
doi:10.6342/NTU201601752

國立臺灣大學電機資訊學院資訊工程學系
碩士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

在 HSA系統上以間接 Finalizer進行程式碼最佳化
Code Optimization in an Indirect Finalizer for an

HSA-based System

李弘宇
Hong-Yu Lee

指導教授：徐慰中博士
Advisor: Wei-Chung Hsu, Ph.D.

中華民國 105年 7月
July, 2016

doi:10.6342/NTU201601752

doi:10.6342/NTU201601752

摘要

異質系統架構 (HSA)是由非營利組織 HSA基金會提出，旨在降低異質環

境中開發難度。一個 HSA系統可以包括多種不同指令集的裝置。

由該基金會提出之 HSA中介語言 (HSAIL)用以抽象化在異質計算環境中

不同裝置的實作細節。程式設計師將程式碼以 HSAIL表示之，這些 HSAIL程

式碼便可以在多種裝置上執行，例如中央處理器，圖形處理器，或訊號處理器。

一個 HSA的系統實作包括硬體元件以及 HSA執行時期軟體程式庫，其中包

括 finalizer，而一個 finalizer可將 HSAIL中介語言翻譯為指定裝置的指令集。

本學位論文以 AMD Carrizo APU 處理器內的圖形處理器為目標裝置語

言，探討 OpenCL C核心語言 (kernel language)的間接翻譯 HSAIL中介語言

(indirect finalization) 上的議題。為了間接翻譯 HSAIL 程式碼，作者開發一

個 HSAIL 語言前端用以轉換 HSAIL 中介語言成 LLVM 中介語言模組，該

前端進而與 LLVM中的 AMDGPU後端整合。作者開發八個基於 AMD APP

SDK的 HSA應用程式。本學位論文亦討論三個 LLVM最佳化選項在間接翻

譯 HSAIL程式中的影響，其中一個為作者所開發。

i

doi:10.6342/NTU201601752ii

doi:10.6342/NTU201601752

Abstract

Heterogeneous System Architecture (HSA) is an architecture standard de-

veloped by the non-profit HSA foundation aiming to make it easier to program

for heterogeneous computing. A single HSA system may include an assortment

of devices with distinct instruction set architectures (ISAs).

HSA Intermediate Language (HSAIL) is an intermediate language defined

by the foundation to abstract away the heterogeneity in the HSA computing

environment. A programmer builds code using HSAIL in order to allow it to be

executed on a wide range of devices, such as CPU, GPU, DSP, etc. An HSA

implementation encompasses the hardware components and an HSA runtime

including the finalizer. A finalizer translates HSAIL modules into a given ISA.

This work investigates the issues of indirect finalization, kernel code opti-

mization and performance on an HSA compliant system with an AMD Carrizo

APU targeting its GPU architecture. To finalize the HSAIL code indirectly,

a HSAIL frontend is developed to translate HSAIL codes to LLVM modules,

which is then integrated with the LLVMAMDGPU backend. The author devel-

ops eight OpenCL benchmarks whose kernel codes are from AMD APP SDK.

The work also shows the impact of three LLVM optimizaton passes, one of

iii

doi:10.6342/NTU201601752

which is written by the author, on indirect finalization.

iv

doi:10.6342/NTU201601752

Contents

摘要 . i

Abstract . iii

Contents . v

List of Figures . vii

List of Tables . ix

1 Introduction . 1

2 Background . 7

2.1 Overview of AMD GCN Architecture 7

2.2 OpenCL Programming Model . 9

2.3 The HSA Architecture . 10

2.3.1 HSAIL . 11

2.4 The LLVM Compiler Infrastructure . 12

2.4.1 Clang and libclc . 13

2.4.2 llc and AMDGPU backend . 13

2.5 OpenCL Kernel Code Execution and Compilation on a HSA-Compliant

System . 13

2.5.1 Kernel Code Compilation/Finalization Process 14

2.5.2 Kernel Code Execution . 15

2.6 HSAIL Frontend . 16

2.6.1 HSAIL-Tools and HSAIL Frontend 16

v

doi:10.6342/NTU201601752

2.6.2 Design and Implementation of the HSAIL Frontend 16

3 Experimental Methodology . 25

3.1 Methodology . 26

3.2 Benchmarks Development . 27

4 Results and Analysis . 29

4.1 Kernel Finalization Time . 29

4.2 Kernel Execution Time . 30

4.2.1 Comparison between Indirect and Direct Finalization 31

4.2.2 Comparison between Indirect Finalization and Direct Compilation 33

4.3 LLVM Optimization Options . 35

4.3.1 Machine Instruction Scheduling 35

4.3.2 Peephole Optimization in GCN MAD and MAC Instructions . . . 36

5 Related Work . 41

6 Conclusion . 43

A Detailed System Configuration . 45

Bibliography . 47

vi

doi:10.6342/NTU201601752

List of Figures

2.1 AMD GCN Generation 3 Series Block Diagram [3] 8

2.2 OpenCL Offline Compiler (CLOC) [1] 12

2.3 OpenCL Kernel Code Compilation Processes. 14

4.1 Kernel compilation of Indirect and Direct Finalization. 30

4.2 Kernel Execution Time. 32

4.3 The performance of manually reordered MatrixMultiplication HSAIL code. 33

4.4 Comparison betweenBottom-Up andDefault Top-Down Instruction Schedul-

ing Schemes. 37

4.5 Constant Folding in Madmk and Mul Instruction. 39

vii

doi:10.6342/NTU201601752viii

doi:10.6342/NTU201601752

List of Tables

3.1 Benchmark Description . 25

3.2 System Environment . 25

A.1 Detailed Software Stack . 45

ix

doi:10.6342/NTU201601752x

doi:10.6342/NTU201601752

1 Introduction

Over the past few years, heterogeneous computing has become prevalent in the computer

society. For instance, a computing system may use multiple devices like graphics processing

units (GPUs), co-processor like Intel ® Xeon Phi, digital signal processor (DSP), etc., to

accelerate some suitable programs. For regular programs like matrix multiplication, GPU

can offer substantial speedup over a computing platform with traditional CPUs. However,

the legacyGPU compute on a heterogeneous platform has several limitations such as separate

address spaces, high overhead dispatch, etc. For GPU and other devices, a raw pointer to a

location in the CPU main memory can’t be recognized and vice versa. In order to make the

GPUprocess the data, the programmermust explicitly call the data copy application program

interface (API) tomove the data back and forth between CPUmainmemory andGPU global

memory through the PCIe bus. This requires programmers to handle the data movements

and do the datamarshalling explicitly in order to leverage the computing resources on devices

other than CPUs. In addition, when a program dispatches tasks to GPU, the cost of these

dispatches is rather high since it may involve system calls to let the GPU driver do the rest

of the work in the implementation.

Heterogeneous System Architecture (HSA) is an architecture standard proposed by the

non-profit HSA foundation [10] aiming to address the aforementioned limitations and make

it easier to program for heterogeneous computing. The essence of HSA is to provide a

unified computing platform to let computing units cooperating with each other.

1

doi:10.6342/NTU201601752

An HSA-compliant application is a combination of the following two parts: the code

executing only on host CPUs and the code represented by HSA Intermediate Language

(HSAIL)[12], which can be executed on the kernel agents. The concept of amalgam of

two kinds of code is an analog of an OpenCL®[14] application which contains the host

code and the kernel code written in the OpenCL C. In an HSA system, the parallel region

of an HSA application written in parallel language standard like C++AMP[16], HC[17],

OpenMP[19], OpenCL C, etc., is translated by the high level compiler (HLC) to HSAIL.

HSAIL is a virtual language as well as virtual machine to abstract away the native instruc-

tion set. The HSA implementation can execute the same HSAIL language by supporting it

natively on the hardware component or by further finalizing the HSAIL code into a given

machine instruction set. The process of finalization (or compiling the HSAIL to the na-

tive ISA) can be happened at various times, quoted lines from the manual [12], according

to different implementations: statically at the same time the application is built, when the

application is installed, when it is loaded, or even during the execution.

Suppose a vendor would like to support multiple devices with different ISAs and these

devices can thus participate in an HSA system as kernel agents. Note that as a kernel agent,

the device joins the unified HSA memory model, and is able to access the same pointer to

memory location no matter where it is located in the kernel agents. To meet this goal, a

vendor should implement the HSA finalizer, a utility turning the HSAIL code into a given

device ISA. If a vendor implements the finalizer from the scratch by directly translating the

HSAIL code to a native ISA, the various N sets of backend implementations and optimiza-

tions should be implemented correctly and be verified thoroughly. The implementation cost

of direct finalization is prohibitively high to a vendor. Another viable solution to a vendor

is that trying to leverage the existing compiler framework like LLVM[23] or GCC[9] to

implement the finalizer by indirectly translating the HSAIL code to their intermediate rep-

2

doi:10.6342/NTU201601752

resentations, respectively. These IRs are further translated to a native machine instruction

set. The indirect finalization using LLVM has several advantages over direct finalization:

1. Leverage existing LLVM IR optimizations. The three-phase design (high level language

frontends, common LLVM IR optimizations, and architecture-specific backends) in

the LLVM draws more attention to the programmers to use this infrastructure than

it would if the LLVM infrastructure were to support one target and one backend.

