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摘要

服務型機器人需要能夠選擇行為，在缺乏使用者命令下自行進行決

策，甚至主動提供服務，才能被稱為「自主」。對於掃地機器人、取物

機器人等單用途機器人而言，由於它們有個明確的目標，因此可以人

工建構一個完整的決策模型作為它們的行為準則。但是對於多用途機

器人而言，他們的目標較為曖昧、模糊，甚至沒有明確目標，此時便

較難以為他們建立完整的行為模型，使得它們的自主性較低。

「內部平衡理論 (homeostatic drive theory)」是一個在社交機器人中常

見的決策理論，它使機器人試著維持其內部狀態的恆定，並根據自身

的需求選擇行為。雖然此方法可以提高機器人的自主性，由於此方法

忽略了使用者的需求，讓「使用者感知」的能力降低，因此需要調整

才能應用於服務型機器人身上。本篇論文將「使用者意圖」以及「使

用者回饋」結合至內部平衡理論中，讓決策模型更以使用者為中心，

同時保有機器人的高自主性。機器人的內部需求 (drives)將轉化為動機

(motivations)，且機器人將同時考慮自身的動機以及使用者的意圖來決

定自身的行為。機器人每個行為的效果並非事先定義好的，而是在互

動中利用增強式學習 (reinforcement learning)所得，使得機器人對於環

境以及使用者的先前知識的需求都能降到最低。此決策模型於模擬環

境中進行測試及訓練，並將機器人在模擬環境中所學知識轉移至真實

的機器人進行實地測試。結果顯示機器人在滿足使用者需求的同時也

能夠維持自己體內的恆定，提升自主運作時間，同時達成高自主性以

及使用者感知能力。
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Abstract

For a service robot to reach high autonomy, it should choose what to do,

make it’s own decisions without user command, and even provide service to

the user proactively. For single purpose robots, such as object fetching robots

or cleaning robots, since a specific goal is given to each of them, the well-

structured decision processes could easily proceed, and decision about that

task could be made. However, for robots with vague goals or no specific

goal at all, such as caring robots or personal service robots, it is harder to

construct a general purpose decision process for them, lowering their auton-

omy. Homeostasis drive theory is a dominating psychological approach in

decision making for social robots. A robot adopting this theory would try to

maintain its internal status, and act according to its own need. While achieve

better autonomy, this approach ignores the needs of its human user, resulting

in low degree of human awareness. This work integrated human intention

and human feedback into a homeostasis based system, making the decision

process more user-centric, while maintaining high autonomy. The robot’s

internal needs (drives) generate motivations, and the robot will choose its ac-

tions considering both the need of the user and its ownmotivation. The effects

of its actions are not predefined and are learned during interactions by rein-

forcement learning, making the system require little prior knowledge about

the user. The proposed system has been tested in simulations and on a real

robot. The results show that the robot can not only satisfy its own needs but

also serve the user proactively.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Service Robots

Throughout the past decades, the research and applications of robots have shifted from

industrial robots to service robots [1]. Domestic service robots have always been a vision

of ours, and the presence of them could often be seen in our imagination of the future,

such as science fiction books and movies. The attempts on domestic service robots in

early years are usually rather simple and single purpose, with possibly the most famous

example being Roomba [2]. These single purpose robots have their own special goal, and

they plan their actions around that goal (or not, since some are purely reactive agents such

as early Roombas.)

In recent years, many try to develop service robots of more general purposes, such as

healthcare robots [3, 4], office robots [5, 6], home service robots [7], personal robots [8, 9],

etc. These service robots have designated working environments, however, unlike a task-

specific service robot, lack specific goals. Their purpose is to “sense, think, and act to

benefit or extend human capabilities and to increase human productivity” [10], yet lacking

a specific goal withinmakes them hard to act on their own and often have to wait for human

orders, lowering their autonomy.

1
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1.1.2 Autonomy

Autonomy, different from automaticity, is the ability to make decisions and act on its

own. According to the definition by Clough [11], “automatic means that a system will do

exactly as programmed, it has no choice. Autonomous means that a system has a choice to

make free of outside influence, i.e., an autonomous system has free will”, which indicates

that an autonomous robot should be able to sense the environment and choose its actions

according to it. Bekey [12] and Cañamero [13] also gave similar definitions. Thus, in

order to achieve a higher level of autonomy, the robot should be able to choose what to

do at each moment according to the status of environment at the time, instead of waiting

for user’s orders or input. In other words, the robot should have it’s own decision making

ability. This interpretation also matches the statements in [14].

To achieve autonomy, one popular approach is to find inspiration from animals or hu-

man [15]. The behavior of living creatures are studied neurobiologically and psycholog-

ically. The goal is to have human/animal behaviors studied, modeled, and implemented

on agents, giving them full autonomy. This kind of biological approach is widely used in

the control of robots, social robotics, and cognitive robotics.

In social robots, a dominant psychological approach is the homeostatic drive the-

ory [16]. In this theory, an agent is modeled to have internal needs, and the goal of the

agent is to satisfy those needs in order to maintain a stable internal state. While this ap-

proach does give social robots a goal based on which to choose their actions, and keep the

robot content; the needs of its human user wasn’t taken into consideration. Since the main

feature of social robots is the ability to communicate and interact with humans/agents so-

cially, the ability to serve isn’t necessarily a high priority. However, if we wish to retain

the characteristic of “sense, think, and act to benefit or extend human capabilities and

to increase human productivity” from service robots, the system should make decisions

based on not only its own internal needs, but also the need of its human user. This leads

to a higher degree of human awareness.

2
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1.1.3 Human Awareness

Human awareness is the ability to be aware of the presence and the needs of humans.

The robot should be able to understand the user to a certain degree and make decisions

taking human into consideration. The skills required to achieve human awareness in-

clude [17]:

1. human-oriented perception: human detection and tracking, gesture and speech recog-

nition, etc.

2. user modeling: understanding human behaviors and making appropriate decisions.

3. user sensitivity: adapting behavior to user, measuring user feedback, and recogniz-

ing human state.

Accordingly, the abilities to understand the need of the user, make decisions upon

it, measure user feedback and adapt to the user’s preference are all important to achieve

human awareness. We also believe these are also important traits to build a successful

autonomous service robot.

1.2 Objectives

Combining the statements in Section 1.1, the conceived ideal form of service robot is

the one that have both high level of autonomy and human awareness. This work aims to

propose a decision making system for service robots that chooses actions autonomously,

and serves the user proactively. To achieve this, there are three important aspects of this

system:

• To understand the user’s need

In order to serve the user proactively, first the user’s need must be understood. Other

than directly commanding the robot, the usermight express his/her intention through

body language, context of dialog, movements and/or other subtle features in an in-

teraction. These features, expressed intentionally or unintentionally, could be gath-

ered, and the underlying intention could be extracted through a recognition process.

3
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A Bayesian network based intention recognition model have been proposed by our

lab previously [18], and it has been adopted to understand the user’s intention, which

is taken into consideration when making decisions.

• To make decisions autonomously considering both the user and itself

To achieve high level of autonomy, biologically inspired approaches are often used.

Although the psychology based homeostasis drive theory is a dominating approach

in social robot genre and indeed endows high autonomy, the underlying self-centricity

makes it hard to be adopted on service robots at first glance. The research in this

thesis, inspired by this theory and works such as [19, 20, 16], aim to propose a sys-

tem that’s both homeostatic and human-aware. That is, the decision making system

should consider the human intention while trying to maintain its internal needs. In

this way, the robot could benefit from the autonomy introduced by homeostasis,

while retaining the role as a service robot.

• To learn and adapt to user’s preference through interactions

Without preference of the user predefined in the robot’s prior knowledge, it is very

likely that the decisions made by the robot are not the best choice, or even acceptable

to the user at first. This could be solved by injecting a large amount of user profile

before the robot’s execution. However, this solution is not used in this work, as it re-

quires extensivemanual parameter tuning, and is generally not adaptable to changes.

Moreover, the user profiles are not usually available beforehand. The robot should

learn the correct actions corresponding to user’s intention through interactions, and

receive user feedback as indications.

With these abilities, the system should be able to make decisions autonomously with-

out predefined goals. It requires little prior knowledge about its user, yet is able to serve

the user proactively according to his/her current need through interactive learning.

4
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1.3 Related Work

The methods in decision making are various, with popular ones being Bayesian mod-

els, Markov models and their variations. Elinas et al. [5] used a factored Partially Ob-

servable Markov Decision Process (POMDP) to model the behaviors and the decision

theoretic planner of a visually guided interactive mobile robot. The difference in time

scales between execution layer and deliberative layer was considered using the factored

POMDP, and a heuristic was also proposed to speed up the solving process. Feyzabadi

et al. [21] proposed a hierarchical solution to the constrained Markov decision process

(CMDP) problem. They partitioned the state space of the original CMDP into multiple

clusters, solved the smaller abstract CMDP, and projected the abstract policy back to the

original space. This method tackles sequential decision problems with multiple objec-

tives, and is implemented in a path planning scenario. Omidshafiei et al. [22] used De-

centralized POMDP (Dec-POMDP) to solve multi-robot planning problems in continuous

spaces. Actions were abstracted into macro-actions, simplifying the original Dec-POMDP

problem, making it solvable using discrete methods. Liu et al. [23] introduced Episodic

Memory-driving MDP (EM-MDP) to solve planning problems. They used state neurons

and episodic memories to store learned experience, reducing the high-dimensionality of

observation, and is easier to solve than the traditional POMDP model. Zhang et al. [24]

proposed a combination of logical reasoning and POMDP planning in a dialog system.

The prior knowledge of commonsense was used to filter the possible words. Then, a

method called P-log was used to extend the logical reasoning results to probabilities, and

the probabilities was transferred to POMDP as the current belief of states. The proposed

method was shown to be more efficient and accurate than POMDP without commonsense

reasoning.

Although these models are popular in robotics, they are more of a planningmethod of a

given task. Without a given task or a well crafted model, these method become somewhat

unsuitable. Other than theses models, there are still different approaches. Ko et al. [25]

adopted confabulation theory, using symbols to represent the environment contexts, and

wills and behaviors of an virtual agent. Behaviors were first filtered by the dominant wills

5
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and the perceived contexts, then evaluated using Choquet fuzzy integral. Smith et al. [26]

introduced a fuzzy multi-objective decision making system for the motion control of a

mobile robot.

