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Abstract

In wetland studies, few attentions have been given to low-latitude wetland
ecosystem presently, but it accounts for about 70% of the global wetland area. Therefore,
it’s very important to consider the contribution of this significant portion on global
carbon (C) budget. In the past decades, eddy-covariance method has been widely
applied in many C budget studies at the ecosystem scale, but there are still several
limitations affecting the performance of EC methods. In order to overcome the
abovementioned limitations, many linear or non-linear statistical techniques are applied
to fill the measurement gap. Among various methods, the Artificial Neural Network
(ANN) method is considered to be an excellent means to identify the complex non-
linear relationship between the CO2 flux and meteorological variables.

In this study, a back-propagation ANN model was applied to quantify CO2 flux at
three low-latitude wetland sites (Guandu Nature Park Tower One (GDP-T1), Guandu
Nature Park Tower Two (GDP-T1), and Florida Everglades short hydroperiod marsh
(US-Esm)) in East Asia and the US. Meteorological variables were used as the input
parameters to train the ANN to predict the CO2 exchange. The best results of the GDP-
T1 (R=0.89) and GDP-T2 (R=0.87) occurred in the simulation of the daytime (DT)
model, and that of the US-Esm (R=0.62) in the nighttime (NT) models. The cross-site
simulation was feasible, the best result could up to 0.73 in terms of R. This model
provided a quick, efficient, and highly accurate estimation, and could be conducted to
estimate the dynamics of CO2 flux where there is no direct in-situ flux measurement.
The simulation capability is helpful to characterize the spatial/temporal variations in

low-latitude wetland ecosystems, and improve the quantification of global C budget.

Keyword: eddy-covariance method, back propagation algorithm, carbon dioxide

flux, meteorological factors
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1. Introdution

1.1. Wetland ecosystems

Wetland ecosystem is one of the most important terrestrial ecosystems, but it has
been neglected in the past due to its small proportion of the terrestrial ecosystem area.
The wetland ecosystem is the natural optimum environment to store soil organic carbon
(SOC) and sequestrate the carbon from the atmosphere due to the anoxic wet condition,
and it is estimated that about 20 to 30 % of the global soil pool of 2500 Pg of carbon (C)
is stored in the wetlands (Lal, 2008; Mitsch et al., 2013). It represents a large component
of the SOC pool for long term storage. Despite the fact that the total coverage of the
wetland ecosystem only account for 6-8% of the terrestrial area (Mitsch and Gosselink,
2007; Mitsch et al., 2013), the wetland ecosystem is one of the largest biological C pool
and stored more C in the soil than other biomes which occupy larger area (Bernal and
Mitsch, 2008). Moreover, the wetland ecosystem is also regarded as the net C sink which
has the high capacity for C sequestration with an average of 118 g-C m2 yr-1, and one of
the most productive ecosystems around the world, which accounts for about 6.3% of the
terrestrial net primary production (NPP) (Neue et al., 1997; Mitsch et al., 2013; Fennessy,
2014). For these reasons, the wetland ecosystem plays an important role in the global C

cycle.

Most wetland studies focused on the northern peatlands, and few have investigated
the low latitude wetland ecosystems (Bernal and Mitsch, 2012). It is estimated that 455
Pg of C was stored in the northern peatlands (Gorham, 1995). In the context of global
warming, the permafrost degradation in peatlands will have a great influence on the global
C dynamics. The themes of the northern peatlands studies included the influence on the

global C budget, the estimation of net C storage, the temporal and spatial variation, and

1
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the analysis of control factors of C flux (Armentano and Menges, 1986; Bubier et al.,
1998; Waddington and Roulet, 2000). Although these results were conducted to
understand wetland ecosystems more, they only represented a portion of the wetland
ecosystem. However, current studies have noticed that the C sequestration of ecosystems
varies over different environmental conditions (e.g. vegetation, hydrogeomorphology,
climate, and latitude). Bernal and Mitsch (2012) estimated the soil C pool and the
sediment accretion rate to compare six temperate wetland communities in Ohio to explain
that wetland ecosystems have different C sequestration capabilities because of the climate
conditions, vegetation communities, and hydrogeomorphic characteristics. In this study,
the depressional wetland sites had higher organic content in soil C and lower bulk density
than the riverine wetland sites. Additionally, the six sites had different C sequestration
rates, and the rates of depressional wetland sites were higher than the riverine wetland
sites in general. The highest C sequestration rate was found in the Quercus palustris
forested wetland community (473 g C m 2 yr 1) in the depressional wetland group. It is
noted that the capabilities of C sequestration were quite different even though the kinds

of sites were in the similar hydrogeomorphic conditions, respectively.

Mitsch et al. (2013) discovered that the capability of C sequestration of wetland
ecosystems under several climate conditions varied quite differently, and most of the C
retention occur in low-latitude wetlands. Seven sites, including three temperate wetlands
and four tropical wetlands, were chosen to estimate the C budget, and the estimation
results of the C budget of these sites were also compared to those of the fourteen wetlands
investigated in the previous studies. There were totally six tropical wetlands, seven
temperate wetlands, and eight boreal wetlands described in this study. The results
revealed that the average sequestration rate of carbon dioxide (CO2) was 214+66 g C m

“2yr 1 for the tropical/subtropical wetlands, 320+51 g C m 2 yr ! for the temperate

2
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wetlands, and 49418 g C m ~2 yr ! for the boreal wetlands. However, if taking the total
area of wetlands into consideration, the total amount of C retention was 5.6 x 10,
1.6x10™, and 1.1x10* g C yr * for the tropical/subtropical, temperate, and boreal
wetlands, respectively. As a result, when it comes to global wetland C budget, the
variations of the net ecosystem exchange (NEE) of wetland ecosystems at different

latitudes should not be lumped together.

Due to influences of the year-round growing seasons, the characteristics of NEE in
the low latitude wetlands differ from the northern peatlands and other temperate wetlands
(Schedlbauer et al., 2010). For this reason, understanding the C exchange dynamics and

their control factors is important to the estimation of global wetland C budget.

1.2. Eddy covariance method

The eddy-covariance (EC) method is a meteorological technique, which directly
measures the fluxes of scalars or energy components across the interface between the
atmosphere and the plant canopies. In this study, the negative values of CO2 flux
represented the C uptake, and on the contrary, the positive values represented the C
release. Continuously observed EC data represents point measurement with a footprint
ranging from meters to kilometers depending on the measurement height, surface
roughness, and atmospheric stability. This method is quite accurate when the atmospheric
condition is steady, the underlying plant is homogeneous, and the instruments are situated

on a flat terrain.

The weakness of the EC method is that it is critical to the environment as mentioned
above, and the instruments are very expensive. In addition to the uneven distribution of

the present sites, sometimes it is difficult to find adequate locations to establish the flux

3
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towers. The EC method is strict with the background of sites. The EC towers need to be
located on relatively flat terrains with vegetation extending horizontally about 100 times
the sampling height (Baldocchi et al., 2001). The measurements can only be accurate
when the atmospheric conditions remain steady. Although the EC instruments can
measure accurately, they have to be maintained and calibrated frequently. That is to say,
the EC data is helpful for understanding the exchange of mass and energy and interactions
between the atmosphere and ecosystems, but when it comes to the application of the EC
instruments, many conditions should be taken into consideration including site selection,
instrument placement, and instrument calibration and post-processing (Baldocchi et al.,

2001).

Although the EC system is able to measure the high-accurate data, some conditions
may lead to the measurement errors. First, the measurement may be inaccurate in the
unstable environment; second, radiative cooling leads to stable conditions that suppress
turbulent mixing, so it is hard to recognize the variation of turbulent for instruments; third,
the instruments are not calibrated correctly resulting in the measurement errors (Ooba et

al., 2006; Dragomir et al., 2012).

The FLUXNET was established to gather the long-term observations from regional
micrometeorological tower sites together, and the data has been applied to quantify the
spatial/temporal variations of ecosystems and to understand the underlying mechanisms
responsible for observed fluxes and C pools of the global C cycle. The Fluxnet lists 650
tower sites which are in operation, but most sites are distributed over Europe, North
America, and Northeast Asia. Moreover, among all of the sites, wetland sites are quite
sparse, so the understanding of wetland ecosystems is relatively insufficient. Further, the

majority are located in middle or high latitude areas.
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Based on the reasons mentioned above, it is not easy to find suitable places to
establish EC towers, and the distribution of EC towers around the world are quite uneven,
and most towers are clustered in developed countries. Therefore, the C budget has to be
estimated in the place where it cannot be directly measured. In order to infer possible
temporal and spatial patterns of C flux at the place without in-situ measurements, some
current studies attempt to predict the variation of C flux by extrapolating existing

observations to large scale with the help of modeling.

