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ABSTRACT

Due to the emergence of mobile 3D and VR devices, multi-view 3D videos are
expected to play increasingly important roles shortly. Compared with traditional single-
view videos, it is envisaged that a multi-view 3D video requires a larger storage space.
Nevertheless, efficient caching of multi-view 3D videos in a proxy has not been explored
in the literature. In this thesis, therefore, we first observe that the storage space can be
effectively reduced by leveraging Depth Image Based Rendering (DIBR) in multi-view
3D. We then formulate a new cache replacement problem, named View Selection and
Cache Operation (VSCO), and find the optimal policy based on Markov Decision Process.
In addition, we devise an efficient and effective algorithm, named Efficient View
Exploration Algorithm (EVEA), to solve the problem in large cases. Simulation results
manifest that the proposed algorithm can significantly improve the cache hit rate and

reduce the total cost compared with the previous renowned cache replacement algorithms.

Key Words: Multi-view 3D video, DIBR, proxy caching.
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Chapter 1  Introduction

1.1 Background

The need of data traffic has grown tremendously in mobile broadband networks,
whereas video data are expected to occupy more than 70% of total traffic in 2020 [1].
Particularly, high-resolution and multi-view 3D videos have received much attention
recently from both research and industry communities. Video service providers, such as
YouTube and Netflix, now provide 3D videos and 3D live streaming services, whereas
multi-view 3D videos further allow a user to select the preferred view and thereby
stimulate innovative applications in television, movies, education, advertising, and virtual
reality (VR). With the emergence of various VR devices, such as Google cardboard,
Oculus Rift, Samsung Gear VR, and HTC VIVE, multi-view 3D videos are envisaged to
play increasingly important roles in the near future.

1.1.1 Multi-view 3D Video

In contrast to traditional single-view 3D videos with only one view, a multi-view 3D
video taken by cameras array from different positions and angles typically offers 5, 16,
and 32 different view angles [2]. Each video sequence in the multi-view video represents

a unique viewpoint of the scene, creating several times larger traffic than traditional
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multimedia. Fig. 1.1(a) is an example for single-view video scenario; users at different
positions perceive the same viewing scene. However, a multi-view scenario as Fig. 1.1(b)
allows users to have different viewing scenes at different positions; therefore, the users
can have a better experience. There are many applications for such multi-view 3D video,

such as 3DTYV, free viewpoint video, remote surgery and wireless multimedia networks.
/ h
@/@R@ e 45- \@-

(@) Single-view (b) Multi-view

Fig. 1.1 An Example for 3D Video

Several 3D video data formats and 3D video coding strategies currently co-exist,

among which multi-view video plus depth (MVD) format has emerged as an efficient data

representation for 3D video scene. Compared to multi-view 2D video format which

synthesizes scenes by using image interpolation, the main advantage of MVD format is

that virtual views at arbitrary viewpoint positions can be conveniently generated via

Depth-Image-Based Rendering (DIBR) [3] technique for interactive application.
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1.2 Related Works

It is not surprising that a multi-view 3D video requires a larger storage space in a
video proxy. Nevertheless, efficient caching of multi-view 3D video in a proxy has not
been studied in the literature. Recent researches have shown that media objects can
benefit from proxy caching [4], whereas various cache replacement algorithms have been
proposed [5]. It has been reported that combining different replacement scheme, such as
Least Recently Used (LRU) [6] and the 80/20 law, can effectively lower the miss rate [7].
Also, caching in wireless networks to create more Coordinated Multipoint Transmission
(CoMP) opportunities between the relay and macro base stations has been studied [8],
whereas User Preference Profiles (UPPs) with adaptive bit rate control are exploited to
further maximize the cache hit rates [9]-[12]. Moreover, leveraging the preference of
friends in social networks to predict the future need has also been incorporated in the
cache design [13]. Nevertheless, the above researches are not designed for multi-view 3D

videos.

1.3  Motivation and Challenges

In traditional cache problems, a data item can only serve the users that request the

item. In contrast, for multi-view 3D videos, DIBR allows a user to synthesize the desired
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view from the nearby left and right views because adjacent views usually share many

similar parts. Researchers in computer vision and video processing have introduced many

sophisticated algorithms for DIBR to ensure the synthesized quality is very close to the

original view, by optimizing the bit allocation between the texture and depth map [14]-

[16]. With DIBR, a view cached in a proxy is able to serve not only the users requesting

the view but also other users subscribing to nearby views. Nevertheless, the nearby left

view and right view cannot be arbitrarily far away to ensure a guaranteed video quality

[17]. Specifically, the quality constraint in DIBR specifies that the left and right view are

allowed to be at most D views away (i.e., D — 1 views between them). Therefore, it is

desired to design a new cache replacement algorithm to support DIBR in multi-view 3D

videos.

