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Abstract

For a service robot to reach high autonomy, it should choose what to do,
make it’s own decisions without user command, and even provide service to
the user proactively. For single purpose robots, such as object fetching robots
or cleaning robots, since a specific goal is given to each of them, the well-
structured decision processes could easily proceed, and decision about that
task could be made. However, for robots with vague goals or no specific
goal at all, such as caring robots or personal service robots, it is harder to
construct a general purpose decision process for them, lowering their auton-
omy. Homeostasis drive theory is a dominating psychological approach in
decision making for social robots. A robot adopting this theory would try to
maintain its internal status, and act according to its own need. While achieve
better autonomy, this approach ignores the needs of its human user, resulting
in low degree of human awareness. This work integrated human intention
and human feedback into a homeostasis based system, making the decision
process more user-centric, while maintaining high autonomy. The robot’s
internal needs (drives) generate motivations, and the robot will choose its ac-
tions considering both the need of the user and its own motivation. The effects
of its actions are not predefined and are learned during interactions by rein-
forcement learning, making the system require little prior knowledge about
the user. The proposed system has been tested in simulations and on a real
robot. The results show that the robot can not only satisfy its own needs but

also serve the user proactively.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Service Robots

Throughout the past decades, the research and applications of robots have shifted from
industrial robots to service robots [[L]. Domestic service robots have always been a vision
of ours, and the presence of them could often be seen in our imagination of the future,
such as science fiction books and movies. The attempts on domestic service robots in
early years are usually rather simple and single purpose, with possibly the most famous
example being Roomba [2]. These single purpose robots have their own special goal, and
they plan their actions around that goal (or not, since some are purely reactive agents such

as early Roombas.)

In recent years, many try to develop service robots of more general purposes, such as
healthcare robots [3, 4], office robots [5, 6], home service robots [[7], personal robots [8, 9],
etc. These service robots have designated working environments, however, unlike a task-
specific service robot, lack specific goals. Their purpose is to “sense, think, and act to
benefit or extend human capabilities and to increase human productivity” [[10], yet lacking
a specific goal within makes them hard to act on their own and often have to wait for human

orders, lowering their autonomy.

d0i:10.6342/NTU201603154



1.1.2 Autonomy

Autonomy, different from automaticity, is the ability to make decisions andg?c“t on.its
own. According to the definition by Clough [[11], “automatic means that a'sysitém will.do
exactly as programmed, it has no choice. Autonomous means that a system has a choice to
make free of outside influence, i.e., an autonomous system has free will”, which indicates
that an autonomous robot should be able to sense the environment and choose its actions
according to it. Bekey [12] and Cafiamero [[13] also gave similar definitions. Thus, in
order to achieve a higher level of autonomy, the robot should be able to choose what to
do at each moment according to the status of environment at the time, instead of waiting
for user’s orders or input. In other words, the robot should have it’s own decision making

ability. This interpretation also matches the statements in [[14].

To achieve autonomy, one popular approach is to find inspiration from animals or hu-
man [[15]. The behavior of living creatures are studied neurobiologically and psycholog-
ically. The goal is to have human/animal behaviors studied, modeled, and implemented
on agents, giving them full autonomy. This kind of biological approach is widely used in

the control of robots, social robotics, and cognitive robotics.

In social robots, a dominant psychological approach is the homeostatic drive the-
ory [[16]. In this theory, an agent is modeled to have internal needs, and the goal of the
agent is to satisfy those needs in order to maintain a stable internal state. While this ap-
proach does give social robots a goal based on which to choose their actions, and keep the
robot content; the needs of its human user wasn’t taken into consideration. Since the main
feature of social robots is the ability to communicate and interact with humans/agents so-
cially, the ability to serve isn’t necessarily a high priority. However, if we wish to retain
the characteristic of “sense, think, and act to benefit or extend human capabilities and
to increase human productivity” from service robots, the system should make decisions
based on not only its own internal needs, but also the need of its human user. This leads

to a higher degree of human awareness.

d0i:10.6342/NTU201603154



1.1.3 Human Awareness

Human awareness is the ability to be aware of the presence and the needsfof humans.
The robot should be able to understand the user to a certain degree and make ‘decisions
taking human into consideration. The skills required to achieve human: awareness An:

clude [[17]:

1. human-oriented perception: human detection and tracking, gesture and speech recog-

nition, etc.
2. user modeling: understanding human behaviors and making appropriate decisions.

3. user sensitivity: adapting behavior to user, measuring user feedback, and recogniz-

ing human state.

Accordingly, the abilities to understand the need of the user, make decisions upon
it, measure user feedback and adapt to the user’s preference are all important to achieve
human awareness. We also believe these are also important traits to build a successful

autonomous service robot.

1.2 Objectives

Combining the statements in Section [L.1], the conceived ideal form of service robot is
the one that have both high level of autonomy and human awareness. This work aims to
propose a decision making system for service robots that chooses actions autonomously,
and serves the user proactively. To achieve this, there are three important aspects of this

system:

* To understand the user’s need

In order to serve the user proactively, first the user’s need must be understood. Other
than directly commanding the robot, the user might express his/her intention through
body language, context of dialog, movements and/or other subtle features in an in-
teraction. These features, expressed intentionally or unintentionally, could be gath-

ered, and the underlying intention could be extracted through a recognition process.

3
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A Bayesian network based intention recognition model have been proposed by our
lab previously [[18], and it has been adopted to understand the user’s.intention;-which
is taken into consideration when making decisions.

=
e
4

* To make decisions autonomously considering both the user and itself

To achieve high level of autonomy, biologically inspired approaches are often used.
Although the psychology based homeostasis drive theory is a dominating approach
in social robot genre and indeed endows high autonomy, the underlying self-centricity
makes it hard to be adopted on service robots at first glance. The research in this
thesis, inspired by this theory and works such as [[19, 20, 16], aim to propose a sys-
tem that’s both homeostatic and human-aware. That is, the decision making system
should consider the human intention while trying to maintain its internal needs. In
this way, the robot could benefit from the autonomy introduced by homeostasis,

while retaining the role as a service robot.

* To learn and adapt to user’s preference through interactions

Without preference of the user predefined in the robot’s prior knowledge, it is very
likely that the decisions made by the robot are not the best choice, or even acceptable
to the user at first. This could be solved by injecting a large amount of user profile
before the robot’s execution. However, this solution is not used in this work, as it re-
quires extensive manual parameter tuning, and is generally not adaptable to changes.
Moreover, the user profiles are not usually available beforehand. The robot should
learn the correct actions corresponding to user’s intention through interactions, and

receive user feedback as indications.

With these abilities, the system should be able to make decisions autonomously with-
out predefined goals. It requires little prior knowledge about its user, yet is able to serve

the user proactively according to his/her current need through interactive learning.

4
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1.3 Related Work

The methods in decision making are various, with popular ones being Bayesian mod-
els, Markov models and their variations. Elinas et al. [5] used a factored Part:if'uatlﬂly Qb-
servable Markov Decision Process (POMDP) to model the behaviors and fﬁe decision
theoretic planner of a visually guided interactive mobile robot. The difference in time
scales between execution layer and deliberative layer was considered using the factored
POMDP, and a heuristic was also proposed to speed up the solving process. Feyzabadi
et al. [21] proposed a hierarchical solution to the constrained Markov decision process
(CMDP) problem. They partitioned the state space of the original CMDP into multiple
clusters, solved the smaller abstract CMDP, and projected the abstract policy back to the
original space. This method tackles sequential decision problems with multiple objec-
tives, and is implemented in a path planning scenario. Omidshafiei et al. [22] used De-
centralized POMDP (Dec-POMDP) to solve multi-robot planning problems in continuous
spaces. Actions were abstracted into macro-actions, simplifying the original Dec-POMDP
problem, making it solvable using discrete methods. Liu et al. [23] introduced Episodic
Memory-driving MDP (EM-MDP) to solve planning problems. They used state neurons
and episodic memories to store learned experience, reducing the high-dimensionality of
observation, and is easier to solve than the traditional POMDP model. Zhang et al. [24]
proposed a combination of logical reasoning and POMDP planning in a dialog system.
The prior knowledge of commonsense was used to filter the possible words. Then, a
method called P-log was used to extend the logical reasoning results to probabilities, and
the probabilities was transferred to POMDP as the current belief of states. The proposed
method was shown to be more efficient and accurate than POMDP without commonsense
reasoning.

Although these models are popular in robotics, they are more of a planning method of a
given task. Without a given task or a well crafted model, these method become somewhat
unsuitable. Other than theses models, there are still different approaches. Ko et al. [25]
adopted confabulation theory, using symbols to represent the environment contexts, and

wills and behaviors of an virtual agent. Behaviors were first filtered by the dominant wills

5
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and the perceived contexts, then evaluated using Choquet fuzzy integral. Smith et al. [26]
introduced a fuzzy multi-objective decision making system for the motion control of a

mobile robot. \¥

=
o

As mentioned before, the biologically inspired approaches, where research:ers: tried to
mimic the mind of human neurobiologically or psychologically, are also popularrecently.
Maes et al. [27] proposed ANA architecture, where the behavior selection and motivation
competitions were done using a neural-network based system. Bellas et al. [28] intro-
duced Multilevel Darwinist Brain (MDB) architecture, where artificial neural networks
(ANNs) were used to represent the world model, internal model, and satisfactory model
of the robot. The three models worked together to evaluate the behaviors, and the selected
behavior was determined by the output of the satisfactory model. The system of Ando et
al. [29] sensed the environment and generated urges. Urges competed through predefined
priorities, and the dominant urge drove the compensating action. Hoefinghoff et al. [30]
used somatic markers on each stimuli-action pair. The meaning of a somatic marker is
the possible emotion of choosing that action given the stimuli. The somatic markers are
used to filter out inappropriate actions, and the remaining actions are chosen randomly.
Wilson [31,, 32] tried to consider the morality of the actions of the robot, and proposed to

choose actions based on utilities that is modified to reflect the moral effect.

