
doi:10.6342/NTU201602055

國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於軟體定義網路下的點對點系統聲譽管理機制

SDN-enabled Reputation Management Mechanism for P2P

System

賴廷杰

Ting-Chieh Lai

指導教授：雷欽隆 博士

Advisor: Chin-Laung Lei, Ph.D.

中華民國 105 年 7 月

July, 2016

doi:10.6342/NTU201602055

 i

致謝

 這兩年的碩士生活，首先最要感謝的是雷欽隆教授，教授不僅僅給了學術上的

教導，也從生活中指點了做人的道理，此外非常感謝教授在我寫論文的日子中耐心

的教導及容忍我的粗心及急躁，讓我能順利完成論文。

 我也要感謝 Tony 學長，感謝您給予我們論文的指點及方向的引導，當實驗方

法或是理論有疑問時，時常可以從學長那邊得到幫助，而學長除了研究外，也時常

關心我們其他生活相關的事務，讓我們感受到許多溫暖。

 接下來，我要感謝紀博文學長，帶領我進入 SDN 的領域，也讓我有機會能進

入工研院實習，藉此加深我對 SDN 的了解，當遇到實驗方法的疑問時，學長也常

常能給予很實際的建議，平常學長也時常關心我們的生活，提醒我們珍惜學生時光，

讓我對實驗室有了更多的歸屬感。

 我還要感謝盧淑萍學姐，感謝您在我在工研院實習時對我的照顧，以及在我寫

論文時，聽我抒發壓力及給予我的支持、鼓勵。此外我也要感謝孟翰學長、建廷學

長、宏誌學長、之凡學長及其他實驗室的學長姊在 meeting 時，給予的建議及提問，

讓我學習成長，還有阮鶴鳴學長，在我碩一時常常在實驗室裡和我聊天，並在歡樂

中教導我一些專業的技巧及新知，讓我的碩一生活增添不少色彩。

 我也要感謝同屆的漢祺、瓏文、俊甫、文德，感謝你們的陪伴，一同學習、成

長陪我度過這段有哭也有笑的時光，也要感謝下一屆的宥如、光智及伯穎，替我的

碩班生活增添了許多色彩，我們曾經一起奮鬥、玩樂的日子會成為我珍藏的回憶。

 除了實驗室同學外，我也要感謝我從國中以來的好友蔡淳宇、容健華及王志中

及在新竹及其他地方的好友們，感謝你們時常在網路上陪我聊天、分享生活瑣事及

分擔壓力，也適時指出我的錯誤及缺失，讓我懂得反省、成長成更好的人。

 接下來我要感謝也期許自己，感謝自己曾經為自己做過的努力，也希望自己能

夠反省在這段日子中曾犯過的錯誤，並時常謹記在心，讓自己成為更好的人。

 最後我要感謝我的父親賴宏光和母親陳麗雀，感謝您們一直以來給予無條件

的支持及鼓勵，讓我可以沒有壓力的念書，在遇到困難及壓力時，也陪伴著我一同

度過，也感謝姐姐賴惠伶在我遇到困難時，能適時的給予我幫助及支持，未來我會

更加的努力，努力成為你們的驕傲。

doi:10.6342/NTU201602055

 ii

中文摘要

 隨著軟體定義網路(SDN)以及機器學習(Machine Learning)越來越熱門，他們成

了我們的動機讓我們開始想像著點與點(P2P)網路與他們所能迸出的火花。

 然而由於目前大規模的佈建軟體定義網路仍有不少困難，因此我們選擇在環

境中混合軟體定義網路與傳統網路，而非直接全部使用軟體定義網路進行實驗。

 這篇論文提出一個獎懲機制加強 BitTorrent 系統中現有的獎懲機制，盡可能減

少貢獻度少的不良使用者所使用的流量。我們在 Mininet 中模擬網路及製造有著不

同行為模式的 BitTorrent 使用者，而資料中心則從交換機、使用者及 Tracker 收集

資料，並針對使用者每段時間的行為進行分類，資料中心也利用分類結果估算出一

個分數給每位使用者，並使用此分數給予使用者獎懲，其中我們採用服務品質(QoS)

的調整給與獎懲，而服務品質的調整則是利用 SDN 及 Ryu-QoS 的功能達到的。

 在實驗中我們在傳統網路內模擬了 65 個使用者，其中大部分都在我們所模擬

出的傳統網路內，但其中有一個使用者在我們所模擬的網路外提供檔案。我們可以

從貢獻度低的使用者的平均下載量發現其曲線在懲罰後是減少的，進而證明實驗

結果有效。

關鍵字： BitTorrent、軟體定義網路、獎懲機制、機器學習。

doi:10.6342/NTU201602055

 iii

Abstract

 With the rising popularity of SDN (Software-defined Networking) and machine

learning, we are motivated to apply these two things to peer-to-peer (P2P) network to see

what it can do for P2P network.

 Considering the large-scale deployment of SDN nowadays is still a big problem, we

construct our environment by the combination of SDN network and traditional network

rather than using SDN network for whole environment only.

 This thesis proposes an incentive policy to reinforce the existing incentive policy in

BitTorrent system and the goal of this thesis is to decrease the traffic of bad users as much

as possible. We emulate the network in Mininet and several BitTorrent users with different

user behavior. The data center collects information comes from switches, hosts, and the

tracker and use machine learning model to classify the type of user behavior in each

period. The data center also derives a score for each user, and give punishments or rewards

to them according to their score. The punishments and rewards are presented in the form

of quality of service (QoS), and the task of adjusting QoS is achieved with the help of

SDN and Ryu-QoS.

 There are 65 hosts distributed in our experimental environment. Almost all of them

are all distributed in the traditional network, but one of them is distributed outside the

network we emulated to provide the source of data. We can see the result of our

experiments from the curve of average download speed of all bad users, which exactly

decrease after our punishments.

Keywords: BitTorrent, SDN, Incentive policy, Machine Learning.

doi:10.6342/NTU201602055

 iv

Contents

口試委員會審定書 ... #

致謝 ... i

中文摘要 .. ii

Abstract .. iii

Contents ... iv

List of Figures .. vi

List of Tables .. vii

Chapter 1 Introduction .. 1

Chapter 2 Background .. 3

2.1 Software-defined Network ... 3

2.1.1 SDN Architecture .. 3

2.1.2 OpenFlow .. 4

2.1.3 Ryu .. 5

2.1.4 Mininet .. 6

2.2 Peer to peer ... 6

2.2.1 BitTorrent .. 7

2.3 Incentive policy in BitTorrent ... 7

2.4 Deluge ... 8

2.5 Random Forest Classifier ... 9

Chapter 3 Simulation .. 10

3.1 Environment ... 10

3.2 Deluge Client .. 12

doi:10.6342/NTU201602055

 v

3.3 Tracker .. 13

3.4 Data Center ... 14

3.5 Controller .. 14

3.6 User Behavior ... 15

3.7 User type ... 16

Chapter 4 User classification and Punishment ... 18

4.1 User classification ... 18

4.1.1 Extracted features .. 18

4.2 Punishment ... 22

4.2.1 Ryu-QoS .. 22

4.2.2 Incentive policy ... 23

Chapter 5 Evaluation .. 25

5.1 Hardware and Network Settings ... 25

5.2 User Settings ... 25

5.3 Ryu-QoS setting .. 28

5.4 User Behavior Classification .. 28

5.5 Punishment Results ... 30

Chapter 6 Conclusion ... 37

Bibliography .. 38

APPENDIX .. 40

A1 The settings and results of ratio and the results in the experiment. 40

A2 The results of each classification in the experiment .. 42

A3 The scores of users in our experiment .. 44

A4 The limits of download speed in the experiment ... 46

doi:10.6342/NTU201602055

 vi

List of Figures

Figure 2.1: The difference between traditional network and SDN. 3

Figure 2.2: The illustration of the relationship between Ryu and other components. 5

Figure 2.3: The illustration of server based network and P2P network. 6

Figure 3.1: The illustration of our environment. ... 11

Figure 3.2: Example diagram of user who often violates the ratio.................................. 16

Figure 3.3: Example diagram of user who almost obeys the ratio all the time. 16

Figure 5.1: The scores of some users in class 0. .. 31

Figure 5.2: The scores of some users in class 1. .. 32

Figure 5.3: The scores of some users in class 2. .. 32

Figure 5.4: The scores of some users in class 3. .. 33

Figure 5.5: The limits of download speed for some users in class 0. 33

Figure 5.6: The limits of download speed for some users in class 1. 34

Figure 5.7: The limits of download speed for some users in class 2. 34

Figure 5.8: The limits of download speed for some users in class 3. 35

Figure 5.9: The diagram of average download speed versus time of 10.0.0.25. 36

Figure 5.10: The comparison of average result of users in class 3. 36

doi:10.6342/NTU201602055

 vii

List of Tables

Table 3.1: The functions used in our deluge client. ... 12

Table 4.1: Features extracted from the flows in the direction of going into the host. 19

Table 4.2: Features extracted from the flows in the direction of going out of the host. .. 19

Table 4.3: Features extracted from the tracker. ... 20

Table 4.4: Features extracted from the hosts. .. 21

Table 4.5: The punishments and rewards according to the type of user behavior. 24

