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Abstract

In this master thesis, we review the notion about the Wang-Yau quasi-local mass
from the physical background to the mathematical construction. Finally, we dis-
cuss the positivity argument of Wang-Yau quasi-local mass in Wang-Yau’s original

paper.

Keyword: Wang-Yau quasi-local mass
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Chapter 1

Introduction

Mass is matter. It is an important quantity in its own right. It is also a fundamental
ingredient in general relativity. Unfortunately, it is not possible to define a mass
within an arbitrary region in general spacetimes [8]. However, in asymptotically
flat spacetimes, one can do it. This leads to the Bondi mass [, 13] at null infinity
and the ADM mass at spacial infinity. Although the ADM mass is a physical
quantity, its positivity is not straightforward as one expects. Here is the original
conjecture.

Conjecture (Positive Mass Conjecture). For any asymptotically flat initial data
set satisfying the dominant energy condition, its ADM energy is positive except for
the initial data set in the Minkowsk:i spacetime.

Finally, in around 1980, Schoen and Yau [14, 5] proved the above conjecture.
Later, Witten [22] used the spinor method to give another approach.

Theorem 1.1 (Positive Mass Theorem). Let (2, gi;, pij) be a complete, asymp-
totically flat 3-manifold satisfying the dominant energy condition. Then the ADM
mass of each end of ) is non-negative.

However there is no local notion of mass due to the equivalence principle. In
any point, we can let Christoffel symbols to be 0. Hence the local energy density
is meaningless [8, Section 20.4]. In 1982, Penrose [11] proposed a problem.

Problem. Find a suitable quasi-local definition of energy-momentum in general
relativity.

After that, many suggestions were proposed. Some approach the problem through
the Hamilton-Jacobi method, for instance, the Brown-York quasi-local mass [2]
[B] and the Liu-Yau quasi-local mass [6]. For a detailed survey on the quasi-local
mass, see [17].
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Definition 1.1 (Brown-York Quasi-Local Mass). Let ¥ be a 2-surface which
bounds a spacelike region € in a spacetime M. Suppose ¥ has positive Gauss
curvature. Then the Brown-York quasi-local mass is defined to be

1
mpy = 8— (/ kOdX(Z) —/ kdvg)
Q X(%) by

where k is the mean curvature of ¥ with respect to the outward normal of ) and
ko is the mean curvature of the isometric embedding X : ¥ — R3.

Definition 1.2 (Liu-Yau Quasi-Local Mass). Let ¥ be an embedded 2-surface
in a spacetime M. Suppose X has positive Gauss curvature. Then the Liu-Yau
quasi-local mass is defined to be

1
mry = 8— (/ kodvx(z) / |H‘di}2>
TA\JX(Z) by

where H is the mean curvature vector in M and kg is the mean curvature of the
isometric embedding X : ¥ — R3.

Remark 1.1. Brown and York used R? as the reference while Liu and Yau took the
norm of mean curvature vector in M.

For positivity of the Brown-York and Liu-Yau quasi-local mass, we have the fol-
lowing theorems.

Theorem 1.2. [16] Suppose Q has non-negative scalar curvature and k > 0. Then
mpy > 0. Moreover, mpy = 0 if and only if Q is flat.

Theorem 1.3. /6, [1] Suppose H is spacelike. Then mpy > 0. Moreover, mry =0
only if M is isometric to R®! along 3.

However there exists some cases in the Minkowski spacetime with strictly pos-
itive Brown-York quais-local mass as well as the Liu-Yau quasi-local mass [9]. In
2008, Mu-Tao Wang and Shing-Tung Yau used the momentum term to fix the
problem [20].

Definition 1.3 (Wang-Yau Quasi-Local Mass). Let X : ¥ < M be a spacelike
embedding with spacelike mean curvature vector and assume the set of admissible
functions is nonempty. Then the Wang-Yau quasi-local mass is defined to be

mwy = 7}2‘2 {5(27X077_) - 5(27X7 T)}

where Xg is an isometric embedding into R®' and A is the set of all admissible
functions. The definition of ) and the admissible function see Section 3.
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Remark 1.2. The Brown-York and Liu-Yau quasi-local mass involve an isomet-
ric embedding into R3, yet the Wang-Yau quasi-local mass involves an isometric
embedding into the Minkowski space.

The rigidity of Wang-Yau quasi-local mass is assured by the following theorem (see
Theorem B.7).

Theorem A. Let X : X — M be an embedding into a spacetime M. Suppose M
satisfies the dominant energy condition and the mean curvature vector of X (X) is
spacelike. Then the Wang-Yau quasi-local mass is non-negative and the equality
holds if X is isometric to R3! along X (X).

