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中文摘要  

 

近幾年隨著支援 3D影片與虛擬實境的裝置問世，多視角 3D影片將扮演著重

要的角色。與傳統單一視角的影片相比，多視角影片不可避免地需要更大的空間來

儲存。然而尚未有文獻提及，如何將多視角影片在代理伺服器的快取中有效地儲存、

置換。3D影片的深度資訊合成技術使得使用者可以透過鄰近的視角合成出使用者

想要觀看的視角，因此，我們可以大幅降低一部 3D影片所佔的儲存空間。我們提

出了一個新的快取置換問題，叫做視角選擇與快取操作問題，並且利用馬可夫決策

過程找到此問題的最佳解。另外，為了解決馬可夫決策過程在大案例會有複雜度過

高的問題，我們也提出了一個啟發式演算法以解決此問題。模擬結果顯示，與過去

的快取置換策略相比，我們所提出的演算法與馬可夫決策過程的最佳解可以大幅

提升快取命中的比率，並且降低快取在置換、傳送影片時的遲滯以及所消耗的頻寬。 

 

關鍵字：多視角 3D影片、深度資訊合成技術、代理伺服器、快取 
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ABSTRACT 

 

 Due to the emergence of mobile 3D and VR devices, multi-view 3D videos are 

expected to play increasingly important roles shortly. Compared with traditional single-

view videos, it is envisaged that a multi-view 3D video requires a larger storage space. 

Nevertheless, efficient caching of multi-view 3D videos in a proxy has not been explored 

in the literature. In this thesis, therefore, we first observe that the storage space can be 

effectively reduced by leveraging Depth Image Based Rendering (DIBR) in multi-view 

3D. We then formulate a new cache replacement problem, named View Selection and 

Cache Operation (VSCO), and find the optimal policy based on Markov Decision Process. 

In addition, we devise an efficient and effective algorithm, named Efficient View 

Exploration Algorithm (EVEA), to solve the problem in large cases. Simulation results 

manifest that the proposed algorithm can significantly improve the cache hit rate and 

reduce the total cost compared with the previous renowned cache replacement algorithms. 

 

 Key Words: Multi-view 3D video, DIBR, proxy caching. 
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Chapter 1 Introduction 

 

1.1 Background 

The need of data traffic has grown tremendously in mobile broadband networks, 

whereas video data are expected to occupy more than 70% of total traffic in 2020 [1]. 

Particularly, high-resolution and multi-view 3D videos have received much attention 

recently from both research and industry communities. Video service providers, such as 

YouTube and Netflix, now provide 3D videos and 3D live streaming services, whereas 

multi-view 3D videos further allow a user to select the preferred view and thereby 

stimulate innovative applications in television, movies, education, advertising, and virtual 

reality (VR). With the emergence of various VR devices, such as Google cardboard, 

Oculus Rift, Samsung Gear VR, and HTC VIVE, multi-view 3D videos are envisaged to 

play increasingly important roles in the near future. 

1.1.1 Multi-view 3D Video 

In contrast to traditional single-view 3D videos with only one view, a multi-view 3D 

video taken by cameras array from different positions and angles typically offers 5, 16, 

and 32 different view angles [2]. Each video sequence in the multi-view video represents 

a unique viewpoint of the scene, creating several times larger traffic than traditional 
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multimedia. Fig. 1.1(a) is an example for single-view video scenario; users at different 

positions perceive the same viewing scene. However, a multi-view scenario as Fig. 1.1(b) 

allows users to have different viewing scenes at different positions; therefore, the users 

can have a better experience. There are many applications for such multi-view 3D video, 

such as 3DTV, free viewpoint video, remote surgery and wireless multimedia networks. 

 

(a) Single-view      (b) Multi-view 

Fig. 1.1 An Example for 3D Video 

Several 3D video data formats and 3D video coding strategies currently co-exist, 

among which multi-view video plus depth (MVD) format has emerged as an efficient data 

representation for 3D video scene. Compared to multi-view 2D video format which 

synthesizes scenes by using image interpolation, the main advantage of MVD format is 

that virtual views at arbitrary viewpoint positions can be conveniently generated via 

Depth-Image-Based Rendering (DIBR) [3] technique for interactive application. 
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1.2 Related Works 

It is not surprising that a multi-view 3D video requires a larger storage space in a 

video proxy. Nevertheless, efficient caching of multi-view 3D video in a proxy has not 

been studied in the literature. Recent researches have shown that media objects can 

benefit from proxy caching [4], whereas various cache replacement algorithms have been 

proposed [5]. It has been reported that combining different replacement scheme, such as 

Least Recently Used (LRU) [6] and the 80/20 law, can effectively lower the miss rate [7]. 

Also, caching in wireless networks to create more Coordinated Multipoint Transmission 

(CoMP) opportunities between the relay and macro base stations has been studied [8], 

whereas User Preference Profiles (UPPs) with adaptive bit rate control are exploited to 

further maximize the cache hit rates [9]-[12]. Moreover, leveraging the preference of 

friends in social networks to predict the future need has also been incorporated in the 

cache design [13]. Nevertheless, the above researches are not designed for multi-view 3D 

videos. 

 

1.3 Motivation and Challenges 

In traditional cache problems, a data item can only serve the users that request the 

item. In contrast, for multi-view 3D videos, DIBR allows a user to synthesize the desired 
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view from the nearby left and right views because adjacent views usually share many 

similar parts. Researchers in computer vision and video processing have introduced many 

sophisticated algorithms for DIBR to ensure the synthesized quality is very close to the 

original view, by optimizing the bit allocation between the texture and depth map [14]- 

[16]. With DIBR, a view cached in a proxy is able to serve not only the users requesting 

the view but also other users subscribing to nearby views. Nevertheless, the nearby left 

view and right view cannot be arbitrarily far away to ensure a guaranteed video quality 

[17]. Specifically, the quality constraint in DIBR specifies that the left and right view are 

allowed to be at most 𝐷 views away (i.e., 𝐷 − 1 views between them). Therefore, it is 

desired to design a new cache replacement algorithm to support DIBR in multi-view 3D 

videos.  