Table 4.6: The limits of download speed and boundary conditions. 24

Table 5.1: The list of hosts in different types of user behavior in our experiment. 26

Table 5.2: Some settings and results of users in the experiment. 26

Table 5.3: The metric to estimate accuracy of results. .. 29

Table 5.4: The accuracies and scores of our result. ... 30

Table 5.5: The results of each class in classifications. .. 30

doi:10.6342/NTU201602055

 1

Chapter 1 Introduction

 Peer-to-peer (P2P) networking is a distributed architecture unlike client-server

model. It separates the workload to all of the users in the network, in other words, each

participant which is also called peer in the network is both client and server. This concept

was first described in 1969 in the first Request for Comments, RFC 1 [1]. There are many

applications using this architecture nowadays, for example, file sharing network and

multimedia applications. Our thesis focuses on the file sharing system BitTorrent which

complies with BitTorrent protocols [2]. In order to make the BitTorrent system more

robust and efficient, the system uses choking algorithm as their incentive policy. The

author of BitTorrent protocol Bram Cohen explained this incentive policy in the paper [3]

in 2003. In addition, there are many discussions of incentive policy in the past, some use

Game Theory like [4], [5]. Furthermore, other study also uses social network to achieve

this goal such as [6]. However, most of the discussions are based on the sharing of

immutable resources such as files, there are also some discussions about the sharing of

mutable resources such as CPU and memory, for instance, [7]. [8] summarized many

common incentive policies, the challenges those policies confront with, and the

difficulties need to be solved. The main goal of our thesis is to reinforce the effect of

existing incentive policy in BitTorrent to diminish the traffic of users whose contribution

are very low as much as possible.

 The emergence of Software-defined Network (SDN) and rising popularity of

machine learning motivate us to do this research. In the past decades, the development of

internet grows remarkably and distribution of internet becomes more universe. Due to the

fast growth and the distributed deployment, the difficulties of network management

become more complicated than before. However, SDN is a solution for these problems

doi:10.6342/NTU201602055

 2

which was announced in 2012 [9]. In the traditional network, the algorithms and protocols

run in the legacy switches and routers to enable network functions normally, which makes

the modifications of network become a big deal. However, SDN centralizes these

functions into the central controller, in other words, SDN separates the control plane from

the data plane. All actions in the network are determined by the controller. Switches which

are also called SDN switch just need to execute the commands come from the controller.

The controller has the full view of network’s topology and capabilities to configure and

to acquire the information of network devices such as switches.

 In this thesis, we describe a method to simulate various of different P2P users in the

BitTorrent system and classify the type of user behavior using machine learning. Finally,

we give punishments and rewards to users which can achieve our target to decrease the

traffic of users whose contribution are low and increase the quality of service of good

users.

 The rest of this thesis is organized as following. Chapter 2 describes some

background knowledge used in our thesis. Chapter 3 introduces the environment and the

way we simulate p2p users. Chapter 4 describes the features we used for the classification

and the incentive policy we used. Chapter 5 describes the settings of the experiment and

the results of experiment. Finally, Chapter 6 concludes this thesis.

doi:10.6342/NTU201602055

 3

Chapter 2 Background

2.1 Software-defined Network

 Our thesis utilizes Software-defined network which can be abbreviated to SDN to

manage network and provide different qualities of service for users in the network. The

difference between conventional network and SDN is demonstrated in Figure 2.1, and we

describe the components in SDN in the rest of this section.

Figure 2.1: The difference between traditional network and SDN.

2.1.1 SDN Architecture

SDN is an approach to allow network administrators to manage network services

through abstraction of low-level functionality. This ability is enabled with the help of

decoupling the system into control plane and data plane. The control plane figures out the

data path, and the data plane transfers the data according to the instructions come from

the control plane.

In contrast to the conventional switches and routers, switches in SDN have no idea

of how to deal with the packets by themselves. The switches in SDN called SDN switches

doi:10.6342/NTU201602055

 4

are controlled by a central controller. Once the switch doesn’t know how to deal with the

packet, the packet will be sent to the controller. The controller will determine the data

path of this packet which is the solution of how to process and transmit this packet, and

the SDN switch will process the packet according to the instruction. To fulfill the tasks

mentioned before, there is a need to have a protocol to boost the connections between the

controller and switches. The most common protocol that enables SDN is OpenFlow which

we describe in the next paragraph.

2.1.2 OpenFlow

 OpenFlow is a mechanism used in SDN for the communication between control

plane and data plane. This protocol was first announced in 2008 [10]. It enables switches

from different vendors which have their own proprietary interfaces and scripting

languages, to communicate with others using OpenFlow protocol. The inventor of this

protocol considers OpenFlow as the enabler of SDN.

 OpenFlow defines all of the solutions for the traffic using the concept of flow which

can be statically or dynamically programmed by the SDN control software. The

OpenFlow protocol requires switches to process packets according to the flow entries in

their flow table. There are several fields in a flow entry, and the most important two fields

are match field and instruction field which define which packet we should apply the flow

entry to and what to do with the packet. If the packet doesn’t match any of the flow entry,

the action is determined by the setting of table-miss entry which is often set to forward

the packet to the controller. After forwarding to the controller, the controller will generate

a new flow entry for this packet and adds this entry to the switch’s flow table.

 In summary, the OpenFlow protocol defines the interaction between the controller

and switches, but there is still a need to implement this protocol to make SDN work. Ryu

implements this protocol and we use Ryu as our SDN control software.

doi:10.6342/NTU201602055

 5

2.1.3 Ryu

 Ryu [11] is an open-source framework that integrates the implementation of

southbound APIs such as OpenFlow to communicate with SDN switches and northbound

APIs for the services and applications to communicate with the controller. Therefore,

SDN applications can manipulate the network devices directly with the aids of

northbound and southbound APIs. Furthermore, the components in the SDN organize in

three layers including application, control, and infrastructure layer. The northbound APIs

are used for the interactions between application layer and control layer, and the

southbound APIs are used for the interactions between control layer and infrastructure

layer. Figure 2.2 shows the relationship between Ryu and other components in SDN.

 In the Ryu framework, a SDN application is a python script which defines the

workflow of controller with the help of the Ryu library.

Figure 2.2: The illustration of the relationship between Ryu and other components.

doi:10.6342/NTU201602055

 6

2.1.4 Mininet

 Mininet [12] is a network emulation orchestration system which enables users to

construct the custom Software-defined network fast and easily. It runs virtual end-hosts,

switches, links on a single Linux kernel with the help of Linux container which is a

technique of lightweight virtualization. It provides many python APIs for network

creation and settings, and some example codes to demonstrate how to construct

sophisticated networks. Furthermore, we can configure the network elaborately, such as

the bandwidth, loss rate, delay and connected port numbers of links. Because of the

powerful capabilities and the convenience of Mininet, we use it to emulate our network.

2.2 Peer to peer

 Peer to peer which can be abbreviated to P2P is a network architecture unlike client-

server model and it separates the workload of server to every user in the network. Every

user in P2P network is both client and server. Figure 2.3 shows the illustrations of a server

based network and a P2P network. P2P network has been utilized widely in the field of

file sharing, video streaming, and the applications with the requirement of high

confidentiality. Our thesis focus on BitTorrent system among several file sharing systems.

Figure 2.3: The illustration of server based network and P2P network.

doi:10.6342/NTU201602055

 7

2.2.1 BitTorrent

 BitTorrent which can be abbreviated into BT is a P2P file sharing application and a

protocol developed by B. Cohen. There are many P2P applications support the BitTorrent

system, and we use Deluge in our experiments. BT has become the most popular P2P file

sharing system because of its efficiency in distributing large files. There are three

characters in BT system: tracker, seeder and leecher. The tracker is responsible for

tracking the activities, status of peers and giving the list of existing peers to new peer to

contact. Next, seeders are those who have the whole file and want to share it. Finally,

leechers are those who want to download the files and join the system. The files

transmitted in BT system are split into several blocks which are called pieces to facilitate

parallel downloading.

2.3 Incentive policy in BitTorrent

 In order to increase the efficiency of transmission and the utilization of resources,

an incentive policy is used in BitTorrent system which is called choking algorithm. The

choking algorithm is a variant of tit-for-tat which is a strategy in game theory, and it

attempts to achieve pareto efficiency which means no two counterparties can make an

exchange and both benefit more from each other in economic theories. The algorithm

seeking pareto efficiency is a local optimization algorithm and tends to the global optimal.

 Each peer is responsible to maximize its own download speed, so they choke peers

who are not willing to cooperate and unchoke peers who are willing to cooperate. Choking

is a temporary refusal to upload, but it is irrelevant with download. Therefore, the users

still can download files from the choked peer. In the BitTorrent system, each peer always

unchokes fixed number of peers which is four in our system, so the key of choking

algorithm focuses on which peer to unchoke. The decision of which peer to unchoke

doi:10.6342/NTU201602055

 8

depends on the download speed, and it uses the average of download speed in twenty

seconds to make the measurement accurate. If the peers have finished their download, the

decision of whether to unchoke this user relies on the upload rate. Each user unchokes the

peers with the first four connection situations. To prevent the resources from being wasted

by choking and unchoking peers frequently, the peers in BitTorrent decide which peer to

unchoke every ten seconds which is also long enough for TCP to show their full capacities.