Remark 1.3. The Wang-Yau quasi-local mass is defined only when the mean cur-
vature vector of X is spacelike. There are some important surfaces in general
relativity that have not been well-studied. Also there are conjectures involving
the timelike mean curvature vector, so it is important to know the timelike case.

Remark 1.4. Wang and Yau used the spacelike condition to find the suitable gauge.

The rest of this thesis is organized as follows. In section 2, we fix notations and
review the action principle and the Hamilton formulation to motivate the quasi-
local mass. In section 3, we define the Wang-Yau quasi-local mass and sketch the
proof of its positivity. You can assume section @ and for the proof toward
positivity.
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Chapter 2

Preliminary

Quasi-local mass is a physical notion, so it is helpful to know the physics back-
ground before jumping into the mathematical formulation. In this chapter, we
first recall some notations and review the action principle and the Hamiltonian
formulation of the Einstein equations.

2.1 Notations

Throughout this thesis, we adopt the Einstein convention and the units so that
the speed of light and the gravitational constant are dimensionless and normalized
to 1. The manifold X is preserved to denote a Riemannian 2-surface. Let M be a
smooth n-manifold with metric g. In local coordinate {x'}, the Riemann curvature
tensor and the Ricci curvature tensor are defined by

R(X,Y)Z =VxVyZ —VyVxZ — Vixy|Z

and -
RiC(X7 Y) =g" <R (ah X) Y, 8J> .
We denote
Rijki = (R (0, 0;) 05, 0;)
and

Rij = Ric (31,8]) .

In the case of hypersurface, the mean curvature is associated with the outward
normal vector unless otherwise specified. Suppose M is a 4-manifold with metric
g. Then M is said to be a spacetime if g is of signature (+ 4+ +—). For any frame
on M, index 4 is always assumed to be the timelike direction.
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2.2 Constraint equations and dominant en-
ergy condition

The important equation connecting the ambient and submanifold geometry is the
Gauss-Codazzi equation. Let M be a spacetime with metric g and Q C M be
a spacelike hypersurface with timelike unit normal vector v. Let {ei}f’zl be an
orthonormal frame on 2. Then the Gauss equation reads

Rijr = Eijkl + K Ky — K Ky
where R is the Riemann curvature tensor on € and
Kij = (Ve €5)
is the second fundamental form while the Codazzi equation is

Ryjry = —ViKj; + Vi Ky,

where we let v be indexed 4. Contract both sides of the Gauss equation by the
induced metric h on €2, then we have

h*Riji = Rji + Raju = Rj + KKj — KK

where K is the trace of the second fundamental form. Contract again, then we get

1 1/~ .
Ru+5R=3 (7+ K2~ KyK). (2.1)
On the other hand, contract both sides of the Codazzi equation, then we see that
Ry, = ¢'Ryjiy = —Vi.K + VIKy; = VI (~Kgji + Ky;) - (2.2)

Equations (El!) and (@) are called the constraint equations.
Here we focus on spacetimes that satisfy the Einstein equations

1
Rij — 5 Rgij = 8713
where T is the energy-momentum tensor. Let
1/~ .
n=s (B + K2 - KK

and

Ji = VE (=Kgir + Kig) -
The dominant energy condition says that for every timelike vector V,

T9V;V; >0

and that T%Vj is non-spacelike. This means that the energy density is non-negative
to any observer and that any energy flow can never be faster than light. It can be

shown that
p= ||
using the submanifold geometry and the dominant energy condition. For more

introductions on the energy condition, see [4].

b}
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2.3 Action principle

Through out this thesis, we assume that the matter field is vacuum. Given a
compact spacetime M, it is known that the vacuum Einstein equations can be
obtained from the Hilbert-Einstein action

1

Here R\/—det g/167 is the Lagrangian density Lrpy. Let g(t) be a smooth family
of metrics on M such that g(0) = g. We calculate the variation of the action with

respect to the family of metrics. Denote %5 ! +—o by 0.

Proposition 2.1. The variation of Sgpmg with respect to the metric g, namely
0SEH, s given by

1 . 1 . .
_ iy _ U _ LN .S — g%l |
T6m <R 29 R) dgijdvpr + Tom / Vv (g V;dgi— g Vﬁglj) dvpy.

(2.3)

Proof. In local coordinate, we have
d d .
/ Rduvyy :/ g7 Rij\/—detg dx
dt Jar dt Jar
—/ <8gij> Rij\/—detg+ g" <8Rij> —detg (2.4)
M \ Ot ot
Rgt\/ —det g dzx.

