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Abstract

Proteases play important roles in many biological processes. Among these

proteases, metalloproteases represent the largest catalytic classes of proteases in many

organisms. The three major classes of metalloproteinases are ADAMs (a disintegrin

and metalloproteinase domain), ADAMTS (ADAMs with thrombospondin domain),

and MMP (matrix metalloproteinase). MMPs play key roles in turnover of extracellular

matrix (ECM) and serve as important regulators of cell-ECM interaction during

development and regeneration. Although MMPs were found involved in the

regeneration in planarian and zebrafish, there is a knowledge gap between planarian

and vertebrates. Therefore, the annelid was chosen to fill the gap due to the similarity

of regenerative mechanism to vertebrate. In this study, a fresh water annelid with high

regenerative ability, Aeolosoma viride, was used to solve this question. In the NGS

transcriptome data of A. viride, three MMPs, named as Avi-MMP14, Avi-MMP21 and

Avi-MMP17, and one MMP-like gene, Avi-MMP-like gene, were found. Gene

expression of Avi-mmp21 and Avi-mmp1l7 significantly increased at the early stage of

anterior regeneration. And, gene expression of Avi-mmp-like gene significantly

increased at the late stage of anterior regeneration. However, Avi-mmpl14 showed no

differences in expression during anterior regeneration. On the other hand, SDS-PAGE

gelatin zymography showed the highest protease activity was detected at 24 hours post
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amputation (hpa) blastema. Furthermore, after treated with GM6001, a MMPs inhibitor,
at 0-12 hpa, regeneration was inhibited. These results suggested that MMPs have some
effects on early stage of anterior regeneration, and Avi-MMP17 and Avi-MMP21 might

be the key factors in this processes. The relationship between MMPs and the regulation

of MMPs needs further research to be resolved.

Keywords: Aeolosoma viride, regeneration, matrix metalloproteinases, GM6001
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Introduction

Protease

Proteases are a group of enzymes that can break long peptide chains into small

peptide fragments and even into single amino acid (Neitzel, 2010). They are involved

in many biological processes. For example, enzymes in the intestine can digest various

kinds of food. In the coagulation, the proteolytic cascade is mediated by a series of

proteases. Proteases are also involved in many cellular signaling processes, such as

those in apoptosis, DNA replication and cell differentiation (Clark, 2001). In metazoans,

proteolytic systems play important roles in tissue homeostasis, embryonic development,

wound healing, and also regeneration (Clark, 2001).

Proteases can be grouped into six major classes: aspartic, glutamic, serine, cysteine,

threonine and metalloproteinases according to their catalytic mechanisms (Clark, 2001).

Among these, metalloproteinases are the largest catalytic classes of proteases. The main

characteristic of metalloproteinases is the requirement of zinc ions to polarize a water

molecular for hydrolytic reaction (Visse, 2003). The three major classes of

metalloproteinases are ADAMs (a disintegrin and metalloproteinase domain),

ADAMTS (ADAMs with thrombospondin domain), and MMP (matrix

metalloproteinase) (Clark, 2001).

ADAMs are a family of transmembrane and secreted metalloendopeptidase, which

1
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can be characterized by a particular domain organization featuring a pro-domain, a
metalloprotease, a disintegrin, a cysteine-rich, an epidermal-growth factor like and a
transmembrane domain, as well as a C-terminal cytoplasmic tail (Brocker, 2009). They
are involved in cancer metastasis by cell adhesion and proteases activities (Karan et al.,
2003).

ADAMTS is a family of multidomain extracellular metalloproteinase
characterized by a disintegrin, a metalloprotease and a thrombospondin domain (Porter
et al., 2005). The substrates of ADAMTS include procollagens and von Willebrand
factor as well as cleavage of aggrecan, versican, brevican and neurocan, and this makes
ADAMTS the key remodeling enzymes of the extracellular matrix. They have been
demonstrated to have important roles in connective tissue organization, coagulation,

inflammation, arthritis, angiogenesis and cell migration (Apte, 2004).

Roles of MMPs in development and regeneration

MMPs, also called matrixins, are a group of secreted or membrane-anchored
metalloproteases. At least 25 different types of MMPs have been found in the
vertebrates. They can degrade most components of the extracellular matrix (ECM) and
further regulate the composition of the ECM (Nagase and Woessner, 1999). The

primary structure of MMPs in vertebrates consists of pro-peptide domain, catalytic

2
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domain, hemopexin domain, GPI domain or transmembrane domain (Nagase and

Woessner, 1999). The removal of pro-peptide domain and zinc ion binding at catalytic

domain are essential for MMPs activation. The hemopexin domain, GPIl domain and

transmembrane domain vary among different types of MMPs.

MMPs are transcriptionally regulated by growth factors, hormones, cytokines, and

cellular transformation (Ingraham et al., 2011; Ozeki et al., 2014, 2016). Also, MMP

proteins are activated by cleavage by other enzymes, and are inactivated by endogenous

inhibitors, such as a-macroglobulin and tissue inhibitors of metalloproteinases

(TIMPs)(Bai et al., 2005; Rodriguez-Calvo et al., 2015). Moreover, MMPs can modify

growth factors, receptors and adhesion molecules on the plasma membrane and

contribute to the regulation of cell proliferation and migration, respectively (Chang et

al., 2013; Nishihara et al., 2015; Wong et al., 2016). Therefore, tight regulation of

MMPs is essential for development and regeneration.

Extracellular matrix (ECM) is a collection of extracellular molecules, including

fibronectin, collagen and heparan sulfate, which is the main substrate of MMPs. ECM

provides structural and biochemical supports to the cells and plays important roles in

cell-cell adhesion, cell communication and signaling transduction (Nagase and

Woessner, 1999). In the development of different cell lineages, the composition of ECM

varies (Frantz et al., 2010). For example, the ECM in the basement membrane of skin

3
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is mainly composed of collagen, laminin, entactin and heparan sulfate; however, the
ECM in the blood vessel is composed of collagen, laminin, fibronectin and perlecan.
Therefore, ECM is for development and regeneration due to the involvement of cell
interaction, cell migration and tissue formation in these processes.

MMPs are involved in dealing with wound clearance and environment change
(Yong, 2005; Zhang et al., 2009; Ingraham et al., 2011; Ma et al., 2014; Ozeki et al.,
2014, 2015, 2016). Also, during the regenerative processes, the extracellular matrix
around wounded sites changes violently. ECM remodeling must be well regulated. For
example, in planarian, inhibiting mmp1 caused a disruption of tissue and a decrease of
cell death. After silencing of mt-mmpA, the planarian could not regenerate. Its tissue
integrity was compromised and blastema formation was delayed. These results provide
evidences of that MMPs regulate stem cells migration and proliferation during
regeneration and body homeostasis in planarian (Isolani et al., 2013). Although MMPs
were found involved in the regenerative processes, the mechanism and the regulation

of MMPs are still unclear.

