R4 B FRPFaFrapresd
L=

Department of Electrical Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

ATEON A PR T OB AR S
SDN-enabled Reputation Management Mechanism for P2P
System

ERESY

Ting-Chieh Lal

R T B
Advisor: Chin-Laung Lei, Ph.D.

¢ E {105 & 7 7

July, 2016

doi:10.6342/NTU201602055

B 3L 2 M KRB 2
DREBETELE
AN BB T & WIS T 60 25 4 25 4 4 AR AR 5 T8 A

SDN-enabled Reputation Management Mechanism for P2P
System

AR XBREAE (£3FR03921079) AR EMAS TR
%AZAEEHX 0 RHRE 105507 A 15 BATFFHRER

F A
FERBROREA » FFIERA

e /g‘/"élh\bf\% (&%)

(4 310
A g 2
%@Z(mr%g o Bt 7(

2205 B AN

x4z 754 gr ﬂ (#£5)

s

A EARA LA S FARE BRI Sk KR ES T B i
F o S A ET AT A T L Y R AR A B P ¢ wf
mfﬁ;ﬁ.; ; ;\m«}g,\,i 4’:&#’ fgik g mgﬂ—-‘r ‘—/>¢ o

Q@?ﬂmwgﬁv&%w¢%%w¢?mﬁ%£"amﬂ% F A
FREIEGF R YT L EE LG E D A ?&%1P2ﬂ’#%#
BE o SN H s 4 AR R R AR 0 A PR R F2F SR o

2Tk ABR M FE o F4E A~ SDN e 0 2 BAG e
N =8 - A ’%%' PAEAESDN T f2 0 § 8T R E SRR LS F
RS R Rk T E LS BA M AT RAAPLEEL L
AARFHRTT L AFRRE

AR LR SRS RGN AL R Y AR MR B
W AP RS 2 LA AN W A RRHTRE L 2y
EZHEE 2 CHEZH S F%E S EYW A meeting Pro 8 Rk R RS
EAEY AL R RgEE L AN - BV AT

[E2"
ﬁﬁi%%’ﬁﬂﬁm—i%ﬁﬁzwﬁ%o

¢%\‘ﬂ‘f‘_~i\. Frx o, I L‘LE)\ 4

=
ERARBEET ¥4 F Rk 4 R HT - Bind dos LR (050 FAD

FIFLd i *‘3//] 3 mfwwvw—usw wmﬂ—”rswmﬁmﬁo

AR L PR A A RAEEF G R R L.
ST ORAL R HS W R NS REDY Y L B PR

~

I3

N
oy

BB R P 3P R PO TRV A b o AR NG [Ao

BRUSABRHANCBIF LT o MM PS> RHEP - 2k
ﬁii%ﬁ&’ﬁﬂ?Uﬂ$@4ﬁ%%’&ﬁﬂﬂﬁ£@*%’#r IEA -
Boilf o+ R AR B4 GG P FIELPE 0 G RS S AT R L gE S A kA g
Jheen 4 > %4 2% i enggic o

kX
N

S
=

O

W

P
I
™

doi:10.6342/NTU201602055

£

SEF 408 TS # B (SDN) 2 2 5 E ¥ (Machine Learning)4s s A& #f® - i i o
HEAN =g o3 -k E0R AR By
AP Ak RN S O TR R
B R A SRR A R AR > 5 2T B NN A AR R TR
Thie # 0 - B A4 4% BitTorrent 3¢ JF 4] & 7 iR
FoArig * i g o AP e Mininet ¥ iR R 2 Wi F 7

GRS AR L
F 7 % 5% o BitTorrent @ # ﬂ v B S PR R s dﬁ % Tracker jc &

o

8 1 F 2L BL(P2P) e B2 22 fs i Ay gy & el 1
30 HEL S B A

kaod

FRODEHRY FERBEFOELRAESH TR oL I AR R E

A K BA R AP RIS I (QOS)

2 SE N AR A A S

S BEAL PEE s @ PRAR S E i BER % SDN %2 Ryu-QoS s g i 3] e e

BR SR A A B IR B 65 BT o B S R g A R

Men iR p > eH P 5 - B dﬂz EEANIAEL & =g sk =g R e I LV
HF R R M » T o™ R R o @A s af o @

51 N
“—;%P 5L ©

B4E3 ¢ BitTorrent ~ #dd & e ~ RIS - B BEY -

doi:10.6342/NTU201602055

Abstract

With the rising popularity of SDN (Software-defined Networking) and machine
learning, we are motivated to apply these two things to peer-to-peer (P2P) network to see
what it can do for P2P network.

Considering the large-scale deployment of SDN nowadays is still a big problem, we
construct our environment by the combination of SDN network and traditional network
rather than using SDN network for whole environment only.

This thesis proposes an incentive policy to reinforce the existing incentive policy in
BitTorrent system and the goal of this thesis is to decrease the traffic of bad users as much
as possible. We emulate the network in Mininet and several BitTorrent users with different
user behavior. The data center collects information comes from switches, hosts, and the
tracker and use machine learning model to classify the type of user behavior in each
period. The data center also derives a score for each user, and give punishments or rewards
to them according to their score. The punishments and rewards are presented in the form
of quality of service (QoS), and the task of adjusting QoS is achieved with the help of
SDN and Ryu-QosS.

There are 65 hosts distributed in our experimental environment. Almost all of them
are all distributed in the traditional network, but one of them is distributed outside the
network we emulated to provide the source of data. We can see the result of our
experiments from the curve of average download speed of all bad users, which exactly

decrease after our punishments.

Keywords: BitTorrent, SDN, Incentive policy, Machine Learning.
iii

doi:10.6342/NTU201602055

Contents

N I X X

CONEENTS ...ttt ne e
LISt OF FIQUIES.....eiiiii it
LSt OF TaDIES ...
Chapter 1 INErOdUCTION.....cvieieieee s
Chapter 2 Background..........cccevieiiiiinine e
2.1 Software-defined Networkccccocvvinieiinniiinnnn,
2.1.1 SDN ArChitectureccoocvvievenenieseeie e

2.1.2 OPENFIOW......cooiiiiiiiice e

2.1.4 MININEL ..o

2.2 PRI O PEEN ..t
2.2.1 BITOMMEN ..o e

2.3 Incentive policy in BitTOrrent.........ccoocovvveveiiennninnnnn

2.4 DRIUGE......o i

2.5 Random Forest CIasSifierccccoocvvieiienieniienieieninn
Chapter 3 SIMUIALION ...
3.1 ENVIFONMENT ..o

3.2 Deluge CHENt.......ccoooiiiieeeeeee e

doi:10.6342/NTU201602055

IR T 17 (6] (=] GO oS PUR 13

34 DALA CONTEN ...t b e 14

3.5 CONIIOIIET .. b ek 14

3.6 USEI BENAVION ..ottt 15

BT USBE Y ettt 16
Chapter 4 User classification and PUnisShment ... 18
4.1 USEr ClasSITICALION.ccuiiiiiiiiieicee e 18
4.1.1 EXracted FRAtUIES.......cccciiiiieieieieseese e 18

4.2 PUNISNMENT ..o 22
421 RYU-QOS ... 22

4.2.2 INCENTIVE POLICY ..o 23

Chapter 5 EVAIUALION ... s 25
5.1 Hardware and Network SEttings.........cccoouerereiiiininisiseeese e 25

5.2 USEI SEBEINGS .. .eveitieiieieeiieiest ettt 25

53 RYU-QOS SELLING.....ciuiiiiieieiieitesie st 28

5.4 User Behavior ClassSifiCation ..o 28

55 PUNISNMENt RESUILS.......cviiiiiiiiieee e 30
Chapter 6 CONCIUSION ... 37
BIDHOGIAPNY e 38
APPEND X e 40
Al The settings and results of ratio and the results in the experiment. 40

A2 The results of each classification in the experimentccccoeveiiiiniinnnnn. 42

A3 The scores Of USers in OUr EXPEIIMENT........c.oieiiiirerereseeeee e 44

A4 The limits of download speed in the experiment ... 46

\'

doi:10.6342/NTU201602055

List of Figures

Figure 2.1: The difference between traditional network and SDN............ccccovivi i 3

Figure 2.2: The illustration of the relationship between Ryu and other components........ 5

Figure 2.3: The illustration of server based network and P2P network...............c.cccceenn. 6
Figure 3.1: The illustration of our envViroNMENt.c.cccoovveieiieeie e 11
Figure 3.2: Example diagram of user who often violates the ratio..............c.ccccovevvennnne. 16
Figure 3.3: Example diagram of user who almost obeys the ratio all the time. 16
Figure 5.1: The scores of some users in Class 0.........ccccevveieiiieiieie e 31
Figure 5.2: The scores of Some users in Class 1.........cccccvvieieeieiieie e 32
Figure 5.3: The scores of Some USers in Class 2.........ccccevveveeiiiieie e 32
Figure 5.4: The scores of Some Users in Class 3.........ccovveiieieiiece e 33
Figure 5.5: The limits of download speed for some users in class 0.ccccccevvevvvennne. 33
Figure 5.6: The limits of download speed for some usersinclass 1..........ccccccovvevvnnnne. 34
Figure 5.7: The limits of download speed for some users in class 2..........cccccevvvevvennne. 34
Figure 5.8: The limits of download speed for some usersin class 3..........cccccevvevvenenne. 35
Figure 5.9: The diagram of average download speed versus time of 10.0.0.25. 36
Figure 5.10: The comparison of average result of users in class 3...........ccccceeevvevvinenne. 36
Vi

doi:10.6342/NTU201602055

List of Tables

Table 3.1: The functions used in our deluge CHEeNt.coovveviiie i 12
Table 4.1: Features extracted from the flows in the direction of going into the host.19

