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Abstract

Side-Channel Analysis (SCA) is a powerful threat against the implementation of
cryptographic devices. And Differential Power Analysis (DPA) is a popular type of
SCA because of its efficiency. However, when applying DPA to an algorithm with
unknown S-Box, DPA could not work well due to the large enumerating space of
S-Box. In this thesis, we use Algebraic Side-Channel Analysis (ASCA) to deal with
the unknown S-Box problem. The result shows that the unknown S-Boxes and secret
round keys of Serpent can be retrieved if a template which provides the side-channel

information is given.

Keywords: Side-Channel Attacks, Algebraic Side-Channel Analysis, Unknown

S-Bozx, Serpent
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Chapter 1

Introduction

1.1 Motivation

When a cryptographic algorithm is implemented on physical devices, the threat from
Side-Channel Analysis (SCA) should be considered even the algorithm is secure un-
der mathematical analysis. SCA utilizes the unintended data-dependent "leakage",
for example timing, power consumption or electromagnetic radiation, leaked from
the devices during their encryption or decryption. These leakages are called "side-
channel leakages" and SCA is viewed as a "gray-box" cryptanalysis since it provides
additional side-channel leakages information in addition to input/output.

In 1999, Paul Kocher et al. proposed Differential Power Analysis (DPA) [KJJ99|,
which efficiently extracts the secret keys of DES by the power consumption along
with some simple statistical techniques. DPA soon becomes popular and many
variants are published in the following years. For example, Correlation Power Anal-
ysis (CPA) [BCOO04], Mutual Information Analysis (MIA) [GBTPO08| and Linear
Regression-based DPA [DPRS11]|. These new method improve the performance of
the original DPA and successfully steal the secrets of many unprotected block ciphers
including the AES standard Rijndael.

Some countermeasures against DPA are also studied in recent years. Masking

1 doi:10.6342/NTU201602059



[BGKO04|[MPOO05| and threshold implementation [NRR06| use random numbers to
hide the secret intermediate values of the algorithm. On the other hand, some pro-
tections try to randomise the order of algorithm to cut off the relationship between
power and the operations during encryptions [VMKS12|. The countermeasures men-
tioned above usually need much more space and time. Also, some countermeasures
are still breakable, e.g. High-Order DPA against masking [JPS05], though more
efforts for the attackers. Thus, some other countermeasures focus on finding a se-
cure variants of the original algorithm to reduce the overhead. [RS05| is the first
work that applies random isomorphic AES to protect from SCA. And in [JCCCOT7|
[WSHT10], different but secure SubBytes, ShiftRows and MixColumns of AES are
chosen on the fly. However, most of DPAs deal with unknown key scenario. They
usually assume that the attackers know all of the algorithms except the key. There-

fore, DPA may fails against these countermeasures.

1.2 Related Works

[Nov03] is the first paper that attempts to recover a lookup table implementation
substitution block by SCA. Novak’s work analyses GSM authentication algorithm
that has several consecutive substitution tables. But in most of the block ciphers,
there exist too much functions between two S-Boxes. Besides, some papers in the
area of Side-Channel Attack Reverse Engineering (SCARE) discuss the similar prob-
lem. [GSM™10] is a notable work that uses SCARE techniques to retrieve the un-
known S-Box of symmetric algorithms. Nevertheless, SCARE could not be a good
solution to the countermeasures that choosing different S-Box online. Since SCARE
needs attackers to hold the identical devices on hand. But to those countermeasures,
simply changing to another S-Box can make SCARE in vain.

The first work that connected algebraic analysis and SCA is Renauld’s Alge-
braic Side-Channel Attack (ASCA) [RSV09]. This work deals with AES in un-

9 doi:10.6342/NTU201602059



known key and unknown plaintext/ciphertext scenario. An improved method based
on Renauld’s work is proposed at [MBZ*12|. The way we transform side-channel
information in this thesis is inspired by this work.

A successful ASCA relys on precise templates. Template attack (TA)[CRR02] is
proposed at 2002, which is a strongest form of SCA. TA can be viewed as an oracle
that can tell us what property a particular intermediate value holds once a good
template exists. In [APSQO6]|, TA is performed in the principal space of the power
traces, that makes the templates more effective. |[CK13] is another improvement

that avoids numerous computations when building the templates.

