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摘要

旁通道分析對密碼裝置的實作是一個強大的威脅，而差分能量分析是旁通道分

析中的一個以高效率而聞名的分支。然而，當差分能量分析被應用在演算法中有

未知替換盒的情況時，它會因為需要列舉過多的替換盒可能性而無法達成。本文

使用代數旁通道分析來處理未知替換盒的問題。結果顯示，若存在一個模板能提

供旁通道資訊，則代數旁通道分析可成功取得Serpent演算法的未知替換盒及回合

密鑰。

關鍵字: 旁通道攻擊, 代數旁通道分析, 未知替換盒, Serpent 加密演算法
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Abstract

Side-Channel Analysis (SCA) is a powerful threat against the implementation of

cryptographic devices. And Di�erential Power Analysis (DPA) is a popular type of

SCA because of its e�ciency. However, when applying DPA to an algorithm with

unknown S-Box, DPA could not work well due to the large enumerating space of

S-Box. In this thesis, we use Algebraic Side-Channel Analysis (ASCA) to deal with

the unknown S-Box problem. The result shows that the unknown S-Boxes and secret

round keys of Serpent can be retrieved if a template which provides the side-channel

information is given.

Keywords: Side-Channel Attacks, Algebraic Side-Channel Analysis, Unknown

S-Box, Serpent
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Chapter 1

Introduction

1.1 Motivation

When a cryptographic algorithm is implemented on physical devices, the threat from

Side-Channel Analysis (SCA) should be considered even the algorithm is secure un-

der mathematical analysis. SCA utilizes the unintended data-dependent "leakage",

for example timing, power consumption or electromagnetic radiation, leaked from

the devices during their encryption or decryption. These leakages are called "side-

channel leakages" and SCA is viewed as a "gray-box" cryptanalysis since it provides

additional side-channel leakages information in addition to input/output.

In 1999, Paul Kocher et al. proposed Di�erential Power Analysis (DPA) [KJJ99],

which e�ciently extracts the secret keys of DES by the power consumption along

with some simple statistical techniques. DPA soon becomes popular and many

variants are published in the following years. For example, Correlation Power Anal-

ysis (CPA) [BCO04], Mutual Information Analysis (MIA) [GBTP08] and Linear

Regression-based DPA [DPRS11]. These new method improve the performance of

the original DPA and successfully steal the secrets of many unprotected block ciphers

including the AES standard Rijndael.

Some countermeasures against DPA are also studied in recent years. Masking

1
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[BGK04][MPO05] and threshold implementation [NRR06] use random numbers to

hide the secret intermediate values of the algorithm. On the other hand, some pro-

tections try to randomise the order of algorithm to cut o� the relationship between

power and the operations during encryptions [VMKS12]. The countermeasures men-

tioned above usually need much more space and time. Also, some countermeasures

are still breakable, e.g. High-Order DPA against masking [JPS05], though more

e�orts for the attackers. Thus, some other countermeasures focus on �nding a se-

cure variants of the original algorithm to reduce the overhead. [RS05] is the �rst

work that applies random isomorphic AES to protect from SCA. And in [JCCC07]

[WSH+10], di�erent but secure SubBytes, ShiftRows and MixColumns of AES are

chosen on the �y. However, most of DPAs deal with unknown key scenario. They

usually assume that the attackers know all of the algorithms except the key. There-

fore, DPA may fails against these countermeasures.

1.2 Related Works

[Nov03] is the �rst paper that attempts to recover a lookup table implementation

substitution block by SCA. Novak's work analyses GSM authentication algorithm

that has several consecutive substitution tables. But in most of the block ciphers,

there exist too much functions between two S-Boxes. Besides, some papers in the

area of Side-Channel Attack Reverse Engineering (SCARE) discuss the similar prob-

lem. [GSM+10] is a notable work that uses SCARE techniques to retrieve the un-

known S-Box of symmetric algorithms. Nevertheless, SCARE could not be a good

solution to the countermeasures that choosing di�erent S-Box online. Since SCARE

needs attackers to hold the identical devices on hand. But to those countermeasures,

simply changing to another S-Box can make SCARE in vain.

The �rst work that connected algebraic analysis and SCA is Renauld's Alge-

braic Side-Channel Attack (ASCA) [RSV09]. This work deals with AES in un-

2
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known key and unknown plaintext/ciphertext scenario. An improved method based

on Renauld's work is proposed at [MBZ+12]. The way we transform side-channel

information in this thesis is inspired by this work.