The difference of caching with DIBR and traditional caching are three-fold. 1) In

traditional caching, if a requested view is not cached in a proxy, the proxy needs to access

the remote video server to acquire the subscribed view. For caching with DIBR, if the

nearby left and right views are cached in a proxy, the proxy can directly send the two

views to the user. Nevertheless, the distance between the two views is constrained, and

properly selecting the views to be cached is crucial. 2) When a cache miss occurs in

traditional caching, the proxy can only access the missed view from the remote video
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server. By contrast, for caching with DIBR, the proxy can access the requested view or a

nearby left (or right) view when another nearby right (or left) view has been stored. 3) In

addition to the cached views and accessed views, the replacement of views is also

different from the traditional cache. A view whose request frequency or recency is small

or old, is usually evicted by the proxy. In contrast, for caching with DIBR, the view can

a play an important role when it can be exploited to synthesize many popular nearby

views. Therefore, the selection of the cached views, accessed views and replaced views

becomes more flexible and thus more challenging in caching with DIBR in multi-view

3D because more candidate views are necessary to be considered.

In this thesis, therefore, we formulate a new cache replacement problem, named View

Selection and Cache Operation Problem (VSCO). Given the initial cache state, user

request, and DIBR constraint, we aim to find the best views to be fetched, evicted (i.e.,

replaced), and returned to the users. The objective is to minimize a cost function of miss

count, remote access cost, local transmission cost and the synthesis penalty. To solve

VSCO, we model the cache replacement as a Markov Decision Process (MDP) [18] to

find the optimal solutions in small cases and then extract the intrinsic ideas behind to

devise an efficient and effective heuristic algorithm, named Effective View Exploration

Algorithm (EVEA), for large cases. Simulation results manifest that, our proposed
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approaches can gain 30% hit rate and reduce 30% costs against traditional cache

replacement policies.

1.4  Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes the system model
and the problem formulation, and algorithm EVEA is presented in Chapter 3. The
simulation results are summarized in Chapter 4, and finally, we conclude this thesis in

Chapter 5.
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Chapter 2 View Selection and Cache Operation

Problem

Ay

Multi-view 3D Video
Provider

User
% User
Proxy
Serlver
|
3
Goe] | Vv
—_——

Fig. 2.1 System Model

2.1  System Model

We consider a proxy server with a cache, which caches many multi-view 3D video
as the red part in Fig. 2.1. The proxy is connected to many users and the multi-view 3D
videos are requested from remote video providers. The architecture to store a multi-view
3D video is similar to the one for traditional videos. Each view of a video is segmented
into many small chunks [19], whereas VCR functionality according to the dynamic user
requests with a tunable-victimization procedure can also be supported [20]. When a user
request (for accessing a new view or switching to another view) arrives, the proxy can

7
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directly serve the user (for a cache hit) or wait until it acquires the video chunks from a

remote video server (for a cache miss). Nevertheless, the differences of a multi-view 3D

video proxy and the traditional proxy are the definitions of a cache hit, a cache miss, and

the corresponding cache replacement policy, because DIBR in multi-view 3D enables the

proxy to serve a user request even when the desired view is not cached. In the following,

to explore various possibilities to serve a view with different nearby views, we first focus

on the selection of cached views in a proxy for a video and then extend it to multiple

videos in Chapter 3.3.

Specifically, let V € N denote the universal set of views in a multi-view 3D video.

A proxy can cache at most N views for a multi-view 3D video, where 1 < N < |V]. Let

V, denote the state of the cache. A cache hit for a view request v occurs in the following

two cases. 1) The request view v is stored in the cache, v € V, . Then the proxy can

directly return the view v to the user. 2) The view v is not cached but its nearby left

view and right view, say v; and v,, are in the cache, where |v; —v,.| < D. The

relationship between the setting of D and the video quality has been quantified in

[15],[17], and the quality degradation is also incorporated in our cost model (detailed

later). In this case, the cache can serve the rsequest by returning this view pair (v;, v,)to

the user. Note that the bandwidth consumption from a proxy to the user client grows when
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the proxy plans to serve a view request with two nearby views, and it is thus important to

incorporate the above bandwidth cost into the objective function (described later).

On the other hand, for a cache miss, note that the traditional proxy can only access

the requested view from the remote video server. In contrast, a multi-view 3D video proxy

is allowed to access the nearby one or two views (e.g., when they are more popular than

the desired view). More specifically, the selection of views in the cache replacement

policy for multi-view 3D includes the following three parts: 1) The desired view v

directly, 2) a nearby left or right view, v; or v,, and 3) both nearby views. Therefore, it

is envisaged that a cached view in a multi-view 3D video proxy is able to serve more

users (i.e., not only the users requesting the view but also the users requesting nearby

views). Nevertheless, finding the optimal cache policy becomes more challenging

because more factors, such as the additional bandwidth and synthesis costs in DIBR, are

necessary to be considered carefully.

