methods are presented. Finally, Boolean methods and

optimization methodology is introduced to understand how logic optimization is maniu-

plated under a MIG framework.

2.3.1 MIG Logic Representation

Definition A MIG is homogeneous logic network with indegree equal to 3 and with

each node representing the majority function. In a MIG, edges are marked by a regular or

complemented attribute.

We explore the properties of MIGs by comparison to the general AND/OR/Inverter

Graphs (AOIGs). Note that the majority operator M(a,b,c) behaves as the conjunction

operator AND(a,b) when c = 0 and as the disjunction operator OR(a,b) when c = 1.

Therefore, majority can be seen as a generalization of conjunction and disjunction. This

property leads to the following theorem.

Theorem 2.1: MIGs ⊃ AOIGs.

As a corollary of Theorem 2.1, MIGs also include AIGs and are capable to represent

any logic function, a important property known as universal representation.

Corollary 2.2: MIGs ⊃ AIGs.

Corollary 2.3: MIG is an universal representation form.

Fig. 2.4 depicts two logic representation examples for MIGs. They are obtained by

translating their optimal AOIG representations into MIGs. Note that even if such logic

networks are optimal for AOIGs, they can be further optimized with MIGs, as detailed

later.

11
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Figure 2.4: Examples of MIG representations

So far, we have shown that MIGs can be configured to behave as AOIGs. Hence, in

principle, they can be manipulated using traditional AND/OR techniques. However, the

potential of MIGs goes beyond standard AOIGs and, in order to unlock their full expres-

sive power, a new Boolean algebra is introduced, natively supporting the majority/inverter

functinality.

2.3.2 MIG Boolean Algebra

A novel Boolean algebra is proposed, defined over the set (B, M, ′,0,1), where M is

the majority operator of three variables and ′ is the complementation operator. The fol-

lowing set of five primitive transformation rules, referred to as Ω, is an axiomatic system

for (B, M, ′,0,1). All the variables considered hereafter belong to B.

It can be proved that (B, M, ′,0,1) axiomatized by Ω is a Boolean algebra by showing

that it induces a complemented distributive lattice. Since being familiar with MIGs in a

short time is the goal for this section, we omit some formal proof here.

12
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Ω



Commutativity - Ω.C
M( x, y, z)=M( y, x, z)=M( z, y, x)
Majority - Ω.M{
if(x = y) : M( x, y, z) = x = y
if(x = y

′
) : M( x, y, z) = z

Associativity - Ω.A
M( x, u, M( y, u, z)) = M( z, u, M( y, u, x))
Distributivity - Ω.D
M( x, y, M( u, v, z)) = M( M( x, y, u), M( x, y, v), z)
Inverter Propagation - Ω.I
M ′( x, y, z) = M(x′ ,y′ ,z′)

(2.1)

Theorem 2.4: The set (B, M, ′,0,1) subject to axioms in Ω is a Boolean algebra.

Note that there are other possible axiomatic systems. For example, it is possible to

show that in the presence of Ω.C, Ω.A and Ω.M, the rule in Ω.D is redundant. However,

Ω.D is still included for the sake of completeness.

Theorem 2.5: The Boolean algebra (B, M, ′,0,1) axiomatized by Ω is sound and com-

plete.

Theorem 2.6: It is possible to transform any MIG α into any other logically equiva-

lent MIG β, by a sequence of transformations in Ω.

Soundness property ensures that if a formula is derivable from the system, then it

is valid. Completeness guarantees that each valid formula is derivable from the system.

Theorem 2.5 can be proved by linking back to Stone’s theroem. To explain Theorem 2.5

intuitively, we say that every ( M, ′,0,1)-formula can be interpreted as an MIG. Thus, the

Boolean algebra induced by Ω is naturally applicable in MIG manipulation.

Theorem 2.6 can be proved by Theorem 2.5. As a consequence of Theorem 2.6,

any two equivalent MIGs can be transformed one into the other by Ω. From a logic opti-

mization perspective, it means that we can always reach a desired MIG starting from any

other equivalent MIG. However, the lengh of the exact transformation sequence might be

13
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impractical for modern computers. To alleviate this problem, a more powerful transfor-

mation system is introduced, referred to as Ψ.

Ψ



Relevance - Ψ.R
M( x, y, z)= M( x, y, zx/y′ )
Complementary Associativity - Ψ.C
M( x, u, M( y, u′, z)) = M( x, u, M( y, x, z))
Substitution - Ψ.S
M( x, y, z ) =
M( v, M( v′, Mv/u( x, y, z), u), M( v′, Mv/u′( x, y, z), u′))

(2.2)

The first, relevance (Ψ.R), replaces and simplifies reconvergent variables. The sec-

ond, complementary associativity (Ψ.C), deals with variables appearing in both polari-

ties. The third and last, substitution (Ψ.S), extends variable replacement also in the non-

reconvergent case. We represent a general variable replacement operation, say replace x

with y in all its appearence in z, with the symbol zx/y.

2.3.3 Logic Optimization Using Algebraic Transformation

The optimization of a MIG, representing a Boolean function, ultimately consists of

its transformation into a difference MIG, with better figures of merit in terms of area(size),

delay(depth), and power(switching activity). For the sake of clarity, we only present the

heuristic algorithms to optimize the size. Optimization algorithms for depth and power

can be achieved by a similar manner.

To optimize the size of a MIG, we aim at reducing its number of nodes, Node re-

duction can be done, at first instance, by applying the majority rule. In the novel Boolean

algebra domain, that is the ground to operate on MIGs, this corresponds to the evaluation

of the majority axiom (Ω.M) from Left to Right (L→ R), as M( x, x, z) = x. A different

14



doi:10.6342/NTU201601708

node elimination opportunity arises from the distributivity axiom (Ω.D), evaluated from

Right to Left ( R→ L), as M( x, y, M( u, v, z)) = M(M( x, y, u), M( x, y, v), z). By applying

repeatedly Ω.ML→R and Ω.DR→L over an entire MIG, we can actually eliminate nodes and

thus reduce its size. Note that the applicability of majority and distributivity depends on

the peculiar MIG structure.

Indeed, there may be MIGs where no direct node elimination is evident. This is

because (i) the optimal size is reached or (ii) we are stuck in a local minima. In the latter

case, we want to reshape the MIG in order to enforce new reduction opportunities.