We point out the key identities. It is straightforward to see that

0 ij ik ]la
(%g —9"9" 5,90 (2.5)

For the second term, contract the Riemann curvature tensor to derive
Rij = Ok}, — ;T + T TL; — T Tp.
So

9 0 ! kO 9 k ;0
aRij < ) < > + ((%F > L'y +Fklatr (arik I szatrzj
k

[ak (mr”) +P’gl§trl szaatr } - [aj (;ka> +P§;§tr rﬁjgtr }
[ak <§; )+r’,§,§trl szgtf rkjgtr }
- [a (gtr >+F{§§tr rﬁjgtr ijgtr }
=V}, <§tr’“ ~-V; (gtr )
6
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Hence

U R = Uk ) v gV =Tk ) = ik ik 21l

g atR’L] vk <g atrz_j) v] <g 8 sz> vk <g atrlj g 8trzl)
_ ix7J _ ik o ik gl 4kl o
= (V VI — g7V Vk) 57 % (9 ¢'ViVi—gg Vle) 57 %4
vo O g O

=V (g]vjatgil - gjvlatgij> : (2.6)

For the last term, use identities

0 ) 0
5 det g = tr (adJ (9) atg)

and
adj g = (detg) g~
to derive 5 5
—det g = (det g) g/ = gij-
gpdet 9 (detg) g 7%
So

1 .
gt\/—detg: 5\/—detg g”aatgij. (2.7)
Plug (@), (@) and (@) into (@), then we obtain the variation formula. O

Remark 2.1. The first term in the variation is the Einstein tensor
GY = RV — leij :
2

If M is closed, then the second term in (@) is zero. We can directly read the
vacuum Einstein equations from

1

5SEH = ——
SEH = ~{g, o

. 1 ..
(RZ] - 29”R> 5gideM-

However, there are boundaries in general spacetimes, thus dSgy has a nonzero
divergence term. As a consequence, we can’t derive the vacuum Einstein equations.
Therefore once the spacetime has a boundary, it is appropriate to consider an
action with a boundary term. York [23] proposed such a term by considering the
induced metric h on M. For convenience, assume that OM is spacelike and N is
a future-directed timelike normal vector of OM. For any vector X along OM, we
can decompose it into vector on @M and the normal part, that is

X=XT_—(X,N)N.
So the induced metric h on M is given by
hij = Gij + nin;

where n; denotes (0;, N).
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Remark 2.2. The tensor h;; has 16 components.

Lemma 2.1. Consider the variation of Spp with respect to the metric g such that
the metric is fized on the boundary. Then

/ V! (97V;09u — g7V16gi;) doys = —2 SKdvan
M oM

where K is the mean curvature of OM associated with N.

Proof. By Stokes’ theorem, we have

/ V! 97V 690 — g V18gi5) dvy = / 1(V6gu — Vidgi;) n'dvan.
M
With the induced metric h, we get

97 (Vj0gu — Vidgij) nt = (W7 — n'n?) (V694 — Vidgij) n

Note that o
'n'nd (V;09i — Vidg;)

is anti-symmetric in ¢ and [. So
nlg (V691 — Vidgis) = hin! (V891 — Vidgsj) .

Since dg = 0 on OM, its tangential derivative is 0. Hence, in local coordinate {y®}
on OM,

ozt Oxd
Ay dyb

hijvj(sgil — <hab

) v, 59[ hab ai <a$

j0gi )| = 0.
Then we have -
h¥pt (Vjiéga — Vidgij) = —hint Vi6gij.

Now consider the variation of the mean curvature K of M, since g = 0 on OM,
we have

0K =5 (hiV;n;) =6 [hij (amj - r@nk)] = —hii (5r§j) n
1 .. 1 ..
= —ih”gkl (Vidgji + V;jdgu — Vidgij) ni = §h”nlvz5gzj

where we use the observations

h'N6gi =0
and - - '
0=9¢ (g”nmj) = 29"n;0n; = 2n’on;.
The proof is completed by comparing expressions. O

doi:10.6342/N'TU201602493



Therefore let’s introduce the boundary term to get the action

1
S1=Sgg+ — Kdvgyy,.
87 Jom

Remark 2.3. The above boundary term leads to the action S' used by Brown-York

kil

Corollary 2.1. The variation of S1 is given by

1 P
- ij_ Z gt g
051 167 /., <R 59 R) dgijdung.
Proof. Use Proposition Ell and Lemma Ell O

In particular, the above corollary holds when OM is nonempty. Note that we can
directly read the vacuum Einstein equations from §.57.

2.4 Hamiltonian formulation

In this section, we review the Hamiltonian formulation. To start, we need to
decompose the spacetime (M, g) into space part and time part. Assume from now
on that the spacetime M is foliated by a family of spacelike hypersurfaces 2; where
t lies in the interval [t1,?2] and e4 be a future-directed timelike unit normal vector
of €y and 0y = ;. This is a reasonable assumption since we believe there is a
way to define time in the physical spacetime. Note that

OM = Q Uy, U B3

where B? is the union of ¥;. Let e3 be a spacelike unit outward normal vector
along 3; such that it is orthogonal to e4. Such ¢ acts as a time function so that
each € is of the same time. Now consider a vector T satisfying

(T,Vt) = 1.
This T can be decomposed into the lapse function L and shift vector S as
T =Les+ S.