For practical situations, the computation overhead and extra energy consumption

incurred by DIBR is small enough to be supported by current mobile devices [21],[22].

For HTTP video streaming (ex., YouTube and MPEG-DASH) with TCP [23],[24] (instead

of UDP in Skype), DIBR can be performed when the views are waiting in the streaming

buffer before playback, and thus no extra delay will be incurred.
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Whenever the proxy needs to access the remote video server and returns the view(s)
to the user, two types of cost (i.e., the remote access cost and local transmission cost) are
involved. Let ¢, and ¢, denote the bandwidth costs to fetch a view from the remote
server and the cost to return a view to the user, respectively. Let c,, denote a penalty cost
for a cache miss. Finally, to encourage directly transmitting the desired view, a view
synthesis cost (representing the DIBR computation cost and the quality degradation)
¢y, = f (v, v) isintroduced according to v; and v, and a larger cost is induced when

the two views are more distant. Note that ¢, can be set according to [15],[17],[21],[22].

2.2  Problem and Markov Decision Process

In this section, we first formulate a new optimization problem, named View Selection
and Cache Operation Problem (VSCO), for cache replacement in a multi-view 3D video
proxy. Given the universal set of views V, size of the cache N, DIBR synthesize range
D, the initial cache state V,, and the request R (which can be described as a stochastic
process, as explained later in this section), the problem is to select 1) the appropriate
view(s) to be accessed from the remote server, 2) the view(s) to be replaced (i.e., evicted)
from cache, and 3) the view(s) to be returned to the user. The objective is to minimize the
average cost over an infinite time horizon by carefully selecting the views to be fetched,

10
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evicted, and delivered whenever a request arrives.

Notation | Description

V The universal set of views in a multi-view 3D video

N The size of the cache

D The synthesize range of DIBR

S; The global state of MDP model at time ¢, S; = {V;, R:}

Vi The state of the cache at time ¢

R: The request at time t

A The action takes at time ¢, A, = {Vf, V., Vi}

Ve The view set to be fetched

v, The view set to be evicted
V The view set to be sent to the user
The request transition probability
qij When the current request is view i, the next request will be view j with

probability g;;

11
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C(s,a) | The induced cost when action a is taken at state s
Cm The cost when a cache miss happens
¢r,Cs | The cost to fetch and send a view, respectively
Cp The quality degradation penalty when a user receives a view pair for

synthesis

Table 2.1 Notation Table

In the following, we first present a Markov Decision Process (MDP) to find the

optimal solution of VSCO. Markov Decision Process aims to minimize the long-term

average cost in a proxy for an infinite horizon (i.e., infinite time). Table 2.1 summarizes

the notations throughout this paper. The MDP model {S, A, C(s,a)} consists of the state

space §, the action space A, and the cost function C, respectively. Decision epochs

(indexed by t = 0,1,2...) are defined as the instants with view requests arriving at the

proxy. The status of time t is described by S, = {V;, R.}, where V, denotes the state

of the cache, and R; denotes the view requested at time t. Note that V;, is a subset of

V' of cardinality |V;| < N, and let V7 denote the views that can be synthesized by V,

according to the DIBR synthesize range D. For example, if |V| =16, V; = {2,5,9,11}

and D = 3, then V¢ = {3,4,10}. Notice that V, n V7 = 0.

When a view request R, arrives at the proxy with the state of cache as V,, let A;

12
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denote the decision of the proxy for the request R;. There are three components in a
decision action A; = {Vf, v, VS}, where V; €V —V; denotes the view set required to
be fetched from remote video server, and V, €V, U V; represents the view set to be
evicted (i.e., replaced) from a proxy when the proxy is full. Finally, let V; €V, U V; be

the view set returned to the user, which is either R, or a view pair that can synthesize

the desired view by DIBR with the smallest view distance, i.e., V;; = sup {v < R.},
UEthVf

V,r = inf {v>R.} and |Vy; —V;,| < D. Note that the cardinalities of the three sets
VEVENV ¢

are no more than two, i.e., |V¢|, V.|, [Vs| < 2, implying that the proxy can fetch, evict,
and returns at most two views at each instant.

For each state S, = {V,, R.}, the next state of the proxy V,,, dependson V; and
Ay, since Viyq =V, U Ve —V,. Note that the distribution of R.,, is probabilistically
dependent on R,. In other words, each state is allowed to have a different arrival
probability for each view in the model. If the current request is for view R, = i, the next
one will be view R.,; = j with probability g;;. Therefore, the state transition from S,

to ;44 isjointly determined by the action A, and the request transition probability g;;.

