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摘要 

目前濕地研究多集中於高緯度的泥炭地(peatlands)，低緯度濕地的研究相對

較少，然而低緯度濕地面積占全球濕地面積之 70%，若以泥炭地之研究結果進行

全球濕地碳通量的推估，可能會與實際情形產生誤差。在碳收支的研究中，渦度

相關法(eddy-covariance method)被認為是最直接而準確地量測生態系統通量的方

式，但受限於此法對量測環境的要求，故無通量塔處之碳通量變化趨勢須以推估

的方式進行。在眾多推估方式中，類神經網路(artificial neural network)在各種不

同生態系統的推估研究中，已證實具有良好的模擬能力，能夠精確掌握氣象資料

與碳通量資料之間的關聯性。 

本研究使用類神經網路作為推估工具，採用關渡塔一(GDP-T1)、關渡塔二

(GDP-T2)、佛羅里達站(US-Esm)三個低緯度濕地測站資料(包括氣象及二氧化碳

通量)作為輸入及輸出參數，配合倒傳遞演算法(back propagation algorithm)進行模

式建立與推估。模型訓練完成後，計算相關係數(Correlation coefficient)、均方根

誤差(RMSE)、平均絕對百分比誤差(MAPE)等指標，以討論推估結果與觀測結果

之間的誤差情形，以及模型推估二氧化碳通量變化模式之能力。GDP-T1 及 GDP-

T2 站最佳結果出現在日間模型(R=0.89 及 R=0.87)，US-Esm 站點最佳結果出現在

夜間模型(R=0.62)。跨站模擬最佳情況可高達 R=0.73，此結果顯示未來以類神經

網路應用於大範圍推估為可行的。 

本研究所建立之模型可應用於濕地生態系統進行二氧化碳通量數據的推估，

提高全球濕地碳收支推估精確程度，並進一步研究無通量塔處之二氧化碳通量變

化特徵，分析相似生態系統二氧化碳通量的變異模式，如季節或年際變異等，克

服通量塔設置之空間限制及節省儀器架設成本。在面對氣候變遷時，此模型的推

估能力也可增加對於未知風險的了解，作為評估未來變化趨勢的依據之一。 

 

關鍵字：渦度相關法、倒傳遞演算法、二氧化碳通量、氣象因子  
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Abstract 

In wetland studies, few attentions have been given to low-latitude wetland 

ecosystem presently, but it accounts for about 70% of the global wetland area. Therefore, 

it’s very important to consider the contribution of this significant portion on global 

carbon (C) budget. In the past decades, eddy-covariance method has been widely 

applied in many C budget studies at the ecosystem scale, but there are still several 

limitations affecting the performance of EC methods. In order to overcome the 

abovementioned limitations, many linear or non-linear statistical techniques are applied 

to fill the measurement gap. Among various methods, the Artificial Neural Network 

(ANN) method is considered to be an excellent means to identify the complex non-

linear relationship between the CO2 flux and meteorological variables. 

In this study, a back-propagation ANN model was applied to quantify CO2 flux at 

three low-latitude wetland sites (Guandu Nature Park Tower One (GDP-T1), Guandu 

Nature Park Tower Two (GDP-T1), and Florida Everglades short hydroperiod marsh 

(US-Esm)) in East Asia and the US. Meteorological variables were used as the input 

parameters to train the ANN to predict the CO2 exchange. The best results of the GDP-

T1 (R=0.89) and GDP-T2 (R=0.87) occurred in the simulation of the daytime (DT) 

model, and that of the US-Esm (R=0.62) in the nighttime (NT) models. The cross-site 

simulation was feasible, the best result could up to 0.73 in terms of R. This model 

provided a quick, efficient, and highly accurate estimation, and could be conducted to 

estimate the dynamics of CO2 flux where there is no direct in-situ flux measurement. 

The simulation capability is helpful to characterize the spatial/temporal variations in 

low-latitude wetland ecosystems, and improve the quantification of global C budget. 

 

Keyword: eddy-covariance method, back propagation algorithm, carbon dioxide 

flux, meteorological factors 
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1. Introdution 

1.1. Wetland ecosystems 

Wetland ecosystem is one of the most important terrestrial ecosystems, but it has 

been neglected in the past due to its small proportion of the terrestrial ecosystem area.  