Here S is orthogonal to e4. Let h be the induced metric on €2;. Denote e3 and ey
by v and u respectively. The spacetime M then look like Figure 1.
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Figure 1. The spacetime M.

Before introducing the Hamiltonian density of the spacetime, we need to relate
the geometry of the hypersurface to that of the spacetime.

Lemma 2.2.
Ry =K? — Ki; K7 —V,; (uW'Vjuw!) + V; (v Vju') .
Proof.
Ryy = Rijju'u?
= Ry u'e! = (ViVj — V; Vi) u
= Vi (w/Vjut) = (V) (Vi) = 9, (W V) + (V00 (Tpt)

= K* = KK = (094t ) + 9 (w/ V)

The Lagrangian density Lgp can be written as

1 1 1
Lpg=-—R\/—detg=— | Ru+ =R — Ryq | \/—detg.
167 8T 2
Therefore by (El!) and Lemma @ we have

Loy = % R+ KK — K2 42V, (u'Vju!) = 29, (u/ V') | LVdeth.

So the action S becomes

1 ~ y . . . . 1
— / R+ Kin” — K? + 2V; (uzvjuj) — 2V, (u]VjuZ) dvyr + — Kdvyy.
167 Ju 87 Jom

Recall that
OM =y, UQ, UB

10
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where B = Uy¢[s, 1,)2¢- In particular,

/ Vl- (UiVjuj) dUM = —/
M Q

Similarly we can decompose |, an Kdvanr into the corresponding parts, and one
finds that the first two terms in the above are cancelled.

Vjujdvgtl —/ Vjujdvgt2 —I—/ Kdvg.
Q B

1 to

Corollary 2.2. The action Sy is expressed as

1 t2 ~ . . . . 4
— R+ Kij K" — K* + 2V, (u'Vju!) — 2V, (v V,u") dvg, Ldt
167T tl Qt
to
+— K Ldvs, dt.
871' th po
Note that

/ Vi (ujvjui) dvg, = / uiujvjvidvgt
Qt Et
and

Kdvs, = / (gij — vivj) V,vdvs, .
Et Et

Hence
—/ Vi (ujvjui) dvg, + Kdvs, :/ kdvy,
Qt 3¢ DI

where k is the mean curvature of ¥; associated with v. Therefore S becomes

1 t2 ~ g
— < / R+ KiK' — K?dvg, + / 2kdvgt> Ldt.
167 t1 QO po

Denote the Lagrangian of Q; and ¥; by £ and Ly, that is

to to
S = / LdzLdt + / LyomdyLdt.
t1 Q4

t1 P
So )
R > KU 2
L= (R + KK — K ) Vdeth. (2.8)
Lemma 2.3.
1 /. - _
Kij = 57 (hij = V8 = ¥;81) -

Here ¥V is the covariant derivative on Q; and hzj = hf”hé.SThkl where £ is the Lie
derivative.

11
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Proof.

1 1
Kij = isuhi]’ = 5 (ukvkhi]’ + hikvjuk + hkjviuk>

= i |Lu" iy + hig V5 (L) + by (L) |
= ihfhé (Lrhg — Lshi) = % <hij ~ViSj — 6‘757;) .

Here we use the identity

hER, Sshgy = WS (SPVphyg + hy ViSP + hiy ViSP)

= Spﬁphij + ﬁiSj + 6]51

l.
J

O
The conjugate momentum to h is defined by
wii = OF
Ohyj
Then by (@) and Lemma @, we get
. 1 . .
T = — (K” — h”K) v det h.
167
Proposition 2.2. The action S1 can be written in the form
t2 . 1 . .
/ l:/ ﬂl]hij — LH — S;H'dx + / Lk — Sﬂ)j (KU — Kh”) dvzt dt
t1 Qq 87T it
where 1
H = —— (KK - K* — R) Vdeth
167
and ]
H' = —S—WVJW”
Proof. Note that
(K7 — h9K)V;8; + S;V; (K7 — h9K) = V,; [S; (K7 — h9K)] .
Then by direct calculation, we get the expression. O

The Hamiltonian density is obtained from the Legendre transformation [18, p460]

H :Wijhij — L.