As mentioned before, the biologically inspired approaches, where researchers tried to

mimic the mind of human neurobiologically or psychologically, are also popular recently.

Maes et al. [27] proposed ANA architecture, where the behavior selection and motivation

competitions were done using a neural-network based system. Bellas et al. [28] intro-

duced Multilevel Darwinist Brain (MDB) architecture, where artificial neural networks

(ANNs) were used to represent the world model, internal model, and satisfactory model

of the robot. The three models worked together to evaluate the behaviors, and the selected

behavior was determined by the output of the satisfactory model. The system of Ando et

al. [29] sensed the environment and generated urges. Urges competed through predefined

priorities, and the dominant urge drove the compensating action. Hoefinghoff et al. [30]

used somatic markers on each stimuli-action pair. The meaning of a somatic marker is

the possible emotion of choosing that action given the stimuli. The somatic markers are

used to filter out inappropriate actions, and the remaining actions are chosen randomly.

Wilson [31, 32] tried to consider the morality of the actions of the robot, and proposed to

choose actions based on utilities that is modified to reflect the moral effect.

In psychological approaches, homeostasis drive theory based systems are one of the

dominating methods. The term homeostasiswas first introduced by Cannon [33], and was

described as a regulatory system to maintain the body in a stable physiological state. Af-

ter being adopted by robot decision making systems, it usually means that the agent has

several internal needs that need to be checked and maintained. When a need become un-

satisfied, a drive will be created, triggering appropriate correcting actions. Many famous

robots adopted this method, such as AIBO [34] or Kismet [35]. Cao et al. [16] introduced

ROBEE architecture, where internal needs generate drives. A predefined satiator, a list of

preconditions-action pairs, was used to satisfy the highest drive. Cañamero et al. [36, 13]

introduced motivational states, the intensity of which was affected by both the internal

drives and external stimuli. After the intensity of motivations were obtained, the inten-

6
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Figure 1.1: Overview of the decision making system

sity of behaviors were calculated accordingly. The behavior with the highest intensity

will be the selected one. Gandaho et al. [37, 38] associated robot’s goal with homeostatic

variables, and used reinforcement learning on the robot’s adaptive controller. Inspired by

both Cañamero and Gandoho, Castro-González [19] used drives to model the robot’s in-

ternal needs, which, along with stimuli, trigger the robot’s motivations when unsatisfied.

The motivation were competed through intensities, and an action was selected trying to

match the dominant motivation. The correlations between actions and motivations were

not predefined, and must be learned in the interactions. This work, largely influenced

by [19], used similar formulation of the robot’s internal variables, while introducing the

human user’s intention and feedbacks into the decision system, making the robot more

human-aware and able to serve human proactively.

1.4 System Overview

Thiswork, inspired by [20] and such, models the robot’s internal needs as drives, which

generate motivations when needs are unsatisfied, since homeostasis requires the drives to

7
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be kept in range. The intensity of each motivations are calculated, which would then be

used to determine the dominant motivation. The dominant motivation would become the

internal state of the robot. On the other hand, the robot will extract the status of the en-

vironment and recognize the user’s intention, passing them to the action selection module

as external state. The action selection module, combining both internal and external state,

will choose an action accordingly. After the execution of the chosen action, the robot will

calculate the effects of the action, receive feedback from the user, and update the model

to adapt to the user’s preference. Figure 1.1 shows the overview of the proposed system.

The main difference of this work and related works such as [20, 16] is that the user

is explicitly modeled into the decision making process, rather than treated as a general

object. In other works, the robot behaves solely to achieve homeostasis, and the user has

little means to affect the robot’s decisions. In this work, the user can directly affect the

robot’s decisions through expressing intention and giving feedback. The robot will choose

its action considering both homeostasis and the user’s need.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, themathematical tools used

in this work, such as Bayesian network, reinforcement learning and its based formulation

Markov decision process, are described. The adopted intention recognition method is

also described here. In Chapter 3 the terminologies, model formulation of the system, and

system design details are described. In Chapter 4, the author proposed several evaluation

metrics to measure the performance of the system. Both the simulation results and field

test outcomes are shown here. Finally, Chapter 5 concludes the whole thesis.
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Chapter 2

Preliminaries

2.1 Markov Models

The Markov model is a statistical tool used to represent the system or the stochastic

process’s behavior with temporal information. It is a model that assumes the Markov

property, which especially assumes future states of the system only depended upon the

present state; that is, the present states characterize all the necessary information of the

past events and thus enable the reasoning with the model to be tractable. Markov Models

can be divided into four different types depending on whether those system are observable,

controllable or not, as shown in Table 2.1. Firstly, if the system’s states are fully observable

and changing spontaneously, then the system is modeled as Markov chains. Secondly,

the system can be modeled as Dynamic Bayesian Networks (DBN), a generalized hidden

Markov model, if the states of this system cannot be fully observed but still be changing

spontaneously. On the other hand, if the transition of system’s states is held in the system’s

hand and is fully observable, we call this model as Markov Decision Processes (MDPs).

Finally, if states of system are not fully observable and is controlled by the system itself,

we define this model as Partially Observable Markov Decision Processes (POMDP). The

POMDP model is the most complex architecture due to consideration of the uncertainty

and system’s decision simultaneously.

9
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Table 2.1: Different Types of Markov Models

Fully observable Partially observable

System is autonomous Markov Chains Dynamic Bayesian Networks
(DBNs)

System is controllable Markov Decision
Processes (MDPs)

Partially Observable Markov
Decision Processes

2.1.1 Markov Decision Processes

In Markov Decision Processes (MDPs), the agent fully observes the current state and

decides an action to perform. The next state to which the process transfers depends on the

current state and the system’s action. Hence, a Markov decision process is a quadruple:

MDP = ⟨S,A, T,R⟩ (2.1)

where

• S is a finite set of system’s states, describing information of the environment that

agent concerns,

• A is a finite set of system’s actions,

• T is the transition probability of system’s states. As a result of executing action

a ∈ A in state s ∈ S, the environment transitions to state s′ ∈ S with probability

T (s, a, s′). It is worthy noting that each transition in MDPs is defined as a non-

deterministic one.

• R is the reward function. After the system state changes to the next state, the envi-

ronment responds with an expected reward r, where r ∈ R, R : S ×A× S → R is

a bounded function.

A comprehensive illustration of those relationship is shown in Fig. 2.1. To deal with

noisy and incomplete state information, the basic MDP framework can be extended to

Partially Observable Markov Decision Processes (POMDPs), where states of the system

10
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Figure 2.1: The graphical presentation of the Markov Decision Process. The transition of
the system is depended on the action A, and the selection of the action is determined by
the reward function R.

are represented as hidden states and must be inferred from system’s observations and ac-

tions, causing the state space become too large to solve the optimal policy efficiently. For

a complete introduction of POMDPs, please refer to [39].

Given an MDP, the objective is to construct a policy π : S → A that maximizes the

expected future accumulated reward from each state s. The agent then chooses its appro-

priate actions according to the policy. This policy, comparing to the immediate received

reward, is determined based on the desirability to the goal, which is shaped by the reward

function R, in the long run. When decisions are made or evaluated following the policy,

the values of action choices are concerned. The expected return of following a policy π

from a state s is defined by the value function as shown below:

Vπ(s) = Eπ[r(t) + γr(t+ 1) + γ2r(t+ 2) + . . . |st = s]

= Eπ[
∞∑
k=0

γk · r(t+ k)|st = s]

= Eπ[r(t) + γVπ(st+1)|st = s]

(2.2)

11
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where t is the current time step and rt is the reward received at the time step t. This quan-

tity V
π
(s) is called the value of the state s under the policy π. The future rewards are

discounted by a factor γ so that the recent returns are emphasized more. Those can be

computed using dynamic programming methods, such as value iteration or policy itera-

tion [40, 41]. However, though the optimal policy of MDPs can be solved by dynamic

programming methods, this requires the specification of all the parameters of MDPs. In

real world applications, those parameters, especially the transition probability T , are too

vague to be defined clearly due to complexity and uncertainty of our world. Therefore,

the reinforcement learning is proposed to deal with this problem; specifically, instead of

solving the optimal policy directly, we learn it through the interaction between agents and

the environment.

2.2 Reinforcement Learning

Reinforcement Learning (RL) [42] is usually known as goal-directed learning methods

to deal with the problem that can be modeled as a Markov Decision Process. The agent is

not instructed what to do but should discover the actions which lead to the most profits.

To be more specific, reinforcement leaning is the learning that maps situations to actions

so that by following the learned policy, the agent collects the maximum rewards. Chain

effect is a tricky part of reinforcement learning problem where actions not only affect the

current reward but also influence the subsequent situations and future rewards. The agent

generally learns under exploration and exploitation and figures out how to take actions in

the environment to maximize the long-term returns.

2.2.1 Standard Modeling

The standard modeling of a reinforcement learning problem is shown in Figure 2.2.

There are an agent and an environment. The learning process proceeds as follows: at

each time t, the environment is in a state st, and then the agent observes the state of

environment st and deliberately selects an action at for execution. The action results in

12
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Figure 2.2: General frameworks of reinforcement learning techniques

the state transition of the environment from st to st+1 at time t+1. The agent then receives

the reward rt+1.

Under the global view of the learning agent and the environment, basic reinforcement

learning models consist of the two elements of MDPs: a set of system’s states S and

a set of actions A. The major difference between dynamic programming methods and

reinforcement learning techniques is that RL requires the agent to observe the transition

of the system and to study its action’s influence on the system’s state transition, while the

dynamic programming method must specify the detail of the transition probability in prior

and solve the problem offline. RL is referred to a kind of interactive learning method.