Table 4.2: Features extracted from the flows in the direction of going out of the host...19

Table 4.3: Features extracted from the traCker.cocooviiiiiiiiiciccee e 20
Table 4.4: Features extracted from the NOStS.cccoeiiiiiiiniise e 21
Table 4.5: The punishments and rewards according to the type of user behavior........... 24
Table 4.6: The limits of download speed and boundary conditions.cccccceeveiiennens 24
Table 5.1: The list of hosts in different types of user behavior in our experiment.......... 26
Table 5.2: Some settings and results of users in the experiment.ccccoevviieiinenns 26
Table 5.3: The metric to estimate accuracy of results.cccooeiverieiiiiic i, 29
Table 5.4: The accuracies and SCOres of OUr result.cccveieiiiieieiiceeeeee 30
Table 5.5: The results of each class in classifications.c.cccvvieiiinineinenceee, 30
vii

doi:10.6342/NTU201602055

Chapter 1 Introduction

Peer-to-peer (P2P) networking is a distributed architecture unlike client-server
model. It separates the workload to all of the users in the network, in other words, each
participant which is also called peer in the network is both client and server. This concept
was first described in 1969 in the first Request for Comments, RFC 1 [1]. There are many
applications using this architecture nowadays, for example, file sharing network and
multimedia applications. Our thesis focuses on the file sharing system BitTorrent which
complies with BitTorrent protocols [2]. In order to make the BitTorrent system more
robust and efficient, the system uses choking algorithm as their incentive policy. The
author of BitTorrent protocol Bram Cohen explained this incentive policy in the paper [3]
in 2003. In addition, there are many discussions of incentive policy in the past, some use
Game Theory like [4], [5]. Furthermore, other study also uses social network to achieve
this goal such as [6]. However, most of the discussions are based on the sharing of
immutable resources such as files, there are also some discussions about the sharing of
mutable resources such as CPU and memory, for instance, [7]. [8] summarized many
common incentive policies, the challenges those policies confront with, and the
difficulties need to be solved. The main goal of our thesis is to reinforce the effect of
existing incentive policy in BitTorrent to diminish the traffic of users whose contribution
are very low as much as possible.

The emergence of Software-defined Network (SDN) and rising popularity of
machine learning motivate us to do this research. In the past decades, the development of
internet grows remarkably and distribution of internet becomes more universe. Due to the
fast growth and the distributed deployment, the difficulties of network management

become more complicated than before. However, SDN is a solution for these problems

doi:10.6342/NTU201602055

which was announced in 2012 [9]. In the traditional network, the algorithms and protocols
run in the legacy switches and routers to enable network functions normally, which makes
the modifications of network become a big deal. However, SDN centralizes these
functions into the central controller, in other words, SDN separates the control plane from
the data plane. All actions in the network are determined by the controller. Switches which
are also called SDN switch just need to execute the commands come from the controller.
The controller has the full view of network’s topology and capabilities to configure and
to acquire the information of network devices such as switches.

In this thesis, we describe a method to simulate various of different P2P users in the
BitTorrent system and classify the type of user behavior using machine learning. Finally,
we give punishments and rewards to users which can achieve our target to decrease the
traffic of users whose contribution are low and increase the quality of service of good
users.

The rest of this thesis is organized as following. Chapter 2 describes some
background knowledge used in our thesis. Chapter 3 introduces the environment and the
way we simulate p2p users. Chapter 4 describes the features we used for the classification
and the incentive policy we used. Chapter 5 describes the settings of the experiment and

the results of experiment. Finally, Chapter 6 concludes this thesis.

doi:10.6342/NTU201602055

Chapter 2 Background

2.1 Software-defined Network

Our thesis utilizes Software-defined network which can be abbreviated to SDN to
manage network and provide different qualities of service for users in the network. The
difference between conventional network and SDN is demonstrated in Figure 2.1, and we

describe the components in SDN in the rest of this section.

Traditional Network Software-defined Network
Architecture Architecture
Distributed control plane Centralized control plane

== cControl plane
(=1 Dataplane

Figure 2.1: The difference between traditional network and SDN.
2.1.1 SDN Architecture

SDN is an approach to allow network administrators to manage network services
through abstraction of low-level functionality. This ability is enabled with the help of
decoupling the system into control plane and data plane. The control plane figures out the
data path, and the data plane transfers the data according to the instructions come from
the control plane.

In contrast to the conventional switches and routers, switches in SDN have no idea
of how to deal with the packets by themselves. The switches in SDN called SDN switches

3

doi:10.6342/NTU201602055

are controlled by a central controller. Once the switch doesn’t know how to deal with the
packet, the packet will be sent to the controller. The controller will determine the data
path of this packet which is the solution of how to process and transmit this packet, and
the SDN switch will process the packet according to the instruction. To fulfill the tasks
mentioned before, there is a need to have a protocol to boost the connections between the
controller and switches. The most common protocol that enables SDN is OpenFlow which

we describe in the next paragraph.
2.1.2 OpenFlow

OpenFlow is a mechanism used in SDN for the communication between control
plane and data plane. This protocol was first announced in 2008 [10]. It enables switches
from different vendors which have their own proprietary interfaces and scripting
languages, to communicate with others using OpenFlow protocol. The inventor of this
protocol considers OpenFlow as the enabler of SDN.

OpenFlow defines all of the solutions for the traffic using the concept of flow which
can be statically or dynamically programmed by the SDN control software. The
OpenFlow protocol requires switches to process packets according to the flow entries in
their flow table. There are several fields in a flow entry, and the most important two fields
are match field and instruction field which define which packet we should apply the flow
entry to and what to do with the packet. If the packet doesn’t match any of the flow entry,
the action is determined by the setting of table-miss entry which is often set to forward
the packet to the controller. After forwarding to the controller, the controller will generate
a new flow entry for this packet and adds this entry to the switch’s flow table.

In summary, the OpenFlow protocol defines the interaction between the controller
and switches, but there is still a need to implement this protocol to make SDN work. Ryu

implements this protocol and we use Ryu as our SDN control software.
4

doi:10.6342/NTU201602055

2.1.3 Ryu

Ryu [11] is an open-source framework that integrates the implementation of
southbound APIs such as OpenFlow to communicate with SDN switches and northbound
APIs for the services and applications to communicate with the controller. Therefore,
SDN applications can manipulate the network devices directly with the aids of
northbound and southbound APIs. Furthermore, the components in the SDN organize in
three layers including application, control, and infrastructure layer. The northbound APIs
are used for the interactions between application layer and control layer, and the
southbound APIs are used for the interactions between control layer and infrastructure
layer. Figure 2.2 shows the relationship between Ryu and other components in SDN.

In the Ryu framework, a SDN application is a python script which defines the

workflow of controller with the help of the Ryu library.

Application
layer
I |
I |
I |
I |
I |
I |
I I
Control layer | Controller I Ryu
) I
I |
) I
; Southbound API :
] (OpenFlow) |
Infrastructure
layer

Figure 2.2: The illustration of the relationship between Ryu and other components.

5

doi:10.6342/NTU201602055

2.1.4 Mininet

Mininet [12] is a network emulation orchestration system which enables users to
construct the custom Software-defined network fast and easily. It runs virtual end-hosts,
switches, links on a single Linux kernel with the help of Linux container which is a
technique of lightweight virtualization. It provides many python APIs for network
creation and settings, and some example codes to demonstrate how to construct
sophisticated networks. Furthermore, we can configure the network elaborately, such as
the bandwidth, loss rate, delay and connected port numbers of links. Because of the

powerful capabilities and the convenience of Mininet, we use it to emulate our network.

2.2 Peer to peer

Peer to peer which can be abbreviated to P2P is a network architecture unlike client-
server model and it separates the workload of server to every user in the network. Every
user in P2P network is both client and server. Figure 2.3 shows the illustrations of a server
based network and a P2P network. P2P network has been utilized widely in the field of
file sharing, video streaming, and the applications with the requirement of high

confidentiality. Our thesis focus on BitTorrent system among several file sharing systems.

Server based network Peer-to-peer based network

Figure 2.3: The illustration of server based network and P2P network.

doi:10.6342/NTU201602055

2.2.1 BitTorrent

BitTorrent which can be abbreviated into BT is a P2P file sharing application and a
protocol developed by B. Cohen. There are many P2P applications support the BitTorrent
system, and we use Deluge in our experiments. BT has become the most popular P2P file
sharing system because of its efficiency in distributing large files. There are three
characters in BT system: tracker, seeder and leecher. The tracker is responsible for
tracking the activities, status of peers and giving the list of existing peers to new peer to
contact. Next, seeders are those who have the whole file and want to share it. Finally,
leechers are those who want to download the files and join the system. The files
transmitted in BT system are split into several blocks which are called pieces to facilitate

parallel downloading.

2.3 Incentive policy in BitTorrent

In order to increase the efficiency of transmission and the utilization of resources,
an incentive policy is used in BitTorrent system which is called choking algorithm. The
choking algorithm is a variant of tit-for-tat which is a strategy in game theory, and it
attempts to achieve pareto efficiency which means no two counterparties can make an
exchange and both benefit more from each other in economic theories. The algorithm
seeking pareto efficiency is a local optimization algorithm and tends to the global optimal.