Algorithm 2 MIG-size Optimization Pseudocode
1: function MIGALGEBRAICOPT(MIG α)
2: for cycles=0; cycles<effort; cycles++) do
3: Ω.ML→R(α); Ω.DR→L(α);
4: Ω.A(α); Ψ.C(α);
5: Ψ.R(α); Ψ.S(α);
6: Ω.ML→R; Ω.DR→L;

The rationale driving the reshaping process is to locally increase the number of com-

mon inputs/variables to MIG nodes. For this purpose, the associativity axioms (Ω.A,

Ψ.C) allow us to move variables between adjacent levels and the relevance axiom (Ψ.R)

to exchange reconvergent variables. When a more radical transformation is beneficial, the

substitution axiom (Ψ.S) replaces pairs of independent variables, temporarily inflating the

MIG. Once the reshaping process created new reduction opportunities, majority Ω.ML→R

and distributivity Ω.DR→L run again over the MIG simplifying it. Reshape and elimina-

tion processes can be iterated over a user-defined number of cycles, called effort. Such

MIG-size optimization strategy is summarized in Alg. 2.
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2.3.4 MIG Boolean Methods and Logic Optimization

There are some alternatives to algebraic techniques, focusing on global properties of

MIGs, such as voting resilience and don’t care conditions. Due to their global and general

nature, the optimization methods in this section is called ”Boolean”.

MIGs are hierarchical majority voting systems. One notable property of majority

voting is the capability to correct various types of bit-errors. This feature is inherited by

MIGs, where error masking can be exploited for optimization purposes. One way for

doing so is to purposely introduce logic errors that are succesively masked by the vot-

ing resilience in MIG nodes. If such logic errors are advantageous, in terms of circuit

simplifications, better MIG representations appear. In the immediate following, the the-

oretical grounds for ”safe error insertion” im MIGs is presented, defining what type of

errors, and at what overhead cost, can be introduced. Later on, a intelligent procedures

for ”advantageous errors” insertion is proposed.

A. Inserting Safe Errors in MIG

Before entering into the core theory, we briefly review notations and definitions on

logic errors.(reference)

Definition The logic error between an original function f and its faulty version g is

the Boolean difference f ⊕ g.

Notation A logic circuit f affected by an error A is written as fA.

To insert safe (permissible) errors in a MIG, we consider a root node w and we trip-

licate it. In each version of w we introduce the three faulty versions of w to a top majority

node exploiting the error masking property. Unfortunately, a majority node cannot mask
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all types of errors. This limits our choice of permissible errors. Orthogonal errors, de-

fined hereafter, fit with our purposes. Informally, two logic errors are orthogonal if for an

input pattern they cannot happen simultaneously.

Definition Two logic errors A and B on a logic circuit f are said orthogonal if the

following property holds: (fA⊕ g)·(fB⊕ g) = 0.

Now consider a generic MIG root w. Say A, B, and C three pairwise orthogonal er-

rors on w. Being all pairwise orthogonal, a top majority node M(wA, wB, wC) is capable

to mask A, B, and C errors restoring the original functionality of w. This is formalized

in the following theorem.

Theorem 2.7: Say w a generic node in a MIG. Say A, B and C three pairwise or-

thogonal errors on w. Then the following equation holds: w = M(wA, wB, wC)

The theorem can be proved by showing that w ⊕ M(wA, wB, wC) = 0 with the

orthogonal error condition. Note that a MIG w = M(wA, wB, wC) can have up to three

times the size and one more level of depth as compared to the original w. This means that

simplifications enabled by orthogonal errors A, B and C must be significant enough to

compensate for such overhead.

In the following, methods for identifying advantageous triplets of orthogonal errors

is introduced briefly.

B. Identifying advantageous orthogonal errors

A natural way to discover advantageous triplets of orthogonal errors is to analyze a

MIG structure. We have to focus on nodes that have the highest impact on the final voting

decision, i.e.,influencing most a function computation. Two methods have been proposed
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with this motivation. For the first method, a metric called criticality is computed to mea-

sure the importance for each node. Then, two critical voters are chosen by criticality

accordingly. Finaly, three pairwise orthogonal errors are identified by critical voters with

a specific structure. The second method is called Input Partitioning Method, which finds

orthogonal errors by input division. There is also a metric to determine how significant a

input is.

For the sake of clarity, we comment on Boolean methods with a simple example

using first Boolean method, reported in Fig 2.5. First, the critical voters are searched and

identified, being in this example the input x1 and the node m2. The proper error insertion

root in this small example is the MIG root itself. So, three different versions of the root

f are generated with errors fm2/x1′ , fm3/m2 and fm3/x1. Each faulty branch is handled

by fast algebraic optimization to reduce its depth. The detailed algebraic optimization

steps involved are shown in Fig 2.5. The most common operation is Ω.M that directly

simplifies the introduced errors. The optimized faulty branches are then linked together

by a top fault-masking majority node. A last gasp of algebraic optimization on the final

MIG structure further optimizes its depth. In summary, the MIG Boolean optimization

techniques attains a depth reduction of 60% and, at the same time, a size reduction of

40%. On the other hand, by running just algebraic optimization on this example a depth

reduction of 20% is possible at a size overhead cost of 50%.

In this chapter, we briefly introduce the Majority-Inverter Graph and some of its

properties for Boolean logic optimization. Also, we review some concepts for classifica-

tion of n-input Boolean functions, including P and NPN equivalence classes. With those

preliminaries, we can start to introduce the core techniques proposed in this thesis, ref-
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Figure 2.5: MIG Boolean method

fered to as DAG-aware MIG rewriting, which performs fast and effective MIG rewriting

by replacing original network with advantageous 4-input subgraphs. Improved experi-

mental results show that our rewriting technique can be applied to both logic optimization

and arithmetic design verification. We’ll continue on introducing our core techniques in

the next chapter.
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Chapter 3 DAG-Aware MIG Rewriting

3.1 An Overwiew of Our Framework

DAG-Aware Rewriting is a fast greedy algorithm for circuit compression first pro-

posed in [5] and extended in [6]. The algorithm minimizes the AIG size by iteratively

selecting AIG 4-input subgraphs rooted at a node and replacing them with smaller pre-

computed subgraphs, while preserves the functionality of the root node. The same rewrit-

ing algorithm can be applied to MIG since it is also a homogeneous logic representation

as AIG.

Figure 3.1: Flowchart of Our Framework

Figure 3.1 outlines our MIG rewriting framework. In the preparation phase, the exact

synthesis engine reads a file containing NPN class information such as representative

truth table for each class and generates subgraphs for all NPN classes. Then all computed

subgraphs are compiled as an integer array so that the setup time of the rewriting engine

can be noticeably reduced. In the rewriting phase, the engine peforms MIG rewriting
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according to the specific strategy and writes out the updated circuit.

The rest of this chapter is organized as follows: In section 3.2, the detail of subgraph

preparation phase is presented. Then, algorithm in rewriting phase will be described in

section 3.3.