1.3 Contributions

In this work, we firstly apply the Algebraic Side-Channel Analysis to deal with
the SCA countermeasures which use similar variants of original standard ciphers.
To simplify the analysis, only S-Box in the block cipher will be changed. Note that
Template Attack also needs to profile some information. But in contrast to SCARE,
the profiled template can be applied to another cipher with different S-Box. The
targeted cipher of the analysis is Serpent, one of the AES finalists. The results show
that the function of the S-Boxes along with the secret keys will be found by the
attack in 3 traces.

We do not perform a practical Template Attack. But since TA is a mature
technique that discussed in many literature, it is assumed that we have a template
that always gives the correct answer. Actually, the experiment in [HTMO09| shows
that TA can achieve 99.5% success rate in a 8-bit microprocessor for the Hamming
Weight (HW) of a byte. Despite 47% success rate for a 32-bit core, we can set our
ASCA transformer to tolerate 1 Hamming Weight error such that 93% success rate
is promised (See Table 1.1). The number of needed traces for this case increases

inevitably, but it can still be solved in 9 traces.
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Table 1.1: Success Rate of TA for 1,000 traces [HTMO09]

HW error | 8-bit Microprocessor | 32-bit ARM
0 99.5 47.0
1 0.5 46.0
2 0.0 6.2
3 0.0 0.8
>3 0.0 0.0

1.4 Roadmap

In chapter 2, we introduce the preliminary knowledge including the idea of tem-

plate attack, SAT problem and a sketch of Serpent algorithm. In chapter 3, we will

precisely define the problem and present our main analysis. In chapter 4, the exper-

iments and their results are demonstrated. In chapter 5, we make a brief conclusion

and discuss the future prospects.
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Chapter 2

Preliminaries

2.1 Template Attacks (TA)

Template attack (TA) is a strongest type of SCA. If the attackers want to perform
TA, they need to hold a device identical to the target device. So that attackers can
set any key, input any plaintext and even modify parts of algorithm. Thus, a lot
of traces can be collected and with properly analysis, attackers are able to build
a "Template" which we can view as an oracle that input a trace and give us the
Side-Channel information.

Typically, a template may be built for input key-plaintext pair, intermediate
value or power models. For example, a template built for intermediate value is a
oracle that reads a new trace and return the most possible intermediate value.

In this work, we are going to build templates with Hamming Weight power

model.

Definition 2.1.1. Hamming Weight (HW)
Hamming Weight (HW) of a byte is the number of one in the byte, e.g. HW(00101101) =
4, HW(11100101) = 5.

Assumption 1. The power consumption of a byte processed by CPU is proportional
to the Hamming Weight of the byte.

5 doi:10.6342/NTU201602059



Assumption 1 is reasonable since most of the modern processors are fabricated in
CMOS technology. And the CMOS consumes much more power when internal states
in circuit changed. Therefore, when data transferring through the pre-charged bus,
a part of the real power consumption will be proportional to the Hamming Weight
of the transferred data. Furthermore, the remaining parts of power consumption
can be modeled by a Gaussian distribution. So it is possible to characterize the
power consumption to the Hamming Weight when a lot of consumption collected.
In [MOPOT7], more discussions about the relation between power consumption and
processed data are stated.

In the following we will briefly show how we build the template for bytes of

interest in our work.

2.1.1 Template Building

Every byte of interest should have a template. We denote T; as the " trace, which
is a s X 1 vector with s sampling points. And v is the intermediate byte for which

we want to build templates.

1. Choose random keys and plaintexts to perform the encryptions and record

T17T27 e Tn

2. Choose several points of interest, say m points. Let T’; be the ! trace only

with these m points.

3. Calculate v according to the keys and plaintexts then separate the traces by

the Hamming Weight (0 to 8) of v

4. For each HW (v) = w, say includes the traces T'y,---T’,,, calculate:

e M, =+ > " T'; (Mean vector)

e C, =13" (T, — M,)(T'; — M,)" (Covariance matrix)

J=1
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2.1.2 Template Matching

1. Record a trace t and take the points of interest t’.

2. For each HW = w, calculate the probability:

ea:p(—% (' =M,) - Cl (t —M,))
v/ (2m)™ - det(C,,)

prob(HW = w) =

3. Rank the probability to get the most likely HW value.

2.2 Boolean Satisfiability Problem (SAT)

Definition 2.2.1. Boolean Formula
An Boolean formula is constructed by variables using binary operators OR(V),

AND(A) and unary operator NOT(—).
For example, (aV —=¢) A (bV —¢) A (maV =bV ¢) is a Boolean formula.