The LLVM community implements many common optimizations, and the existing

IR optimizations have been well-tested. A vendor can leverage the LLVM and find

out the critical transformations to its backend without implementing them directly. A

vendor can then further develop the suitable transformations for the native ISA and

integrate them into the LLVM pass manager. This lightens the burden of a vendor to

craft the finalizer.

2. Leverage existing LLVM backends. A vendor may choose a popular CPU architecture

such as X86 or ARM to integrate it into the system. If this is the case, it can leverage

the existing backends and their own specific backend optimizations to generate the

device code. Leveraging robust and reliable open source compiler makes a vendor

take much less effort than crafting a finalizer from the scratch. In the LLVM, a CPU

backend like x86 has many complicated optimization passes and numerous options

for the programmers to utilize. The cost of implementing these optimizations again

is not realistic for a vendor. Thus, it is an applicable solution for a vendor to prefer to

refine an existing backend.

3. Fast to market. By leveraging the existing codebase, a vendor can release an HSA

compliant system faster than the other competitors who implement the direct finaliz-

ers.

3

doi:10.6342/NTU201601752

On the other hands, the pros of direct finalization over the indirect finalization are as

follows.

1. Generate code faster. As opposed to direct finalization, the indirect one would go

through at least several extra steps. These steps are ordered as follows.

(a) Convert HSAIL to raw LLVM module.

(b) HSAIL frontend optimization.

(c) Apply some ineffective LLVM optimization passes. Note that the ineffective-

ness of some specific optimization passes is due to the HLC does some kind

of optimizations before emitting the HSAIL code, and this makes the indirect

finalization doesn’t need to go through these optimizations again.

(d) Allocate registers in two steps. The indirect method would lose the purpose of

early RA done on the HSAIL by HLC, and turn the HSAIL registers as well as

the memory allocations into LLVM infinite register sets in static single assign-

ment (SSA) form[20] and alloca instructions, respectively. The indirect finalizer

can then apply one of existing LLVM register allocation schemes, such as fast,

basic, greedy, or pbqp, to allocate the device registers.

These extra steps in the indirect finalization make the indirect finalization slower than

the direct finalization.

2. Generate higher quality code . For a vendor provides a closed source compiler, which

usually generates higher quality code than the code emitted by open source alterna-

tives since the developers of the vendor fully undertand its device microarchitecture.

For instance, the proprietary compiler, icc, provided by Intel, usually produces bet-

ter code than other open source compiler like GCC or LLVM. It is the case when it

4

doi:10.6342/NTU201601752

comes to one of the founder of the HSA foundation, AMD. The LLVM AMDGPU

backend generates inferior code than that emitted from closed source finalizer. For

more information of this comparison, the rest of the thesis would cover it.

3. A smaller finalizer executable and less library dependency. The indirect finalization is

dependent on the LLVM compiler infrastructure, which would inevitable link extra-

neous LLVM shared library at the runtime. As the LLVM is a fast-paced project, the

finalizer codebase would need to port to the newer LLVM version once the LLVM

C++ API is updated. What’s more, the LLVM bitcode compatibility issue may also

complicate the issue. On the other hand, the direct finalizer can only implement the

essential functionality without depending on the LLVM infrastructure. This would

lead to smaller executable and reduce shared library dependencies in the direct final-

izer.

This work investigates the issues of indirect finalization, kernel code optimization and

performance on a HSA compliant system with an AMD Carrizo APU targeting its GPU

architecture. For its GPU architecture, there are 8 compute units (CUs) running on 300–

800 MHz clock rate.

The works in this thesis are as follows.

1. Develop the HSA benchmarks based on the AMDAPP SDK[5][4] in order to exploit

the potential of the HSA architecture and explore the code optimization in the indirect

finalizer.

2. Develop the preliminary HSAIL frontend and integrate it with LLVM AMDGPU

backend to do the indirect finalization.

3. Evaluate the kernel code compilation time and execution time of indirect and direct

finalization.

5

doi:10.6342/NTU201601752

4. Identify some LLVMoptimization passes for the indirect finalization. Also, the author

develops a peephole optimization pass.

The rest of the thesis is organized as follows. Section 2 introduces the background of this

work. Section 3 describes the benchmarks and experiment environment. Section 4 discusses

and analyzes the results. Section 5 presents the related works. Finally, section 6 concludes

the work.

6

doi:10.6342/NTU201601752

2 Background

In this section, the author briefly introduces the AMDGraphics Core Next (GCN) archi-

tecture, OpenCL programming model, HSA architecture, and LLVM compiler infrastruc-

ture. Also, LLVM IR and HSAIL are introduced. It is then followed by the introduction of

OpenCL kernel code generation and HSA application execution on a HSA-compliant sys-

tem. In the remainder of the section, the author shows the design and implementation issues

of a HSAIL frontend, which is based on an open source project HSAIL-Tools[2].

2.1 Overview of AMD GCN Architecture

The target GPU architecture of the OpenCL kernel execution in this work is GCN Gen-

eration 3 Volcanic Islands. The Figure 2.1 gives the series block diagram of the architecture.

It includes an array of data-parallel processor (DPP) and other logic.

The DPP is a set of compute units (CUs), and it is the fundamental unit of computation.

Each CU contains several items including (1) four vector single instruction multiple data

(SIMD) compute units, each of which has a vector ALU, vector general-purpose registers

(VGPRs), etc., (2) scalar ALU and scalar GPRs (SGPRs), (3) workgroup-private memory,

Local Data Share (LDS), (4) access permission to other memory subsystems and cache sys-

tem. In this work, the author uses an AMD Carrizo APU targeting its GPU architecture,

which contains eight CUs, to construct a HSA compliant system.

7

doi:10.6342/NTU201601752

Figure 2.1: AMD GCN Generation 3 Series Block Diagram [3]

Before the tasks are executed, the GCN hardware divides the input threads into blocks

of 64 threads called wavefronts and delegates these wavefronts to the CUs. A wavefront

shares the program counter and is a schedule unit of the hardware, which implies that if the

divergence paths are happened in the flow control, all 64 threads would go both ”if” and

”else” paths. Whether the thread should execute the vector instruction is determined by a

hardware state, EXECute Mask (EXEC). If the corresponding bit of a thread in the specific

wavefront in EXEC is 1, it should execute this vector instruction, or it would be idle. In GCN

architecture, each vector SIMD processes 16 different data at a time (i.e., 16-wide SIMD),

which makes a vector ALU operate one vector instruction on wavefronts of 64 work-items

in four clock cycles [8].

In contrast, a scalar ALU processes the scalar instructions and operates on SGPRs which

are common to a wavefront. These scalar instructions can also affect the control flow of the

kernel program. Since the fact that one wavefront shares the values in the SGPRs, the scalar

ALU can do an uniform calculation in a wavefront per cycle.

8

doi:10.6342/NTU201601752

The memory hierarchy in GCN has several kinds of memory including (1) two level data

caches (L1 data cache per CU and L2 multi-banked data cache), (2) instruction cache, (3)

constant cache, (4) local data share (LDS) for low-latency communication between work-

items in a work-group, (5) global data share (GDS) shared by all CUs, and (6) the off-chip

device memory visible to all work-items in a kernel. Also note that a special kind of private

memory, the scratch memory, is referred to as a private subset of global memory to allow

the register spilling. The register spilling degrades the performance significantly since the

scratch memory is part of the global memory, whose latency is much higher than other

aforementioned memory segments in the GCN architecture.

2.2 OpenCL Programming Model

OpenCL is an open standard for parallel programming of heterogeneous systems[14].

In OpenCL, the compute kernel is a function defined to be executed in parallel on OpenCL

devices. It defines the work-group (WG) as a concept of the software level data-parallel

granularity that packs up a fixed number of work-items, and requires it to be executed on

the same compute unit. Once a WG is assigned to a CU, it is then divided into one or

several wavefronts in the hardware perspective. Threads in the WG can share the data in

local memory, which is corresponding to the LDS in the GCN hardware terminology.

It also defines four named device memory regions including global, constant, local, and

privatememory. They can bemapped to the correspondingmemory segments of anOpenCL

device like the GPU in an AMD Carrizo APU. Note that the global memory mentioned

in the GCN architecture includes two types of memory, the GDS and the off-chip device

memory, while the global memory in the OpenCL spec is the region that can be accessed

by all work-items on an OpenCL context. Since OpenCL 2.0, the shared virtual memory

9

doi:10.6342/NTU201601752

(SVM) extends the global memory region into the host memory region, and this makes an

OpenCL kernel to use the host memory or global memory on any OpenCL device directly.