3.2 Subgraph Preparation Phase

An essential question for DAG-aware rewriting is how to generate non-redundant

4-input subgraphs for 222 NPN equivalence classes. For AIG, pre-computation for sub-

graphs is achieved by using simple disjoint-support decomposition [18]. For MIG, how-

ever, there is no efficient method to compute non-redundant subgraphs because of the

non-trivial majority functionality. Fortunately, a method called exact synthesis is pro-

posed [19] to find minimal MIG representation based on Satisfiability Modulo Theories

(SMT). We will describe the detail of exact synthesis first, then how MIG subgraphs are

generated and stored is discussed.

3.2.1 Exact Synthesis

The problem to finding the smallest MIG w.r.t. the size for a given Boolean function

is called exact synthesis. One way to find such a smallest MIG is to formulate a decision

problem that asks whether there exists an MIG with k nodes that can represent f . To find

a minimum solution, one starts by solving the decision problem for k = 0 and increases

k until a satisfying solution is found.

This section describes the formulation of exact synthesis as a decision problem that

can be automatically solved with an SMT solver. The instance is a Boolean function
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f : Bn → B and a non-negative constant k. In other words, the exact synthesis problem

asks whether there exists an MIG

M = ({x1, ..., xn} ∪ {g1, ..., gk} ∪ {0}, E, {y})

with k majority operations that represents f . For the encoding of the SMT formula-

tion, we assume that k > 0 and, in our alogrithm, we check for the case k = 0, i.e., f is

constant functions or single variable functions, explicitly.

Each majority node with index l ∈ {1, ..., k} is duplicated for each function value

0 ≤ j ≤ 2n and is represented by 10 variables:

• three inputs aj1,l, a
j
2,l, a

j
3,l ∈ B of gate l,

• one output b(j)l ∈ B of gate l,

• three select variables s1,l, s2,l, s3,l ∈ Bdlog2(n+l)e that encode which are the child

nodes of gate l,

• polarity variables p1,l, p2,l, p3,l ∈ B that describe whether the edges to the child

nodes are complemented.

The node indexes form a topological ordering of the nodes. The following con-

straints are contained in the SMT formula. Index j ranges from 0 to 2n − 1 and index l

ranges from 1 to k.

Majority functionality: The formula

b
(j)
l ↔ 〈a

(j)
1,l a

(j)
2,l ∨ a

(j)
1,l a

(j)
3,l ∨ a

(j)
2,l a

(j)
3,l 〉

ensures the correct functionality of the node, i.e., the output value of the lth node b(j)l

is the majority of the node’s three input values a(j)1,l , a
(j)
2,l , and a(j)3,l for all assignments j.

Input connections: Constraints on the input connections are given in terms of impli-

cations of the select variables sc,l, where c ranges from 1 to 3. The formula
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sc,l < n+ l

ensures that node inputs can only be the constant, primary inputs, or topologically smaller

nodes. In other words, the constraint prohibits cycles in the MIG. A value 0 for sc,l implies

a connection to the constant node, i.e.,

(sc,l = 0)→ ( a(j)c,l = p̄c,l )

Values from 1 to n imply a connection to a variable node, i.e.,

(sc,l = i)→ (a(j)c,l = bv(j)i−1 ⊕ p̄c,l) for 1 ≤ i ≤ n,

where bv(j)i−1 refers to the (i−1)th bit in the binary representation of j. All other values

to sc,l imply a connection to the output of the corresponding majority node, i.e.,

(sc,l = n+ i)→ (a(j)c,l = b(j)i ⊕ p̄c,l) for 1 ≤ i ≤ l,

Function semantics: Finally, the function semantics is ensured by formula

b
(j)
k = p̄ ⊕ f(j)

Note that k is the larget node index and therefore refers to the root node. Since the

majority operation is self-dual, the variable p can be omitted and a minimum solution is

still found if one exists.

Symmetry breaking: All the above constraints ensure a correct result in case of a

satisfying assignment. In order to reduce the search space, we exploit associativity of the

majority operation and add the following symmetry breaking formula to enforce a unique

order of the operands:

(s1,l < s2,l) ∧ (s2,l < s3,l)
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Note that there cannot be two edges of a majority node pointing to the same child

node in an irreducible MIG.

The connections between the constraints and the resulting MIG for the exact synthe-

sis problem are summarized in the following theorem which also illustrates how to derive

the MIG from a satisfying assignment to the variables.

Theorem 3.1: Let f : Bn → B and k be an instance to the exact synthesis problem.

If there exists a satisfying solution to the corresponding SMT instance as described in this

section, then let

M = ({x1, ..., xn} ∪ {g1, ..., gk} ∪ {0}, E, {y})

be the extracted MIG with:

E =
k⋃
l=1

3⋃
c=1

( gl, target(sc,l), pc,l) and y = (gk, p)

and

target(s) =


0 if s = 0,

xs if 1 ≤ s ≤ n,

ns−n if n < s ≤ n+ k

Then, Φ(y) = f .

Table 3.1 is adopted from [19] and summarizes the result of exact synthesis. The rep-

resentative of the single most difficult NPN class is the symmetric function S0,2(x1, x2, x3, x4):

S0,2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ∧ x1x2x3x4

which requires 7 majority operations, depicted in figure 3.2.

In our experiments, the bottleneck of the exact synthesis flow is in the step of proving

that there is no solution for a Boolean function when k is exactly less than the minimum

feasible k by 1. For example, it takes about 16796 seconds to find the minimum number of
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Figure 3.2: Optimal MIG for S0,2(x1, x2, x3, x4)

nodes for the function S0,2(x1, x2, x3, x4), while over 16000 seconds is used to prove that

it is impossible to use 6 majority operations to represent the function. In this sense, we

save the corresponding k for each class so that the bottleneck step can be easily avoided

when we want to reproduce the result.

Table 3.1: Optimal MIGs For All 4-Variables NPN Classes

Majority Nodes Classes Functions Time Avg. time
0 2 10 0 0
1 2 80 0.04 0.02
2 5 640 0.14 0.03
3 18 3300 1.21 0.07
4 42 10352 3.32 0.15
5 117 40064 115.19 0.98
6 35 11058 1458.95 41.68
7 1 32 16796.3 16796.30
Σ 222 65536 18378.15 16839.23
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3.2.2 Subgraph Generation

With the exact synthesis technique, we can simply find all non-redundant subgraphs

for a given Boolean function by iteratively blocking the satisfiable assignment until

the SMT instance returns an unsatisfiable result.

Satisfiable assignment blocking:

¬(p↔ model(p) ∧
k∧
l=1

3∧
i=1

(si,l ↔ model(si,l) ∧ pi,l ↔ model(pi,l)),

where model(x) refers to the satisfiable assignment of variable of x stored in the SMT

instance.

Note that we have recorded the minimum number of MIG nodes for each class, i.e.,

k, so that we don’t need to start from k = 1 for each class.