1.3. Estimation of C flux

Data from the EC system are usually sampled with high frequency and half-hourly
averaged for continuous measurement all around the year. Nevertheless, the yearly
average data coverage is merely 65% because of the system failures or data rejection
(Falge et al., 2001). In order to fill the missing data for complete dataset, many
investigators have developed and implemented some site-specific techniques. There are
some common approaches such as interpolation, look-up tables, mean diurnal variation
method, the Monte Carlo method, linear regression, nonlinear regression, and the artificial
neural network (ANN) (Falge et al., 2001 ; Hollinger et al., 2004; Knorr and Kattge, 2005;

Ooba et al., 2006).

The non-linear regression method is the most conventional way to estimate the C
flux, which uses the photosynthetic photon flux density (PPFD), the air temperature, and
some empirical parameters to calculate the C flux based on the characteristics of the
bioreaction. It is reasonable and easy to calculate. However, it may lead to over-
simplification of ecosystem and neglect some information in the environmental condition

(Ooba et al., 2006). Other estimation methods, such as look-up tables and the mean
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diurnal variation method was considered to be insufficiently accurate (Carrara et al .,

2003 ; Mogami et al ., 2003).

Among many estimation methods, the ANN technique is a good way because of its
fast and accurate calculation capability. This method has been applied for estimating NEE
within the past two decades (Van Wijk and Bouten, 1999; Papale and Valentini, 2003;
Melesse and Hanley, 2005). However, compared to other methods, the ANN technique
has the better performance for C flux prediction than other methods (Van Wijk et al., 2002;
Ooba et al., 2006). The ANN technique is unnecessary for ANN users to have special
background knowledge of the field to which ANN technique is applied. In addition, this
method is more sensitive to the relationship between the meteorological inputs and C flux

than other methods (Melesse and Hanley, 2005).

In the ANN models, the flexible structure can identify the non-linear relationship
between the input data and the output data. Owing to its excellent capability of calculation,
the ANN model can deal with numerous datasets at the same time and calculate the result
quickly (Melesse and Hanley, 2005). If the input data is sufficient, the ANN model can
establish the relationship between the input and output accurately. The ANN technique is
suitable for some kinds of problems, which are too complicated to define the background
conditions, which need to calculate the results quickly, and which have to establish the

non-linear relationship between the input and the output (Chang and Chang, 2015).

1.4. The application of ANN models on C budget

Some studies have improved that the relationship between environmental factors and
C flux can be established by ANN models (Van Wijk and Bouten, 1999; Van Wijk, Bouten,

and Verstraten, 2002; Melesse and Hanley, 2005; Leuning et al., 2005; Ooba et al., 2006).

6
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Most of the current studies focused on the forest and grassland ecosystems, and the
discussion on the wetland ecosystem is limited, especially in the CO2 flux. Ooba et al.
(2006) used 15-day data and six input parameters to establish the relationship between
the environmental factors and CO2 flux with a back-propagation neural network to
compare three different kinds of ecosystems. The R? values of the data simulation of
forest, grassland, and wheat field models were 0.86, 0.75, and 0.94, respectively. It
showed that the ANN models had a great ability to predict the CO2 flux. Moreover, this
study also concluded that the different ecosystems need to choose different input

parameters.

For the time being, few study uses the ANN model to qualify the CO: flux of wetland,
but some wetland studies applied the ANN models to CHa4 flux. Morin et al. (2014) use
the ANN model to determine the environmental drivers to the CHa flux. The data was
divided into four groups, including summer day, summer night, winter day, and winter
night, to discuss the seasonal and diurnal impacts. The model input parameter included
air temperature, soil temperature, net short-wave and long-wave radiations, atmospheric
pressure, the half-hourly change in atmospheric pressure, relative humidity, turbulent
velocity, wind speed, and fluxes of sensible heat, CO2, and water vapor. An important
concept proposed in this study was that the correlation of the input and output did not
represent the direct causal relationships but might use to explain the shared mechanisms
between methane and other environmental variables or fluxes. The results revealed that
the variables related to volatilization of water in the wetland are highly correlated with
methane emissions, and the fluxes of latent heat and NEE were benefited for the models

of CHa.

In addition to the studies which used the ANN models to establish the relationship

between the environmental factors and flux data in the specific sites, some studies used

7
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the ANN models to predict large scale variation of flux. Papale and Valentini (2003) used
data of 16 forest ecosystems to build an ANN model in order to estimate the total NEE of
the whole forest ecosystem at Europe scale. This study used the data observed in 1997,
and the input parameters included the Normalized Difference Vegetation Index (NDVI),
land cover characteristics, dew point temperature, maximum air temperature, minimum
air temperature, mean air temperature, and the season. The estimation of overall European
C uptake was about 0.47 GtC yr?, and was within the reasonable range reported by the

estimation of previous studies.

Moffat et al. (2007) compared 15 techniques for estimating the missing flux data and
concluded that ANN performed well among all the methods, and reproduced the half-
hourly flux data better than nonlinear regressions. In this study, three kinds of ANN was
selected to discuss, and all of them in four scenarios generated low root mean square error
(RMSE) and high the coefficient of determination (R?). The former is from 0.9t03.0g C

m 2 d 1: the latter is between 0.36 and 0.92.

The input and output parameters of relative references were shown in Table 1. At
present, most studies use three kinds of data as the input parameter (Papale and Valentini,
2003; Melesse and Hanley, 2005; Ooba et al., 2006; Morin et al., 2014). The first kind is
the micrometeorological data, including the latent heat flux, sensible heat flux, and soil
heat flux. Second, meteorological variables are also regarded as applicable to ANN; for
instance, air temperature, soil temperature, net radiation, photosynthetic photon flux
density (PPFD), vapor pressure deficit (VPD), precipitation, and horizontal wind speed.
The last kind is attribute data such as the leaf area index (LAI), NDVI, land cover

characteristics, and time series.

The CO2 flux of ecosystems will influence the concentration of CO2 in the

doi:10.6342/N'TU201703598



atmosphere and lead to corresponding feedbacks in the biosphere and the atmosphere.
Accordingly, the simulation results of ANN will be useful for understanding the spatial

and temporal variations of CO2 flux and the mechanism of C exchange.
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Table 1 Relative references which used the ANN model

doi:10.6342/NTU201703598

Data ) Output
Reference Ecosystem o Data period Input parameter
division parameter
Van Wijk and Bouten 1996~1997 o \ 7
6 European forests N/A global radiation, temperature,and vapour pressure deficit. NEE
(1999) (DOY=150~250)
Van Wijk, Bouten, and forested area in the global radiation, air temperature, wind speed, vapour pressure
N/A 1995~1996 . L NEE
Verstraten (2002) Netherlands deficit, and precipitation.
Papale and Valentini 1997.1~ air temperature, dew point temperature, the maximum normalized
16 European forest N/A . o NEE
(2003) 1997.12 difference vegetation index, the land cover type, and the season
Forest, grassland, o ] ] ]
] net radiation, latent heat, sensible heat, soil heat flux, air
Melesse and Hanley (2005) | and cropland in the N/A 15 days . NEE
US temperature, and soil temperature.
Japanese larch 2002.05 Day of the year, time, photosynthetic photon flux density, vapor
Ooba et al. (2006) plantation in N/A 2002' 09 pressure deficit, net radiation, air temperature, wind speed, and NEE
northern Japan. ' latent heat flux.
. ] Latent energy, global radiation, photosynthetic photon flux
6 different daytime 2000~ ) ) )
Moffat et al. (2007) o density, air temperature, soil temperature and water contents, NEE
European forest /nighttime 2002 ) o o o ) )
relative humidity, precipitation, friction velocity, leaf area index.
air temperature, soil temperature, net short-wave and long-wave
) . 2011.05~ radiations, atmospheric pressure, the half-hourly change in | Methane
Morin et al. (2014) wetland in the US N/A . . L . .
2013.12 atmospheric pressure, relative humidity, turbulent velocity, wind flux
speed, and fluxes of sensible heat, C dioxide, and water vapor.
10




1.5. The relationship of environmental factors and NEE

It has been proved that the variation of C flux is relative to the climate drivers in
short scale (Stoy et al., 2009), but the characteristic of the exchange of C varies as a
result of environmental factors including not only atmospheric conditions but also soil
characteristics and plant properties, which affect both the quantity and quality of the
organic matter (Brix, Sorrell, and Lorenzen, 2001; Inglett et al., 2012). Consequently,
the C sequestration of ecosystems under different circumstances should be discussed
individually. According to the Ramsar Convention, the total area of the low latitude
wetland ecosystems accounts for about 70% of the global wetland area and distributes
over Latin America and the Caribbean, Africa, and Asia area (Ramsar, 2015). In other
words, taking all kinds of wetland ecosystems into consideration together may lead to

inaccurate estimation of the global wetland C budget.