Regeneration
Regeneration is the process that restore the injured and lost body parts, organs,

tissues and cells. It is one of the most amazing abilities in the animal Kingdom (Sanchez

4
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Alvarado & Tsonis, 2006). This ability is broadly found among different phyla (Bely et

al., 2014; Li et al., 2015). However, the regenerative capability and the modes of

regeneration, such as the rearrangement of pre-existing tissue, the dedifferentiation of

somatic cells, the transdifferentiation of cells around wounded sites and the migration

and activation of somatic stem cells, are diverse (Agata et al., 2007; Agata & Umesono,

2008; Jopling et al., 2011; Li et al., 2015). More than one mode of regeneration can be

observed in different tissues of same animal.

To understand the complicated mechanism of regeneration, some species with

regenerative ability, such as hydra, planarian, teleost fish and amphibian, have been

used as model animals to research regeneration. Although these models have

regenerative ability, their capabilities of regeneration are remarkably different.

Invertebrates like hydra and planarians have an amazing regenerative ability and can

regenerate the whole body from a tiny body fragment. Vertebrates like amphibians and

teleosts can only regenerate some lost body parts, such as limbs, heart or fins.

During the process of regeneration, the composition and morphology of cells and

tissues change. Xenopus examplifies the general processes of vertebrate regeneration.

After limb amputation, Xenopus goes through the following steps to regenerate the lost

limb: wound healing, blastema formation, cell proliferation, tissue remodeling and

finally the new limb formation (Suzuki et al., 2006).
5
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Among the animals with regenerative ability, regeneration proceeds by different

pathways or even by different types of cells. They have been classically divided into

“morphallaxis” and “epimorphosis” (Agata et al., 2007). Morphallaxis is the

regenerative process in which the rearrangement of pre-existing tissue makes the main

contribution to complete regeneration. Hydra is the most well-known animal having

this type of regeneration. On the other hand, epimorphosis is the regeneration type

defined as “add-on” regeneration, which means that this type of regeneration involves

a large amount of cell proliferation, resulting in blastema formation, without violent

tissue rearrangement (Suzuki et al., 2006). The regeneration type of amphibians is

typical for epimorphosis. However, no animal can be clearly classified into either one

types of regeneration because all of them undergo tissue rearrangement and cell

proliferation (Agata, 2007).

Among the model animals used for regeneration research, the invertebrates, such

as hydra and planarian, shows a higher regenerative capability than that in the

vertebrates, such as zebrafish and salamander. Also, the mechanism of regeneration in

these invertebrate models is different from the vertebrates (Li et al., 2015). In previous

researches, some annelids have been found with high regenerative ability (Zoran, 2010;

Weidhase et al., 2014). Nonetheless, the regenerative mechanism of annelid is similar

to that of vertebrate (Bely, 2014). The regenerative mechanism of annelid is mainly

6
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epimorphosis and its regenerative processes also include wound healing, blastema
formation, cell proliferation, tissue remodeling and the new tissue formation (Bely,
2014). Thus, annelids might be a good model to resolve the differences in the
regenerative mechanism across animal phyla. In addition, because of a variety of
regenerative capacities are found in annelids, annelids might also be useful to clarify

the evolution and the regulation of regeneration (Ferrier, 2012).

Aeolosoma viride in regeneration research

To further investigate the relationship between MMPs and regeneration and its
evolution, a novel animal model from annelid phylum was used to fill the gap between
planarian and vertebrates. Aeolosoma viride is a fresh water annelid with high
regenerative ability. It has 12 segments and the entire body length is about 2-3 mm. The
average lifespan of an individual is around 3 months, producing about 15 offspring
(Falconi, 2006; Chen, 2016). It can complete anterior regeneration within 5 days (Tseng,
2016). It can be a good model for the research on regeneration due to its semi-
transparency and asexual reproduction. These characteristics are beneficial to the
various staining methods used in the related researches and mass cultivation in the lab.

Because A. viride is not yet a popular model for regeneration study, therefore,

some technical difficulties exist for this non-model organisms. However, many systems

7
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and tools have been developed in Dr. Chen’s lab. Also, some regenerative processes

have also been characterized in previous researches. For example, Piwi and Vasa, the

markers of regenerative tissue, neoblast, in the planarian (Rink, 2013) have been

observed in the regenerating and reproducing tissue of A. viride. The expression of both

genes disappeared after exposed to the irradiation, suggesting these expressions are

stem cell specific. In addition, several pathways have been identify in the anterior

regeneration of A. viride, such as activin/TGF-, Wnt, Toll and caspase, which will be

helpful to clarify the anterior regeneration in A. viride.

Aims

1. To identify whether MMPs are involved in the regeneration in A. viride.

2. To figure out what functions of MMPs in the regeneration are.

doi:10.6342/NTU201601565



Material and method

Aeolosoma viride

Aeolosoma viride were cultured in the artificial spring water (ASW, 48 mg/L

NaHCO3z, 24 mg/L CaSO4 « 2H20, 30 mg/L MgSO4 « 7H20 and 2 mg/L KCl in ddH20,

pH=7.4)at 22 + 1 °C, and fed with ground oats every three days. Before experiments,

worms were washed by tap water for 30 minutes and cultured in the clean ASW

overnight for minimizing the oats in their gut. Then, they were synchronized, amputated

just behind the swollen gut, to eliminate the differences of reproductive state. A. viride

was amputated between fourth and fifth body segments, and, then, cultured in sterile

ASW at 22 “C for A. viride to regenerate.

RNA extraction

Before extracting RNA, A. viride was washed three times with sterile ASW. Then,

they were transferred into Trizol (Invitrogen, Carlsbad, CA) with minimal liquid and

homogenized in Trizol. One fifth of Trizol’s volume of chloroform was added into the

homogenates and uniformly mixed with homogenates. Next, the sample was

centrifuged at 14,000 rpm for 30 minutes at 4 °C. The supernatant was transferred into

another tube and uniformly mixed with the same volume of isopropanol. The mixture

was keep in the -20 ‘C for 50 minutes to precipitate the RNA. After that, the sample
9
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was again centrifuge at 14,000 rpm for 30 minutes at 4 °C. After the supernatant
removed, the RNA pellet was washed twice with 75 % ethanol and air-dried. Then, the
pellet was re-dissolved into diethylpyrocarbonate-deionized water (DEPC-H20) and
incubated at 50 ‘C for 15 minutes. The concentration of RNA was further measured

by NanoDrop™ ND-1000 (Thermo Scientific, Waltham, MA).