 Aiming to avoid the situation that there is a current unused connection has better

capacity than those being used, each BitTorrent user has an optimistic unchoked peer

which means the peer can be unchoked regardless of current download speed, and the

choose of optimistic unchoked peer is made every thirty seconds which is long enough

for the peer to show his capacity.

 In addition to above optimistic unchoked peer, a peer might be choked by all peers

sometimes, and that peer might continue to get poor download speed until he was chosen

as optimistic unchoked peer. There is a function called anti-snubbing that BitTorrent

assumes the peer is snubbed if he doesn’t get any single piece over more than one minute,

and that peer will be added as an additional optimistic unchoked peer by others to make

him recover faster.

2.4 Deluge

 Deluge [13] is a cross-platform BitTorrent client which is written in python and is

also an open source software. Deluge uses Libtorrent [14] which is a C++ implement of

the BitTorrent protocol to provide the network logic of Deluge. The architecture used in

Deluge is divided into front and back end. The back end in deluge is called daemon and

it can be connected by a deluge GUI console, a text console, or a web interface. We use

the RPC client to connect to the daemon in our experiments.

doi:10.6342/NTU201602055

 9

2.5 Random Forest Classifier

 Random Forest is an ensemble learning method for classification, regression, which

was first proposed in 1998 [15]. It consists of several of decision trees and the decision

trees in Random Forest are made by the data bootstrapped from the training data.

Bootstrap is to sample data from the original data uniformly with replacement. Therefore,

the data might be chosen more than once to generate decision tree. Furthermore, the result

of Random Forest classifier is the most common result among the results made by the

decision trees in Random Forest classifier. Therefore, Random Forest has not only the

aggregation of data but also the aggregation in model.

doi:10.6342/NTU201602055

 10

Chapter 3 Simulation

 We describe the network topology and settings in Section 3.1. In Section 3.2 to 3.4,

we show the explanations of components used in our simulation, including the deluge

client, the data center, the tracker, and the controllers. We introduce the way we define

the user behavior and user types at the end of this chapter.

3.1 Environment

 As the Figure 3.1 shows, the network emulated by Mininet consists of three subnets,

and each subnet is governed by one Ryu controller. The middle subnet is SDN network,

and others are traditional networks whose topologies are deployed like a binary tree.

Furthermore, there is a NAT agent emulated by Mininet in SDN switch, and hosts access

the resources outside the internal network through this agent. It is necessary to have this

NAT agent, because the tracker and the data center are outside the emulated network. In

addition to those, there is one host outside these three subnets to provide data in the

beginning and the reason why we put that host outside the network is to make sure the

traffic sent from that host controlled by the SDN network. On the other hand, the NAT

agent must be placed near the SDN switch to make sure that the traffic go through the

SDN network.

doi:10.6342/NTU201602055

 11

Figure 3.1: The illustration of our environment.

doi:10.6342/NTU201602055

 12

3.2 Deluge Client

 In order to automatically control all of the hosts by ourselves, we use a lightweight

Deluge RPC client on the GitHub [16] edited by user JohnDoee. It is written in python

and contents with our requirement. Deluge RPC client provides libraries to interact with

Deluge daemon directly.

 To configure the actions of each host, we define a series of actions in the scripts. We

write a program to enable each host to execute their works by reading their script and

using Deluge client’s libraries to accomplish corresponding tasks. In addition, the

program is set to transmit user data to data center periodically.

The functions in Table 3.1 are the functions that we used in our simulation.

Function name Description

Get session state To get the list of executing torrents’ hash value in this session.

Clean session To delete all of the current torrents in this session.

Add torrent
To add new torrent to this session without starting download

immediately.

Remove torrent To remove a specific torrent in this session.

Create torrent To create a torrent file.

Pause torrent To pause a specific torrent in this session

Resume torrent To resume a specific torrent in this session.

Get torrent status To get the detail status of a specific torrent

Limit download speed
To give an upper bound of download speed to a specific

torrent.

Limit upload speed To give an upper bound of upload speed to a specific torrent.

Sleep
Without giving any command for a specific period of time and

let host keep doing their remaining tasks.

Exit
Printing out the status of all of the torrents and turning off the

daemon of deluge. Execute when all of the jobs are finished.

Table 3.1: The functions used in our deluge client.

doi:10.6342/NTU201602055

 13

When it comes to the production of user scripts, the diversity of user scripts is created

by the random starting time of each torrent which are selected from first half of the overall

time and the random ratios of download volume to upload volume. We explain about the

ratio in session 3.6 and 3.7. The script used in our experiment looks like the following

example.

Script example:

Clean_session

Add_torrent torrent_A

Limit_download_speed torrent_A 500

Limit_upload_speed torrent_A 500

Resume_torrent torrent_A

Sleep 10

Add_torrent torrent_B

Limit_download_speed torrent_B 500

Limit_upload_speed torrent_B 500

Resume_torrent torrent_B

Sleep 100

Get_torrent_status torrent_A

Get_torrent_status torrent_B

Exit

3.3 Tracker

 Aiming to simplify our experimental environment and extract the information in the

tracker, we build a tracker on our own. We use a simple BitTorrent library on the GitHub

[17] edited by user JosephSalisbury which is written in python entirely and can make us

doi:10.6342/NTU201602055

 14

incorporate the BitTorrent protocol into our program easily. Therefore, we can deploy a

tracker by using it easily.

 The following are the procedure of a p2p client communicates with a tracker.

1. The client sends request using HTTP method GET.

2. The tracker decodes the request url to get information of the request such as the

client’s IP address, the torrent’s hash value, and the peer id.

3. The tracker returns the list of peers’ id and IP addresses corresponding to the

request torrent.

4. The client makes connections with other peers to obtain the data.

3.4 Data Center

 In order to predict the type of user behavior, we gather all of the information sent

from SDN switches, hosts, and the tracker to the data center via TCP connections. The

data center not only saves these data but also extracts features from these raw data to

classify user behavior. Furthermore, data center varies the score of hosts according to the

type of user behavior and decides whether to limit or to ascend the download speed of

each host depending on the score of users periodically. Data center takes advantage of

OVSDB (OpenvSwitch Database) to establish queues to limit the download speed of

hosts and the decision of whether to reconfigure the queues is made right after updating

the score of users. Therefore, the decision is made as frequently as data center updates the

score of users

3.5 Controller

 In order to separate the workload and adjust controllers precisely, we use three Ryu

controllers in our experiments and allocate one controller for each subset. We run the

qos_simple_switch_13.py which is modified from the simple_switch_13.py to achieve

doi:10.6342/NTU201602055

 15

the QoS function on the controller which governs the middle subnet which is called SDN

subnet. Furthermore, we add the flows which are used to enable the p2p system on our

own so as to make the flows more specific for us to manage. Instead of using the

destination MAC address regardless of the Ethernet type to design the flows, we design

these flows according to the source and destination IP address, and Ethernet type of the

packets such as TCP, UDP and IP. On the other hand, we use the simple_switch_13.py for

other two subnets without adding any flow on our own.

3.6 User Behavior

As mentioned above, every user script has a random ratio of download volume to

upload volume. The clients maintain the ratio as possible as they can during executing.

More precisely, once the uploaded volume excesses the quota it can upload, the maximum

upload rate will be adjusted to a very small value which can also be regarded as not

allowing to upload anymore. Therefore, the host will not be capable of uploading until

the quota to upload is sufficient again. The precise definition of ratio and quota are defined

in the Equation 3.1.

Ratio =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣
𝑈𝑈𝑈𝑈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣

Upload quota =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣

𝑅𝑅𝐷𝐷𝑅𝑅𝑅𝑅𝐷𝐷

Equation 3.1: The equations of ratio and upload quota.

Due to the trait of retaining the ratio, the diagram of upload volume versus time

might looks like Figure 3.2 which has some straight lines in the diagram if a user’s upload

volume often goes beyond the quota. However, if a user’s upload volume seldom

surpasses the quota, the diagram of upload volume versus time looks like Figure 3.3

which is similar to a linear line.

doi:10.6342/NTU201602055

 16

Figure 3.2: Example diagram of user who often violates the ratio.

 Figure 3.3: Example diagram of user who almost obeys the ratio all the time.

3.7 User type

 In order to find a standard which is general enough and is able to present the P2P

users’ type via their behavior, we consider some ways. Finally, we found there is a suitable

0

50

100

150

200

250

300

350

0 60 12
1

19
3

25
3

31
4

37
4

43
5

49
5

55
6

61
6

67
8

74
0

80
1

86
1

92
2

98
3

10
43

11
04

11
64

12
25

12
85

13
45

U
pl

oa
d

vo
lu

m
e

(M
B)

Time (sec)

Diagram of upload volume versus time

0
100
200
300
400
500
600
700
800
900

1000

0 60 12
0

19
4

25
4

31
4

37
5

43
7

49
8

55
8

61
9

67
9

74
0

80
1

86
1

92
2

98
2

10
43

11
03

11
64

12
24

12
85

13
45

U
pl

oa
d

vo
lu

m
e

(M
B)

Time (sec)

Diagram of upload volume versus time

doi:10.6342/NTU201602055

 17

solution [18] for our application which is purposed by Manaf Zghaibeh and Kostas G.