Even though the bottleneck step is avoided, generating all possible subgraphs is still

impractical for some classes. Take a closer look at the formulation of exact synthesis,

the polarity variables for a node l can be complemented together to propagate a negation

toward fanout region while preserving the functionality since the majority operation is

self-dual, i.e., M(x1, x2, x3) = M(x̄1, x̄2, x̄3). Consequently, every majority operation

can choose to propagate or not to propagate the negation, resulting O(2k) subgraphs in

the solution space.

To increase understanding of this problem, we take the parity function S1,3(x1, x2, x3, x4)

= x1 ⊕ x2 ⊕ x3 ⊕ x4 as an example. This function requires 6 majority operations to rep-

resent, which means there are 26 = 64 subgraphs for a specific node connection. Also,

since the function is totally symmetric, the input variables can be permuted to generate

4! = 24 combinations. In fact, in our experiments, there are 184320 subgraphs in the

solution space and it takes about a month for the SMT solver to complete the exhausted
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search, which is obviously impractical for both number of subgraphs and runtime.

To alleviate this problem, we have to add more proper constraints to reduce the

search space. Two methods are proposed to solve this problem, one is integrated in the

formulation phase, the other is integrated in the blocking phase. For the first one, we

restrict the first fanin of a majority node to be a regular edge, that is, a canonical condition

for complemented edges is added in the formulation phase and can be stated as follow:

Phase restriction:

k∧
i=1

p1,i ↔ 0

The second method is used to speed up the blocking phase. Originally, a satisfiable

assignment consists of three select variables for each node, three polarity variables for

each node and one variable for output polarity. Only a subgraph is blocked if this kind

of satisfiable assignment is added to SMT instance. To avoid the situation of inverter

propagation and block all subgraphs of the same node connection simultaneously, we can

generalize our blocking formula as follow:

Generalized satisfiable assignment blocking:

¬(p↔ model(p) ∧
k∧
l=1

3∧
i=1

(si,l ↔ model(si,l))

Note that the generalized blocking formula does not impose the constraints on po-

larity variables, which means once a subgraph has the same node connection as the one

found by the solver, no matter how its complemented edges are located, it is blocked by

the generalized formula. Therefore, all subgraphs generated for a target NPN class must

differ from the structure instead of redundant inverter propagation.

With the methods proposed above, we can efficiently generate desired non-redundant

subgraphs with the specific complemented edges distribution (i.e. the first fanin of each
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Figure 3.3: Example of Different Subgraphs for S0,2(x1, x2, x3, x4)

majority node must not be complemented). Figure 3.3 demonstrates three MIGs for the

function S0,2(x1, x2, x3, x4) as an example. Note that these three subgraphs are consisted

of 7 majority nodes while the depths are all different.

There are still few NPN classes having too many subgraphs due to input permutation

or structure variation. Under this circumstances, we have to set an upper bound for the

number of subgraphs of these NPN classes in order to prevent unacceptable loading time

in the rewriting phase. In our experiments, it is pratical to set the upper bound number to

500 so that the runtime won’t be too long while the variety of subgraphs is preserved.

3.2.3 Subgraph Storage

All subgraphs generated from exact synthesis engine will be writen into a file for

each NPN class containing subgraph structure information in the form of simple integers.

Our MIG engine will read these 222 files and load them as a forest-like shared DAG

containing approximately twenty eight thousand nodes. The output of each subgraph is

marked because we have to load those subgraphs in the rewriting phase.

Note that the loaded DAG is in a shared form, that is, the node of the same fanin
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combination (regular/complemented edges is considered) should not be duplicated. This

sharing property is achieved by maintaining a hash table using the key computed by fanin

condition. Then, each time a newly node is going to be created, a lookup fucntion will

check whether the node with this kind of fanin condition was created before or not and

return a proper node either newly created or from hash table. The MIG lookup function

is illustrated in the Alg. 3.

Algorithm 3 MIG Lookup Function
1: function MIG LOOKUP(fanin0, fanin1, fanin2)
2: if fanin0 = fanin1 then return fanin0 . if(x=y): M(x,y,z)=x
3: if fanin0 = fanin2 then return fanin0

4: if fanin1 = fanin2 then return fanin1

5: if fanin0 = Not(fanin1) then return fanin2 . if(x=y’) :M(x,y,z)=z
6: if fanin0 = Not(fanin2) then return fanin1

7: if fanin1 = Not(fanin2) then return fanin0

8: key ← HashKey(fanin0, fanin1, fanin2)
9: for all node in HashTable[key] do

10: if node’s fanins are equal to fanin0, fanin1, fanin2 then
11: return node
12: return createNewNode(fanin0, fanin1, fanin2)

It is worth mentioning that the MIG lookup function is used not only in the subgraph

construction but also any MIG circuit hereafter. We can see that majority axiom (Ω.M) is

intrinsically embedded in the line 2 to 7 of the lookup function, which means there is no

need to check the trivially redundant node in the MIG structure. Also, for the lookup’s

natural purpose, the node with the same fanin condition won’t be duplicated.

Finally, our MIG engine writes the loaded DAG out as an integer array, which can

be compiled into the program.
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3.3 Rewriting Phase

In the rewriting phase, our MIG engine will read the circuit in aig format and convert

it into MIG by direction transformation from AND node. Note that the MIG constructed

by direct transformation is not compact since constant zero is connected to each node,

therefore a lot of reduction opportunities are presented. On the other hand, the hash table

for node lookup is maintained during the MIG construction so that we can guarantee there

is no duplicated MIG node.

Before rewriting, we have to load subgraphs from the pre-compiled integer array.

Besides, four NPN mapping arrays are maintained to achieve fast subgraph search and

replacement. We will describe the details in the following two subsections.

3.3.1 Subgraph Loading

We will initialize a table with 222 entries, i.e., each entry for each NPN class. Then

the compiled integer array will be loaded as a forest-like shared DAG.

Figure 3.4: Subgraph Storage Table
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If the node is marked as output, it will be pushed into the corresponding NPN class

in the table. Once the loading completed, the pre-computed subgraphs will be stored as

shown in fig 3.4. The hexadecimal numbers labelled in the table is the representative truth

table for each class.

3.3.2 Subgraph NPN Manipulation

Given an arbitrary 4-input function f, we have to build the mapping relation from f to

its NPN representative function and vice versa. To be more specific, we want to know that

how to get f from its NPN representative function by negating inputs, permuting inputs,

and negating the output.

Figure 3.5: NPN Relation Mapping

To achieve the NPN manipulation, four arrays are stored as illustrated in fig 3.5.

The first and second array store the mapping from arbitrary 4-input function to its NPN

representative function and class number. The third array stores negation information

including one output and four inputs. The last array stores permutation information.
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Take function 0x966A for example, its NPN representative functionis 0x16E9 and is

the 205th class amoung 222 classes. To get the subgraph of the function 0x966A, we can

pick any subgraph in the 205th entry of the subgraph table, negate the first, the second

and the third input, permute the input with the ordering 3 1 2 0, and negate the output.