OpenCL defines the runtime API for the vendors and an OpenCL program can use these

API to develop the applications. Also, it defines the kernel code to be written in OpenCL C

language which is based on C99 specification and adds some modifications like vector data

types and operations to these new types, address space qualifiers tomark the disjoint memory

regions on an OpenCL device, a set of built-in functions like kernel dispatch functions, math

functions, etc.

2.3 The HSA Architecture

Heterogeneous System Architecture (HSA) is a standard to support a wide range of

data-parallel and task-parallel programming models[11]. The requirements for the HSA-

compliant system and participating devices are in several aspects including (1) SVM, flat

memory addressing, and adherence to HSA memory model, (2) user level dispatch, (3)

architected queuing language (AQL), (4) scheduling and preemptive kernel agent, (5) HSA

Intermediate Language (HSAIL), and (6) a set of HSA runtime API for an HSA application

uses the platform.

Note that HSA isn’t an alternative of OpenCL but an optimized platform architecture for

OpenCL. Thus, OpenCL onHSA can benefits from the SVM requirement ofHSA, improved

memory model, low latency kernel dispatch. The HSA requirements is more focused on the

system and hardware and makes other high level language benefit from these requirements.

Additional high level language except OpenCL that will be supported by HSA are Java,

C++AMP, OpenMP, hc, etc.

10

doi:10.6342/NTU201601752

2.3.1 HSAIL

Just as the OpenCL defines OpenCL C to explicitly mark the codes that can be executed

in parallel on the compute units as the kernel functions, the HSA defines the HSAIL[12]

to abstract away the underlying hardware ISA details and express the parallel region of the

programs that can be executed on the compute units. The binary format of HSAIL is called

BRIG. It is generated by a HLC like GCC[9] or LLVM.

The HSAIL programming model shares similar concepts of OpenCL execution model.

It defines 136 instructions ranging from the basic arithmetic, memory, branch instructions to

image-related, synchronization, function, and special instructions. These instructions look

like the three-address code, support base, packed, array types, and vector operands on several

instructions. For HSAIL registers, it has 4 types of width: 1, 32, 64, 128 bits. 1-bit (c

register) is for condition code, 32 and 64-bit register (s and d register) support the floating

point and integer data type. 32, 64, and 128-bit (the q register) can be used to store several

smaller data type of equal size called the packed data type. For instance, a s register can

hold u8x4 packed data type, which packs up 4 elements of unsigned 8 bit integers.

Compared to the LLVM IR, the HSAIL is more low level and has quiet different features.

For instance, the HSAIL has the fixed number of register usage while LLVM IR can use

unlimited number of virtual registers. In specific, the HSA PRM defines the register usage

equation, ((smax + 1) + 2 ∗ (dmax + 1) + 4 ∗ (qmax + 1)) mustn’t exceed 2048, or it

is considered an invalid HSAIL module. As HSAIL provides a fixed-size register file, the

HLC has to perform the register allocation, which is a time-consuming part in the backend

code generation, and it may choose to spill the register to the spill segment even if the total

register resource usage doesn’t reach 2048 and let the finalizer promote these spills to device

registers if the target has adequate register resources.

11

doi:10.6342/NTU201601752

Developers write the high level language like OpenCL or OpenMP, the HLC performs

optimization passes based on the spec ofHSA system architecture, and it emits theHSAIL/BRIG

code. The HSA runtime API can call the HSA finalizer to finalize the HSAIL/BRIG code

to the target ISA before running the HSAIL/BRIG module.

In this work, the author chooses the OpenCL as the target language, the Figure 2.2 shows

the code generation on HSA platform for OpenCL. The work uses CLOC[6] to generate the

HSAIL code from OpenCL.

Figure 2.2: OpenCL Offline Compiler (CLOC) [1]

2.4 The LLVM Compiler Infrastructure

LLVM is an open source compiler framework that is started in University of Illinois.

It defines the LLVM IR to represent a program from different high level language. The

LLVM IR is then used for the input of a set of common optimization passes, and different

back-ends can then generate device ISA. This three-phase design follows the advantage of

retargetablity. CLOC is a living example of the retargetability, as it generates the HSAIL

code by developing only a new backend, HSAIL, in the lib/Target/HSAIL directory

of the LLVM source. It can leverage the existing frontend, optimization passes, register

allocation (RA) schemes, instruction scheduling algorithms, etc. in the LLVM codebase.

12

doi:10.6342/NTU201601752

2.4.1 Clang and libclc

ForOpenCL language, the LLVMnative C-family frontend clang can process theOpenCL

C language with the help of another project libclc[15] that implements the standard OpenCL

C language requirement. Currently, not all the requirements of OpenCL C 2.0 are imple-

mented in the clang+libclc.

2.4.2 llc and AMDGPU backend

The LLVM llc is the static compiler in the LLVM infrastructure. It supports several

backends, such as x86, ARM, AArch64, Mips, NVPTX, or AMDGPU. The llc static com-

piler is responsible for lowering the LLVM IR to target ISA through several representations

in the memory including SelectionDAG, MachineInstrs, MCInstr.

As HSAIL is another backend for LLVM-based CLOC compiler, AMDGPU is the

backend in LLVM targeting AMD GCN architecture. Note that in CLOC, there is a path

that directly generates the code from OpenCL to target ISA without going through the

HSAIL.

2.5 OpenCL Kernel Code Execution and Compilation on

a HSA-Compliant System

Three OpenCL kernel code compilation processes are introduced in the subsection 2.5.1.

With the knowledge of kernel compilation (or finalization), the way of OpenCL kernel code

execution is discussed in 2.5.2.

13

doi:10.6342/NTU201601752

OpenCL

LLVM IR

HSAIL/BRIG

LLVM IR

LLVM IR

LINKED

Direct

Finalization

Direct

Compilation

AMD GCN

HSACO

clang+libclc

HSAIL Backend

IF1

IF2

IF3

IF4

Figure 2.3: OpenCL Kernel Code Compilation Processes. There are three different paths to
generate a code object containing GPU device code. The Direct Compilation (in red path)
is provided as the default option since CLOC version 1.0. The Indirect Finalization is shown
in the black path. The Direct Finalization is shown in the orange path.

2.5.1 Kernel Code Compilation/Finalization Process

The Figure 2.3 shows the compilation and finalization processes of an OpenCL kernel

to GCN device code, including the following:

1. Direct Finalization. AMD provides the closed source finalizer that can be called on

the runtime to finalize a given BRIG module to AMD GPU code. The HSA Runtime

API is

hsa_ext_program_finalize[13], which creates a code object handle in the

memory.

2. Indirect Finalization. The indirect finalization is the path that leverages the existing

LLVM compiler infrastructure to generate the AMDGPU code. There are four steps

denoted by IFN - Step Name, where N ranges from 1 to 4, including the follow-

ing:

14

doi:10.6342/NTU201601752

(a) IF1 - HSAIL Frontend. The frontend, based on the open source project, HSAIL-

Tools, is developed by the author to change the HSAIL module to a valid LLVM

IR module. The design and implementation of this frontend is discussed in the

Section 2.6.

(b) IF2 - llvm-link. The output LLVM IR module is further linked with another

LLVM IR bitcode module containing the implementation of helper functions

provided in another open source compiler, hcc compiler[18]. The output LLVM

module can be then processed by the llc static compiler.

(c) IF3 - LLVM AMDGPU Backend. The llc compiler uses the existing AMDGPU

backend provided in the LLVM trunk. This backend is still under development

at the time of this writing. This stage produces an ELF file.

(d) IF4 - amdphdrs. The small utility, amdphdrs, generates the HSA code object

version 1 (HSACO v1) that can be read from disk by the HSA runtime API

hsa_code_object_deserialize.

3. Direct Compilation: the direction compilation is the new default path of CLOC since

version 1.0 which directly generates the HSACO without the HSAIL involved. As its

name (compilation) suggests, this isn’t the finalization. However, the code from this

compilation path can be compared with that from other two paths.

2.5.2 Kernel Code Execution

There are two ways of developing a HSA host program given a GPU kernel on a HSA-

compliant system. One way is to use the a set of low-level HSA runtime API, which needs

many lines of code to program on the host side, while the other is to use the SNACK API

provided as an AMD extension in CLOC project.

15

doi:10.6342/NTU201601752

SNACK (SimpleNoApi CompiledKernels) uses CLOC to help the host program launch

GPU kernels as host-callable functions with structured launch parameters. CLOC takes care

of the code generation of other structures, header files, etc. in the SNACK API. Thus, the

programmer writes less code than directly uses HSA runtime API.