In psychological approaches, homeostasis drive theory based systems are one of the
dominating methods. The term homeostasis was first introduced by Cannon [33], and was
described as a regulatory system to maintain the body in a stable physiological state. Af-
ter being adopted by robot decision making systems, it usually means that the agent has
several internal needs that need to be checked and maintained. When a need become un-
satisfied, a drive will be created, triggering appropriate correcting actions. Many famous
robots adopted this method, such as AIBO [34] or Kismet [35]. Cao et al. [16] introduced
ROBEE architecture, where internal needs generate drives. A predefined satiator, a list of
preconditions-action pairs, was used to satisfy the highest drive. Cafiamero et al. [36, 13]
introduced motivational states, the intensity of which was affected by both the internal

drives and external stimuli. After the intensity of motivations were obtained, the inten-

6
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Figure 1.1: Overview of the decision making system

sity of behaviors were calculated accordingly. The behavior with the highest intensity
will be the selected one. Gandaho et al. [B7, B8] associated robot’s goal with homeostatic
variables, and used reinforcement learning on the robot’s adaptive controller. Inspired by
both Cafiamero and Gandoho, Castro-Gonzalez [] used drives to model the robot’s in-
ternal needs, which, along with stimuli, trigger the robot’s motivations when unsatisfied.
The motivation were competed through intensities, and an action was selected trying to
match the dominant motivation. The correlations between actions and motivations were
not predefined, and must be learned in the interactions. This work, largely influenced
by [[19], used similar formulation of the robot’s internal variables, while introducing the
human user’s intention and feedbacks into the decision system, making the robot more

human-aware and able to serve human proactively.

1.4 System Overview

This work, inspired by [@] and such, models the robot’s internal needs as drives, which

generate motivations when needs are unsatisfied, since homeostasis requires the drives to
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be kept in range. The intensity of each motivations are calculated, which would then be
used to determine the dominant motivation. The dominant motivation would become the
internal state of the robot. On the other hand, the robot will extract the status Qﬂf_*the en-
vironment and recognize the user’s intention, passing them to the action selectioﬁé‘-module
as external state. The action selection module, combining both internal and external’state,
will choose an action accordingly. After the execution of the chosen action, the robot will
calculate the effects of the action, receive feedback from the user, and update the model
to adapt to the user’s preference. Figure [1.1] shows the overview of the proposed system.

The main difference of this work and related works such as [20, [L6] is that the user
is explicitly modeled into the decision making process, rather than treated as a general
object. In other works, the robot behaves solely to achieve homeostasis, and the user has
little means to affect the robot’s decisions. In this work, the user can directly affect the
robot’s decisions through expressing intention and giving feedback. The robot will choose

its action considering both homeostasis and the user’s need.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter [, the mathematical tools used
in this work, such as Bayesian network, reinforcement learning and its based formulation
Markov decision process, are described. The adopted intention recognition method is
also described here. In Chapter [ the terminologies, model formulation of the system, and
system design details are described. In Chapter H, the author proposed several evaluation
metrics to measure the performance of the system. Both the simulation results and field

test outcomes are shown here. Finally, Chapter F§ concludes the whole thesis.
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Chapter 2

Preliminaries

2.1 Markov Models

The Markov model is a statistical tool used to represent the system or the stochastic
process’s behavior with temporal information. It is a model that assumes the Markov
property, which especially assumes future states of the system only depended upon the
present state; that is, the present states characterize all the necessary information of the
past events and thus enable the reasoning with the model to be tractable. Markov Models
can be divided into four different types depending on whether those system are observable,
controllable or not, as shown in Table R.1]. Firstly, if the system’s states are fully observable
and changing spontaneously, then the system is modeled as Markov chains. Secondly,
the system can be modeled as Dynamic Bayesian Networks (DBN), a generalized hidden
Markov model, if the states of this system cannot be fully observed but still be changing
spontaneously. On the other hand, if the transition of system’s states is held in the system’s
hand and is fully observable, we call this model as Markov Decision Processes (MDPs).
Finally, if states of system are not fully observable and is controlled by the system itself,
we define this model as Partially Observable Markov Decision Processes (POMDP). The
POMDP model is the most complex architecture due to consideration of the uncertainty

and system’s decision simultaneously.
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Table 2.1: Different Types of Markov Models

Fully observable Partially observable
System is autonomous Markov Chains Dynamic Bayesian Netwig_hliks
(DBNs)&y || 1
System is controllable Markov Decision Partially Q})sewab'le Markov
Processes (MDPs) Decision Processes

2.1.1 Markov Decision Processes

In Markov Decision Processes (MDPs), the agent fully observes the current state and
decides an action to perform. The next state to which the process transfers depends on the

current state and the system’s action. Hence, a Markov decision process is a quadruple:

MDP = (S, A, T,R) (2.1)

where

+ S is a finite set of system’s states, describing information of the environment that

agent concerns,
+ Ais a finite set of system’s actions,

» T is the transition probability of system’s states. As a result of executing action
a € Ain state s € S, the environment transitions to state s’ € .S with probability
T(s,a,s"). It is worthy noting that each transition in MDPs is defined as a non-

deterministic one.

* R is the reward function. After the system state changes to the next state, the envi-
ronment responds with an expected reward r, wherer € R, R : S x A x S — R is

a bounded function.

A comprehensive illustration of those relationship is shown in Fig. R.1|. To deal with
noisy and incomplete state information, the basic MDP framework can be extended to

Partially Observable Markov Decision Processes (POMDPs), where states of the system

10
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t+1

4

“ R

Figure 2.1: The graphical presentation of the Markov Decision Process. The transition of
the system is depended on the action A, and the selection of the action is determined by
the reward function R.

are represented as hidden states and must be inferred from system’s observations and ac-
tions, causing the state space become too large to solve the optimal policy efficiently. For

a complete introduction of POMDPs, please refer to [39].

Given an MDP, the objective is to construct a policy 7 : S — A that maximizes the
expected future accumulated reward from each state s. The agent then chooses its appro-
priate actions according to the policy. This policy, comparing to the immediate received
reward, is determined based on the desirability to the goal, which is shaped by the reward
function R, in the long run. When decisions are made or evaluated following the policy,
the values of action choices are concerned. The expected return of following a policy 7

from a state s is defined by the value function as shown below:

Vie(s) = Ex[r(t) +yr(t + 1) +7*r(t+2) +...|s, = 5]
= E’T[Z AV (t k)]s, = s] (2.2)
= Er[r(t) +7Va(si41)]s: = s

11
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where ¢ is the current time step and r; is the reward received at the time step ¢. This quan-
tity V" (s) is called the value of the state s under the policy 7. The futiire rewards are
discounted by a factor ~ so that the recent returns are emphasized more. Thosg ean be
computed using dynamic programming methods, such as value iteration or pohCy itera-
tion [40, 41]. However, though the optimal policy of MDPs can be solved by dynamic
programming methods, this requires the specification of all the parameters of MDPs. In
real world applications, those parameters, especially the transition probability 7', are too
vague to be defined clearly due to complexity and uncertainty of our world. Therefore,
the reinforcement learning is proposed to deal with this problem; specifically, instead of
solving the optimal policy directly, we learn it through the interaction between agents and

the environment.

2.2 Reinforcement Learning

Reinforcement Learning (RL) [42] is usually known as goal-directed learning methods
to deal with the problem that can be modeled as a Markov Decision Process. The agent is
not instructed what to do but should discover the actions which lead to the most profits.
To be more specific, reinforcement leaning is the learning that maps situations to actions
so that by following the learned policy, the agent collects the maximum rewards. Chain
effect is a tricky part of reinforcement learning problem where actions not only affect the
current reward but also influence the subsequent situations and future rewards. The agent
generally learns under exploration and exploitation and figures out how to take actions in

the environment to maximize the long-term returns.

2.2.1 Standard Modeling

The standard modeling of a reinforcement learning problem is shown in Figure P.2.
There are an agent and an environment. The learning process proceeds as follows: at
each time ¢, the environment is in a state s;, and then the agent observes the state of

environment s, and deliberately selects an action a, for execution. The action results in
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:’[ Agent ]—

state s, | [ reward 7, action ¢,
| Iy
< Environment ]4—
S S

Figure 2.2: General frameworks of reinforcement learning techniques

the state transition of the environment from s; to s;; at time ¢4 1. The agent then receives
the reward 7.

Under the global view of the learning agent and the environment, basic reinforcement
learning models consist of the two elements of MDPs: a set of system’s states S and
a set of actions A. The major difference between dynamic programming methods and
reinforcement learning techniques is that RL requires the agent to observe the transition
of the system and to study its action’s influence on the system’s state transition, while the
dynamic programming method must specify the detail of the transition probability in prior

and solve the problem offline. RL is referred to a kind of interactive learning method.

2.2.2 Value Functions and Action-Value Functions

Since the objective of reinforcement learning techniques (or generally, the MDP prob-
lem) is to learn the optimal policy that maximizes the expected future accumulated re-
ward by mapping each state to the agent’s action, and the value function introduced in
Section serves this purpose. It memorizes the experience that the learning agent had
and indicates how likely the states can reach the agent’s goal. In this section, we introduce
two basic ways to represent the experience of the learning agent in reinforcement learning
techniques.