Those arrays are computed by brute force enumeration for 0 to 65535. With the

mapping relation, we can replace the 4-input subgraphs with our pre-computed subgraphs

in constant time while preserving the functionality of the node.

So far, all the preparations for MIG rewriting are ready, which typically can be pro-

cessed within a second, and we can start to update our network now. As will be introduced

in the chapter 4, various rewriting strategies can be selected by different commands ac-

cording to our purpose and specification. Once the rewriting completed, the updated MIG

network will be written out to a Verilog file, which can be easily re-used in other plat-

forms.

In this chapter, we have depicted the overview of our engine and introduced the

details for generating MIG subgraphs. The exact synthesis method with proper blocking

strategies helps us automate the whole preparation phase, resulting a compact integer

array containing all non-redundant subgraphs for each NPN class.

With the understanding of our engine, we can start to discuss how to apply our pro-

posed methods in the domain of both logic synthesis and verification by different rewriting

methodologies in the next chapter.
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Chapter 4 Application of DAG-Aware MIG

Rewriting

4.1 From the Perspective of Logic Synthesis

With the strong synthesis power proven in the previous work [3,4], we expect a

better result if the dag-aware rewriting step can be integrated into the MIG synthesis flow.

In this section, we introduce the rewriting methodology for logic optimization followed

by a demonstration example.

4.1.1 Rewriting Methodology for Logic Optimization

We demonstrate the MIG rewriting procedure by means of Algorithm 3. In the be-

ginning of the rewriting phase, our engine loads the pre-computed subgraphs compiled

previously as an integer array. Then the nodes are visited in a topological order. For

each 4-input cut of a node, all pre-computed subgraphs of its NPN class are considered

(line 8). After trying all available subgraphs for the given node, the one that leads to the

largest improvement at a node is used. Finally, if such an advantageous subgraph exists,

we update our network by this subgraph.

Note that this function can be used to optimize different kinds of targets such as

size, depth by modifying the function SubgraphsEvaluate in line 9. For example, if the

target of optimization is area (size), function SubgraphsEvaluate can be modified to count

the number of nodes saved for each possible subgraphs and returns the one with greatest

improvement. Also, there is an user-defined integer threshold passing to the rewriting
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function as a parameter so that subgraphs can be selected with more accuracy. The default

value for threshold is 1, which means only the subgraphs with improvement is acceptable.

Subgraphs that does not improve the target are also accepted if threshold is set to 0, a

relaxed criterion for rewriting.

Algorithm 4 MIG Rewriting
1: function MIG REWRITING(Network ntk, int threshold)
2: allgraphs← LoadPrecomputedArray()
3: for each node in the ntk in a topological order do
4: bestGain← −1
5: bestGraph← null
6: for each 4-input cut C of node computed using cut enumeration do
7: truth← CutTruth(node,C)
8: subgraphs← HashTableLookup(allgraphs, truth)
9: gain← SubgraphsEvaluate(ntk , node , subgraphs)

10: if gain ≥ threshold and gain > bestGain then
11: bestGain← gain
12: bestGraph← G

13: if bestGraph 6= null then
14: Mig UpdateNework(ntk , node , bestgraph)

4.1.2 A Demonstration Example

To conclude this section, we comment on the MIG rewriting procedure with a simple

example reported in Fig 4.1 that optimizes the size. Note that this simple network is

adopted from the [4].

In the beginning, all cuts are enumerated in a bottom-up manner and are listed near

by the corresponding nodes in the figure. Any cut that is of size greater than 4 is discarded.

Then the nodes are visited in a topological order. Boolean function of each 4-input cut is

computed to find its corresponding NPN class and hence its corresponding pre-computed

subgraphs. For the sake of clarity, only the cuts with improvement are marked in red
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Figure 4.1: MIG Rewriting Example

and discussed. We can see that the pre-computed subgraph for cut {x1, x2, x3, m2} of

node m5 can be represented with a single majority node, thanks to the minimality of exact

synthesis method, leading to a great improvement. The MIG network then is updated with

this subgraph to end the rewriting procedure. It is worth noticing that if we peform another

rewriting pass with target on depth, the 4-input cut {x1, x3, x4, m1} of output node will

be rewrited to a pre-computed subgraph with shorter delay. In fact, after depth-oriented

rewriting, the resulting MIG structure is the same as the final MIG generated in [4].

Compared to the method proposed in [4], our rewriting procedure is much simpler in

manipulating MIG network and much more powerful in detecting reduction opportunity.

To be more specific, instead of searching reduction candidates by some case-dependent

metrics, our proposed method can almost guarantee the improvement by replacing ad-

vantageous subgraphs in a greedy manner. While still being heuristic and suboptimal,

our method does not require much hand-tuning and trial-and-error iterations. The 4-input
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rewriting is local, however, rewriting is very fast and can be applied to the network with

different targets many times. The result is the cumulative effect of several rewriting passes

and the scope of changes is no longer local.

4.2 From the Perspective of Datapath Verification

In chapter 2, we have introduced typical verification flow and discussed how to inte-

grate datapath analysis method into the flow to resolve the datapath verification problem.

However, algorithms for datapath analysis may fail to find appropriate datapath config-

uration for some reasons. For example, the declared bit width in RTL design may be

different from the revised netlist and hence word strutures become unrecongnized. Also,

logic sharing presented in the revised netlist makes it hard to accurately separate different

arithmetic modules. In a word, since the revised netlist underwent a bit-level optimization

process, algorithms for detecting word-level structures in a sea of bit-level gates are still

hard to be complete.

In this section, we propose a method, named datapath normalization, to cope with

bit-optimized netlist based on MIG rewriting. With the method integrated, we expect that

datapath can be analyzed in a much smoother way.

4.2.1 Motivation

We will discuss what motivates us to adopt MIG rewriting as a strategy for datapath

analysis in this section.

In the beginning, we know that arithmetic operations such as addition, multiplication

are composed of the basic component, the 1-bit full adder. Those components are con-
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nected in various configurations to accomplish the specific operations. It is the various

configurations that make datapaths hard to be identified. Note that the backbone of the

datapath is the cascaded carryout chains of each full adder. Also, the carryout function

of the full adder is exact the 3-input majority function, which is the basic node in MIGs.

Therefore, if we can recover the bit-optimized carryout chains by MIG rewriting, we will

have a netlist eaiser to configure.

Besides, the MIG for a full adder, i.e., s = a⊕ b⊕ cin and cout = ab + ac + bc can

be represented with only 3 nodes, as depicted in figure 4.2. Notice that the cout node is

shared with the function s, which makes the structure more compact. In fact, this sharing

property could be a strong signal to detect adder-like subgraphs in MIG.