A successful ASCA relys on precise templates. Template attack (TA)[CRR02] is

proposed at 2002, which is a strongest form of SCA. TA can be viewed as an oracle

that can tell us what property a particular intermediate value holds once a good

template exists. In [APSQ06], TA is performed in the principal space of the power

traces, that makes the templates more e�ective. [CK13] is another improvement

that avoids numerous computations when building the templates.

1.3 Contributions

In this work, we �rstly apply the Algebraic Side-Channel Analysis to deal with

the SCA countermeasures which use similar variants of original standard ciphers.

To simplify the analysis, only S-Box in the block cipher will be changed. Note that

Template Attack also needs to pro�le some information. But in contrast to SCARE,

the pro�led template can be applied to another cipher with di�erent S-Box. The

targeted cipher of the analysis is Serpent, one of the AES �nalists. The results show

that the function of the S-Boxes along with the secret keys will be found by the

attack in 3 traces.

We do not perform a practical Template Attack. But since TA is a mature

technique that discussed in many literature, it is assumed that we have a template

that always gives the correct answer. Actually, the experiment in [HTM09] shows

that TA can achieve 99.5% success rate in a 8-bit microprocessor for the Hamming

Weight (HW) of a byte. Despite 47% success rate for a 32-bit core, we can set our

ASCA transformer to tolerate 1 Hamming Weight error such that 93% success rate

is promised (See Table 1.1). The number of needed traces for this case increases

inevitably, but it can still be solved in 9 traces.

3
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Table 1.1: Success Rate of TA for 1,000 traces [HTM09]

HW error 8-bit Microprocessor 32-bit ARM
0 99.5 47.0
1 0.5 46.0
2 0.0 6.2
3 0.0 0.8
>3 0.0 0.0

1.4 Roadmap

In chapter 2, we introduce the preliminary knowledge including the idea of tem-

plate attack, SAT problem and a sketch of Serpent algorithm. In chapter 3, we will

precisely de�ne the problem and present our main analysis. In chapter 4, the exper-

iments and their results are demonstrated. In chapter 5, we make a brief conclusion

and discuss the future prospects.

4
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Chapter 2

Preliminaries

2.1 Template Attacks (TA)

Template attack (TA) is a strongest type of SCA. If the attackers want to perform

TA, they need to hold a device identical to the target device. So that attackers can

set any key, input any plaintext and even modify parts of algorithm. Thus, a lot

of traces can be collected and with properly analysis, attackers are able to build

a "Template" which we can view as an oracle that input a trace and give us the

Side-Channel information.

Typically, a template may be built for input key-plaintext pair, intermediate

value or power models. For example, a template built for intermediate value is a

oracle that reads a new trace and return the most possible intermediate value.

In this work, we are going to build templates with Hamming Weight power

model.

De�nition 2.1.1. Hamming Weight (HW)

HammingWeight (HW) of a byte is the number of one in the byte, e.g. HW (00101101) =

4, HW (11100101) = 5.

Assumption 1. The power consumption of a byte processed by CPU is proportional

to the Hamming Weight of the byte.

5
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Assumption 1 is reasonable since most of the modern processors are fabricated in

CMOS technology. And the CMOS consumes much more power when internal states

in circuit changed. Therefore, when data transferring through the pre-charged bus,

a part of the real power consumption will be proportional to the Hamming Weight

of the transferred data. Furthermore, the remaining parts of power consumption

can be modeled by a Gaussian distribution. So it is possible to characterize the

power consumption to the Hamming Weight when a lot of consumption collected.

In [MOP07], more discussions about the relation between power consumption and

processed data are stated.

In the following we will brie�y show how we build the template for bytes of

interest in our work.

2.1.1 Template Building

Every byte of interest should have a template. We denote Ti as the i
th trace, which

is a s × 1 vector with s sampling points. And v is the intermediate byte for which

we want to build templates.

1. Choose random keys and plaintexts to perform the encryptions and record

T1,T2, · · ·Tn.

2. Choose several points of interest, say m points. Let T′i be the i
th trace only

with these m points.