In this work, the author develops eight benchmark using the HSA runtime API, and the

eight OpenCL kernel code is obtained from AMD APP SDK suite[5][4]. The author tries

to wrap the low-level HSA runtime API into a set of helper functions.

2.6 HSAIL Frontend

In the process of indirect finalization, the first step is to generate a valid LLVM module

given a input HSAIL module. It’s necessary to develop a frontend to do the work. In this

section, the author presents the design and implementation of the HSAIL frontend, which is

based on the HSAIL-Tools[2]. The Section 2.6.1 first introduces the HSAIL frontend and

the rest of this section discusses the design issues of the frontend.

2.6.1 HSAIL-Tools and HSAIL Frontend

HSAIL-Tools is used for parsing, assembling, and disassembling HSAIL. Based on the

functionality in this open source project, the author extends the top-down parser to generate

the valid LLVM IR module.

2.6.2 Design and Implementation of the HSAIL Frontend

To discuss the implementation issues in the frontend, the author uses some code snippet

from the matrix multiplication HSAIL module as a running example.

16

doi:10.6342/NTU201601752

1. Additional Information in Pragma: for an OpenCL kernel MatrixMultiplication whose

function signature is declared in Code Snippet 2.1, the corresponding HSAIL function

declaration is in Code Snippet 2.2. As we can see, there is no type information but only

the argument length in the formal parameters. The HLC uses the pragma directive to

pass the information to the finalizer or other components that process HSAIL. For the

pragma string that can’t be recognized by the HSAIL consumer, it must be ignored by

the consumer and shouldn’t cause any errors.

1 __kernel void mmmKernel(
2 __global float4 *matrixA,
3 __global float4 *matrixB,
4 __global float4* matrixC,
5 uint widthA, uint widthB);

Code Snippet 2.1: OpenCLMatrix
Multiplcation Function Header

1 module &mm:1:0:$full:$large:$default;
2 extension ”amd:gcn”;
3 extension ”IMAGE”;
4 prog kernel &mmmKernel(
5 kernarg_u64 %__global_offset_0,
6 kernarg_u64 %__global_offset_1,
7 kernarg_u64 %__global_offset_2,
8 kernarg_u64 %__printf_buffer,
9 kernarg_u64 %__vqueue_pointer,
10 kernarg_u64 %__aqlwrap_pointer,
11 kernarg_u64 %matrixA,
12 kernarg_u64 %matrixB,
13 kernarg_u64 %matrixC,
14 kernarg_u32 %widthA,
15 kernarg_u32 %widthB) { ... }

Code Snippet 2.2: HSAIL Matrix Multiplication
Function Header

Code Snippet 2.3 gives the some pragma directive emitted by CLOC. The line 1 and 8

of pragmamark the starting and ending lines with the stringARGSTART andARGEND

followed by the kernel function name, respectively.

The line 2 gives the private memory usage of HSAIL module. The private memory

includes both the spill stack and private stack since they will be put in the scratchmem-

ory on theGPU. The line 3 shows that the type of the argument__global_offset_0

is a value, and the actual type information in the OpenCL kernel code is given in the

line 6. The 0 in line 6 indicates the argument index. Thus, the HSAIL frontend could

conclude that __global_offset_0 is a value of type size_t of 32-bit. In a

17

doi:10.6342/NTU201601752

similar way, the HSAIL frontend could infer that matrixA is a 64-bit float4*

pointer type.

With the knowledge of the type information, the frontend could emit better LLVM

IR instructions, such as the LLVM getelementptr instructions.

1 pragma ”AMD RTI”, ”ARGSTART:__OpenCL_mmmKernel_kernel”;
2 pragma ”AMD RTI”, ”memory:private:144”;
3 pragma ”AMD RTI”, ”value:__global_offset_0:u64:1:1:0”;
4 pragma ”AMD RTI”, ”pointer:__printf_buffer:u8:1:1:48:uav:7:1:RW:0:0:0”;
5 pragma ”AMD RTI”, ”pointer:matrixA:float:1:1:96:uav:7:16:RW:0:0:0”;
6 pragma ”AMD RTI”, ”reflection:0:size_t”;
7 pragma ”AMD RTI”, ”reflection:6:float4*”;
8 pragma ”AMD RTI”, ”ARGEND:__OpenCL_mmmKernel_kernel”;

Code Snippet 2.3: An Example of Pragma Directive

2. HSAIL State Mapping: the architecture state mapping of four types of registers is quite

straight-forward. When the frontend encounters a new virtual register that is unused

before, say register $d0, it allocates a stack variable, which has the same name as the

virtual register, in the entry basic block by using the LLVM alloca instruction, and

its type is like the union type in the C language. The reason why the frontend allocates

the union type, as mentioned in section 2.3.1, is that the s and d registers can hold

different types so they are untyped.

How an instruction treats the bytes in the specific register can be found in the instruc-

tion mnemonic. For instance, an instruction add_u64 $d0, $d0, $d1 implies

that two 64-bit registers $d0 and $d1 are treated as unsigned 64-bit integers. The

translation of this instruction could be found in Code Snippet 2.4.

For the add_u64 instruction, the frontend encounters two registers d0 and d1.

It finds that they are first used in this module, and allocates two 64-bit variables of type

type{ i64 } in line 4–5. Then, it determines the expected type to be unsigned 64-

bit integer from the instruction mnemonic, does the bitcast to convert the pointer

18

doi:10.6342/NTU201601752

type to i64*, load the values from the memory locations, add two values, and

finally store the result to the desired memory location. Note that in the legitimate

HSAIL module, the two registers should be first initialized, or the result of add_u64

are undefined. This implies the two alloca instructions in line 4–5 will be happened

before this HSAIL add_u64 instruction.

To sum, the HSAIL frontend translation logic doesn’t complicate the state mapping

since the redundant instructions, such as the bitcast instruction in line 11, can be

removed by the built-in LLVM optimization passes.

1 ; HSAIL instruction: add_u64 $d0, $d0, $d1;
2 %union.hsailSregister = type { i32 }
3 %union.hsailDregister = type { i64 }
4 %d0 = alloca %union.hsailDregister
5 %d1 = alloca %union.hsailDregister
6 %1 = bitcast %union.hsailDregister* %d0 to i64*
7 %2 = load i64, i64* %1
8 %3 = bitcast %union.hsailDregister* %d1 to i64*
9 %4 = load i64, i64* %3
10 %5 = add i64 %2, %4
11 %6 = bitcast %union.hsailDregister* %d0 to i64*
12 store i64 %5, i64* %6

Code Snippet 2.4: LLVM IR Translation of an add_u64 Instruction

3. HSAIL Address Expressions and LLVM GEP Instructions: there are two kinds of ad-

dress in the HSAIL, flat and segment address. The flat address is a general address

that can be used to address any HSAIL memory, while the segment address is just an

offset within a segment, and the segment is specified in the instruction.

In all testing benchmarks, the HLC generates segment addresses and thus the HSAIL

frontend now supports only the segment address. A typical segment address expres-

sion, such as [$d2], in the memory instructions is shown in line 11 of Code Snip-

pet 2.5. As we can see, the offset is pre-computed and stored in the register $d2.

For theHSAIL frontend, this would be translated to a so calledptrtoint-inttoptr

pattern, which is unfriendly to other LLVM optimization passes. When the fron-

19

doi:10.6342/NTU201601752

tend translates the ld_kernarg instruction in line 6, it stores the base address of

%matrixB in the register %d1 after making use of ptrtoint instruction to con-

vert the pointer %matrixB to an i64 value. After doing some address calculation

and storing the results in $d2, the frontend would use inttoptr to convert the

content in $d2 to a pointer of LLVM vector type <4 x f32>. The corresponding

LLVM IR code is shown in Code Snippet 2.6.

Although the way of this ptrtoint-inttoptr pattern calculates the address off-

set is similar to LLVM getelementptr (GEP) instruction, this however causes

other LLVM optimization passes, such as the pointer aliasing analysis, to be conser-

vative and prevents the other optimizations from doing the transformation. Thus, one

of the targets in the frontend is to prefer the generation of GEP instructions.

1 // float4 temp = matrixB[get_global_id(0)]
2 workitemabsid_u32 $s0, 0;
3 cvt_u64_u32 $d0, $s0;
4 ld_kernarg_align(8)_width(all)_u64 $d1, [%__global_offset_0];
5 add_u64 $d2, $d0, $d1;
6 ld_kernarg_align(8)_width(all)_u64 $d1, [%matrixB];
7 shl_u64 $d2, $d2, 32;
8 shr_s64 $d2, $d2, 32;
9 shl_u64 $d2, $d2, 4;
10 add_u64 $d2, $d1, $d2;
11 ld_v4_global_align(16)_f32 ($s9, $s12, $s8, $s0), [$d2];

Code Snippet 2.5: A Example of Simplified Address Expression

1 %tmp8 = ptrtoint float addrspace(1)* %matrixB to i64
2 ; some offset calculation and store it in %tmp14
3 %tmp15 = inttoptr i64 %tmp14 to <4 x float> addrspace(1)*
4 %tmp16 = load <4 x float>, <4 x float> addrspace(1)* %tmp15
5 ; extractelement 4 times and store the value into the corresponding memory location
6 %tmp17 = extractelement <4 x float> %tmp16, i32 0
7 %s9 = alloca %union.hsailSregister
8 %tmp18 = bitcast %union.hsailSregister* %s9 to float*
9 store float %tmp17, float* %tmp18
10 ...