Figure 4.2: MIG representation for a full adder

With the motivations discussed above, we expect that the MIG rewriting-based algo-

rithm can definitely improve the quality of datapath analysis. The proposed alogrithm is

introduced in the next section.
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4.2.2 Datapath Normalization

We demonstrate the datapath normalization procedure by means of Algorithm 5. In

the beginning, we try to detect full adders in the original AIG. The function DetectFul-

lAdders (line 2) computes 3-input XOR and 3-input MAJ cuts for each node. Then, full

adders can be collected by finding common inputs between XOR cuts and MAJ cuts. The

full adders found by this cut enumeration method are in a normalized form, that is, they

are not bit-optimized in the network and can be easily identified by datapath analysis al-

gorithm. Then, instead of direct transformation from AIG to MIG, those nodes marked as

full adders are constructed into the MIG structures as the representation in Figure 4.2.

Algorithm 5 Datapath Normalization with MIG Rewriting
1: function DATAPATHNORMALIZATION(Network aig)
2: vFadds← DetectFullAdders(aig)
3: mig ← AigToMigWithAdderConstruct(aig, vFadds)
4: vChains← CollectCarryoutChains(mig)
5: allgraphs← LoadPrecomputedArray()
6: simulate(mig)
7: for each node in the vChains do
8: if isFullAdder(node) then continue
9: // try to normalize the node

10: simV alue← XorFaninSimV alue(node)
11: vSums← CollectSumCandidate(mig.simTable, simV alue)
12: for each candidate in vSums do
13: bestGain← −1
14: bestGraph← null
15: for each 4-input cut C of candidate do
16: truth← CutTruth(candidate,C)
17: subgraphs← HashTableLookup(allgraphs, truth)
18: gain← DetectFaddStructure(mig, candidate, subgraphs)
19: if gain ≥ 0 then
20: bestGain← gain
21: bestGraph← G

22: if bestGraph 6= null then
23: Mig UpdateNework(mig, candidate , bestgraph)

We then collect carryout chains in the MIG structure and sort them into the topo-

logical order (line 4). Note that since the network is bit-optimized, there must be some
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carryout nodes left in the network without finding corresponding sum nodes. If those

nodes can be paired with their corresponding sum nodes, we can normalized the network

into a more regular structure. The remaining procedure in the Algorithm 5 tries to accom-

plish the normalization task.

First, boolean simulation is performed over the MIG and nodes are hashed into a

table (line 6). Then, for each unpaired node in the carryout chains, we compute a simula-

tion value by XORing its fanins simulation value (line 10). All nodes with this computed

simulation value are collected as candidates for the carryout (line 11). Similar to Al-

gorithm 4, we try to perform rewriting on these candidates. The only difference is the

criterion for accepted subgraphs. The function DetectFaddStructure in line 18 tries to

detect subgraphs with node sharing as the structure in Figure 4.2. Also, simulation values

in each subgraphs are temporarily computed as a detecting signature so that if the sharing

properties can not be found by MIG lookup function, we can rely on those simluation

values to decide whether to accept a subgraph or not. Finally, if a subgraph is beneficial

to normalize the circuit, we update the MIG with the subgraph.

False postive rewriting may be performed in the procedure since the simulation tech-

nique is applied, however, it is not often the case in our experiments since the intrinsic

property of arithmetic circuit that it can be easily distinguished by simulation. Compared

to AIG, MIG is in a more compact structure, especially for arithmetic circuit, so that it

can be manipulted in a more guidable manner. To be more specific, each full adder can be

represented with three majority nodes as mentioned before, therefore, we can mark each

node as sum, carryout or others. With those marks, we can rewrite the MIG with a more

accurate way.
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In this chapter, we introduce how to apply DAG-aware MIG rewriting technique on

synthesis and datapath verification, which both are essential stages in the design flow. We

will continue to verify the power of rewriting technique by some experiments in the next

chapter.
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Chapter 5 Experimental Results

In this chapter, we conduct several experiments and show our MIG rewriting tech-

nique is efficient and effective in both logic synthesis and datapath verification. The

MIG subgraph generation package is implemented in C++ language with the SMT solver

Z3 [20]. The MIG rewriting package is implemented in C/C++ language in academic

synthesis and verification tool ABC. Our test environment is a Linux 64-bit machine with

Intel i7 3.00 GHz CPU and 32 GB memory.

5.1 Logic Synthesis Results

5.1.1 Methodology

Figure 5.1 depicts the typical synthesis flow in left hand side and details for MIG-

based technology independent optimization in the right hand side. Our MIG rewriting

technique can be integrated into the last stage of MIG-based synthesis flow so that the

circuit can be further compressed.

We adopt the Open Cores IWLS’05 and Arithmetic HDL as benchmarks (differential

equation solvers, telecommunication units, sorters, specialized arithmetic units, etc.) for

logic optimization. Since the goal is to compare how our algorithm can further improve

the synthesis quality, our engine reads the Verilog files released by EPFL, which have been

optimized by MIG Algebraic/Boolean methods, and writes back a Verilog description of

DAG-aware compressed MIG.
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Figure 5.1: Synthesis Methodology

5.1.2 Optimization Results

Table 5.1 shows the optimization results. The second column (marked with MLP) is

the original statistic from the released files. The third column (marked with Our Strategy)

is the statistic after our rewriting technique is applied. Note that in our experiments, best

results can be achieved when the parameter threshold in algorithm 4 is passed with value

1. Both the size and depth in the table are in terms of MIG. The last column ratio is the

size ratio of MLP and our strategy.

We can see a total improvements in the size while preserves the depth for all cases.

Considering the IWLS’05 benchmarks that are large but not tall, we see an about 10%

reduction on size. Focusing on the arithmetic HDL benchmarks, we see a better size

quality. Our MIG rewriting methodology enables further 20.4% reduction compares to the

original MIGs, which strongly shows the power of our algorithm. Besides, our rewriting

technique is efficient since all cases can be completed within few seconds. All MIG output

Verilog underwent formal verification experiments (ABC cec command) with success.
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Table 5.1: Technology-Independent MIG Optimization Results

MLP Our Strategy (th=1)