Anagnostakis. They use clustering to divide BitTorrent users with distinctive trends into

four clusters and analyze them by the ratio of upload speed to download speed. The users

in the first cluster profit as much as the volume they benefit system. Therefore, the volume

downloaded by them almost equals to the volume uploaded by them. Furthermore, the

users in the second cluster contributed more than twice the volume they downloaded.

After that, the users in the third cluster are those who only want to download such as free

riders. Therefore, volume downloaded by them exceed twice the volume uploaded by

them. Finally, the users in the last cluster download less than twice the volume they

uploaded, but the volume downloaded by them is still more than the volume they

uploaded. In conclusion, we can summarize these attributes by the ratio of download

volume to upload volume which is the download volume divided by the upload volume.

 Consider the real situation in reality, we think those who download as much as they

upload are brilliant users, and those who download less than twice of the volume they

upload should be regarded as normal users. Therefore, we also define our classification

in a similar way as following equation.

User behavior class =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧0, 𝑅𝑅𝑖𝑖 0 ≤

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑣𝑣𝑈𝑈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

< 1

1, 𝑅𝑅𝑖𝑖 1 ≤
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑣𝑣𝑈𝑈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

< 2

2, 𝑅𝑅𝑖𝑖 2 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑣𝑣𝑈𝑈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 < 5

3, 𝑅𝑅𝑖𝑖 5 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑣𝑣𝑈𝑈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 < ∞

Equation 3.2: The definition of class of user behavior.

doi:10.6342/NTU201602055

 18

Chapter 4 User classification and Punishment

In our experiments, the overall execution time is one thousand and four hundred

seconds. The SDN switch, hosts, and the tracker send their information to the data center

every three seconds and the data center classifies user behavior every two hundred

seconds. The ground truth of the type of user behavior is determined by the metric

mentioned in Equation 3.2. Because we simulate the whole P2P environment and define

the users’ behavior by download and upload volume ratio on our own, we know how to

classify the type of user behavior. But if the data of user behavior were not generated by

ourselves, we won’t know how to classify user behavior. Therefore, we have to pretend

that we don’t know how to classify them. However, in order to classify user behavior

without knowing the real classification method, we choose machine learning as our

method to achieve this goal. After being able to classify user behavior, we design a

mechanism to derive the score of users and give rewards or punishments to users

depending on their score. Furthermore, the rewards and punishments are presented in the

form of the upper bound of download speed and they are achieved with the help of Ryu-

QoS and OVSDB.

4.1 User classification

 In this section we introduce the features we used for our machine learning model.

4.1.1 Extracted features

 Because the raw data for our machine learning model are collected from the SDN

switch, the tracker, and P2P users, we introduce each of them in the order of where they

were extracted from.

 34 Features come from SDN switch

Because the communications of P2P system work with UDP packets, we extract

doi:10.6342/NTU201602055

 19

more elaborate features from UDP packets.

Noted that the flows using Ethernet type IP in the below apply to the traffic using

IPv4 but not UDP or TCP.

Flows indicate packets sent into host:

Table 4.1: Features extracted from the flows in the direction of going into the host.

Feature name Description

All in number The total number of hosts send packets to this host.

All in byte The total size of packets sent by others to this host.

All in packets The total number of packets sent by others to this host.

UDP in number The total number of hosts send UDP packets to this host.

UDP in byte The total size of UDP packets sent by others to this host.

UDP in packets The total number of UDP packets sent by others to host.

UDP in speed The average speed of UDP traffic sent by others to host.

UDP in packet size The average size of UDP packets sent by others to host.

UDP in percentage
The percentage that UDP packets sent to host account

among all packets sent to host.

TCP in number The total number of hosts send TCP packets to this host.

TCP in byte The total size of TCP packets sent by others to this host.

TCP in packets The total number of TCP packets sent by others to host.

TCP in speed The average speed of TCP traffic sent by others to host.

IP in number The total number of hosts send IP packets to this host.

IP in byte The total size of IP packets sent by others to this host.

IP in packets The total number of IP packets sent by others to host.

IP in speed The average speed of IP traffic sent by others to host.

Flows indicate packets sent from the host:

Table 4.2: Features extracted from the flows in the direction of going out of the host.

Feature name Description

All out number The total number of hosts this host sends packets to.

doi:10.6342/NTU201602055

 20

All out byte The total size of packets sent by this host.

All out packet The total number of packets sent by this host.

UDP out number The total number of hosts this host sends UDP packets to.

UDP out byte The total size of UDP packets sent by this host.

UDP out packets The total number of UDP packets sent by this host.

UDP out speed The average speed of UDP traffic sent by this host.

UDP out packet size The average size of UDP packets sent by this host.

UDP out percentage
The percentage that UDP packets sent by this host

account among all packets sent by this host.

TCP out number The total number of hosts this host sends TCP packets to.

TCP out byte The total size of TCP packets sent by this host.

TCP out packets The total number of TCP packets sent by this host.

TCP out speed The average speed of TCP traffic sent by this host.

IP out number The total number of hosts this host sends IP packets to.

IP out byte The total size of IP packets sent by this host.

IP out packets The total number of IP packets sent by this host.

IP out speed The average speed of IP traffic sent by this host.

 6 Features come from tracker

 There are two sorts of information can be retrieved from the tracker including

peer lists and the events sent from hosts. We concentrate on the data of events

because they are more informative and have more benefits for us. There are three

kinds of events defined in BitTorrent protocol including started, stopped, and

completed. In addition, hosts send their status to the tracker without specified their

event type at regular intervals.

Table 4.3: Features extracted from the tracker.

Feature name Description

Started count The number of started events sent by this host.

Stopped count The number of stopped events sent by this host.

doi:10.6342/NTU201602055

 21

Middle count
The number of events which is used to update status

sent by this host.

Task count

The number of active torrents in this host and this

number is calculated by counting how many torrents’

information are sent to the tracker in the time period.

Average download

The average download speed for one torrent and this is

derived by the feature UDP in size divided by the task

count times the time period.

Average upload

The average upload speed for one torrent and this is

derived by the feature UDP out size divided by the task

count times the time period.

 6 Features come from P2P users

 The hosts send data which are obtained by the deluge API get_torrents_status,

and they are the most accurate information of hosts. We used few of them to avoid

being too dependent on the user’s data which might affect flexibility of our system.

Table 4.4: Features extracted from the hosts.

Feature name Description

Active percentage

The percentage of time that torrents are active

which means torrents not pause accounts

among all of the time after torrents are added.

Seeding percentage

The percentage of time that torrents are

seeding accounts among all of the time after

torrents are added.

Average payload download speed

The average download speed of host only

considers the volume used for downloading

data.

Average payload upload speed

The average upload speed of host only

considers the volume used for uploading

data.

doi:10.6342/NTU201602055

 22

Average upload speed limit

The average upload speed limit in the time

period. This feature is made because the hosts

maintain their download and upload ratio via

restricting their upload speed.

Number of peer
The maximal number of peers in the peer list

in the time period.

4.2 Punishment

 For the sake of being eager to make users have different user experience when they

are using P2P software, we try to fulfill this target by using meter table or Ryu-QoS. As a

result, OpenvSwitch doesn’t support meter table which is used to manipulate QoS with

the real OpenFlow switch. Therefore, we use Ryu-QoS to achieve our goal. Next, we

introduce how Ryu-QoS works with OVSDB and the configurations for the queues we

used in our experiments.

4.2.1 Ryu-QoS

 Ryu-QoS governs the QoS with the help of queues which are established by OVSDB,

and the function of QoS are achieved by putting packets into queues. Then, queues pop

the packets at the speed that we set before. In order to achieve this, the Ryu controller

have to run a modified script, and there is a guide of how to modify and use this function

on the official website [19]. In the official website, they modify the script from

simple_switch_13.py, and we also apply this modified script to our controller to achieve

QoS.

 There are two flow tables in the SDN switch when running the modified script, and

the flow of asking controller when switch runs into unknown traffic is set to table one.

The flows in table zero are flows that direct packets to specified queue with higher priority

and the flow that direct traffic that doesn’t go into queues to table one with the smallest

doi:10.6342/NTU201602055

 23

priority. The action of those packets went into queues are determined by flow table one

after being popped out from the queues. Therefore, we can set the flows for those packets

at table one to control the action of those packets.

 When it comes to the settings of queues, the queues are set at each port. The queues

are set at the port which the packets leave the switch. In other words, the packets won’t

be put into the queues which are set at the port that the packets enter switch. Therefore, if

we want to limit the download speed of one host, we should set the limit to the queues

which are set at the port that the switch connects to the host.

4.2.2 Incentive policy

 As mentioned before, our machine learning model classifies the types of user

behavior every two hundred seconds, and the total execution time of experiments is one

thousand a four hundred seconds. Therefore, there are seven results of the type of user

behavior. If we punish or reward users depending on one result, we might mistake users

easily. As a result, we assign a score for each user, and the scores update after each

classification. Once the score of a user exceeds the boundary we designed, the limit of

download speed of that user will be increased or decreased. In addition, we think the user

behavior in the first two hundred seconds might be inaccurate, because users just start

downloading in that period. To avoid this problem, we ignore the first result of the type

of user behavior when deriving the score of users. On the other hand, in order to decrease

the throughput of users whose contribution is minor, we limit the download speed of the

users who have extremely low score according to the average speed they ran in the last

period.