Definition 2.2.2. Formula Evaluation
To evaluate a formula, each variable is assigned to 0 (FALSE) or 1 (TRUE). Then
following the rules defined in Table 2.1, a formula will get a deterministic truth value

Oorl.

Table 2.1: Truth tables of V, A and —

alblaVvb alblaAnb

010 0 0]0 0 a| a
01 1 01 0 0] 1
110 1 110 0 110
1(1 1 111 1

7 do0i:10.6342/NTU201602059



Definition 2.2.3. Boolean Satisfiability Problem (SAT)
Given a Boolean formula, check if there exists a appropriate assignment to each

variable such that the formula is TRUE. If so, the formula is satisfiable.

For example, the assignment a = 1,0 = 0,¢ = 0 satisfies (a V —=¢) A (bV =c) A
(maVv-bVe). And (aVb)A(—aVb)A(aV —b) A (—aV —b) is an unsatisfiable

example since for all possible assignments, the result are always zero.

Definition 2.2.4. Literal

A literal is a variable or its negation, e.g. a, —b .

Definition 2.2.5. Clause

A clause is a series of literals connected by ORs, e.g. aV—-bV c,aV —c .

Definition 2.2.6. Conjunctive Normal Form (CNF)
A Conjunctive Normal Form is a Boolean formula which consists of a series of clauses

connected by ANDs, e.g. (aV —¢c) A (bV —c)A(-aV =bVe) .

The SAT problem has been studied for many years and it was shown to be
a NP-complete problem in 1971. In the last two decades, the techniques of solv-
ing SAT improved a lot since the SAT problem can be applied into the field of
electronic design and software verification. Thus, many SAT solvers have been pro-
posed [Wik16b]. Modern SAT solvers usually take a Boolean formula in CNF as
input and return if the formula is satisfiable. A valid assignment of variables would

also be provided if so.

2.3 Serpent

Serpent|BAK98| is a block cipher with 128-bit block size and 256-bit key size. In
the AES competition [Wik16al|, Serpent was one of the finalist and it got the second
more votes in the final round. The structure of Serpent is a 32-round substitution-
permutation network and the basic block size is 4 bits.

8 doi:10.6342/NTU201602059



Serpent’s round function includes three parts:

1. Key mixing: XOR with 128-bit round keys

2. Substitution: Split 128 bits into 32 4-bit blocks and pass them through 32

S-Boxes.

3. Linear transform: Multiply by a 128 x 128 matrix. Note that in the last round,

Linear transform are replaced by an additional key mixing.

There are eight S-Boxes in Serpent as Table 2.2. In round 4, Sj moa 8) is used.
Besides, there is an initial bit permutation and a final bit permutation in the be-
ginning and the end respectively. These details as well as the key schedule and the

Linear Transformation table can be found in [BAK9S].

Table 2.2: The S-Boxes of Serpent

So: [ 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 |
Sy [15,12,2, 7,9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 |
Sy: [8,6,7,9,3,12,10,15,13, 1,14, 4, 0,11, 5, 2 |
Sy: ] 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 |
Sy [ 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 |
Ss: [15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 |
Se: [ 7, 2,12, 5,8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 |
Sy: [ 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 |

9 doi:10.6342/NTU201602059



Chapter 3

Algebraic Side-Channel Analysis

3.1 Problem Definition

Given a block cipher with unknown S-Box and unknown key, we want to recover the
S-Box and the secret key simultaneously. Additionally, we assume that other parts
of the cipher is known and we can do profiling to obtain a reliable templates. As the
discuss in Section 1.3, we focus on the ciphers that is able to be reconfigured new
S-Box and the remaining parts are same as the original one. Thus, the template
built from a variant can be used to the other one. The target cipher is Serpent. The
reason is that 4 x 4 S-Box in Serpent is less complex compared to the 8 X 8 one in
AES. Also, the linear transform part of Serpent is easily to deal with. The following

is the outline of our analysis:
1. Represent the intermediate values by unknown variables.
2. Build equations from Hamming Weight information.
3. Convert the equations to CNFs.
4. Solve the CNFs by SAT solver.