Open Cores IWLS’05 Size Depth Runtime Size Depth Runtime Ratio

Benchmark I/O

DSP 4365/4145 44166 35 12.54 39585 35 3.22 0.8963

ac97 ctrl 2267/2262 12996 9 9.76 12065 9 0.64 0.9284

aes core 789/668 21616 19 10.68 18702 19 1.25 0.8652

des area 368/72 4259 23 0.63 3890 23 0.26 0.9134

des perf 9042/9038 76233 16 39.34 71174 16 14.08 0.9336

ethernet 10710/10728 68656 16 20.28 66618 16 15.27 0.9703

i2c 147/142 1114 9 0.21 1009 9 0.09 0.9057

mem ctrl 1204/1231 8369 20 0.51 7687 20 0.43 0.9185

pci bridge32 3527/3534 22132 17 3.88 19812 17 1.73 0.8952

pci spoci ctrl 89/80 1009 12 0.05 823 12 0.09 0.8157

sasc 133/132 754 7 0.22 688 7 0.1 0.9125

simple spi 148/147 985 9 0.15 903 9 0.04 0.9168

spi 274/276 3614 20 1.79 3252 20 0.21 0.8998

ss pcm 106/98 496 7 0.05 432 7 0.07 0.8710

systemcaes 930/819 10367 26 11.21 8605 26 0.55 0.8300

systemcdes 314/258 2712 20 3.62 2449 20 0.19 0.9030

tv80 379/410 7802 31 8.95 6607 31 0.42 0.8468

usb funct 1894/1879 14842 20 12.62 13386 20 0.96 0.9019

usb phy 113/111 484 8 0.04 435 8 0.07 0.8988

AVG 0.8959
Arithmetic HDL Size Depth Runtime Size Depth Runtime Ratio

Benchmark I/O

MUL32 64/64 9161 37 3.39 7202 37 0.43 0.7862

sqrt32 32/16 2173 165 1.2 1710 165 0.17 0.7869

diffeq1 355/289 18015 220 123.55 14756 220 1.15 0.8191

div16 32/32 4407 103 6.39 3150 103 0.24 0.7148

hamming 200/7 2079 62 18.99 1618 62 0.16 0.7783

MAC32 96/65 9392 42 5.53 8467 42 0.52 0.9015

revx 20/25 7542 144 12.33 5921 144 0.48 0.7851

AVG 0.7960
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To further verify the effect of our algorithm, we perform LUT mapping on the origi-

nal MIGs and DAG-aware compressed ones. We adopt the tool ABC as synthesizer with

mapping command if -K 6, which means the MIGs will be mapped into LUTs with 6 in-

puts. Table 5.2 shows the results of mapped circuits. Both the size and depth in the table

are in terms of LUT. The last column ratio is the size ratio of MLP and our strategy.

Results obtained from technology mapping are of higher practical relevance. We can

almost obtain better implementations in all cases. From the perspective of size, all cases

are compressed except des perf, sasc and systemcaes due to inevitable logic duplications

in the mapping phase. On the other hand, depth is presevered for all cases except diffeq1.

On average, we see an about 5% reduction on size for IWLS’05 benchmarks while

about 12% reduction on Arithmetic HDL benchmarks. The results is better, however, the

improvement is not as good as the pure logic optimization results since ABC is an AIG-

based technology mapper. If a MIG-based mapper has been developed, we can definitely

obtain better mapping results.

5.2 Datapath Verification Results

5.2.1 Methodology

To verify the effect of our algorithm, we adopt commercial verification tool Cadence

Conformal LEC as our experiment flow. The command datapath analysis is built in LEC,

which performs analysis between RT-level design and synthesized logic netlist before

combinational equivalence checking and estimates an analysis quality by metrics such

as circuit similarity. We will compare the improvement on the quality with and without
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Table 5.2: MIG Optimization Results After Technology Mapping

MLP Our Strategy

Open Cores IWLS’05 Size Depth Size Depth Ratio

Benchmark I/O

DSP 4365/4145 11873 12 11148 12 0.9389

ac97 ctrl 2267/2262 2927 3 2911 3 0.9945

aes core 789/668 5198 6 4703 7 0.9048

des area 368/72 869 8 794 7 0.9137

des perf 9042/9038 13062 3 13166 3 1.0080

ethernet 10710/10728 17659 7 17369 7 0.9836

i2c 147/142 275 4 268 4 0.9745

mem ctrl 1204/1231 2430 7 2339 7 0.9626

pci bridge32 3527/3534 5452 6 5343 6 0.9800

pci spoci ctrl 89/80 312 5 259 5 0.8301

sasc 133/132 153 2 154 2 1.0065

simple spi 148/147 232 3 228 3 0.9828

spi 274/276 988 7 987 7 0.9990

ss pcm 106/98 119 2 105 2 0.8824

systemcaes 930/819 1963 8 2086 7 1.0627

systemcdes 314/258 625 7 525 7 0.8400

tv80 379/410 2066 12 1971 12 0.9540

usb funct 1894/1879 3784 7 3579 7 0.9458

usb phy 113/111 138 2 138 2 1.0000

AVG 0.9560
Arithmetic HDL Size Depth Size Depth Ratio

Benchmark I/O

MUL32 64/64 1926 11 1777 12 0.9226

sqrt32 32/16 661 66 531 66 0.8033

diffeq1 355/289 4653 49 4146 58 0.8910

div16 32/32 1640 43 1261 43 0.7689

hamming 200/7 545 15 530 16 0.9725

MAC32 96/65 2186 12 2062 12 0.9433

revx 20/25 2258 45 1940 46 0.8592

AVG 0.8801
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applying our DAG-aware MIG rewriting on the synthesized logic netlist. Also, if the

quality is improved, we expect that the runtime of equivalence checking can be reduced

effectively.

We generate arithmetic designs as our benchmark by the flow depicted in Fig 5.2.

The original RT-level designs are synthesized by commercial synthesis tool Synopsys De-

sign Compiler, which optimizes both area and depth. To increase the degree of bit-level

optimization, those synthesized netlists are passed to ABC with command dc2, which

performs further bit-level rewriting and refactoring.

Figure 5.2: Arithmetic Design Geneartion Flow

The generated RT-level designs include various arithmetic operations such as com-

plex addition trees, plentiful shift operations and multiplications. Also, our benchmark

can be divided into two sets according to the complexity of arithmetic operations.