 Every user has fifty points for their score in the beginning, and the ways to adjust

the score are described in Table 4.5. The limits of download speed and boundary

conditions are described in Table 4.6.

doi:10.6342/NTU201602055

 24

Table 4.5: The punishments and rewards according to the type of user behavior.

User behavior class Punishments and rewards

Class 0 + 10

Class 1 + 0

Class 2 - 5

Class 3 - 10

Table 4.6: The limits of download speed and boundary conditions.

User score Limit of download speed

Score >= 70 1.1 * Original limit of download speed

Score <= 30 0.8 * Original limit of download speed

Score <= 20 0.8 * Average download speed in the last period

doi:10.6342/NTU201602055

 25

Chapter 5 Evaluation

5.1 Hardware and Network Settings

We construct our environment on two quad-core computers equipped with 48G and

24G RAM, and both of them are equipped with Intel I7-6700 whose processor base

frequency is 3.4 GHz. The first computer runs Mininet to emulate the network and hosts,

a tracker, and the program to transmit flows in SDN switch. The other one runs three Ryu

controllers, the data center, and one deluge client.

The versions of Mininet and Ryu are 2.3.0 and 4.2, and the OVS (OpenvSwitch)

using in Mininet has upgraded to version 2.5.0. The OpenFlow used in our environment

is OpenFlow 1.3 which supports more flexible functionalities than OpenFlow 1.0.

In our setting, there is one switch in SDN network which is the middle subnet, and

there are 31 switches and 32 hosts in other two subnets. The IP addresses of the subnet

on the left hand side range between 10.0.0.1 to 10.0.0.32, and the IP addresses of the

subnet on the right hand side range between 10.0.0.101 to 10.0.0.132.

5.2 User Settings

As mentioned in Equation 3.2, we classify user behavior into four classes, and we

design our hosts with different ratios in uniform distribution of the definition of types of

user behavior. Because the hosts do their best to insist the ratio of download volume to

upload volume, the number of users in different user behavior type judged by each

classification in the experiment are almost in uniform distribution. But the results still

might be influenced by network, so the proportion of each type of user behavior might

vary in reality. Every host needs to download three files in different sequence and start

time, and all of these files are in size of 1GB. Table 5.1 is the list of hosts we set in

different types of user behavior and Table 5.2 is part of the table of the original settings

doi:10.6342/NTU201602055

 26

of ratio and class of users and the results of users at the end of the experiment.

Furthermore, the whole settings of original ratio and class of users and the result of users

at the end of the experiment are listed in the appendix A1 The settings and results of ratio

and the results in the experiment..

Table 5.1: The list of hosts in different types of user behavior in our experiment.

Type of user behavior List of hosts

0
10.0.0.1~10.0.0.8,

10.0.0.101~10.0.0.108

1
10.0.0.9~10.0.0.16,

10.0.0.109~10.0.0.116

2
10.0.0.17~10.0.0.24,

10.0.0.117~10.0.0.124

3
10.0.0.25~10.0.0.32,

10.0.0.125~10.0.0.132

Table 5.2: Some settings and results of users in the experiment.

User (IP)

Start A

(secs)

Start B

(secs)

Start C

(secs)

Assigned

ratio

Real ratio

Assigned

class

Real

class

10.0.0.1 41 0 425 0.884916 1.245719 0 1

10.0.0.2 462 197 0 0.039914 0.674308 0 0

10.0.0.3 96 317 0 0.371101 1.315166 0 1

10.0.0.4 399 0 8 0.48192 0.736168 0 0

10.0.0.5 409 0 99 0.677273 0.818456 0 0

10.0.0.6 0 314 128 0.114866 0.773157 0 0

10.0.0.7 191 0 367 0.339948 0.779852 0 0

10.0.0.8 0 271 78 0.719426 1.033248 0 1

10.0.0.9 85 0 324 1.821038 1.818343 1 1

10.0.0.10 334 0 32 1.830658 1.825156 1 1

10.0.0.11 342 58 0 1.460213 1.446598 1 1

10.0.0.12 0 394 225 1.888212 1.858233 1 1

doi:10.6342/NTU201602055

 27

10.0.0.13 0 122 297 1.262097 1.254572 1 1

10.0.0.14 40 0 293 1.795436 1.870463 1 1

10.0.0.15 0 105 239 1.800277 1.795916 1 1

10.0.0.16 374 47 0 1.550406 1.535334 1 1

10.0.0.17 0 400 105 4.4205 4.520563 2 2

10.0.0.18 0 96 358 4.809924 3.764251 2 2

10.0.0.19 252 31 0 2.079854 2.047977 2 2

10.0.0.20 0 382 162 4.155343 3.895669 2 2

10.0.0.21 135 312 0 4.28031 3.611666 2 2

10.0.0.22 0 181 408 2.92458 2.784938 2 2

10.0.0.23 0 241 34 3.366207 3.351925 2 2

10.0.0.24 106 312 0 4.766747 4.654298 2 2

10.0.0.25 34 0 365 789.8285 8.804476 3 3

10.0.0.26 192 0 398 153.9201 8.879986 3 3

10.0.0.27 212 358 0 423.3413 7.045266 3 3

10.0.0.28 350 0 4 76.7151 8.501106 3 3

10.0.0.29 0 10 252 811.758 10.74125 3 3

10.0.0.30 325 20 0 538.2712 8.527871 3 3

10.0.0.31 0 129 328 971.1503 6.38173 3 3

10.0.0.32 103 0 435 547.7919 6.940522 3 3

 There are some optimization functions in deluge which are activated by default. In

the general condition, if we don’t want to turn on these optimization functions, we can

deactivate them by canceling the options in the GUI directly. However, we have to modify

the default value of those optimization functions by ourselves in our experiments because

Deluge client doesn’t provide library to adjust preference options. There are two

optimization functions that we think they might influence the results of our experiments,

and we turn them down. The first one is to ignore limits on the local network which will

make our initial settings of hosts become useless and the second one is the local peer

doi:10.6342/NTU201602055

 28

discovery which might cause our environment become dissimilar to the real p2p

environment.

5.3 Ryu-QoS setting

Owing to the need to give individual setting for each host and to separate connections’

bandwidth, we use 32 * (32 + 1) +1 queues to manipulate UDP packets which enable P2P

system at ports that the SDN switch used to connect to other switches. Because there are

32 hosts in another subnet, 32 hosts in our subnet, and one host outside the emulated

network, we need 32 * (32 + 1) queues to configure each connection between hosts

according to their IP addresses. In addition to those, it needs one additional queue to let

other traffic to go through.

However, if we only use one queue for each host, the limit we set to the queue will

be the restriction on the total download bandwidth of torrents in the host. But it can’t be

guaranteed that all of the torrents are confined by this mechanism, so we separate each

pair of connections to control them more precisely.

 As mentioned before, Ryu-QoS offers RESTful API for us to configure queues and

flows for these queues. But the setting of queues for each port has to be set with one

request, there is no function to add queues to a port one by one. Therefore, the number of

queues for a port might be constrained by the loading RESTful service can afford. In order

to solve this problem, we configure the setting of queues on OVSDB directly without

communicating with Ryu-QoS. Although there are some errors in Ryu-QoS after we

configure queues in this way, the mechanism functions normally.

5.4 User Behavior Classification

 When it comes to the machine learning model, we choose Random Forest classifier

as our machine learning model. We use the implementation in package scikit-learn [20]

doi:10.6342/NTU201602055

 29

in python, and the parameters of our model are one hundred trees(estimators) and the

maximum depth of decision trees is ten. The model is trained by 3840 data in our

experiments.

 Because we classify user behavior into four classes, we have to consider the accuracy

of our results more carefully. If we only consider right or wrong, the difference between

the result which is close to the right answer and the result which is far away from the right

answer will be ignore. Therefore, we design a metric which also give partial points to

estimate the accuracy of results in Table 5.3.

Table 5.3: The metric to estimate accuracy of results.

Result

Answer

Class 0 Class 1 Class 2 Class 3

Class 0 1 0.8 0 0

Class 1 0.8 1 0.6 0

Class 2 0 0.6 1 0.8

Class 3 0 0 0.8 1

 As we mentioned before, we classify the user behavior every two hundred seconds,

and the score of each user is updated at the same time. On the other hand, the limits of

download speed also vary simultaneously. Table 5.4 demonstrates the accuracy of our

classifications and Table 5.5 shows the classifications of each class in the experiment. As

shown by Table 5.5, the accuracy of class 2 and class 3 users which we concerned more

are higher than others. Furthermore, the classification results in our experiment are put in

the appendix A2 The results of each classification in the experiment.

doi:10.6342/NTU201602055

 30

Table 5.4: The accuracies and scores of our result.