Code Snippet 2.6: The Simplified LLVM IR Translation of Code Snippet 2.5

In the implementation, the frontend would prefer to generate the GEP instructions

in some common cases. For instance, Code Snippet 2.7 shows a case of a register

spilling, and its corresponding LLVM IR translation emitted by the frontend is given in

20

doi:10.6342/NTU201601752

Code Snippet 2.8. The frontend can determine the stack offset is124when processing

the HSAIL instruction st_spill in line 3 of Code Snippet 2.7, so it emits the

getelementptr instruction in line 7 of Code Snippet 2.8 that uses 31(= 124/4)

as the second operand.

1 align(4) spill_u8 %__spillStack[144];
2 // put the result in $s2
3 st_spill_align(4)_u32 $s2, [%__spillStack][124];

Code Snippet 2.7: Prefer GEP Instruction

1 %union.hsailSregister = type { i32 }
2 %__spillStack = alloca i8, i32 144, align 4
3 %tmp1 = bitcast %union.hsailSregister* %s2 to i32*
4 %tmp2 = load i32, i32* %tmp1
5 %tmp3 = ptrtoint i8* %__spillStack to i64
6 %tmp4 = inttoptr i64 %tmp3 to i32*
7 %tmp5 = getelementptr i32, i32* %tmp4, i64 31
8 store i32 %tmp2, i32* %tmp5

Code Snippet 2.8: LLVM IR Translation of Code Snippet 2.7

In sum, the frontend should prefer theGEP instructions to the ”ptrtoint-inttoptr

pattern” in order to trigger the other optimization passes.

4. Preliminary LLVMOptimizations in the Frontend: the naïve implementation of HSAIL

frontend makes sure that each HSAIL instruction is mapped to a sequence of LLVM

IR instructions. The raw LLVM module emitted by the frontend has rooms for opti-

mizations. For instance, the frontend maps the HSAIL registers to the stack, which

can be promoted to LLVM virtual registers.

Thus, the frontend integrates some preliminary LLVM optimizations, including three

selected passes and one low-cost, customized optimization pass in order to improve

the code quality before the AMDGPU backend processes the module.

These developer-selected passes including:

21

doi:10.6342/NTU201601752

(a) simplifycfg that simplify the control flow graph (CFG),

(b) sroa that eliminates the register state mapping,

(c) a customizedhsail-dead-argument-elimination pass written by the

author that removes the first 6 HSAIL arguments inserted by HLC, and

(d) strip-dead-prototypes that removes the dead prototypes in the LLVM

module.

The first two passes are managed by LLVM function pass manager and run in the

function scope, while the other two passes are managed by LLVM module pass man-

ager and run in the module scope. The frontend first runs the function passes for each

function, and apply the other two module passes for the module. The pass order is the

same as the listing order above.

5. Other Issues in the HSAIL Frontend: when the author designs and implements the

frontend, several issues worth mentioning are as follows.

(a) Register Allocation in the HLC. The HLC performs the register allocation, but the

implementation of state mapping in the frontend chooses to map it to the stack

memory, which is then promoted to the LLVM virtual registers. The process

of target language register allocation is done again by LLVM infrastructure. In

other finalizer implementations, it may simply map the HSAIL registers to the

target registers or develop other more efficient state mapping algorithms to solve

the problem. The author believes that there is no known work that encodes the

register allocation information in other intermediate language in the LLVM IR

level. Encoding the register information in LLVM IR is not attractive to the

author because in LLVM IR, it has unlimited registers and the other existing

optimization passes could effectively reduce the usage of memory stack from the

22

doi:10.6342/NTU201601752

register state mapping. Thus, the author chooses to map the HSAIL architecture

states in the memory stack and integrate other passes to eliminate the stack.

(b) Preliminary Optimization Passes and Order. The frontend selects fixed opti-

mization passes by heuristic without considering the fact that different programs

should have different program features, and need different frontend optimiza-

tions. However, the pass order and important optimization passes are well-

known research problems. The goal of HSAIL frontend is to ensure the correct-

ness of the code and apply some effective and general optimizations to eliminate

the overhead in the frontend code generation, such as the stack access. The op-

timization passes and order aren’t the problem the author addresses in this work.

23

doi:10.6342/NTU20160175224

doi:10.6342/NTU201601752

3 Experimental Methodology

In this section, the author presents the environment setup and experimental methodology

in Section 3.1. Section 3.2 provides the information for these benchmarks, the host program

development, and kernel modification for the HSA platform.

Table 3.1 describes the various HSA applications, and their characteristics. These ker-

nels are taken from AMD APP SDK[4][5]. Since the HSA applications use the HSA run-

time API on the host side, the author takes only the GPU kernel and develops the host

program using the HSA runtime API. The system configuration is shown in Table 3.2. The

Appendix A.1 gives the software version on the HSA platform.

Application Input Data Size GlobalWorkSize WorkGroupSize
AESEncrypt 3840x2160 BMP Picture {960, 2160, 1} {64, 4, 1}
BinomialOption 1048576 {66846720, 1, 1} {255, 1, 1}
BitonicSort 4194304 {2097152, 1, 1} {512, 1, 1}
BlackSholesDP 8388608 {1280, 1280, 1} {16, 16, 1}
MatrixMultiplication 4096x4096 {1024, 1024, 1} {16, 16, 1}
MonteCarloAsianDP 256 steps {256, 512, 1} {256, 1, 1}
RadixSort 65536 {65536, 1, 1} {256, 1, 1}
SimpleConvolution 8192x8192 {67108864, 1, 1} {256, 1, 1}

Table 3.1: Benchmark Description

APU (CPU+GPU) Carrizo APU (AMD FX-8800P)
CPU (Part of APU) 4-Core Excavator@2.1GHz-3.4 GHz
GPU (Part of APU) 8 CUs. GCN 1.2 (Volcanic Islands) Radeon R7@300-800MHz
Memory 8GB
OS/Kernel Ubuntu 14.04.4 / 4.4.0-kfd-compute-rocm-rel-1.1-15

Table 3.2: System Environment

25

doi:10.6342/NTU201601752

3.1 Methodology

For each time measurement, the author repeats the experiments independently for eight

times and takes the average of results. Experiments in this work are as follow.

1. Kernel Finalization and Compilation Time. In this experiment, the author compares

the compilation time of kernel code in three different paths: direct compilation, in-

direct finalization, and direct finalization, as mentioned in Figure 2.3.

For direct finalization, the BRIG code is in memory and only the HSAIL code final-

ization is measured while the indirect finalization and direct compilation have the I/O

time included in the measurement. The impact of I/O time will be alleviated when

the evaluation is repeated because the input file is in the disk cache.

2. Kernel Execution Time. In this experiment, the kernel execution time of eight bench-

marks is measured given the fixed input parameter listed in Table 3.1. The measure-

ment excludes the initialization before the first kernel launch. For four of the bench-

marks, BitonicSort, MonteCarloAsianDP, RadixSort, and SimpleConvolution, which

issue multiple kernel launches, the measurement of these benchmarks includes the

data preparation and marshaling time on the host side among 2nd to the last kernel

launches.

3. LLVM Optimization Options. The two experiments related to LLVM optimization

passes are carried out to reduce the performance gap between indirect and direct fi-

nalization.

The first experiment is to measure the impact of different instruction scheduling

schemes. The author changes both the pre-RA and post-RA instruction scheduling.

26

doi:10.6342/NTU201601752

The second experiment is to measure the impact of a customized peephole optimiza-

tion developed by the author. The optimization pass is only applied on one benchmark

BinomialOption since the other seven benchmarks has no such patterns.

3.2 Benchmarks Development

This section briefly introduces the development of these HSA benchmarks and encoun-

tered issues.

1. Host Program Development. The host program is written in the HSA runtime API

wrapper functions developed by the author. The process isn’t that trivial when it comes

to properly setup the kernel arguments since the argument padding behavior is different

in code objects from open source compiler and closed source finalizer. That is, there

are two different kernarg segment sizes in code objects given the same GPU kernel.

This behavior makes the host program need to be carefully checked and error-prone.

The developer must take care of the subtle difference by check the kernel argument

segment size and write simple kernel to make sure that every kernel argument can be

accessed correctly.