There have been some discussions on the relationship between the environmental
factors and the CO2 flux. The wetland studies of the variation of the net exchange of
CO:z2 indicated that the NEE is mainly influenced by the temperature, radiation, growing
season, water, and LAI dynamics (Bubier et al., 1998; Bonneville et al., 2008; Han et
al., 2015; Zhang et al., 2016). Zhang et al. (2016) concluded that the air temperature,
shallow depths soil temperature, and the photosynthetic active radiation (PAR) are high-
related to the CO:2 flux, respectively. By means of the proportion of variance (R?)
explained by a linear fit, the air temperature and the shallow depths soil temperature (0,
2, and 4 cm) showed the strong relationship to the CO2 flux, with the R? were higher
than 0.7. In the correlation results of PAR and CO: flux, the PAR was negative-related
to the COz2 flux; moreover, the correlation coefficient (R) of the growing season was
much higher than that of the non-growing season. The flooding period of wetland
ecosystems had impacts on the pattern of the NEE exchange, which led to the smaller
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range of the variation of the diurnal NEE. The effective photosynthetic leaf area may
be reduced when the vegetation was submerged, so the exchange of CO2 may be
influenced (Han et al., 2015). In addition, the LAI is dependent on the variation of the
temperature and precipitation. According to the study conducted by Bonneville et al.
(2008), the LAI also has the strong relationship to the NEE because the uptake of the

CO:2 has relations with the green photosynthesizing portion of plants.

1.6. Objectives

In this study, the estimation was focused on the CO2 flux between the wetland
ecosystem and atmosphere. An ANN model with the back-propagation algorithm was
applied to quantify the CO2 flux at three low-latitude wetland sites in East Asia and
North America. Because ANN is more sensitive to the relationship between
meteorological factors and C flux than other methods, this study will use the
meteorological variables as the input parameters instead of the flux data and attribute
data. Since the weather stations are more widespread than EC towers, this model is

expected to apply to the places where is no tower established.

Meteorological variables were used as the input parameters to train the ANN to
predict the CO2 exchange. This model provides a quick, efficient, and highly accurate
estimation, and can be conducted to estimate the dynamics of CO2 flux where there is
no direct in-situ flux measurement. The simulation capability is helpful to characterize
the spatial/temporal variations in low-latitude wetland ecosystems and improve the

quantification of low latitude wetland C budget.

The following is the purposes of this study. First of all, ANN models will be

constructed to characterize the relationship between the meteorological variables and
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CO:2 flux in order to ensure this method is applicable in the wetland ecosystem. The
data at each site will be used to train the ANN models and evaluate the model
performance. The second objective is to verify the cross-site capability of ANN. The
in-situ observations of low-latitude wetlands are limited, so this study attempts to apply
the proposed ANN models to estimate the variations of CO2 flux. The ANN models
trained by a common reed wetland ecosystem will be used as reference models, and

data from the other two wetlands will be estimated according to the reference models.
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2. Methods

2.1. Site descriptions

Three wetland ecosystem sites from two different countries were selected for this
study. One site is situated in the southeast part of the Everglades National Park, Florida,
United States; the others are located in the western part of the Guandu Nature Park,
Taipei, Taiwan. Although the two areas are far from each other, they are similar in
climate, vegetation, latitude, and elevation conditions. Data from these sites were used

to train the ANN model to predict COz2 flux.

Everglades National |.
& Park. Florida. i = S
United States. b ! p 1

r'.|

Guandu Nature Park, |
Taipei, Taiwan.

Fig. 1. The location of the study sites.

( Map source: http://alabamamaps.ua.edu/contemporarymaps/world/world/)

2.1.1. Guandu Nature Park Tower One (GDP-T1)

The Guandu tower one (25°7°N, 121° 28’E, hereafter GDP-T1) is registered on

the Asiaflux network, and located in the western part of the Guandu Nature Park, which
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is in the northwest part of Taipei City. This area is part of the Guandu Nature Reserve,
so it will not be interrupt by human activities. This site is at the junction of Tamsui
River and Jilong River, and merely 10 km away from the estuary of Tamsui River;
therefore, the characteristics of hydrological properties, energy properties, and

biogeochemical cycles in this area will be influenced by the tidal and stream flow.

The GDP-T1 site is a grass marsh ecosystem which is dominated by para grass
(Brachiaria mutica), with the canopy height about 1.2 m. Because this area is along
with Tamsui River, the soil type is alluvium clay. In this site, the dry-wet seasonal
variation is very mild. The climatic type is humid subtropical climate (Cfa). The annual
mean temperature is 23.0 °C, and the mean annual precipitation is about 2405.1 mm
(Lee et al., 2015). The East Asian monsoon will influence the climate over different

seasons, and typhoons have significant impact on this site during the summer especially.

2.1.2. Guandu Nature Park Tower Two (GDP-T2)

The second EC tower (hereafter GDP-T2) is also established in the Guandu Nature
Park, and near the GDP-T1. The most environment condition is almost the same,
including the topography, the soil type, and the climatic condition. Nevertheless, the
predominant species here is common reed (Phragmites australis), and its canopy height
is approximately 3.0 m. The two towers have different characteristics of the NEE and
ecosystem respiration, and the difference shows that the two predominant species have

different sensibilities to the environmental fluctuations. (Lee et al., 2015).
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2.1.3. Florida Everglades short hydroperiod marsh (US-Esm)

This station (25°26°16.43’N, 80°35’40.56°W) is registered in the Amerflux
network, named Everglades short hydroperiod marsh (US-Esm) site, and co-located
with the site managed by Florida Coastal Everglades Long Term Ecological Research
(FCE LTER) program. The US-Esm site is located at the Everglades National Park,

which is in the southern part of Florida.

This site is a freshwater marsh which is seansonally inundated for about four to
five months per year, and dominated by sawgrass (Cladium jamaicense) and muhly
grass (Muhlenbergia capillaris) with a mean canopy height of 0.73 m (Schedlbauer et
al., 2012). The major soil type is shallow murl soil (about 0.14 m), overlying limestone
bedrock (Schedlbauer et al., 2010). The climatic seasonality here is moderate
(Schedlbauer et al., 2010), and the climatic type is humid subtropical climate (Cwa) in
the Kopen’s climate classification. The annual mean temperature is 23.8 °C, with an
average maximum of 29.4 °C and an average minimum 18.2 °C (NCDC, 2017). The
annual precipitation is 1346 mm (NCDC, 2017). In this area, approximately 60% of
rainfall occurs during the wet season (June to September), and about 25% is in the dry

season (November to April) (Duever et al., 1994).

2.1.4. Brief summary

According to Table 2, the three sites had some similarities and dissimilarities.
There were two reasons why these three sites were chosen in this study. First, the GDP-
T1 and GDP-T2 site were established in the same place, so the conditions of
environmental factors should be identical. If the datasets from GDP-T1 site can be
simulated accurately by the GDP-T2 model, it is more likely that the GDP-T2 model
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can apply to other ecosystems where the environmental conditions were similar.
Secondly, the environmental conditions in US-Esm site were also similar in terms of
latitude and Kopen’s climate classification. However, it is important to note that the
difference of mean annual precipitation between the GDP-T2 and US-Esm was
significant, thus the comparison between the two places might be attributable to the
difference in the precipitation in terms of the climatic condition. Besides, the datasets
from the US-Esm site were observed in 2010. It might be helpful for examining the

capability of the cross-site data simulation.
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Fig. 2. The location of the towers.

(a) The Guandu Nature Park tower one (GDP-T1) and tower two (GDP-T2). (b) The Florida
Everglades short hydroperiod marsh (US-Esm)
Table 2 The details of the study sites

Site name GDP-T1 GDP-T2 US-Esm
i (25°26°16.43”N,
Location (25°7°N, 121° 28’E)
80°35’40.56°W)
. . sawgrass and
Dominant Species para grass common reed
muhly grass
Canopy height 1.2m 3.0m 0.73m
Soil type alluvium clay shallow murl soil
humid subtropical
Climatic type humid subtropical climate (Cfa) . P
climate (Cwa)
Annual mean
23.0°C 23.8°C
temperature
Mean annual
. 2405 mm 1346 mm
precipitation
Data period 2014 2010

2.2. Study design

There were four stages in this study. In the first place, three scenarios were set to

discuss whether the data division is helpful for the model training. The three scenarios

were including the all data group, the daytime data group, and the nighttime data group.