Time (secs) Original accuracy Accuracy using our metric

200 0.9375 0.98125

400 0.875 0.95625

600 0.875 0.9625

800 0.84375 0.95

1000 0.78125 0.94375

1200 0.6875 0.88125

1400 0.78125 0.91875

Table 5.5: The results of each class in classifications.

Result

Class
Class 0 Class 1 Class 2 Class 3 Accuracy

Class 0 66 59 0 0 58.928571

Class 1 4 67 37 4 59.821429

Class 2 0 7 83 22 74.107143

Class 3 0 1 32 79 70.535714

5.5 Punishment Results

 We have shown the results of classification in the last section. The punishments and

rewards for scores and the restrictions of download speed are defined in Table 4.5 and

Table 4.6. We demonstrate the scores of some users in each class in our experiment in

Figure 5.1 to Figure 5.4. Most of the scores of users we defined in class 0 are

monotonically non-decreasing, and most of the scores of users we defined in class 3 are

also monotonically non-increasing. Both of these results meet our anticipation. Although

the scores of users in class 1 is not stable, most of them are still in the range of not being

doi:10.6342/NTU201602055

 31

restricted. When it comes to the results of users in class 2, we can tell the difference

between them and the users in class 3 by observing the trend of scores. Most of their

scores of users in class 2 are still higher than the scores of users in class 3. Next, we show

part of the results of limit of download speed in our experiment in Figure 5.5 to Figure

5.8. The results of them are highly correlated with the scores of users, and we can also

observe the difference between users from this view. We put all of the scores of users in

our experiment in the appendix A3 The scores of users in our experiment, and all of the

limits for users in the appendix A4 The limits of download speed in the experiment.

Figure 5.1: The scores of some users in class 0.

60

50

60 60 60

70 70

60 60

70

80

90

100 100

50 50 50 50 50 50 50

60 60

70

80

90 90

100

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400

Sc
or

e

Time (secs)

Scores of some users in class 0

10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

doi:10.6342/NTU201602055

 32

Figure 5.2: The scores of some users in class 1.

Figure 5.3: The scores of some users in class 2.

50 50 50

45

40

35

30

50 50 50

45

35 35

30

50

45 45

40 40 40 40

50

45

40 40 40 40 40

25

30

35

40

45

50

55

200 400 600 800 1000 1200 1400

Sc
or

e

Time (secs)

Scores of some users in class 1

10.0.0.9 10.0.0.10 10.0.0.11 10.0.0.12

40
45

35
30

25
20

15

45 45

35
30

20
15

5

50 50 50
45

40
35

30

45 45

35

25
20

15
10

0

10

20

30

40

50

60

200 400 600 800 1000 1200 1400

Sc
or

e

Time (sec)

Scores of some users in class 2

10.0.0.17 10.0.0.18 10.0.0.19 10.0.0.20

doi:10.6342/NTU201602055

 33

Figure 5.4: The scores of some users in class 3.

Figure 5.5: The limits of download speed for some users in class 0.

40 40

30

20
15

10

0

45
40

30

20

10

0 0

45
40

30

20
15

10
5

45
40

30

20

10

0 0
0

10

20

30

40

50

200 400 600 800 1000 1200 1400

Sc
or

e

Time (secs)

Scores of some users in class 3

10.0.0.25 10.0.0.26 10.0.0.27 10.0.0.28

500 500 500 500 500
550

605

500 500
550

605
665.5

732.05
800

500 500 500 500 500 500 500500 500
550

605
665.5

732.05
800

300

400

500

600

700

800

900

200 400 600 800 1000 1200 1400Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (secs)

The limits for some users in class 0

10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4

doi:10.6342/NTU201602055

 34

Figure 5.6: The limits of download speed for some users in class 1.

Figure 5.7: The limits of download speed for some users in class 2.

500 500 500 500 500 500

400

500 500 500 500 500 500

400

500 500 500 500 500 500 500500 500 500 500 500 500 500

300

350

400

450

500

550

200 400 600 800 1000 1200 1400Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (secs)

The limits for some users in class 1

10.0.0.9 10.0.0.10 10.0.0.11 10.0.0.12

500 500 500

400
320

500 500 500

400

500 500 500 500 500 500

400

500 500 500

400

0

100

200

300

400

500

600

200 400 600 800 1000 1200 1400Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (secs)

The limits for some users in class 2

10.0.0.17 10.0.0.18 10.0.0.19 10.0.0.20

doi:10.6342/NTU201602055

 35

Figure 5.8: The limits of download speed for some users in class 3.

 In order to realize the effect of limits, we show the diagram of average download

speed versus time of 10.0.0.25 in Figure 5.9. The last part of the curve in Figure 5.9 goes

up because the connections with users in another subnet are restricted by our mechanism,

so he connects to the users in the same subnet as him. Therefore, the effect of our

mechanism is limited by the number of SDN switches and the effect of our mechanism

might amplifies with more SDN switches. On the other hand, we compare the average

result of users in class 3 in our experiment to the average result of users in class 3 using

original incentive policy in Figure 5.10. In our experiment, most of the users in class 3

are restricted by our mechanism since night hundred seconds, and the curve of our result

also starts to be below the curve made by original incentive policy from then on.

500 500

400

0

100

200

300

400

500

600

200 400 600 800 1000 1200 1400Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (sec)

The limits for some users in class 3

10.0.0.25 10.0.0.26 10.0.0.27 10.0.0.28

doi:10.6342/NTU201602055

 36

Figure 5.9: The diagram of average download speed versus time of 10.0.0.25.

Figure 5.10: The comparison of average result of users in class 3.

0

10000

20000

30000

40000

50000

60000

70000

80000

200 400 600 800 1000 1200 1400

Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (sec)

Average download speed

0
5000

10000
15000
20000
25000
30000
35000
40000

200 400 600 800 1000 1200 1400Do
w

nl
oa

d
sp

ee
d

(B
yt

es
/s

)

Time (secs)

Average download speed

Result Original

doi:10.6342/NTU201602055

 37

Chapter 6 Conclusion

 In this thesis, we simulate different kinds of BitTorrent users via assigning different

ratio of download volume to upload volume to users. We also build a tracker on our own

so as to get the information of the tracker. With the help of SDN, we manipulate the

network and analyze the traffic via the flows we added. Furthermore, we also get much

information from switches. We can observe from the results of classification that the

accuracy of our model is good enough for our experiments and the design of the score for

users bears some faults when the classifications go wrong. Next, the function to give

punishments and rewards which are the limits of download speed is accomplished with

the aid of Ryu-QoS and OVSDB which are different from the common one used with the

real OpenFlow switch. Because the decision of giving punishments or rewards to users

depends on the score of users, the results of classification influence the result of

experiments tremendously. Therefore, we can see the limits which are set by our

mechanism for the users in the experiment are suitable for them. Furthermore, the curve

of users who almost contribute nothing exactly goes down because of our punishments

which is the target of this thesis.

 The network environment we designed in this thesis considers the difficulty of

deploying SDN in large scale which might be caused by the expensive price of OpenFlow

infrastructures and the problems caused by the transformation to SDN. Furthermore, we

think that the network environment can become more complicated and the way to

simulate p2p user can also be more human-like.

 In conclusion, we propose a mechanism that reinforces the existing incentive policy

by decreasing the traffic of bad users and increasing the QoS of good users. We think it

can be deployed to real world and the effect will be amplified with more SDN switches.

doi:10.6342/NTU201602055

 38

Bibliography

[1] RFC 1 https://tools.ietf.org/html/rfc1

[2] Official BitTorrent Specification http://www.bittorrent.org/beps/bep_0003.html

[3] Cohen, B. (2003, June). Incentives build robustness in BitTorrent. In Workshop on

Economics of Peer-to-Peer systems (Vol. 6, pp. 68-72).

[4] Buragohain, C., Agrawal, D., and Suri, S. (2003). A game theoretic framework for

incentives in P2P systems. arXiv preprint cs/0310039.

[5] Feng, H., Zhang, S., Liu, C., Yan, J., and Zhang, M. (2008, October). P2P incentive

model on evolutionary game theory. In 2008 4th International Conference on Wireless

Communications, Networking and Mobile Computing (pp. 1-4). IEEE.

[6] Wang, T. M., Lee, W. T., Wu, T. Y., Wei, H. W., and Lin, Y. S. (2012, March). New

p2p sharing incentive mechanism based on social network and game theory. In

Advanced Information Networking and Applications Workshops (WAINA), 2012

26th International Conference on (pp. 915-919). IEEE.

[7] Rius, J., Cores, F., and Solsona, F. (2009, October). A new credit-based incentive

mechanism for p2p scheduling with user modeling. In Advances in P2P Systems,

2009. AP2PS'09. First International Conference on (pp. 85-91). IEEE.

[8] Feldman, M., and Chuang, J. (2005). Overcoming free-riding behavior in peer-to-peer

systems. ACM sigecom exchanges, 5(4), 41-50.

[9] Fundation, Open Networking. "Software-defined networking: The new norm for

networks." ONF White Paper (2012).

doi:10.6342/NTU201602055

 39

[10] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., ... and Turner, J. (2008). OpenFlow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review, 38(2), 69-74.