Reverse transcription

Extracted total RNA was reverse transcribed using SuperScript® 11 First-Strand
Synthesis System (Invitrogen, Carlsbad, CA). Briefly, up to 5 pg of RNA was added
with 1 ul of 50 uM oligo-(dT)1s primer, 1 pl of 10 mM dNTP and DEPC-H.0 to a total
volume of 10 pul. Then, the sample was incubated at 65 “C for 5 minutes to unwind the
secondary structure of RNA and kept in the ice for 1 minute. Next, it was added with a
mixture containing 2 pl of 10X RT buffer, 2 pul of 0.1 M DTT, 4 pl of 25 mM MgCly, 1
ul of RNase OUT™ (Invitogen, Carlsbad, CA), 0.5 pl of SuperScript™ III and 0.5 ul
of DEPC-H20. Finally, the mixture was incubated at 50 “C for 50 minutes and the
reaction was ceased through increasing temperature to 85 ‘C for 15 minutes. The
protocol for Real-time quantitative polymerase chain reaction (QPCR) is similar to
previous protocol but with some differences. The brief protocol is as follows: 600 ng

of RNA was added with 1pul of 50 ng/ul random hexamer primer, 1 pl of 10 mM dNTP
10
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and DEPC-H:O to a total volume of 5 ul. Second, the sample was incubated at 65 C
for 5 minutes to unwind the secondary structure of RNA and kept in the ice for 1 minute.
Third, it was added with a mixture containing 1 pl of 10X RT buffer, 1 ul of 0.1 M DTT,
2 ul of 25 mM MgCly, 0.5 pl of RNase OUT™, 0.25 ul of SuperScript™ 111 and 0.25
ul of DEPC-H0. Fourth, after incubating at 25 °C for 10 minutes, the mixture was
incubated at 50 ‘C for 50 minutes. Fifth, the reaction was ceased through increasing
temperature to 85 °C for 15 minutes. Finally, the sample was added with 1 U RNase
H (Invitogen, Carlsbad, CA) and incubating at 37 “C for 20 minutes to exclude the

effects of RNA during qPCR.

Gene cloning

Specific primers were designed according to the partial sequences obtained from
Next Generation Sequencing (NGS) data from Chen’s lab. The sequences were
confirmed through polymerase chain reaction (PCR) and further extended by 3’ rapid

amplification of cDNA ends (3’RACE) and 5’RACE methods.

Real-time quantitative PCR
After the cDNA for gPCR prepared as mentioned previously, gene expression

levels were detected by specific primers, SYBR® Green Master Mix (Bio-Rad,
11
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Hercules, CA) and iCycler iQ Realtime detection system (Bio-Rad, Hercules, CA).

In situ hybridization

Targeting sequences were amplified through PCR by specific primers and inserted
into yT&A vector (Yeastern Biotech, Taiwan). Vectors with inserted sequence were
selected and used for in vitro transcription by using T7 polymerase (Promega, Madison,
WI1) and DIG-labeled rNTP (Ambion, Foster, CA). Then, after DNA templates were
digested by added RNase free DNase | (Promega, Madison, W1), the ssRNA products
were precipitated with 1 pl of 0.5 M EDTA (pH 8.0), 2.5 ul of LiCl and 75.5 pl of
ethanol at -20 °C for 50 minutes. After that, the extracting protocol of probes is
identical to the RNA extracting protocol described earlier. Finally, the DIG-labeled
probes were dissolved in HYB™ buffer (50 % formamide, 5X saline sodium citrate
(SSC), 9.2 mM citric acid, 50 pg/ml heparin, 0.5 mg/ml yeast tRNA (Sigma, St. Louis,
MO) and 0.1 % Tween-20 in DEPC-H0).

Before in situ hybridization, collected samples were washed by sterile ASW and
fixed in 4 % paraformaldehyde (PFA) at 4 ‘C overnight. Next, after washed by
phosphate buffered saline with 0.1 % Tween-20 (PBST, pH 7.4) 5 times, samples were
gradually transferred into methanol and maintained at -20 °C overnight. In the next

day, samples were gradually transferred into PBST and treated with 10 mg/ml protease

12
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K for 10 minutes. Then, the samples were refixed in 4 % PFA for 20 minutes. After
washed by PBST 5 times, the samples were transferred into HYB" (HYB" without
heparin and yeast tRNA) at 65 “C for 1 hour. Samples were prehybridized in HYB™ at
65 “C for 1 hour and then hybridized at 65 °‘C overnight in HYB" with 1 ng/ul DIG-
labed RNA probe. After hybridization, samples were briefly washed by HYB™ and then
gradually changed to 2X SSCTw (SSC with 0.1 % Tween-20). Then, after incubated in
2X SSCTw at 65 °C for 5 minutes, samples were washed by 0.2 X SSCTw at 65 C
for 15 minutes twice. Next, samples were gradually transferred into PBST at 25 C
and performed blocking with blocking buffer (5 % bovine serum albumin (BSA, Sigma,
St. Louis, MO) in PBST) for 2 hours. After blocking, the samples were transferred into
blocking buffer with anti-DIG antibody conjugated with AP (1:10000 diluted, Roche,
Basel, Switzerland) at 4 “C overnight. Prior to staining, samples were washed by
PBST 5 times at 25 ‘C for 5 minutes and transferred into staining buffer (100 mM
Tris-HCI pH 9.5, 50 mM MgCl, and 100 mM NacCl in 0.1 % Tween-20) for 3 times.
Then, samples were immersed in the staining buffer with NBT and BCIP without
shacking and light. The stained samples were washed by PBST 5 times and gradually
dehydrated with methanol. For microscopy, samples were gradually rehydrate with

PBST and mounted with Fluoromount-G™ (eBioscience, San Diego, CA)

13
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Zymograph

Protein samples were extracted by RIPA buffer (65 mM Tris-base, 154 mM NacCl,
1 mM EDTA, 1 % SDS, pH 7.4). After homogenized with RIPA buffer, samples were
centrifuged at 13,000 rpm for 15 minutes at 4 °C. The supernatant was transferred to a
new tube for later use. Protein concentration was determined by Bradford reagent
(Sigma, St. Louis, MO). Next, 20 pg protein sample was mixed with 2X sampling
buffer (4% SDS, 20% Glycerol, 0.12M Tris, 1 mM Orange G, pH 6.8) and loaded into
a polyacrylamide gel with 1 % gelatin. After proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for 3 hours at 4 “C, the gel
were soaked into 2.5 % TritonX-100 in PBST four 30 minutes to replace SDS and
renature the MMPs. Then, the gel was immersed in working buffer (50 mM Tris-HCI,
25 mM CaClz, 5 uM ZnSOs, pH 7.4) for 30 minutes at 25 °C. Finally, gel was stained

by Brilliant Blue R 250 (Sigma, St. Louis, MO).