Each peer is responsible to maximize its own download speed, so they choke peers
who are not willing to cooperate and unchoke peers who are willing to cooperate. Choking
is a temporary refusal to upload, but it is irrelevant with download. Therefore, the users
still can download files from the choked peer. In the BitTorrent system, each peer always
unchokes fixed number of peers which is four in our system, so the key of choking

algorithm focuses on which peer to unchoke. The decision of which peer to unchoke

doi:10.6342/NTU201602055

depends on the download speed, and it uses the average of download speed in twenty
seconds to make the measurement accurate. If the peers have finished their download, the
decision of whether to unchoke this user relies on the upload rate. Each user unchokes the
peers with the first four connection situations. To prevent the resources from being wasted
by choking and unchoking peers frequently, the peers in BitTorrent decide which peer to
unchoke every ten seconds which is also long enough for TCP to show their full capacities.

Aiming to avoid the situation that there is a current unused connection has better
capacity than those being used, each BitTorrent user has an optimistic unchoked peer
which means the peer can be unchoked regardless of current download speed, and the
choose of optimistic unchoked peer is made every thirty seconds which is long enough
for the peer to show his capacity.

In addition to above optimistic unchoked peer, a peer might be choked by all peers
sometimes, and that peer might continue to get poor download speed until he was chosen
as optimistic unchoked peer. There is a function called anti-snubbing that BitTorrent
assumes the peer is snubbed if he doesn’t get any single piece over more than one minute,
and that peer will be added as an additional optimistic unchoked peer by others to make

him recover faster.

2.4 Deluge

Deluge [13] is a cross-platform BitTorrent client which is written in python and is
also an open source software. Deluge uses Libtorrent [14] which is a C++ implement of
the BitTorrent protocol to provide the network logic of Deluge. The architecture used in
Deluge is divided into front and back end. The back end in deluge is called daemon and
it can be connected by a deluge GUI console, a text console, or a web interface. We use

the RPC client to connect to the daemon in our experiments.

doi:10.6342/NTU201602055

2.5 Random Forest Classifier

Random Forest is an ensemble learning method for classification, regression, which
was first proposed in 1998 [15]. It consists of several of decision trees and the decision
trees in Random Forest are made by the data bootstrapped from the training data.
Bootstrap is to sample data from the original data uniformly with replacement. Therefore,
the data might be chosen more than once to generate decision tree. Furthermore, the result
of Random Forest classifier is the most common result among the results made by the
decision trees in Random Forest classifier. Therefore, Random Forest has not only the

aggregation of data but also the aggregation in model.

doi:10.6342/NTU201602055

Chapter 3 Simulation

We describe the network topology and settings in Section 3.1. In Section 3.2 to 3.4,
we show the explanations of components used in our simulation, including the deluge
client, the data center, the tracker, and the controllers. We introduce the way we define

the user behavior and user types at the end of this chapter.

3.1 Environment

As the Figure 3.1 shows, the network emulated by Mininet consists of three subnets,
and each subnet is governed by one Ryu controller. The middle subnet is SDN network,
and others are traditional networks whose topologies are deployed like a binary tree.
Furthermore, there is a NAT agent emulated by Mininet in SDN switch, and hosts access
the resources outside the internal network through this agent. It is necessary to have this
NAT agent, because the tracker and the data center are outside the emulated network. In
addition to those, there is one host outside these three subnets to provide data in the
beginning and the reason why we put that host outside the network is to make sure the
traffic sent from that host controlled by the SDN network. On the other hand, the NAT
agent must be placed near the SDN switch to make sure that the traffic go through the

SDN network.

10

doi:10.6342/NTU201602055

-.- 1oUgns 1|ouUgns

Hlomisu ylomiau
W VH leuonIpe. L leuonIpe. L H
Jouans NS
v == == I W

w P M M = W

18uaD eyeq 9oL

Figure 3.1: The illustration of our environment.

11

d0i:10.6342/NTU201602055

3.2 Deluge Client

In order to automatically control all of the hosts by ourselves, we use a lightweight

Deluge RPC client on the GitHub [16] edited by user JohnDoee. It is written in python

and contents with our requirement. Deluge RPC client provides libraries to interact with

Deluge daemon directly.

To configure the actions of each host, we define a series of actions in the scripts. We

write a program to enable each host to execute their works by reading their script and

using Deluge client’s libraries to accomplish corresponding tasks. In addition, the

program is set to transmit user data to data center periodically.

The functions in Table 3.1 are the functions that we used in our simulation.

Function name

Description

Get session state

To get the list of executing torrents’ hash value in this session.

Clean session

To delete all of the current torrents in this session.

Add torrent

To add new torrent to this session without starting download

immediately.

Remove torrent

To remove a specific torrent in this session.

Create torrent

To create a torrent file.

Pause torrent

To pause a specific torrent in this session

Resume torrent

To resume a specific torrent in this session.

Get torrent status

To get the detail status of a specific torrent

Limit download speed

To give an upper bound of download speed to a specific

torrent.

Limit upload speed

To give an upper bound of upload speed to a specific torrent.

Sleep

Without giving any command for a specific period of time and

let host keep doing their remaining tasks.

Exit

Printing out the status of all of the torrents and turning off the

daemon of deluge. Execute when all of the jobs are finished.

Table 3.1: The functions used in our deluge client.

12

doi:10.6342/NTU201602055

When it comes to the production of user scripts, the diversity of user scripts is created
by the random starting time of each torrent which are selected from first half of the overall
time and the random ratios of download volume to upload volume. We explain about the
ratio in session 3.6 and 3.7. The script used in our experiment looks like the following
example.

Script example:

Clean_session

Add_torrent torrent_A
Limit_download_speed torrent_A 500
Limit_upload_speed torrent_A 500
Resume_torrent torrent_A

Sleep 10

Add_torrent torrent_B
Limit_download_speed torrent_B 500
Limit_upload_speed torrent_B 500
Resume_torrent torrent_B

Sleep 100

Get_torrent_status torrent_A
Get_torrent_status torrent_B

Exit

3.3 Tracker

Aiming to simplify our experimental environment and extract the information in the
tracker, we build a tracker on our own. We use a simple BitTorrent library on the GitHub

[17] edited by user JosephSalisbury which is written in python entirely and can make us

13

doi:10.6342/NTU201602055

incorporate the BitTorrent protocol into our program easily. Therefore, we can deploy a
tracker by using it easily.
The following are the procedure of a p2p client communicates with a tracker.
1. The client sends request using HTTP method GET.
2. The tracker decodes the request url to get information of the request such as the
client’s IP address, the torrent’s hash value, and the peer id.
3. The tracker returns the list of peers’ id and IP addresses corresponding to the
request torrent.

4. The client makes connections with other peers to obtain the data.

3.4 Data Center

In order to predict the type of user behavior, we gather all of the information sent
from SDN switches, hosts, and the tracker to the data center via TCP connections. The
data center not only saves these data but also extracts features from these raw data to
classify user behavior. Furthermore, data center varies the score of hosts according to the
type of user behavior and decides whether to limit or to ascend the download speed of
each host depending on the score of users periodically. Data center takes advantage of
OVSDB (OpenvSwitch Database) to establish queues to limit the download speed of
hosts and the decision of whether to reconfigure the queues is made right after updating
the score of users. Therefore, the decision is made as frequently as data center updates the

score of users
3.5 Controller
In order to separate the workload and adjust controllers precisely, we use three Ryu

controllers in our experiments and allocate one controller for each subset. We run the

gos_simple_switch_13.py which is modified from the simple_switch_13.py to achieve

14

doi:10.6342/NTU201602055

the QoS function on the controller which governs the middle subnet which is called SDN
subnet. Furthermore, we add the flows which are used to enable the p2p system on our
own so as to make the flows more specific for us to manage. Instead of using the
destination MAC address regardless of the Ethernet type to design the flows, we design
these flows according to the source and destination IP address, and Ethernet type of the
packets such as TCP, UDP and IP. On the other hand, we use the simple_switch_13.py for

other two subnets without adding any flow on our own.

3.6 User Behavior

As mentioned above, every user script has a random ratio of download volume to
upload volume. The clients maintain the ratio as possible as they can during executing.
More precisely, once the uploaded volume excesses the quota it can upload, the maximum
upload rate will be adjusted to a very small value which can also be regarded as not
allowing to upload anymore. Therefore, the host will not be capable of uploading until
the quota to upload is sufficient again. The precise definition of ratio and quota are defined
in the Equation 3.1.

Download volume

Ratio =
ato Upload volume

Download volume
Ratio

Upload quota =

Equation 3.1: The equations of ratio and upload guota.

Due to the trait of retaining the ratio, the diagram of upload volume versus time
might looks like Figure 3.2 which has some straight lines in the diagram if a user’s upload
volume often goes beyond the quota. However, if a user’s upload volume seldom
surpasses the quota, the diagram of upload volume versus time looks like Figure 3.3

which is similar to a linear line.

15

doi:10.6342/NTU201602055

Diagram of upload volume versus time
350

MB)
S

o 250

N
o
o

150
100

Upload volum
3

0

OO I N N - TN W W WOOWO «fd N M
O NN AN AN O O AN

I NN < TN O O N0 0O D

1043
1104
1164
1225
1285
1345

Time (sec)
Figure 3.2: Example diagram of user who often violates the ratio.