The first one is the value function, described in Eq. (2.2). With the knowledge of the

transition 7" and reward functions R, this function can be re-written in the form of Bellman
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equation:

Va(s) = R(s,m(s)) + 7 Y _ T(s,7(s), s )Va(s) (2.3)

A=Y :1‘.‘1 “

The maximum value that can be obtained by a policy is usually denoted as ey which

is defined as:

V*(s) = max(R( +72T (s,m( V*(s')) (2.4)

Similarly, another representation called action-value functions, often simplified as ()
function, describes the expected long-term return of taking an action « in a state s under

the policy 7, and the optimal action-value function denoted as Q)* is described below:

Qx(s,a) = R(s,a) + 7Y _T(s,7(s),s)Va(s) (2.5)

Q*(s,a) = sa+’yz s,a,s maXQ(s a')] (2.6)

Furthermore, due to the fact that the optimal policy always chooses the action with the

maximum action value, the relationship between value and action-value are expressed as:

V*(s) = max Q" (s, a) (2.7)

Once the learning agent obtains the optimal action-value function, it is obvious that
the agent can easily take the greedy strategy to choose the best action based on the highest
action-value they will receive in the next step, as shown by Eq. (2.7); that is, the optimal

policy that follows Q™ is derived as the following form:

7*(s) = argmax Q*(s, a) (2.8)

a
It is worth to note that either the value function V' or action-value function () require

the transition probability 7" to compute their values. In the next section, the Q-learning al-
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gorithm which does not require the specification of transition 7" will be introduced briefly.

2.2.3 Q-Learning =

Q-learning [43] is often used to find an optimal action-selection policy:for a given
Markov decision process (MDP). It is a model-free reinforcement learning technique since
the model of the environment is not required by the algorithm. This algorithm works
by learning the action-value function ) (see Eq. (2.5)) through the interaction between
the learning agent and the environment. The procedure of Q-learning in iteration n is

presented as below:

* observes the environment’s current state s,,,
* selects and performs an action a,,,

« observes the subsequent state s/,
 receives an immediate reward r,,, and

* adjusts its (),,_1 values using a learning factor «,,, according to the update function:

(1 - an)Qn—1(57 CL) + an[rn + ’YVn—l(yn)] lf S = Sn,
Qn(s,a) = (2.9)

Qn-1(s,a) otherwise

where the initial action-value Qy(s, a) is assumed given for all states and actions, and the
function did not require the specification of the transition probability 7.

This algorithm has been shown that it will converge correctly if the action-value func-
tion is represented via a look-up table representation [43]. More generally, Q-learning can
be combined with function approximation. This may speed up the learning process and

let the algorithm be able to deal with problems in continuous space.
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Movement Intention

Figure 2.3: Bayesian network used to recognize user’s intention. The parameters are
updated using EM algorithm if user feedback is received.

2.3 Intention Recognition

In order for the robot to achieve human-awareness, first it have to understand human
behaviors and make appropriate actions accordingly [44]. One way to accomplish this is to
recognize user intention and take this intention into consideration when making decisions.

This work adopts the intention recognition method from [[18], using human user’s ges-
ture, movement, and spoken sentence as features and construct a Bayesian network ac-
cordingly. Figure R.3 shows the Bayesian network used in this work, and the recognized

intention is calculated as:

hirecog = argmax P(hi | z) (2.10)

hieHI
where hi is an human intention, and z is the observations about human.

To adopt to the user’s preference, user feedback about his/her intention could be made,
and the model will be updated on-line. If the robot fails to recognize the user’s intention,
or the recognition result is incorrect, the user could make a feedback, clarifying his/her
true intention. When the robot receives this feedback, it will update the parameters of the
Bayesian network using expectation-maximization (EM) algorithm [45]. In this way, little
or no prior knowledge about the user’s behavior is needed, and the relation between user’s

actions and his/her intentions could be learned through interactions.
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Chapter 3

Methodology

3.1 Terminologies

According to homeostatic drive theory [46], “homeostasis means maintaining a stable

»

internal state.” This work, inspired by both [20] and [16], uses drive, motivation and
stimulus to determine a robot’s internal status. The relation between these parameters are
illustrated in Figure B.1]. The meaning and definition of these and other terms used in this

system will be described below.

3.1.1 Drive

In this work, the internal needs of the robot are modeled as drives. Drives are internal
parameters of the robot in the form of real numbers. A drive represents a certain need of the

robot, such as its battery level or a sense of loneliness, and the value of the drive indicates

I I produce . t
Stimulus |~ nvironmen

strengthen

generate
Drive Motivation

Figure 3.1: Relation between system parameters.
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the degree of dissatisfaction of that certain need. The set of drives used in the system is
denoted by D. Each drive d € D is normalized to the range of [0, 100], with 0 meaning the
need is fully satisfied (thus no compensating drive) and 100 meaning the need.:ii totally
unsatisfied (thus high compensating drive). The value of a drive could be affec_’te({".bny time,
the robot’s internal status, and the outcome of the selected action. Each drilve d is also
accompanied with an activation threshold. When a drive exceeds its activation threshold,
the degree of dissatisfaction is considered high enough, and the corresponding motivation

will emerge. In this thesis, the term need and drive are sometimes used interchangeably.

Definition 1. Drives D is a set of internal needs of the robot, the values of which indicate

the current degrees of dissatisfaction in different aspects. Vd € D : d € [0, 100].

Definition 2. Activation thresholds AT is a set of thresholds representing robot’s toler-
ances to its needs. There is a bijection mapping from D to AT. That is, for each d € D,
there is one and only one corresponding threshold at € AT. In this work, the subscript
index ¢ is used to indicate this mapping (i.e., at; € AT is the corresponding threshold of

d; € D). Vat € AT : at € [0, 100].

Definition 3. When d; > at;, d; is considered unsatisfied.

3.1.2 Stimulus

The factors that affect the robot’s motivation are twofold, the internal needs — the
drives — and the external conditions — the stimuli. Stimuli are defined as external condi-
tion that could affect the intensity of one or more motivations. The set of possible stimuli
is denoted by ST. It could be the presence of a certain object, the recognized intention of a
human, etc. For example, our motivation to eat could be affected by our hunger, an inter-
nal drive, and the presence of food, an external stimulus. Similarly, we expect the robot’s
motivation to serve would be enhanced if the robot sensed the human user’s intention. A

stimulus could have different effects on different motivations.
Definition 4. Stimuli ST is a set of external conditions that could affect the intensity of
motivations of the robot. Given an observed environment, a stimulus st € ST could be
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either present or absent. The set of presenting stimuli is denoted by STeyist, STexist C ST.

3.1.3 Motivation o

b
o

Motivations (M) can be considered as the goal of the robot. Motivations are tfiggered
by unsatisfied needs (i.e., drives that exceed activation thresholds) and external“stimuli.
The relation between drives and motivations are one-to-one, which means that for each
drive in the system, a correlated motivation exists. Given the current drive values and the
existing external stimuli, the intensity of each motivation can be calculated. The intensity
of a motivation represents its strength. The higher the intensity is, the more likely that
motivation will prevail. For the motivation with the highest intensity, it is considered

dominant, and the robot should try to act according to it.

Definition 5. Motivations ) is a set of goals for the robot to compensate for a unsatisfied
drive. There is a bijection mapping from D to M, that is, for each d € D, there is one and
only one corresponding m € M. In this work, the subscript index ¢ is used to indicate this

mapping (i.e., m; € M is the corresponding motivation of d; € D).

Definition 6. In every iteration, the intensity of the motivations could be calculated by
the drive values and the stimuli of that time. A motivation is considered activated if its

intensity is greater than 0.

Definition 7. In every iteration, the dominant motivation m,,, is chosen according to the

intensities of all motivations. mg,, determines the internal state of the robot.

According to Lorenz’s hydraulic model [47], internal drive strength interacts with ex-
ternal stimulus strength. If the drive is low, then a strong stimulus is needed to trigger
motivation; if the drive is high, then a mild stimulus is sufficient [46]. To illustrate this

model, Malfaz [20] used the following equation to calculate the intensity of motivation:

0 if dl < at;
intensity(m;) = (3.1)

d; + effect(st;,m;) otherwise
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Where intensity(m;) is the intensity of motivation m; € M, d; is the corresponding drive,
and effect(st;, m;) is the effect of related external stimulus st; on motivation ;. The
physical meaning of equation Equation (B.1]) is that the motivation will be activg_ied only
if the corresponding need is unsatisfied. Since in the definition of this work_’,;alg-timulus
could affect several motivations, and a motivation could be affected by several .stimuli,

the above equation is adjusted to Equation (B.2).

intensity(m;) = (3.2)
d; + Z effect(sty,, m;) otherwise

Sty €STexist
If there are multiple activated motivation, all activated motivations will compete with
one another through comparing intensities, and the motivation with the highest intensity

will become the dominant motivation mgy,,, of that iteration.

Mdom = arg max (intensity(m)) (3.3)
meM

3.1.4 Environment

There is no common solution to the representation of environment in the research of
robotics. The design is often up to the purpose of the robot system. While a navigation
system focuses on the location of itself and the obstacles [48], a service robot might uses
a higher level of representation of objects [49].

In this work, we regard the key aspect for a personal service robot is conceived to
interact with different kinds of objects and/or the human user to satisfy to needs of the robot
itself or to serve the user. For example, if the robot is low on energy level, it should operate
the charger to meet its need; when the user’s intention is to watch television, the robot
should turn on television to provide service. Following this requirement, the environment
in this work is composed of one or more objects and a human user. Each object is assumed
to be recognizable to the robot for simplicity in this work, and is described by a set of object

variables. The object variables describe the status of the object, and the relation between
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it and the robot. Similarly, the human user is described by his/her recognized intention,

and also the relation with robot.

Definition 8. Obj denotes a set of objects recognized and considered by. the robet: |Each

'
|

o € Obj is represented by a set of object variables.

Definition 9. There is one human user of the robot. The robot will try to recognize the

intention, infer the spatial relation, and determine the interaction status of its user.

Definition 10. For each iteration, when the human user is present, the robot will try to
recognize the intention of the human user, and choose the most possible one out of all the

possible human intentions HI. The chosen intention is denoted by hiyecog.