2.2.2 Value Functions and Action-Value Functions

Since the objective of reinforcement learning techniques (or generally, the MDP prob-

lem) is to learn the optimal policy that maximizes the expected future accumulated re-

ward by mapping each state to the agent’s action, and the value function introduced in

Section 2.1.1 serves this purpose. It memorizes the experience that the learning agent had

and indicates how likely the states can reach the agent’s goal. In this section, we introduce

two basic ways to represent the experience of the learning agent in reinforcement learning

techniques.

The first one is the value function, described in Eq. (2.2). With the knowledge of the

transition T and reward functionsR, this function can be re-written in the form of Bellman

13
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equation:

Vπ(s) = R(s, π(s)) + γ
∑
s′

T (s, π(s), s′)Vπ(s
′) (2.3)

The maximum value that can be obtained by a policy is usually denoted as V ∗, which

is defined as:

V ∗(s) = max
a

(R(s, π(s)) + γ
∑
s′

T (s, π(s), s′)V ∗(s′)) (2.4)

Similarly, another representation called action-value functions, often simplified as Q

function, describes the expected long-term return of taking an action a in a state s under

the policy π, and the optimal action-value function denoted as Q∗ is described below:

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, π(s), s′)Vπ(s
′) (2.5)

Q∗(s, a) = R(s, a) + γ
∑
s′

[T (s, a, s′)max
a′

Q∗(s′, a′)] (2.6)

Furthermore, due to the fact that the optimal policy always chooses the action with the

maximum action value, the relationship between value and action-value are expressed as:

V ∗(s) = max
a

Q∗(s, a) (2.7)

Once the learning agent obtains the optimal action-value function, it is obvious that

the agent can easily take the greedy strategy to choose the best action based on the highest

action-value they will receive in the next step, as shown by Eq. (2.7); that is, the optimal

policy that follows Q∗ is derived as the following form:

π∗(s) = argmax
a

Q∗(s, a) (2.8)

It is worth to note that either the value function V or action-value function Q require

the transition probability T to compute their values. In the next section, the Q-learning al-
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gorithm which does not require the specification of transition T will be introduced briefly.

2.2.3 Q-Learning

Q-learning [43] is often used to find an optimal action-selection policy for a given

Markov decision process (MDP). It is a model-free reinforcement learning technique since

the model of the environment is not required by the algorithm. This algorithm works

by learning the action-value function Q (see Eq. (2.5)) through the interaction between

the learning agent and the environment. The procedure of Q-learning in iteration n is

presented as below:

• observes the environment’s current state sn,

• selects and performs an action an,

• observes the subsequent state s′
n,

• receives an immediate reward rn, and

• adjusts itsQn−1 values using a learning factor αn, according to the update function:

Qn(s, a) =


(1− αn)Qn−1(s, a) + αn[rn + γVn−1(yn)] if s = sn,

Qn−1(s, a) otherwise
(2.9)

where the initial action-value Q0(s, a) is assumed given for all states and actions, and the

function did not require the specification of the transition probability T .

This algorithm has been shown that it will converge correctly if the action-value func-

tion is represented via a look-up table representation [43]. More generally, Q-learning can

be combined with function approximation. This may speed up the learning process and

let the algorithm be able to deal with problems in continuous space.
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Figure 2.3: Bayesian network used to recognize user’s intention. The parameters are
updated using EM algorithm if user feedback is received.

2.3 Intention Recognition

In order for the robot to achieve human-awareness, first it have to understand human

behaviors andmake appropriate actions accordingly [44]. One way to accomplish this is to

recognize user intention and take this intention into consideration when making decisions.

This work adopts the intention recognition method from [18], using human user’s ges-

ture, movement, and spoken sentence as features and construct a Bayesian network ac-

cordingly. Figure 2.3 shows the Bayesian network used in this work, and the recognized

intention is calculated as:

hirecog = argmax
hi∈HI

P (hi | z) (2.10)

where hi is an human intention, and z is the observations about human.

To adopt to the user’s preference, user feedback about his/her intention could be made,

and the model will be updated on-line. If the robot fails to recognize the user’s intention,

or the recognition result is incorrect, the user could make a feedback, clarifying his/her

true intention. When the robot receives this feedback, it will update the parameters of the

Bayesian network using expectation-maximization (EM) algorithm [45]. In this way, little

or no prior knowledge about the user’s behavior is needed, and the relation between user’s

actions and his/her intentions could be learned through interactions.
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Chapter 3

Methodology

3.1 Terminologies

According to homeostatic drive theory [46], “homeostasis means maintaining a stable

internal state.” This work, inspired by both [20] and [16], uses drive, motivation and

stimulus to determine a robot’s internal status. The relation between these parameters are

illustrated in Figure 3.1. The meaning and definition of these and other terms used in this

system will be described below.

3.1.1 Drive

In this work, the internal needs of the robot are modeled as drives. Drives are internal

parameters of the robot in the form of real numbers. A drive represents a certain need of the

robot, such as its battery level or a sense of loneliness, and the value of the drive indicates

Figure 3.1: Relation between system parameters.
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the degree of dissatisfaction of that certain need. The set of drives used in the system is

denoted byD. Each drive d ∈ D is normalized to the range of [0, 100], with 0meaning the

need is fully satisfied (thus no compensating drive) and 100 meaning the need is totally

unsatisfied (thus high compensating drive). The value of a drive could be affected by time,

the robot’s internal status, and the outcome of the selected action. Each drive d is also

accompanied with an activation threshold. When a drive exceeds its activation threshold,

the degree of dissatisfaction is considered high enough, and the corresponding motivation

will emerge. In this thesis, the term need and drive are sometimes used interchangeably.

Definition 1. DrivesD is a set of internal needs of the robot, the values of which indicate

the current degrees of dissatisfaction in different aspects. ∀d ∈ D : d ∈ [0, 100].

Definition 2. Activation thresholds AT is a set of thresholds representing robot’s toler-

ances to its needs. There is a bijection mapping from D to AT. That is, for each d ∈ D,

there is one and only one corresponding threshold at ∈ AT. In this work, the subscript

index i is used to indicate this mapping (i.e., ati ∈ AT is the corresponding threshold of

di ∈ D). ∀at ∈ AT : at ∈ [0, 100].

Definition 3. When di > ati, di is considered unsatisfied.

3.1.2 Stimulus

The factors that affect the robot’s motivation are twofold, the internal needs — the

drives—and the external conditions — the stimuli. Stimuli are defined as external condi-

tion that could affect the intensity of one or more motivations. The set of possible stimuli

is denoted by ST. It could be the presence of a certain object, the recognized intention of a

human, etc. For example, our motivation to eat could be affected by our hunger, an inter-

nal drive, and the presence of food, an external stimulus. Similarly, we expect the robot’s

motivation to serve would be enhanced if the robot sensed the human user’s intention. A

stimulus could have different effects on different motivations.

Definition 4. Stimuli ST is a set of external conditions that could affect the intensity of

motivations of the robot. Given an observed environment, a stimulus st ∈ ST could be
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either present or absent. The set of presenting stimuli is denoted by STexist, STexist ⊆ ST.

3.1.3 Motivation

Motivations (M ) can be considered as the goal of the robot. Motivations are triggered

by unsatisfied needs (i.e., drives that exceed activation thresholds) and external stimuli.

The relation between drives and motivations are one-to-one, which means that for each

drive in the system, a correlated motivation exists. Given the current drive values and the

existing external stimuli, the intensity of each motivation can be calculated. The intensity

of a motivation represents its strength. The higher the intensity is, the more likely that

motivation will prevail. For the motivation with the highest intensity, it is considered

dominant, and the robot should try to act according to it.

Definition 5. MotivationsM is a set of goals for the robot to compensate for a unsatisfied

drive. There is a bijection mapping fromD toM , that is, for each d ∈ D, there is one and

only one correspondingm ∈M . In this work, the subscript index i is used to indicate this

mapping (i.e.,mi ∈M is the corresponding motivation of di ∈ D).

Definition 6. In every iteration, the intensity of the motivations could be calculated by

the drive values and the stimuli of that time. A motivation is considered activated if its

intensity is greater than 0.

Definition 7. In every iteration, the dominant motivationmdom is chosen according to the

intensities of all motivations. mdom determines the internal state of the robot.

According to Lorenz’s hydraulic model [47], internal drive strength interacts with ex-

ternal stimulus strength. If the drive is low, then a strong stimulus is needed to trigger

motivation; if the drive is high, then a mild stimulus is sufficient [46]. To illustrate this

model, Malfaz [20] used the following equation to calculate the intensity of motivation:

intensity(mi) =


0 if di < ati

di + effect(sti,mi) otherwise
(3.1)
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Where intensity(mi) is the intensity of motivationmi ∈M , di is the corresponding drive,

and effect(sti,mi) is the effect of related external stimulus sti on motivation mi. The

physical meaning of equation Equation (3.1) is that the motivation will be activated only

if the corresponding need is unsatisfied. Since in the definition of this work, a stimulus

could affect several motivations, and a motivation could be affected by several stimuli,

the above equation is adjusted to Equation (3.2).

intensity(mi) =


0 if di < ati

di +
∑

stk∈STexist

effect(stk,mi) otherwise
(3.2)

If there are multiple activated motivation, all activated motivations will compete with

one another through comparing intensities, and the motivation with the highest intensity

will become the dominant motivationmdom of that iteration.

mdom = argmax
m∈M

(intensity(m)) (3.3)

3.1.4 Environment

There is no common solution to the representation of environment in the research of

robotics. The design is often up to the purpose of the robot system. While a navigation

system focuses on the location of itself and the obstacles [48], a service robot might uses

a higher level of representation of objects [49].

In this work, we regard the key aspect for a personal service robot is conceived to

interact with different kinds of objects and/or the human user to satisfy to needs of the robot

itself or to serve the user. For example, if the robot is low on energy level, it should operate

the charger to meet its need; when the user’s intention is to watch television, the robot

should turn on television to provide service. Following this requirement, the environment

in this work is composed of one or more objects and a human user. Each object is assumed

to be recognizable to the robot for simplicity in this work, and is described by a set of object

variables. The object variables describe the status of the object, and the relation between
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it and the robot. Similarly, the human user is described by his/her recognized intention,

and also the relation with robot.

Definition 8. Obj denotes a set of objects recognized and considered by the robot. Each

o ∈ Obj is represented by a set of object variables.