In the following section, the constructed equations are represented by Algebraic
Normal Form.

10 doi:10.6342/NTU201602059



Definition 3.1.1. Algebraic Normal Form (ANF)
ANF is a way to present the Boolean formula that uses two operators ¢ and : . The

entire formula will be evaluated as 1 (True) or 0 (False).
For example, 1 @ a ® b - cis an ANF. Table 3.1 shows the rule of the operators.

Table 3.1: Truth tables of @ and -

albla®b albla-b
00 0 00| O
01 1 0|1 O
110 1 1/0] O
111 0 111 1

For the simplicity, & is substituted by 4+ and - will be omitted in the following

text. Thus, 1®a® b-c becomes 1+ a + bc .

3.2 The Algebraic Representation of the S-Box

Let S : xor17223 — Yoy1y2y3 be the 4 x 4 S-Box function. Each output bit can be
written as the linear combination of all monomials that made up of the four input bits
of the S-Box. That is, the linear combination of 1, zqg, x1, X2, 3, ToX1, ToT2, Tox3, T1T2,

T1X3, TaT3, ToL1T2, TT1T3, T1T2T3, ToL1T2xs With 64 coefficients ag o, ao 1, , as.15

Yo = Qo0 + Go,1%0 + Qo 21 + + -+ + Q15T T1T2T3
Y1 =010+ 11T + a12%1 + -+ - + G1,15T0T1T223
Yo = Q20 + G21%0 + Q2271 + + -+ + A2 15T0T1T2T3

Y3 = agp + a3,1Tg + a3z 21 + - + A3,15T0T1T2T3

For example, the first S-Box of Serpent Sy = [3, 8, 15,1,10,6,5,11,14,13,4,2,7,0,9, 12]

has the algebraic representation:

11 do0i:10.6342/NTU201602059



Yo =1+ o + 22 + 23 + ToT1 + ToTz + T1T2 + ToT1T2 + ToTaXz + T1T203
Y1 =14+ 29+ 2022 + T129 + X123 + ToT122 + ToTaT3 + L1223
Yo = T1 + T3 + ToX1 + ToT2 + 103 + ToT1T2 + T1T2X3

y3:$0+$1+$2+$3+$0$3

In fact, the number of a 4 x 4 S-Box is only 16! , but the ANF above contains
204 possibilities. So find out a more efficient representation of S-Box to lower the

number of variables is another worthwhile study problem.

3.3 Represent the Intermediate Values by Unknown

Variables

The notations used in this section are listed as follows. Figure 3.1 shows the block
diagram of Serpent with our notation. We assumes that the plaintext, ciphertext,
initial /final permutation and the linear transform function is known. The unknown

part is the round keys and S-Box functions. The round index is stared ar r =0 .

r: the r** round

pi: the i bit of the plaintext

c;: the it bit of the ciphertext

k,;: the i bit of the 7" round key

z,;: the i bit of the r'" key mixing output

Yy, the 7™ bit of the r' S-Box output

2z the i bit of the r** Linear Transform (LT) output
ar;;: the coefficient 7" round S-Box

ip;: the 7" bit after initial permutation that changes the order of plaintext bits

12 do0i:10.6342/NTU201602059



fo; L. the i*" bit before final permutation

ar;;: the coefficients of the r' S-Box

Po.P1, - -, P1ay

Initial Permutation
ipo. 1P1, - -, P12y
."'r/ \ = “
,"! Y
| P kro ke, kraor
| | |
|
|| LTy, Ty, 007 |
|
S-Box
r=1~31 | ‘
| Yr0s Yr s Y127 |
|
|
I|I ! I =32 |
\ LT \
b ¥
0
VA0 &yttt £r 127
\ /‘/"
1 1 —1
e foo  fpr s, fpoier

Final Permutation

Co, €1, 00 7y €127

Figure 3.1: Structure of Serpent
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1. Key mixing:

For 0 < i < 127,

To,; = ip; + ko

For1 <r <3land1<:<127,

Tri = Zri + kr,i

For 0 < i < 127,

It = ys1i + kaa

2. S-Box: Construct by the method mentioned in Section 3.2.

For 0 <r <3l and 0 <j <31,

Yr,dj+0 = Q0,0 T Ar01Tr0 T Qro2Tr1 + -+ Qr0,15Tr,0Tr,1Tr,2Tr3
Yrdjrl = Qr1,0 T Qr11Tr0 + Qr12Tr1 + 00+ Q11580 0T5,1 L7253
Yrajr2 = Qr20 T Ar21Tr0 + Ar22Tr1 + -+ Qr215Tr 0T 1T 2T, 3

Yrajr3 = Qr30 T Ar31Tr0 T Ar32Tr1 + -+ Qr315Tr0T5,1 L5253

3. Linear transform: See the details of the LT table in [BAK98|. Each output

bit can be represented by the addition of several input bits.
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For 0 <r < 31,

Zri = Yr16 T Yrs2 T Yrs56 + Yr70 T Yr,s3 + Yr94 + Yr 105

Zr1 = Yr72 + Yr114 T Yr,125

Zr127 = Yr32 T Yrs6 1+ Yr.99

3.4 Introduce the Hamming Weight Information

It is hardly to get the correct answer by solving the above equations since there are
too many possible solutions. That is why we need the side-channel information. In
this section, the method to encoding the Hamming Weight information is introduced.
[MBZ"12]

Assume we have a intermediate byte v during the encryption. And assume that
we have a precise template let us know that HW (v) = w . In the following we define
v; as the " bits of v.

The above statement is equal to
HW(w) <wANHW(v) > w
So let’s derive the equations of these two parts respectively:

1. HW(v) <w
< At most w "1"s in v
< Every w + 1 bits in v contains at least one "0"
< The product of each (w + 1)-combination of v’s bits is zero.

e Apw(yzws1 (I 0 vj = 0), where i is a byte and 4; is the J™ bit of i

2. HW(v) > w

< At most 8 —w "0"s in v

15 do0i:10.6342/NTU201602059



< Every 8 — w + 1 bits in v contains at least a "1"

& The product of each (8 — w + 1)-combination of the negation of v’s bits is
7€r0.

ie. Apw(y=s—wr1(I]i20(v; +1) = 0), where i is a byte and i; is the j* bit of

0

To make this transformation more clear, a HW (v) = 3 example is illustrated as
follows.

First, HW(v) > 3 < at most 3 ones in v < every 4 bits in v contains at least

8

one zero. Thus, (4

) = 70 equations will be generated.

VoV1VoV3 = 0

VoU1V2V4 = 0

V4U50g07 = 0

Similarly, HW (v) < 3 can be expanded to (2) = 28 equations by the second

process mentioned above.

(UO + 1)(U1 + 1)(1)2 + 1)(’03 + 1)(1)4 + 1)(1)5 + 1) =0

(vo+ 1)(v1 + 1)(va + 1) (v3+ 1)(vg+ 1)(vs +1) =0

(Ug + 1)(7}3 -+ 1)(1)4 + 1)(U5 + 1)(2}6 + 1)(U7 + 1) = 0

Note that for HW (v) = 0 or HW (v) = 8, the information is very clear. So just
let all bits equal to zero or one.

This conversion is beneficial to including error information. As mentioned in
Chapter 1, sometimes TA can not make highly success rate but it may still effective
if error exists. Here a error metric is defined in advance. If the distance between
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the real Hamming weight of v and the Hamming Weight given by the template is
d, it is called a d — HW error. That is, |HWgea(v) — HWra(v)| < d. The above
conversion process of HW (v) = w is divided into two inequalities. = Similarly, to
detect d — HW error, only the values at the right hand side of the two inequalities
need to be modified. For example, HW (v) = 3 will be divided into HW (v) < 4 and
HW (v) > 1 to detect 1 — HW error. Of course that the less precise of Hamming
Weight information lead to multiple solutions for a system. But in Chapter 4 we

will show that this flaw can be make up by recording several traces more.