! Note that the request transition probability can also be independent on the current request, i.e. q;; =

4z = = qij = 94;-

13
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After an action A; = a is taken by the proxy at state S; =s, the cost C(s,a)
incurred is described as follows.?
C(s,a) = cmligev,uvsy + |Vrler + Vales + cp,

(2.1)
where 1, is the indicator function (with the value as 1 or 0) to describe if x is true
or false. The cost function is the same as the one introduced in the end of Chapter 2.1,
where ¢ and c, denote the cost to fetch a view from the remote server and the cost to
send a view to the user, respectively, c,, denote an penalty cost for a cache miss, and

the view synthesis cost is ¢, = a|Vy; — V| with the synthesis unit cost a.

2 Note that each parameter in the cost model needs to be normalized according to their weight in real
situations.

14
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2.2.1 State Transition

qRR' (.R'r = 2,5,9,11)

_________ _ Orr- (R' =3,4.10)

VizVe =0 1y _ (2,5,9,11}) w— ise 2

Vo= (3] —---oomi o

qrr:(other R")

C(S,a) = cs
Case 3

Fig. 2.2 An Example for State Transition (Case 1)

Next, we explain the state transition of MDP in detail with the following cases.

Case 1

If the requested view R, is cached in the proxy, i.e., R; € V;, the desired view will
be directly returned to the user, thatis, V; =1V, = @ and V; = {R.}. Thus C(s,a) = c;.
No view replacement will be provoked. Fig. 2.2 presents an example for case 1. If |V| =
16, V; ={2,59,11} and R, =5, view 5 will be directly returned to the user. The
dashed block in the middle of each figure denotes the cache state after an action, and the

arrow at the right hand side represents the next request R’ with probability qzx’.

15
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Case 1

I?RR- (RF - 2,5,8,11)

= {8}

' ={9} r~--------- fifRR (R" =3,4,6,79,10)
£ — r
o W = (25811 D Case 2
\ grr-(other R")
C(S: CE) = C-'f + 26.'3 + Cp

Case 3
Fig. 2.3 An Example for State Transition (Case 2)

Case 2

If the requested view is not cached in the proxy but can be synthesized by two nearby
cached views in V;, i.e., R, € V7, the situation is further divided into many small sub-
cases because the proxy can access, replace, and return one or two views, in order to
minimize the total cost. For example, in Fig. 2.3, V, = {2,5,9,11}, V{ = {3,4,10} and
R:; = 10, the proxy can access view 8, replace view 9, and return view 9, 11 to the user.
Note that the user need to receive two views, but the proxy can satisfy more requests in
the future (i.e., views 2,5,8,11 are directly cached, and views 3,4,6,7,9,10 can be
synthesized as well). Therefore, the cache state becomes V,,; = {2,5,8,11} after the
action. Since the proxy accesses one view and returns two vies to the user, the cost is

cr+2¢5 + cp.

16
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Case 2-1: |[Vj| = |V | =0,|V | =2
No replacement is performed in this case. The elements in V; are a view pair with

smallest view distance to synthesize the desired view with DIBR, ie., V;, =

sup {v<R}, Vor = inf {v>R} and |Vy; — Vi, | <D.C(s,a) = 2¢5 + cp.
VEVENV ¢ VEVNV ¢

Case 2-2-1: |Vy| =V | =IVs| =1

In this case, the proxy acquires the desired view from the remote video server and
returns the view to the user. Thus Vy =V, = {R.}, V. €V, UV, and C(s,a) = ¢f + cs.

Case 2-2-2: |V =V | =2,V =1

In this case, the proxy replaces two views and sends one view to the user. Vy =
{ReviveEV =V, =R}, Ve €V UV, Vo ={R.},and C(s,a) = 2¢f + cs.

Case 2-3-1: |Vy| = |V | =1,|V,| = 2

The proxy replaces a view for a higher hit probability in the future and sends a view
pair to the user. Vy ={v|lv €V —V, — R}, V. €V, UV}, and the elements in V; are
the same as in Case 2-1. C(s,a) = ¢f + 2¢5 + ¢,

Case 2-3-2: |Vy| = |V, | = V| =2

The proxy acquires two views for a higher hit probability in the future and sends a
view pair to the user. Vp={v,,v;|v;, v, €V -V, =R}, V. SV, UVs, and the
elements in V; are the same as in Case 2-1. C(s,a) = 2¢f + 2¢5 + ¢,

17

doi:10.6342/NTU201601753



Case 1
qRR' (.RF = 2,5,12, 15)
‘3 - {{19211115}} qra (R’ = 3.4,13,14)
e — 17y 2 9 B9 167 '
Vo= (15] W' ={2,512,15} _é Case 2

1
—————————— l

grr-(other R")

C(S,a) = ¢ + 2c5 + ¢4
Case 3

Fig. 2.4 An Example for State Transition (Case 3)

Case 3

If the requested view R, cannot be satisfied by the proxy, a cache miss happens,
i.e., R; & V.UV?. Inthiscase, the proxy will access either the view R;, a neighbor view
of R, or a pair of views which can synthesize R, from the remote video server. In
addition, it can replace and return one or two views to the users to minimize the total cost.
Fig. 2.4 presents an example for case 3. When R, = 15, the proxy may access two views
12, 15 to replace view 9 and 11, and deliver view 15 to the user with the
corresponding cost ¢, + 2¢5 + .