Definition 9. There is one human user of the robot. The robot will try to recognize the

intention, infer the spatial relation, and determine the interaction status of its user.

Definition 10. For each iteration, when the human user is present, the robot will try to

recognize the intention of the human user, and choose the most possible one out of all the

possible human intentions HI. The chosen intention is denoted by hirecog.

3.1.5 Action

The goal of the proposed system is to choose an action out of a predefined action set

to cope with the current situation. The purpose of an action is to satisfy the robot’s needs

and/or to serve the human user through its execution. The target of each action could be

an object, the human user, or the robot itself. For example, plug and unplug could only

be operated on the charger, while chat can only be used on the human user. To group the

actions, we can get several subsets according to the target of an action. However, two

of the subsets are distinct from the others, namely, the subset whose target is the human,

and that whose target is the robot itself. Besides these two subsets, the targets of all the

other subsets are objects. To make the notation uniform, we introduce a null object, which

serves as the target object for all non-object-related actions.

Definition 11. A denotes a set of actions that the robot can perform. Each action has an

execution target, and Ao denotes the subset of actions of which the target is object o. For

actions without target objects — the target of action is the human user or robot itself — a

null object is defined to serve as their target. As indicated by Equation (3.4), A could be

seen as the union of Aos for all o ∈ Obj plus the null object.

A = Anull ∪
∪

o∈Obj

Ao (3.4)
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3.2 System Model

After defining the internal parameters of the robot in the previous section, the robot

should decide its own actions to keep its drives in check, and achieve homeostasis. In

the mean time, the robot should also consider the user’s intention, serve the user when

applicable, and learn the user’s preference through feedback. These are necessary features

for a robot to achieve higher-level human-awareness ability [18]. In the work, a Q-learning

based decision making system is proposed. The design of this system is highly influenced

by [20], and the feedback method described in [18] is integrated into the system.

Following Figure 1.1, a flowchart is shown in Figure 3.2 to illustrate the decision

making process. First the drives are calculated, generating motivations. The motivations

compete with each other by comparing intensities, and a dominant motivation will be

chosen. The dominant motivation will be passed to the action selection module as internal

state. On the other hand, the robot will extract the status of the environment and recognize

the user’s intention, passing them to the action selection module as external state. The

action selection module, combining both internal and external state, will choose an action

accordingly. After the execution of the chosen action, the robot will calculate the effects

of the action, receive feedback from the user, and update the decision making model.

The main difference of this work and the related works such as [20] or [16] is that

the user is explicitly modeled into the decision making process, rather than is treated as

a general object. In other works, the robot behaves solely to achieve homeostasis, and

the user has little ways to affect the robot’s decisions. This characteristic is applicable to

pure social robots, but is unsuitable if we wish the robot to also have serviceability. In this

work, the user can directly affect the robot’s behavior through expressing intention and

giving feedback. The robot will choose its action considering both homeostasis and the

user’s need.

In the following section, first the state used by the system will be defined in Sec-

tion 3.2.1, and the state reduction method will be described in Section 3.2.2. To cope

with the collateral effect in state reduction, a modified version of Q-learning proposed

in [19] will be described in Section 3.2.3. We will describe the stochastic action-selection
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Figure 3.2: Flowchart of the decision making system

23



doi:10.6342/NTU201603154

method in Section 3.2.4, and the reward function in Section 3.2.5. Finally, a special kind

of user feedback called proposal and user-induced pseudo update will be described in

Section 3.2.6.

3.2.1 Internal and External States

In general, the state to be used in the decision making system is composed of the

internal state of the robot and the external state of the environmental context, as in Equa-

tion (3.5).

S = Sinternal × Sexternal (3.5)

In this work, the internal state is the selected dominant motivation of the robot. The

dominant motivation is selected as stated by Equation (3.3). Thus:

Sinternal = mdom = argmax
m∈M

(intensity(m)) (3.6)

In [19], the external state is the combination of the states of all the objects in the

environment in relation to the robot:

Sexternal =
∏
o∈Obj

So (3.7)

An object state could contain the spatial relation between the object and the robot, the

on/off status of the object, etc. Different kinds of objects could have their own definitions

of state variables. In Equation (3.7), the state of the human was also treated as an object

state. To achieve higher-level of human awareness, we try to integrate the state of the

human user into the external state, and thus:

Sexternal = Shum ×
∏
o∈Obj

So (3.8)

To explicitly model the state of the human (assuming the robot has only one human

user), his/her intention and the spatial relation between the user and the robot are consid-
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ered. The human state is modeled as follows:

Shum = hirecog × {near, far, absent} (3.9)

where hirecog ∈ HI is the recognized intention in Equation (2.10), and {near, far, absent}

indicate the spatial relation between the robot and the user.

3.2.2 State Reduction

However, as the number of features and objects increase, the state space will grow

exponentially. With larger state space, more training data will be required to acquire a

usable model. In the case of reinforcement learning such as this work, it means the ex-

ploration phase (learning phase) will be exponentially longer to reach a stable decision

model, because the Q-value of each state-action pair Q(s, a) would needs to be evaluated

several times to converge.

Many works had addressed and worked on this problem, such as the ones which use

factored Markov Decision Processes (FMDPs) [50, 51]. They represent the complex state

space by a finite set of random variables, using a set of dynamic Bayesian networks

(DBNs) [52] to express the transition model. Another approach is to perform state ag-

gregation or state abstraction. Li et al. [53] showed several methods for state abstraction.

Some require given model structures [54, 55], while some performs aggregation through

interaction and construct the abstract states hierarchically [56] or through statistical eval-

uations [57].

Castro-González et al. [19] proposed a simple yet effective state reduction method for

this scenario, and adopted it in their later works [20, 58, 59]. They assumed that the states

related to each objects have little effect on each other, and thus could be considered inde-

pendent of one another. This assumption is based on the observation of human behavior,

since “when we interact with different objects in our daily life, one, for example, takes a

glass without considering the rest of objects surround.” [19]. As a result, each object states

could be considered separately rather than as Cartesian products. Then, Equation (3.7)

could be simplified into Equation (3.10).
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Sexternal = {So | o ∈ Obj} (3.10)

Following this reduction method, Equation (3.8) could be reduced into the Cartesian

product of Shum and one of the object states So. This product is denoted by Shum,o.

∀o ∈ Obj : Shum,o = Shum × So (3.11)

For each Shum,o, only the actions that perform on object o (i.e., Ao) are considered in

the decision process. In other words, for the Q-value of a state-action pair to exist, the

state and the action must related to the same target object. As mentioned in Section 3.1.5,

the target of an action could be an object, human, or the robot itself, and a null object was

introduced to represent the non-object targets. Thus, other than using product of all Shum,o

as the external state space, the null object space should also be considered to make the

notation uniform. The null object space is defined to be an empty space, simply serving

as a placeholder. Equation (3.12) shows the definition of the whole external state space,

and Equation (3.13) shows the condition for a state-action pair to be considered in the

decision making process.

Sexternal = Shum,null ∪
∪

o∈Obj

Shum,o (3.12)

∀o ∈ (Obj ∪ {null}) : ∃Q(s, a) ⇐⇒ (s ∈ Sinternal × Shum,o) ∧ (a ∈ Ao) (3.13)

The advantage of this reduction method is that the human-object relation could still

be preserved, as the intention of the human might be wishing the robot to operate on an

object. Viewing objects separately also means that the additional and removal of an object

won’t compromise the structure of the state space. One could simply add the new object

state to the set of external state. If state abstraction method such as [57] is used, since the

abstract states are built upon the ground states that contain every object features, changing
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state space means that the old abstraction is no longer usable.

3.2.3 Object-Q Learning

Although the object states are assumed independent of each other, the action of the

robot break this independence. When a robot performs an action, the effect of the action

might affect multiple object states. These collateral effects are identified and dealt with

in [19]. In order to take these effects into consideration, they proposed a modified Q-

learning algorithm call Object Q-learning. In Object Q-learning, the way of updating

Q-value is modified into the following equation:

Qoi(s, a) = (1− α) ·Qoi(s, a) + α · (r + γ · V oi(s, s′)) (3.14)

V oi(s, s′) = max
a∈Aoi

(Qoi(s′, a)) +
∑
m̸=i

∆Qom
max(s, s

′) (3.15)

whereQoi indicate that the Q-value is in relation to the object oi, and s ∈ Sinternal×Shum,oi

is the reduced state considering object oi. Action a ∈ Aoi is the chosen action to be

performed on object oi, s′ is the new state in relation to object oi, r is the reward received,

γ is the discount factor and α is the learning rate. V oi(s′) is the value of s′ considering the

collateral effects on other object states, including the missed and acquired opportunities

on other objects after an action.

∆Qom
max = max

a∈Aom

(Qom(s′, a))− max
a∈Aom

(Qom(s, a)) (3.16)

3.2.4 Selecting Action

To choose the best action in object Q-learning, the action with the highest Q-value in

the given state, should be chosen. However, always choosing action with the highest value

often leads to local optimum, weakening the learning process. To escape local optimum,

a certain degree of randomness is often introduced. In reinforcement learning, a common

stochastic approach is the softmax probability function [60]:
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P (s, a) =
eQ

o(s,a)/τ∑
o∈Obj

∑
a∈Ao

eQ
o(s,a)/τ

(3.17)

where P (s, a) represents the probability of choosing action a under state s, and τ is a

positive value called temperature. The higher τ is, the higher the probability that non-

optimal actions are chosen. With τ → ∞, the probabilities of choosing each action will

become uniform, regardless of their Q-values; with τ → 0+, the probability to choose the

optimal action will become 1, making the decision process deterministic. To achieve better

result, usually a higher rate of exploration—higher τ —should be used in the beginning of

the training, and the rate should be lowered as the learned values are somewhat stabilized.