3.1.5 Action

The goal of the proposed system is to choose an action out of a predefined action set
to cope with the current situation. The purpose of an action is to satisfy the robot’s needs
and/or to serve the human user through its execution. The target of each action could be
an object, the human user, or the robot itself. For example, plug and unplug could only
be operated on the charger, while chat can only be used on the human user. To group the
actions, we can get several subsets according to the target of an action. However, two
of the subsets are distinct from the others, namely, the subset whose target is the human,
and that whose target is the robot itself. Besides these two subsets, the targets of all the
other subsets are objects. To make the notation uniform, we introduce a null object, which

serves as the target object for all non-object-related actions.

Definition 11. A denotes a set of actions that the robot can perform. Each action has an
execution target, and A, denotes the subset of actions of which the target is object o. For
actions without target objects — the target of action is the human user or robot itself — a
null object is defined to serve as their target. As indicated by Equation (B.4), A could be

seen as the union of A,s for all o € Obj plus the null object.

A=AV | 4 (3.4)

o€0bj
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3.2 System Model

After defining the internal parameters of the robot in the previous section,.the robot
should decide its own actions to keep its drives in check, and achieve homeoé%sis. In
the mean time, the robot should also consider the user’s intention, serve'thé.user when
applicable, and learn the user’s preference through feedback. These are necessary features
for arobot to achieve higher-level human-awareness ability [[18]. In the work, a Q-learning
based decision making system is proposed. The design of this system is highly influenced
by [20], and the feedback method described in [[18] is integrated into the system.

Following Figure [L.1, a flowchart is shown in Figure to illustrate the decision
making process. First the drives are calculated, generating motivations. The motivations
compete with each other by comparing intensities, and a dominant motivation will be
chosen. The dominant motivation will be passed to the action selection module as internal
state. On the other hand, the robot will extract the status of the environment and recognize
the user’s intention, passing them to the action selection module as external state. The
action selection module, combining both internal and external state, will choose an action
accordingly. After the execution of the chosen action, the robot will calculate the effects
of the action, receive feedback from the user, and update the decision making model.

The main difference of this work and the related works such as [20] or [[16] is that
the user is explicitly modeled into the decision making process, rather than is treated as
a general object. In other works, the robot behaves solely to achieve homeostasis, and
the user has little ways to affect the robot’s decisions. This characteristic is applicable to
pure social robots, but is unsuitable if we wish the robot to also have serviceability. In this
work, the user can directly affect the robot’s behavior through expressing intention and
giving feedback. The robot will choose its action considering both homeostasis and the
user’s need.

In the following section, first the state used by the system will be defined in Sec-
tion B.2.1,, and the state reduction method will be described in Section B.2.2. To cope
with the collateral effect in state reduction, a modified version of Q-learning proposed

in [19] will be described in Section B.2.3. We will describe the stochastic action-selection

22

d0i:10.6342/NTU201603154



Figure 3.2: Flowchart of the decision making system
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method in Section B.2.4, and the reward function in Section B.2.5. Finally, a special kind

of user feedback called proposal and user-induced pseudo update will be-deseribed in

Section . gl

3.2.1 Internal and External States

In general, the state to be used in the decision making system is composed of the

internal state of the robot and the external state of the environmental context, as in Equa-

tion (B.5).

S = Sinternal X Sexternal (35)

In this work, the internal state is the selected dominant motivation of the robot. The

dominant motivation is selected as stated by Equation (B.3). Thus:

Sinternal = Mdom = arg max (intensity(m)) (3.6)
meM

In [[19], the external state is the combination of the states of all the objects in the

environment in relation to the robot:

Sexternal = H So (37)

0€0bj
An object state could contain the spatial relation between the object and the robot, the
on/off status of the object, etc. Different kinds of objects could have their own definitions
of state variables. In Equation (B.7), the state of the human was also treated as an object
state. To achieve higher-level of human awareness, we try to integrate the state of the

human user into the external state, and thus:

Sexternal = Shum X H So (38)

o0€0bj
To explicitly model the state of the human (assuming the robot has only one human

user), his/her intention and the spatial relation between the user and the robot are consid-
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ered. The human state is modeled as follows:

Shum = hirecog X {near7 far7 absent} = (39)

where hi,..og € HI is the recognized intention in Equation (2.10), and {nedr, far absent}

indicate the spatial relation between the robot and the user.

3.2.2 State Reduction

However, as the number of features and objects increase, the state space will grow
exponentially. With larger state space, more training data will be required to acquire a
usable model. In the case of reinforcement learning such as this work, it means the ex-
ploration phase (learning phase) will be exponentially longer to reach a stable decision
model, because the Q-value of each state-action pair ()(s, a) would needs to be evaluated
several times to converge.

Many works had addressed and worked on this problem, such as the ones which use
factored Markov Decision Processes (FMDPs) [50, 51]. They represent the complex state
space by a finite set of random variables, using a set of dynamic Bayesian networks
(DBNs) [52] to express the transition model. Another approach is to perform state ag-
gregation or state abstraction. Li et al. [53] showed several methods for state abstraction.
Some require given model structures [54, 55], while some performs aggregation through
interaction and construct the abstract states hierarchically [56] or through statistical eval-
uations [57].

Castro-Gonzalez et al. [19] proposed a simple yet effective state reduction method for
this scenario, and adopted it in their later works [20, 58, 59]. They assumed that the states
related to each objects have little effect on each other, and thus could be considered inde-
pendent of one another. This assumption is based on the observation of human behavior,
since “when we interact with different objects in our daily life, one, for example, takes a
glass without considering the rest of objects surround.” [19]. As a result, each object states
could be considered separately rather than as Cartesian products. Then, Equation (B.7)

could be simplified into Equation (B.10).
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Sexternal = {So | (NS Ob]} (310)

Following this reduction method, Equation (B.8) could be reduced inta,the éﬁnesian

product of S, and one of the object states .S,. This product is denoted by S;{u-.mp.

Yo € Ob] : Shum,o = Spum X S, (311)

For each Sp,m 0, only the actions that perform on object o (i.e., A,) are considered in
the decision process. In other words, for the Q-value of a state-action pair to exist, the
state and the action must related to the same target object. As mentioned in Section B.1.5,
the target of an action could be an object, human, or the robot itself, and a null object was
introduced to represent the non-object targets. Thus, other than using product of all Spym .
as the external state space, the null object space should also be considered to make the
notation uniform. The null object space is defined to be an empty space, simply serving
as a placeholder. Equation (B.12)) shows the definition of the whole external state space,
and Equation (B.13) shows the condition for a state-action pair to be considered in the

decision making process.

Sexternal = Shummull U U Shum,o (312)

o€0bj

Vo € (Obj U {null}) : 3Q(s,a) <= (s € Sinternat X Shumo) N (a € A,) (3.13)

The advantage of this reduction method is that the human-object relation could still
be preserved, as the intention of the human might be wishing the robot to operate on an
object. Viewing objects separately also means that the additional and removal of an object
won’t compromise the structure of the state space. One could simply add the new object
state to the set of external state. If state abstraction method such as [57] is used, since the

abstract states are built upon the ground states that contain every object features, changing
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state space means that the old abstraction is no longer usable.

3.2.3 Object-Q Learning

=
o

Although the object states are assumed independent of each other, the aﬁtio;l of the
robot break this independence. When a robot performs an action, the effect of:the-action
might affect multiple object states. These collateral effects are identified and dealt with
in [19]. In order to take these effects into consideration, they proposed a modified Q-
learning algorithm call Object Q-learning. In Object Q-learning, the way of updating

Q-value is modified into the following equation:

QOi(& a) = (1 o O‘) ’ QOi(Sa a) +a- (T +7- VOi(Sa S/)) (3.14)
Vo) = m(@ (5 + 2 AQR ) (315)

where ) indicate that the Q-value is in relation to the object 0;, and s € Sinternat X Shum,o;
is the reduced state considering object o;. Action a € A, is the chosen action to be
performed on object o;, s is the new state in relation to object o;, r is the reward received,
~ is the discount factor and « is the learning rate. V°(s’) is the value of s’ considering the
collateral effects on other object states, including the missed and acquired opportunities

on other objects after an action.

Q= max (Q(',a)) — max (@ (s,a)) (3.16)

max
Ao a€Ao,,

3.2.4 Selecting Action

To choose the best action in object Q-learning, the action with the highest Q-value in
the given state, should be chosen. However, always choosing action with the highest value
often leads to local optimum, weakening the learning process. To escape local optimum,
a certain degree of randomness is often introduced. In reinforcement learning, a common

stochastic approach is the softmax probability function [60]:
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Q(5,0)/7

- SN el

0€0bj a€A, i

P(s,a)

(3.17)

where P(s,a) represents the probability of choosing action a under state s\ :ari‘;‘d T\is a
positive value called temperature. The higher 7 is, the higher the probability that non-
optimal actions are chosen. With 7 — oo, the probabilities of choosing each action will
become uniform, regardless of their Q-values; with 7 — 0T, the probability to choose the
optimal action will become 1, making the decision process deterministic. To achieve better
result, usually a higher rate of exploration — higher 7 — should be used in the beginning of

the training, and the rate should be lowered as the learned values are somewhat stabilized.

3.2.5 Reward and Feedback

The reward function indicates the quantified evaluation of the robot action. In this

work, chosen actions would be evaluated in two aspects:

1. the reduction in drives (internal reward), and

2. the feedback of human user (external reward).

T = Tdrives + T"feedback (318)

After the execution of each action, each drive will be affected in various degrees. We
could examine the difference in these drives before and after the execution of an action,

and calculate the reward according to the difference.