Case 3-1-1: |Vy| =V | = V4| =1

In this case, the proxy requests the missed view to serve the user. Thus V; =V, =
{Re}, Ve €V, UV, and C(s,a) = ¢y + ¢ + Cs.
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Case 3-1-2: |V = V| =2,V =1

The proxy requests two views from the content provider, including the missed view,
and send the desired view to the user. Vy = {R,v|[v €V =V, =R}, V, SV, UV},
Vs ={R.},and C(s,a) = c;p + 2¢5 + cs.

Case 3-2-1: |Vy| = |V | =1,|V,| =2

The proxy requests the neighbor view of the missed view to synthesize the missed
view. Therefore the server sends two views to the user. V= {v|v € [R,—
(D —-1),R; + (D —1] =R}, V. €V, UV, and the elements in V; is the same as in
Case 2-1. Thus C(s,a) = ¢ + ¢f + 2¢5 + ¢y

Case 3-2-2: |Vy¢| = |Vl = V| =2

The proxy may request a view pair to synthesize the missed view, or to achieve a
higher hit probability in the future. Vy = {vy,v;|vy, v, EV =V, — R}, Ve SV, UV,

and the elements in 1 is the same as in Case 2-1. Thus C(s,a) = ¢, + 2¢¢ + 2¢5 + ¢,
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2.2.2  Optimal Policy
The action A; = a for request R, is described by A; = n(S; = s) for a policy
m: S — A. For MDP, the expected average cost over an infinite horizon is
Jim E"™ {1 5T C(S,, m(50))
(2.2)
Our goal is to find an optimal policy 7* such that the above equation is minimized. That
IS,
m" = arg min lim [E"{# T oC(8.,m(S))}
(2.3)
However, directly solving equation ( 2.3 ) is computationally intractable. Suppose
a value function V(s) is defined for each state s = (v,r) to describe the long-term
average cost when the beginning state is s. Therefore, the optimal solution can be
achieved by solving the equivalent Bellman’s equation [18].
Lemma 1 (Equivalent Bellman's Equation). If a scalar [ and a value function

V(s) satisfy the Bellman s equation for problem VSCO, written as Vs € S,

B+V(s)= Télelzll {C’(s, a) + Z Pss' V(S'|s, a)}

= min {C(s, a) + Z g V@', 7', a)}
a€cA

r'ev
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(2.4)
where C(s,a) is the instantaneous cost under the state s and action a, then B is the
optimal average cost:

f = min C(m)

Moreover, w* = arg rgleigl{ﬁ(s, a) + Y q V', r'|v,r,a)} isthe optimal policy.

After this transformation, we are able to choose the best action a leading to the
smallest one-period cost C(s, a), plus the expected cost value of landing at state s’.

The Bellman’s equation can be solved with value iteration [18] or policy iteration
[18], which is a general solution to calculate the optimal utility function iteratively. We
demonstrate the procedure of value iteration to compute the value function V(s) in
Algorithm 1. Line 1 is for initialization. Line 2 to 11 compute the value function iteratively.
Line 5 updates the value function for all states in each iteration. Note that the value
function may converge to a large value; therefore, we choose an arbitrary state s, asthe
reference state. In each iteration, the value function V£(s) is replaced by a relative value

to that of the reference state (Line 8).
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Algorithm Value Iteration

Require: Cost function C(s,a) and request distribution g; ;.
Ensure: The optimal value function V(s), ¥s € §

1 E=0,Vi(s)=0,Vs €S;

2. while Not Converge do

3: f=1+1;

4. for all s € S do

5: Vi(s) = l{}‘éljl}{(j(@ a) + Z G V(W 0,1y a) )

rev
6: end for
7. for all s € § and s # s, do
8: Vi(s) = Vi(s) — Vi(s,);
9:  end for
10 Vi(s,)=0;
11: end while

12: return The optimal value function V(s).