Statistic
All the experiments were representative of three replications. The results were
showed as means + standard deviation. One-way ANOVA were performed to

determine the statistical significant levels.

14
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Results
Sequencing of Avi-mmpl4, Avi-mmpl7, Avi-mmp2l and a MMP-like
gene, Avi-mmp-like gene

According to the sequences in the NGS data of regenerating A. viride, the primers
were designed to clone the mRNA sequences of mmps. Three mmps have been cloned
and named as Avi-mmp14, Avi-mmpl7 and Avi-mmp21, respectively. Avi-mmp14 has an
open reading frame of 1698 base pairs, encoding 566 amino acids, a 5’ untranslated
region (UTR) of 145 base pairs and a 3’ UTR of 466 base pairs (Figure 1A and 1B).
According to protein domain prediction from Simple Modular Architecture Research
Tool (SMART) and Center for Biological Sequence Analysis (CBS), a signal peptide
can be found at the first 30 amino acid from the N-terminal. The substrate binding
domain at 34-101 amino acid, zinc-dependent metalloproteinase catalytic domain
(ZnMc) at 126-287 amino acid and hemopexin-like repeat at 333-377, 379-427, 429-
477 and 479-521 amino acid can be observed in the protein sequence of Avi-MMP14.
(Figure 1C) These three domains are common in the MMPs. Also, a transmembrane
domain can be observed at 530-560 amino acid in the protein sequence showed as blue
rectangle in Figure 1C. The open reading frame of Avi-mmpl7 is 1434 base pairs,
encoding 478 amino acids, with a 5> UTR of 255 base pairs and a 3> UTR of 885 base

pairs (Figure 1D and 1E). The protein domain prediction showed a substrate binding
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domain and a ZnMc domain at 140-192 and 227-386, respectively, which confirmed

that Avi-mmp17 also belongs to MMPs (Figure 1F). Avi-mmp21 has an open reading

frame of 2349 base pairs, encoding 783 amino acids, a 5 UTR of 121 base pairs and a

3’ UTR of 802 base pairs (Figure 1G and 1H). By protein prediction, the signal peptide

at first 47 amino acid, ZnMc domain at 322-493 amino acid and hemopexin-like repeats

domains at 511-558, 560-612 and 623-671 amino acid can be observed in protein

sequence of Avi-MMP21 (Figure 11).

To further confirm the sequence that had been cloned, Avi-MMPs sequences were

used to draw phylogenetic trees with other published sequences of MMPs in the

National Center for Biotechnology Information (NCBI) database. The full-length

phylogenetic tree of MMPs showed that both of MMP14 and MMP17 have two groups,

invertebrate and vertebrate. Avi-MMP21 is grouped with MMP21. Avi-MMP14 is

grouped with MMP14 of invertebrate. However, Avi-MMP17 is grouped with Zinc

Metalloproteinase of C. elegans (Figure 2A). In the catalytic domain phylogenetic tree

of MMPs, it showed that MMPs can be roughly divided into two groups, membrane

type and secreted form. Avi-MMP17 is grouped with other MMP17 of invertebrate. Avi-

MMP21 is grouped with MMP21. And Avi-MMP14 is grouped with other membrane

type MMPs (Figure 2B). These results can further confirm the identity of Avi-MMPs.

In this study, one more mmp-like gene was also found and cloned. Avi-mmp-like
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gene has a partial cloned sequence about 1078 base pairs, encoding 306 amino acids, a
37 UTR of 106 base pairs (Figure 3A and 3B). According to protein domain prediction
from SMART and CBS, four hemopexin-like repeats at 124-167, 169-210, 212-257 and
259-302 amino acid can be observed in the protein sequence of Avi-MMP-like gene.
(Figure 3C) These domains are common in the MMPs. However, it lacks the most
important domain, zinc-dependent metalloproteinase catalytic domain. Therefore, |

named it as Avi-mmp-like gene.

The quantification gene expression of mmps in A. viride during
anterior regeneration

To test the involvement of Aeolosoma’s mmps into regeneration, real-time
quantitative PCR were used to detect the mMRNA expression level of Aeolosoma'’s mmps.
The blastema of various regenerating stages were collected to detect the mRNA
expression level. As seen in Figure 4, the gene expression of Avi-mmpl4 had no
significant changes during the regeneration. In contrast, the gene expression of Avi-
mmpl7 at blastema upregulated after 6 hpa and reached highest level at 12 hpa, which
was 8 folds increase from the intact head. Then, the expression level decreased slowly
after 48 hpa through the regeneration. Expression of Avi-mmp21 was similar to that of

Avi-mmp1l7, increasing after 6 hpa, reaching the highest level at 12 hpa, and decreasing
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to the normal level after 72 hpa. These results suggested that Avi-mmpl7 and Avi-
mmp21 might be involved in the early stage of anterior regeneration. In the Avi-mmp-
like gene, the gene expression at blastema decreased before 24 hpa and upregulated
after 48 hpa. Then, the expression remained high, 4-fold to intact head, after 96 hpa
until the regeneration finished. This result suggested that Avi-mmp-like gene might be

involved in the late stage of anterior regeneration.

Gene expression of Avi-mmps at the blastema during anterior
regeneration

To identify the location of Avi-mmps expression during regeneration, RNA probes
were designed to detect the mRNA. The primers designed for making RNA probes
showed at Table 3. For high specificity, the RNA probes were designed about 700-800
nucleotides with sequences including UTR and open reading frame (OPF). In situ
hybridization of Avi-mmp14, Avi-mmpl7 or Avi-mmp21 were performed on intact and
regenerating samples (Figure 5, 6 and 7). During regeneration, staining for Avi-mmp14
made no significant changes, which was widely distributed in the whole body, including
blastema in various regenerative stages (Figure 5B). These data were consistent with
the gPCR results as shown in Figure 4. For Avi-mmpl7, staining also appeared at the

blastema after 12 hpa. The signals reached the highest level around 48 hpa and
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decreased back to the normal level at 120 hpa (Figure 6B). Staining for Avi-mmp21
could be observed in the blastema after 6 hpa the signal reached the highest level at 24
hpa and 48 hpa, slowly decreased after 72 hpa during the anterior regeneration and fell

back to normal level after 96 hpa (Figure 7B).