The difference of caching with DIBR and traditional caching are three-fold. 1) In 

traditional caching, if a requested view is not cached in a proxy, the proxy needs to access 

the remote video server to acquire the subscribed view. For caching with DIBR, if the 

nearby left and right views are cached in a proxy, the proxy can directly send the two 

views to the user. Nevertheless, the distance between the two views is constrained, and 

properly selecting the views to be cached is crucial. 2) When a cache miss occurs in 

traditional caching, the proxy can only access the missed view from the remote video 
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server. By contrast, for caching with DIBR, the proxy can access the requested view or a 

nearby left (or right) view when another nearby right (or left) view has been stored. 3) In 

addition to the cached views and accessed views, the replacement of views is also 

different from the traditional cache. A view whose request frequency or recency is small 

or old, is usually evicted by the proxy. In contrast, for caching with DIBR, the view can 

a play an important role when it can be exploited to synthesize many popular nearby 

views. Therefore, the selection of the cached views, accessed views and replaced views 

becomes more flexible and thus more challenging in caching with DIBR in multi-view 

3D because more candidate views are necessary to be considered. 

In this thesis, therefore, we formulate a new cache replacement problem, named View 

Selection and Cache Operation Problem (VSCO). Given the initial cache state, user 

request, and DIBR constraint, we aim to find the best views to be fetched, evicted (i.e., 

replaced), and returned to the users. The objective is to minimize a cost function of miss 

count, remote access cost, local transmission cost and the synthesis penalty. To solve 

VSCO, we model the cache replacement as a Markov Decision Process (MDP) [18] to 

find the optimal solutions in small cases and then extract the intrinsic ideas behind to 

devise an efficient and effective heuristic algorithm, named Effective View Exploration 

Algorithm (EVEA), for large cases. Simulation results manifest that, our proposed 
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approaches can gain 30%  hit rate and reduce 30%  costs against traditional cache 

replacement policies. 

 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 describes the system model 

and the problem formulation, and algorithm EVEA is presented in Chapter 3. The 

simulation results are summarized in Chapter 4, and finally, we conclude this thesis in 

Chapter 5. 
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Chapter 2 View Selection and Cache Operation 

Problem 

 

Fig. 2.1 System Model 

2.1 System Model 

We consider a proxy server with a cache, which caches many multi-view 3D video 

as the red part in Fig. 2.1. The proxy is connected to many users and the multi-view 3D 

videos are requested from remote video providers. The architecture to store a multi-view 

3D video is similar to the one for traditional videos. Each view of a video is segmented 

into many small chunks [19], whereas VCR functionality according to the dynamic user 

requests with a tunable-victimization procedure can also be supported [20]. When a user 

request (for accessing a new view or switching to another view) arrives, the proxy can 
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directly serve the user (for a cache hit) or wait until it acquires the video chunks from a 

remote video server (for a cache miss). Nevertheless, the differences of a multi-view 3D 

video proxy and the traditional proxy are the definitions of a cache hit, a cache miss, and 

the corresponding cache replacement policy, because DIBR in multi-view 3D enables the 

proxy to serve a user request even when the desired view is not cached. In the following, 

to explore various possibilities to serve a view with different nearby views, we first focus 

on the selection of cached views in a proxy for a video and then extend it to multiple 

videos in Chapter 3.3. 

Specifically, let 𝑉 ⊆ ℕ denote the universal set of views in a multi-view 3D video. 

A proxy can cache at most 𝑁 views for a multi-view 3D video, where 1 ≤ 𝑁 ≤ |𝑉|. Let 

𝒱𝑡 denote the state of the cache. A cache hit for a view request 𝑣 occurs in the following 

two cases. 1) The request view 𝑣 is stored in the cache, 𝑣 ∈ 𝒱𝑡 . Then the proxy can 

directly return the view 𝑣 to the user. 2) The view 𝑣 is not cached but its nearby left 

view and right view, say 𝑣𝑙  and 𝑣𝑟 , are in the cache, where |𝑣𝑙 − 𝑣𝑟| ≤ 𝐷 . The 

relationship between the setting of 𝐷  and the video quality has been quantified in 

[15],[17], and the quality degradation is also incorporated in our cost model (detailed 

later). In this case, the cache can serve the rsequest by returning this view pair (𝑣𝑙, 𝑣𝑟) to 

the user. Note that the bandwidth consumption from a proxy to the user client grows when 
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the proxy plans to serve a view request with two nearby views, and it is thus important to 

incorporate the above bandwidth cost into the objective function (described later).  

On the other hand, for a cache miss, note that the traditional proxy can only access 

the requested view from the remote video server. In contrast, a multi-view 3D video proxy 

is allowed to access the nearby one or two views (e.g., when they are more popular than 

the desired view). More specifically, the selection of views in the cache replacement 

policy for multi-view 3D includes the following three parts: 1) The desired view 𝑣 

directly, 2) a nearby left or right view, 𝑣𝑙 or 𝑣𝑟, and 3) both nearby views. Therefore, it 

is envisaged that a cached view in a multi-view 3D video proxy is able to serve more 

users (i.e., not only the users requesting the view but also the users requesting nearby 

views). Nevertheless, finding the optimal cache policy becomes more challenging 

because more factors, such as the additional bandwidth and synthesis costs in DIBR, are 

necessary to be considered carefully. 

For practical situations, the computation overhead and extra energy consumption 

incurred by DIBR is small enough to be supported by current mobile devices [21],[22]. 

For HTTP video streaming (ex., YouTube and MPEG-DASH) with TCP [23],[24] (instead 

of UDP in Skype), DIBR can be performed when the views are waiting in the streaming 

buffer before playback, and thus no extra delay will be incurred. 
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Whenever the proxy needs to access the remote video server and returns the view(s) 

to the user, two types of cost (i.e., the remote access cost and local transmission cost) are 

involved. Let 𝑐𝑓 and 𝑐𝑠 denote the bandwidth costs to fetch a view from the remote 

server and the cost to return a view to the user, respectively. Let 𝑐𝑚 denote a penalty cost 

for a cache miss. Finally, to encourage directly transmitting the desired view, a view 

synthesis cost (representing the DIBR computation cost and the quality degradation) 

𝑐𝑝 = 𝑓(𝑣𝑙 , 𝑣𝑟) is introduced according to 𝑣𝑙 and 𝑣𝑟, and a larger cost is induced when 

the two views are more distant. Note that 𝑐𝑝 can be set according to [15],[17],[21],[22]. 