In terms of local memory on the kernel arguments, there is no working examples and

no tutorial on how to set up correctly on the host side until the issue is raised and

answered on the repository.

The setup of AQL packet is designed to be simple but the error is silent. Developers

are responsible to make sure that every single bit in the AQL packet is setup correctly.

When any value in the AQL packet is wrong, the host gets wrong results without any

hint. Even worse, a simple AQL packet dispatch can make the whole system crash.

Last but not least, the LLVM backend is a rough path and under development. For

27

doi:10.6342/NTU201601752

instance, the developer has no idea if each system upgrade passes the regression test,

which makes some working kernels give the wrong answer after upgrading the com-

piler toolchain. Another example is that some kernel code need to be modified in

order to work-around the existing backend problems. To sum, the unstable system

environment could significantly make the development time longer.

2. Kernel Program Modification. As stated above, the LLVM backend is under develop-

ment. Some encountered compiler issues include the lack of support to some cases in

OpenCL generic address casting and the structure pass-by-value in global memory.

The developer has to modify the kernel code to work-around these compiler issues.

In this work, the modified kernel is BlackSholesDP and MonteCarloAsianDP.

28

doi:10.6342/NTU201601752

4 Results and Analysis

In this section, the thesis evaluates three aspects including (1) compilation time of in-

direct and direct finalizations, (2) the execution time of HSA benchmark suite mentioned

in Section 3 with the GPU kernel code from different paths, (3) the impact of different in-

struction schedulers, and (4) the impact of a peephole optimization pass by the author. The

results are shown in Section 4.1, 4.2, and 4.3 respectively.

4.1 Kernel Finalization Time

The Figure 4.1 shows the kernel finalization time of indirect finalization versus direct

finalization.

The direct finalization by AMD finalizer is normalized to 1, while the stacked bar on the

right hand side shows the normalized time of each step in indirect finalization.

Recall that the indirect finalization consists of four steps, IF1 to IF4. As the figure

shows, the first step (IF1-HSAIL frontend) as well as the third step (IF3-LLVM AMDGPU

Backend) take the majority of time in the indirect finalization, which takes for 61.8 to 96.5

percent of finalization time.

All benchmark except BitonicSort takes much more finalization time in the process of

indirect finalization. For BitonicSort, the kernel code length is short, and the AMD finalizer

applies other vendor-specific optimizations which takes more time than the optimizations in

29

doi:10.6342/NTU201601752

A
E
S
E
n
cr
yp
t

B
in
om

ia
lO
p
ti
on

B
it
on

ic
S
or
t

B
la
ck
S
h
ol
es
D
P

M
at
ri
xM

u
lt
ip
lic
at
io
n

M
on

te
C
ar
lo
A
si
an
D
P

R
ad
ix
S
or
t

S
im

p
le
C
on

vo
lu
ti
on

0

2

4

6

8

10
F
in
al
iz
at
io
n
T
im

e
N
or
m
al
iz
ed

to
D
ir
ec
t
F
in
al
iz
at
io
n

Direct Finalization

IF1-HSAIL Frontend IF3-LLVM AMDGPU Backend IF2-llvm-link IF4-amdphdrs

Figure 4.1: Kernel compilation of Indirect and Direct Finalization. The number followed
by IF designate the order in Indirect Finalization, and it’s followed by the name of step. For
example, the blue stacked y bar IF1-HSAIL Frontend shows the normalized time of the first
step of indirect finalization.

indirect finalization. InMonteCarloAsianDP, it takes the indirect finalization 8.7x more time

to generate the AMDGPU device code.

It follows that the direct finalizer generates the code faster than the indirect finalizer.

4.2 Kernel Execution Time

The Figure 4.2 gives the measurement of the normalized kernel execution time of three

different compilation paths.

The results contain three bars, indirect finalization, direct compilation, and direct final-

ization. Note that Figure 4.2 introduces direct compilation, another code compilation path

provided as the default option since CLOC version 1.0.

30

doi:10.6342/NTU201601752

The main difference between the direct compilation and indirect finalization is the in-

put LLVM IR modules. In direct compilation, the LLVM IR code is directly from the

clang+libclc frontend while in indirect finalization, the input LLVM IR module is generated

fromHSAIL frontend. The former contains muchmore high level language information than

the latter. The comparison between the two paths can show the impact of IR information

loss.

4.2.1 Comparison between Indirect and Direct Finalization

The results show that the code of direct finalization outperforms the counterparts of the

other paths in all benchmarks exceptMatrixMultiplication and BitonicSort. This implies that

the closed source finalizer can generate more competitive code quality compared to the open

source solution.

For BitonicSort, all three compilation paths have almost the same performance because

the tiny kernel code and the compiler can’t help much in terms of irregular memory access

pattern.

For MatrixMultiplication, the finalizer generates worse code which is about 35 percent

slower than the open source counterparts. This results from the memory load instructions

reordering, which is the transformation performed by HLC at the time when the device ISA

is unknown.

Figure 4.3 shows the performance of the manually reordered HSAIL code to support

the aforementioned observation. The result shows that without the misleading information

passed by HLC, the AMD finalizer emits more optimized code.

The reordering of load instructions doesn’t take the hints in the source code into con-

sideration. That is, the ordering written by the programmer has taken the advantages of

multiple work-items load in the kernel grid can coalesce the memory transaction and these

31

doi:10.6342/NTU201601752

AE
SE
nc
ry
pt

Bi
no
m
ia
lO
pt
io
n

Bi
to
ni
cS
or
t

Bl
ac
kS
ho
les
D
P

M
at
rix
M
ul
tip
lic
at
io
n

M
on
te
Ca
rlo
As
ia
nD
P

Ra
di
xS
or
t

Si
m
pl
eC
on
vo
lu
tio
n
(N
on
-s
ep
er
ab
le)

Si
m
pl
eC
on
vo
lu
tio
n
(S
ep
er
ab
le)

0

0.5

1

1.5

2

2.5

3

N
or
m
al
iz
ed

R
u
n
ti
m
e

Indirect Finalization
Direct Compilation
Direct Finalization

Figure 4.2: Kernel Execution Time. The direct compilation is the path which translates
OpenCL to LLVM IR, which then directly translated to GCN assembly code and packed to
HSA Code Object (HSACO) v1. Note that this is however not part of the finalization but is
added for comparison of the other two alternatives.

four vector loads in each work item would access the global memory contiguously, which

is friendly to hardware. The AMD closed source finalizer takes the sub-optimal HSAIL

code generated by HLC, and emits the GPU code that fetches global memory almost 98

percent more than that of the open source solution. The specific FetchSize HSA perfor-

mance counter (hsapmc) is obtained in AMD ROCm-Profiler[7]. This demonstrates a case

that passing the misleading information by HLC causes the performance to degrade signifi-

cantly. Although most optimizations are intended to be performed on the HLC, the finalizer

should have some chances to optimize the code which makes the finalizer more than just

a translator. It is arguable that the finalizer would take more effort to carry out high level

code optimizations after a HLC implementation fails to recognize the optimization patterns

or applies the wrong transformations (just like the load instruction reordering) because the

information loss in low-level HSAIL.

32

doi:10.6342/NTU201601752

MatrixMultiplication
0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

R
u
n
ti
m
e

Indirect Finalization
HSACO
Reorder

Direct Finalization

Figure 4.3: The performance ofMatrixMultiplication with manually reordered HSAIL code
shown on Reorder. The author modifies the HSAIL to eliminate the impact of load instruc-
tion reordering made by the high level compiler. The result shows that the AMD finalizer
can emit the code slightly better than the other open source alternatives (Indirect Finalization
and Direct Compilation). The original HSAIL input is shown on the Direct Finalization.

4.2.2 Comparison between Indirect Finalization and Direct Compila-

tion

This subsection compares the code from indirect finalization and direct compilation.

Both paths leverage existing LLVM AMDGPU backend, but the input LLVM IR code is

very different. In the indirect finalization, the input LLVM module is emitted from the

HSAIL frontend developed by the author, while the LLVM module in direct compilation is

generated from clang+libclc.

The results show that in four benchmarks, MatrixMultiplication, MonteCarloAsianDP,

RadixSort, SimpleConvolution, the direct compilation generates better code.

ForMatrixMultiplication, the performance difference is about 1 percent since the device

codes are similar. In terms of the machine code length, number of used SGPRs and VGPRs,

they share the same number. While in terms of instructions, the ROCm-Profiler shows that

33

doi:10.6342/NTU201601752

indirect finalization generates less vector ALU instruction but more FLAT memory instruc-

tions than the counterpart, while the cache hit rate is 0.25 percent less than the counterpart

(74.30 percent vs. 74.05 percent).