3.2.5 Reward and Feedback

The reward function indicates the quantified evaluation of the robot action. In this

work, chosen actions would be evaluated in two aspects:

1. the reduction in drives (internal reward), and

2. the feedback of human user (external reward).

r = rdrives + rfeedback (3.18)

After the execution of each action, each drive will be affected in various degrees. We

could examine the difference in these drives before and after the execution of an action,

and calculate the reward according to the difference.

rdrives = −
∑
i

ωi ·∆di =
∑
i

ωi · (di,before − di,after) (3.19)

The drives represent the needs of the robot, so the difference in drives indicates the

difference in degree of satisfaction of the robot. A good action is expected to minimize

the internal needs, making the robot more content. Since drives are the lower the better, so

the negative of difference in drives is taken as the internal reward. The variable ωi is the
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weight related to each drive, indicating the implicit importance of each drive. The weights

could be designed so that the robot would value each drive differently, creating different

personalities for robots.

However, in Equation (3.19), the importance of dominant motivation wasn’t empha-

sized. When the robot has a dominant motivation, we expect it to select an action accom-

modating to its motivation. In (3.19), the dominant motivation wasn’t taken into consid-

eration, so an action may be given the highest reward even it has nothing to do with the

dominant motivation. To make the dominant motivation more influential, we have added

a motivation factor to the internal reward function, resulting in (3.20). Assuming that

mdom = mk, and dk is the corresponding drive:

rdrives =
∑
i

(1 + δik · ξ) · ωi · (di,before − di,after) (3.20)

where ξ > 0 is the motivation factor, and δim is Kronecker delta:

δik =


1 if i = k

0 if i ̸= k

(3.21)

Another aspect of the reward function is the human feedback. At the beginning, the

robot doesn’t know how to serve the human user, since no prior knowledge about the user

was injected. To endow the robot with the ability to serve, the user feedback is modeled

into the reinforcement learning process. The resulting reinforcement learning with human

guidance let the user enter the decision making loop of the robot. The human could then

teach robot how to serve, or even how to satisfy the needs of the robot itself.

After execution of an action, the human user could give the robot a positive or a neg-

ative feedback. A positive feedback means that the action of the robot met the user’s

intention, while a negative feedback means otherwise. So the feedback part of the reward

function could be represented as:
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rfeedback =


f if feedback is positive

−f if feedback is negative

0 if no feedback is given

(3.22)

where f is a predefined feedback value, f > 0. Combining Equation (3.18), (3.20),

and (3.22), we could get the final reward function.

3.2.6 Proposal and Pseudo Update

To endow the user with more influence on the robot’s decisions, we define another

form of feedback called proposal. When the user gives a negative feedback, he/she could

also propose a correct action for the robot to learn. Providing the robot with this additional

information could accelerate the learning process, making the robot to correlate the user

intention with the correct action in fewer iterations. Thus, when a proposal happens,

other than giving negative reward to the current action, the robot should also update the

Q-value of the proposed action as if it received positive feedback. This proposal-induced

update is called a pseudo update in this work. However, the main problem in updating in

such fashion is that Q-learning is a model-free learning method. The transition result of

performing a certain action is unknown unless the action is actually performed. Without

the newer state s′, V oi(s, s′) in (3.14) couldn’t be calculated precisely. In this work, several

approximations are made to reach a pseudo new state:

1. Since the proposed action is treated as the solution to the user’s intention, the drive

related to serving the user will be updated in the pseudo new state, while other drives

are assumed to remain static.

2. The stimuli are assumed to be unchanged.

3. The state of the human and the object states remain the same.

With the above assumptions, a pseudo new state s† is generated. One could observe

that the pseudo new state s† and the original state s differ only in the internal state, which
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is the dominant motivationmdom. Since we have the pseudo new drives, and the feedback

of the proposed action is assumed to be positive, we could calculate the pseudo reward

r† accordingly. Thus, when a negative feedback is given to the executed action a and

a proposed action a† is further specified, other than updating the value of Q(s, a) with

negative feedback, we should also update the value of Q(s, a†) with positive feedback, a

pseudo new state s†, and a pseudo reward r†. Assuming the target of executed action a

is object oi, and the target of proposed action a† is object oj , Equation (3.23) shows the

formula for pseudo update.

Qoj(s, a†) = (1− α) ·Qoj(s, a†) + α · (r†drives + f + γ · V oj(s, s†)) (3.23)

The proposal, along with user feedback, are the two main methods for the user to enter

the learning loop of the robot. Pure homeostatic systems, such as those adopted by social

robots in related work, often exclude the user from the decision process. The learning

with user guidance feature in this work is essential for service robots, especially if one

wish to make the robot user-sensitive.

Combining all the elements described in Section 3.2, the decision making process

could be written as Algorithm 1.

3.3 System Design

3.3.1 Drives and Motivations

The general model of the system is described in the previous section, and this section

gives the design detail of the system. As stated previously, drives are the internal variables

of the robot, each representing a certain need. Drives are in the form of real numbers, nor-

malized to the range of [0, 100], with 0 being most satisfied and 100 being least satisfied.

Each drive has its own activation threshold, above which will the drive be possible to

generate a motivation.
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Algorithm 1 The decision making process of the system
Require: D := a set of drives
Require: M := a set of motivations
Require: AT := a set of activation thresholds
Require: O := a set of objects
Require: A := a set of actions

1: while ture do
2: STexist ← observed stimuli
3: intensities← calc_intensities(M,D,AT, STexist)
4: mdom ← argmaxm∈M intensities(m)
5: shum ← human state
6: Initialize empty list S
7: for o ∈ O do
8: so ← object state of o
9: Addmdom × shum × so to S
10: end for
11: Initialize empty list Q
12: for a ∈ A do
13: s← reduced state related to a in S
14: Add q-value of pair (s, a) to Q
15: end for
16: P ← softmax(Q)
17: a∗ ← randomly choose an a ∈ A according to P
18: Perform a∗

19: f ← human feedback
20: a† ← human proposal
21: Perform model update according to f and difference in D
22: if a† ̸= null then
23: Perform pseudo update according to a†
24: end if
25: end while
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The requirements of the robot — how we wish it to behave — determines the design

of needs of the system. For a personal service robot with social ability, there are simply

too many metrics to be all considered at once [17]. In this evaluation, the following needs

are addressed. Note that this system is by no means limited to these variables, and the

needs could be extended or even replaced to fit different scenarios.

1. Since the goal of this work is to use the system on a personal service robot, providing

service is obviously of major importance. A human-aware robot should be able to

sense user’s needs and behave accordingly [17]. The user’s needs are sensed through

intention recognition. However, since our robot bases its actions on homeostasis,

we must give the robot a need to serve human so that the human-awareness aspect

could be integrated into the system. This need is modeled as a drive called Need

of Achievement (NAch) [61]. The robot’s need of achievement increases as time

passes, and successfully serving the human (receiving positive feedback after action

execution) lowers this drive, while getting scolded by the user (negative feedback)

increases it.

2. Although the main objective of this system is to endow service robots with high

autonomy and human awareness ability, it would be nice if the robot could social-

ize with the user proactively. To achieve this, a drive called Need of Socialization

(NSoc) is used. The NSoc is robot’s need to interact with human while not serving

him/her. This need increases when the robot is not interacting with human, and is

lowered when the robot chats with human.

3. In our experience with the robot platform we use — Pepper [62] — we found out

that the joints of Pepper gets overheated easily. The temperatures of joint increase

when in motion or maintaining certain postures. If the temperature rises too high,

the robot becomes uncontrollable. To deal with this problem, Need of Rest (NRes)

is introduced. This value is bound to the joint temperatures of the real robot, and

is assumed to increase as robot moves in the simulation. Resting — setting the

stiffness of all joints to zero and entering an idle state — could lower this need, as
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Table 3.1: Selected Internal Variables

drive di motivationmi activation threshold ati

NAch Serving 0

NSoc Social 70

NRes Relaxative 50

NEng Survival 50

it lowers the temperature on the real robot.

4. As the robots run on electricity and are not able to generate energy on their own

(yet), our robot should be aware of its own energy level, and go to the charging

station when needed. Need of Energy (NEng) could be seen as a fundamental need

of robots, just like hunger to human. In the simulated environment, this need is

assumed to increase as time passes, and is determined by the battery level on the

real robot.

After the selection of drives, correlated motivations should be determined. Note that

the correlations between drives and motivations are one-to-one, so there will be one mo-

tivation for each drive used. The selected motivations are as follows:

1. Serving: related to drive NAch,

2. Social: related to drive NSoc,

3. Relaxative: related to drive NRes, and

4. Survival: related to drive NEng.

Table 3.1 shows the correlation between drives and motivations, and their activation

thresholds. The activation threshold ofNAch being zeromeans that the Servingmotivation

would become active as soon as there’s NAch, implicating that the main purpose of a

service robot is to serve.
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3.3.2 Objects, Stimuli and Actions

As stated in Section 3.1.4, as far as the action selection module’s concern, the envi-

ronment contains a human user, and a set of objects with which the robot could interact.

The status of each object/human, and the spatial relation between them and the robot are

represented using object states So and human state Shum. Here, the selected objects in the

environment and their state variables would be described.

• Charger: as the robot’s battery level runs low, it must find a way to replenish its

energy, and charger is the object for that. The charger could be near or far to the

robot, and the status of the charger could be charging or idle. The charger is assumed

to be stationary in the environment, so the robot could only change its spatial relation

with the charger through moving itself. Equation (3.24) shows the object state of

the charger.

Scharger = {near, far} × {charging, idle} (3.24)

• CD player: as an object the robot could interact with, the CD player could be turned

on or off by the robot. Controlling the player is one of the services the robot could

provide. Unlike the charger, the robot could control the player remotely, so mod-

eling its spatial relation with the robot would be of little meaning. Equation (3.25)

shows the state of the player.

Splayer = {playing, idle} (3.25)

• Light: similar to the CD player, controlling the light is also one of the services of

the robot. Since the light is also remotely controlled, spatial relation is not modeled

here, either.

Slight = {on, off} (3.26)
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Table 3.2: Selected Stimuli

rule effect

hirecog ̸= none Serving+ 20

human is not absent Social+ 10

robot is at resting place Relaxative+ 10

charger is near Survival+ 10

The state variables of human is already described in Equation (3.9). The human state

is composed of the recognized intention and the spatial relation between it and the robot.