 

2.2 Problem and Markov Decision Process 

In this section, we first formulate a new optimization problem, named View Selection 

and Cache Operation Problem (VSCO), for cache replacement in a multi-view 3D video 

proxy. Given the universal set of views 𝑉, size of the cache 𝑁, DIBR synthesize range 

𝐷, the initial cache state 𝒱0, and the request ℛ (which can be described as a stochastic 

process, as explained later in this section), the problem is to select 1) the appropriate 

view(s) to be accessed from the remote server, 2) the view(s) to be replaced (i.e., evicted) 

from cache, and 3) the view(s) to be returned to the user. The objective is to minimize the 

average cost over an infinite time horizon by carefully selecting the views to be fetched, 
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evicted, and delivered whenever a request arrives. 

Notation Description 

𝑉 The universal set of views in a multi-view 3D video 

𝑁 The size of the cache 

𝐷 The synthesize range of DIBR 

𝒮𝑡 

𝒱𝑡 

ℛ𝑡 

The global state of MDP model at time 𝑡, 𝒮𝑡 = {𝒱𝑡, ℛ𝑡} 

The state of the cache at time 𝑡 

The request at time 𝑡 

𝒜𝑡 

𝑉𝑓 

𝑉𝑒 

𝑉𝑠 

The action takes at time 𝑡, 𝒜𝑡 = {𝑉𝑓 , 𝑉𝑒 , 𝑉𝑠} 

The view set to be fetched 

The view set to be evicted 

The view set to be sent to the user 

𝑞𝑖𝑗 

The request transition probability 

When the current request is view 𝑖, the next request will be view 𝑗 with 

probability 𝑞𝑖𝑗 
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𝒞(𝑠, 𝑎) 

𝑐𝑚 

𝑐𝑓,𝑐𝑠 

𝑐𝑝 

 

The induced cost when action 𝑎 is taken at state 𝑠 

The cost when a cache miss happens 

The cost to fetch and send a view, respectively 

The quality degradation penalty when a user receives a view pair for 

synthesis 

Table 2.1 Notation Table 

In the following, we first present a Markov Decision Process (MDP) to find the 

optimal solution of VSCO. Markov Decision Process aims to minimize the long-term 

average cost in a proxy for an infinite horizon (i.e., infinite time). Table 2.1 summarizes 

the notations throughout this paper. The MDP model {𝒮, 𝒜, 𝒞(𝑠, 𝑎)} consists of the state 

space 𝒮, the action space 𝒜, and the cost function 𝒞, respectively. Decision epochs 

(indexed by 𝑡 = 0,1,2 …) are defined as the instants with view requests arriving at the 

proxy. The status of time 𝑡 is described by 𝒮𝑡 = {𝒱𝑡, ℛ𝑡}, where 𝒱𝑡 denotes the state 

of the cache, and ℛ𝑡 denotes the view requested at time 𝑡. Note that 𝒱𝑡 is a subset of 

𝑉 of cardinality |𝒱𝑡| ≤ 𝑁, and let 𝒱𝑡
𝑠 denote the views that can be synthesized by 𝒱𝑡 

according to the DIBR synthesize range 𝐷. For example, if |𝑉| = 16, 𝒱𝑡 = {2,5,9,11} 

and 𝐷 = 3, then 𝒱𝑡
𝑠 = {3,4,10}. Notice that 𝒱𝑡 ∩ 𝒱𝑡

𝑠 = ∅.  

When a view request ℛ𝑡 arrives at the proxy with the state of cache as 𝒱𝑡, let 𝒜𝑡 
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denote the decision of the proxy for the request ℛ𝑡. There are three components in a 

decision action 𝒜𝑡 = {𝑉𝑓, 𝑉𝑒, 𝑉𝑠}, where 𝑉𝑓 ⊆ 𝑉 − 𝑉𝑡 denotes the view set required to 

be fetched from remote video server, and 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 represents the view set to be 

evicted (i.e., replaced) from a proxy when the proxy is full. Finally, let 𝑉𝑠 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 be 

the view set returned to the user, which is either ℛ𝑡 or a view pair that can synthesize 

the desired view by DIBR with the smallest view distance, i.e., 𝑉𝑠,𝑙 = 𝑠𝑢𝑝
𝑣∈𝑉𝑡∩𝑉𝑓

{𝑣 < ℛ𝑡}, 

𝑉𝑠,𝑟 = 𝑖𝑛𝑓
𝑣∈𝑉𝑡∩𝑉𝑓

{𝑣 > ℛ𝑡}, and |𝑉𝑠,𝑙 − 𝑉𝑠,𝑟| ≤ 𝐷. Note that the cardinalities of the three sets 

are no more than two, i.e., |𝑉𝑓|, |𝑉𝑒|, |𝑉𝑠| ≤ 2, implying that the proxy can fetch, evict, 

and returns at most two views at each instant. 

For each state 𝒮𝑡 = {𝒱𝑡, ℛ𝑡}, the next state of the proxy 𝒱𝑡+1 depends on 𝒱𝑡 and 

𝒜𝑡, since 𝒱𝑡+1 = 𝒱𝑡 ∪ 𝑉𝑓 − 𝑉𝑒. Note that the distribution of ℛ𝑡+1 is probabilistically 

dependent on ℛ𝑡 . In other words, each state is allowed to have a different arrival 

probability for each view in the model. If the current request is for view ℛ𝑡 = 𝑖, the next 

one will be view ℛ𝑡+1 = 𝑗 with probability 𝑞𝑖𝑗
1. Therefore, the state transition from 𝒮𝑡 

to 𝒮𝑡+1 is jointly determined by the action 𝒜𝑡 and the request transition probability 𝑞𝑖𝑗. 