Tdrives = — Z Wi * Adz = Z Wi - (di,before - di,after) (319)

The drives represent the needs of the robot, so the difference in drives indicates the
difference in degree of satisfaction of the robot. A good action is expected to minimize
the internal needs, making the robot more content. Since drives are the lower the better, so

the negative of difference in drives is taken as the internal reward. The variable w; is the
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weight related to each drive, indicating the implicit importance of each drive. The weights
could be designed so that the robot would value each drive differently, creating-different

personalities for robots. 'R

However, in Equation (8.19), the importance of dominant motivation WSt émpha-
sized. When the robot has a dominant motivation, we expect it to select an action‘accom-
modating to its motivation. In (B.19), the dominant motivation wasn’t taken into consid-
eration, so an action may be given the highest reward even it has nothing to do with the
dominant motivation. To make the dominant motivation more influential, we have added
a motivation factor to the internal reward function, resulting in (8.20). Assuming that

Mdom = My, and dy, is the corresponding drive:

Tdrives = Z(l + 5zk : 5) c Wt (di,before - di,after) (320)

)

where £ > 0 is the motivation factor, and 9;,,, is Kronecker delta:

1 ifi=k
Sk = (3.21)
0 ifi#k

Another aspect of the reward function is the human feedback. At the beginning, the
robot doesn’t know how to serve the human user, since no prior knowledge about the user
was injected. To endow the robot with the ability to serve, the user feedback is modeled
into the reinforcement learning process. The resulting reinforcement learning with human
guidance let the user enter the decision making loop of the robot. The human could then

teach robot how to serve, or even how to satisfy the needs of the robot itself.

After execution of an action, the human user could give the robot a positive or a neg-
ative feedback. A positive feedback means that the action of the robot met the user’s
intention, while a negative feedback means otherwise. So the feedback part of the reward

function could be represented as:
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(

f  if feedback is positive

Tfeedback = § —f if feedback is negative L 43-22)

¥
!

0 if no feedback is given

where f is a predefined feedback value, f > 0. Combining Equation (3.18);*(B.20),
and (B.22)), we could get the final reward function.

3.2.6 Proposal and Pseudo Update

To endow the user with more influence on the robot’s decisions, we define another
form of feedback called proposal. When the user gives a negative feedback, he/she could
also propose a correct action for the robot to learn. Providing the robot with this additional
information could accelerate the learning process, making the robot to correlate the user
intention with the correct action in fewer iterations. Thus, when a proposal happens,
other than giving negative reward to the current action, the robot should also update the
Q-value of the proposed action as if it received positive feedback. This proposal-induced
update is called a pseudo update in this work. However, the main problem in updating in
such fashion is that Q-learning is a model-free learning method. The transition result of
performing a certain action is unknown unless the action is actually performed. Without
the newer state s/, V% (s, s') in (B.14) couldn’t be calculated precisely. In this work, several

approximations are made to reach a pseudo new state:

1. Since the proposed action is treated as the solution to the user’s intention, the drive
related to serving the user will be updated in the pseudo new state, while other drives

are assumed to remain static.
2. The stimuli are assumed to be unchanged.

3. The state of the human and the object states remain the same.

With the above assumptions, a pseudo new state s' is generated. One could observe

that the pseudo new state s' and the original state s differ only in the internal state, which
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is the dominant motivation mg,,. Since we have the pseudo new drives, and the feedback
of the proposed action is assumed to be positive, we could calculate the‘pseude-reward
rT accordingly. Thus, when a negative feedback is given to the executed actiQ_B a and
a proposed action a is further specified, other than updating the value/of Q;(sl;‘;‘-a)_with
negative feedback, we should also update the value of (s, a') with positive feedback,a
pseudo new state s, and a pseudo reward . Assuming the target of executed action a
is object o;, and the target of proposed action a' is object o;, Equation (B.23) shows the

formula for pseudo update.

Q% (s,a") = (1 =) - Q% (s,a") + - (e + [ +7 -V (s,8") (3.23)

The proposal, along with user feedback, are the two main methods for the user to enter
the learning loop of the robot. Pure homeostatic systems, such as those adopted by social
robots in related work, often exclude the user from the decision process. The learning
with user guidance feature in this work is essential for service robots, especially if one
wish to make the robot user-sensitive.

Combining all the elements described in Section B.2, the decision making process

could be written as Algorithm [il.

3.3 System Design

3.3.1 Drives and Motivations

The general model of the system is described in the previous section, and this section
gives the design detail of the system. As stated previously, drives are the internal variables
of the robot, each representing a certain need. Drives are in the form of real numbers, nor-
malized to the range of [0, 100], with 0 being most satisfied and 100 being least satisfied.
Each drive has its own activation threshold, above which will the drive be possible to

generate a motivation.
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Algorithm 1 The decision making process of the system

Require: D := a set of drives

Require: )M := a set of motivations
Require: AT := a set of activation thresholds
Require: O := a set of objects

Require: A := a set of actions

1: while ture do
2 STeoxist < observed stimuli

3 intensities <— calc_intensities(M, D, AT, ST is)
4: Mgom 4 argmax,, -, intensities(m)

5: Shum < human state

6 Initialize empty list S

7 foro € O do

8 S, < object state of o

9: Add mgom X Shum X S, to S

10: end for

11: Initialize empty list Q

12: fora € Ado

13: s <— reduced state related to a in .S

14: Add g-value of pair (s,a) to Q

15: end for

16: P <« softmax(Q)

17: a* <— randomly choose an a € A according to P
18: Perform a*

19: f < human feedback

20: a' < human proposal

21: Perform model update according to f and difference in D
22:  ifa' # null then

23: Perform pseudo update according to af

24: end if

25: end while
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The requirements of the robot — how we wish it to behave — determines the design
of needs of the system. For a personal service robot with social ability, there are-simply
too many metrics to be all considered at once [[17]. In this evaluation, the follow.igg needs
are addressed. Note that this system is by no means limited to these Variab_les:";‘-and the

needs could be extended or even replaced to fit different scenarios.

1. Since the goal of this work is to use the system on a personal service robot, providing
service is obviously of major importance. A human-aware robot should be able to
sense user’s needs and behave accordingly [[17]. The user’s needs are sensed through
intention recognition. However, since our robot bases its actions on homeostasis,
we must give the robot a need to serve human so that the human-awareness aspect
could be integrated into the system. This need is modeled as a drive called Need
of Achievement (NAch) [61]. The robot’s need of achievement increases as time
passes, and successfully serving the human (receiving positive feedback after action
execution) lowers this drive, while getting scolded by the user (negative feedback)

increases it.

2. Although the main objective of this system is to endow service robots with high
autonomy and human awareness ability, it would be nice if the robot could social-
ize with the user proactively. To achieve this, a drive called Need of Socialization
(NSoc) is used. The NSoc is robot’s need to interact with human while not serving
him/her. This need increases when the robot is not interacting with human, and is

lowered when the robot chats with human.

3. In our experience with the robot platform we use — Pepper [62] — we found out
that the joints of Pepper gets overheated easily. The temperatures of joint increase
when in motion or maintaining certain postures. If the temperature rises too high,
the robot becomes uncontrollable. To deal with this problem, Need of Rest (NRes)
is introduced. This value is bound to the joint temperatures of the real robot, and
is assumed to increase as robot moves in the simulation. Resting — setting the

stiffness of all joints to zero and entering an idle state — could lower this need, as
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Table 3.1: Selected Internal Variables

drive d; motivation m,; activation threshold at;

NAch  Serving 0 =
NSoc Social 70 | <
NRes Relaxative 50

NEng Survival 50

it lowers the temperature on the real robot.

4. As the robots run on electricity and are not able to generate energy on their own
(yet), our robot should be aware of its own energy level, and go to the charging
station when needed. Need of Energy (NEng) could be seen as a fundamental need
of robots, just like hunger to human. In the simulated environment, this need is
assumed to increase as time passes, and is determined by the battery level on the

real robot.

After the selection of drives, correlated motivations should be determined. Note that
the correlations between drives and motivations are one-to-one, so there will be one mo-

tivation for each drive used. The selected motivations are as follows:

1. Serving: related to drive NAch,

2. Social: related to drive NSoc,

3. Relaxative: related to drive NRes, and

4. Survival: related to drive NEng.

Table B.1] shows the correlation between drives and motivations, and their activation
thresholds. The activation threshold of NAch being zero means that the Serving motivation
would become active as soon as there’s NAch, implicating that the main purpose of a

service robot is to serve.
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3.3.2 Objects, Stimuli and Actions

As stated in Section , as far as the action selection module’s concern, the envi-
ronment contains a human user, and a set of objects with which the robot coultff'irnteract.
The status of each object/human, and the spatial relation between them and thé r(;bot are
represented using object states S, and human state .S},,,,,,. Here, the selected objeetsin the

environment and their state variables would be described.

* Charger: as the robot’s battery level runs low, it must find a way to replenish its
energy, and charger is the object for that. The charger could be near or far to the
robot, and the status of the charger could be charging or idle. The charger is assumed
to be stationary in the environment, so the robot could only change its spatial relation
with the charger through moving itself. Equation (B.24) shows the object state of

the charger.

Scharger = {near, far} x {charging, idle} (3.24)

* CD player: as an object the robot could interact with, the CD player could be turned
on or off by the robot. Controlling the player is one of the services the robot could
provide. Unlike the charger, the robot could control the player remotely, so mod-
eling its spatial relation with the robot would be of little meaning. Equation (B.25)

shows the state of the player.

Spiayer = {playing, idle} (3.25)

* Light: similar to the CD player, controlling the light is also one of the services of
the robot. Since the light is also remotely controlled, spatial relation is not modeled

here, either.

Slight = {On7 Off} (326)
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Table 3.2: Selected Stimuli

rule effect
hirecoqg 7 NONE Serving + 20 ;7-,
human is not absent Social 4+ 10 A

robot is at resting place Relaxative + 10

charger is near Survival + 10

The state variables of human is already described in Equation (B.9). The human state
is composed of the recognized intention and the spatial relation between it and the robot.

The external stimuli are selected as Table B.2. When there’s a recognized intention
of human, the motivation to serve will be enhanced. When the charger is near the robot,
the survival motivation will increases, just like the motivation to eat will be increased
when food is near for human. When the human is present (either near or far), the urge to
socialize will be enhanced.