The enzymatic activity of Avi-MMPs at the early stage of anterior
regeneration

To test if Avi-MMPs are activated during the regenerative processes. SDS-PAGE
gelatin zymograph was used as a tool to detect the enzymatic activity of MMPs during
regeneration in A. viride. The zymograph showed three clear bands in the gel after
stained with commassie blue which means that there are at least three enzymes of
different molecular weights, 80 KD, 55 KD and 45 KD, with gelatinolytic activity in
the A. viride crude protein extract (Figure 8A). In previous Avi-MMPs protein
molecular weight prediction, Avi-MMP14 is about 63 KD, Avi-MMP17 is about 53.22
KD and Avi-MP21 is about 85.75 KD. After signal peptide removal, Avi-MMP14 is
about 59.64 KD and Avi-MP21 is about 80.41 KD. Thus, the three active enzyme found
in the gelatin zymograph might be the three Avi-MMPs that have been cloned. To
further  confirm these  enzymes belonging to metalloproteinases,

Ethylenediaminetetraacetic acid (EDTA) was used to chelate the bivalent cations, such
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as zinc ion, to inhibit the enzymatic activity of MMPs. After treated with EDTA, all
bands became reduced, suggesting that the enzymatic activity was inhibited (Figure
8A). Furthermore, the blastemas of early stage of anterior regeneration were collected
to do the zymograph. The zymograph showed the activity of all the three MMPs had a
peak at 24 hpa, and the activity decreased back to normal level at 48 hpa (Figure 8B).
In the statistical analysis, the activities of three MMPs at 48 hpa were significantly
higher, up to two folds of the activity about intact head (Figure 8C). These results

suggested that three MMPs are active in the early stage of anterior regeneration.

Inhibition of the activity of MMPs causing impaired regeneration

To further test the participation of MMPs in regeneration, a broad-spectrum matrix
metalloproteinase inhibitor, GM6001, was used. GM6001, a hydroxamic acid, can form
a bidentate complex with the zinc at the active site of MMPs. Thus, it can reversibly
inhibit the enzymatic activity of MMPs. After treated with different concentration of
GM6001, the success rate of regeneration at 144 hpa significantly decreased with a
concentration-dependent manner. When treated with 200 uM GM®6001, the success rate
of regeneration at 144 hpa significantly decreased to about 20 % (Figure 9A). Thus,
this concentration was selected for further inhibitory studies on regeneration. To figure

out the function of MMPs in the regeneration, the amputated A. viride at 144 hpa were
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collected to take a closer look on their morphology differences between GM6001-
treating groups and control groups. The photos are the amputated A. viride at 144 hpa.
In the group without GM6001, the anterior regeneration completed with functional head.
However, in the group treated with 200 uM of GM6001, most of the regeneration failed.
Some of the worms were stuck at wound healing stage, which showed little or no
blastema. And, others became cysts and lay dormant until they die (Figure 9B). To
further figure out the whether the function of MMPs on the regeneration is time-
dependent, 200 uM GM6001 was used to treat the worms at different time periods of
regeneration. The results showed that GM6001 treatment before 24 hpa had strong
inhibitory effect on regeneration. When treated with GM6001 at 0-6 hpa and 6-12 hpa,
the success rate of regeneration was about 50 %. Surprisingly, the most effective
inhibition was when treated with GM6001 at 0-12 hpa, yielding a success rate of about
10-20 % (Figure 9D). When treated at 0-6 hpa and 12-24 hpa, the success rate of
regeneration was high, suggesting a partial inhibition due to missing the critical period

for MMPs’ activities in regeneration.

The model of MMPs involved in the anterior regeneration in A. viride
In the previous studies done in our lab, the regenerative processes of the anterior

regeneration in A. viride had been observed. It showed that the wound healing is
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completed at 6 hpa. The blastema can be observed after 24 hpa. And the mouth opening

appeared at 53 hpa. Finally, the anterior regeneration completed at 120 hpa (Figure 10).

In this thesis, it was shown that at least three MMPs were involved in the anterior

regeneration of A. viride. Two of MMPs, Avi-MMP17 and Avi-MMP21, might play

crucial roles in the early stage of anterior regeneration. After their activities were

inhibited by MMP inhibitor, GM6001, the regeneration failed. And, the other one MMP,

Avi-MMP-like gene, might be involved in the late stage of anterior regeneration (Figure

10).
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Discussion

In this study, MMPs were found to be required for anterior regeneration of A.
viride as the regenerative successful rate at 6 dpa significantly decreased when the
enzyme activity of MMPs was inhibited. In addition, the gene expression and
enzymatic activity of MMPs appeared in blastema. These findings suggest that MMPs
should play a crucial role in the anterior regeneration of A. viride.

Four MMPs have been cloned from A. viride and sequenced. The number of MMP
types is similar to that in planarian (4) (Isolani et al., 2013) and Drosophila (2) (Pearson
et al., 2016). However, it is much lower than that in vertebrate, such as Xenopus (33)
(Fu et al., 2009), human (23) and mouse (23) (Jackson et al., 2010). Why is there such
a big difference between vertebrates and invertebrates? There is no obvious explanation
yet.

Due to their different functions and domain organizations, MMPs can be simply
divided into two groups, MT-MMPs and MMPs (Nagase and Woessner, 1999). In MT-
MMPs, the transmembrane domain usually exists near the C-terminus (Nagase and
Woessner, 1999). However, Avi-MT-MMPs have predicted transmembrane domain near
the N-terminus, which is similar to MT-MMPs found in planarian (Isolani et al., 2013).

The gqPCR results showed that the expression of Avi-mmpl4 made no significant

change during regeneration. However, Avi-mmpl7 and Avi-mmp21 are significantly
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upregulated in the early stage of anterior regeneration. Since MMPs can degrade ECM,

transduce signals and release growth factors (Chang et al., 2013; Isolani et al., 2013;

Ma et al., 2014; Wang & Page-McCaw, 2014; Wong et al., 2016); they might be

involved in A. viride regeneration processes. Wound closure, somatic cells

dedifferentiation and stem cell proliferation and migration are important events in the

early stage of regeneration, but remodeling of differentiated tissues, apoptosis of

redundant cells and promoting cell differentiation are the major events existed at late

stage of regeneration (Suzuki et al., 2006; Rink, 2013). Therefore, since Avi-mmpl7

and Avi-mmp21 were found upregulated in early stages of the regeneration, they may

be involved in wound closure and blastema formation. In the phylogenetic tree, Avi-

MMP14 is grouped with MMP14. In previous study, the activity of MMP14 can be

regulated through internalization in clathrin-coated vesicles (Fanjul-Fernandez et al.,

2010). Although the expression of Avi-mmpl4 had no significant change during

regeneration, it might be involved in the regeneration by externalization and increase

the enzyme activity.