The wetland ecosystem is the natural optimum environment to store soil organic carbon 

(SOC) and sequestrate the carbon from the atmosphere due to the anoxic wet condition, 

and it is estimated that about 20 to 30 % of the global soil pool of 2500 Pg of carbon (C) 

is stored in the wetlands (Lal, 2008; Mitsch et al., 2013). It represents a large component 

of the SOC pool for long term storage. Despite the fact that the total coverage of the 

wetland ecosystem only account for 6-8% of the terrestrial area (Mitsch and Gosselink, 

2007; Mitsch et al., 2013), the wetland ecosystem is one of the largest biological C pool 

and stored more C in the soil than other biomes which occupy larger area (Bernal and 

Mitsch, 2008). Moreover, the wetland ecosystem is also regarded as the net C sink which 

has the high capacity for C sequestration with an average of 118 g-C m-2 yr 
-1, and one of 

the most productive ecosystems around the world, which accounts for about 6.3% of the 

terrestrial net primary production (NPP) (Neue et al., 1997; Mitsch et al., 2013; Fennessy, 

2014). For these reasons, the wetland ecosystem plays an important role in the global C 

cycle.  

Most wetland studies focused on the northern peatlands, and few have investigated 

the low latitude wetland ecosystems (Bernal and Mitsch, 2012). It is estimated that 455 

Pg of C was stored in the northern peatlands (Gorham, 1995). In the context of global 

warming, the permafrost degradation in peatlands will have a great influence on the global 

C dynamics. The themes of the northern peatlands studies included the influence on the 

global C budget, the estimation of net C storage, the temporal and spatial variation, and 



doi:10.6342/NTU201703598

 

2 
 

the analysis of control factors of C flux (Armentano and Menges, 1986; Bubier et al., 

1998; Waddington and Roulet, 2000). Although these results were conducted to 

understand wetland ecosystems more, they only represented a portion of the wetland 

ecosystem. However, current studies have noticed that the C sequestration of ecosystems 

varies over different environmental conditions (e.g. vegetation, hydrogeomorphology, 

climate, and latitude). Bernal and Mitsch (2012) estimated the soil C pool and the 

sediment accretion rate to compare six temperate wetland communities in Ohio to explain 

that wetland ecosystems have different C sequestration capabilities because of the climate 

conditions, vegetation communities, and hydrogeomorphic characteristics. In this study, 

the depressional wetland sites had higher organic content in soil C and lower bulk density 

than the riverine wetland sites. Additionally, the six sites had different C sequestration 

rates, and the rates of depressional wetland sites were higher than the riverine wetland 

sites in general. The highest C sequestration rate was found in the Quercus palustris 

forested wetland community (473 g C m −2 yr −1 ) in the depressional wetland group. It is 

noted that the capabilities of C sequestration were quite different even though the kinds 

of sites were in the similar hydrogeomorphic conditions, respectively. 

Mitsch et al. (2013) discovered that the capability of C sequestration of wetland 

ecosystems under several climate conditions varied quite differently, and most of the C 

retention occur in low-latitude wetlands. Seven sites, including three temperate wetlands 

and four tropical wetlands, were chosen to estimate the C budget, and the estimation 

results of the C budget of these sites were also compared to those of the fourteen wetlands 

investigated in the previous studies. There were totally six tropical wetlands, seven 

temperate wetlands, and eight boreal wetlands described in this study. The results 

revealed that the average sequestration rate of carbon dioxide (CO2) was 214±66 g C m 

−2 yr −1 for the tropical/subtropical wetlands, 320±51 g C m −2 yr −1 for the temperate 
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wetlands, and 49±18 g C m −2 yr −1 for the boreal wetlands. However, if taking the total 

area of wetlands into consideration, the total amount of C retention was 5.6×1014, 

1.6×1014, and 1.1×1014 g C yr −1 for the tropical/subtropical, temperate, and boreal 

wetlands, respectively. As a result, when it comes to global wetland C budget, the 

variations of the net ecosystem exchange (NEE) of wetland ecosystems at different 

latitudes should not be lumped together.  