3. Calculate v according to the keys and plaintexts then separate the traces by

the Hamming Weight (0 to 8) of v

4. For each HW (v) = w, say includes the traces T′1, · · ·T′nw , calculate:

• Mw = 1
n

∑nw

j=1T
′
j (Mean vector)

• Cw = 1
n

∑nw

j=1(T
′
j −Mw)(T

′
j −Mw)

t (Covariance matrix)

6
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2.1.2 Template Matching

1. Record a trace t and take the points of interest t′.

2. For each HW = w, calculate the probability:

prob(HW = w) =
exp(−1

2
· (t′ −Mw)

′ ·C−1w · (t′ −Mw))√
(2π)m · det(Cw)

3. Rank the probability to get the most likely HW value.

2.2 Boolean Satis�ability Problem (SAT)

De�nition 2.2.1. Boolean Formula

An Boolean formula is constructed by variables using binary operators OR(∨),

AND(∧) and unary operator NOT(¬).

For example, (a ∨ ¬c) ∧ (b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c) is a Boolean formula.

De�nition 2.2.2. Formula Evaluation

To evaluate a formula, each variable is assigned to 0 (FALSE) or 1 (TRUE). Then

following the rules de�ned in Table 2.1, a formula will get a deterministic truth value

0 or 1.

Table 2.1: Truth tables of ∨, ∧ and ¬

a b a ∨ b
0 0 0
0 1 1
1 0 1
1 1 1

a b a ∧ b
0 0 0
0 1 0
1 0 0
1 1 1

a ¬a
0 1
1 0

7
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De�nition 2.2.3. Boolean Satis�ability Problem (SAT)

Given a Boolean formula, check if there exists a appropriate assignment to each

variable such that the formula is TRUE. If so, the formula is satis�able.

For example, the assignment a = 1, b = 0, c = 0 satis�es (a ∨ ¬c) ∧ (b ∨ ¬c) ∧

(¬a ∨ ¬b ∨ c) . And (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ ¬b) is an unsatis�able

example since for all possible assignments, the result are always zero.

De�nition 2.2.4. Literal

A literal is a variable or its negation, e.g. a, ¬b .

De�nition 2.2.5. Clause

A clause is a series of literals connected by ORs, e.g. a ∨ ¬b ∨ c, a ∨ ¬c .

De�nition 2.2.6. Conjunctive Normal Form (CNF)

A Conjunctive Normal Form is a Boolean formula which consists of a series of clauses

connected by ANDs, e.g. (a ∨ ¬c) ∧ (b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c) .

The SAT problem has been studied for many years and it was shown to be

a NP-complete problem in 1971. In the last two decades, the techniques of solv-

ing SAT improved a lot since the SAT problem can be applied into the �eld of

electronic design and software veri�cation. Thus, many SAT solvers have been pro-

posed [Wik16b]. Modern SAT solvers usually take a Boolean formula in CNF as

input and return if the formula is satis�able. A valid assignment of variables would

also be provided if so.

2.3 Serpent

Serpent[BAK98] is a block cipher with 128-bit block size and 256-bit key size. In

the AES competition [Wik16a], Serpent was one of the �nalist and it got the second

more votes in the �nal round. The structure of Serpent is a 32-round substitution-

permutation network and the basic block size is 4 bits.

8
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Serpent's round function includes three parts:

1. Key mixing: XOR with 128-bit round keys

2. Substitution: Split 128 bits into 32 4-bit blocks and pass them through 32

S-Boxes.

3. Linear transform: Multiply by a 128×128 matrix. Note that in the last round,

Linear transform are replaced by an additional key mixing.

There are eight S-Boxes in Serpent as Table 2.2. In round i, S(i mod 8) is used.

Besides, there is an initial bit permutation and a �nal bit permutation in the be-

ginning and the end respectively. These details as well as the key schedule and the

Linear Transformation table can be found in [BAK98].

Table 2.2: The S-Boxes of Serpent

S0: [ 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 ]
S1: [15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 ]
S2: [ 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 ]
S3: [ 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 ]
S4: [ 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 ]
S5: [15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 ]
S6: [ 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 ]
S7: [ 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 ]

9
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Chapter 3

Algebraic Side-Channel Analysis

3.1 Problem De�nition

Given a block cipher with unknown S-Box and unknown key, we want to recover the

S-Box and the secret key simultaneously. Additionally, we assume that other parts

of the cipher is known and we can do pro�ling to obtain a reliable templates. As the

discuss in Section 1.3, we focus on the ciphers that is able to be recon�gured new

S-Box and the remaining parts are same as the original one. Thus, the template

built from a variant can be used to the other one. The target cipher is Serpent. The

reason is that 4× 4 S-Box in Serpent is less complex compared to the 8× 8 one in

AES. Also, the linear transform part of Serpent is easily to deal with. The following

is the outline of our analysis:

1. Represent the intermediate values by unknown variables.

2. Build equations from Hamming Weight information.

3. Convert the equations to CNFs.

4. Solve the CNFs by SAT solver.

In the following section, the constructed equations are represented by Algebraic

Normal Form.