In SDS-PAGE gelatin zymograph, three active MMPs have been found. And, their

enzymatic activity reached maximum at 24 hpa and sharply decreased back to normal

level at 48 hpa during the early stage of regeneration. These results showed the activity

of MMPs is well regulated during the regeneration. The sharp decreasing of the
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enzymatic activities might be caused by the native MMP inhibitors, such as alpha-2-

macroglobulin (A2M), tissue inhibitor of metalloproteinase (TIMP), RECK or

extracellular matrix protection factors (Junseo et al., 2001; Bai et al., 2005; Cho et al.,

2014; Rodriguez-Calvo et al., 2015). A2M has been found to inhibit active MMPs

through trapping the active form of MMPs (Rodriguez-Calvo et al., 2015). TIMPs are

a family of endogenous MMPs inhibitors, which can bind with hemopexin-like domain

of pro-MMPs to inhibit their activities (Murphy, 2011). In this study, those mentioned

MMP inhibitors have not been identified in A. viride. Therefore, a synthesized MMP

inhibitor, GM6001 was used to test the function of MMPs in the regeneration.

After treatment with GM6001 the success rate of regeneration significantly

decreased in A. viride. In zebrafish, GM6001 treatment causes failure of tail

regeneration (Bai et al., 2005). These suggest that the activity of MMPs is crucial for

regeneration. When treated with GM6001 at different period of anterior regeneration,

the maximum inhibition on regeneration appeared in 0-12 hpa. This result matches the

timing of maximum gene expression of Avi-mmp17 and Avi-mmp21. Therefore, these

results suggest that both Avi-mmp17 and Avi-mmp21 are involved at the early stage of

the anterior regeneration in A. viride, which should include wound closure, growth

factor release, cell dedifferentiation, stem cells maintenance and cells migration.

(Armstrong & Jude, 2002; Satoh et al., 2011; Isolani et al., 2013; Andries et al., 2016;
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J. Wu et al., 2016). When enzymatic activities of those MMPs are inhibited, those

regenerative processes are affected and results in decreasing the regeneration successful

rate. Some of MMPs act as activator of other MMPs, such as MMP14 (Lee et al., 2013).

Thus, it might form a activating cascade to form active MMPs. In the inhibition data,

treatment with GM6001 at the 0-6 hpa and 12-24 hpa had partial inhibition effect, which

might be caused by initiating the activating cascade.

In the study, MMPs were found to be essential at early stage of the anterior

regeneration. However, how these enzymes are regulated remains unknown. In

previous studies, Wnt signaling pathway has been found in upstream of some MMPs

(Ingraham et al., 2011; Wang & Page-McCaw, 2014 ; Ozeki et al., 2014, 2016). Also,

Whnt signaling pathway upregulates at the wound site to promote cell proliferation,

tissue polarity and apoptosis (Petersen & Reddien, 2008; Chera et al., 2009; Jameson

etal.,, 2012; Wu et al., 2014; Ozhan & Weidinger, 2015). Thus, at the early stage of the

anterior regeneration, Wnt signaling pathway might be at upstream of both Avi-MMP17

and Avi-MMP21. In addition, fibrinolytic enzymes are a group of enzymes with

anticoagulation activity (Kim, 2014). In human, some fibrinolytic enzymes, such as

plasminogen activator and plasmin can regulate MMPs activity (Lijnen, 2002; Chang

et al., 2011; Munakata et al., 2015). Since two fibrinolytic enzymes also showed high

enzymatic activity and their gene expressions upregulate at early stage of anterior
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regeneration in A. viride (Tseng and Chen, 2014), fibrinolytic enzyme might regulate

the MMPs during the anterior regeneration. More, Extracellular matrix

metalloproteinase inducer (EMMPRIN), a transmembrane glycoprotein expressed on

epithelial cells (Hasaneen et al., 2016; Wu et al., 2016), can induce MMPs in

neighboring stromal cells through direct epithelial-stromal interactions. These

activators might regulate MMPs during the regeneration. Thus, the regulation of MMPs

during the regeneration in A. viride needs to be studies in the future.
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Figure 1: Sequences of Avi-mmps.

(A) The full length sequence of Avi-mmpl14 is 1698 base pairs, with a 5> UTR of 145

base pairs, a 3° UTR of 466 base pairs and OPF of 1698 base pairs. (B) The predicted

polypeptide sequence of Avi-MMP14 is 566 amino acids. It is about 63 KD. (C) The

protein domain prediction of Avi-MMP14. The signal peptide is at first 30 amino acid,

marked by red line. The substrate binding domain is at 34-101 amino acid, showed as

gray rectangle. The enzyme catalytic domain, zinc-dependent metalloproteinase

(ZnMc), is at 126-287 amino acids showed as hexagonal. The hemopexin-like repeat

domains are at 333-377, 379-427, 429-477 and 479-521 amino acids showed as green

triangle. The transmembrane domain is at 530-560 amino acid showed by blue rectangle.

The purple square is the low complexity region. (D) The full length sequence of Avi-

mmpl7 is 2574 base pairs, with a 5> UTR of 255 base pairs, a 3’ UTR of 885 base pairs

and OPF of 1434 base pairs. (E) The predicted polypeptide sequence of Avi-MMP17 is

478 amino acids. Itis about 53.22 kD. (F) The protein domain prediction of Avi-MMP17.

The substrate binding domain is at 140-192 amino acid, showed as gray rectangle. The

enzyme catalytic domain, ZnMc, is at 227-386 amino acids showed as hexagonal. The

purple square is the low complexity region. (G) The full length sequence of Avi-mmp21

is 3140 base pairs, with a 5 UTR of 121 base pairs, a 3° UTR of 802 base pairs and

OPF of 2217 base pairs. (H) The predicted polypeptide sequence of Avi-MMP21 is 739
44
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amino acids. It is about 85.75 KD. (1) The protein domain prediction of Avi- MMP21.
The signal peptide is at first 47 amino acid, marked by red line. The enzyme catalytic
domain, ZnMc, is at 322-493 amino acids showed as hexagonal. The purple square is
the low complexity region. The hemopexin-like repeat domains are at 511-558, 560-

612 and 623-671 amino acids showed as green triangle.
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Figure 2: Phylogenetic tree of Avi-MMPs.