Diagram of upload volume versus time

1000
900
800
700
600
500
400
300
200
100

0

Upload volume (MB)

OC OO T T T NN O OO O d d N
O NN A NOMOOOW AN O O AN 0
A A NN T TN O OO0 O

1043
1103
1164
1224
1285
1345

Time (sec)

Figure 3.3: Example diagram of user who almost obeys the ratio all the time.

3.7 User type

In order to find a standard which is general enough and is able to present the P2P

users’ type via their behavior, we consider some ways. Finally, we found there is a suitable

16

doi:10.6342/NTU201602055

solution [18] for our application which is purposed by Manaf Zghaibeh and Kostas G.
Anagnostakis. They use clustering to divide BitTorrent users with distinctive trends into
four clusters and analyze them by the ratio of upload speed to download speed. The users
in the first cluster profit as much as the volume they benefit system. Therefore, the volume
downloaded by them almost equals to the volume uploaded by them. Furthermore, the
users in the second cluster contributed more than twice the volume they downloaded.
After that, the users in the third cluster are those who only want to download such as free
riders. Therefore, volume downloaded by them exceed twice the volume uploaded by
them. Finally, the users in the last cluster download less than twice the volume they
uploaded, but the volume downloaded by them is still more than the volume they
uploaded. In conclusion, we can summarize these attributes by the ratio of download
volume to upload volume which is the download volume divided by the upload volume.

Consider the real situation in reality, we think those who download as much as they
upload are brilliant users, and those who download less than twice of the volume they
upload should be regarded as normal users. Therefore, we also define our classification
in a similar way as following equation.

rO 0 < download
o< upload

. download
1,if 1<————
User behavior class = { duploladd
. ownloa
2 2= =pload
download
upload

<5

3,if 5<

Equation 3.2: The definition of class of user behavior.

17

doi:10.6342/NTU201602055

Chapter 4 User classification and Punishment

In our experiments, the overall execution time is one thousand and four hundred
seconds. The SDN switch, hosts, and the tracker send their information to the data center
every three seconds and the data center classifies user behavior every two hundred
seconds. The ground truth of the type of user behavior is determined by the metric
mentioned in Equation 3.2. Because we simulate the whole P2P environment and define
the users’ behavior by download and upload volume ratio on our own, we know how to
classify the type of user behavior. But if the data of user behavior were not generated by
ourselves, we won’t know how to classify user behavior. Therefore, we have to pretend
that we don’t know how to classify them. However, in order to classify user behavior
without knowing the real classification method, we choose machine learning as our
method to achieve this goal. After being able to classify user behavior, we design a
mechanism to derive the score of users and give rewards or punishments to users
depending on their score. Furthermore, the rewards and punishments are presented in the
form of the upper bound of download speed and they are achieved with the help of Ryu-

QoS and OVSDB.

4.1 User classification

In this section we introduce the features we used for our machine learning model.
4.1.1 Extracted features

Because the raw data for our machine learning model are collected from the SDN
switch, the tracker, and P2P users, we introduce each of them in the order of where they
were extracted from.

e 34 Features come from SDN switch

Because the communications of P2P system work with UDP packets, we extract
18

doi:10.6342/NTU201602055

more elaborate features from UDP packets.

Noted that the flows using Ethernet type IP in the below apply to the traffic using

IPv4 but not UDP or TCP.

Flows indicate packets sent into host:

Table 4.1: Features extracted from the flows in the direction of going into the host.

Feature name

Description

All in number The total number of hosts send packets to this host.

All in byte The total size of packets sent by others to this host.

All in packets The total number of packets sent by others to this host.
UDP in number The total number of hosts send UDP packets to this host.
UDP in byte The total size of UDP packets sent by others to this host.
UDP in packets The total number of UDP packets sent by others to host.
UDP in speed The average speed of UDP traffic sent by others to host.

UDP in packet size

The average size of UDP packets sent by others to host.

UDP in percentage

The percentage that UDP packets sent to host account

among all packets sent to host.

TCP in number

The total number of hosts send TCP packets to this host.

TCP in byte The total size of TCP packets sent by others to this host.
TCP in packets The total number of TCP packets sent by others to host.
TCP in speed The average speed of TCP traffic sent by others to host.
IP in number The total number of hosts send IP packets to this host.
IP in byte The total size of IP packets sent by others to this host.
IP in packets The total number of IP packets sent by others to host.
IP in speed The average speed of IP traffic sent by others to host.

Flows indicate packets sent from the host:

Table 4.2: Features extracted from the flows in the direction of going out of the host.

Feature name

Description

All out number

The total number of hosts this host sends packets to.

19

doi:10.6342/NTU201602055

All out byte

The total size of packets sent by this host.

All out packet

The total number of packets sent by this host.

UDP out number

The total number of hosts this host sends UDP packets to.

UDP out byte The total size of UDP packets sent by this host.
UDP out packets The total number of UDP packets sent by this host.
UDP out speed The average speed of UDP traffic sent by this host.

UDP out packet size

The average size of UDP packets sent by this host.

The percentage that UDP packets sent by this host

UDP out percentage
account among all packets sent by this host.
TCP out number The total number of hosts this host sends TCP packets to.
TCP out byte The total size of TCP packets sent by this host.
TCP out packets The total number of TCP packets sent by this host.
TCP out speed The average speed of TCP traffic sent by this host.

IP out number

The total number of hosts this host sends IP packets to.

IP out byte

The total size of IP packets sent by this host.

IP out packets

The total number of IP packets sent by this host.

IP out speed

The average speed of IP traffic sent by this host.

6 Features come from tracker

There are two sorts of information can be retrieved from the tracker including

peer lists and the events sent from hosts. We concentrate on the data of events

because they are more informative and have more benefits for us. There are three

kinds of events defined in BitTorrent protocol including started, stopped, and

completed. In addition, hosts send their status to the tracker without specified their

event type at regular intervals.

Table 4.3: Features extracted from the tracker.

Feature name

Description

Started count

The number of started events sent by this host.

Stopped count

The number of stopped events sent by this host.

20

doi:10.6342/NTU201602055

The number of events which is used to update status

Middle count _

sent by this host.

The number of active torrents in this host and this
Task count number is calculated by counting how many torrents’

information are sent to the tracker in the time period.

Average download

The average download speed for one torrent and this is
derived by the feature UDP in size divided by the task
count times the time period.

Average upload

The average upload speed for one torrent and this is
derived by the feature UDP out size divided by the task
count times the time period.

6 Features come from P2P users

The hosts send data which are obtained by the deluge API get_torrents_status,

and they are the most accurate information of hosts. We used few of them to avoid

being too dependent on the user’s data which might affect flexibility of our system.

Table 4.4: Features extracted from the hosts.

Feature name

Description

Active percentage

The percentage of time that torrents are active
which means torrents not pause accounts

among all of the time after torrents are added.

Seeding percentage

The percentage of time that torrents are
seeding accounts among all of the time after

torrents are added.

The average download speed of host only

Average payload download speed | considers the volume used for downloading

data.

The average upload speed of host only

Average payload upload speed considers the volume used for uploading

data.

21

doi:10.6342/NTU201602055

The average upload speed limit in the time
o period. This feature is made because the hosts
Average upload speed limit o) s
maintain their download and upload ratio via

restricting their upload speed.

The maximal number of peers in the peer list
Number of peer _ _)
in the time period.

4.2 Punishment

For the sake of being eager to make users have different user experience when they
are using P2P software, we try to fulfill this target by using meter table or Ryu-QoS. As a
result, OpenvSwitch doesn’t support meter table which is used to manipulate QoS with
the real OpenFlow switch. Therefore, we use Ryu-QoS to achieve our goal. Next, we
introduce how Ryu-QoS works with OVSDB and the configurations for the queues we

used in our experiments.
4.2.1 Ryu-QoS

Ryu-QoS governs the QoS with the help of queues which are established by OVSDB,
and the function of QoS are achieved by putting packets into queues. Then, queues pop
the packets at the speed that we set before. In order to achieve this, the Ryu controller
have to run a modified script, and there is a guide of how to modify and use this function
on the official website [19]. In the official website, they modify the script from
simple_switch_13.py, and we also apply this modified script to our controller to achieve
QoS.

There are two flow tables in the SDN switch when running the modified script, and
the flow of asking controller when switch runs into unknown traffic is set to table one.
The flows in table zero are flows that direct packets to specified queue with higher priority

and the flow that direct traffic that doesn’t go into queues to table one with the smallest
22

doi:10.6342/NTU201602055

priority. The action of those packets went into queues are determined by flow table one
after being popped out from the queues. Therefore, we can set the flows for those packets
at table one to control the action of those packets.

When it comes to the settings of queues, the queues are set at each port. The queues
are set at the port which the packets leave the switch. In other words, the packets won’t
be put into the queues which are set at the port that the packets enter switch. Therefore, if
we want to limit the download speed of one host, we should set the limit to the queues

which are set at the port that the switch connects to the host.
4.2.2 Incentive policy

As mentioned before, our machine learning model classifies the types of user
behavior every two hundred seconds, and the total execution time of experiments is one
thousand a four hundred seconds. Therefore, there are seven results of the type of user
behavior. If we punish or reward users depending on one result, we might mistake users
easily. As a result, we assign a score for each user, and the scores update after each
classification. Once the score of a user exceeds the boundary we designed, the limit of
download speed of that user will be increased or decreased. In addition, we think the user
behavior in the first two hundred seconds might be inaccurate, because users just start
downloading in that period. To avoid this problem, we ignore the first result of the type
of user behavior when deriving the score of users. On the other hand, in order to decrease
the throughput of users whose contribution is minor, we limit the download speed of the
users who have extremely low score according to the average speed they ran in the last
period.