10
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De�nition 3.1.1. Algebraic Normal Form (ANF)

ANF is a way to present the Boolean formula that uses two operators ⊕ and · . The

entire formula will be evaluated as 1 (True) or 0 (False).

For example, 1⊕ a⊕ b · c is an ANF. Table 3.1 shows the rule of the operators.

Table 3.1: Truth tables of ⊕ and ·

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

a b a · b
0 0 0
0 1 0
1 0 0
1 1 1

For the simplicity, ⊕ is substituted by + and · will be omitted in the following

text. Thus, 1⊕ a⊕ b · c becomes 1 + a+ bc .

3.2 The Algebraic Representation of the S-Box

Let S : x0x1x2x3 → y0y1y2y3 be the 4 × 4 S-Box function. Each output bit can be

written as the linear combination of all monomials that made up of the four input bits

of the S-Box. That is, the linear combination of 1, x0, x1, x2, x3, x0x1, x0x2, x0x3, x1x2,

x1x3, x2x3, x0x1x2, x0x1x3, x1x2x3, x0x1x2x3 with 64 coe�cients a0,0, a0,1, · · · , a3,15

y0 = a0,0 + a0,1x0 + a0,2x1 + · · ·+ a0,15x0x1x2x3

y1 = a1,0 + a1,1x0 + a1,2x1 + · · ·+ a1,15x0x1x2x3

y2 = a2,0 + a2,1x0 + a2,2x1 + · · ·+ a2,15x0x1x2x3

y3 = a3,0 + a3,1x0 + a3,2x1 + · · ·+ a3,15x0x1x2x3

For example, the �rst S-Box of Serpent S0 = [3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12]

has the algebraic representation:

11
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y0 = 1 + x0 + x2 + x3 + x0x1 + x0x2 + x1x2 + x0x1x2 + x0x2x3 + x1x2x3

y1 = 1 + x0 + x0x2 + x1x2 + x1x3 + x0x1x2 + x0x2x3 + x1x2x3

y2 = x1 + x3 + x0x1 + x0x2 + x1x3 + x0x1x2 + x1x2x3

y3 = x0 + x1 + x2 + x3 + x0x3

In fact, the number of a 4 × 4 S-Box is only 16! , but the ANF above contains

264 possibilities. So �nd out a more e�cient representation of S-Box to lower the

number of variables is another worthwhile study problem.

3.3 Represent the Intermediate Values by Unknown

Variables

The notations used in this section are listed as follows. Figure 3.1 shows the block

diagram of Serpent with our notation. We assumes that the plaintext, ciphertext,

initial/�nal permutation and the linear transform function is known. The unknown

part is the round keys and S-Box functions. The round index is stared ar r = 0 .

r: the rth round

pi: the i
th bit of the plaintext

ci: the i
th bit of the ciphertext

kr,i: the i
th bit of the rth round key

xr,i: the i
th bit of the rth key mixing output

yr,i: the i
th bit of the rth S-Box output

zr,i: the i
th bit of the rth Linear Transform (LT) output

ar,i,j: the coe�cient r
th round S-Box

ipi: the i
th bit after initial permutation that changes the order of plaintext bits

12
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fp−1i : the ith bit before �nal permutation

ar,i,j: the coe�cients of the r
th S-Box

Figure 3.1: Structure of Serpent
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1. Key mixing:

For 0 ≤ i ≤ 127,

x0,i = ipi + k0,i

For 1 ≤ r ≤ 31 and 1 ≤ i ≤ 127,

xr,i = zr,i + kr,i

For 0 ≤ i ≤ 127,

fp−1i = y31,i + k32,i

2. S-Box: Construct by the method mentioned in Section 3.2.

For 0 ≤ r ≤ 31 and 0 ≤ j ≤ 31,

yr,4j+0 = ar,0,0 + ar,0,1xr,0 + ar,0,2xr,1 + · · ·+ ar,0,15xr,0xr,1xr,2xr,3

yr,4j+1 = ar,1,0 + ar,1,1xr,0 + ar,1,2xr,1 + · · ·+ ar,1,15xr,0xr,1xr,2xr,3

yr,4j+2 = ar,2,0 + ar,2,1xr,0 + ar,2,2xr,1 + · · ·+ ar,2,15xr,0xr,1xr,2xr,3

yr,4j+3 = ar,3,0 + ar,3,1xr,0 + ar,3,2xr,1 + · · ·+ ar,3,15xr,0xr,1xr,2xr,3

3. Linear transform: See the details of the LT table in [BAK98]. Each output

bit can be represented by the addition of several input bits.

14
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For 0 ≤ r ≤ 31,

zr,i = yr,16 + yr,52 + yr,56 + yr,70 + yr,83 + yr,94 + yr,105

zr,1 = yr,72 + yr,114 + yr,125

...

zr,127 = yr,32 + yr,86 + yr,99

3.4 Introduce the Hamming Weight Information

It is hardly to get the correct answer by solving the above equations since there are

too many possible solutions. That is why we need the side-channel information. In

this section, the method to encoding the HammingWeight information is introduced.

[MBZ+12]

Assume we have a intermediate byte v during the encryption. And assume that

we have a precise template let us know that HW (v) = w . In the following we de�ne

vi as the i
th bits of v.

The above statement is equal to

HW (v) ≤ w ∧HW (v) ≥ w

So let's derive the equations of these two parts respectively:

1. HW (v) ≤ w

⇔ At most w "1"s in v

⇔ Every w + 1 bits in v contains at least one "0"

⇔ The product of each (w + 1)-combination of v's bits is zero.

i.e.
∧

HW (i)=w+1(
∏

ij 6=0 vj = 0), where i is a byte and ij is the j
th bit of i

2. HW (v) ≥ w

⇔ At most 8− w "0"s in v

15
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⇔ Every 8− w + 1 bits in v contains at least a "1"

⇔ The product of each (8− w + 1)-combination of the negation of v's bits is

zero.

i.e.
∧

HW (i)=8−w+1(
∏

ij 6=0(vj +1) = 0), where i is a byte and ij is the j
th bit of

i

To make this transformation more clear, a HW (v) = 3 example is illustrated as

follows.

First, HW (v) ≥ 3 ⇔ at most 3 ones in v ⇔ every 4 bits in v contains at least

one zero. Thus,
(
8
4

)
= 70 equations will be generated.

v0v1v2v3 = 0

v0v1v2v4 = 0

...

v4v5v6v7 = 0

Similarly, HW (v) ≤ 3 can be expanded to
(
8
6

)
= 28 equations by the second

process mentioned above.

(v0 + 1)(v1 + 1)(v2 + 1)(v3 + 1)(v4 + 1)(v5 + 1) = 0

(v0 + 1)(v1 + 1)(v2 + 1)(v3 + 1)(v4 + 1)(v6 + 1) = 0

...

(v2 + 1)(v3 + 1)(v4 + 1)(v5 + 1)(v6 + 1)(v7 + 1) = 0

Note that for HW (v) = 0 or HW (v) = 8, the information is very clear. So just

let all bits equal to zero or one.

This conversion is bene�cial to including error information. As mentioned in

Chapter 1, sometimes TA can not make highly success rate but it may still e�ective

if error exists. Here a error metric is de�ned in advance. If the distance between

16



doi:10.6342/NTU201602059 
 

the real Hamming weight of v and the Hamming Weight given by the template is

d, it is called a d − HW error. That is, |HWReal(v) − HWTA(v)| ≤ d. The above

conversion process of HW (v) = w is divided into two inequalities. Similarly, to

detect d−HW error, only the values at the right hand side of the two inequalities

need to be modi�ed. For example, HW (v) = 3 will be divided into HW (v) ≤ 4 and

HW (v) ≥ 1 to detect 1 − HW error. Of course that the less precise of Hamming

Weight information lead to multiple solutions for a system. But in Chapter 4 we

will show that this �aw can be make up by recording several traces more.

3.5 Convert to the CNFs

Once the equations are constructed, the last thing we have to do is convert them to

a CNF such that SAT solver can solve it. Although many equations, they are all

composed of two basic operators: + and · , i.e. a+b = c and a ·b = c respectively. In

[BCJ07], a simple method is introduced to solve a low-degree sparse systems. Here

we apply this way to generate CNFs.