                                                 

1 Note that the request transition probability can also be independent on the current request, i.e. 𝑞1,𝑗 =

𝑞2,𝑗 = ⋯ = 𝑞|𝑉|,𝑗 = 𝒒𝑗. 
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After an action 𝒜𝑡 = 𝑎 is taken by the proxy at state 𝒮𝑡 = 𝑠, the cost 𝒞(s, a) 

incurred is described as follows.2 

𝒞(s, a) = 𝑐𝑚𝟏{ℛ𝑡∉𝒱𝑡⋃𝒱𝑡
𝑠} + |𝑉𝑓|𝑐𝑓 + |𝑉𝑠|𝑐𝑠 + 𝑐𝑝,  

( 2.1 ) 

where 𝟏{𝑥} is the indicator function (with the value as 1 or 0) to describe if 𝑥 is true 

or false. The cost function is the same as the one introduced in the end of Chapter 2.1, 

where 𝑐𝑓 and 𝑐𝑠 denote the cost to fetch a view from the remote server and the cost to 

send a view to the user, respectively, 𝑐𝑚 denote an penalty cost for a cache miss, and 

the view synthesis cost is 𝑐𝑝 = 𝛼|𝑉𝑠,𝑙 − 𝑉𝑠,𝑟| with the synthesis unit cost 𝛼. 

  

                                                 

2 Note that each parameter in the cost model needs to be normalized according to their weight in real 

situations. 
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2.2.1 State Transition 

 

Fig. 2.2 An Example for State Transition (Case 1) 

Next, we explain the state transition of MDP in detail with the following cases. 

Case 1 

If the requested view ℛ𝑡 is cached in the proxy, i.e., ℛ𝑡 ∈ 𝒱𝑡, the desired view will 

be directly returned to the user, that is, 𝑉𝑓 = 𝑉𝑒 = ∅ and 𝑉𝑠 = {ℛ𝑡}. Thus 𝒞(s, a) = 𝑐𝑠. 

No view replacement will be provoked. Fig. 2.2 presents an example for case 1. If |𝑉| =

16, 𝒱𝑡 = {2,5,9,11} and ℛ𝑡 = 5, view 5 will be directly returned to the user. The 

dashed block in the middle of each figure denotes the cache state after an action, and the 

arrow at the right hand side represents the next request ℛ′ with probability 𝑞ℛℛ′ . 
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Fig. 2.3 An Example for State Transition (Case 2) 

Case 2 

If the requested view is not cached in the proxy but can be synthesized by two nearby 

cached views in 𝒱𝑡, i.e., ℛ𝑡 ∈ 𝒱𝑡
𝑠, the situation is further divided into many small sub-

cases because the proxy can access, replace, and return one or two views, in order to 

minimize the total cost. For example, in Fig. 2.3, 𝒱𝑡 = {2,5,9,11}, 𝒱𝑡
𝑠 = {3,4,10} and 

ℛ𝑡 = 10, the proxy can access view 8, replace view 9, and return view 9, 11 to the user. 

Note that the user need to receive two views, but the proxy can satisfy more requests in 

the future (i.e., views 2,5,8,11  are directly cached, and views 3,4,6,7,9,10  can be 

synthesized as well). Therefore, the cache state becomes 𝒱𝑡+1 = {2,5,8,11} after the 

action. Since the proxy accesses one view and returns two vies to the user, the cost is 

𝑐𝑓 + 2𝑐𝑠 + 𝑐𝑝. 
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Case 2-1: |𝑽𝒇| = |𝑽𝒆| = 𝟎, |𝑽𝒔| = 𝟐 

No replacement is performed in this case. The elements in 𝑉𝑠 are a view pair with 

smallest view distance to synthesize the desired view with DIBR, i.e., 𝑉𝑠,𝑙 =

𝑠𝑢𝑝
𝑣∈𝑉𝑡∩𝑉𝑓

{𝑣 < ℛ𝑡}, 𝑉𝑠,𝑟 = 𝑖𝑛𝑓
𝑣∈𝑉𝑡∩𝑉𝑓

{𝑣 > ℛ𝑡}, and |𝑉𝑠,𝑙 − 𝑉𝑠,𝑟| ≤ 𝐷. 𝒞(s, a) = 2𝑐𝑠 + 𝑐𝑝. 

Case 2-2-1: |𝑽𝒇| = |𝑽𝒆| = |𝑽𝒔| = 𝟏 

In this case, the proxy acquires the desired view from the remote video server and 

returns the view to the user. Thus 𝑉𝑓 = 𝑉𝑠 = {ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 and 𝒞(s, a) = 𝑐𝑓 + 𝑐𝑠. 

Case 2-2-2: |𝑽𝒇| = |𝑽𝒆| = 𝟐, |𝑽𝒔| = 𝟏 

In this case, the proxy replaces two views and sends one view to the user. 𝑉𝑓 =

{ℛ𝑡, 𝑣|𝑣 ∈ 𝑉 − 𝒱𝑡 − ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓, 𝑉𝑠 = {ℛ𝑡}, and 𝒞(s, a) = 2𝑐𝑓 + 𝑐𝑠. 

Case 2-3-1: |𝑽𝒇| = |𝑽𝒆| = 𝟏, |𝑽𝒔| = 𝟐 

The proxy replaces a view for a higher hit probability in the future and sends a view 

pair to the user. 𝑉𝑓 = {𝑣|𝑣 ∈ 𝑉 − 𝒱𝑡 − ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓, and the elements in 𝑉𝑠 are 

the same as in Case 2-1. 𝒞(s, a) = 𝑐𝑓 + 2𝑐𝑠 + 𝑐𝑝. 