According to the theory of EC method, the nighttime CO2 flux is hard to measure

because the friction velocity is too weak. The unapparent relationship between the

meteorological variables and CO:2 flux may lead to the worse model performance, so

the datasets will be grouped into daytime data and nighttime data to examine the results.

In this stage, the observed data of each group from each study site was randomly

divided into to two parts. The first part was used to train the ANN models, and the other

part was for the simulation phase and calculating the model performances. The model
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performances were evaluated by the three statistical indices mentioned in Section 2.7.
Next, this study used the R and the statistical test to analyze the relationship between
the meteorological variables and the CO2 flux. Through these results, the relationships

between the meteorological variables and the CO: flux could be more obvious.

After the training and simulation phase, the models from the GDP-T2 were chosen
as the main models to calculate the cross-site prediction. Because the dominant species
in the GDP-T2 area was the common reed, which is the most widespread and
representative species in the fresh wetland ecosystem (Clevering and Lissner, 1999;
Park, Hong, and Kim, 2013; Wmazal, 2013; Lee et al., 2015), it is considered that the
models trained by the GDP-T2 data are applicable to a great deal of areas where the
environmental conditions are similar. Besides, if the capability of the cross-site

prediction was proved, the models can be applied to more wetland ecosystems.

The last phase was to compare the relationships between the main model and the
other two sites, respectively. Same as the second phase, the ratios between the
meteorological variables and the CO2 flux were testified by the R and the statistical test
to discuss the differences in the two conditions (GDP-T1 vs. GDP-T2 and US-Esm vs.

GDP-T2).
2.3. Artificial Neural Network (ANN)

The ANN technique, which imitates the concept of working network of biological
brain, is a kind of machine learning. It calculates a great deal of data through an
empirical non-linear regression model. ANN extract the relationship between the input
and the output variables from observed datasets. The structure of ANN consists of three
parts including neurons, weights, and layers. Neurons are the constitutive unit to

calculate. In the computing step, a neuron will receive a set of input (x) and weight (w).
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First, this set will be summarized by the summation function; then, the result (z) will
be transformed by the activation function into the output of this neuron (Fig. 3).
Neurons may be connected to many other neurons by weights, which can be enforcing
or inhibitory on the activation state of the connected neurons. According to the
characteristic of calculation, neurons will form different layers. Typically, ANN are
composed of multiple layers including an input layer, an output layer, and hidden

layer(s).

Because the meteorological variables and the C flux are continuous variable data,
an ANN model with the back propagation algorithm was built and used to estimate in
this study. The back propagation algorithm is a kind of supervised learning to train the
model. The training process included forward pass and backward pass. In the forward
pass phase, the input data was imported into the model in order to calculate a simulation
value as the output of the model this time. Therefore, this model started the backward
pass phase. This value was compared to the real output data. The difference between
the real output and simulated output was called error. Then, the ANN model adjusted
the weights according to the error of this time to minimize the error of next time.
Through the two process, the training process stopped when the error was smaller than

the threshold which the investigator set before the model was carried out.
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Fig. 3. The structure of ANN.

The black and orange neurons represent the input data and simulation data, respectively. The blue

neurons are the computing units of this model. In the input layer, the number of neurons depends on

the number of the input data variables; in the same way, the variable number of simulation data

will decide the neuron number of the output layer. It is assumed that there are i, j, and k neurons in

the input, hidden, and output layer, respectively. Weights link neurons between different layers.

Inputdata

Summation
function

netl = Z wiiyl Tt + bl
7

neuron

Outputdata

Activation
function

Fig. 4. The operation process in each neuron.

n-1

In the computing step, y;

represents the input data from the previous layer, and w; represents

the corresponding weight. This set of data will be calculated by the summation function and the

activation function chronologically. Finally, y™ is the result of this neuron, and it will be sent to

the next layer.
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There was only one hidden layer in all the models in this study. Too many hidden
layers make the model too complicated so that the model is possible to be overfitting to
some specific data (Rowbottom, Webb, and Oldham, 1999). The activation function is

Log-Sigmoid transfer function (Eq. (1)) and is described using Fig. 5.

1
f(X) = == (1)
1+e
14 S
|/
6_57_‘;(
| " | o1 | |
-5 _4 -2 0 2 4 6

Fig. 5. The Log-Sigmoid transfer function used in the ANN models.

The number of neuron in the hidden layer was decided based on the constructive
algorithm, which Kwok and Yeung (1997) proposed. The results of each model were in
Table 3, and the RMSE curve figures were in the Appendix | for the purpose of
preventing the influence of the random initial weights, every parameter setting was run

in ten times to analyze.
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Table 3 The numbers of neuron in the hidden layer of each model

Group . N
. All data Daytime data Nighttime data
Site name
GDP-T1 7 5 7
GDP-T2 5 3
US-Esm 7 5 6

2.4. Input and output variables

Ooba et al. (2006) demonstrated the ANN model with the variables which were
consist of energy balance terms, and ended up the best performance among all the input
type. In this study, the input parameters excluded from the flux data such as latent heat
flux (W m™2) and photosynthetic photon flux density (PPFD, umol m2 s™t). Some
studies revealed that air temperature, water and the PPFD were the important variables
which will influence the NEE of wetland ecosystems (Jimenez et al., 2012; Lee et al.,
2015). However, the latent heat flux and PPFD will not be measured in the general
weather stations, so the VPD and net radiation, rather than the latent heat flux and PPFD,
were used to provide the relevant information in this study. The stationarity of the
background environment will also influence the exchange of materials between the
atmosphere and the ecosystem (Baldocchi, 2001), therefore the wind data was taken
into consideration. Similarly, the horizontal wind speed data was used in this study

because of the data availability in the general weather station.

In brief, the chosen four variables were air temperature (hereafter Tair, °C), net
radiation (hereafter Rn, W m2), vapor pressure deficit (hereafter VPD, kPa), and
horizontal wind speed (hereafter wind, m s™%) as the input. The COz flux (hereafter Fc,

pmol m~2 s™1) was the output.

In this study, half-hourly data from January to December 2014 in GDP-T1 and
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GDP-T2 was used. The data from US-Esm was from the January to December 2010.
All of the variables from the EC towers were averaged every 30 minute, and 17520 data

sets in total from each tower.

2.5. Data pre-processing

In order to choose the data set which had an obvious relationship between the
meteorological variables and CO:2 flux, the data sets were selected based on two
principles. The first and most important thing is that there was no missing data in the
selected data set. Second, the variables should distribute over a reasonable range, and
the procedure followed the standard protocol used in other flux studies (Baldocchi et al.

2001).

Three scenarios were designed to analyze the differences between these groups.
The first condition was taking all the data into consideration, called the all data group
(hereafter AL group). The model trained by this group might be more comprehensive
on account of the diversification of data, or might underperform because the
relationship is equivocal. The others were the daytime data group (hereafter DT group)
and the nighttime data group (hereafter NT group) owing to the different properties of
meteorological variables and COz2 flux. The atmospheric condition is unstable because
the radiative heating in the daytime, it is helpful for the development of turbulent. In
this situation, the mass is easy to exchange in vertical direction, and the variation of
CO:z2 flux is easier to be measured. On contrary, the atmospheric condition is more stable
in the nighttime. In this study, the division of data into daytime data and night data

relied on the value of incoming shortwave radiation.

After the process, the data sets were normalized to build up the ANN models. The
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variations of climate conditions and CO2 flux are dynamic, so the minimum and
maximum of data from specific temporal intervals may not be representative enough.
Furthermore, in order to make the relationship between the meteorological variables
and COz2 flux more obvious, the normalized values of each variable ranged from 0.15
to 0.85. The extrema were calculated by the maximum and minimum of datasets which
had been pre-processed. Thus, extremums of each group in the normalization phase

were shown in Appendix 1.

After the data pre-processing, the numbers of the effective data was shown in
Table 4. The the effective data was divided into training data and simulation data
randomly, and the numbers of training and simulation data were shown in Table 5. In
the selected data, depending on the total amount of each scenario in each site, about

300-800 datasets were used to train the model and the rest was for the simulation.
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Table 4 The numbers of effective datasets in each site

Site name
GDP-T1 GDP-T2 US-Esm
group
AL 4,982 3,232 8,228
DT 3,014 1,791 5,180
NT 1,968 1,441 3,048

Table 5 The numbers of the training data and the simulation data in each site

GDP-T1 GDP-T2 US-Esm
Number .. . . .. . . . . .
training simulation training simulation training simulation
of data
AL 982 4.000 732 2,500 728 7,500
DT 514 2,500 791 1,000 680 4,500
NT 968 1,000 941 500 548 2,500

2.6. Model comparison indices

The statistical indices were used to evaluate the performance of the models in this
study. The performance of the model depended on the comparison of the observed and
the predicted COz2 flux data. The indices were including the R, the RMSE, and the mean
absolute percentage error (MAPE). Let n be the sample number. The y,; and y,;
represented the i™ observed CO: flux data, and the predicted CO: flux data,

respectively.