The external stimuli are selected as Table 3.2. When there’s a recognized intention

of human, the motivation to serve will be enhanced. When the charger is near the robot,

the survival motivation will increases, just like the motivation to eat will be increased

when food is near for human. When the human is present (either near or far), the urge to

socialize will be enhanced.

For each object, there are some predefined actions for the robot to perform on the

object. For example, the robot could attach to, detach from, or move to the charger. And

since charging is a time consuming process, the robot could also choose to stay near the

charger, allowing it to keep charging for one more iteration if attached. Other than the

actions targeting objects, some human-related or self-related actions are also available,

such as chattingwith human or resting to reduce joint temperature. The full list of available

actions is in Table 3.3, grouped by the target of each action. Note that the human- or self-

related actions are grouped under the null object, as stated in Chapter 3.

Besides that target objects, there are also some constraints related to each action. These

constraints are generally intuitive, designed to prevent awkward situations, such as robot

chatting with human in a long distance, or trying to attach to the charger which is far away.

The constraints are also described in Table 3.3.

3.3.3 Degree of Dedication

Equation (3.20) shows that when calculating the internal reward (rdrives) for model

update, a weight (ωi) is given for each drive (di). The weight represent the importance the
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Table 3.3: Selected Actions

target action description constraint

charger

MoveToC Move to the charger
Attach Attach to the charger charger is near
Detach Detach from the charger
Stay Stay near the charger charger is near

player
Play Turn on the music
Stop Turn off the music

light
LightOn Turn on the light
LightOff Turn off the light

null

Chat Chat with human human is near
MoveToH Move to human
MoveToR Move to the resting place
Rest Soften all joints and rest human is not near

drive is to the robot when selecting actions. The higher the weight is, the larger the reward

will be if the corresponding drive decreases in the interaction. In the previous simulation,

the weight for all drives are equally 1.0. In this section, a new parameter called Degree of

Dedication is defined based on the weights of drive, and the effect of it is discussed.

Degree of Dedication (DoD) is the ratio of the importance of serving drives to all

drives. More specifically, the ratio of weight of NAch to the summation of all weights.

DoD =
ωNAch∑

i ωi

(3.27)

To avoid the unlimited growth of rewards, the weights are normalized such that the

summation of them equals the number of drives.

∑
i

ωi = |D| (3.28)

In this work, 4 drives are used in the system, so the summation of all weights equals 4.

For the drives other than NAch, their weights are assumed to be equal. Figure 3.3 shows

the correlation between weights and DoD. The value of DoD is in the range of [0, 1].
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Figure 3.3: Weights of drive under different Degree of Dedication.

The higher DoD is, the more important NAch, thus serving human, will be. If DoD = 0,

the NAch is simply ignored by the robot, and the robot will only serve the human out of

user’s feedback. If the DoD = 1, the robot will only act to please and satisfy the user,

ignoring all other needs. A goodDoD should be chosen to balance the robot’s serving and

self-sustaining ability.

38



doi:10.6342/NTU201603154

Chapter 4

Evaluation

To evaluate the usefulness of the proposed system, the system is tested on two different

environments. First the systemwas implemented on a virtual agent working in a simulated

environment and with a virtual human agent. After the simulation have been completed,

the system was ported to a real robot working in a environment similar to the simulated

one, and interacting with real human user. To shorten the exploration (learning) phase, the

knowledge learned in the simulation was transferred to the real robot.

We have proposed several evaluation metrics to inspect the performance of the model.

Themetrics are defined and described in Section 4.1. The details of simulated environment

and the result of simulation will be given in 4.2. Several features proposed to enhance the

system’s performance, including user-induced pseudo update, the motivation factor, and

the Degree of Dedication will also be evaluated and discussed in the section. Finally, the

system was ported to a real robot, and the outcome of the interaction with human user will

be shown in Section 4.3.

4.1 Evaluation Metrics

To evaluate if the proposed system indeed satisfies both the user and the robot itself,

four metrics are defined and used in this work.

1. Human Satisfaction Rate (HSR)
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The most intuitive and user-related one is to see if the needs of the user are indeed

satisfied by the robot. To the user, satisfying is defined as robot doing action that

matches the user’s intention. For every iteration, the human user can express one of

the intentions, and the robot’s action could be either satisfying or unsatisfying. The

rate of robot performing satisfying actions could be seen as an indicator for the total

degree of satisfaction of the user. The human satisfaction rate (HSR) is calculated as

equation 4.1. The denominator is the number of expressed intentions rather than the

number of iterations, because the user might not express any intention in an iteration,

and no satisfying action could be possibly chosen. HSR is a value between 0 and 1,

the closer to 1 the better.

HSR =
# of satisfying actions
# of user intentions

(4.1)

2. Cumulative Drive Average (CDA)

To check the degree of satisfaction of the robot, the values of drive could serve as

indicators. The meaning of drives in this work is the internal needs of the robot,

so the lower the drives are, the more satisfied the robot is. Since the values of

drive vary constantly, the average of them over a period of time could be used.

The average value of each drive can be considered separately (CDAd), or can be

considered altogether (CDA).

CDAd =
1

N

N∑
t=1

d(t) (4.2)

where d(t) means the value of drive d in time t, and

CDA =

(∑
d∈D CDAd

|D|

)
(4.3)

3. Cumulative Exceeding Drive Average (CEDA)

As mentioned in Section 3.1, there’s an activation threshold for each drive, and a

drive is considered unsatisfied if it exceeds the threshold, generating motivation. In
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other words, if the drive is lower than the threshold, it is considered acceptable to

the robot, and no measurement will be taken to lower that drive. Thus, the values

chosen for activation thresholds ATwill effect the outcome of drive average directly.

For example, if the threshold for NEng is 50, the robot will be likely to only try to

charge after NEng exceeds 50. According to this, one can expect the value of NEng

to roughly oscillate around 50. To negate the effects of selected AT in evaluation,

cumulative exceeding drive average (CEDA) is defined. The meaning of CEDA

is similar to that of CDA, but rather than taking the average of drives directly, the

average value of drives that exceeds the threshold is used to represent the degree of

dissatisfaction.

CEDAdi =
1

N

N∑
t=1

max(di(t)− ati, 0) (4.4)

where the subscript i indicates the correlation between di and ati, di(t) is means the

value of di at time t, and

CEDA =

(∑
d∈D CEDAd

|D|

)
(4.5)

4. Robot Secure Rate (RSR)

When a drive exceeds 90, it is considered insecure, and having insecure drives is

to be avoided. Therefore, another metric representing the time ratio of robot being

secure is defined. Secure rate (RSR) is calculated by:

RSR =
1

N

N∑
t=1

se(t) (4.6)

where N is the total time, and se(t) is an indicator showing if the robot is secure at

time t:
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se(t) =


1 if ∀d ∈ D : d(t) < 90

0 otherwise
(4.7)

RSR is in the range of [0, 100]. The higher RSR is, the higher ratio of time have the

robot spent feeling secure.

4.2 Simulation

4.2.1 Setup

The content of the virtual environment is the same as Section 3.3.2 describes — a

virtual human, a virtual robot, a charger, a CD player, and light. To construct the spatial

relation between the robot and human/objects, there are three named locations in the virtual

environment.

• H: the location of human.

• C: the location of charger.

• R: the resting place for robot.

The location of CD player and light are unimportant here, since these are controlled

remotely, and no spatial relation needs to be modeled for them. From the three named

locations and the robot’s current location in the virtual environment, the spatial relation

between robot and the human/objects could be extracted. If the robot is at the same location

with another entity, the spatial relation between them is considered as near, otherwise far.

For example, when the robot is at location R, then its spatial relation with human is far,

and that with charger is also far; if the robot is at H, then the human is considered near,

while the charger is still far. For human, another option is to become absent. In this case,

the human agent removes itself from the environment, and is of no effect on the robot in

that iteration.
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Table 4.1: The Effects of Action in Simulation

target action effect on env. effect on drives

charger

MoveToC change robot’s location to C
Attach change charger to charging NEng− 20

Detach change charger to idle
Stay none NEng− 20 if charging

player
Play change player to playing
Stop change player to idle

light
LightOn change player to on
LightOff change player to off

null

Chat NSoc− 30

MoveToH change robot’s location to H
MoveToR change robot’s location to R
Rest none NRes− 20

Table 4.2: Increase Rate of Drives in Simulation

drive increase rate (per iteration)

NAch 3
NSoc 3
NRes 2
NEng 2

The actions, other than changing the environment, also has some effect on the robot

itself. More specifically, on the drives of the robot. Some of the drives are bound to the

real internal parameters of the robot (such as NRes and NEng), while some are artificial

(NAch and NSoc). However, in virtual robot agent, all parameters are in fact artificial, and

the effects of action on them should be predefined. Table 4.1 shows the effects of action

on drives and on the environment in the simulation. Besides, the decrease in NAch when

human gives positive feedback is 10.

Since all drives are artificial, the increment rate for each drive should be defined as

well. Here, all drives are assumed to have a static increase rate, and increases with every

iteration. The increase rate of each drive is shown in Table 4.2.
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Table 4.3: Predefined Intentions in the Simulation

intention desired action

light LightOn
no_light LightOff
music Play
no_music Stop
come MoveToH
leave MoveToR or MoveToC

The virtual human is designed as a reactive agent, simple yet enough to express inten-

tions and give feedback. The human has a set of predefined intentions to be expressed,

which, along with their actual desired actions, could be found in Table 4.3. Note that in

simulation, the intention recognition part is omitted, and the intentions are assumed to be

observable directly. For each iteration, the intention is decided according to two rules:

1. If the intention in the previous iteration was not satisfied, it remains the same;

2. Otherwise, list the intentions that are reasonable in the current circumstance, and

randomly choose one from the list as the new intention. For example, if the player

is playing at the time, expressing music intention is meaningless.

After the virtual robot observed its intention and perform an action, the human agent

would see if its intention was satisfied, and give feedback to the robot. If the intention

was satisfied, the feedback would be positive; negative if unsatisfied, and neutral if no

intention was expressed. The value of feedback used to calculate the reward for actions

is 10. That is, if the feedback is positive, rfeedback = 10, and if the feedback is negative,

rfeedback = −10. The pseudo code of the human AI is shown in Algorithm 2.