12
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Proposition 2.3. The Hamiltonian is given by

. 1 g g
/Q LH + SiH'dw — — [ Lk — Sp; (K" — KhY) dus,
t

T pol
where 1
H = —— (KK = K* = R) Vdeth
16m
and )
H' = —8—7TVJ-7T” :
Proof. 1t follows from the Legendre transformation and Proposition @ O

The case H = H; = 0, which is satisfied by the vacuum Einstein equations, gives
us the notion of energy, that is, the surface Hamiltonian

1 .. ..
f’:)(T,64) = —&T/ELk:—Sivj (KU —Kh”) dvz.

Note that we start from 7" and e4, so the surface Hamiltonian depends on these
two vectors. For convenience, we write it into the following form

1 .
f) (T, 64) = _871'/2Lk — S (Kij — Kgij) d’l)z].

13
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Chapter 3

Wang-Yau Quasi-Local Mass

3.1 The definition

We know from the previous section, the surface Hamiltonian is given by
1 o
f)(T, 64) = —/ L/{—SZUJ (Kij —Kgij)d’l)g. (3.1)
8 )
The quasi-local energy of ¥ is then defined by

(T, es) — 9 (To, é4) (3.2)

where $) (T, e4) is the physical one and $) (Tp, é4) is the reference one. The issue
here is the choice of the background reference and the vectors T, Tp, e4 and €4. We
recall an embedding theorem by Nirenberg [10] and Pogorelov [12].

Theorem 3.1. Let o be a metric on S* with positive Gauss curvature. Then there
exists a unique isometric embedding of o into R3 up to Euclidean rigid motions.

One natural reference is R, we can use the above theorem to embed a 2-surface
with positive Gauss curvature. However there is an example [J] such that the
quasi-local mass is positive while the 2-surface lies in R*»!. Wang and Yau instead
took R%! as the reference. But if we write down the components of such embedding
as (Xl, X2 X3, X4), we only have three constrains, that is

X' 9XI
i Gz pgb b

where ¢ is the induced metric of the 2-surface and 7 is the standard metric on
R3!. Thus we have one degree of freedom. Wang and Yau then fix Ty to be any
constant timelike Killing unit vector and proved the following embedding theorem
associated with Ty and the embedding satisfies some equation.

14
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Theorem 3.2. Let (X,0) be a Riemannian 2-manifold diffeomorphic to S?.  Let
A be a function on X such that fz Ay, = 0 and 7 be the solution of AT = \.
Suppose

k4 (1+ |V7“2)71 det (V1) >0 (3.3)

where k is the Gauss curvature of 0. Then there exists a unique spacelike isometric
embedding X : ¥ — R3! satisfying

<H0,T0> = —Ar (34)

where Hy is the mean curvature vector of X (X). Here all differential operators are
with respect to o.

The above 7 is the time function. Before we prove Theorem @, we need some
lemmas.

Lemma 3.1. Let (X,0) be a Riemannian 2-manifold and X : ¥ < R>! be an
isometric embedding. Then the mean curvature vector H of X(X) is AX.

Proof. Given a local coordinate {x! ?:1 on X, we compute the second fundamental
form

I1(0;,0;) = (Vo,x0;X)" = Vo,x9;X — V,0; = 8;0;X — T,00 X.

Therefore N
H = o"11(0;,0;) = AX.

O]

Lemma 3.2. Let X : ¥ < R>! be an isometric embedding and X=X- 71h
where T = — (X, Ty). Then the Gauss curvature of X is given by

(1 + |V7’|2)_l |:I<L + (1 + |VT]2)_1 det (V%’)} .

Proof. Let é3 be the outward normal of X (¥) in R3. We can extend é3 parallelly
along Ty in R3!. Since é3 is orthogonal to Tp, we have

(85,0:X) = <é3,ai)? + anTO> - <é3,8i)?> ~0.

Thus {é3, €4} is an orthonormal basis for the normal bundle of X (X). In fact, we
can check directly that

1
b= ——— (Ty+ V7).
1+ |V7’|2

Decompose the second fundamental form as

11(0;X,0;X) = —h;és + hj;é4

15
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where hfj and hfj are the second fundamental forms associated with €3 and é4
respectively. Since R*! is flat, by the Gauss equation, we have

0= Rizi2 — hiohty + hohty + highd) — hishs,

~ 3.5
= Ry212 — det h3 + det hi. ( )

By the definition of 7, we derive

1
hilj = —(0,0;X, ¢4) = ———==(0;0;X, Ty + VT1)
\1+ ]V7'|2
1+ |vr 1+ |V

Note that the determinant of the induced metric of X (X) is given by

det o <1 + ’VT|2> )

Divide both sides of (@) by det o (1 + |V7’]2), we get the desired expression. [

Proof of Theorem 3.2. We first prove the uniqueness problem. Assume X7 and X»
be two embeddings given by Theorem B.2. Let

T = — <XZ',T()> .