® Correlation coefficient (R)

n . L
i (J’p,z m(S’o,L Yo,1) (2)

R =
Jz?(yp,i—m)zzzl(yo,i—m)z

which the y,,; and y,, represented the average of y,; and y,;. The value of
this index ranged from -1 to 1. This index indicates the correlation condition between
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the observed data and the predicted data. In this study, the value of R should range from
0 to 1. When the value is smaller than 0, it represents the prediction is unreasonable.
Then, the correlation analysis and the significant test of each group was calculated and
shown in Table 4. The significance level of correlation analysis is 0.05 (« = 0.05), and
the hypothesis of significant test is as following:

{HO: the variables isn’t related to each other significantly.
H,: the variables is related to each other significantly.

® Root Mean Square Error (RMSE)

Z?=1(yo,i—yp,i)2
n

RMSE =

The smaller RMSE is, the smaller error between the observed data and predicted
data is. This index has the same unit with the original data, so it doesn’t distribute over
a specific range. RMSE is more sensitive to the outliers than other indices; therefore,

the MAPE was used to prevent the influence of the scale of original data.

® Mean absolute percentage error (MAPE)

MAPE = 211001001 3pd /il (4)

n

MAPE represents the error as a percentage of the observed data. This index is not
influenced by the scale of the observed and predicted data, and is good for the
comparison of different models. Based on the theory of Lewis (1982), when the MAPE
is small, the model performs well. The criteria of the MAPE value and the

corresponding interpretation is in Table 6.
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Table 6 The criteria of MAPE

Criterion interval

Forecasts capability

<10% highly accurate
10% ~ 20% good
20% ~ 50% reasonable

>50% inaccurate
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3. Results

3.1. The model performance in each site

The model performances in the simulation phase are shown in Table 6, and all
figures of the simulation result are in Appendix I11. The best result occurred in the AL
group of the GDP-T1 site. However, if the AL group were divided into the daytime part
and the nighttime part to calculate the statistical indices, the results changed

consequently (shown in Table 7).

Because the AL data included daytime and nighttime data, and were normalized
with the same extremums, so the characteristics of daytime data and nighttime were
concentrated on some part of the range between [0, 1] after the normalization. If the
relationship between meteorological variables and CO:2 flux of daytime/nighttime data
was quite apparent, it might influence the overall results of the AL group. In other words,
the model performance of simulation result could not be determined by the results

calculated by the whole data of the AL group.

Although the difference was quite small, the best result occurred in the daytime
group of the GDP-T1 in terms of R. If the results of the undivided group (i.e. AL group)
were partitioned into daytime part and nighttime part, the RMSE values were higher

than the divided groups (i.e. DT / NT group) and the R values became lower.

In the Fig. 6, the black line represented the observed data, and the red line was the
results of the model simulation. The simulation of the ANN model not only depicted
the trend of the variation of the CO:2 flux, but also predicted the values accurately.
Although some peaks were not as fitting as other data, the major portion was highly
accurate. In other words, if the environmental conditions are similar to the historical
conditions, this model can provide the considerably reliable estimation results.
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Fig. 6. The simulation result of the AL group of GDP-T1 from selected time period.

The total result in the three site proved that the meteorological variables have the
capability to predict the variation of COz flux. In these sites, the accuracy of the AL
groups was the best among the three scenarios. The diversification of data may be
helpful for the model to be more comprehensive, and the same condition can be
observed in Table 3. The undivided groups had to use more calculation resource to train

the model, and the numbers of neuron in the hidden layer were more than other groups.

Notably, all the MAPE values in each site were less than 20% in Table 7, which
represented that the forecasts capabilities of the models were good, but the
performances of the three nighttime groups were poor in terms of R, especially the
result of the GDP-T2 site. In the Fig. 7, though the simulation data estimated the rough
variation of CO2 flux more and less, it didn’t display the fluctuation of the COz flux. In
addition, most results were underestimated. The other figures of simulation in each site

were in Appendix V.
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Fig. 7. The simulation result of the NT group of GDP-T2 from selected time period
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Table 7 The model performance of each group in the simulation phase

) MAPE RMSE R
e arodp (%) (umol - m2-s1) (unitless)
AL 7.8% 3.1369 0.94*
GDP-T1 DT 10.9% 3.6240 0.89*
NT 18.2% 2.0354 0.65*
AL 6.4% 2.9628 0.91*
GDP-T2 DT 9.1% 3.1602 0.87*
NT 8.6% 1.5823 0.59*
AL 5.5% 0.9283 0.81*
US-Esm DT 7.2% 1.0117 0.60*
NT 9.2% 0.7227 0.62*

* represents that the result reaches a statistically significant level ( p-value <0.05).

Table 8 Comparison of the model performance in daytime and nighttime interval of
each group in the simulation phase

) ) GDP-T1 GDP-T2 US-Esm
Time period Data group
RMSE R RMSE R RMSE R
AL _daytime | 3.6019 | 0.89* | 3.3856 | 0.84* | 1.0168 | 0.60*
Daytime
DT 3.6240 | 0.89* | 3.1602 | 0.87* | 1.0117 | 0.60*
AL nighttime | 2.2394 | 0.53* | 2.3345 | 0.28* | 0.7571 | 0.55*
Nighttime

NT 2.0354 | 0.65* | 1.5823 | 0.59* | 0.7227 | 0.62*

* represents that the result reaches a statistically significant level (p-value <0.05).
(Unit of RMSE is pmol - m? - 51, and R is unitless)

3.2. The data distribution at each site

Using the single variable to build the ANN model and calculate the R between the

observed Fc and simulation Fc and the results were shown in Table 9. Namely, all

results were significantly related to the CO2 flux except the wind of daytime data at the

GDP-T1 and US-Esm site.

The trends in the order of the magnitude of R in the three groups were similar in
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all sites. In the AL group situation, the Rn was the predominant variable to the
simulation of Fc among the four inputs at all the sites. The results of R revealed that the
results of Rn was highly-correlated to the Fc, and all the values were less than -0.7 in
these sites. The second and the third variable at all the sites were quite approximate. At
GDP-T2 and US-Esm, the second and the third variable were VPD and Tair,
respectively. On contrast, the R of Tair was higher than that of VPD at GDP-T1. The
absolute values of wind were the smallest at all the sites similarly. It showed that the
wind data was modestly correlated to the Fc data. In terms of the data of AL group, the

capability of predicting Fc data in each result were more or less look-alike.

Among the DT groups, the sequential orders of R were almost the identical with
the results of AL group, but there was a little bit different in the second and the third
variable. The second variable was VPD at GDP-T1 site and GDP-T2 site, but the result
of the US-Esm site was opposed to the other sites. The lowest values were the R of the
wind at all the sites. Notably, the results of the GDP-T1 and the US-Esm site didn’t
reach the significant level which meant those simulation results using the daytime wind
data as the input variable didn’t correlate to the observed data. Finally, in the NT group,
there were some differences of the orders in these sites. The orders of the GDP-T1 and
the GDP-T2 were totally the same, and the values of each input variable were close to
each other roughly. The values of Tair were the highest, and those of the wind data were
the lowest. The characteristics of the US-Esm were entirely different. Unlike the other
two data groups, the highest R at the US-Esm site was the Rn. However, the Tair was

the lowest one at the US-Esm site.

Then, the original data distributions were used to analyze the characteristics at
each site. Data were divided into five groups, and the average and mode of the Fc were
calculated in each group. In Fig. 8 -10, the average and mode of each group were shown
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on the blue line with stars and red line with circles, respectively. The error bars were
defined by twice standard deviation of each group, and stretch out from the average of
each group. The horizontal axis represented the meteorological variables, and the

vertical axis represented the CO: flux.
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Table 9 The result of the R with Fc in each site.