3.5 Convert to the CNFs

Once the equations are constructed, the last thing we have to do is convert them to
a CNF such that SAT solver can solve it. Although many equations, they are all
composed of two basic operators: + and -, i.e. a+b = cand a-b = c respectively. In
[BCJO7], a simple method is introduced to solve a low-degree sparse systems. Here

we apply this way to generate CNFs.

l.a+b=c

a+b=c
Sa+b+c=0
< = odd ones in a,b and c
& =(a—b—e V mab—e V —a—be Voabe)

< (mavbVe)(aV-bVe)aVbVac)(-aV bV —c)
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S ((a=0Aec=1)V(b=0Ac=1)V(a=1Ab=1Ac=0))
& =(=ac Vv =be Vo ab-e)

< (aV=e)(bV —ce)(—aV bV e)

Above shows basic example with few variables. But there may exists some equa-
tions like a + bed +ef + g+ h = 0 . How to extend this method to much more
variables?

For - , it is a quite pure problem since we do not have much choice. The dummy
variables will be introduced for a long - sequence. For example, a-b-c-d = e will

be converted to

r=a-b
y=2x-c
e=y-d

where z, y and z are dummy variables. After the conversion, we can follow the rule
stated above to generate equations.
For +, it also needs dummy variables. For example, a +b+c+d+e+ f =0

can be converted to

a+b+x=0
r+c+y=0
y+d+z=0
z24+e+ f=0
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where x, y and z are dummy variables.

This conversion process is called "splitting". An interesting question is that how
to choose the "cutting number", i.e. the length of each splitted clause. The example
above shows a cutting number 3 conversion. Here a trade-off exists. Since small
cutting number will give more clauses. On the other hand, a clause with fewer
variable may let SAT solvers work more efficiently. A typical cutting number choice
is 6, which is suggested in [BCJ07].

Finally, in the introducing Hamming Weight stage, a lot of equations like the
form of (zg+1)(ze+1)(x7+1) = 0 are generated. Take this equation as an example.

If we expand this equation, we get

ToToX7 + ToTo + ToT7 + Ty +To+ T2 +27+1=0

By the above method we use, five equations and four dummy variables are generated

a = Tolay

b= T2
C = oIy
d= ToX7

O=a+b+c+d+xg+ 29 + 27

Obviously, converting these XOR and AND equations will generate more clauses.
However, (zg+1)(x2+1)(x7+ 1) = 0 can be directly translated to xoV x2 V x7 since

the meaning of the equation is that at least a one among x(, x5 and x7.

3.6 Solve the CNF by SAT solver

In this paper, we use CryptoMiniSat 5.0 [Sool6a|, which won several parts in SAT

2016 competition [SAT16]. CryptoMiniSat can read an extended Conjunctive Nor-
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mal Form that contains XOR-~clauses. This feature is very good to our analysis since
there are many XOR-clauses in the constructed equations. One advantage of XOR-
clause is that no cutting is needed, which avoids the numerous dummy variables.
And the other is that the solver may reduce the variables by XORing two clauses.

For example, in the Linear Transformation phase

21,31 = Y1,3 t+ Y1,118

2148 = Y1,3 + Y114 T Y1,25 + Y1,100 + Y1,104 + Y1,118

are generated. If we XOR two clause,

0= 2z131+ 2148 + Y1,14 + Y1,25 + Y1,100 + Y1,104

is obtained. This is simpler and if all the variables are assigned temporary values,
SAT solver can determine whether the assignment is valid immediately. The author
of CryptoMiniSat claims that preserving XOR-clauses may achieve 2 times speed up
[So016b]. In Chapter 4, we will show the difference of solving time between using

CNF and using extended CNF.
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Chapter 4

Experiments

4.1 Setup

The experiment is run on Intel Xeon CPU with two 2.40GHz cores and the memory
is 36GB. And the SAT solver used in this experiment is CryptoMinisat 5.0 [Sool6al).
The transforming process, from ANF to CNF, as discussed in Chapter 4 is performed
with the help of SageMath [Dev16], an open-source mathematics software based on
Python.