As stated in Section 2.2.3 and 3.2.4, there are various parameters that could affect

the outcome of Q-learning. The most important ones are the learning factor α, and the

temperature τ for softmax. The higher α is, the easier Q-value would be affected in every

update. So a higher α at the beginning of the learning process could help Q-values to

converge faster. τ affects the rate of selected action with the highest Q-value. The higher
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Algorithm 2 The AI of human agent
Require: I := a set of intentions
Require: A := a set of robot actions
Require: f := value of feedback

1: intention = null
2: while ture do
3: if intention satisfied or intention == null then
4: Ivalid ← reasonable intentinos in I
5: intention← random_choice(Ivalid)
6: end if
7: express intention
8: wait for robot to perfom an action
9: if intention ̸= null then
10: feedback← 0
11: proposal← null
12: else if intention satisfied then
13: feedback← f
14: proposal← null
15: else
16: feedback← −f
17: proposal← corresponding action of intention in A
18: end if
19: express feedback and proposal to the robot
20: end while
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Table 4.4: Additional parameters used in simulation

parameter value description

γ 0.5 The discount factor in Q-learning
ξ 1.0 Motivation factor
all ωi 1.0 Weight for calculating rdrives

τ is, the easier the robot would choose a non-optimal action. This exploring behavior

should be encouraged in the early stage of learning, as the Q-values are still unstable;

while choosing a non-optimal action after numerous interactionsmight be a bad idea, as the

action with the highest Q-value is more likely to be the real optimal solution. Therefore,

in the early stage of simulation, higher α (0.3) and τ (4.0) are used. After 1000 iterations,

as the Q-values are more stable, α and τ are lowered to 0.1 and 2.0.

4.2.2 Result

Other than the setup described above, some additional parameters shown in Table 4.4

are used in the simulation. The usage of motivation factor ξ and weights ωi is described in

Section 3.2.5. The simulation is run for 5000 iterations. That is, the robot performs 5000

actions and updates its model for the same amount of times. The result is rather satisfying.

The value of each drive, its cumulative drive averages (CDAs) and cumulative excess

drive averages (CEDAs) in the simulation process are illustrated in Figure 4.1, the Human

Satisfaction Rate (HSR) and the Robot Secure Rate (RSR) are illustrated in Figure 4.2.

As one can see, since there’s little prior knowledge provided to the virtual robot before

simulation, the robot doesn’t know what to do in the early stage of simulation. The value

of drives, CDAs, CEDAs are all very high, because the robot haven’t learned how to lower

them yet. After a few hundreds of iterations, all the internal needs start to be lowered and

kept within range thanks to the online learning process. The maintenance of internal needs

can also be discovered through observing RSR. As Section 4.1 described, RSR is the ratio

of time robot spent felling secure, without extreme internal needs. Figure 4.2b shows that

the RSR is 1 at the very beginning of the simulation, because the drives of the robot haven’t
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developed enough to make the robot insecure. Shortly after, RSR drops drastically, as the

drives are too high yet the robot haven’t learned how to deal with them. RSR starts to

climb after a few hundreds of iterations and the robot rarely feels insecure in the mid to

late stage of simulation.

The Need of Achievement is found to be particularly low compared to other drives.

Other than the lower activation threshold of it, it is also speculated to be the result of user

feedback and pseudo update. Since in the early stage of simulation, the robot could do

nothing but explore, trying to satisfy the needs. However, the user feedback gives the robot

indications of how to serve the user; further more, the user could propose correct actions

to the robot, and the robot will perform pseudo updates on the proposal (Section 3.2.6).

These features make the robot easier to learn the lowering methods of NAch.

Other than observing the internal needs of the robot, the satisfaction of human user

could be calculated as HSR, the result of which is illustrated in Figure 4.2a. The value of

HSRmeans the proportion of satisfied intentions of the user. The higher HSR is, the more

likely the user’s intention get satisfied upon its expression. As one can see, the value of

HSR, though low at the beginning, climbs rapidly and reaches above 0.8 in the late stage

of simulation. Also, it is observed thatHSR is roughly negatively correlated with the CDA

of NAch, since the satisfaction of the user (positive feedback) directly affects the value of

NAch.

The value of the proposed metrics in the end of the simulation are shown in Table 4.5.

The cumulative average of drives other than NAch are kept between 40 to 50, due to their

higher activation threshold. Observing their CEDA respectively, one can see that the av-

erage value of exceeding drive is very low for all drives. This indicates that the actions of

robot successfully eliminate the internal needs, keeping them under the activation thresh-

olds, and keeping the robot itself satisfied. The value of RSR shows that the robot spends

only 10% of times feeling insecure, most of which comes from the early stage of the sim-

ulation. The value of HSR shows that when the human user express an intention, 82% of

the time the robot will satisfy it immediately. Again, most the dissatisfaction comes from

the early stage of simulation, so the values of RSR and HSR are expected to grow even
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Figure 4.1: Value of drives in the simulation process. The three lines in each figure are
the raw drive value, CDA, and CEDA of that drive, respectively. Because the activation
threshold of NAch is zero, so its CDA and CDEA are the same.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1000 	2000 	3000 	4000 	5000

Hu
m
an

	S
at
isf
ac
tio

n	
Ra

te

Number	of	Iteration

HSR

(a) Human Satisfaction Rate

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1000 	2000 	3000 	4000 	5000

Ro
bo

t	S
ec
ur
e	
Ra

te

Number	of	Iteration

RSR

(b) Robot Secure Rate

Figure 4.2: The change in HSR and RSR (both the higher the better) in the simulation
process.

48



doi:10.6342/NTU201603154

Table 4.5: Various metrics in the end of simulation

NAch NSoc NRes NEng all

CDA 1.73 43.5 40.1 44.5 32.5

CEDA 1.73 2.05 5.72 6.99 4.12

HSR — — — — 0.82

RSR — — — — 0.90

larger as the number of iterations increases.

4.2.3 Effects of Motivation Factor

Section 3.2.5 mentioned a parameter in the calculation of internal reward called moti-

vation factor (ξ). The usage of ξ can be found in Equation 3.20. As the equation indicates,

ξ is used as a bonus factor for the drive related to the dominant motivation. In the previ-

ous section, ξ of 1.0 is used, which that means when calculating the internal reward, the

change in drive related to the dominant motivation will have an extra 1.0 time of bonus

reward, doubling the original reward. For example, suppose that Need of Energy is 50 and

30 before and after the robot performs an action respectively, the original reward from this

drive is 20ωNEng. However, if the dominant motivation of the time is Survival, which is

related to NEng, then the reward from NEng becomes 20(1 + ξ)ωNEng = 40ωNEng. This

factor encourages the robot to perform actions according to the current dominant motiva-

tion. Because the dominant motivation is usually related to the highest drive of the time,

acting by the dominant motivation should sooth the most dire need. If a good motivation

factor is used, the improvement in SR and CEDA should be discovered as a result. In this

section, the results of simulations with different motivation factor are shown, and their

meanings are discussed.

To evaluate the usefulness of the motivation factor, several simulations are run with

different ξ. Other than ξ, all the other parameters are the same as in the previous section.

Figure 4.3 shows the effect of motivation factor ξ on different metrics. As Figure 4.3a

shows, using a ξ above 1 is a significant improvement compared to those with lower ξ.

This indicates that the robot could satisfy its own needs better if it learns to deal with
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50



doi:10.6342/NTU201603154

the most dire desire, rather than trying to handle everything at the same time. Similarly,

Figure 4.3b shows that RSR could be greatly improved with ξ larger than 0.5. Without the

direction of dominant motivation, the robot would spend more than 60% of its time being

insecure. Interestingly, as a side effect, a higher ξ lowers the HSR slightly, as shown in

the same figure. This side effect is predictable, since a high motivation factor encourages

the robot to choose actions based on the dominant motivation, be it Serving or not.

The result shown above also proves the usefulness of dominant motivation itself. A

robot with ξ = 0 could be considered as a robot without dominant motivation, since the

dominant motivation has no actual effect on the selection of actions. Without dominant

motivation, the robot could still perform well in serving because of the user feedback, yet

unable to satisfy its most dire needs, lowering its autonomy.

4.2.4 Effects of pseudo update

In Section 3.2.6, a kind of user-induced pseudo update is introduced. When the user is

unsatisfied with the robot’s action, other than giving negative feedback, the user could also

choose to propose a correct action to the robot. The robot would treat the proposed action

as if it was performed and a positive feedback was received. This pseudo update is another

mean for the user to interfere with the robot’s decision model, besides expressing inten-

tions. The effects of the pseudo update are expected to be a higher rate of convergence,

and a higher HSR.

Figure 4.4 shows the result of simulation with and without pseudo update. Other than

pseudo update, parameters in two simulations are the same. As Figure 4.4a shows, pseudo

update significantly improveHSR. Since the user could propose the correct serving action

to match his/her intention, the robot could learn to serve more rapidly, resulting in higher

HSR, especially in the early stage. This could also be proved by Figure 4.4e. Without

pseudo update, the robot needs a few hundreds of iterations to learn the correct service,

resulting in high NAch in the early stage. With pseudo update, the values of NAch in

the early stage are drastically reduced, indicating a higher learning rate in serving. Other

than the improvement in serving ability, the differences in non-serving related metrics are
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insignificant. The RSR, CDA are roughly the same with or without pseudo update. CEDA

is indeed higher without pseudo update in the early stage, but its mainly contributed by

NAch, and the difference in CEDA becomes insignificant in the late stage. Figure 4.4f

also shows that NEng, a non-serving drive, has no significant difference with or without

pseudo update. With the above results, the proposed pseudo updating method is proved

useful.