Consider the projection )?Z = X; — 7;Tp of ¥ onto R3. By Lemma @, the Gauss
curvature of X is

2\ ! 2\ ! 2
(1—|—|V7'Z" ) K+ (1—1—|V7’i| ) det (V*7;)| > 0.
The metric on X;(X) can be computed as
<df(z-, d)?i> = (dX,dX) + dr2.
On the other hand, by Lemma @, we have

(A (X] — Xs),Tp) = 0.

Hence (X1 — Xo,Tp) is a constant. So dry = drp. As a consequence, the induced
metrics of X1(X) and X3(X) are the same. Therefore by Theorem B.1, X;(X) is
the same as X2(2) up to Euclidean rigid motion. Now since dr = dry, X1(2) and
X(X) are the same up to rigid motion.

For the existence, we solve A = V7. Consider the new metric o + dr2. The
Gauss curvature is the same as before and positive by assumption. Hence Theorem

gives an embedding X. The isometric embedding into R®! is then given by
X + TT(].
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Xfl X,
i T
=
T
N
X(=)

Figure 2. The picture of Proof of Theorem 3.2.

O
Remark 3.1. We use Theorem @ to deal with the uniqueness in Theorem @

Corollary 3.1. Let (SQ,O') be a Riemannian manifold. Let T be a function on S?
such that ) holds. Then there exists a unique spacelike isometric embedding
Xo:S? = R3! and 7 as the time function.

Let X : ¥ < R3! be the isometric embedding in Theorem @ and 7 be the
corresponding time function so that

T=—(X,Tp). (3.6)

We choose €4 to be the unit normal vector in the normal direction of Tp. Use (@),

one see that )
é4= 7(T0+VT).

1+ |VT]2

So
—AT

where we use (@) At this moment, we can write down the reference Hamiltonian
as

(Ho, €4) =

9 (To, é4) = —i ) Loko — S} |:(K0)i_j — Ko (gU)ij:| dvx (s
where
Ly = \/m
and
So=-Vr.

Here all the terms with 0 are in R®! and Ty = 1/1 + |V7|*up — V7. There are still
two vectors unspecified, namely T and ey4.
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Now let’s move on to the general spacetime. Given any basis {es, es} for the
normal bundle NY, Wang and Yau consider the vector

key —pes —V
where V is the tangent part of W which satisfies
<W, X> = <VXe3, €4>

for any vector X and o
p= K- Kij’UZU].

This vector is closely related to the surface Hamiltonian. In fact, the expression
(El]) can be written as

1
— | (keq —pes —V, Leg + S) dvy.
8 »

To maintain consistency with Wang-Yau’s notation, we denote (Vxes,eq) by
ey (X).

Definition 3.1. Let X : X < M be a spacelike embedding into spacetime M. Let
T be a smooth function on ¥ and es be a spacelike normal vector. We denote

b(Z, X, 7 e3) = /14 |V7|? (H, e3) + ae, (V7) (3.7)

where H is the mean curvature vector of ¥ in M.

Notice that b defined above is different from the original paper [20] by a minus
sign.

Remark 3.2. In term of the mean curvature vector H, we have

k=—(H,e3), p=—(H,e4).

(S, X, 7 e5) = <k:e4 —pes = V,\J1+[VrlZes — vT> .

The reference Hamiltonian is then equal to

1 1 /
877'(' Eh(E,X,T,ég)d’UZ = 871'/2 1+ ‘VT|2 (H,é3> + g, (VT)dvz.

Consider a coordinate transformation between bases {e3, e4} and {és3,é4}, that is,

Thus

e3 = cosh ¢ é3 —sinh ¢ é4, e4 = —sinh ¢ é3 + cosh ¢ é4 (3.8)

for some function ¢.
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Proposition 3.1. If the mean curvature vector of the embedding X : ¥ — M is
spacelike, then the integral

/ b<27 X7 T, 63)d1}2

by

has a global maximum and such maximum is achieved by some vector e4 such that
—AT

(H,84) = —F——.
1+|VT]2

Proof. Let {e1,e2} be a frame of TX. In terms of the transformation (@), we
have

/h(Z,X,T,@g):/ \/1—|—|VT|2<H,63>+%3 (V1) dos
¥ ¥
2
:/—\/1+\V7'|2 E (cosh ¢ (Ve,é3,€q4) —sinh ¢ (Ve, €4, €4))
) a=1

+ [, (VT) + V7 - Vo] dus.

Since H is spacelike, take
H

|H]

and é4 to be the future-directed timelike normal vector such that {és,é4} is an
orthonormal frame. Using the integration by parts, the integral becomes

F(¢):/E—\/mcosh¢\f[+aé3 (V1) — ¢pArdos.