Case 2-3-2: |𝑽𝒇| = |𝑽𝒆| = |𝑽𝒔| = 𝟐 

The proxy acquires two views for a higher hit probability in the future and sends a 

view pair to the user. 𝑉𝑓 = {𝑣1, 𝑣2|𝑣1, 𝑣2 ∈ 𝑉 − 𝒱𝑡 − ℛ𝑡} , 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 , and the 

elements in 𝑉𝑠 are the same as in Case 2-1. 𝒞(s, a) = 2𝑐𝑓 + 2𝑐𝑠 + 𝑐𝑝. 
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Fig. 2.4 An Example for State Transition (Case 3) 

Case 3 

If the requested view ℛ𝑡 cannot be satisfied by the proxy, a cache miss happens, 

i.e.,  ℛ𝑡 ∉ 𝒱𝑡⋃𝒱𝑡
𝑠. In this case, the proxy will access either the view ℛ𝑡, a neighbor view 

of ℛ𝑡 , or a pair of views which can synthesize ℛ𝑡  from the remote video server. In 

addition, it can replace and return one or two views to the users to minimize the total cost. 

Fig. 2.4 presents an example for case 3. When ℛ𝑡 = 15, the proxy may access two views 

12 , 15  to replace view 9  and 11 , and deliver view 15  to the user with the 

corresponding cost 𝑐𝑚 + 2𝑐𝑓 + 𝑐𝑠. 

Case 3-1-1: |𝑽𝒇| = |𝑽𝒆| = |𝑽𝒔| = 𝟏 

In this case, the proxy requests the missed view to serve the user. Thus 𝑉𝑓 = 𝑉𝑠 =

{ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 and 𝒞(s, a) = 𝑐𝑚 + 𝑐𝑓 + 𝑐𝑠. 
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Case 3-1-2: |𝑽𝒇| = |𝑽𝒆| = 𝟐, |𝑽𝒔| = 𝟏 

The proxy requests two views from the content provider, including the missed view, 

and send the desired view to the user. 𝑉𝑓 = {ℛ𝑡, 𝑣|𝑣 ∈ 𝑉 − 𝒱𝑡 − ℛ𝑡} , 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 , 

𝑉𝑠 = {ℛ𝑡}, and 𝒞(s, a) = 𝑐𝑚 + 2𝑐𝑓 + 𝑐𝑠. 

Case 3-2-1: |𝑽𝒇| = |𝑽𝒆| = 𝟏, |𝑽𝒔| = 𝟐 

The proxy requests the neighbor view of the missed view to synthesize the missed 

view. Therefore the server sends two views to the user. 𝑉𝑓 = {𝑣|𝑣 ∈ [ℛ𝑡 −

(𝐷 − 1), ℛ𝑡 + (𝐷 − 1)] − ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓 and the elements in 𝑉𝑠 is the same as in 

Case 2-1. Thus 𝒞(s, a) = 𝑐𝑚 + 𝑐𝑓 + 2𝑐𝑠 + 𝑐𝑝. 

Case 3-2-2: |𝑽𝒇| = |𝑽𝒆| =  |𝑽𝒔| = 𝟐 

The proxy may request a view pair to synthesize the missed view, or to achieve a 

higher hit probability in the future. 𝑉𝑓 = {𝑣1, 𝑣2|𝑣1, 𝑣2 ∈ 𝑉 − 𝒱𝑡 − ℛ𝑡}, 𝑉𝑒 ⊆ 𝑉𝑡 ∪ 𝑉𝑓, 

and the elements in 𝑉𝑠 is the same as in Case 2-1. Thus 𝒞(s, a) = 𝑐𝑚 + 2𝑐𝑓 + 2𝑐𝑠 + 𝑐𝑝. 
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2.2.2 Optimal Policy 

The action 𝒜𝑡 = 𝑎 for request ℛ𝑡 is described by 𝒜𝑡 = 𝜋(𝒮𝑡 = 𝑠) for a policy 

𝜋: 𝒮 → 𝒜. For MDP, the expected average cost over an infinite horizon is 

lim
𝑇→∞

𝔼𝜋{
1

𝑇+1
∑ 𝒞(𝒮𝑡 , 𝜋(𝒮𝑡))𝑇

𝑡=0 },  

( 2.2 ) 

Our goal is to find an optimal policy 𝜋∗ such that the above equation is minimized. That 

is, 

𝜋∗ = 𝑎𝑟𝑔 min
𝜋

lim
𝑇→∞

𝔼𝜋{
1

𝑇+1
∑ 𝒞(𝒮𝑡 , 𝜋(𝒮𝑡))𝑇

𝑡=0 }.  

( 2.3 ) 

However, directly solving equation ( 2.3 ) is computationally intractable. Suppose 

a value function 𝑉(𝑠) is defined for each state 𝑠 = (𝑣, 𝑟) to describe the long-term 

average cost when the beginning state is 𝑠. Therefore, the optimal solution can be 

achieved by solving the equivalent Bellman’s equation [18].  

 Lemma 1 (Equivalent Bellman’s Equation). If a scalar 𝛽  and a value function 

𝑉(𝑠) satisfy the Bellman’s equation for problem VSCO, written as ∀𝑠 ∈ 𝒮, 

𝛽 + 𝑉(𝑠) = 𝑚𝑖𝑛
𝑎∈𝐴

{𝒞(𝑠, 𝑎) + ∑ 𝑝𝑠𝑠′

𝑠′

𝑉(𝑠′|𝑠, 𝑎)} 

= 𝑚𝑖𝑛
𝑎∈𝐴

{𝒞(𝑠, 𝑎) + ∑ 𝑞𝑟𝑟′

𝑟′∈𝑉

𝑉(𝑣′, 𝑟′|𝑣, 𝑟, 𝑎)} 
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( 2.4 ) 

where 𝒞(𝑠, 𝑎) is the instantaneous cost under the state 𝑠 and action 𝑎, then 𝛽 is the 

optimal average cost: 

𝛽 = 𝑚𝑖𝑛
𝜋

 �̅�(𝜋) 

Moreover, 𝜋∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑎∈𝐴

{𝒞(𝑠, 𝑎) + ∑ 𝑞𝑟𝑟′𝑟′ 𝑉(𝑣′, 𝑟′|𝑣, 𝑟, 𝑎)} is the optimal policy.  