Site name GDP-T1 GDP-T2 US-Esm
AL
input R order R order R order
Tair 0.5743* 2 0.4249* 3 0.3408* 3
Rn 0.9333* 1 0.9043* 1 0.7860* 1
wind 0.2590* 4 0.2605* 4 0.3175* 4
VPD 0.5723* 3 0.4873* 2 0.4567* 2
DT
input R order R order R order
Tair 0.3360* 3 0.3836* 3 0.3449* 2
Rn 0.8575* 1 0.7872* 1 0.5286* 1
wind 0.0317 4 0.2102* 4 0.1258 4
VPD 0.3906* 2 0.4156* 2 0.3156* 3
NT
input R order R order R order
Tair 0.5729* 1 0.5541* 1 0.2818* 4
Rn 0.3576* 3 0.3819* 3 0.5308* 1
wind 0.2352* 4 0.2759* 4 0.3142* 3
VPD 0.4701* 2 0.4748* 2 0.4349* 2

* represents that the result reaches a statistically significant level ( p-value <0.05).

3.2.1. All data

In Fig. 8, the blue line with star represented the average of Fc of each group, and

the red line with circle represented the mode of Fc of each group. In general, the CO2

flux and the meteorological variables varied inversely. With the rise of the values of

meteorological variables, the values of CO2 flux decreased. The scale of vertical axis

of the US-Esm site was smaller than the other sites because of the variation of Fc at the

US-Esm site. In most conditions, the values of mode of the GDP-T1 and the GDP-T2

site were higher than the averages. In other words, some strong extreme values, which

were smaller than the modes, influenced the averages of those groups. This condition

could be found in the results of wind and VPD. On contrary, the values of mode of the
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US-Esm site were lower than the average, and this conditions occurred in the results of
Tair and VPD obviously. The more apparent the difference between the mode and the
average were, the larger the length of the error bar was. It also coincided with the impact
of the extremums. That is to say, the extremums might influence the overall conditions

of the AL group.

3.2.2. Daytime data

The characteristics of daytime data were more obvious than the AL group. The
data distributions in the figures of the GDP-T1 and the GDP-T2 were more centered,
and the lengths of error bar became a little bit smaller than those of AL group. In the
results of Tair and Rn (Fig. 9), the relationship was clearer than the AL group. The
larger the values of meteorological variables were, the smaller the averages of Fc were.
Because the higher values of Tair and Rn might be helpful for the photosynthesis of
vegetation, so the C uptake increased. There were similar conditions in the results of
VVPD. However, in the results of wind (Fig. 9), this relationship was still not obvious.
The relationship between the wind and the Fc might not be linear, or the variation was

hard to observe in these figures of wind.
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Fig. 8. The data distributions of AL group at each site

3.2.3. Nighttime data

In the nighttime group, the trends of the average were consistent with that of the
modes, and the two kinds of values were quite close to each other than AL and DT data.
In addition to the influence of data division which made the characteristics more
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apparent, it might be influenced by the original data scale of the data. Because the
variation of Fc in the nighttime data was small, the influences of extrema values might
also be slight. The variations of four kinds of meteorological variables in the GDP-T1
and GDP-T2 were similar. When the meteorological variables increased, the values of
Fc also increased. However, the relationship in the figures of US-Esm were a little bit
different from other sites. That responded to the results shown in Table 12. In the
figures of Tair in the GDP-T1 and GDP-T2, when the values of Tair increased, those of
Fc increased, too. The variation in US-Esm was nearly a horizontal line, and the right
tail even went down slightly. Similar conditions could be found in the other kinds of

meteorological variables.
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39

doi:10.6342/N'TU201703598



3.3. The capability of cross-site prediction

The models trained by the data from the GDP-T2 site was used as the reference
models to verify the capability of cross-site prediction. The model performances of the
cross-site prediction in both sites were good or reasonable in terms of the MAPE, and

the other indices were also good.

In the same way as the divided model performances of the simulation results at
each site, the better results occurred in the DT group at GDP-T1 sites, and in general,
the results of GDP-T1 were better than the US-Esm in terms of the R values (shown in
Table 10). Because the GDP-T1 is quite near the GDP-T2, the climatic condition is
more similar. It is reasonable that the reference models predict the data from GDP-T1
more accurately. In the results of the GDP-T1 site, the difference of R was significant
in both daytime period and nighttime period. The R of DT group was almost twice of
that of the daytime data of AL group, and the R of NT group was up to six times larger
than that of the nighttime data of AL group. Moreover, it is noted that the results of R
in the condition of nighttime data of the US-Esm site were different from other results.
The simulation result of NT model was worse than that of AL model in the US-Esm

data.

40

doi:10.6342/N'TU201703598



Table 10 The simulation results of GDP-T1 and US-Esm in the GDP-T2 model

. MAPE RMSE R

st aroup (%) (umol - m2-s1) (unitless)
AL 17.8% 7.4267 0.79*

GDP-T1 DT 17.6% 6.1745 0.73*
NT 33.6% 2.7298 0.55*

AL 14.1% 2.1281 0.72*

US-Esm DT 29.9% 3.6070 0.38*
NT 47.3% 2.8695 0.28*

* represents that the result reaches a statistically significant level ( p-value <0.05).

Table 11  Comparison of the model performance in daytime and nighttime interval of
each group in the simulation phase

_ GDP-T1 US-Esm
Time
Group . RMSE R RMSE R
period
(umol - m2 -s1) (unitless) (umol - m2 s (unitless)
AL 8.5967 0.47* 1.9061 0.36*
Daytime
DT 6.1745 0.73* 3.6070 0.38*
AL 5.1425 0.09* 2.4599 0.50*
Nighttime
NT 2.7298 0.55* 2.8695 0.28*

* represents that the result reaches a statistically significant level ( p-value <0.05).

3.4. The comparison of data distribution between different site

The variation of Fc in these three sites were quite different, the data used in this

study was calculated the average hourly C flux (shown in Fig. 11). In this figure, the

differences between the three sites were obvious. The black line with circle represented

the C flux of GDP-T1, the red line with cross represented that of GDP-T2, and the blue

line with star represented that of US-Esm. The curves of GDP-T1 and GDP-T2 were

similar, but the range of the GDP-T1 was larger than that of GDP-T2. By comparison,

the variation of the US-Esm was quite gentle and unapparent, and the shape of this
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curve was nearly flat.
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Fig. 11. Ensemble averages of hourly COz2 flux of the three sites.

In order to compare the relationship between the meteorological variables and CO2
flux, the results of the R were used to explain the characteristics of CO2 flux variation.
Based on the ratio of the meteorological variables and the CO: flux, the values of R
(shown in Table 12) were calculated to interpret the comparisons between the three
sites. According to Table 12, all the R values of GDP-T1 and GDP-T2 were higher than
those of US-Esm and GDP-T2. All the results of AL group and DT data results related
to the data of GDP-T2 significantly, but there were some values of US-Esm site didn’t

in the NT data group.

In the results of AL group, the values of Rn was the highest in both groups, and
the value of wind was the lowest. All the R values of GDP-T1 were highly correlated
to the ratio of GDP-T2, and the values were higher than 0.8. In the results of US-Esm

site, only the result of Rn was higher than 0.8. The results of Tair and VPD were
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moderately correlated (R=0.6654 and 0.4860, respectively), and that of wind was

modestly correlated (R=0.2635).

If the data was divided into daytime and nighttime group, the results of R changed
more or less. The trend was similar to the AL group in the DT group, but there were
some slight differences in the values. All the results of the GDP-T1 were smaller than
those in the AL group, they still in the range of highly-correlated values (R=0.7). The
values of the US-Esm also reduced, and the highest value in the DT group was the ratio
of Tair. In the NT group, the results of the GDP-T1 were totally opposite to the other
two group. The highest value was the ratio of wind, and the lowest one was the ratio of
Rn. In the results of the US-Esm in the NT group, the ratio of Tair was the highest
(R=0.4059), and the others didn’t related to the data of the GDP-T2 significantly.
Because three of four ratios of the US-Esm site did not relate to those of the GDP-T2,
the characteristics between the meteorological variables and CO:2 flux were different in
the nighttime data. Therefore, it might be the reason why the result of cross-site

simulation in the NT model was worse than that of the AL model.