Due to influences of the year-round growing seasons, the characteristics of NEE in 

the low latitude wetlands differ from the northern peatlands and other temperate wetlands 

(Schedlbauer et al., 2010). For this reason, understanding the C exchange dynamics and 

their control factors is important to the estimation of global wetland C budget. 

 

1.2. Eddy covariance method 

The eddy-covariance (EC) method is a meteorological technique, which directly 

measures the fluxes of scalars or energy components across the interface between the 

atmosphere and the plant canopies. In this study, the negative values of CO2 flux 

represented the C uptake, and on the contrary, the positive values represented the C 

release. Continuously observed EC data represents point measurement with a footprint 

ranging from meters to kilometers depending on the measurement height, surface 

roughness, and atmospheric stability. This method is quite accurate when the atmospheric 

condition is steady, the underlying plant is homogeneous, and the instruments are situated 

on a flat terrain.  

The weakness of the EC method is that it is critical to the environment as mentioned 

above, and the instruments are very expensive. In addition to the uneven distribution of 

the present sites, sometimes it is difficult to find adequate locations to establish the flux 
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towers. The EC method is strict with the background of sites. The EC towers need to be 

located on relatively flat terrains with vegetation extending horizontally about 100 times 

the sampling height (Baldocchi et al., 2001). The measurements can only be accurate 

when the atmospheric conditions remain steady. Although the EC instruments can 

measure accurately, they have to be maintained and calibrated frequently. That is to say, 

the EC data is helpful for understanding the exchange of mass and energy and interactions 

between the atmosphere and ecosystems, but when it comes to the application of the EC 

instruments, many conditions should be taken into consideration including site selection, 

instrument placement, and instrument calibration and post-processing (Baldocchi et al., 

2001).  

Although the EC system is able to measure the high-accurate data, some conditions 

may lead to the measurement errors. First, the measurement may be inaccurate in the 

unstable environment; second, radiative cooling leads to stable conditions that suppress 

turbulent mixing, so it is hard to recognize the variation of turbulent for instruments; third, 

the instruments are not calibrated correctly resulting in the measurement errors (Ooba et 

al., 2006; Dragomir et al., 2012).  

The FLUXNET was established to gather the long-term observations from regional 

micrometeorological tower sites together, and the data has been applied to quantify the 

spatial/temporal variations of ecosystems and to understand the underlying mechanisms 

responsible for observed fluxes and C pools of the global C cycle. The Fluxnet lists 650 

tower sites which are in operation, but most sites are distributed over Europe, North 

America, and Northeast Asia. Moreover, among all of the sites, wetland sites are quite 

sparse, so the understanding of wetland ecosystems is relatively insufficient. Further, the 

majority are located in middle or high latitude areas. 
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Based on the reasons mentioned above, it is not easy to find suitable places to 

establish EC towers, and the distribution of EC towers around the world are quite uneven, 

and most towers are clustered in developed countries. Therefore, the C budget has to be 

estimated in the place where it cannot be directly measured. In order to infer possible 

temporal and spatial patterns of C flux at the place without in-situ measurements, some 

current studies attempt to predict the variation of C flux by extrapolating existing 

observations to large scale with the help of modeling. 

 

1.3. Estimation of C flux 

Data from the EC system are usually sampled with high frequency and half-hourly 

averaged for continuous measurement all around the year. Nevertheless, the yearly 

average data coverage is merely 65% because of the system failures or data rejection 

(Falge et al., 2001). In order to fill the missing data for complete dataset, many 

investigators have developed and implemented some site-specific techniques. There are 

some common approaches such as interpolation, look-up tables, mean diurnal variation 

method, the Monte Carlo method, linear regression, nonlinear regression, and the artificial 

neural network (ANN) (Falge et al., 2001 ; Hollinger et al., 2004; Knorr and Kattge, 2005; 

Ooba et al., 2006).  

The non-linear regression method is the most conventional way to estimate the C 

flux, which uses the photosynthetic photon flux density (PPFD), the air temperature, and 

some empirical parameters to calculate the C flux based on the characteristics of the 

bioreaction. It is reasonable and easy to calculate. However, it may lead to over-

simplification of ecosystem and neglect some information in the environmental condition 

(Ooba et al., 2006). Other estimation methods, such as look-up tables and the mean 
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diurnal variation method was considered to be insufficiently accurate (Carrara et al ., 

2003 ; Mogami et al ., 2003). 