(A) The full-length phylogenetic tree of MMPs. ADAM was used as outgroup. Avi-

MMP21 is grouped with MMP21. Both of MMP14 and MMP17 have two groups,

invertebrate and vertebrate. Avi-MMP14 is grouped with MMP14 of invertebrate.

However, Avi-MMP17 is grouped with Zinc Metalloproteinase of C. elegans. (B) The

catalytic domain phylogenetic tree of MMPs. Also, ADAM was used as outgroup.

Roughly, MMPs were divided into two group, membrane type and secreted form. Avi-

MMP17 is grouped with other MMP17 of invertebrate. Avi-MMP21 is grouped with

MMP21. And Avi-MMP14 is grouped with other membrane type MMPs.
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Figure 3: A MMP-like gene, Avi-MMP-like gene found related to anterior
regeneration in A. viride.

(A) The partial cloned sequence of Avi-mmp-like gene is 1078 base pairs, with a 3’ UTR
of 306 base pairs. (B) The predicted polypeptide sequence of Avi-MMP-like gene is 306
amino acids. (C) The protein domain prediction of Avi-MMP-like gene. The enzyme
catalytic domain has not yet been cloned out. The hemopexin-like repeat domains are
at 124-167, 169-210, 212-257 and 259-302 amino acids showed as green triangle. The

purple square is the low complexity region.
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Figure 4: Gene expression of Avi-mmps during the anterior regeneration.

The blastema was collected at each stages of anterior regeneration (tissue in the red

box). The intact head was used as a control to have relative gene expression during the

regeneration. The expression of Avi-mmpl7 increased after 6 hpa and reached highest

at 12 hpa about 8 folds relative to intact head. Then the expression decreased to normal

after 72 hpa. Also, the expression of Avi-mmp21 increased after 6 hpa and reached

highest at 12 hpa about 4 folds to the intact. Then, the expression slowly decreased after

48 hpa. The expression of Avi-mmpl4 remained stable during the regeneration. And,

the expression of one more mmp-like gene, Avi-mmp-like gene, decreased before 24

hpa and increased after 48 hpa and reached highest at 96 hpa about 4 folds relative to

intact head. Then the expression remained high until the regeneration finished. *: p <

0.05. ***: p < 0.001. ****: p < 0.0001.
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Figure 5: Avi-mmp14 expressing localization during the anterior regeneration.

(A) Avi-mmpl4 expressing localization in the regenerating worms. Sense probe was
used as negative control. (B) During the anterior regeneration, gene expression of Avi-
mmpl4 had no significant changes in the blastema, the new growth tissue in front of
red dash line. The red dah line is the cutting line. The number at bottom left is the ratio

of showed photos in the sample. Scale bar: 100 pum.
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Figure 6: Avi-mmpl7 expressing localization during the anterior regeneration.

(A) Avi-mmpl7 expressing localization in the regenerating worms. Sense probe was

used as negative control. (B) During the anterior regeneration, gene expression of Avi-

mmpl7 can be observed in the blastema after 6 hpa. The gene expression increased to

maximum at 24 hpa and 48 hpa. Then, the gene expression decreased after 72 hpa. In

120 hpa, the regeneration completed and the gene expression is similar to the intact

worms. The red dah line is the cutting line. The number at bottom left is the ratio of

showed photos in the sample. Scale bar: 100 pm.
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Figure 7: Avi-mmp21 expressing localization during the anterior regeneration.

(A) Avi-mmp21 expressing localization in the regenerating worms. Sense probe was
used as negative control. (B) During the anterior regeneration, gene expression of Avi-
mmpl7 can be observed in the blastema after 6 hpa. The gene expression increased to
maximum at 24 hpa and 48 hpa. Then, the gene expression decreased after 72 hpa. The
gene expression decreased to normal level after 96 hpa. The red dah line is the cutting
line. The number at bottom left is the ratio of showed photos in the sample. Scale bar:

100 pm.
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Figure 8: Zymograph showed the active MMPs in A. viride during regeneration.

(A) The zymograph showed that three clear bands, 80 kD, 55kD and 45kD, which

suggests three gelatinolytic enzymes exist in the crude extract proteins in A. viride.

They might be Avi-MMP21, Avi-MMP14 and Avi-MMP17, respectively. In the group

treated with EDTA, all the three bands became unclear, which suggested that all these

enzymes belongs to metalloproteinases. The trypsin group was used as positive control.

(B) The blastema of the early stage of anterior regeneration were collected to do the

zymograph. It showed all these three MMPs are activated in the early stage of

regeneration and their activity have a peak at 24 hpa. Then, their activity decreased to

normal level. (C) The statistical data of the three bands in (B). All the three activity

increased about two-fold higher than intact head. *: p < 0.05. **: p < 0.01.
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Figure 9: The inhibitory effect of MMP inhibitor, GM6001, on anterior

regeneration in A. viride.

(A) The amputated A. viride was treated with different concentration of MMP inhibitor,

GM6001, to see what its effects on regeneration is and whether MMPs is involved in

the regeneration. The regeneration successful rate at 144 hpa was measured. It showed

the dose-dependent inhibition effect of GM6001. When treated with 200 uM of

GMG6001 the regeneration successful rate significantly decreased to about 20 %. (B)

The photos are the amputated A. viride at 144 hpa. In the group without GM6001, the

anterior regeneration completed with functional head. However, in the group treated

with 200 uM of GM6001, most of the regeneration failed. Some of the worms were

stuck at wound healing stage, which showed little or no blastema. And, others became

cysts and lay dormant until they die. (C) The different treatment in (D). The arrow

shows the anterior regeneration in A. viride. The blue line shows the periods that

amputated A. viride were immersed in the ASW with 1 % DMSO. The red line shows

the periods that amputated A. viride were treated with 200 uM of GM6001. (D) To

figure out whether the function of MMPs is time-dependent, A. viride was treated with

GM®6001 at different time period of regeneration. Although GM3001 has regenerative

inhibition effects at 0-24 hpa. When treated with GM6001 at 0-6 hpa and 6-12 hpa, it

showed about 50 % regeneration inhibition effects. Surprisingly, only when treated with
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GM6001 at 0-12 hpa, the regeneration successful rate at 144 hpa significantly decreased

to 10-20 %. This results suggested that MMPs might play crucial roles in the 0-12 hpa.

*:p < 0.05. **: p < 0.01. ****: p<0.0001.
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Figure 10: The model of MMPs involved in the anterior regeneration in A. viride.