After this transformation, we are able to choose the best action 𝑎 leading to the 

smallest one-period cost 𝒞(𝑠, 𝑎), plus the expected cost value of landing at state 𝑠′. 

The Bellman’s equation can be solved with value iteration [18] or policy iteration 

[18], which is a general solution to calculate the optimal utility function iteratively. We 

demonstrate the procedure of value iteration to compute the value function 𝑉(𝑠) in 

Algorithm 1. Line 1 is for initialization. Line 2 to 11 compute the value function iteratively. 

Line 5 updates the value function for all states in each iteration. Note that the value 

function may converge to a large value; therefore, we choose an arbitrary state 𝑠𝑟 as the 

reference state. In each iteration, the value function 𝑉 �̂�(𝑠) is replaced by a relative value 

to that of the reference state (Line 8). 
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Algorithm 1 Value Iteration 

The number of global states is determined by 𝒱𝑡 and ℛ𝑡, therefore there are 𝐶𝑁
𝑉 ×

𝑁 ≈ 𝑂(𝑉𝑁+1) states. The number of actions for states in case 1 is only one. However, 

for states in case 2 and 3, there are at most 𝐶1
𝑉−𝑁𝐶1

𝑁+1 + 𝐶2
𝑉−𝑁𝐶2

𝑁+2 ≈ 𝑂((𝑉𝑁)2) 

actions, since the proxy can replace one view or two views at a time. Therefore, the total 

number of state-action pair is of 𝑂(𝑉𝑁+2𝑁2), which is an exponential function. Note that 

the real feasible action will all be determined by the cost components in the cost function, 

e.g. when 𝑐𝑓 is large, the proxy will not replace two view at a time. Thus, the number of 

state-action pair will be smaller. 

The MDP is designed to find the optimal policy for small cases. In the next section, 
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we design an effective and efficient heuristic algorithm to solve the problem for large 

cases. 
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Chapter 3 Heuristic Algorithm 

 

3.1  Algorithm EVEA 

Most conventional cache replacement algorithms exploit the request recency [6] or 

frequency [25], such as the Least Recently Used (LRU-based) policy and Least 

Frequently Used (LFU-based) policy, respectively. Correlations of nearby views have not 

been leveraged in those algorithms to support multi-view 3D videos. In this section, by 

contrast, we aim to extract the ideas behind the proposed MDP to design an effective and 

efficient heuristic algorithm. Our algorithm examines not only the preference/frequency 

of user requests but also the correlation between nearby views to boost the number cache 

hits and thus reduce the total cost, whereas a synthesize cost is also incorporate to ensure 

the video quality.  

In the previous section, we have formulated the problem by MDP, which can be 

solved by value iteration or by linear programming. However, both methods need to 

evaluate the value function for each state and enumerate each action, and the above 

processes are computation intensive for large cases. Hence, we design a new algorithm, 

named Efficient View Exploration Algorithm (EVEA) by 1) simplifying the computation 

of the value function to consider only one-stage cost and, 2) shrinking the action space of 
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each 𝑉𝑓 , 𝑉𝑒 . Note that in MDP, the proxy can fetch and evict at most two views to 

carefully examine all possible cases, and it may create a large action space when the 

number of view is large. In contrast, here we confine the proxy to fetch and replace at 

most one view at an instant to effectively reduce the action space. 

More specifically, when the cache state is 𝒱𝑡 and the current request ℛ𝑡 = 𝑟, we 

consider the one-period cost and derive the expected miss probability for the next request3. 

The rationale behind EVEA is to minimize the expected miss probability of the next state 

as well as cost induced from the current request, including the fetch cost, transmission 

cost, and synthesize penalty. In other words, we aim to find the best (𝑉𝑓, 𝑉𝑒 , 𝑉𝑠) such that 

𝒞(s, a) = 𝑐𝑚𝟏{𝑟∉𝒱𝑡⋃𝒱𝑡
𝑠} + |𝑉𝑓|𝑐𝑓 + |𝑉𝑠|𝑐𝑠 + 𝑐𝑝 + 𝛽 ∑ 𝑞𝑟𝑟′𝟏{𝑟′∉𝒱𝑡+1⋃𝒱𝑡+1

𝑠 }𝑟′   

( 3.1 ) 

is minimized, where 𝛽 is a weight factor and 𝒱𝑡+1 = 𝒱𝑡 ∪ 𝑉𝑓 − 𝑉𝑒. Therefore, when a 

new request arrives, we search all the possible combinations of the fetched, evicted, and 

delivered views to minimize the expected miss probability and total cost. 

In the following, we consider the three cases in MDP for the algorithm design. 

First, when the cache can satisfy the user's request by directly transmitting the desired 

                                                 

3 Note that the algorithm can be simply extended to consider the multi-stage cost and miss probability. 

Nevertheless, the complexity increases as analyzed is in Chapter 3.2. 
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view, i.e., case 1 in MDP model, we do not replace any views in this case, the same as 

the MDP policy. Second, when the request can be synthesized by two views in the 

proxy, as the case 2, we examine every possible 𝑉𝑓 and 𝑉𝑒 to find the best (𝑉𝑓, 𝑉𝑒) 

pair in order to minimize ( 3.1 ). Note that it is necessary to carefully examine the view 

correlation to estimate the average miss probability of the next state. In addition, the 

synthesized penalty can be avoided when we directly fetch the desired view. For 

example, if |𝑉| = 16, 𝒱𝑡 = {2,5,9,11} and ℛ𝑡 = 12, the proxy can only access and 

replace one view at each time, e.g., access view 12 and replace view 11. Since the 

number of fetched view and evicted view are both limited to one, it is expected that the 

action space can be effectively reduced. 