1. a+ b = c

a+ b = c

⇔ a+ b+ c = 0

⇔ ¬ odd ones in a, b and c

⇔ ¬(a¬b¬c ∨ ¬ab¬c ∨ ¬a¬bc ∨ abc)

⇔ (¬a ∨ b ∨ c)(a ∨ ¬b ∨ c)(a ∨ b ∨ ¬c)(¬a ∨ ¬b ∨ ¬c)
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2. a · b = c

a · b = c

⇔ ¬( (a = 0 ∧ c = 1) ∨ (b = 0 ∧ c = 1) ∨ (a = 1 ∧ b = 1 ∧ c = 0) )

⇔ ¬(¬ac ∨ ¬bc ∨ ab¬c)

⇔ (a ∨ ¬c)(b ∨ ¬c)(¬a ∨ ¬b ∨ c)

Above shows basic example with few variables. But there may exists some equa-

tions like a + bcd + ef + g + h = 0 . How to extend this method to much more

variables?

For · , it is a quite pure problem since we do not have much choice. The dummy

variables will be introduced for a long · sequence. For example, a · b · c · d = e will

be converted to

x = a · b

y = x · c

e = y · d

where x, y and z are dummy variables. After the conversion, we can follow the rule

stated above to generate equations.

For +, it also needs dummy variables. For example, a + b + c + d + e + f = 0

can be converted to

a+ b+ x = 0

x+ c+ y = 0

y + d+ z = 0

z + e+ f = 0

18
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where x, y and z are dummy variables.

This conversion process is called "splitting". An interesting question is that how

to choose the "cutting number", i.e. the length of each splitted clause. The example

above shows a cutting number 3 conversion. Here a trade-o� exists. Since small

cutting number will give more clauses. On the other hand, a clause with fewer

variable may let SAT solvers work more e�ciently. A typical cutting number choice

is 6, which is suggested in [BCJ07].

Finally, in the introducing Hamming Weight stage, a lot of equations like the

form of (x0+1)(x2+1)(x7+1) = 0 are generated. Take this equation as an example.

If we expand this equation, we get

x0x2x7 + x0x2 + x0x7 + x2x7 + x0 + x2 + x7 + 1 = 0

By the above method we use, �ve equations and four dummy variables are generated

a = x0x2x7

b = x0x2

c = x0x7

d = x2x7

0 = a+ b+ c+ d+ x0 + x2 + x7

Obviously, converting these XOR and AND equations will generate more clauses.

However, (x0+1)(x2+1)(x7+1) = 0 can be directly translated to x0∨x2∨x7 since

the meaning of the equation is that at least a one among x0, x2 and x7.

3.6 Solve the CNF by SAT solver

In this paper, we use CryptoMiniSat 5.0 [Soo16a], which won several parts in SAT

2016 competition [SAT16]. CryptoMiniSat can read an extended Conjunctive Nor-
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mal Form that contains XOR-clauses. This feature is very good to our analysis since

there are many XOR-clauses in the constructed equations. One advantage of XOR-

clause is that no cutting is needed, which avoids the numerous dummy variables.

And the other is that the solver may reduce the variables by XORing two clauses.

For example, in the Linear Transformation phase

z1,31 = y1,3 + y1,118

z1,48 = y1,3 + y1,14 + y1,25 + y1,100 + y1,104 + y1,118

are generated. If we XOR two clause,

0 = z1,31 + z1,48 + y1,14 + y1,25 + y1,100 + y1,104

is obtained. This is simpler and if all the variables are assigned temporary values,

SAT solver can determine whether the assignment is valid immediately. The author

of CryptoMiniSat claims that preserving XOR-clauses may achieve 2 times speed up

[Soo16b]. In Chapter 4, we will show the di�erence of solving time between using

CNF and using extended CNF.
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Chapter 4

Experiments

4.1 Setup

The experiment is run on Intel Xeon CPU with two 2.40GHz cores and the memory

is 36GB. And the SAT solver used in this experiment is CryptoMinisat 5.0 [Soo16a].

The transforming process, from ANF to CNF, as discussed in Chapter 4 is performed

with the help of SageMath [Dev16], an open-source mathematics software based on

Python.