Algorithm 1 Value Iteration

The number of global states is determined by V, and R,, therefore there are €}, X
N =~ 0(VN+1) states. The number of actions for states in case 1 is only one. However,
for states in case 2 and 3, there are at most CY"NCN*1 4+ cY-NchN+2 =~ 0((VN)?)
actions, since the proxy can replace one view or two views at a time. Therefore, the total
number of state-action pair is of 0(VN*2N?2), which is an exponential function. Note that
the real feasible action will all be determined by the cost components in the cost function,
e.g. when c; is large, the proxy will not replace two view at a time. Thus, the number of
state-action pair will be smaller.

The MDP is designed to find the optimal policy for small cases. In the next section,
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we design an effective and efficient heuristic algorithm to solve the problem for large

cases.

23

doi:10.6342/NTU201601753



Chapter 3  Heuristic Algorithm

3.1  Algorithm EVEA

Most conventional cache replacement algorithms exploit the request recency [6] or
frequency [25], such as the Least Recently Used (LRU-based) policy and Least
Frequently Used (LFU-based) policy, respectively. Correlations of nearby views have not
been leveraged in those algorithms to support multi-view 3D videos. In this section, by
contrast, we aim to extract the ideas behind the proposed MDP to design an effective and
efficient heuristic algorithm. Our algorithm examines not only the preference/frequency
of user requests but also the correlation between nearby views to boost the number cache
hits and thus reduce the total cost, whereas a synthesize cost is also incorporate to ensure
the video quality.

In the previous section, we have formulated the problem by MDP, which can be
solved by value iteration or by linear programming. However, both methods need to
evaluate the value function for each state and enumerate each action, and the above
processes are computation intensive for large cases. Hence, we design a new algorithm,
named Efficient View Exploration Algorithm (EVEA) by 1) simplifying the computation
of the value function to consider only one-stage cost and, 2) shrinking the action space of
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each Vg, V.. Note that in MDP, the proxy can fetch and evict at most two views to
carefully examine all possible cases, and it may create a large action space when the
number of view is large. In contrast, here we confine the proxy to fetch and replace at
most one view at an instant to effectively reduce the action space.

More specifically, when the cache state is V, and the current request R, = r, we
consider the one-period cost and derive the expected miss probability for the next request®.
The rationale behind EVEA is to minimize the expected miss probability of the next state
as well as cost induced from the current request, including the fetch cost, transmission
cost, and synthesize penalty. In other words, we aim to find the best (Vf,V;,V;) such that

C(s,a) = cmlgenuvsy + [Veler + Viles + ¢ + B X Grri L irigr,,  uvs,
(3.1)
is minimized, where £ is a weight factor and V., = V, U Vy — V. Therefore, when a
new request arrives, we search all the possible combinations of the fetched, evicted, and
delivered views to minimize the expected miss probability and total cost.
In the following, we consider the three cases in MDP for the algorithm design.

First, when the cache can satisfy the user's request by directly transmitting the desired

3 Note that the algorithm can be simply extended to consider the multi-stage cost and miss probability.
Nevertheless, the complexity increases as analyzed is in Chapter 3.2.
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view, i.e., case 1 in MDP model, we do not replace any views in this case, the same as
the MDP policy. Second, when the request can be synthesized by two views in the
proxy, as the case 2, we examine every possible V; and V, to find the best (V,1;)
pair in order to minimize ( 3.1 ). Note that it is necessary to carefully examine the view
correlation to estimate the average miss probability of the next state. In addition, the
synthesized penalty can be avoided when we directly fetch the desired view. For
example, if |V| =16, V, ={2,5,9,11} and R, = 12, the proxy can only access and
replace one view at each time, e.g., access view 12 and replace view 11. Since the
number of fetched view and evicted view are both limited to one, it is expected that the

action space can be effectively reduced.

Feasible EFR IS4

EFR [11 15
l,R=13
Cache State -:- - I

View 2 .. .. 9 10 11 12 13 14 15

Fig. 3.1 An Example for Effective Fetch Range
The third case represents that the proxy is not able to satisfy the user request, and a
cache miss thereby occurs. In this case, it is crucial to carefully fetch the view from the
remote video server. Note that the feasible fetched views lie in the Effective Fetch Range
(EFR), which is [r — D + 1,r + D — 1], because only the views in this range can be
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employed for the request r. Consider the example in Fig. 3.1, when |V | =16, V, =
{2,59,11} and R, = 13 and D = 3, the effective fetch range for view 13 is [11,15],
and the feasible fetched view is 13 and 14, because the proxy can serve the user by
transmitting view 13 directly, or synthesize it by view 11 and view 14. After we
identify the set of feasible fetch views, the algorithm carefully examines every view V
in feasible effective fetch range and 1, as in the previous case.

After we acquire Vy and V,, the corresponding V; can be obtained as well. In

addition, the cost induced in this state and operations can be derived accordingly by (2.1).
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Algorithm EVEA

Require: cache state V; and request r.