Note that the integral is a functional of ¢. The first variation can be computed as

F(¢+ta) = /2 - [\/ 1+ |Vr|*sinh ¢|H| + AT] advs,.

So the critical point happens when

\/1+ |V7|*sinh ¢|H| + Ar = 0.

Also since the functional is concave, this point is a maximum. Hence there is a
unique timelike unit normal vector e4 such that

~

€3 —

4
dt

t=0

—AT

\/1+‘V7”2.

<H, é4> =
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Therefore we have a unique choice of &4 in the spacetime such that

(H,e4) = (Ho, 4) - (3.9)

Finally, we assign T the vector 1/1 + |V7’|2é4 — V.

Remark 3.3. The equality (@) is the equality (3) in [21]. This equation is to
choose the unique gauge of the spacetime.

Definition 3.2. Let X : ¥ < M be a spacelike embedding. A smooth function T
on X is said to be admissible if the following conditions hold.

1. ¥ bounds an spacelike hypersurface Q0 C M such that the Jang-Schoen-Yau
equation with the boundary data T is solvable on Q.

-1
2. K+ (1 + |VT|2> det (V27) > 0.
3. h(X,X,71,€e5) <0.
Here k is the Gauss curvature of ¥ and €% is given by Theorem .

Definition 3.3. Let X : X — M be a spacelike embedding into a spacetime M.
The Wang-Yau quasi-local mass is defined to be the infimum among

ﬁ(Tv 64) -9 (T07 é14)

where T = — (X, Ty) is admissible and Xq is the unique embedding into R3!
associated with T.

Remark 3.4. The physical and reference Hamiltonian are equal to

ﬁ(T,e4):/ \/1+‘VT|2(H,63>+0453 (V1) dvs,

)

9 (To, &) = / VU9 G 5) o, (97 o
XX

respectively.

and

3.2 Jang-Schoen-Yau equation

The Jang-Schoen-Yau equation was first proposed by Jang [b] to solve the positive
mass conjecture. Schoen and Yau used the Jang-Schoen-Yau equation to prove the
positive mass conjecture. In fact, their proof also reveals a deep relation between
the solvability of the Jang-Schoen-Yau equation and the existence of black hole. In
the case of the Wang-Yau’s work, the Jang-Schoen-Yau equation is used to derive
an equality between (ﬁb and (B.12) in order to prove the positivity.
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Theorem 3.3. Let (2,9,p) be an initial data set. Then (2, g,p) is Minkowski
space if and only if there exists a function f and a flat metric k such that

D;D; f
Pij = —F/—
T /1+[Df]?

and .. .. . .
g7 = k9 - DIfDIf.

Using the above theorem, we derive the Jang-Scheon-Yau equation

ij_ DUD'f DiD;f )
(ga - 1+|ny2) ( ﬁﬂi?f\? —m) =0. (3.10)

Let (€2, g,p) be an initial data set. We consider the Riemannian product manifold
(2 x R, g,p) where g is the product metric and p is a symmetric tensor extended
from p parallelly along the R-direction, i.e. p(-,v) = 0 for the downward unit vector
v in the R-direction. The Jang-Schoen-Yau equation aims to find a hypersurface
Q C Q x R defined by the graph of a function f so as the mean curvature of Q
is the same as the trace of the restriction of p on Q. Tt can be shown that the
condition is the same in () We denote the Levi-Civita connection on 2 x R by
V where it reduces to the usual Levi-Civita connection on €2 and R by the virtue
of the product metric. N

Let 7 be a smooth function on ¥X. Denote the graph of 7 on ¥ by ¥ and that
of f on Q by Q. So it becomes a Dirichlet problem so that f = 7 on the boundary.
We consider the expression on X

k— <€é4é4,é3> + p (€4, €3) (3.11)
where k is the mean curvature of 3.

Theorem 3.4. Let X : X < M be a spacelike embedding. Let T be a function
on % and §2 be a spacelike hypersurface such that 002 = 3. Suppose the Dirichlet
problem of Jang-Schoen-Yau equation with boundary condition that f = 7 on X
is solvable. Then there exists a spacelike unit normal vector e along ¥ such that

(-) at p € ¥ is equal to
1

\/1+|V7)?

evaluated at p € ¥ where p = (p,7(p)) € .

— (H,éy) — e, (VT) (3.12)

Theorem @ links the geometry of ¥ with that of .
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3.3 Shi-Tam inequality

The boundary term is crucial in the discussion of action principle and the notion of
the quasi-local mass. Shi and Tam [16] proved an inequality relating the integral
of the mean curvature of boundary to that of isometric embedding. To be precise,
they showed

Theorem 3.5. Let ) be a compact Riemannian 3-manifold with nonnegative scalar
curvature. Suppose X = OS2 has positive Gauss curvature and positive mean
curvature k. Let X : ¥ < R3 be an isometric embedding and ko be the mean

curvature of X(X). Then
/k’d?]zg/ kOdX(Z)
b X(2)

The equality holds if and only if 2 s in R3.
Wang and Yau generalized the Shi-Tam’s work into the following theorem.