Table 12 The R of each site

group All data (AL) Daytime data (DT) Nighttime data (NT)
Site
- GDP-T1 | US-Esm | GDP-T1 | US-Esm | GDP-T1 | US-Esm
Fc/Tair | 0.9568* | 0.6654* | 0.9249* | 0.4676* | 0.3506* | 0.4059*
Fc/Rn 0.9568* | 0.8083* | 0.9391* | 0.4288* | 0.2392* | -0.1662
Fc/wind | 0.8599* | 0.2635* | 0.7873* | 0.1201* | 0.7573* 0.0550
Fc/VPD | 0.9042* | 0.4860* | 0.8723* | 0.2334* | 0.2994* 0.0958

* represents that the result reaches a statistically significant level (p-value <0.05).
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4. Discussion

4.1. The data period in each site

The time period of the data in these sites was different. The data period of GDP-
T1 and GDP-T2 was from 2014, and that of US-Esm was 2010. Because both the GDP-
T1 site and the GDP-T2 site were in the Guandu Nature Park, the data period of these
two sites should be the same in order to discuss the difference of the Fc variation
between the two sites in the similar climate condition. The better condition was to
choose the same period in the US-Esm site to compare, but the data in 2010 was better
than another period on the basis of the data availability. The 2010 data is more complete,
which provided various conditions to test the ability of the model performance.

Therefore, 2010 data in the US-Esm was used in this study.

4.2. The advantage of the meteorological variables as the input data

Most of the previous studies used the micrometeorological data (e.g. the sensible
heat flux, latent heat flux, soil heat flux) or the parameters which are hard to collect
(e.g. LAI and NDVI). Although these variables can provide the highly relevant
information about the variation of CO2 flux, the costs of the data collection were
considerable in aspects of time and money. Compared to other kinds of data, the
meteorological variables are easier to be obtained from the weather stations around the
world, and the resolution of the data will be higher relatively. Therefore, even the results
of simulation of the models which using the meteorological variables as the input data

were not very accurate, it was still a potential way in the estimation of CO:2 flux.
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4.3. The comparison of MAPE in different site

According to Table 7 and Table 10, there were a little bit different in the variation
trend. Table 10 was taken as an example. The results of AL group showed that the
simulation performance of GDP-T1 was better than US-Esm in terms of the R values.
However, the values of MAPE and RMSE in the US-Esm simulation were smaller than
those of GDP-T1. This conditions could be explained based on the definitions of MAPE

and RMSE.

First, the MAPE value represented the error as a percentage of the observed data.
The data from these sites was totally different. The characteristics of meteorological
conditions and CO2 dynamics in these sites were not the same. Nonetheless, the total
number of the GDP-T1 site and the US-Esm site were different. That is to say, the two

MAPE values should not be compared to each other.

Second, the RMSE value has the same unit with the original data, so it will be
influenced by the scalar of the original data. The original Fc of the GDP-T1 was
distributed from the -40 to 25 pmol - m?- s, but that of the US-Esm site was between
the -14 and 13 umol - m?2- s, The range of the data of US-Esm was smaller, and it

might affect the RMSE value.

4.4. The results of data division

According to the current studies, the discussion of the effects of data division is
limited, and only Moffat et al. (2007) divided the data into daytime and nighttime data.
In this study, the difference between daytime and nighttime data was taken into
consideration, and the results of the divided group were compared to those of the

undivided group. Based on the comparison of the two kinds of data, the importance of
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data division was more obvious. The results of MAPE could not be compared to the
different data group, but the values of RMSE were higher, and the values of R were
lower in the AL group. That is to say, the model performances of the undivided group

were worse than the divided group.

The improvements in the model performances of the cross-site simulations were
clearer than those of the simulation at each site. However, the values of R in the cross-
site simulation were in the range between the modestly correlated and the moderately
correlated except the results of DT model at the GDP-T1 site. There might be some
characteristics of the data distribution should be analyzed further. Even though the
capability of the cross-site simulation in the NT model was not accurate, the capability
of the DT model could provide the understanding of C uptake of the low-latitude

wetland ecosystem.
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5. Conclusions and Future Works

In this study, the meteorological variables were used as the input data to construct
the ANN models in order to estimate the variation of CO2 flux, and the results proved
that it is workable. All the results of MAPE were in the range of reasonable simulation,
so the ANN models can be used to quantify the CO2 flux in the wetland ecosystems.
Among all the results, the best results of the GDP-T1 and GDP-T2 site occurred in the
simulation of the DT model, and their values of R were 0.89 and 0.87, respectively. The
best results of the US-Esm site occurred in the simulation of the NT models, and the
values of R was 0.62. Even though there were not micrometeorological data, the
predicted data still fitted the variation of observed data well. The division groups (DT
and NT group) provided the knowledge of different characteristics in specific temporal
condition. For the most part, the models trained by the DT data is helpful to the

understanding of the C sequestration.

The second part of this study is to verify the cross-site simulation capability of the
ANN models. The results of GDP-T1 were better than those of the US-Esm. The best
results occurred in the simulation of the GDP-T1 in the DT model, and the values of R
was up to 0.73. Although the results of the US-Esm were not superior to those of the
GDP-T1, the results of R were close to the moderately correlated. Therefore, it showed
that the cross-site simulation is feasible, but these models should be applied to where

the climatic conditions are quite similar.

In this study, the ANN models performed well in simulating the Fc data in each
site which showed the potential for predicting the Fc with the meteorological variables
and being applied more extensively although there is still much to be desired in the

accuracy of cross-site simulation. To improve the model performances, the influence of
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the seasonality might be taken into consideration. Because the EC towers which
observing the wetland ecosystem are sparse, these results might provide more
information of the exchange of the C, and can help to estimate the variation of COz2 flux
more accurately. Thereby, the estimation results can be used for analyzing the variation

and trend of the CO2 flux, and help to explain the global missing C sink.
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Appendix I: The maximum (max) and the minimum (min) of input

parameters used in the normalization process at each site.

GDP-T1
group AL group DT group NT group
variable max min max min max min
Tair 44.72 2.56 44.29 5.04 41.19 3.19
Rn 1062.00 -298.00 1054.31 -254.42 37.96 -117.29
wind 10.23 -1.77 10.23 -1.74 5.36 -0.91
VPD 5.46 -0.70 5.46 -0.68 3.50 -0.36
Fc 24.57 -39.28 24.08 -39.19 18.19 -3.14
GDP-T2
group AL group DT group NT group
variable max min max min max min
Tair 50.22 4.40 50.14 4.86 43.77 5.54
Rn 2286.22 -521.92 2108.59 -468.69 2286.22 -521.92
wind 7.71 -1.25 7.70 -1.24 7.56 -1.23
VPD 8.59 -1.24 8.57 -1.14 5.57 -0.70
Fc 24.19 -37.67 22.40 -37.35 19.04 -8.49
US-Esm
AL group DT group NT group
max min max min max min
Tair 44.65 -11.16 44.65 -11.16 42.45 -6.94
Rn 1257.34 -344.12 1253.22 -320.80 354.34 -184.77
wind 8.70 -1.17 8.69 -1.13 7.73 -1.00
VPD 3.67 -0.65 3.67 -0.65 3.46 -0.61
Fc 12.62 -13.50 5.64 -12.27 11.12 -4.99
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Appendix I1: The RMSE curve of three groups in the training phase.
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c. Nighttime data
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b. Daytime data
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3. US-Esm
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c. Nighttime data

RMSE of Night data (US-Esm)
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Appendix I11: The simulation results in each site.

The simulation results in each site.
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Appendix 1V: The cross-site simulation results.
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Appendix V: The code used in the training phase.

clear all;
close all;
clc;

me='17th"; site="GDP-T1"; folder="GDP-T1"; folder2='All data’; % all data

% load the extrema

ex=load(strcat('D:\Guandu ANN\',me," meeting\',folder,'\',me," ',site,’ extremum.txt"));
max=ex(5,1); min=ex(5,2);

% load the extrema

T = load(strcat('D:\Guandu ANN\',me," meeting\',folder,'\',me," ' site,’ training.txt");
INPUT=[T(:,1:4)];,OUTPUT=[T(:,5)]’