[11] Ryu https://osrg.github.io/ryu/

[12] Mininet http://mininet.org/

[13] Deluge http://deluge-torrent.org/

[14] Libtorrent http://www.libtorrent.org/

[15] Ho, T. K. (1998). The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.

[16] Deluge RPC Client https://github.com/JohnDoee/deluge-client

[17] python-bittorent https://github.com/JosephSalisbury/python-bittorrent

[18] Zghaibeh, M., and Anagnostakis, K. G. (2007). On the impact of p2p incentive

mechanisms on user behavior. NetEcon+ IBC.

[19] Ryu-QoS https://osrg.github.io/ryu-book/en/html/rest_qos.html

[20] Random Forest Classifier usage in scikit-learn

http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

doi:10.6342/NTU201602055

 40

APPENDIX

A1 The settings and results of ratio and the results in the

experiment.

User (IP)

Start A

(secs)

Start B

(secs)

Start C

(secs)

Assigned

ratio

Real ratio

Assigned

class

Real

class

10.0.0.1 41 0 425 0.884916 1.245719 0 1

10.0.0.2 462 197 0 0.039914 0.674308 0 0

10.0.0.3 96 317 0 0.371101 1.315166 0 1

10.0.0.4 399 0 8 0.48192 0.736168 0 0

10.0.0.5 409 0 99 0.677273 0.818456 0 0

10.0.0.6 0 314 128 0.114866 0.773157 0 0

10.0.0.7 191 0 367 0.339948 0.779852 0 0

10.0.0.8 0 271 78 0.719426 1.033248 0 1

10.0.0.101 0 15 390 0.65757 0.711114 0 0

10.0.0.102 227 437 0 0.185042 1.090013 0 1

10.0.0.103 340 85 0 0.153184 0.760487 0 0

10.0.0.104 286 0 118 0.679437 0.926505 0 0

10.0.0.105 0 129 311 0.532109 0.80705 0 0

10.0.0.106 370 3 0 0.09197 0.724608 0 0

10.0.0.107 0 32 450 0.867589 1.036571 0 1

10.0.0.108 264 204 0 0.83036 0.829978 0 0

10.0.0.9 85 0 324 1.821038 1.818343 1 1

10.0.0.10 334 0 32 1.830658 1.825156 1 1

10.0.0.11 342 58 0 1.460213 1.446598 1 1

10.0.0.12 0 394 225 1.888212 1.858233 1 1

10.0.0.13 0 122 297 1.262097 1.254572 1 1

10.0.0.14 40 0 293 1.795436 1.870463 1 1

10.0.0.15 0 105 239 1.800277 1.795916 1 1

10.0.0.16 374 47 0 1.550406 1.535334 1 1

doi:10.6342/NTU201602055

 41

10.0.0.109 303 125 0 1.84064 1.822345 1 1

10.0.0.110 0 273 119 1.191501 1.604228 1 1

10.0.0.111 0 303 59 1.89474 1.890655 1 1

10.0.0.112 39 264 0 1.925854 2.002155 1 2

10.0.0.113 0 102 327 1.446189 1.498526 1 1

10.0.0.114 0 448 190 1.261859 1.281413 1 1

10.0.0.115 226 0 280 1.547186 1.543869 1 1

10.0.0.116 0 73 463 1.994733 1.989381 1 1

10.0.0.17 0 400 105 4.4205 4.520563 2 2

10.0.0.18 0 96 358 4.809924 3.764251 2 2

10.0.0.19 252 31 0 2.079854 2.047977 2 2

10.0.0.20 0 382 162 4.155343 3.895669 2 2

10.0.0.21 135 312 0 4.28031 3.611666 2 2

10.0.0.22 0 181 408 2.92458 2.784938 2 2

10.0.0.23 0 241 34 3.366207 3.351925 2 2

10.0.0.24 106 312 0 4.766747 4.654298 2 2

10.0.0.117 443 0 77 2.758379 2.930438 2 2

10.0.0.118 0 322 78 4.765149 4.457629 2 2

10.0.0.119 0 30 334 4.474082 4.116043 2 2

10.0.0.120 334 0 133 2.735372 2.595598 2 2

10.0.0.121 447 0 0 3.588882 3.350851 2 2

10.0.0.122 3 0 238 3.236016 3.198239 2 2

10.0.0.123 147 235 0 4.221534 3.766582 2 2

10.0.0.124 46 376 0 3.627607 3.301934 2 2

10.0.0.25 34 0 365 789.8285 8.804476 3 3

10.0.0.26 192 0 398 153.9201 8.879986 3 3

10.0.0.27 212 358 0 423.3413 7.045266 3 3

10.0.0.28 350 0 4 76.7151 8.501106 3 3

10.0.0.29 0 10 252 811.758 10.74125 3 3

10.0.0.30 325 20 0 538.2712 8.527871 3 3

10.0.0.31 0 129 328 971.1503 6.38173 3 3

10.0.0.32 103 0 435 547.7919 6.940522 3 3

doi:10.6342/NTU201602055

 42

10.0.0.125 0 276 67 576.1131 6.972367 3 3

10.0.0.126 230 322 0 18.14696 6.031273 3 3

10.0.0.127 277 192 0 207.7989 10.28625 3 3

10.0.0.128 122 0 289 182.3024 6.311149 3 3

10.0.0.129 43 438 0 375.4619 10.16128 3 3

10.0.0.130 0 318 97 594.7106 9.332156 3 3

10.0.0.131 145 0 446 930.1203 6.979398 3 3

10.0.0.132 367 20 0 669.1685 6.266286 3 3

A2 The results of each classification in the experiment

Time

User
200 400 600 800 1000 1200 1400

10.0.0.1 0 1 0 1 1 0 1

10.0.0.2 0 0 0 0 0 0 0

10.0.0.3 1 1 1 1 1 1 1

10.0.0.4 0 0 0 0 0 1 0

10.0.0.5 1 1 1 1 1 1 1

10.0.0.6 1 1 1 1 1 1 0

10.0.0.7 0 0 0 0 0 0 0

10.0.0.8 0 0 0 0 0 0 1

10.0.0.9 1 1 1 2 2 2 2

10.0.0.10 1 1 1 2 3 1 2

10.0.0.11 1 2 1 2 1 1 1

10.0.0.12 1 2 2 1 1 1 1

10.0.0.13 1 1 0 1 0 0 1

10.0.0.14 1 1 1 3 3 1 2

10.0.0.15 1 2 1 2 2 1 2

10.0.0.16 1 1 1 1 1 1 1

10.0.0.17 3 2 3 2 2 2 2

10.0.0.18 2 2 3 2 3 2 3

10.0.0.19 1 1 1 2 2 2 2

doi:10.6342/NTU201602055

 43

10.0.0.20 2 2 3 3 2 2 2

10.0.0.21 2 3 2 2 2 2 2

10.0.0.22 2 2 2 2 2 2 2

10.0.0.23 1 2 2 2 2 2 2

10.0.0.24 2 3 2 3 2 2 1

10.0.0.25 3 3 3 3 2 2 3

10.0.0.26 2 3 3 3 3 3 3

10.0.0.27 2 3 3 3 2 2 2

10.0.0.28 2 3 3 3 3 3 3

10.0.0.29 2 3 3 3 2 3 3

10.0.0.30 3 3 3 3 3 1 3

10.0.0.31 2 3 3 3 3 2 3

10.0.0.32 2 3 3 3 3 3 2

10.0.0.101 0 0 0 1 0 1 0

10.0.0.102 0 0 1 0 0 0 1

10.0.0.103 0 0 0 0 1 0 0

10.0.0.104 1 0 0 1 0 0 0

10.0.0.105 0 1 1 0 0 1 0

10.0.0.106 1 0 1 1 0 0 1

10.0.0.107 0 1 1 0 1 0 1

10.0.0.108 1 1 1 1 0 1 0

10.0.0.109 1 1 2 2 1 3 1

10.0.0.110 2 1 0 1 1 1 1

10.0.0.111 1 1 2 2 1 1 2

10.0.0.112 1 1 2 1 1 2 2

10.0.0.113 2 2 2 1 1 1 2

10.0.0.114 2 1 2 1 1 1 1

10.0.0.115 1 1 1 2 1 2 2

10.0.0.116 1 2 1 2 2 1 2

10.0.0.117 2 1 2 2 2 2 2

10.0.0.118 3 2 2 2 2 3 2

10.0.0.119 2 3 2 3 2 3 2

doi:10.6342/NTU201602055

 44

10.0.0.120 2 2 2 3 2 2 2

10.0.0.121 2 2 3 2 2 2 2

10.0.0.122 2 2 2 2 2 2 1

10.0.0.123 3 2 3 3 2 3 2

10.0.0.124 2 2 2 2 2 2 3

10.0.0.125 3 3 3 3 2 3 3

10.0.0.126 2 3 3 3 3 3 3

10.0.0.127 2 3 3 3 3 2 2

10.0.0.128 2 3 3 2 3 3 3

10.0.0.129 2 3 3 3 2 2 3

10.0.0.130 3 3 3 3 3 2 2

10.0.0.131 2 3 3 3 3 2 2

10.0.0.132 3 3 3 3 2 2 2

A3 The scores of users in our experiment

Time

User
200 400 600 800 1000 1200 1400

10.0.0.1 60 50 60 60 60 70 70

10.0.0.2 60 60 70 80 90 100 100

10.0.0.3 50 50 50 50 50 50 50

10.0.0.4 60 60 70 80 90 90 100

10.0.0.5 50 50 50 50 50 50 50

10.0.0.6 50 50 50 50 50 50 60

10.0.0.7 60 60 70 80 90 100 100

10.0.0.8 60 60 70 80 90 100 100

10.0.0.9 50 50 50 45 40 35 30

10.0.0.10 50 50 50 45 35 35 30

10.0.0.11 50 45 45 40 40 40 40