Theorem 3.6. Let Q be a compact Riemannian 3-manifold with boundary 3.
Suppose there exists a vector V on 0 such that

R > 2|V|? - 2divV
on  where R is the scalar curvature of Q) and
k> (V,v)

on % where v is the outward normal vector of ¥ and k is the mean curvature
of ¥ associated with v. Suppose also the Gauss curvature of ¥ is positive. Let
X 3 < R3 be an isometric embedding. Then

/ k—(V,v)dvs < / kodvx (s
b

X(%)
where ko is the mean curvature of X (X).

Remark 3.5. If X = 0, then Theorem @ reduces to the result of Shi-Tam.

3.4 The positivity
This section shows the positivity of the Wang-Yau quasi-local mass. The moral
is to compare the different forms of the integral (@) in various settings. We

first link the geometry of the projection X with that of the isometric embedding
X : ¥ R
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Proposition 3.2.

/)?(2) l;:dv)?(z) = /X(E) —\/ 1+ |V7’|2 <H(), é3> — Qg (VT) dUX(E)

where k is the mean curvature of X (%) in R3.

Proof. Let {é1,é5} be an orthonormal basis for X (). Note that

2 2
k= (Ve,s,éa) = > (Ve,s,6a) + (Veyés, é3) — (Vi és,Tp) .

a=1 a=1

Therefore k = g” (V,,é3, ¢;) for any frame {e;} of R*! where g;; = (e;,¢;). Choose
{e1,e2} to be the orthonormal basis for X (X). Notice that {€3,é4} forms an
orthonormal basis for the normal bundle of X (X). Hence we have

2
- 9 o 9 1
k= Z <vea€3,€a> - <vé4e3764> = - <H0a€3> -

———(Vvr€3,é).
a=1 \/ 1+ |Vr]?

The area forms of X (2) and X () have the following relation

1
dox(x) = 7(1@)?(2).
\/1+ \VT]Q
Combine all the terms, then we obtain the Proposition 3.2. ]

Proposition @ is related to the gravitational conservation law in the following
sense. If we assume u and ¢ are tangent to B, then the surface Hamiltonian can
be simplified as [19]

9 (To, e4) :/ (70),; Ugtédx

b
where (), ; is the conjugate momentum to the induced metric on B. Let D be the

region of the timelike hypersurface between X (X) and X (). Since M is vacuum
and tg is Killing, we have

/ (70).; uétédvap :/ v [(Wo)ij té} dvp = 0.
oD D
One have

9 (To, eq) = — /A fcdv)?(z)
X(®)

by the conservation law and Proposition @
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Proposition 3.3. Let X : ¥ < M be an embedding into a spacetime M with the
dominant enerqy condition and Xo : ¥ — R3! be the isometric embedding given
by Theorem . Suppose T is admissible. Then

/ b (S, Xo, 7 &) duxy(s) < / (S, X, 7 el) duxs).
Xo(X) X (%)

Proof. Since 7 is admissible, b (X, X, 7, e5) < 0. By Theorem @,

k— <%é‘4é4,é3> + p(é4,€3) > 0.

Take X to be the dual vector of <Vé4é4, > — p(€4,-) on the graph of 7 over X,
namely . One see that €2 satisfies the condition in Theorem @ by [L4].Then by

Theorem B.4,
kdv Z/I;:— )Z',é dvg.
/m t 2 foF - (Ko dos

Finally, from Theorem @ and Proposition @, we have

/ h (27X0)7—7 é3) d/UXg(Z) < / b (E)X> T, eé) d/UX(E)'
Xo(¥) X(¥)

O

Theorem 3.7. Let X : ¥ — M be an embedding into a spacetime M. Suppose
M satisfies the dominant energy condition and the mean curvature vector of X ()
is spacelike. Then the Wang-Yau quasi-local mass is non-negative and the equality
holds if X is isometric to R3! along X (X).

Proof. The following inequalities summarize the proof for the positivity.
ST = [ 0(2,X, 7,0 dos
> /zh (2, X, 7,€es) dus, (3.13)
> /Eh(z,XO,T, &) dvs = 6 (T, 24).

The first inequality in () follows from the definition of $(7',é4) as the local
maximum. The second inequality is from Proposition B.3. The last one is from the
definition. As a consequence of the above inequalities, the Wang-Yau quasi-local

mass is non-negative. Now if X is isometric to R*>!, then we can take Xj : & —
R31, O
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