Among many estimation methods, the ANN technique is a good way because of its 

fast and accurate calculation capability. This method has been applied for estimating NEE 

within the past two decades (Van Wijk and Bouten, 1999; Papale and Valentini, 2003; 

Melesse and Hanley, 2005). However, compared to other methods, the ANN technique 

has the better performance for C flux prediction than other methods (Van Wijk et al., 2002; 

Ooba et al., 2006). The ANN technique is unnecessary for ANN users to have special 

background knowledge of the field to which ANN technique is applied. In addition, this 

method is more sensitive to the relationship between the meteorological inputs and C flux 

than other methods (Melesse and Hanley, 2005).  

In the ANN models, the flexible structure can identify the non-linear relationship 

between the input data and the output data. Owing to its excellent capability of calculation, 

the ANN model can deal with numerous datasets at the same time and calculate the result 

quickly (Melesse and Hanley, 2005). If the input data is sufficient, the ANN model can 

establish the relationship between the input and output accurately. The ANN technique is 

suitable for some kinds of problems, which are too complicated to define the background 

conditions, which need to calculate the results quickly, and which have to establish the 

non-linear relationship between the input and the output (Chang and Chang, 2015).  

 

1.4. The application of ANN models on C budget 

Some studies have improved that the relationship between environmental factors and 

C flux can be established by ANN models (Van Wijk and Bouten, 1999; Van Wijk, Bouten, 

and Verstraten, 2002; Melesse and Hanley, 2005; Leuning et al., 2005; Ooba et al., 2006). 
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Most of the current studies focused on the forest and grassland ecosystems, and the 

discussion on the wetland ecosystem is limited, especially in the CO2 flux. Ooba et al. 

(2006) used 15-day data and six input parameters to establish the relationship between 

the environmental factors and CO2 flux with a back-propagation neural network to 

compare three different kinds of ecosystems. The R2 values of the data simulation of 

forest, grassland, and wheat field models were 0.86, 0.75, and 0.94, respectively. It 

showed that the ANN models had a great ability to predict the CO2 flux. Moreover, this 

study also concluded that the different ecosystems need to choose different input 

parameters.  

For the time being, few study uses the ANN model to qualify the CO2 flux of wetland, 

but some wetland studies applied the ANN models to CH4 flux. Morin et al. (2014) use 

the ANN model to determine the environmental drivers to the CH4 flux. The data was 

divided into four groups, including summer day, summer night, winter day, and winter 

night, to discuss the seasonal and diurnal impacts. The model input parameter included 

air temperature, soil temperature, net short-wave and long-wave radiations, atmospheric 

pressure, the half-hourly change in atmospheric pressure, relative humidity, turbulent 

velocity, wind speed, and fluxes of sensible heat, CO2, and water vapor. An important 

concept proposed in this study was that the correlation of the input and output did not 

represent the direct causal relationships but might use to explain the shared mechanisms 

between methane and other environmental variables or fluxes. The results revealed that 

the variables related to volatilization of water in the wetland are highly correlated with 

methane emissions, and the fluxes of latent heat and NEE were benefited for the models 

of CH4. 

In addition to the studies which used the ANN models to establish the relationship 

between the environmental factors and flux data in the specific sites, some studies used 
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the ANN models to predict large scale variation of flux. Papale and Valentini (2003) used 

data of 16 forest ecosystems to build an ANN model in order to estimate the total NEE of 

the whole forest ecosystem at Europe scale. This study used the data observed in 1997, 

and the input parameters included the Normalized Difference Vegetation Index (NDVI), 

land cover characteristics, dew point temperature, maximum air temperature, minimum 

air temperature, mean air temperature, and the season. The estimation of overall European 

C uptake was about 0.47 GtC yr-1, and was within the reasonable range reported by the 

estimation of previous studies. 

Moffat et al. (2007) compared 15 techniques for estimating the missing flux data and 

concluded that ANN performed well among all the methods, and reproduced the half-

hourly flux data better than nonlinear regressions. In this study, three kinds of ANN was 

selected to discuss, and all of them in four scenarios generated low root mean square error 

(RMSE) and high the coefficient of determination (R2). The former is from 0.9 to 3.0 g C 

m -2 d -1; the latter is between 0.36 and 0.92. 