Every user has fifty points for their score in the beginning, and the ways to adjust
the score are described in Table 4.5. The limits of download speed and boundary

conditions are described in Table 4.6.
23

doi:10.6342/NTU201602055

Table 4.5: The punishments and rewards according to the type of user behavior.

User behavior class

Punishments and rewards

Class 0 +10
Class 1 +0
Class 2 -5
Class 3 -10
Table 4.6: The limits of download speed and boundary conditions.
User score Limit of download speed
Score >=70 1.1 * Original limit of download speed
Score <= 30 0.8 * Original limit of download speed
Score <= 20 0.8 * Average download speed in the last period

24

doi:10.6342/NTU201602055

Chapter 5 Evaluation

5.1 Hardware and Network Settings

We construct our environment on two quad-core computers equipped with 48G and
24G RAM, and both of them are equipped with Intel 17-6700 whose processor base
frequency is 3.4 GHz. The first computer runs Mininet to emulate the network and hosts,
a tracker, and the program to transmit flows in SDN switch. The other one runs three Ryu
controllers, the data center, and one deluge client.

The versions of Mininet and Ryu are 2.3.0 and 4.2, and the OVS (OpenvSwitch)
using in Mininet has upgraded to version 2.5.0. The OpenFlow used in our environment
is OpenFlow 1.3 which supports more flexible functionalities than OpenFlow 1.0.

In our setting, there is one switch in SDN network which is the middle subnet, and
there are 31 switches and 32 hosts in other two subnets. The IP addresses of the subnet
on the left hand side range between 10.0.0.1 to 10.0.0.32, and the IP addresses of the

subnet on the right hand side range between 10.0.0.101 to 10.0.0.132.

5.2 User Settings

As mentioned in Equation 3.2, we classify user behavior into four classes, and we
design our hosts with different ratios in uniform distribution of the definition of types of
user behavior. Because the hosts do their best to insist the ratio of download volume to
upload volume, the number of users in different user behavior type judged by each
classification in the experiment are almost in uniform distribution. But the results still
might be influenced by network, so the proportion of each type of user behavior might
vary in reality. Every host needs to download three files in different sequence and start
time, and all of these files are in size of 1GB. Table 5.1 is the list of hosts we set in

different types of user behavior and Table 5.2 is part of the table of the original settings
25

doi:10.6342/NTU201602055

of ratio and class of users and the results of users at the end of the experiment.

Furthermore, the whole settings of original ratio and class of users and the result of users

at the end of the experiment are listed in the appendix Al The settings and results of ratio

and the results in the experiment..

Table 5.1: The list of hosts in different types of user behavior in our experiment.

Type of user behavior

List of hosts

10.0.0.1~10.0.0.8,

° 10.0.0.101~10.0.0.108
10.0.0.9~10.0.0.16,

. 10.0.0.109~10.0.0.116
10.0.0.17~10.0.0.24,

? 10.0.0.117~10.0.0.124

3 10.0.0.25~10.0.0.32,

10.0.0.125~10.0.0.132

Table 5.2: Some settings and results of users in the experiment.

User (IP) | Start A | Start B | Start C | Assigned | Real ratio | Assigned | Real

(secs) | (secs) | (secs) |ratio class class
10.0.0.1 41 0 425 0.884916 |1.245719 |0 1
10.0.0.2 | 462 197 0 0.039914 | 0.674308 |0 0
10.0.0.3 96 317 0 0.371101 |1.315166 |O 1
10.0.0.4 399 0 8 0.48192 0.736168 |0 0
10.0.0.5 | 409 0 99 0.677273 |0.818456 |0 0
10.0.0.6 0 314 128 0.114866 | 0.773157 |0 0
10.0.0.7 191 0 367 0.339948 | 0.779852 |0 0
10.0.0.8 0 271 78 0.719426 |1.033248 |0 1
10.0.0.9 85 0 324 1.821038 |[1.818343 |1 1
10.0.0.10 | 334 0 32 1.830658 |1.825156 |1 1
10.0.0.11 | 342 58 0 1460213 | 1.446598 |1 1
10.0.0.12 |0 394 225 1.888212 |1.858233 |1 1

26

doi:10.6342/NTU201602055

10.0.0.13 |0 122 297 1.262097 | 1.254572 |1 it
10.0.0.14 | 40 0 293 1.795436 | 1.870463 |1 1
10.0.0.15 |0 105 239 1.800277 |1.795916 |1 1
10.0.0.16 | 374 47 0 1.550406 |1.535334 |1 1
10.0.0.17 |0 400 105 4.4205 4.520563 |2 2
10.0.0.18 |0 96 358 4809924 | 3.764251 |2 2
10.0.0.19 | 252 31 0 2.079854 | 2.047977 |2 2
10.0.0.20 |0 382 162 4.155343 | 3.895669 |2 2
10.0.0.21 | 135 312 0 4.28031 3.611666 | 2 2
10.0.0.22 |0 181 408 2.92458 2.784938 |2 2
10.0.0.23 |0 241 34 3.366207 | 3.351925 |2 2
10.0.0.24 | 106 312 0 4766747 | 4.654298 |2 2
10.0.0.25 | 34 0 365 789.8285 | 8.804476 |3 3
10.0.0.26 | 192 0 398 153.9201 | 8.879986 |3 3
10.0.0.27 | 212 358 0 423.3413 | 7.045266 |3 3
10.0.0.28 | 350 0 4 76.7151 8.501106 |3 3
10.0.0.29 |0 10 252 811.758 10.74125 |3 3
10.0.0.30 | 325 20 0 538.2712 | 8.527871 |3 3
10.0.0.31 |0 129 328 971.1503 | 6.38173 3 3
10.0.0.32 | 103 0 435 547.7919 |6.940522 |3 3

There are some optimization functions in deluge which are activated by default. In

the general condition, if we don’t want to turn on these optimization functions, we can

deactivate them by canceling the options in the GUI directly. However, we have to modify

the default value of those optimization functions by ourselves in our experiments because

Deluge client doesn’t provide library to adjust preference options. There are two

optimization functions that we think they might influence the results of our experiments,

and we turn them down. The first one is to ignore limits on the local network which will

make our initial settings of hosts become useless and the second one is the local peer

27

doi:10.6342/NTU201602055

discovery which might cause our environment become dissimilar to the real p2p

environment.
5.3 Ryu-QosS setting

Owing to the need to give individual setting for each host and to separate connections’
bandwidth, we use 32 * (32 + 1) +1 queues to manipulate UDP packets which enable P2P
system at ports that the SDN switch used to connect to other switches. Because there are
32 hosts in another subnet, 32 hosts in our subnet, and one host outside the emulated
network, we need 32 * (32 + 1) queues to configure each connection between hosts
according to their IP addresses. In addition to those, it needs one additional queue to let
other traffic to go through.

However, if we only use one queue for each host, the limit we set to the queue will
be the restriction on the total download bandwidth of torrents in the host. But it can’t be
guaranteed that all of the torrents are confined by this mechanism, so we separate each
pair of connections to control them more precisely.

As mentioned before, Ryu-QoS offers RESTful API for us to configure queues and
flows for these queues. But the setting of queues for each port has to be set with one
request, there is no function to add queues to a port one by one. Therefore, the number of
queues for a port might be constrained by the loading RESTful service can afford. In order
to solve this problem, we configure the setting of queues on OVSDB directly without
communicating with Ryu-QoS. Although there are some errors in Ryu-QoS after we

configure queues in this way, the mechanism functions normally.

5.4 User Behavior Classification

When it comes to the machine learning model, we choose Random Forest classifier

as our machine learning model. We use the implementation in package scikit-learn [20]

28

doi:10.6342/NTU201602055

in python, and the parameters of our model are one hundred trees(estimators) and the
maximum depth of decision trees is ten. The model is trained by 3840 data in our
experiments.

Because we classify user behavior into four classes, we have to consider the accuracy
of our results more carefully. If we only consider right or wrong, the difference between
the result which is close to the right answer and the result which is far away from the right
answer will be ignore. Therefore, we design a metric which also give partial points to
estimate the accuracy of results in Table 5.3.

Table 5.3: The metric to estimate accuracy of results.

Result Class 0 Class 1 Class 2 Class 3
Answer
Class 0 1 0.8 0 0
Class 1 0.8 1 0.6 0
Class 2 0 0.6 1 0.8
Class 3 0 0 0.8 1

As we mentioned before, we classify the user behavior every two hundred seconds,
and the score of each user is updated at the same time. On the other hand, the limits of
download speed also vary simultaneously. Table 5.4 demonstrates the accuracy of our
classifications and Table 5.5 shows the classifications of each class in the experiment. As
shown by Table 5.5, the accuracy of class 2 and class 3 users which we concerned more
are higher than others. Furthermore, the classification results in our experiment are put in

the appendix A2 The results of each classification in the experiment.

29

doi:10.6342/NTU201602055

Table 5.4: The accuracies and scores of our result.