 

Fig. 3.1 An Example for Effective Fetch Range 

The third case represents that the proxy is not able to satisfy the user request, and a 

cache miss thereby occurs. In this case, it is crucial to carefully fetch the view from the 

remote video server. Note that the feasible fetched views lie in the Effective Fetch Range 

(EFR), which is [𝑟 − 𝐷 + 1, 𝑟 + 𝐷 − 1], because only the views in this range can be 
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employed for the request 𝑟. Consider the example in Fig. 3.1, when |𝑉| = 16, 𝒱𝑡 =

{2,5,9,11} and ℛ𝑡 = 13 and 𝐷 = 3, the effective fetch range for view 13 is [11,15], 

and the feasible fetched view is 13 and 14, because the proxy can serve the user by 

transmitting view 13 directly, or synthesize it by view 11 and view 14. After we 

identify the set of feasible fetch views, the algorithm carefully examines every view 𝑉𝑓 

in feasible effective fetch range and 𝑉𝑒 as in the previous case. 

After we acquire 𝑉𝑓  and 𝑉𝑒 , the corresponding 𝑉𝑠  can be obtained as well. In 

addition, the cost induced in this state and operations can be derived accordingly by ( 2.1 ). 
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Algorithm 2 EVEA 

Algorithm 2 is the pseudo code of EVEA. Line 1 to 2 is the case 1, line 3 to 7 

is the case 2, line 8 to 17 is the case 3, and finally, the algorithm returns the view to be 

fetched, the view to be evicted, and the views to be sent with associate cost in line 18. 
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3.2 Complexity Analysis 

For case 1, the complexity is 𝑂(1). The algorithm searches 𝑂(|𝑉| − 𝑁) 𝑉𝑓 and 

(𝑁) 𝑉𝑒, and calculates 𝑂(|𝑉|) requests to find the expected miss probability. Therefore, 

the complexity in case 2 is 𝑂(𝑁|𝑉|2 − 𝑁2|𝑉|) = 𝑂(𝑁|𝑉|2), since 𝑁 < |𝑉| typically. 

For case 3, the complexity of effective fetch range is 𝑂(2𝐷), and the algorithm then 

enumerates 𝑂(2𝐷) possible 𝑉𝑓 and 𝑂(𝑁) possible 𝑉𝑒 and sums up 𝑂(|𝑉|) requests 

when deriving the expected miss probability. Thus, the total complexity of case 3 is 

𝑂(𝐷𝑁|𝑉|). The overall complexity of our algorithm is 𝑂(𝑁|𝑉|(𝐷 + |𝑉|)) = 𝑂(𝑁|𝑉|2), 

where 𝐷 < |𝑉|  typically. For the multiple-stage cost model mentioned early in this 

section, the time complexity will be 𝑂(𝑁2|𝑉|4)  for the two-stage model and 

𝑂(𝑁3|𝑉|6) for the three-stage model. 

  



doi:10.6342/NTU201601753

30 

  

3.3 Extension of Multi-Video Scenario 

To support multiple videos, a promising way is to add a superscript to each notation 

to represent the index of the video. For 𝑀 videos, the global state of MDP now becomes 

𝒮𝑡 = {𝒱𝑡
1, 𝒱𝑡

2, … , 𝒱𝑡
𝑀 , 𝑅𝑡

𝑖}, to summarize the overall cache status of video 1,2, . . . 𝑀 with 

the request for video 𝑖 and view ℛ𝑡. The cache size constraint becomes |𝒱𝑡
1| + |𝒱𝑡

2| +

⋯ + |𝒱𝑡
𝑀| ≤ 𝑁 . Moreover, the action becomes {𝑉𝑓 , 𝑉𝑒 , 𝑉𝑠} = ⋃ {𝑉𝑓

𝑖, 𝑉𝑒
𝑖 , 𝑉𝑠

𝑖}𝑀
𝑖=1  to 

represent the union of view sets fetched, evicted, and delivered for video 𝑖. Note that for 

each request 𝑅𝑡
𝑖 , 𝑉𝑠 is selected only from 𝒱𝑡

𝑖 ∪ 𝑉𝑓
𝑖. Nevertheless, 𝑉𝑓 and 𝑉𝑒 may be 

selected from another video 𝑗, 𝑗 ≠ 𝑖. Because the popularity of each video is different, 

some popular videos and views may be prefetched, whereas other videos and views may 

be replaced due to low popularity. 
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Chapter 4 Performance Evaluation 

 

 In this section, we first describe the simulation settings and then evaluate EVEA with 

other cache replacement policies in different scenarios. Finally, we compare the MDP 

solution with EVEA and other algorithms. 

Variable Default Setting 

Number of videos 5000 

Number of views in a video |𝑉| = 16 

Size of a view 30MB 

Video popularity distribution Zipf, 0.8 

View popularity distribution Zipf, 0.8 and Uniform 

Number of requests 50000 

DIBR synthesize range 𝐷 = 3 

Cache size 450GB 

(𝑐𝑚, 𝑐𝑓 , 𝑐𝑠, 𝛼) (10, 3, 2, 0.3) 

Table 4.1 Simulation Settings 

 



doi:10.6342/NTU201601753

32 

  

4.1 Simulation Settings 

 Table 4.1 summarizes the parameters in the simulation. We adopt the setting of the 

existing multi-view 3D videos with |𝑉| = 16 [2], and the default value of the DIBR 

synthesize range 𝐷 = 3 [17]. To the best of our knowledge, there has been no related 

work on caching multi-view 3D videos. Therefore, we compare the proposed MDP model 

and EVEA with two widely used categories of algorithms, LRU and LFU. The default 

settings are 𝑐𝑚 = 10, 𝑐𝑓 = 3, 𝑐𝑠 = 2 and α = 0.3. Note that 𝑐𝑓 > 𝑐𝑠 in the simulation 

since a larger delay will be incurred for a remote video access. 

Without losing the generality, we fix the size of all views for a video to be 30MB 

[26], which is about 3 minutes playback time, and there are 5000 multi-view videos 

with 16 views in the simulation (i.e., 80000 contents). Note that the proxy caches the 

whole 30MB data [10],[26] of each selected view. The video popularity follows the Zipf 

distribution [27] as follows,  

𝑓(𝑖, 𝑧, 𝑁) =
1

𝑖𝑧⁄

∑ 1
𝑛𝑧⁄𝑁

𝑛=1
,  

where 𝑖 is the preference rank of an object, 𝑧 is the zipf factor, and 𝑁 is the total 

number of objects. Here we let = 0.8 [27]. The view angle popularity follows 1) Zipf 

distribution and 2) Uniform distribution, denoted by Z and U respectively. In the 

simulation, the results with different cache sizes, quality constraint 𝐷, and numbers of 
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views are evaluated. 