For RadixSort, while the performance difference is about 10 percent (but just 1.5 mil-

liseconds since the kernel execution time is short), this is the accumulation of 28 kernel

launches of seven different kernels. In one kernel permute, the author finds that direct compi-

lation path unrolls the loop which accounts for 2 percent faster than the indirect finalization.

While in the indirect finalization, the corresponding loop in HSAIL module isn’t unrolled,

and the indirect translation fails to recognize the pattern for loop unrolling. The other 24 ker-

nel launches have tiny difference including instruction length and register numbers, which

account for 8 percent performance difference.

ForMonteCarloAsianDP, the indirect finalization produces the code that is 1.15x slower

than the direct compilation one. The root cause is that theHLC allocates%__spillStack

of size 508 bytes and %__privateStack of size 224 bytes for spill segment and private

segment, respectively. Recall that in the HSAIL virtual machine, the spill segment can be

used to load or store register spills, and the private segment can be used to hold variables that

are local to a single work-item. For the HSAIL frontend, these stacks are translated into the

alloca instructions in the LLVM IR code. What’s more, some of the address calculations

of these HSAIL memory load/store instructions with respect to these two memory stacks

would be further translated to ptrtoint-inttoptr pattern mentioned in Section 2. The pattern

hinders the LLVM optimizations and causes a backend promotealloca pass to fail to promote

the additional alloca to registers, so indirect finalization generates lots of global memory

load/store to handle the register spilling. In contrast, the direction compilation has the input

LLVM IR from clang+libclc, and the input doesn’t contain the additional segment hints from

HLC. It puts the results in the unlimited LLVM virtual registers, use getelementptr

34

doi:10.6342/NTU201601752

instructions to calculate the memory locations of load/store instructions. Another main dif-

ference is that the LLVM IR module doesn’t go through the register allocation and left for

the AMDGPU backend to go through the code generation process. The distinct characteris-

tics of input LLVM IR code makes the AMDGPU backend work better in this case without

the additional information passed by the HLC.

For BitonicSort, the reason why they have similar performance is the same as the reason

mentioned in the Subsection 4.2.1.

For the other benchmarks, AESEncrypt, BinomialOption, BlackSholesDP, indirect final-

ization generates slightly better code than the direct compilation does ranging from 2 percent

to 6 percent.

4.3 LLVM Optimization Options

In this section, the author shows that (1) instruction scheduling improves the code quality

in the indirect finalization, and (2) an optimization developed by the author, which is similar

to the peephole optimization while the scope is cross basic blocks. The author presents the

result and analysis in the subsections 4.3.1 and 4.3.2.

4.3.1 Machine Instruction Scheduling

In LLVM backend code generation, the instruction scheduler runs before and after the

register allocation (RA). However, they schedule the instructions in different internal rep-

resentations. In specific, they schedule the SDNode and MachineInstr respectively. This

subsection changes the default pre-RA and post-RA scheduler to other instruction schedul-

ing algorithms that are also provided in the LLVM infrastructure.

The Figure 4.4 shows speedup of the kernel execution time of indirect finalization if

35

doi:10.6342/NTU201601752

the LLVM AMDGPU backend is forced to use the bottom-up (BU) list scheduling scheme

to schedule the LLVM MachineInstrs after the register allocation (RA). By default, the

AMDGPU backend uses the top-down (TD) list scheduling scheme in post-RA instruction

scheduler. The figure also shows the result of the pre-RA scheduler list-burr, which stands

for bottom-up register reduction list scheduling, as well as the post-RA BU list scheduler in

the legend list-burr + BU List Scheduling. The default LLVM pre-RA scheduler is named as

source, whose behavior is similar to list-burr but schedules in source order when possible.

The result shows that in the condition without changing the pre-RA instruction scheduler,

all benchmarks using BU list scheduling scheme in post-RA instruction scheduler outper-

form the default TD list scheduling scheme. For AESEncrypt and MonteCarloAsianDP, the

BU list scheduling scheme achieves 7 percent and 76 percent faster than the counterpart, re-

spectively. In MonteCarloAsianDP, the changing of post-RA instruction scheduler reduces

register spilling in several basic blocks from 440 bytes to 296 bytes, which significantly re-

duces the global memory traffic and also reduces the code length. If the pre-RA instruction

scheduler is further changed to list-burr, i.e, combining it with the BU post-RA instruction

scheduler, theMonteCarloAsianDP can further improve to 2.92x as fast as the baseline. The

spill stack is further reduced from 296 bytes to 240 bytes, and the register pressure is also

reduced. The other benchmarks could also benefit from applying the different instruction

scheduler schemes. But they don’t have to use the stack to store the work-item private data

or do the register spill, so the speedup isn’t that significant.

4.3.2 Peephole Optimization in GCN MAD and MAC Instructions

The author investigates the GCN assembly code in the BinomialOption and finds that

a certain pattern in the LLVM trunk which moves one constant into register and uses the

specific register in the later basic block. The Code Snippet 4.1 shows a common pattern

36

doi:10.6342/NTU201601752

AE
SE
ncr

ypt

Bin
om

ialO
pti
on

Bit
on
icS

ort

Bla
ckS

ho
les
DP

Matr
ixM

ult
ipli

cat
ion

Mon
teC

arl
oA

sia
nD

P

Ra
dix

So
rt

Sim
ple

Co
nvo

lut
ion

(N
on
-se

per
abl

e)

Sim
ple

Co
nvo

lut
ion

(Se
per

abl
e)

0

0.5

1

1.5

2

2.5

3

S
p
ee
d
u
p
s

list-burr + BU List Scheduling

BU List Scheduling

TD List Scheduling

Figure 4.4: Comparison between Bottom-Up and Default Top-Down Instruction Scheduling
Schemes. The kernel execution time with default LLVM machine instruction, top-down list
scheduling, is normalized to 1.

37

doi:10.6342/NTU201601752

generated by the AMDGPU backend.

1 v_mov_b32_e32 v7, 0x41200000

2 v_mul_f32_e32 v2, v7, v6 ; v2 = v7 * v6

3 v_mad_f32 v9, v7, v1, -v8 ; v9 = v7 * v1 + (-v8)

Code Snippet 4.1: Move a Constant into the Register and Use it Later

These literal constants can be folded into the MAD and MAC instructions if the other

two input operands are not an inline constant, i.e. a constant selected by a specific VSRC

value [3], and turns them into instructions like v_madak_f32 or v_madmk_f32. Also,

the VOP2 instruction like v_mul_f32 can be followed by a 32-bit literal constant.

1 v_mov_b32_e32 v7, 0x41200000

2 v_mul_f32_e32 v2, 0x41200000, v6

3 v_madmk_f32_e32 v9, v1, 0x41200000, -v8

Code Snippet 4.2: Fold a constant into vector mul and mad instructions

The Code Snippet 4.2 shows the result of constant folding. As we can see, the register

$v7 is redundant and can be used to hold other values.

These patterns can only be found in the BinomialOption. The other benchmark has no

impact on this peephole optimization. As we can see in the Figure 4.5, the code performance

is slightly better than the indirect finaliziation for about 2 percent.

The statistics shows that there are 12 additional madmk instructions are generated from

this passes and 40 constants that folds into the v_mul_f32, and generates slightly less code

length.

38

doi:10.6342/NTU201601752

BinomialOption
0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

R
u
n
ti
m
e

Constant Folding

Indirect Finalization

Figure 4.5: Constant Folding in Madmk and Mul Instruction. The indirect Finalization
runtime is normalized to 1. The Constant Folding bar shows the difference when applying
this peephole optimization.

39

doi:10.6342/NTU20160175240

doi:10.6342/NTU201601752

5 Related Work

The author is unaware of other publications that targets HSAIL finalization to the GPU

architecture. This work tries the indirect finalization by using the existing LLVMAMDGPU

backend. The available finalizer is AMD closed source finalizer, which is not suitable for

compiler-based optimizations on AMDGPU.

HSAemu[21] is a system emulator for HSA platforms, and it has the customized HSAIL

finalizer targeting the simulators. That work doesn’t focus on the code generation of real

hardware.

In regards to GPU compiler optimizations, many works are based on source-to-source

compiler or PTX-level transformation. Most of them target the branch divergence and utiliz-

ing different GPUmemory. For example, Yang et al.[25] describes the optimizing compiler

to address the utilization of GPUmemory hierarchy and management of parallelism. Han et

al.[22] describes a work to reduce the branch divergence based on LLVM in loop merging.

Wu et al.[24] proposes an GPGPU open-source compiler targeting CUDA and gives some

LLVM IR-level optimizations. Some optimizations are already existed but not work well

when the target is NVIDIA GPU architecture.