X=785; y=922; z=982;
training_ A=INPUT(;,1:x);validation_ A=INPUT(;,x+1:y);testing_ A=INPUT(;,y+1:2);
TrainOut_A=OUTPUT(1,1:x);ValOut_A=OUTPUT(1,x+1:y);TestOut A=OUTPUT(1,y+1:2)

for n = 1:1:15; % the number of neuron in the hidden layer
form=1:1:10;

net=feedforwardnet(n,'trainim’);
net=configure(net, INPUT, OUTPUT);
net.layers{1}.transferFcn = 'logsig’;
net.layers{2}.transferFcn = ‘purelin’;
% the data division of training, validation, and testing group
net.divideFcn='divideind";
net.divideParam.trainind=[(1:x)];
net.divideParam.vallnd=[(x+1:y)];
net.divideParam.testind=[(y+1:2)];

net.inputweights{1,1}.initFcn="rands’;
net.biases{1}.initFcn="rands’;
net=init(net);
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% parameters in the training phase
net.trainParam.show=1000;

net.trainParam.epochs=5000; % iteration
net.trainParam.goal=0.000001; % threshold of error

net=train(net,INPUT,OUTPUT);

wt_in=net.IW{1,1},
wt_out=net.LW{2,1};
bias_in=net.b{1};
bias_out=net.b{2};

zhl=sim(net,training_A);
zh2=sim(net,validation_A);
zh3=sim(net,testing_A);

figure(m)

plotregression(TrainOut_A,zh1,strcat(site, - TrainData n=',num2str(n)," and
m=",numz2str(m)));

saveas(gcf,[strcat('D:\Guandu ANN\',me," meeting\',folder,\',folder2,\training\',site,"-R-
square TrainOut-n=",num2str(n)," and m=",num2str(m),".tif")]);

plotregression(ValOut_A,zh2,strcat(site,-\VValData n=",numz2str(n)," and m=",num2str(m)));

saveas(gcf,[strcat('D:\Guandu ANN\',me," meeting\',folder,\',folder2,\training\',site,"-R-
square ValOut-n=",num2str(n)," and m=",num2str(m),".tif)]);

plotregression(TestOut_A,zh3,strcat(site,- TestData n=",numz2str(n)," and
m=",numz2str(m)));

saveas(gcf,[strcat('D:\Guandu ANN\',me," meeting\',folder,\',folder2,\training\',site,"-R-
square TestOut-n=",num2str(n)," and m=",num2str(m),".tif")]);

% denormaliztion

zh11=zh1*(max-min)+min;
zh21=zh2*(max-min)+min;
zh31=zh3*(max-min)+min;

TrainOut_Al1=TrainOut_A*(max-min)+min;
ValOut_Al1=ValOut_A*(max-min)+min;
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TestOut_Al=TestOut_A*(max-min)+min;

% RMSE

rmse=[sqrt(mse(TrainOut_A1-zh11)) sqrt(mse(ValOut_Al-zh21)) sqrt(mse(TestOut Al-
zh31))I;

r=[regression(TrainOut_A,zh1) regression(ValOut_A,zh2)
regression(TestOut_A,zh3)];%regression value

% MAPE
ml=sum(abs((TrainOut_A-zhl)./TrainOut_A))./length(zhl);
m2=sum(abs((ValOut_A-zh2)./\ValOut_A))./length(zh2);
m3=sum(abs((TestOut_A-zh3)./TestOut_A))./length(zh3);
mape=[m1 m2 m3];

w=[wt_in,wt_out];
save([strcat('D:\Guandu ANN\,me," meeting\',folder,'\',folder2,\training\',site,"-weight-
', num2str(n),'-',num2str(m),".txt")],'w', -ascii',-double);

b=[bias_in',bias_out];
save([strcat('D:\Guandu ANN\',me," meeting\',folder,"\',folder2,\training\',site,-bias-
,numa2str(n),-',num2str(m),".txt")],'b","-ascii’,’-double";

Fc_o=T(:,5)"; Fc_s=[zh1 zh2 zh3];
m4=sum(abs((Fc_o-Fc_s)./Fc_o))./length(Fc_o);
rmse_all=sqrt(mse(Fc_o-Fc_5s));
r_all=regression(Fc_o,Fc_s); All=[m4 rmse_all r_all];

training=[Fc_o' Fc_s' T(;,6:7)];

save([strcat('D:\Guandu ANN\',me," meeting\',folder,"\',folder2,\training\',site, -
training data-',numz2str(n),"-",num2str(m),".txt")], training’,'-ascii’,'-double’);

save([strcat('D:\Guandu ANN\,me," meeting\',folder,\',folder2,\training\',site,"-All
stat-",numa2str(n),-',num2str(m),".txt")],’All',"-ascii’,-double’);

save([strcat('D:\Guandu ANN\',me," meeting\',folder,"\',folder2,\training\',site, -

Fc_s normalized-',num2str(n),"-",num2str(m),".txt")],'Fc_s',"-ascii’,'-double");

save([strcat('D:\Guandu ANN\',me," meeting\',folder,"\',folder2,\training\',site, -
RMSE-',num2str(n),-',num2str(m),".txt")],'rmse’,"-ascii’,'-double’);
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save([strcat('D:\Guandu ANN\,me," meeting\',folder,\',folder2,\training\',site, -R-
,numz2str(n),’-',num2str(m),".txt")],'r',-ascii’,'-double");

save([strcat('D:\Guandu ANN\',me," meeting\',folder,"\',folder2,\training\',site, -
MAPE-",;num2str(n),"-",num2str(m),".txt")],'mape’,"-ascii’,'-double’);

save([strcat('D:\Guandu ANN\,me," meeting\',folder,\',folder2,\training\',site, -

,numz2str(n),-',num2str(m)),".mat"], net’);

close all
end
end
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Appendix VI: The code used in the simulation phase.

clear all;
close all;
clc;

for z=1:1:3
for j=1:1:3
me="17th";num="'500"; fn=['GDP-T1';'GDP-T2";'US-Esm;
folder=fn(z,:);

nn=[757;543;756]; n=nn(z,j);
LL=[852;521;159 5]; L=LL(z,j);

fn2=['All data’;'Day data’;'Nig data']; folder2=fn2(j,:);

if folder2=="Nig data’
folder2="Night data’;
end
type=[-A’;-D";'-N']; site=type(j,:);
if site=="-A"
site="
end

S = load(strcat('D:\Guandu ANN\',me,’
meeting\',folder,’\',me," ', folder,site," simulation.txt"));
ex=load(strcat('D:\Guandu ANN\',me,’
meeting\',folder,’\',;me," ',folder,site," extremum.txt’));
max=ex(5,1); min=ex(5,2);

for m=1:1:10;
for i=1:L;
load(strcat('D:\Guandu ANN\',me,’
meeting\',folder,"\',folder2, \training\',folder,site,"-",num2str(n),-
,numz2str(m),".mat));
INPUT=[S(1+str2num(num)*(i-1):str2num(num)+str2num(num)*(i-
.14
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OUTPUT=[S(1+str2num(num)*(i-1):str2num(num)-+str2num(num)*(i-

1).9)I5
zh=sim(net,INPUT);

zh1=zh*(max-min)+min;
OUTPUT1=0UTPUT*(max-min)+min;
en=[OUTPUT' zh7;

close all
end
end

for m=1:1:10;
fori=1:1:L
T=load(strcat('D:\Guandu ANN\',me,’
meeting\',folder,\',folder2,\simulation\comdata-',folder,site, -
n=",num,"-",numz2str(m),"-",numa2str(i),".txt"));
Ob=T(:,1); Si=T(;,2)" % normalized data
TT(1,1+str2num(num)*(i-1):str2num(num)*i)=0b;
TT(2,1+str2num(num)*(i-1):str2num(num)>i)=Si;
Fc_ all=TT"
end

[R,r]=corrcoef(Fc_all);

OUTPUT=Fc _all(:,1);
OUTPUT1=0OUTPUT*(max-min)+min;
zh=Fc_all(:,2);

zh1=zh*(max-min)+min;
M=length(Fc_all);

b= sum(abs((OUTPUT-zh)./OUTPUT))/M;
% MAPE calculated by normalized data

c= (sum((OUTPUT1-zh1)./2)/M)"0.5;
%RMSE calculated by de-normalized data
d=R(1,2);

e=r(1,2);

MRRP=[b cd e];
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Fc_alls=[Fc_all S(:,6:7) OUTPUT1 zh1];

save([strcat('D:\Guandu ANN\17th
meeting\',folder,\',folder2, \simulation\',folder,site,-',num,'-all simulation
data Fc-m=',num2str(m),".txt")],'Fc_alls',"-ascii’,’-double’);

save([strcat('D:\Guandu ANN\17th
meeting\',folder,\',folder2,\simulation\',folder,site,-",num,-MRRP-
m=",num2str(m),".txt")], MRRP',"-ascii’,'-double);

end
for m=1:1:10;

MRRP=load(strcat('D:\Guandu ANN\",me,’
meeting\',folder,\',folder2,\simulation\',folder,site,’-",num,'-
MRRP-m=",num2str(m),".txt");

MAPE=MRRP(1,1);

RMSE=MRRP(1,2);

R=MRRP(1,3);

P=MRRP(1,4);

final(m,1)=MAPE;
final(m,2)=RMSE;
final(m,3)=R;
final(m,4)=P;
end
save([strcat('D:\Guandu ANN\17th
meeting\',folder,"\',folder2,\simulation\',folder,site,-',num,-Final MRRP of
simulation-m=",num2str(m),".txt")], final',"-ascii’,'-double’);

clearvars -except z j me num fn folder

end
end
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