Time (secs) Original accuracy Accuracy using our metric
200 0.9375 0.98125
400 0.875 0.95625
600 0.875 0.9625
800 0.84375 0.95
1000 0.78125 0.94375
1200 0.6875 0.88125
1400 0.78125 0.91875
Table 5.5: The results of each class in classifications.
Result

Class 0 Class 1 Class 2 Class 3 Accuracy
Class
Class 0 66 59 0 0 58.928571
Class 1 4 67 37 4 59.821429
Class 2 0 7 83 22 74.107143
Class 3 0 1 32 79 70.535714

5.5 Punishment Results

We have shown the results of classification in the last section. The punishments and

rewards for scores and the restrictions of download speed are defined in Table 4.5 and

Table 4.6. We demonstrate the scores of some users in each class in our experiment in

Figure 5.1 to Figure 5.4. Most of the scores of users we defined in class O are

monotonically non-decreasing, and most of the scores of users we defined in class 3 are

also monotonically non-increasing. Both of these results meet our anticipation. Although

the scores of users in class 1 is not stable, most of them are still in the range of not being

doi:10.6342/NTU201602055

restricted. When it comes to the results of users in class 2, we can tell the difference
between them and the users in class 3 by observing the trend of scores. Most of their
scores of users in class 2 are still higher than the scores of users in class 3. Next, we show
part of the results of limit of download speed in our experiment in Figure 5.5 to Figure
5.8. The results of them are highly correlated with the scores of users, and we can also
observe the difference between users from this view. We put all of the scores of users in
our experiment in the appendix A3 The scores of users in our experiment, and all of the

limits for users in the appendix A4 The limits of download speed in the experiment.

Scores of some users in class 0
100 100

100
90
o %0 70 70 70
S 70
) 60 60 _~—
Y 60
50 50 50 50
50
40
200 400 600 800 1000 1200 1400
Time (secs)
——10.0.0.1 =—10.0.0.2 10.0.0.3 =—10.0.0.4

Figure 5.1: The scores of some users in class 0.

31

doi:10.6342/NTU201602055

Score

Score

55
50
45
40
35
30
25

60
50
40
30
20
10

Scores of some users in class 1

50 50 50
45

200 400 600 800 1000 1200
Time (secs)
——10.0.0.9 =—10.0.0.10 =—10.0.0.11 ==10.0.0.12

Figure 5.2: The scores of some users in class 1.

Scores of some users in class 2

50 50 50
45 45 45
4 40

35

200 400 600 800 1000 1200
Time (sec)
——10.0.0.17 ==10.0.0.18 ===10.0.0.19 ===10.0.0.20

Figure 5.3: The scores of some users in class 2.

32

1400

1400

d0i:10.6342/NTU201602055

50

40

30

Score

20

10

w A U O N 00 O
o O O O O o
o O O o o o

Download speed (Bytes/s)
o
o

Scores of some users in class 3

200 400 600 800 1000 1200 1400
Time (secs)
——10.0.0.25 ==—10.0.0.26 =——10.0.0.27 ==—10.0.0.28
Figure 5.4: The scores of some users in class 3.
The limits for some users in class O
800
732.05
665.5
605
550
500 500 500/%0/500

200 400 600 800 1000 1200 1400
Time (secs)
——10.0.0.1 ==10.0.0.2 ==10.0.0.3 ==10.0.0.4

Figure 5.5: The limits of download speed for some users in class 0.

33

d0i:10.6342/NTU201602055

The limits for some users in class 1

550
Q) 500 500 500 500 500 500 500
(%]

o 500

]

@

= 450

3 400
9 400

(%]

2 350

i)

S 300

8 200 400 600 800 1000 1200 1400

Time (secs)
—10.0.09 —10.0.0.10 —10.0.0.11 =——10.0.0.12

Figure 5.6: The limits of download speed for some users in class 1.

The limits for some users in class 2
600

0 500 500 500 500 500 500
S~
@ 500
& 400 wo
& 400 320
D 300
3
»n 200
o)
8 100
=
3 0 —
a 200 400 600 800 1000 1200 1400
Time (secs)
——10.0.0.17 ==—10.0.0.18 ==—10.0.0.19 ==10.0.0.20

Figure 5.7: The limits of download speed for some users in class 2.

34

d0i:10.6342/NTU201602055

The limits for some users in class 3
600

% 500 500
4 500
g 400
& 400
D 300
o
n 200
©
3 100
c
% 0
o 200 400 600 800 1000 1200 1400
Time (sec)
—10.0.0.25 10.0.0.26 10.0.0.27 ==10.0.0.28

Figure 5.8: The limits of download speed for some users in class 3.

In order to realize the effect of limits, we show the diagram of average download
speed versus time of 10.0.0.25 in Figure 5.9. The last part of the curve in Figure 5.9 goes
up because the connections with users in another subnet are restricted by our mechanism,
so he connects to the users in the same subnet as him. Therefore, the effect of our
mechanism is limited by the number of SDN switches and the effect of our mechanism
might amplifies with more SDN switches. On the other hand, we compare the average
result of users in class 3 in our experiment to the average result of users in class 3 using
original incentive policy in Figure 5.10. In our experiment, most of the users in class 3
are restricted by our mechanism since night hundred seconds, and the curve of our result

also starts to be below the curve made by original incentive policy from then on.

35

doi:10.6342/NTU201602055

Average download speed

80000
70000
60000
< 50000
© 40000
< 30000
© 20000
10000

(Bytes/s)

spee

Downloa

200 400 600 800 1000 1200 1400
Time (sec)

Figure 5.9: The diagram of average download speed versus time of 10.0.0.25.

Average download speed

eed (Bytes/s)

200 400 600 800 1000 1200 1400
Time (secs)

Download s

——Result ===Qriginal

Figure 5.10: The comparison of average result of users in class 3.

36

d0i:10.6342/NTU201602055

Chapter 6 Conclusion

In this thesis, we simulate different kinds of BitTorrent users via assigning different
ratio of download volume to upload volume to users. We also build a tracker on our own
so as to get the information of the tracker. With the help of SDN, we manipulate the
network and analyze the traffic via the flows we added. Furthermore, we also get much
information from switches. We can observe from the results of classification that the
accuracy of our model is good enough for our experiments and the design of the score for
users bears some faults when the classifications go wrong. Next, the function to give
punishments and rewards which are the limits of download speed is accomplished with
the aid of Ryu-QoS and OVSDB which are different from the common one used with the
real OpenFlow switch. Because the decision of giving punishments or rewards to users
depends on the score of users, the results of classification influence the result of
experiments tremendously. Therefore, we can see the limits which are set by our
mechanism for the users in the experiment are suitable for them. Furthermore, the curve
of users who almost contribute nothing exactly goes down because of our punishments
which is the target of this thesis.

The network environment we designed in this thesis considers the difficulty of
deploying SDN in large scale which might be caused by the expensive price of OpenFlow
infrastructures and the problems caused by the transformation to SDN. Furthermore, we
think that the network environment can become more complicated and the way to
simulate p2p user can also be more human-like.

In conclusion, we propose a mechanism that reinforces the existing incentive policy
by decreasing the traffic of bad users and increasing the QoS of good users. We think it

can be deployed to real world and the effect will be amplified with more SDN switches.

37

doi:10.6342/NTU201602055

Bibliography

[1] RFC 1 https://tools.ietf.org/html/rfcl

[2] Official BitTorrent Specification http://www.bittorrent.org/beps/bep _0003.html

[3] Cohen, B. (2003, June). Incentives build robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer systems (Vol. 6, pp. 68-72).

[4] Buragohain, C., Agrawal, D., and Suri, S. (2003). A game theoretic framework for
incentives in P2P systems. arXiv preprint cs/0310039.

[5] Feng, H., Zhang, S., Liu, C., Yan, J., and Zhang, M. (2008, October). P2P incentive
model on evolutionary game theory. In 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing (pp. 1-4). IEEE.

[6] Wang, T. M., Lee, W. T., Wu, T. Y., Wei, H. W., and Lin, Y. S. (2012, March). New
p2p sharing incentive mechanism based on social network and game theory. In
Advanced Information Networking and Applications Workshops (WAINA), 2012
26th International Conference on (pp. 915-919). IEEE.

[7] Rius, J., Cores, F., and Solsona, F. (2009, October). A new credit-based incentive
mechanism for p2p scheduling with user modeling. In Advances in P2P Systems,
2009. AP2PS'09. First International Conference on (pp. 85-91). IEEE.

[8] Feldman, M., and Chuang, J. (2005). Overcoming free-riding behavior in peer-to-peer
systems. ACM sigecom exchanges, 5(4), 41-50.

[9] Fundation, Open Networking. "Software-defined networking: The new norm for

networks." ONF White Paper (2012).