41

doi:10.6342/NTU20160175242

doi:10.6342/NTU201601752

6 Conclusion

Indirect finalization leverages existing retargetable compiler infrastructures, such as LLVM

or GCC, to quickly craft a finalizer. It offers several advantages, including fast development

and deployment of finalizers, avoid costly design and implementation of complicated code

optimizations, leveraging reliable and robust open source compiler infrastructures. How-

ever, indirect finalization incurs compilation overhead, and since it leverages general pur-

pose optimization passes, it might yield sub-optimal code. This work investigates such is-

sues of indirect finalization. We have developed an HSAIL frontend which translates the

HSAIL code to the LLVM IR, and integrating it with the existing LLVM AMDGPU back-

end. Therefore, instead of translating HSAIL code directly to the target GPU, our translator

goes through LLVM to target AMDGPU.

We have applied our indirect finalizer to evaluate kernel code compilation time and exe-

cution time on AMD Carrizo APU, targeting its GPU architecture. In contrast, this indirect

finalization approach is compared to direct finalization where the HSA runtime invokes the

vendor-supplied AMD Carrizo finalizer to generate GPU code. Our experiments have also

examined the impact from using various optimization pass combinations in LLVM.

As expected, our results indicate that indirect finalization takesmore time to compile, and

yields slower code than the direct finalization approach. However, the increased finalization

time may be less critical than it looks since the modern runtime system could often keep

translated kernel code in some forms of code cache to avoid re-translation overhead. As for

43

doi:10.6342/NTU201601752

the performance of generated code, our experiments show that the performance impact is

there, yet not significantly enough to overshadow the advantages of indirect finalization.

In order to make the indirect finalizer more attractive to the developers, reducing the

performance gap between indirect and direct finalizer is much needed. Based on existing

LLVM infrastructure, we find that developers could have the performance gain either by

changing the LLVM options or by developing low-cost optimization passes.

We expect many finalizers will take the indirect finalization approach in the near fu-

ture due to its reduced development/deployment time, increased reliability, and superior

re-targetability. However, in certain performance critical applications, direct finalization

may still be the preferred choice.

44

doi:10.6342/NTU201601752

A Detailed System Configuration

NAME VERSION DATE TYPE
Linux Kernel Version 4.4.0-kfd-compute 2016-May-6 kernel
AMD KFD Kernel Driver 2.0.0 2016-05-07 kernel
HSA Runtime 1.0.0 2016-04-19 runtime
CLOC Compiler 1.0.10 2016-04-29 compiler
AMD llvm 3.9.0svn 2016-04-28 compiler
HSAIL HLC3.2 3.2svn 2016-04-27 compiler

Table A.1: Detailed Software Stack

45

doi:10.6342/NTU20160175246

doi:10.6342/NTU201601752

Bibliography

[1] 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA)

Tutorial. Heterogeneous System Architecture (HSA): Architecture and Algorithms.

http://www.hsafoundation.com/isca-2014-tutorial-2/.

Retrieved: 2016-07-12.

[2] AMD HSA Team. HSAIL-Tools are used for parsing, assembling, and disassembling

HSAIL. https://github.com/HSAFoundation/HSAIL-Tools.

Retrieved: 2016-07-20.

[3] AMD, Inc. AMD Graphics Core Next Architecture, Generation 3.

http://gpuopen.com/compute-product/

amd-gcn3-isa-architecture-manual/. Released on 2015. Retrieved:

2016-06-25.

[4] AMD, Inc. AMD OpenCL™ Accelerated Parallel Processing (APP) Software

Development Kit (SDK) Verison 3.0.

http://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-app-sdk/. Released on

2016. Retrieved: 2016-06-24.

[5] AMD, Inc. AMD OpenCL™Accelerated Parallel Processing (APP) Software

Development Kit (SDK) Version 2.5.

47

http://www.hsafoundation.com/isca-2014-tutorial-2/
https://github.com/HSAFoundation/HSAIL-Tools
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

doi:10.6342/NTU201601752

http://uni-smr.ac.ru/archive/dev/cc++/OpenCL/AMD/. Version

2.5 is removed from the official site. Released on 2011. Retrived: 2016-06-24.

[6] AMD, Inc. CL Offline Compiler (CLOC) version 1.0.10.

https://github.com/HSAFoundation/CLOC. 2016.

[7] AMD, Inc. ROCm-Profiler.

https://github.com/RadeonOpenCompute/ROCm-Profiler.

Retrieved: 2016-07-11.

[8] AMD, Inc. Southern Islands Series Instruction Set Architecture.

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/

2013/07/AMD_Southern_Islands_Instruction_Set_

Architecture1.pdf. Released on 2012. Retrieved: 2016-06-25.

[9] Free Software Foundation, Inc. The GNU Compiler Collection.

https://gcc.gnu.org/. HSAIL 1.0 support was added to GCC6 on Jan.

2016.

[10] HSA Foundation. http://www.hsafoundation.com/. Retrieved:

2016-06-22.

[11] HSA Foundation. HSA Platform System Architecture Specification 1.00.

http://www.hsafoundation.com/standards/. Retrieved: 2016-07-20.

[12] HSA Foundation. HSA Programmer Reference Manual Specification 1.01.

http://www.hsafoundation.com/standards/. Retrieved: 2016-06-23.

[13] HSA Foundation. HSA Runtime Programmer’s Reference Manual 1.0.

http://www.hsafoundation.com/standards/. Retrieved: 2016-07-20.

48

http://uni-smr.ac.ru/archive/dev/cc++/OpenCL/AMD/
https://github.com/HSAFoundation/CLOC
https://github.com/RadeonOpenCompute/ROCm-Profiler
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Southern_Islands_Instruction_Set_Architecture1.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Southern_Islands_Instruction_Set_Architecture1.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Southern_Islands_Instruction_Set_Architecture1.pdf
https://gcc.gnu.org/
http://www.hsafoundation.com/
http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/

doi:10.6342/NTU201601752

[14] Khronos Group. OpenCL 2.1. https://www.khronos.org/opencl. 2015.

[15] libclc, an open source, BSD licensed implementation of the library requirements of

the OpenCL C programming language.

https://llvm.org/svn/llvm-project/libclc/trunk/. Retrieved:

2016-07-12.

[16] Microsoft, Inc. C++AMP version 1.2.

https://msdn.microsoft.com/en-us/library/hh265137.aspx.

2013.

[17] MulticoreWare. hc API: An HSA-extension to C++ AMP.

https://bitbucket.org/multicoreware/hcc/wiki/HC%20mode.

2016.

[18] MulticoreWare. HCC is an Open Source, Optimizing C++ Compiler for

Heterogeneous Compute.

https://github.com/RadeonOpenCompute/hcc. 2016.

[19] OpenMP Architecture Review Board. OpenMP API 4.5. http://openmp.org.

2015.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

computing static single assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems, 13(4):451–490, Oct 1991.

[21] J.-H. Ding, W. Hsu, B. Jeng, S. Hung, and Y. Chung. HSAemu - A full system

emulator for HSA platforms. In Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2014 International Conference on, New Delhi, Oct 2014.

49

https://www.khronos.org/opencl
https://llvm.org/svn/llvm-project/libclc/trunk/
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://bitbucket.org/multicoreware/hcc/wiki/HC%20mode
https://github.com/RadeonOpenCompute/hcc
http://openmp.org

doi:10.6342/NTU201601752

[22] T. D. Han and T. S. Abdelrahman. Reducing divergence in gpgpu programs with

loop merging. In Proceedings of the 6th Workshop on General Purpose Processor

Using Graphics Processing Units, GPGPU-6, pages 12–23, New York, NY, USA,

2013. ACM.

[23] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In Proceedings of the 2004 International Symposium on

Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[24] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar, B. Roune,

R. Springer, X. Weng, and R. Hundt. gpucc: an open-source gpgpu compiler. In

Proceedings of the 2016 International Symposium on Code Generation and

Optimization, Jun 2016.

[25] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU Compiler for Memory

Optimization and Parallelism Management. In PLDI ’10 Proceedings of the 31st ACM

SIGPLAN Conference on Programming Language Design and Implementation,

Toronto, Jun 2010.

50

	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Overview of AMD GCN Architecture
	OpenCL Programming Model
	The HSA Architecture
	HSAIL

	The LLVM Compiler Infrastructure
	Clang and libclc
	llc and AMDGPU backend

	OpenCL Kernel Code Execution and Compilation on a HSA-Compliant System
	Kernel Code Compilation/Finalization Process
	Kernel Code Execution

	HSAIL Frontend
	HSAIL-Tools and HSAIL Frontend
	Design and Implementation of the HSAIL Frontend

	Experimental Methodology
	Methodology
	Benchmarks Development

	Results and Analysis
	Kernel Finalization Time
	Kernel Execution Time
	Comparison between Indirect and Direct Finalization
	Comparison between Indirect Finalization and Direct Compilation

	LLVM Optimization Options
	Machine Instruction Scheduling
	Peephole Optimization in GCN MAD and MAC Instructions

	Related Work
	Conclusion
	Detailed System Configuration
	Bibliography