For each object, there are some predefined actions for the robot to perform on the
object. For example, the robot could attach to, detach from, or move to the charger. And
since charging is a time consuming process, the robot could also choose to stay near the
charger, allowing it to keep charging for one more iteration if attached. Other than the
actions targeting objects, some human-related or self-related actions are also available,
such as chatting with human or resting to reduce joint temperature. The full list of available
actions is in Table B.3, grouped by the target of each action. Note that the human- or self-
related actions are grouped under the null object, as stated in Chapter 3.

Besides that target objects, there are also some constraints related to each action. These
constraints are generally intuitive, designed to prevent awkward situations, such as robot
chatting with human in a long distance, or trying to attach to the charger which is far away.

The constraints are also described in Table B.3.

3.3.3 Degree of Dedication
Equation (B.20) shows that when calculating the internal reward (rgves) for model

update, a weight (w;) is given for each drive (d;). The weight represent the importance the
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Table 3.3: Selected Actions

target action description constraint
MoveToC Move to the charger =5
Attach Attach to the charger charger is near. || 5
charger S
Detach Detach from the charger
Stay Stay near the charger charger is near
Play Turn on the music
player
Stop Turn off the music
LightOn  Turn on the light
light g &
LightOff  Turn off the light
Chat Chat with human human is near
MoveToH Move to human
null MoveToR Move to the resting place

Rest Soften all joints and rest ~ human is not near

drive is to the robot when selecting actions. The higher the weight is, the larger the reward
will be if the corresponding drive decreases in the interaction. In the previous simulation,
the weight for all drives are equally 1.0. In this section, a new parameter called Degree of
Dedication is defined based on the weights of drive, and the effect of it is discussed.
Degree of Dedication (DoD) is the ratio of the importance of serving drives to all

drives. More specifically, the ratio of weight of NAch to the summation of all weights.

DoD = 2NAch (3.27)

To avoid the unlimited growth of rewards, the weights are normalized such that the

summation of them equals the number of drives.

Zwi = |D| (3.28)

In this work, 4 drives are used in the system, so the summation of all weights equals 4.
For the drives other than NAch, their weights are assumed to be equal. Figure B.3 shows

the correlation between weights and DoD. The value of DoD is in the range of [0, 1].
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NAch
NSoc, NRes, NEng

NI

Weight

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Degree of Dedication (DoD)

Figure 3.3: Weights of drive under different Degree of Dedication.

The higher DoD is, the more important NAch, thus serving human, will be. If DoD = 0,
the NAch is simply ignored by the robot, and the robot will only serve the human out of
user’s feedback. If the DoD = 1, the robot will only act to please and satisfy the user,
ignoring all other needs. A good DoD should be chosen to balance the robot’s serving and

self-sustaining ability.
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Chapter 4

Evaluation

To evaluate the usefulness of the proposed system, the system is tested on two different
environments. First the system was implemented on a virtual agent working in a simulated
environment and with a virtual human agent. After the simulation have been completed,
the system was ported to a real robot working in a environment similar to the simulated
one, and interacting with real human user. To shorten the exploration (learning) phase, the
knowledge learned in the simulation was transferred to the real robot.

We have proposed several evaluation metrics to inspect the performance of the model.
The metrics are defined and described in Section 4.1l. The details of simulated environment
and the result of simulation will be given in §.2. Several features proposed to enhance the
system’s performance, including user-induced pseudo update, the motivation factor, and
the Degree of Dedication will also be evaluated and discussed in the section. Finally, the
system was ported to a real robot, and the outcome of the interaction with human user will

be shown in Section 4.3.

4.1 Evaluation Metrics

To evaluate if the proposed system indeed satisfies both the user and the robot itself,

four metrics are defined and used in this work.

1. Human Satisfaction Rate (HSR)
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The most intuitive and user-related one is to see if the needs of the user are indeed
satisfied by the robot. To the user, satisfying is defined as robot doing aetion that
matches the user’s intention. For every iteration, the human user can express.gne of
the intentions, and the robot’s action could be either satisfying or unsati_:sf;'i‘hg._ The
rate of robot performing satisfying actions could be seen as an indicater for the total
degree of satisfaction of the user. The human satisfaction rate (HSR) is calculated as
equation §.1. The denominator is the number of expressed intentions rather than the
number of iterations, because the user might not express any intention in an iteration,
and no satisfying action could be possibly chosen. HSR is a value between 0 and 1,

the closer to 1 the better.

# of satisfying actions
# of user intentions

HSR = (4.1)

. Cumulative Drive Average (CDA)

To check the degree of satisfaction of the robot, the values of drive could serve as
indicators. The meaning of drives in this work is the internal needs of the robot,
so the lower the drives are, the more satisfied the robot is. Since the values of
drive vary constantly, the average of them over a period of time could be used.
The average value of each drive can be considered separately (CDA,), or can be

considered altogether (CDA).

N
CDA, = % > d(t) (4.2)
t=1

where d(t) means the value of drive d in time ¢, and

(4.3)

CDA = (—ZdeD CDAd)

DI
. Cumulative Exceeding Drive Average (CEDA)

As mentioned in Section B.1, there’s an activation threshold for each drive, and a

drive is considered unsatisfied if it exceeds the threshold, generating motivation. In
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other words, if the drive is lower than the threshold, it is considered acceptable to
the robot, and no measurement will be taken to lower that drive. Thus, the-values
chosen for activation thresholds AT will effect the outcome of drive average_:girectly.
For example, if the threshold for NEng is 50, the robot will be likely tc_i on‘ly try'to
charge after NEng exceeds 50. According to this, one can expect the Vaiﬁe of NEng
to roughly oscillate around 50. To negate the effects of selected AT in evaluation,
cumulative exceeding drive average (CEDA) is defined. The meaning of CEDA
is similar to that of CDA, but rather than taking the average of drives directly, the
average value of drives that exceeds the threshold is used to represent the degree of

dissatisfaction.

CEDAy, = — Y _max(d;(t) — at;, 0) (4.4)

where the subscript 7 indicates the correlation between d; and at;, d;(t) is means the

value of d; at time ¢, and

(4.5)

CEDA
CEDA = (M)

| DI
. Robot Secure Rate (RSR)

When a drive exceeds 90, it is considered insecure, and having insecure drives is
to be avoided. Therefore, another metric representing the time ratio of robot being

secure is defined. Secure rate (RSR) is calculated by:

1 N
RSR = — ; se(t) (4.6)

where N is the total time, and se(t) is an indicator showing if the robot is secure at

time ¢:
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1 ifVd e D:d(t) < 90
se(t) = 4.7)

0 otherwise

=
-
o
'

RSR is in the range of [0, 100]. The higher RSR is, the higher ratio of time-have thé

robot spent feeling secure.

4.2 Simulation

4.2.1 Setup

The content of the virtual environment is the same as Section describes — a
virtual human, a virtual robot, a charger, a CD player, and light. To construct the spatial
relation between the robot and human/objects, there are three named locations in the virtual

environment.

» H: the location of human.
* C: the location of charger.

* R: the resting place for robot.

The location of CD player and light are unimportant here, since these are controlled
remotely, and no spatial relation needs to be modeled for them. From the three named
locations and the robot’s current location in the virtual environment, the spatial relation
between robot and the human/objects could be extracted. If the robot is at the same location
with another entity, the spatial relation between them is considered as near, otherwise far.
For example, when the robot is at location R, then its spatial relation with human is far,
and that with charger is also far; if the robot is at H, then the human is considered near,
while the charger is still far. For human, another option is to become absent. In this case,
the human agent removes itself from the environment, and is of no effect on the robot in

that iteration.
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Table 4.1: The Effects of Action in Simulation

target  action effect on env. effect on drives
MoveToC change robot’s location to C =5
Attach change charger to charging  NEng — 20 &
charger
Detach change charger to idle
Stay none NEng — 20 if charging
Play change player to playing
player
Stop change player to idle
LightOn  change player to on
light Be Py
LightOff  change player to off
Chat NSoc — 30
MoveToH change robot’s location to H
null MoveToR change robot’s location to R

Rest none NRes — 20

Table 4.2: Increase Rate of Drives in Simulation

drive  increase rate (per iteration)

NAch 3
NSoc 3
NRes 2
NEng 2

The actions, other than changing the environment, also has some effect on the robot
itself. More specifically, on the drives of the robot. Some of the drives are bound to the
real internal parameters of the robot (such as NRes and NEng), while some are artificial
(NAch and NSoc). However, in virtual robot agent, all parameters are in fact artificial, and
the effects of action on them should be predefined. Table .1] shows the effects of action
on drives and on the environment in the simulation. Besides, the decrease in NAch when
human gives positive feedback is 10.

Since all drives are artificial, the increment rate for each drive should be defined as
well. Here, all drives are assumed to have a static increase rate, and increases with every

iteration. The increase rate of each drive is shown in Table §.2.
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Table 4.3: Predefined Intentions in the Simulation

intention desired action

light LightOn =
no_light  LightOff | &
music Play

no_music Stop
come MoveToH
leave MoveToR or MoveToC

The virtual human is designed as a reactive agent, simple yet enough to express inten-
tions and give feedback. The human has a set of predefined intentions to be expressed,
which, along with their actual desired actions, could be found in Table 4.3. Note that in
simulation, the intention recognition part is omitted, and the intentions are assumed to be

observable directly. For each iteration, the intention is decided according to two rules:

1. If the intention in the previous iteration was not satisfied, it remains the same;

2. Otherwise, list the intentions that are reasonable in the current circumstance, and
randomly choose one from the list as the new intention. For example, if the player

is playing at the time, expressing music intention is meaningless.

After the virtual robot observed its intention and perform an action, the human agent
would see if its intention was satisfied, and give feedback to the robot. If the intention
was satisfied, the feedback would be positive; negative if unsatisfied, and neutral if no
intention was expressed. The value of feedback used to calculate the reward for actions
is 10. That is, if the feedback is positive, rfedrack = 10, and if the feedback is negative,

Tfeedback = —10. The pseudo code of the human Al is shown in Algorithm .