38

doi:10.6342/NTU201602055

[10] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., ... and Turner, J. (2008). OpenFlow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review, 38(2), 69-74.
[11] Ryu https://osrg.github.io/ryu/
[12] Mininet http://mininet.org/
[13] Deluge http://deluge-torrent.org/
[14] Libtorrent http://www.libtorrent.org/

[15] Ho, T. K. (1998). The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.
[16] Deluge RPC Client https://github.com/JohnDoee/deluge-client
[17] python-bittorent https://github.com/JosephSalisbury/python-bittorrent

[18] Zghaibeh, M., and Anagnostakis, K. G. (2007). On the impact of p2p incentive

mechanisms on user behavior. NetEcon+ IBC.
[19] Ryu-QosS https://osrg.github.io/ryu-book/en/html/rest_qos.html
[20] Random Forest Classifier usage in scikit-learn

http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

39

doi:10.6342/NTU201602055

APPENDIX

Al The settings and results of ratio and the results in the

experiment.
User (IP) | Start A | Start B | Start C | Assigned | Real ratio | Assigned | Real
(secs) | (secs) | (secs) | ratio class class
10.0.0.1 41 0 425 0.884916 |1.245719 |0 1
10.0.0.2 462 197 0 0.039914 | 0.674308 |0 0
10.0.0.3 96 317 0 0.371101 | 1.315166 |0 1
10.0.04 399 0 8 0.48192 0.736168 |0 0
10.0.0.5 | 409 0 99 0.677273 |0.818456 |0 0
10.0.0.6 0 314 128 0.114866 | 0.773157 |0 0
10.0.0.7 191 0 367 0.339948 | 0.779852 |0 0
10.0.0.8 0 271 78 0.719426 | 1.033248 |0 1
10.0.0.101 | 0 15 390 0.65757 0.711114 |0 0
10.0.0.102 | 227 437 0 0.185042 | 1.090013 |0 1
10.0.0.103 | 340 85 0 0.153184 | 0.760487 |0 0
10.0.0.104 | 286 0 118 0.679437 |0.926505 |0 0
10.0.0.105 | 0 129 311 0.532109 | 0.80705 0 0
10.0.0.106 | 370 3 0 0.09197 0.724608 |0 0
10.0.0.107 | 0 32 450 0.867589 | 1.036571 |0 1
10.0.0.108 | 264 204 0 0.83036 0.829978 |0 0
10.0.0.9 85 0 324 1.821038 |1.818343 |1 1
10.0.0.10 | 334 0 32 1.830658 | 1.825156 |1 1
10.0.0.11 | 342 58 0 1.460213 |1.446598 |1 1
10.0.0.12 |0 394 225 1.888212 |1.858233 |1 1
10.0.0.13 |0 122 297 1.262097 | 1.254572 |1 1
10.0.0.14 |40 0 293 1.795436 | 1.870463 |1 1
10.0.0.15 |0 105 239 1.800277 |1.795916 |1 1
10.0.0.16 | 374 47 0 1550406 |1.535334 |1 1

40

doi:10.6342/NTU201602055

10.0.0.109 | 303 125 0 1.84064 1.822345 |1 it
10.0.0.110 | O 273 119 1.191501 |1.604228 |1 1
10.0.0.111 | O 303 59 1.89474 1.890655 |1 1
10.0.0.112 | 39 264 0 1.925854 | 2.002155 |1 2
10.0.0.113 | O 102 327 1.446189 |1.498526 |1 1
10.0.0.114 | 0 448 190 1.261859 |1.281413 |1 1
10.0.0.115 | 226 0 280 1.547186 | 1.543869 |1 1
10.0.0.116 | O 73 463 1.994733 |1.989381 |1 1
10.0.0.17 |0 400 105 4.4205 4520563 |2 2
10.0.0.18 |0 96 358 4809924 | 3.764251 |2 2
10.0.0.19 | 252 31 0 2.079854 | 2.047977 |2 2
10.0.0.20 |0 382 162 4.155343 | 3.895669 |2 2
10.0.0.21 | 135 312 0 4.28031 3.611666 | 2 2
10.0.0.22 |0 181 408 2.92458 2.784938 |2 2
10.0.0.23 |0 241 34 3.366207 | 3.351925 |2 2
10.0.0.24 | 106 312 0 4766747 | 4.654298 |2 2
10.0.0.117 | 443 0 77 2.758379 | 2.930438 |2 2
10.0.0.118 | 0 322 78 4765149 | 4.457629 |2 2
10.0.0.119 | 0 30 334 4474082 |4.116043 |2 2
10.0.0.120 | 334 0 133 2.735372 | 2.595598 |2 2
10.0.0.121 | 447 0 0 3.588882 | 3.350851 |2 2
10.0.0.122 | 3 0 238 3.236016 | 3.198239 |2 2
10.0.0.123 | 147 235 0 4.221534 | 3.766582 |2 2
10.0.0.124 | 46 376 0 3.627607 |3.301934 |2 2
10.0.0.25 | 34 0 365 789.8285 | 8.804476 |3 3
10.0.0.26 | 192 0 398 153.9201 | 8.879986 |3 3
10.0.0.27 | 212 358 0 423.3413 | 7.045266 |3 3
10.0.0.28 | 350 0 4 76.7151 8.501106 |3 3
10.0.0.29 |0 10 252 811.758 10.74125 |3 3
10.0.0.30 | 325 20 0 538.2712 | 8.527871 |3 3
10.0.0.31 |0 129 328 971.1503 | 6.38173 3 3
10.0.0.32 | 103 0 435 547.7919 | 6.940522 |3 3

41

doi:10.6342/NTU201602055

10.0.0.125] 0 276 |67 576.1131 | 6.972367 |3 3
10.0.0.126 [230 [322 |0 18.14696 |6.031273 |3 3
10.0.0.127 | 277 [192 |0 207.7989 | 10.28625 |3 3
10.0.0.128 [122 |0 289 [182.3024 [6.311149 |3 3
10.0.0.129 | 43 438 |0 375.4619 |10.16128 |3 3
10.0.0.130 | 0 318 |97 594.7106 | 9.332156 |3 3
10.0.0.131[145 |0 446 [930.1203 |6.979398 |3 3
10.0.0.132 [367 |20 0 669.1685 | 6.266286 |3 3
A2 The results of each classification in the experiment
Time

e 200 400 600 800 1000 | 1200 | 1400
100.01 |0 1 0 1 1 0 1
100.02 |0 0 0 0 0 0 0
100.03 |1 1 1 1 1 1 1
100.04 |0 0 0 0 0 1 0
100.05 |1 1 1 1 1 1 1
100.06 |1 1 1 1 1 1 0
100.07 |0 0 0 0 0 0 0
10.008 |0 0 0 0 0 0 1
100.09 |1 1 1 2 2 2 2
10.0.0.10 |1 1 1 2 3 1 2
100011 |1 2 1 2 1 1 1
100012 |1 2 2 1 1 1 1
10.0.0.13 |1 1 0 1 0 0 1
10.0.0.14 |1 1 1 3 3 1 2
10.0.0.15 |1 2 1 2 2 1 2
10.0.0.16 |1 1 1 1 1 1 1
10.0.0.17 |3 2 3 2 2 2 2
10.0.0.18 |2 2 3 2 3 2 3
10.0.0.19 |1 1 1 2 2 2 2

42

doi:10.6342/NTU201602055

10.0.0.20

10.0.0.21

10.0.0.22

10.0.0.23

10.0.0.24

10.0.0.25

10.0.0.26

10.0.0.27

10.0.0.28

10.0.0.29

10.0.0.30

10.0.0.31

10.0.0.32

10.0.0.101

10.0.0.102

10.0.0.103

10.0.0.104

10.0.0.105

10.0.0.106

10.0.0.107

10.0.0.108

10.0.0.109

10.0.0.110

10.0.0.111

10.0.0.112

10.0.0.113

10.0.0.114

10.0.0.115

10.0.0.116

10.0.0.117

10.0.0.118

10.0.0.119

N W N | | N N PP N P P O P O k| O O O N N W DO N DN DN WO N | N N DD

W N | N PN R R P P P O k| O O O O W W W w w w w w w N N w N

N N N P DN N NN O NP PP P O O kP O W W W W W w w w N N N N w

W N N N N PP PN PN P O P O kP O O P W W W W W w w w w N N N w

N N N N P P P PP P P O P O O O k| O O] W W W N W N W N N N N NN

W W N P N P PN PP P W O O k| O O O P W N Pl W W N W N N N N NN

N N N N N PN DN DN PP O PP O O O P O N W W W W N W W | N DN N DD

43

doi:10.6342/NTU201602055

10.0.0.120 | 2 2 2 3 2 2 2
10.0.0.121 | 2 2 3 2 2 2 2
10.0.0.122 | 2 2 2 2 2 2 1
10.0.0.123 | 3 2 3 3 2 3 2
10.0.0.124 | 2 2 2 2 2 2 3
10.0.0.125 | 3 3 3 3 2 3 3
10.0.0.126 | 2 3 3 3 3 3 3
10.0.0.127 | 2 3 3 3 3 2 2
10.0.0.128 | 2 3 3 2 3 3 3
10.0.0.129 | 2 3 3 3 2 2 3
10.0.0.130 | 3 3 3 3 3 2 2
10.0.0.131 | 2 3 3 3 3 2 2
10.0.0.132 | 3 3 3 3 2 2 2
A3 The scores of users in our experiment
Time
e 200 400 600 800 1000 | 1200 | 1400
10.0.0.1 60 50 60 60 60 70 70
10.0.0.2 60 60 70 80 90 100 100
10.0.0.3 50 50 50 50 50 50 50
10.0.0.4 60 60 70 80 90 90 100
10.0.05 50 50 50 50 50 50 50
10.0.0.6 50 50 50 50 50 50 60
10.0.0.7 60 60 70 80 90 100 100
10.0.0.8 60 60 70 80 90 100 100
10.0.0.9 50 50 50 45 40 35 30
10.0.0.10 50 50 50 45 35 35 30
10.0.0.11 50 45 45 40 40 40 40
10.0.0.12 50 45 40 40 40 40 40
10.0.0.13 50 50 60 60 70 80 80
10.0.0.14 50 50 50 40 30 30 25