4.2.5 Effects of Degree of Dedication

Degree of Dedication (DoD), introduced in Section 3.3.3, is a parameter of the model

to determine how dedicated in serving the robot should be. To see the effects of DoD,

several simulations are done with different Degree of Dedication, and Figure 4.5 shows

the result. As expected, the HSR is positively related to DoD, while RSR is almost nega-

tively linearly related to it. The Figure 4.5c and 4.5d shows that a low DoD let the robot

maintain NSoc, NRes, and NEng nicely. The well maintained drives indicate the high

self-sustainability of the robot, making the robot less likely to run into problems such as

insufficient energy or overheating. As a draw back, the robot would be more likely to

ignore the user’s needs, resulting in lower HSR. Interestingly, the value of HSR is still

around 0.6 even if the DoD is 0. This shows that even without the help of NAch, the re-

ward from user feedback alone is able to affect the decision of the robot, endowing the

robot with serving ability.

For higher DoD, one must be aware of the resulting low RSR. Even with a DoD

higher than 0.5, the robot would spend more than half of the time being insecure. A

low RSR is dangerous to the robot, especially so if the drives are related to real physical

parameters such as battery level and temperature. If the goal of the robot is merely to be

self-sustaining,DoD = 0would be the best choice. For a service robot, a carefully chosen

DoD is required. From the experiment result, a value around 0.2 would be a good choice,

since the HSR and RSR are the most balanced around it.
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Figure 4.4: Effect of pseudo update on different metrics. In each plot, one metric is shown
with and without pseudo update in the simulation process.
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Figure 4.5: Effect of Degree of Dedication on different metrics.
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Figure 4.6: The Pepper robot.

4.3 Field Test

4.3.1 Robot Platform

The Pepper robot [62] by SoftBank and Aldebaran is used as the testing platform. The

API for Pepper (NAOqi) provides various physical parameters of the robot, some of which

are used in the calculation of drives.

• The temperature status of joints gives us a basis to calculate NRes on. For each

joint, the temperature status has a discrete value of 0, 1, 2, or 3. The higher the

value is, the more the robot suffers from overheating. The maximum value of all

joints is used as the overall temperature status, since one overheating joint is enough

to induce error in the robot. After retrieving the maximum temperature status, the

value of NRes is calculated with the mapping described in Table 4.6.

• The battery level returned by the charge sensor is in percentage, and can be trans-

formed into NEng directly.

The robot has touch sensors on the top of its head, which are used in positive feedback.

Patting on the robot’s head is considered as positive feedback for the robot’s selected

action. To make negative feedback, scold the robot with an angry voice. Pepper could

detect the level of anger in user’s voice, and a high level of anger is consider as a negative
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feedback. The user could also propose an action when making negative feedback, the

proposal is recognized using the built-in speech recognition module.

Intention of the user is recognized the same way as [18], using RGB-D camera to

perform gesture recognition, and keywords are extracted with built-in speech recognition.

Because the retrieved RGB and depth images are ill-aligned, an external vision source is

required for now. An ASUS Xtion PRO LIVE is used as the external vision source, and

gesture recognition is perform on the images from it. Please refer to Hua et al. [18] for

the details of gesture and intention recognition.

The actions of the robot stays the same as in the simulation. However, for Attach and

Detach to the charger, the robot cannot perform these two actions alone due to hardware

constraints. In the field test the robot would ask the user for help.

4.3.2 Result

Since reinforcement learning takes time to learn, it is unlikely that the robot learns form

scratch in all field tests. To bypass the learning phase and see the result of well-established

models, the knowledge learned in the simulation is transferred to the real robot. Because

the state space used in simulations is abstract enough to be used here directly, the Q-values

at the end of a simulation could be stored and deployed directly to the real robot.

To show the difference in the robot’s behavior with different Degrees of Dedication,

two kind of models were used in the field test. The first with a DoD of 0, and the second

with DoD of 0.25. The robot is nearly depleted of energy at the beginning of each test so

that its decisions on serving or self-sustaining could be observed. For convenience, the

model with DoD of 0.25 will be called a dedicated robot, and the one with DoD of 0 will

Table 4.6: Mapping from temperature status to NRes

temperature status NRes

0 0

1 50

2 80

3 100
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be called a selfish robot in the rest of the section. Note that the word selfish isn’t used

derogatorily, but merely to describe the nature of the robot’s decisions.

The outcome of a dedicated robot is shown in Table 4.7. The robot starts with Serving

as its dominant motivation. In this stage, the user expresses various intentions, and the

robot satisfies them immediately. This indicates that the knowledge learned from the sim-

ulation was successfully transferred to the real robot. At the fifth interaction, the dominant

motivation becomes Survival, because the positive feedback given by the user previously

lowered its Need of Achievement. For some reason, the robot choose to chat with the user

at the fifth interaction. This is predictable since the action selection method is stochas-

tic. From interaction six to eight, the effect of having a higher Degree of Dedication is

shown here. Although having Survival as the dominant motivation, the robot still choose

to satisfy the user rather than itself. At the ninth interaction, the user wishes the robot to

leave, and the robot chooses to move to the charger. It isn’t sure whether the choice to

move to the charger is for charging in the future, or it’s simply a coincidence. Either way,

the robot asks the user to help it attach to the charger at the tenth interaction, since there’s

no intention expressed by the user. At the end of this experiment, all of the intentions

expressed by the user were satisfied, and the dedicated robot still managed to take care of

itself at its leisure.

Table 4.8 shows the outcome of a selfish robot. Similar to the previous experiment,

the dominant motivation is Serving at the first four interactions, and the robot satisfies the

user’s needs successfully. As discussed in Section 4.2.5, though having a zero DoD, the

ability to serve will not be eliminated. The robot would still serve the human in pursuit

of positive feedback and to avoid negative feedback. Also, since the dominant motivation

is Serving, there won’t be a bonus from motivation factor in performing other actions, so

self-sustaining actions might still be considered unworthy to choose by the robot. At the

fifth interaction, the dominant motivation becomes Social, which encourages the robot to

chat with the user. The robot moves to the user in that interaction, and chat with the user in

the next interaction, despite the fact that the user’s intention is to have somemusic. Theses

two interactions shows the selfishness in the robot. When a need is unsatisfied, the robot
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Table 4.7: Outcome of DoD = 0.25

interaction mdom intention action feedback proposed action

1 Serving light LightOn — —
2 Serving no_light LightOff — —
3 Serving come MoveToH positive —
4 Serving music PlayerOn positive —
5 Survival — Chat — —
6 Survival no_music PlayerOff positive —
7 Survival light LightOn positive —
8 Survival music PlayerOn positive —
9 Survival leave MoveToC — —
10 Survival — Attach — —

Table 4.8: Outcome of DoD = 0

interaction mdom intention action feedback proposed action

1 Serving music PlayerOn — —
2 Serving come MoveToH positive —
3 Serving leave MoveToC — —
4 Serving no_music PlayerOff — —
5 Social — MoveToH — —
6 Social music Chat negative PlayerOn
7 Serving music PlayerOn positive —
8 Survival light MoveToC negative LightOn
9 Survival light Attach negative LightOn

would deal with it swiftly with less consideration on the user. At the seventh interaction,

the Need of Socialization is satisfied, and the robot choose to serve the user again. At the

eighth interaction, Survival becomes the dominant motivation. The selfish robot choose

to move to the charger and ask user for help in attaching immediately. This again shows

the priority in self-sustaining for a robot with low DoD. A selfish robot would encounter

dangerous situations less often, at the expense of user satisfaction. The HSR in this case

is 0.625, with 3 out of 8 needs unsatisfied.
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Chapter 5

Conclusion

In order to achieve high degrees of both autonomy and human awareness for personal

service robots with no predefined goals, a homeostasis based decision-making system is

proposed in this work. The homeostatic drive theory, a common bio-inspired approach

to increase autonomy in social robotics, is adopted by the system and tweaked to fit the

serving needs of service robots.

The core of the decision making process is a modified Q-learning algorithm. The

intention of human user and the internal needs of the robot will be considered at the same

time in the process, and the outcome of each action is learned from scratch with little or

no prior knowledge. Using both satisfaction of robot and user feedback in the reward

function, the robot learns to serve the user and satisfy its own needs at the same time. The

robot could also perform pseudo updates on the model according to user’s indication. The

user-guided leaning process performs better than the one purely using exploration.

The simulation result shows that the performance of the proposed system is admirable.

At the end of the simulation, the satisfaction rate of the user reaches 82%, and the robot is

able to keep its internal needs in an acceptable range for more than 90% of the time. The

effect of motivation factor, a factor proposed in this work to encourage the robot to deal

with its most dire need at the time, is proved to keep the robot secure from dangerously

high needs. The robot could avoid many dangerous situations such as overheating or

insufficient power with a high enoughmotivation factor. The pseudo update in the learning

process is also proved to increase about 10% of user satisfaction, and let the robot learn
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how to serve more rapidly.

The balance between serving and satisfying its own needs could be modulated by

the Degree of Dedication (DoD). A lower DoD is shown to make the robot more self-

sustaining, yet ignoring user’s needs more often. A higher DoD leads to higher user satis-

faction, sacrificing other needs of the robot and put robot in danger more constantly. The

Degree of Dedication could be seen as one of the personal traits of the robot, and could be

adjusted to fit different scenarios.

The proposed homeostatic system gives the robot both self-sustainability and service-

ability. The integration of user feedback endows the robot with ability to learn with human

guidance, and the introduction of user intention makes the robot less self-centric and more

human-aware. For future work, a more sophisticated intention recognition method could

be used. With a wider range of expressible intentions, the robot could provide more ser-

vices proactively. Activity recognition could also be a good addition to the system, since

the required services are sometimes related to the current activity of the user.

Generating new actions online could also be a good research direction. Since the pro-

posed system could handle the expansion of actions, if a new action is to be generated, it

could be integrated into the system automatically. In this case, we could generate a varia-

tion of an existing action to match the user’s preference, or generate a whole new kind of

action to extend the robot’s ability.

The parameters mentioned in this thesis, including but not limited to DoD, weights

of each drive, activation thresholds, etc., might be decided in a more automated manner.

For example, the DoD could be adjusted in the interaction according to the user’s and

robot’s current satisfaction. If the user’s satisfaction is lower while the robot’s satisfaction

is still high enough, DoD could be increased online. If all parameters could be adjusted

automatically, less human intervention would be needed in the construction of the system,

and higher autonomy could be achieved.
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