 

4.2 Simulation Results 

4.2.1 Scenario 1: Cache Size 

We change the cache size from 150GB to 750GB4 to observe the hit rate and the 

average cost induced from 50000 requests in Fig. 4.1 and Fig. 4.2. The performance of 

LRU and LFU is quite similar. As the cache size grows, the performance of the three 

algorithms improves. However, the gap between EVEA and LRU (LFU) remains the same, 

because the proposed algorithm always considers the view correlation and examine the 

expected miss probability. When more views can be cached, EVEA has larger flexibility 

to store more proper views, and it always outperforms the other two schemes. 

                                                 

4 When the cache size is set to 300GB, about 12.5% of the views can be cached in the simulation. 
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Fig. 4.1 Cache Size vs. Hit Rate 

 

Fig. 4.2 Cache Size vs. Average Cost 
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4.2.2 Scenario 2: Synthesize Range 

Fig. 4.3 and Fig. 4.4 present the impact of different synthesize ranges 𝐷 on the hit 

rate and the percentage of users receiving two views, respectively. The default cache size 

is set to 450GB. When 𝐷 = 1, (i.e. no DIBR), EVEA acquires a better hit rate, because 

it carefully derives the miss probability for the cases with and without DIBR. As 𝐷 

grows, more and more users can be satisfied because it becomes easier to synthesize a 

view. However in Fig. 4.4, note that the percentage of users receiving two views in EVEA 

first rises and then declines. For a small 𝐷, users are not able to synthesize their desired 

view from two distant views. Nevertheless, since EVEA selects the views for caching 

according to the synthesis cost 𝑐𝑝 = 𝛼|𝑉𝑠,𝑙 − 𝑉𝑠,𝑟|, the proxy will be more inclined to 

serve the users by directly transmitting the view or synthesizing the view from a close 

view pair even for a large 𝐷. 
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Fig. 4.3 Synthesize Range vs. Hit Rate 

 

Fig. 4.4 Synthesize Range vs. Percentage of Users Receiving Two Views 
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4.2.3 Scenario 3: Number of Views 

When the number of views is small, the proxy can cache most popular views in a 

video, resulting a high hit rate and a low average cost, as shown in Fig. 4.5 and Fig. 4.6. 

The gap in Fig. 4.5 between EVEA and the other two baseline algorithms becomes more 

significant. When a smaller percentage of views are cached (i.e., more views in a video), 

cache misses occur more often if the view correlation is not carefully considered. As a 

result, when there are 32 views, our design can improve at least 30% of the hit rate 

compared with LRU and LFU in both distributions. The total cost can be effectively 

reduced as well. 

 

Fig. 4.5 Number of Views vs. Hit Rate 
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Fig. 4.6 Number of Views vs. Average Cost 

4.2.4 Scenario 4: Distribution of view popularity 

Fig. 4.1 to Fig. 4.6 also summarize the results with different distributions on video 

and view popularity. The results indicate that the cache performance improves as the user 

requests are more concentrated in only a few views. Moreover, our proposed algorithm 

performs better in both distributions, implying that it is able to support a wide ranged of 

applications with different preferences. 
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4.2.5 Scenario 5: Comparison between MDP and EVEA 

Fig. 4.7 (a), (b) show the comparison between MDP and EVEA. Here smaller cases 

considered a single video with |𝑉| = 4 to |𝑉| = 32, and 𝑁 = 2, 4, because there are 

about a million states and over a billion state-action pairs when |𝑉| = 32 and 𝑁 = 4. 

The simulation result shows that the performance of EVEA nearly approach MDP, which 

is the optimal solution of VSCO. 

Fig. 4.8 and Fig. 4.9 show the impact on average cost and the percentage of users 

receiving two views with different synthesis unit cost 𝛼 and the size of cache, with 

|𝑉| = 16 and 𝐷 = 3 and 4. The cost rises as the synthesis factor grows. Nevertheless, 

the curves of MDP and EVEA stop rising when α ≥ 0.4 and α ≥0.3 for 𝐷 = 3 and 

4, respectivly. The same trend is observed in Fig. 4.9. When the synthesis unit cost is 

large enough, MDP and EVEA will return views directly without synthesis since 

fetching an extra view for delivery does not produce more cost, compared with 

delivering two nearby views. Therefore, a larger synthesize range 𝐷 should match a 

smaller synthesis unit cost α. Also, MDP and EVEA can effectively reduce the average 

cost compared with LRU and LFU. 
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(a) Number of Views vs. Average Cost 

 

(b) Number of Views vs. Hit Rate 

Fig. 4.7 MDP vs. EVEA 
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Fig. 4.8 Synthesis Unit Cost vs. Average Cost 

 

Fig. 4.9 Synthesis Unit Cost vs. Percentage of Users Receiving Two Views 
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Chapter 5 Conclusion and Future Works 

 

 With the emergence of 3D video and VR device, this thesis investigated efficient 

caching for multi-view 3D videos. We propose to leverage DIBR, one of promising view 

rendering algorithm in multi-view 3D, for effectively increasing the cache hit rate and 

reducing the total cost in a proxy. We first formulate a new optimization problem (i.e., 

VSCO) and then derive the optimal policy based on MDP. Afterward, an effective and 

efficient algorithm EVEA is presented to support cache replace for large instances. 

Simulation results manifest that our proposed approaches can gain at least 30% hit rate 

and reduce 30% costs against traditional renowned cache replacement policies. 

 Due to the curse of dimensionality, solving MDP becomes more impractical for large 

cases. That is, the optimal solution of single-video scenario is solved while the 

performance of multi-view scenario is not guaranteed. Therefore, in the future works, we 

can solve VSCO by approximate MDP for large cases (i.e., multi-video), meanwhile 

providing the performance bound (i.e., approximation ratio). 
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