As stated in Section 2.2.3 and B.2.4, there are various parameters that could affect

the outcome of Q-learning. The most important ones are the learning factor «, and the
temperature T for softmax. The higher « is, the easier Q-value would be affected in every
update. So a higher « at the beginning of the learning process could help Q-values to

converge faster. 7 affects the rate of selected action with the highest Q-value. The higher
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Algorithm 2 The Al of human agent

Require: [ := a set of intentions
Require: A := a set of robot actions
Require: f := value of feedback

1: intention = null
2: while ture do
3 if intention satisfied or intention == null then
4 L,qiiq < reasonable intentinos in
5: intention <— random_choice(1l,qiq)
6: end if
7 express intention
8 wait for robot to perfom an action
9: if intention # null then
10: feedback < 0
11: proposal < null
12: else if intention satisfied then
13: feedback + f
14: proposal < null
15: else
16: feedback <+ — f
17: proposal < corresponding action of intention in A
18: end if
19: express feedback and proposal to the robot

20: end while
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Table 4.4: Additional parameters used in simulation

parameter value description

v 0.5 The discount factor in Q-learning =
19 1.0 Motivation factor &
all w; 1.0 Weight for calculating 74ives

T is, the easier the robot would choose a non-optimal action. This exploring behavior
should be encouraged in the early stage of learning, as the Q-values are still unstable;
while choosing a non-optimal action after numerous interactions might be a bad idea, as the
action with the highest Q-value is more likely to be the real optimal solution. Therefore,
in the early stage of simulation, higher « (0.3) and 7 (4.0) are used. After 1000 iterations,

as the Q-values are more stable, o and 7 are lowered to 0.1 and 2.0.

4.2.2 Result

Other than the setup described above, some additional parameters shown in Table 4.4
are used in the simulation. The usage of motivation factor £ and weights w; is described in
Section B.2.5. The simulation is run for 5000 iterations. That is, the robot performs 5000

actions and updates its model for the same amount of times. The result is rather satisfying.

The value of each drive, its cumulative drive averages (CDAs) and cumulative excess
drive averages (CEDAs) in the simulation process are illustrated in Figure 4.1], the Human
Satisfaction Rate (HSR) and the Robot Secure Rate (RSR) are illustrated in Figure 4.2.
As one can see, since there’s little prior knowledge provided to the virtual robot before
simulation, the robot doesn’t know what to do in the early stage of simulation. The value
of drives, CDAs, CEDAs are all very high, because the robot haven’t learned how to lower
them yet. After a few hundreds of iterations, all the internal needs start to be lowered and
kept within range thanks to the online learning process. The maintenance of internal needs
can also be discovered through observing RSR. As Section }.1 described, RSR is the ratio
of time robot spent felling secure, without extreme internal needs. Figure shows that

the RSR is 1 at the very beginning of the simulation, because the drives of the robot haven’t
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developed enough to make the robot insecure. Shortly after, RSR drops drastically, as the
drives are too high yet the robot haven’t learned how to deal with them. -RSR-starts-to
climb after a few hundreds of iterations and the robot rarely feels insecure in the /mid to

late stage of simulation.

The Need of Achievement is found to be particularly low compared to ‘other drives.
Other than the lower activation threshold of it, it is also speculated to be the result of user
feedback and pseudo update. Since in the early stage of simulation, the robot could do
nothing but explore, trying to satisfy the needs. However, the user feedback gives the robot
indications of how to serve the user; further more, the user could propose correct actions
to the robot, and the robot will perform pseudo updates on the proposal (Section B.2.6).

These features make the robot easier to learn the lowering methods of NAch.

Other than observing the internal needs of the robot, the satisfaction of human user
could be calculated as HSR, the result of which is illustrated in Figure §.2d. The value of
HSR means the proportion of satisfied intentions of the user. The higher HSR is, the more
likely the user’s intention get satisfied upon its expression. As one can see, the value of
HSR, though low at the beginning, climbs rapidly and reaches above 0.8 in the late stage
of simulation. Also, it is observed that HSR is roughly negatively correlated with the CDA
of NAch, since the satisfaction of the user (positive feedback) directly affects the value of

NAch.

The value of the proposed metrics in the end of the simulation are shown in Table 4.5.
The cumulative average of drives other than NAch are kept between 40 to 50, due to their
higher activation threshold. Observing their CEDA respectively, one can see that the av-
erage value of exceeding drive is very low for all drives. This indicates that the actions of
robot successfully eliminate the internal needs, keeping them under the activation thresh-
olds, and keeping the robot itself satisfied. The value of RSR shows that the robot spends
only 10% of times feeling insecure, most of which comes from the early stage of the sim-
ulation. The value of HSR shows that when the human user express an intention, 82% of
the time the robot will satisfy it immediately. Again, most the dissatisfaction comes from

the early stage of simulation, so the values of RSR and HSR are expected to grow even
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Figure 4.1: Value of drives in the simulation process. The three lines in each figure are
the raw drive value, CDA, and CEDA of that drive, respectively. Because the activation
threshold of NAch is zero, so its CDA and CDEA are the same.

Human Satisfaction Rate

0.2 |-

HSR ——

Robot Secure Rate

1000 2000 3000 4000

Number of Iteration

(a) Human Satisfaction Rate

5000

1000 2000 3000 4000 5000

Number of Iteration

(b) Robot Secure Rate

Figure 4.2: The change in HSR and RSR (both the higher the better) in the simulation

process.
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Table 4.5: Various metrics in the end of simulation

NAch NSoc NRes NEng all

CDA 1.73 435 40.1 445 325 =
CEDA 1.73 205 5.72 6.99 4.12 1
HSR — — — —  0.82
RSR — — — — 0.90

larger as the number of iterations increases.

4.2.3 Effects of Motivation Factor

Section mentioned a parameter in the calculation of internal reward called moti-
vation factor (¢). The usage of ¢ can be found in Equation B.20. As the equation indicates,
¢ is used as a bonus factor for the drive related to the dominant motivation. In the previ-
ous section, £ of 1.0 is used, which that means when calculating the internal reward, the
change in drive related to the dominant motivation will have an extra 1.0 time of bonus
reward, doubling the original reward. For example, suppose that Need of Energy is 50 and
30 before and after the robot performs an action respectively, the original reward from this
drive is 20wyg,g. However, if the dominant motivation of the time is Survival, which is
related to NEng, then the reward from NEng becomes 20(1 + £)wngng = 40wngng. This
factor encourages the robot to perform actions according to the current dominant motiva-
tion. Because the dominant motivation is usually related to the highest drive of the time,
acting by the dominant motivation should sooth the most dire need. If a good motivation
factor is used, the improvement in SR and CEDA should be discovered as a result. In this
section, the results of simulations with different motivation factor are shown, and their
meanings are discussed.

To evaluate the usefulness of the motivation factor, several simulations are run with
different £. Other than &, all the other parameters are the same as in the previous section.
Figure 4.3 shows the effect of motivation factor ¢ on different metrics. As Figure
shows, using a ¢ above 1 is a significant improvement compared to those with lower &.

This indicates that the robot could satisfy its own needs better if it learns to deal with
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the most dire desire, rather than trying to handle everything at the same time. Similarly,
Figure shows that RSR could be greatly improved with ¢ larger than 0.5. Without the
direction of dominant motivation, the robot would spend more than 60% of its ti_l;l_le being
insecure. Interestingly, as a side effect, a higher § lowers the HSR slightly, as ;'ilown in
the same figure. This side effect is predictable, since a high motivation facter encourages
the robot to choose actions based on the dominant motivation, be it Serving or not.

The result shown above also proves the usefulness of dominant motivation itself. A
robot with £ = 0 could be considered as a robot without dominant motivation, since the
dominant motivation has no actual effect on the selection of actions. Without dominant
motivation, the robot could still perform well in serving because of the user feedback, yet

unable to satisfy its most dire needs, lowering its autonomy.

4.2.4 Effects of pseudo update

In Section B.2.6, a kind of user-induced pseudo update is introduced. When the user is
unsatisfied with the robot’s action, other than giving negative feedback, the user could also
choose to propose a correct action to the robot. The robot would treat the proposed action
as if it was performed and a positive feedback was received. This pseudo update is another
mean for the user to interfere with the robot’s decision model, besides expressing inten-
tions. The effects of the pseudo update are expected to be a higher rate of convergence,
and a higher HSR.

Figure 4.4 shows the result of simulation with and without pseudo update. Other than
pseudo update, parameters in two simulations are the same. As Figure shows, pseudo
update significantly improve HSR. Since the user could propose the correct serving action
to match his/her intention, the robot could learn to serve more rapidly, resulting in higher
HSR, especially in the early stage. This could also be proved by Figure §.4d. Without
pseudo update, the robot needs a few hundreds of iterations to learn the correct service,
resulting in high NAch in the early stage. With pseudo update, the values of NAch in
the early stage are drastically reduced, indicating a higher learning rate in serving. Other

than the improvement in serving ability, the differences in non-serving related metrics are
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insignificant. The RSR, CDA are roughly the same with or without pseudo update. CEDA
is indeed higher without pseudo update in the early stage, but its mainly contributed by
NAch, and the difference in CEDA becomes insignificant in the late stage. Fi&Bre
also shows that NEng, a non-serving drive, has no significant difference with;o;";‘vn\zithout
pseudo update. With the above results, the proposed pseudo updating methéd is proved

useful.

4.2.5 Effects of Degree of Dedication

Degree of Dedication (DoD), introduced in Section , is a parameter of the model
to determine how dedicated in serving the robot should be. To see the effects of DoD,
several simulations are done with different Degree of Dedication, and Figure §.5 shows
the result. As expected, the HSR is positively related to DoD, while RSR is almost nega-
tively linearly related to it. The Figure and shows that a low DoD let the robot
maintain NSoc, NRes, and NEng nicely. The well maintained drives indicate the high
self-sustainability of the robot, making the robot less likely to run into problems such as
insufficient energy or overheating. As a draw back, the robot would be more likely to
ignore the user’s needs, resulting in lower HSR. Interestingly, the value of HSR is still
around 0.6 even if the DoD is 0. This shows that even without the help of NAch, the re-
ward from user feedback alone is able to affect the decision of the robot, endowing the

robot with serving ability.