Ensure: view to be fetched V}, view to be evicted V,, views to be sent V;, and minimum induced
cost C.
1: if  in ) then
2 Vi=Vri=0,V=r
3: else if r in V; then
4: for all Vyin V-V, V.in V, UV, do
5: Calculate (3.1) with each Vy and V.;
6: end for
o (Vi V2 V) =argmin (3.1);
8: else
9:  Effective Fetch Range(EFR)=[r — D+ 1,7 + D — 1];
10:  for all v in EFR do
11: check it V, U v is feasible;
12:  end for
13:  for all V} in feasible EFR, V, in V, UV} do
14: Calculate (3.1) with each Vy and V,;
15:  end for
16: ('v":;. VA VE) = argmin (3.1);
17: end if

18: return (V7, V7, V) and induced cost C.

Algorithm 2 EVEA

Algorithm 2 is the pseudo code of EVEA. Line 1 to 2 isthe case 1, line 3 to 7

is the case 2, line 8 to 17 is the case 3, and finally, the algorithm returns the view to be

fetched, the view to be evicted, and the views to be sent with associate cost in line 18.
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3.2 Complexity Analysis

For case 1, the complexity is O(1). The algorithm searches O(|V|— N) V; and
(N) V,, and calculates O(|V]) requests to find the expected miss probability. Therefore,
the complexity in case 2 is O(N|V|?> — N?|V|) = O(N|V|?), since N < |V| typically.
For case 3, the complexity of effective fetch range is O(2D), and the algorithm then
enumerates O(2D) possible V; and O(N) possible V, andsumsup O(|V]) requests
when deriving the expected miss probability. Thus, the total complexity of case 3 is
O(DN|V]). The overall complexity of our algorithm is O(N|V|(D + |V])) = O(N|V|?),
where D < |V| typically. For the multiple-stage cost model mentioned early in this
section, the time complexity will be O(N?|V|*) for the two-stage model and

O(N3|V|®) for the three-stage model.
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3.3  Extension of Multi-Video Scenario

To support multiple videos, a promising way is to add a superscript to each notation
to represent the index of the video. For M videos, the global state of MDP now becomes
Se = (V& V2, ...,VM, R}, to summarize the overall cache status of video 1,2,...M with
the request for video i and view R,. The cache size constraint becomes |V}| + |V?| +
-+ |VM| <N . Moreover, the action becomes {V;,V,,Vi} = UM {V}, V), Vi} to
represent the union of view sets fetched, evicted, and delivered for video i. Note that for
each request R{, V is selected only from V} U Vfi. Nevertheless, V; and V, may be
selected from another video j, j # i. Because the popularity of each video is different,
some popular videos and views may be prefetched, whereas other videos and views may

be replaced due to low popularity.
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Chapter 4 Performance Evaluation

In this section, we first describe the simulation settings and then evaluate EVEA with

other cache replacement policies in different scenarios. Finally, we compare the MDP

solution with EVEA and other algorithms.

Variable Default Setting
Number of videos 5000
Number of views in a video V| =16
Size of a view 30MB
Video popularity distribution Zipf, 0.8
View popularity distribution Zipf, 0.8 and Uniform
Number of requests 50000
DIBR synthesize range D=3
Cache size 450GB
(cm ¢, s, ) (10,3,2,0.3)

Table 4.1 Simulation Settings
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4.1  Simulation Settings

Table 4.1 summarizes the parameters in the simulation. We adopt the setting of the
existing multi-view 3D videos with |V| = 16 [2], and the default value of the DIBR
synthesize range D = 3 [17]. To the best of our knowledge, there has been no related
work on caching multi-view 3D videos. Therefore, we compare the proposed MDP model
and EVEA with two widely used categories of algorithms, LRU and LFU. The default
settings are ¢, = 10,¢, = 3,¢5 = 2 and o = 0.3. Note that ¢ > ¢, in the simulation
since a larger delay will be incurred for a remote video access.

Without losing the generality, we fix the size of all views for a video to be 30MB
[26], which is about 3 minutes playback time, and there are 5000 multi-view videos
with 16 views in the simulation (i.e., 80000 contents). Note that the proxy caches the
whole 30MB data [10],[26] of each selected view. The video popularity follows the Zipf
distribution [27] as follows,

. iz
fQ,zN) = m
where i is the preference rank of an object, z is the zipf factor, and N is the total
number of objects. Here we let = 0.8 [27]. The view angle popularity follows 1) Zipf
distribution and 2) Uniform distribution, denoted by Z and U respectively. In the

simulation, the results with different cache sizes, quality constraint D, and numbers of
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views are evaluated.