The first set of the benchmark is comparatively simple: only few arithmetic opera-

tions and constant multiplications are presented in the designs. The second set is much

harder: the variation in arithmetic operations is high and multiplications are embedded

in the designs. The detailed RTL descriptions are listed in Table 5.3. Note that those

optimized netlists are all poorly analyzed by LEC.
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Table 5.3: Arithmetic Benchmark Detail Description

Easier Bitwidth RTL Description

case1 14 a-b+c+[(d-e)*10]

case2 24 a-b+c+[(d-e)*10]

case3 30 a-b+c+[(d-e)*10]

case4 33 a-b+c+[(d-e)*10]

case5 18 a-b+[(c-d)<<1]+[(c-d)]+e+[(c-d)<<3]

case6 23 a-b+[(c-d)<<1]+[(c-d)]+e+[(c-d)<<3]

case7 26 a-b+[(c-d)<<1]+[(c-d)]+e+[(c-d)<<3]

case8 8 a-b+c+[d<<1]+d+[d<<3]-[e*11]

case9 10 a-b+c+[d<<1]+d+[d<<3]-[e*11]

case10 12 a-b+c+[d<<1]+d+[d<<3]-[e*11]

Harder Bitwidth RTL Description

case11 14 a-b+c+[(d-e)<<3]+[(d-e)<<1]+(d-e)+g+[(h-i)<<2]+[(h-i)<<1]

case12 16 a-b+[(d*e)<<1]+(d*e)+c+[(d*e)<<3]

case13 16 a-b+c+[(d-e)<<3]+[(d-e)<<1]+(d-e)+g+[(h-i)<<2]+[(h-i)<<1]

case14 22 a-b+c+[(d-e)<<3]+[(d-e)<<1]+(d-e)+g+[(h-i)<<2]+[(h-i)<<1]+h

case15 10 a-b+c+[(d-e)<<2]+[(d-e)<<1]+(d-e)+f+[(h-i)<<3]+[(h-i)<<1]

case16 10 a-b+c+[(d*e)<<2]+[(d*e)<<1]+(d*e)-f+[(h-i)<<3]+[(h-i)<<1]

case17 14 a-b+(d*e)+[c<<1]+[c<<3]+c+[(d-e)<<1]+[(d-e)<<3]

case18 20 a-b+c+[(d-e)<<3]+[(d-e)<<1]+(d-e)+f+[(h-i)<<3]+[(h-i)<<1]

case19 12 a-b+c+[(d-e)<<3]+[(d-e)<<1]+(d-e)+f+[(h-i)<<2]+[(h-i)<<1]

case20 10 a-b+c+[(d*e)<<2]+(d*e)-h+[(h*i)<<3]+[(h*i)<<1]

5.2.2 Verification Results

Table 5.4 summarizes experimental results for datapath verification of the first bench-

mark set with MIG rewriting. The column for size is the number of AND nodes (since

they are generated by ABC in the last step) in the optimized netlist. Quality is the anal-

ysis quality estimeated by LEC and Runtime is the runtime of equivalence checking (in

seconds) after datapath analysis. There is no non-equivalent output in our cases.

We can see that the average quality after MIG rewriting is more than three times as
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Table 5.4: Datapath Verification Results of Easier Benchmark With MIG Rewriting

Original ( g.v to r.v ) MIG rewrite ( g.v to mig.v )

Input Output Size Quality Runtime eq/abort Quality Runtime eq/abort

case1 77 21 1441 16% 14.77 21/0 51% 0.88 21/0

case2 127 31 2281 11% 31.05 31/0 49% 1.73 31/0

case3 157 37 2785 9% 45.14 37/0 50% 2.47 37/0

case4 172 40 2911 12% 55 40/0 44% 31.4 40/0

case5 57 17 1121 40% 7.94 17/0 55% 0.4 17/0

case6 97 25 1793 36% 17.9 25/0 54% 1.03 25/0

case7 137 33 2449 10% 36.1 33/0 50% 2.02 33/0

case8 47 15 953 42% 7.24 15/0 56% 1.04 15/0

case9 67 19 1289 39% 10.31 19/0 55% 0.54 19/0

case10 122 30 2197 11% 29.72 30/0 45% 20.41 30/0

268/0 3.16 0.18 268/0

the one without MIG rewriting, which means our algorithm can effectively assist datapath

analysis. Besides, as our expectation, the runtime for equivalence checking is reduced

with about 82% since the quality is improved.

Table 5.5 summarizes experimental results for datapath verification of harder bench-

mark set with MIG rewriting. Note that since those cases are much more complex, some

outputs may be aborted by LEC because LEC finds it hard to complete the equivalence

checking in reasonable runtime.

In the table, we see that the average quality result is not we want since it is reduced

about 6%. Fortunately, in most cases, aborted outputs can be completely verified after

MIG rewriting. The reason for such improvement is twofold. On the one hand, when dat-

apath normalization algorithm is applied, some crucial arithmetic points may be exposed

in the netlist so that LEC can verify the miter by internal equivalence one after another

instead of verifying outputs with brute force. On the other hand, we see the verification
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Table 5.5: Datapath Verification Results of Harder Benchmark With MIG Rewriting

Original ( g.v to r.v ) MIG rewrite ( g.v to mig.v )

Input Output Size Quality Runtime eq/abort Quality Runtime eq/abort

case11 126 23 2407 39% 29.87 10/13 30% 44.39 23/0

case12 81 21 2833 29% 37.34 14/7 27% 46.81 14/7

case13 140 25 2846 34% 20 7/18 37% 48.43 25/0

case14 188 31 4474 33% 31.47 8/23 42% 64.06 9/22

case15 92 19 2007 32% 20.49 11/8 28% 38.74 19/0

case16 72 19 2387 41% 51.51 10/9 38% 80.18 11/8

case17 61 19 2149 35% 22.61 11/8 37% 31.02 11/8

case18 172 29 3437 34% 23.19 7/22 30% 89.52 29/0

case19 108 21 2145 39% 29.51 10/11 31% 39.42 21/0

case20 80 19 2630 45% 35.96 5/14 38% 55.84 6/13

93/133 0.94 1.88 168/58

runtime is almost twice as the original one, which means the netlists with MIG rewriting

are easier to conquer for LEC so that it will not give up solving and abort them in the early

stage.

In this chapter, experiment results validate the effect of DAG-aware MIG rewriting

technique and prove the potential of MIGs in logic synthesis and verification again. We

will conclude this thesis in the next chapter.
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Chapter 6 Conclusions and Future Work

In this thesis, we’ve proposed efficient MIG-based rewriting approaches for both

logic synthesis and verification. The proposed rewriting method take advantage of pre-

computed minimum MIG subgraphs. In the logic synthesis domain, by replacing ad-

vantageous subgraphs successively, we can compress the large netlist with remarkable

reduction within seconds. On the other hand, we take the first step to apply MIG in the

verification domain and our MIG rewriting algorithm targets on recovering the datapaths.

Both rewriting strategies are simple, yet powerful. Experimental results have shown that

our approach performs better than the previous works on MIG and can definitely improve

the quality on datapath analysis.

For the future work, there are some points in our flow which can be further improved.

First, in the synthesis domain, we can develop a MIG-based technology mapping engine

so that the entire logic synthesis process can be manipulated with MIG and better synthe-

sis results are almost guaranteed. For the datapath verification, MIG subgraphs favored

by arithmetic circuit can be pre-computed instead of using minimum subgraphs. Also,

rewriting strategies can be more sophisticated so that word-level information from the

RTL design won’t be discarded directly. Finally, since we’ve successfully pioneered in

applying MIG to the verification domain, there must be lots of promising ideas worth

trying hereafter.
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