As the analysis in Chapter 3, the intermediate bytes used are the 128 bits after

key mixing, 128 bits after substitution boxs and 128 bits after the Linear Transfor-

mation, for each round. Nevertheless, in the following experiment, only one round

information is included to extract the �rst round key and the function of the �rst

S-Box. Because once the �rst round information is totally encoded, the input of the

second round is also known. Then the situation is just like the �rst round. So we

only perform the experiment in the �rst round and the following rounds are expected

to be successful too.
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4.2 Results

In the �rst experiment the Template is assumed totally correct for all bytes, i.e.

the Hamming Weight of all bytes are known. The result is shown in Table 4.1

(without XOR-clause) and 4.2 (with XOR-clause). In fact, the unknown part of

the experiment is only S-Box but round key at the beginning. However, the CNFs

can be solved for both S-Box and round key unknown. The least number of traces

needed is 3. But as the table shows, there is a trade-o� between the solving time

and the number of traces. The more traces, the more information contained such

that the variables leading to con�ict can be removed sooner. Note that the solving

time is median here since median is more representative due to the large variance of

solving time.

Besides, the solving time with XOR-clause is faster than without XOR-clause.

The number of literal and clause are also fewer. We have discussed the reason in

Chapter 3. This result shows that CryptoMiniSat is really good at dealing with

XOR-clauses as the author states.

Table 4.1: Result: Without Error Tolerance (No XOR-clause)

#Trace #Literal #Clause Solving Time (Median)
3 17,331 235,211 545 sec
4 24,203 333,036 140 sec
5 30,366 416,701 34 sec

Table 4.2: Result: Without Error Tolerance (XOR-clause)

#Trace #Literal #Clause Solving Time (Median)
3 7,104 37,784 423 sec
4 9,408 50,437 21 sec
5 11,712 63,007 13 sec
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To make the algebraic SCA successful with the existence of error, some modi�-

cations are indispensable. The details are described in Section 3.4. It is undoubted

that more traces are needed to make the solution of SAT problem unique. And the

size of CNFs generated by the encoder increases certainly. Thus, it takes much more

time to solve the equations. Table 4.3 shows the results with 1 − HW error, i.e.

the system allows the Hamming Weight given by the template is away from the real

Hamming Weight by at most 1.

Table 4.3: Result: With Error Tolerance (No XOR-clause)

#Trace #Literal #Clause Solving Time (Median) Success Rate
17 165,719 2,402,210 513 sec 92%
18 177,340 2,568,688 568 sec 98%
19 186,512 2,701,551 616 sec 98%
20 196,341 2,851,993 600 sec 98%
21 203,488 2,948,686 578 sec 100%
22 214,972 3,113,149 555 sec 100%

Table 4.4: Result: With Error Tolerance (XOR-clause)

#Trace #Literal #Clause Solving Time (Median) Success Rate
17 39,360 192,490 175 sec 96%
18 41,664 203,769 169 sec 90%
19 43,968 215,116 153 sec 98%
20 46,272 226,445 156 sec 98%
21 48,576 237,777 167 sec 100%
22 50,880 249,125 112 sec 100%

23



doi:10.6342/NTU201602059 
 

Chapter 5

Conclusion

In this work, an algebraic analysis combined with side-channel information is applied

to solve he unknown S-Box problem. Based on Template Attack and Algebraic Side-

Channel Analysis, many equations corresponding to operations of the cryptographic

algorithm are constructed. And by an ANF-to-CNF converter, the equations can

then be solved by a SAT solver.

The target block cipher is Serpent, which is a �nalist of AES competition. The

experimental results show that this method is successful once a good template is

given. Moreover, this method can also tolerate error up to 1-HW error. That is,

a template that gives a wrong Hamming Weight that is ±1 away from the correct

Hamming Weight is still work.

5.1 Future Works

A sound template is the base of our analysis. Thus, an important thing is to build a

template in reality. The technique of building template is not di�cult. For a device

that does not have any countermeasure against SCA, high success rate templates

are expected to be able to achieve. But some experiences are required to perform

trace alignment, points choosing and numerical problem.

This type of Side-Channel Analysis is suitable for those countermeasures that
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aim at changing round functions of block ciphers. In this work, we only deal with

unknown S-Box situation. However, a practical countermeasure may even replace

other non-linear parts. So �nding out an e�cient algebraic representation to write

down the equations of other parts, for example, including key schedule, is another

work. Finally, this method can be also applied to other block cipher like AES. This

is another challenge since the S-Box in AES is 8× 8.
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