In the previous studies done in our lab, it showed that the wound healing is completed

at 6 hpa. The blastema can be observed after 24 hpa. And the mouth opening appeared

at 53 hpa. Finally, the anterior regeneration completed at 120 hpa. During these

regenerative processes, at least three MMPs was involved. Two of MMPs, Avi-MMP17

and Avi-MMP21, might play crucial roles in the early stage of anterior regeneration.

After their activities were inhibited by MMP inhibitor, GM6001, the regeneration failed.

And, the other one MMP, Avi-MMP-like gene, might be involved in the late stage of

anterior regeneration.
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Tables

Table 1: Primers used for cloning Avi-mmp

Primer sequence

Avi-mmp14 1F 5'-CGACGATGTGGTGTGCCCGAC-3'

Avi-mmp14 1R 5'-CTTCCGGTAAAGGAGGGCGCG-3'

Avi-mmp14 2F 5'-GTAGCTCCCACCAGAACGACTCC-3'
Avi-mmp14 2R 5'-GTTCTATACTACTACCTTCAGTATTTAGGTGTGC-3'
Avi-mmp14 3F 5'-CTCATGCGACAGAATATACGCTTC-3'
Avi-mmp14 3R 5'-CGTACAATGCACAAGACATTATGCAC-3'
Avi-mmp14 4F 5'-CGGTTACTGCAGCACGAACGGTAC-3'
Avi-mmp14 4R 5'-GGTGATGTCGGGCACACCACATC-3'

Avi-mmp14 5’'RACE 1

5'-GTAGACCTATACCAGGAATTTCAAGCG-3'

Avi-mmp14 5’'RACE 2

5'-GGTTACTGCAGCACGAACGGTACAC-3'

Avi-mmp17 1F 5'-GCGTATTTCACTGCTTGTCAAATCCGG-3'
Avi-mmp17 1R 5'-GCAGCTGTCCCGACACATTTTGGC-3'
Avi-mmp17 2F 5'-GATACGTGCTCGGCCCGAGC-3'
Avi-mmp17 2R 5'-GGCTTATGTATGTATGTATGCATATGCATG-3'
Avi-mmp17 3F 5'-GCGCGTGTTCGTGCGTTAATTC-3'
Avi-mmp17 3R 5'-CATGCATGCACACAAACACGCAC-3'

Avi-mmp17 3’ RACE 1

5'-GCTCGGCCCGAGCAAGTGG-3'

Avi-mmp17 3’RACE 2

5'-GAAGGCAGCGCCGATACGTGC-3'

Avi-mmp-like gene 1F

5'-GGATAACGAATGCCAGTTACATCGGC-3'

Avi-mmp-like gene 1R

5'-CTACGACAGCGTCACCCAAATATACAAC-3'

Avi-mmp-like gene 2F

5'-CCAGAACTGCTCCGTCCTC-3'

Avi-mmp-like gene 2R

5'-CGCTGGTTTCGATACTTCCAG-3'

Avi-mmp-like gene 3’'RACE 1

5'-GTGTGAACTGTTGTATATTTGGGTGACGC-3'

Avi-mmp-like gene 3’RACE 2

5'-GACCGCGGTGAAAATACAGCACTGTC-3'

Avi-mmp-like gene 3’RACE 3

5'-CCAACGTGGATTATCCATCCAGTCC-3'

Avi-mmp21 1F 5'-GCCTTGGCTCATCTACGCTCATTAC-3'
Avi-mmp21 1R 5'-CATCGGAAACCTCTGCTTCTTCAGC-3'
Avi-mmp21 2F 5'-GCTCATCTACGCTCATTACAGC-3'
Avi-mmp21 2R 5'-GACATATGATCACGTAATGAGGCG-3'
Avi-mmp21 3F 5'-CGCGTGGCCAACGAAGAAATGGC-3'
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Avi-mmp21 3R 5'-GATCACGTAATGAGGCGATGATGCAG-3'
Avi-timp1 1F 5'-GTATGTGTGTATGTATGTATATATGTATGTAG-3'
Avi-timp1 1R 5'-CTGTATAAAGTCACGTGACAACTACTGC-3'
Avi-timp1 2F 5'-CGCTTTGGTTTAGGCGGTGGTAGC-3'
Avi-timp1 2R 5'-CATGCCGCAGCATTCACAGACAGC-3'

Table 2: Primers used for the RNA probes

primer sequence

Avi-mmp14 ISH 1F

5'-GCATTTACTAATGCCTTGAAAGGCG-3'

Avi-mmp14 ISH 1R

5'-CTATATTAGTCTCTGTAATGTAACATC-3'

Avi-mmp17 ISH 1F

5'-CCTGGAACTGTACTTGCTCATGCCTATC-3'

Avi-mmp17 ISH 1R

5'-GCCAGCCTCTCTCACATTCATCTTGAC-3'

Avi-mmp21 ISH 1F

5'-CGGGCCTTCTCGTAACATGCTTGTG-3'

Avi-mmp21 ISH 1R

5'-GGGCCTATCTGGAAACACTTAAACTCGTG-3'

Avi-mmp21 ISH 2F

5'-GCCTTGGCTCATCTACGCTCATTAC-3'

Avi-mmp21 ISH 2R

5'-GAACTGCTCCATTATTGCCTACCTCATG-3'

Avi-timp1 ISH 1F

5'-CTTTGGTACCAATGTTGGTGTTATTGTTTGC-3'

Avi-timp1 ISH 1R

5'-GGCGGTGGTAGCTGGTTTCAC-3'

Avi-timp1 ISH 2F

5'-GGCGGTGGTAGCTGGTTTCAC-3'

Avi-timp1 ISH 2R

5'-CTGTATAAAGTCACGTGACAACTACTGC-3'

Table 3: Primers used for gPCR

Primer sequence

Avi-mmp14 qPCR F

5'-GTGACCAGACACCGCTTATT-3'

Avi-mmp14 qPCR R

5'-TACACCGGGTCCATCAAATG-3'

Avi-mmp17 qPCR F

5'-CGTCATCAACTTCTCAGCCTA-3'

Avi-mmp17 qPCR R

5'-CCTGTGATGAGACGAACTGAAG-3'

Avi-mmp-like gene qPCR F

5'-TCAACCTCGACTTCATTTCCTT-3'

Avi-mmp-like gene qPCR R

5'-ATACATAGCGCGTGGTTCTG-3'

Avi-mmp21 qPCR F

5'-TCAGACGACAGCTCACAAAG-3'

Avi-mmp21 gPCR R

5'-GGCCGAGTACATGACCTATTT-3'

Avi-timp1 qPCR F

5'-GGACATCACCTTGGCTCTTATC-3'

Avi-timpl gPCRR

5'-CGCTGTTCATTCTCCCTACTG-3'
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