For higher DoD, one must be aware of the resulting low RSR. Even with a DoD
higher than 0.5, the robot would spend more than half of the time being insecure. A
low RSR is dangerous to the robot, especially so if the drives are related to real physical
parameters such as battery level and temperature. If the goal of the robot is merely to be
self-sustaining, DoD = 0 would be the best choice. For a service robot, a carefully chosen
DoD is required. From the experiment result, a value around 0.2 would be a good choice,

since the HSR and RSR are the most balanced around it.
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with and without pseudo update in the simulation process.
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Figure 4.6: The Pepper robot.

4.3 Field Test

4.3.1 Robot Platform

The Pepper robot [62] by SoftBank and Aldebaran is used as the testing platform. The
API for Pepper (NAOgqi) provides various physical parameters of the robot, some of which

are used in the calculation of drives.

» The temperature status of joints gives us a basis to calculate NRes on. For each
joint, the temperature status has a discrete value of 0, 1, 2, or 3. The higher the
value is, the more the robot suffers from overheating. The maximum value of all
joints is used as the overall temperature status, since one overheating joint is enough
to induce error in the robot. After retrieving the maximum temperature status, the

value of NRes is calculated with the mapping described in Table 4.6.

 The battery level returned by the charge sensor is in percentage, and can be trans-

formed into NEng directly.

The robot has touch sensors on the top of its head, which are used in positive feedback.
Patting on the robot’s head is considered as positive feedback for the robot’s selected
action. To make negative feedback, scold the robot with an angry voice. Pepper could

detect the level of anger in user’s voice, and a high level of anger is consider as a negative
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feedback. The user could also propose an action when making negative feedback, the
proposal is recognized using the built-in speech recognition module.

Intention of the user is recognized the same way as [[18], using RGB-D camera to
perform gesture recognition, and keywords are extracted with built-in speech fecggn_ition.
Because the retrieved RGB and depth images are ill-aligned, an external ViSiOIIl source is
required for now. An ASUS Xtion PRO LIVE is used as the external vision source, and
gesture recognition is perform on the images from it. Please refer to Hua et al. [[18] for
the details of gesture and intention recognition.

The actions of the robot stays the same as in the simulation. However, for Attach and
Detach to the charger, the robot cannot perform these two actions alone due to hardware

constraints. In the field test the robot would ask the user for help.

4.3.2 Result

Since reinforcement learning takes time to learn, it is unlikely that the robot learns form
scratch in all field tests. To bypass the learning phase and see the result of well-established
models, the knowledge learned in the simulation is transferred to the real robot. Because
the state space used in simulations is abstract enough to be used here directly, the Q-values
at the end of a simulation could be stored and deployed directly to the real robot.

To show the difference in the robot’s behavior with different Degrees of Dedication,
two kind of models were used in the field test. The first with a DoD of 0, and the second
with DoD of 0.25. The robot is nearly depleted of energy at the beginning of each test so
that its decisions on serving or self-sustaining could be observed. For convenience, the

model with DoD of 0.25 will be called a dedicated robot, and the one with DoD of 0 will

Table 4.6: Mapping from temperature status to NRes

temperature status NRes

0 0

1 20
2 80
3 100
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be called a selfish robot in the rest of the section. Note that the word selfish isn’t used

derogatorily, but merely to describe the nature of the robot’s decisions.

The outcome of a dedicated robot is shown in Table 4.7. The robot starts witff:SeWing
as its dominant motivation. In this stage, the user expresses various intentiohs,:-and the
robot satisfies them immediately. This indicates that the knowledge learned from:the sim-
ulation was successfully transferred to the real robot. At the fifth interaction, the dominant
motivation becomes Survival, because the positive feedback given by the user previously
lowered its Need of Achievement. For some reason, the robot choose to chat with the user
at the fifth interaction. This is predictable since the action selection method is stochas-
tic. From interaction six to eight, the effect of having a higher Degree of Dedication is
shown here. Although having Survival as the dominant motivation, the robot still choose
to satisfy the user rather than itself. At the ninth interaction, the user wishes the robot to
leave, and the robot chooses to move to the charger. It isn’t sure whether the choice to
move to the charger is for charging in the future, or it’s simply a coincidence. Either way,
the robot asks the user to help it attach to the charger at the tenth interaction, since there’s
no intention expressed by the user. At the end of this experiment, all of the intentions
expressed by the user were satisfied, and the dedicated robot still managed to take care of

itself at its leisure.

Table 4.8 shows the outcome of a selfish robot. Similar to the previous experiment,
the dominant motivation is Serving at the first four interactions, and the robot satisfies the
user’s needs successfully. As discussed in Section §.2.5, though having a zero DoD, the
ability to serve will not be eliminated. The robot would still serve the human in pursuit
of positive feedback and to avoid negative feedback. Also, since the dominant motivation
is Serving, there won’t be a bonus from motivation factor in performing other actions, so
self-sustaining actions might still be considered unworthy to choose by the robot. At the
fifth interaction, the dominant motivation becomes Social, which encourages the robot to
chat with the user. The robot moves to the user in that interaction, and chat with the user in
the next interaction, despite the fact that the user’s intention is to have some music. Theses

two interactions shows the selfishness in the robot. When a need is unsatisfied, the robot
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Table 4.7: Outcome of DoD = 0.25

interaction Mgom intention  action feedback proposed action.”
1 Serving light LightOn  — — =5
2 Serving no_light LightOff — — | &
3 Serving come MoveToH positive —
4 Serving  music PlayerOn positive —
) Survival — Chat — —
6 Survival no_music PlayerOff positive —
7 Survival light LightOn  positive —
8 Survival music PlayerOn positive —
9 Survival leave MoveToC — —
10 Survival — Attach — —
Table 4.8: Outcome of DoD = 0
interaction  Mgom intention action feedback proposed action
1 Serving  music PlayerOn — —
2 Serving  come MoveToH positive —
3 Serving  leave MoveToC — —
4 Serving no_music PlayerOff — —
) Social — MoveToH — —
6 Social music Chat negative  PlayerOn
7 Serving  music PlayerOn positive —
8 Survival light MoveToC negative LightOn
9 Survival light Attach negative  LightOn

would deal with it swiftly with less consideration on the user. At the seventh interaction,
the Need of Socialization is satisfied, and the robot choose to serve the user again. At the
eighth interaction, Survival becomes the dominant motivation. The selfish robot choose
to move to the charger and ask user for help in attaching immediately. This again shows
the priority in self-sustaining for a robot with low DoD. A selfish robot would encounter
dangerous situations less often, at the expense of user satisfaction. The HSR in this case

is 0.625, with 3 out of 8 needs unsatisfied.
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Chapter 5

Conclusion

In order to achieve high degrees of both autonomy and human awareness for personal
service robots with no predefined goals, a homeostasis based decision-making system is
proposed in this work. The homeostatic drive theory, a common bio-inspired approach
to increase autonomy in social robotics, is adopted by the system and tweaked to fit the
serving needs of service robots.

The core of the decision making process is a modified Q-learning algorithm. The
intention of human user and the internal needs of the robot will be considered at the same
time in the process, and the outcome of each action is learned from scratch with little or
no prior knowledge. Using both satisfaction of robot and user feedback in the reward
function, the robot learns to serve the user and satisfy its own needs at the same time. The
robot could also perform pseudo updates on the model according to user’s indication. The
user-guided leaning process performs better than the one purely using exploration.

The simulation result shows that the performance of the proposed system is admirable.
At the end of the simulation, the satisfaction rate of the user reaches 82%, and the robot is
able to keep its internal needs in an acceptable range for more than 90% of the time. The
effect of motivation factor, a factor proposed in this work to encourage the robot to deal
with its most dire need at the time, is proved to keep the robot secure from dangerously
high needs. The robot could avoid many dangerous situations such as overheating or
insufficient power with a high enough motivation factor. The pseudo update in the learning

process is also proved to increase about 10% of user satisfaction, and let the robot learn
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how to serve more rapidly.

The balance between serving and satisfying its own needs could be modulated by
the Degree of Dedication (DoD). A lower DoD is shown to make the robot more self-
sustaining, yet ignoring user’s needs more often. A higher DoD leads to higher user satis-
faction, sacrificing other needs of the robot and put robot in danger more censtantly. The
Degree of Dedication could be seen as one of the personal traits of the robot, and could be
adjusted to fit different scenarios.

The proposed homeostatic system gives the robot both self-sustainability and service-
ability. The integration of user feedback endows the robot with ability to learn with human
guidance, and the introduction of user intention makes the robot less self-centric and more
human-aware. For future work, a more sophisticated intention recognition method could
be used. With a wider range of expressible intentions, the robot could provide more ser-
vices proactively. Activity recognition could also be a good addition to the system, since
the required services are sometimes related to the current activity of the user.

Generating new actions online could also be a good research direction. Since the pro-
posed system could handle the expansion of actions, if a new action is to be generated, it
could be integrated into the system automatically. In this case, we could generate a varia-
tion of an existing action to match the user’s preference, or generate a whole new kind of
action to extend the robot’s ability.

The parameters mentioned in this thesis, including but not limited to DoD, weights
of each drive, activation thresholds, etc., might be decided in a more automated manner.
For example, the DoD could be adjusted in the interaction according to the user’s and
robot’s current satisfaction. If the user’s satisfaction is lower while the robot’s satisfaction
is still high enough, DoD could be increased online. If all parameters could be adjusted
automatically, less human intervention would be needed in the construction of the system,

and higher autonomy could be achieved.
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