10.0.0.12 50 45 40 40 40 40 40

10.0.0.13 50 50 60 60 70 80 80

10.0.0.14 50 50 50 40 30 30 25

doi:10.6342/NTU201602055

 45

10.0.0.15 50 45 45 40 35 35 30

10.0.0.16 50 50 50 50 50 50 50

10.0.0.17 40 45 35 30 25 20 15

10.0.0.18 45 45 35 30 20 15 5

10.0.0.19 50 50 50 45 40 35 30

10.0.0.20 45 45 35 25 20 15 10

10.0.0.21 45 40 35 30 25 20 15

10.0.0.22 45 45 40 35 30 25 20

10.0.0.23 50 45 40 35 30 25 20

10.0.0.24 45 40 35 25 15 10 5

10.0.0.25 40 40 30 20 15 10 0

10.0.0.26 45 40 30 20 10 0 0

10.0.0.27 45 40 30 20 15 10 5

10.0.0.28 45 40 30 20 10 0 0

10.0.0.29 45 40 30 20 15 5 0

10.0.0.30 40 40 30 20 10 10 0

10.0.0.31 45 40 30 20 10 5 0

10.0.0.32 45 40 30 20 10 0 0

10.0.0.101 60 60 70 70 80 80 90

10.0.0.102 60 60 60 70 80 90 90

10.0.0.103 60 60 70 80 80 90 100

10.0.0.104 50 60 70 70 80 90 100

10.0.0.105 60 50 50 60 70 70 80

10.0.0.106 50 60 60 60 70 80 80

10.0.0.107 60 50 50 60 60 70 70

10.0.0.108 50 50 50 50 60 60 70

10.0.0.109 50 50 45 40 40 30 30

10.0.0.110 45 50 60 60 60 60 60

10.0.0.111 50 50 45 40 40 40 35

10.0.0.112 50 50 45 45 45 40 35

10.0.0.113 45 45 40 40 40 40 35

10.0.0.114 45 50 45 45 45 45 45

doi:10.6342/NTU201602055

 46

10.0.0.115 50 50 50 45 45 40 35

10.0.0.116 50 45 45 40 35 35 30

10.0.0.117 45 50 45 40 35 30 25

10.0.0.118 40 45 40 35 30 20 15

10.0.0.119 45 40 35 25 20 10 5

10.0.0.120 45 45 40 30 25 20 15

10.0.0.121 45 45 35 30 25 20 15

10.0.0.122 45 45 40 35 30 25 25

10.0.0.123 40 45 35 25 20 10 5

10.0.0.124 45 45 40 35 30 25 15

10.0.0.125 40 40 30 20 15 5 0

10.0.0.126 45 40 30 20 10 0 0

10.0.0.127 45 40 30 20 10 5 0

10.0.0.128 45 40 30 25 15 5 0

10.0.0.129 45 40 30 20 15 10 0

10.0.0.130 40 40 30 20 10 5 0

10.0.0.131 45 40 30 20 10 5 0

10.0.0.132 40 40 30 20 15 10 5

A4 The limits of download speed in the experiment

Time

User
200 400 600 800 1000 1200 1400

10.0.0.1 500 500 500 500 500 550 605

10.0.0.2 500 500 550 605 665.5 732.05 800

10.0.0.3 500 500 500 500 500 500 500

10.0.0.4 500 500 550 605 665.5 732.05 800

10.0.0.5 500 500 500 500 500 500 500

10.0.0.6 500 500 500 500 500 500 500

10.0.0.7 500 500 550 605 665.5 732.05 800

10.0.0.8 500 500 550 605 665.5 732.05 800

10.0.0.9 500 500 500 500 500 500 400

doi:10.6342/NTU201602055

 47

10.0.0.10 500 500 500 500 500 500 400

10.0.0.11 500 500 500 500 500 500 500

10.0.0.12 500 500 500 500 500 500 500

10.0.0.13 500 500 500 500 550 605 665.5

10.0.0.14 500 500 500 500 400 320 256

10.0.0.15 500 500 500 500 500 500 400

10.0.0.16 500 500 500 500 500 500 500

10.0.0.17 500 500 500 400 320 3.20643 13.26595

10.0.0.18 500 500 500 400 6.673132 9.775215 5.688183

10.0.0.19 500 500 500 500 500 500 400

10.0.0.20 500 500 500 400 4.064245 9.228811 4.05011

10.0.0.21 500 500 500 400 320 1.325438 15.77299

10.0.0.22 500 500 500 500 400 320 9.378958

10.0.0.23 500 500 500 500 400 320 3.980438

10.0.0.24 500 500 500 400 3.932045 2.582617 1.797049

10.0.0.25 500 500 400 9.217264 2.538147 0.594299 4.733323

10.0.0.26 500 500 400 6.945305 6.052735 9.83764 7.568698

10.0.0.27 500 500 400 10.39613 4.381874 3.723782 2.544921

10.0.0.28 500 500 400 5.221014 5.923098 9.487395 5.967362

10.0.0.29 500 500 400 6.890401 3.251936 5.5831 6.226962

10.0.0.30 500 500 400 12.57642 9.437791 1.320049 8.008124

10.0.0.31 500 500 400 9.680669 7.447256 3.941379 13.28123

10.0.0.32 500 500 400 10.3773 6.391455 6.94082 1.518815

10.0.0.101 500 500 550 605 665.5 732.05 800

10.0.0.102 500 500 500 550 605 665.5 732.05

10.0.0.103 500 500 550 605 665.5 732.05 800

10.0.0.104 500 500 550 605 665.5 732.05 800

10.0.0.105 500 500 500 500 550 605 665.5

10.0.0.106 500 500 500 500 550 605 665.5

10.0.0.107 500 500 500 500 500 550 605

10.0.0.108 500 500 500 500 500 500 550

10.0.0.109 500 500 500 500 500 400 320

doi:10.6342/NTU201602055

 48

10.0.0.110 500 500 500 500 500 500 500

10.0.0.111 500 500 500 500 500 500 500

10.0.0.112 500 500 500 500 500 500 500

10.0.0.113 500 500 500 500 500 500 500

10.0.0.114 500 500 500 500 500 500 500

10.0.0.115 500 500 500 500 500 500 500

10.0.0.116 500 500 500 500 500 500 400

10.0.0.117 500 500 500 500 500 400 320

10.0.0.118 500 500 500 500 400 4.86858 3.668996

10.0.0.119 500 500 500 400 3.020411 5.000126 2.151772

10.0.0.120 500 500 500 400 320 2.667733 7.222553

10.0.0.121 500 500 500 400 320 4.303859 3.419651

10.0.0.122 500 500 500 500 400 320 256

10.0.0.123 500 500 500 400 14.36651 6.219651 3.67722

10.0.0.124 500 500 500 500 400 320 5.272548

10.0.0.125 500 500 400 6.427822 3.766698 2.478595 5.771572

10.0.0.126 500 500 400 6.50471 6.090747 4.424632 9.236886

10.0.0.127 500 500 400 5.063313 7.069094 3.496942 1.299338

10.0.0.128 500 500 400 320 5.584055 5.048192 4.928523

10.0.0.129 500 500 400 7.041679 3.784749 1.909335 5.560133

10.0.0.130 500 500 400 4.5528 1.654478 4.044659 0.697594

10.0.0.131 500 500 400 7.875766 5.663821 2.63108 2.345327

10.0.0.132 500 500 400 4.24055 2.629359 2.458075 2.318086

	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Software-defined Network
	2.1.1 SDN Architecture
	2.1.2 OpenFlow
	2.1.3 Ryu
	2.1.4 Mininet

	2.2 Peer to peer
	2.2.1 BitTorrent

	2.3 Incentive policy in BitTorrent
	2.4 Deluge
	2.5 Random Forest Classifier

	Chapter 3 Simulation
	3.1 Environment
	3.2 Deluge Client
	3.3 Tracker
	3.4 Data Center
	3.5 Controller
	3.6 User Behavior
	3.7 User type

	Chapter 4 User classification and Punishment
	4.1 User classification
	4.1.1 Extracted features

	4.2 Punishment
	4.2.1 Ryu-QoS
	4.2.2 Incentive policy

	Chapter 5 Evaluation
	5.1 Hardware and Network Settings
	5.2 User Settings
	5.3 Ryu-QoS setting
	5.4 User Behavior Classification
	5.5 Punishment Results

	Chapter 6 Conclusion
	Bibliography
	APPENDIX
	A1 The settings and results of ratio and the results in the experiment.
	A2 The results of each classification in the experiment
	A3 The scores of users in our experiment
	A4 The limits of download speed in the experiment