As the analysis in Chapter 3, the intermediate bytes used are the 128 bits after
key mixing, 128 bits after substitution boxs and 128 bits after the Linear Transfor-
mation, for each round. Nevertheless, in the following experiment, only one round
information is included to extract the first round key and the function of the first
S-Box. Because once the first round information is totally encoded, the input of the
second round is also known. Then the situation is just like the first round. So we
only perform the experiment in the first round and the following rounds are expected

to be successful too.
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4.2 Results

In the first experiment the Template is assumed totally correct for all bytes, i.e.
the Hamming Weight of all bytes are known. The result is shown in Table 4.1
(without XOR-clause) and 4.2 (with XOR-~clause). In fact, the unknown part of
the experiment is only S-Box but round key at the beginning. However, the CNFs
can be solved for both S-Box and round key unknown. The least number of traces
needed is 3. But as the table shows, there is a trade-off between the solving time
and the number of traces. The more traces, the more information contained such
that the variables leading to conflict can be removed sooner. Note that the solving
time is median here since median is more representative due to the large variance of
solving time.

Besides, the solving time with XOR-clause is faster than without XOR-clause.
The number of literal and clause are also fewer. We have discussed the reason in

Chapter 3. This result shows that CryptoMiniSat is really good at dealing with

XOR-clauses as the author states.

Table 4.1: Result: Without Error Tolerance (No XOR-clause)

#Trace | #Literal | #Clause | Solving Time (Median)
3 17,331 235,211 545 sec
4 24,203 333,036 140 sec
5) 30,366 416,701 34 sec

Table 4.2: Result: Without Error Tolerance (XOR-clause)

#Trace | #Literal | #Clause | Solving Time (Median)
3 7,104 37,784 423 sec
4 9,408 50,437 21 sec
5) 11,712 63,007 13 sec
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To make the algebraic SCA successful with the existence of error, some modifi-
cations are indispensable. The details are described in Section 3.4. It is undoubted
that more traces are needed to make the solution of SAT problem unique. And the
size of CNFs generated by the encoder increases certainly. Thus, it takes much more
time to solve the equations. Table 4.3 shows the results with 1 — HW error, i.e.
the system allows the Hamming Weight given by the template is away from the real

Hamming Weight by at most 1.

Table 4.3: Result: With Error Tolerance (No XOR-~clause)

#Trace | #Literal | #Clause | Solving Time (Median) | Success Rate
17 | 165,719 | 2,402,210 513 sec 92%
18 177,340 | 2,568,688 568 sec 98%
19 186,512 | 2,701,551 616 sec 98%
20 | 196,341 | 2,851,993 600 sec 98%
91 | 203,488 | 2,948 636 578 sec 100%
92 | 214,972 | 3,113,149 555 sec 100%

Table 4.4: Result: With Error Tolerance (XOR~clause)

#Trace | #Literal | #Clause | Solving Time (Median) | Success Rate
17 39,360 192,490 175 sec 96%
18 41,664 203,769 169 sec 90%
19 43,968 | 215,116 153 sec 98%
20 16,272 | 226,445 156 sec 98%
21 48,576 237,777 167 sec 100%
22 50,880 249,125 112 sec 100%
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Chapter 5

Conclusion

In this work, an algebraic analysis combined with side-channel information is applied
to solve he unknown S-Box problem. Based on Template Attack and Algebraic Side-
Channel Analysis, many equations corresponding to operations of the cryptographic
algorithm are constructed. And by an ANF-to-CNF converter, the equations can
then be solved by a SAT solver.

The target block cipher is Serpent, which is a finalist of AES competition. The
experimental results show that this method is successful once a good template is
given. Moreover, this method can also tolerate error up to 1-HW error. That is,
a template that gives a wrong Hamming Weight that is £1 away from the correct

Hamming Weight is still work.

5.1 Future Works

A sound template is the base of our analysis. Thus, an important thing is to build a
template in reality. The technique of building template is not difficult. For a device
that does not have any countermeasure against SCA, high success rate templates
are expected to be able to achieve. But some experiences are required to perform
trace alignment, points choosing and numerical problem.

This type of Side-Channel Analysis is suitable for those countermeasures that
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aim at changing round functions of block ciphers. In this work, we only deal with
unknown S-Box situation. However, a practical countermeasure may even replace
other non-linear parts. So finding out an efficient algebraic representation to write
down the equations of other parts, for example, including key schedule, is another
work. Finally, this method can be also applied to other block cipher like AES. This

is another challenge since the S-Box in AES is 8 x 8.
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