44

doi:10.6342/NTU201602055

10.0.0.15 50 45 45 40 35 35 30
10.0.0.16 50 50 50 50 50 50 50
10.0.0.17 40 45 35 30 25 20 1
10.0.0.18 45 45 35 30 20 15 5
10.0.0.19 50 50 50 45 40 35 30
10.0.0.20 45 45 35 25 20 15 10
10.0.0.21 45 40 35 30 25 20 15
10.0.0.22 45 45 40 35 30 25 20
10.0.0.23 50 45 40 35 30 25 20
10.0.0.24 45 40 35 25 15 10 5
10.0.0.25 40 40 30 20 15 10 0
10.0.0.26 45 40 30 20 10 0 0
10.0.0.27 45 40 30 20 15 10 5
10.0.0.28 45 40 30 20 10 0 0
10.0.0.29 45 40 30 20 15 5 0
10.0.0.30 40 40 30 20 10 10 0
10.0.0.31 45 40 30 20 10 5 0
10.0.0.32 45 40 30 20 10 0 0
10.0.0.101 60 60 70 70 80 80 90
10.0.0.102 60 60 60 70 80 90 90
10.0.0.103 60 60 70 80 80 90 100
10.0.0.104 50 60 70 70 80 90 100
10.0.0.105 60 50 50 60 70 70 80
10.0.0.106 50 60 60 60 70 80 80
10.0.0.107 60 50 50 60 60 70 70
10.0.0.108 50 50 50 50 60 60 70
10.0.0.109 50 50 45 40 40 30 30
10.0.0.110 45 50 60 60 60 60 60
10.0.0.111 50 50 45 40 40 40 35
10.0.0.112 50 50 45 45 45 40 35
10.0.0.113 45 45 40 40 40 40 35
10.0.0.114 45 50 45 45 45 45 45

45

doi:10.6342/NTU201602055

10.0.0.115 50 50 50 45 45 40 35
10.0.0.116 50 45 45 40 35 35 30
10.0.0.117 45 50 45 40 35 30 Vi |
10.0.0.118 40 45 40 35 30 20 15
10.0.0.119 45 40 35 25 20 10 5
10.0.0.120 45 45 40 30 25 20 15
10.0.0.121 45 45 35 30 25 20 15
10.0.0.122 45 45 40 35 30 25 25
10.0.0.123 40 45 35 25 20 10 5
10.0.0.124 45 45 40 35 30 25 15
10.0.0.125 40 40 30 20 15 5 0
10.0.0.126 45 40 30 20 10 0 0
10.0.0.127 45 40 30 20 10 5 0
10.0.0.128 45 40 30 25 15 5 0
10.0.0.129 45 40 30 20 15 10 0
10.0.0.130 40 40 30 20 10 5 0
10.0.0.131 45 40 30 20 10 5 0
10.0.0.132 40 40 30 20 15 10 5

A4 The limits of download speed in the experiment

Time 200 400 600 800 1000 1200 1400

User

10.0.0.1 | 500 500 500 500 500 550 605
10.0.0.2 500 500 550 605 665.5 732.05 800
10.0.0.3 | 500 500 500 500 500 500 500
10.0.04 | 500 500 550 605 665.5 732.05 | 800
10.0.0.5 500 500 500 500 500 500 500
10.0.0.6 | 500 500 500 500 500 500 500
10.0.0.7 | 500 500 550 605 665.5 732.05 | 800
10.0.0.8 500 500 550 605 665.5 732.05 800
10.0.0.9 | 500 500 500 500 500 500 400

46

doi:10.6342/NTU201602055

10.0.0.10 | 500 500 500 500 500 500 400
10.0.0.11 | 500 500 500 500 500 500 500
10.0.0.12 | 500 500 500 500 500 500 500
10.0.0.13 | 500 500 500 500 550 605 665.5
10.0.0.14 | 500 500 500 500 400 320 256
10.0.0.15 | 500 500 500 500 500 500 400
10.0.0.16 | 500 500 500 500 500 500 500
10.0.0.17 | 500 500 500 400 320 3.20643 | 13.26595
10.0.0.18 | 500 500 500 400 6.673132 | 9.775215 | 5.688183
10.0.0.19 | 500 500 500 500 500 500 400
10.0.0.20 | 500 500 500 400 4.064245 | 9.228811 | 4.05011
10.0.0.21 | 500 500 500 400 320 1.325438 | 15.77299
10.0.0.22 | 500 500 500 500 400 320 9.378958
10.0.0.23 | 500 500 500 500 400 320 3.980438
10.0.0.24 | 500 500 500 400 3.932045 | 2.582617 | 1.797049
10.0.0.25 | 500 500 400 9.217264 | 2.538147 | 0.594299 | 4.733323
10.0.0.26 | 500 500 400 6.945305 | 6.052735 | 9.83764 | 7.568698
10.0.0.27 | 500 500 400 10.39613 | 4.381874 | 3.723782 | 2.544921
10.0.0.28 | 500 500 400 5.221014 | 5.923098 | 9.487395 | 5.967362
10.0.0.29 | 500 500 400 6.890401 | 3.251936 | 5.5831 6.226962
10.0.0.30 | 500 500 400 12.57642 | 9.437791 | 1.320049 | 8.008124
10.0.0.31 | 500 500 400 9.680669 | 7.447256 | 3.941379 | 13.28123
10.0.0.32 | 500 500 400 10.3773 | 6.391455 | 6.94082 | 1.518815
10.0.0.101 | 500 500 550 605 665.5 732.05 800
10.0.0.102 | 500 500 500 550 605 665.5 732.05
10.0.0.103 | 500 500 550 605 665.5 732.05 800
10.0.0.104 | 500 500 550 605 665.5 732.05 800
10.0.0.105 | 500 500 500 500 550 605 665.5
10.0.0.106 | 500 500 500 500 550 605 665.5
10.0.0.107 | 500 500 500 500 500 550 605
10.0.0.108 | 500 500 500 500 500 500 550
10.0.0.109 | 500 500 500 500 500 400 320

47

doi:10.6342/NTU201602055

10.0.0.110 | 500 500 500 500 500 500 500
10.0.0.111 | 500 500 500 500 500 500 500
10.0.0.112 | 500 500 500 500 500 500 500
10.0.0.113 | 500 500 500 500 500 500 500
10.0.0.114 | 500 500 500 500 500 500 500
10.0.0.115 | 500 500 500 500 500 500 500
10.0.0.116 | 500 500 500 500 500 500 400
10.0.0.117 | 500 500 500 500 500 400 320
10.0.0.118 | 500 500 500 500 400 4.86858 | 3.668996
10.0.0.119 | 500 500 500 400 3.020411 | 5.000126 | 2.151772
10.0.0.120 | 500 500 500 400 320 2.667733 | 7.222553
10.0.0.121 | 500 500 500 400 320 4.303859 | 3.419651
10.0.0.122 | 500 500 500 500 400 320 256
10.0.0.123 | 500 500 500 400 14.36651 | 6.219651 | 3.67722
10.0.0.124 | 500 500 500 500 400 320 5.272548
10.0.0.125 | 500 500 400 6.427822 | 3.766698 | 2.478595 | 5.771572
10.0.0.126 | 500 500 400 6.50471 | 6.090747 | 4.424632 | 9.236886
10.0.0.127 | 500 500 400 5.063313 | 7.069094 | 3.496942 | 1.299338
10.0.0.128 | 500 500 400 320 5.584055 | 5.048192 | 4.928523
10.0.0.129 | 500 500 400 7.041679 | 3.784749 | 1.909335 | 5.560133
10.0.0.130 | 500 500 400 4.5528 1.654478 | 4.044659 | 0.697594
10.0.0.131 | 500 500 400 7.875766 | 5.663821 | 2.63108 | 2.345327
10.0.0.132 | 500 500 400 4.24055 | 2.629359 | 2.458075 | 2.318086

48

doi:10.6342/NTU201602055

	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Software-defined Network
	2.1.1 SDN Architecture
	2.1.2 OpenFlow
	2.1.3 Ryu
	2.1.4 Mininet

	2.2 Peer to peer
	2.2.1 BitTorrent

	2.3 Incentive policy in BitTorrent
	2.4 Deluge
	2.5 Random Forest Classifier

	Chapter 3 Simulation
	3.1 Environment
	3.2 Deluge Client
	3.3 Tracker
	3.4 Data Center
	3.5 Controller
	3.6 User Behavior
	3.7 User type

	Chapter 4 User classification and Punishment
	4.1 User classification
	4.1.1 Extracted features

	4.2 Punishment
	4.2.1 Ryu-QoS
	4.2.2 Incentive policy

	Chapter 5 Evaluation
	5.1 Hardware and Network Settings
	5.2 User Settings
	5.3 Ryu-QoS setting
	5.4 User Behavior Classification
	5.5 Punishment Results

	Chapter 6 Conclusion
	Bibliography
	APPENDIX
	A1 The settings and results of ratio and the results in the experiment.
	A2 The results of each classification in the experiment
	A3 The scores of users in our experiment
	A4 The limits of download speed in the experiment