4.2  Simulation Results
4.2.1 Scenario 1: Cache Size

We change the cache size from 150GB to 750GB* to observe the hit rate and the
average cost induced from 50000 requests in Fig. 4.1 and Fig. 4.2. The performance of
LRU and LFU is quite similar. As the cache size grows, the performance of the three
algorithms improves. However, the gap between EVEA and LRU (LFU) remains the same,
because the proposed algorithm always considers the view correlation and examine the
expected miss probability. When more views can be cached, EVEA has larger flexibility

to store more proper views, and it always outperforms the other two schemes.

4 When the cache size is set to 300GB, about 12.5% of the views can be cached in the simulation.
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4.2.2 Scenario 2: Synthesize Range

Fig. 4.3 and Fig. 4.4 present the impact of different synthesize ranges D on the hit
rate and the percentage of users receiving two views, respectively. The default cache size
issetto 450GB. When D = 1, (i.e. no DIBR), EVEA acquires a better hit rate, because
it carefully derives the miss probability for the cases with and without DIBR. As D
grows, more and more users can be satisfied because it becomes easier to synthesize a
view. However in Fig. 4.4, note that the percentage of users receiving two views in EVEA
first rises and then declines. For a small D, users are not able to synthesize their desired
view from two distant views. Nevertheless, since EVEA selects the views for caching
according to the synthesis cost ¢, = a|V;; — V; |, the proxy will be more inclined to
serve the users by directly transmitting the view or synthesizing the view from a close

view pair even for a large D.
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4.2.3 Scenario 3: Number of Views

When the number of views is small, the proxy can cache most popular views in a

video, resulting a high hit rate and a low average cost, as shown in Fig. 4.5 and Fig. 4.6.

The gap in Fig. 4.5 between EVEA and the other two baseline algorithms becomes more

significant. When a smaller percentage of views are cached (i.e., more views in a video),

cache misses occur more often if the view correlation is not carefully considered. As a

result, when there are 32 views, our design can improve at least 30% of the hit rate

compared with LRU and LFU in both distributions. The total cost can be effectively

reduced as well.
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Fig. 4.5 Number of Views vs. Hit Rate

37

doi:10.6342/NTU201601753



11

Average Cost

IR/ -+-EVEA-U

——EVEA-Z

4 8 12 16 20 24 28 32
Number of views

Fig. 4.6 Number of Views vs. Average Cost
4.2.4 Scenario 4: Distribution of view popularity
Fig. 4.1 to Fig. 4.6 also summarize the results with different distributions on video
and view popularity. The results indicate that the cache performance improves as the user
requests are more concentrated in only a few views. Moreover, our proposed algorithm
performs better in both distributions, implying that it is able to support a wide ranged of

applications with different preferences.
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4,25 Scenario 5: Comparison between MDP and EVEA

Fig. 4.7 (a), (b) show the comparison between MDP and EVEA. Here smaller cases
considered a single video with |V| =4 to |[V]| =32, and N = 2,4, because there are
about a million states and over a billion state-action pairs when V| =32 and N = 4.
The simulation result shows that the performance of EVEA nearly approach MDP, which
is the optimal solution of VSCO.

Fig. 4.8 and Fig. 4.9 show the impact on average cost and the percentage of users
receiving two views with different synthesis unit cost a and the size of cache, with
|[V| =16 and D = 3 and 4. The cost rises as the synthesis factor grows. Nevertheless,
the curves of MDP and EVEA stop rising when a > 0.4 and a =0.3 for D = 3 and
4, respectivly. The same trend is observed in Fig. 4.9. When the synthesis unit cost is
large enough, MDP and EVEA will return views directly without synthesis since
fetching an extra view for delivery does not produce more cost, compared with
delivering two nearby views. Therefore, a larger synthesize range D should match a
smaller synthesis unit cost a. Also, MDP and EVEA can effectively reduce the average

cost compared with LRU and LFU.
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Chapter 5 Conclusion and Future Works

With the emergence of 3D video and VR device, this thesis investigated efficient
caching for multi-view 3D videos. We propose to leverage DIBR, one of promising view
rendering algorithm in multi-view 3D, for effectively increasing the cache hit rate and
reducing the total cost in a proxy. We first formulate a new optimization problem (i.e.,
VSCO) and then derive the optimal policy based on MDP. Afterward, an effective and
efficient algorithm EVEA is presented to support cache replace for large instances.
Simulation results manifest that our proposed approaches can gain at least 30% hit rate
and reduce 30% costs against traditional renowned cache replacement policies.

Due to the curse of dimensionality, solving MDP becomes more impractical for large
cases. That is, the optimal solution of single-video scenario is solved while the
performance of multi-view scenario is not guaranteed. Therefore, in the future works, we
can solve VSCO by approximate MDP for large cases (i.e., multi-video), meanwhile

providing the performance bound (i.e., approximation ratio).
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