The input and output parameters of relative references were shown in Table 1. At 

present, most studies use three kinds of data as the input parameter (Papale and Valentini, 

2003; Melesse and Hanley, 2005; Ooba et al., 2006; Morin et al., 2014). The first kind is 

the micrometeorological data, including the latent heat flux, sensible heat flux, and soil 

heat flux. Second, meteorological variables are also regarded as applicable to ANN; for 

instance, air temperature, soil temperature, net radiation, photosynthetic photon flux 

density (PPFD), vapor pressure deficit (VPD), precipitation, and horizontal wind speed. 

The last kind is attribute data such as the leaf area index (LAI), NDVI, land cover 

characteristics, and time series.  

The CO2 flux of ecosystems will influence the concentration of CO2 in the 
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atmosphere and lead to corresponding feedbacks in the biosphere and the atmosphere. 

Accordingly, the simulation results of ANN will be useful for understanding the spatial 

and temporal variations of CO2 flux and the mechanism of C exchange. 
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Table 1  Relative references which used the ANN model 

Reference Ecosystem 
Data 

division 
Data period Input parameter 

Output 
parameter 

Van Wijk and Bouten 
(1999) 

6 European forests  N/A 
1996~1997 

(DOY=150~250) 
global radiation, temperature,and vapour pressure deficit. NEE 

Van Wijk, Bouten, and 
Verstraten (2002) 

forested area in the 
Netherlands 

N/A 1995~1996 
global radiation, air temperature, wind speed, vapour pressure 
deficit, and precipitation. 

NEE 

Papale and Valentini 
(2003) 

16 European forest  N/A 
1997.1~ 
1997.12 

air temperature, dew point temperature, the maximum normalized 
difference vegetation index, the land cover type, and the season  

NEE 

Melesse and Hanley (2005) 
Forest, grassland, 
and cropland in the 
US. 

N/A 15 days 
net radiation, latent heat, sensible heat, soil heat flux, air 
temperature, and soil temperature. 

NEE 

Ooba et al. (2006) 
Japanese larch 
plantation in 
northern Japan. 

N/A 
2002.05~ 
2002.09 

Day of the year, time, photosynthetic photon flux density, vapor 
pressure deficit, net radiation, air temperature, wind speed, and 
latent heat flux. 

NEE 

Moffat et al. (2007) 
6 different 
European forest  

daytime 
/nighttime 

2000~ 
2002 

Latent energy, global radiation, photosynthetic photon flux 
density, air temperature, soil temperature and water contents, 
relative humidity, precipitation, friction velocity, leaf area index. 

NEE 

Morin et al. (2014)  wetland in the US N/A 
2011.05~ 
2013.12 

air temperature, soil temperature, net short-wave and long-wave 
radiations, atmospheric pressure, the half-hourly change in 
atmospheric pressure, relative humidity, turbulent velocity, wind 
speed, and fluxes of sensible heat, C dioxide, and water vapor. 

Methane 
flux 
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1.5. The relationship of environmental factors and NEE 

It has been proved that the variation of C flux is relative to the climate drivers in 

short scale (Stoy et al., 2009), but the characteristic of the exchange of C varies as a 

result of environmental factors including not only atmospheric conditions but also soil 

characteristics and plant properties, which affect both the quantity and quality of the 

organic matter (Brix, Sorrell, and Lorenzen, 2001; Inglett et al., 2012). Consequently, 

the C sequestration of ecosystems under different circumstances should be discussed 

individually. According to the Ramsar Convention, the total area of the low latitude 

wetland ecosystems accounts for about 70% of the global wetland area and distributes 

over Latin America and the Caribbean, Africa, and Asia area (Ramsar, 2015). In other 

words, taking all kinds of wetland ecosystems into consideration together may lead to 

inaccurate estimation of the global wetland C budget. 

There have been some discussions on the relationship between the environmental 

factors and the CO2 flux. The wetland studies of the variation of the net exchange of 

CO2 indicated that the NEE is mainly influenced by the temperature, radiation, growing 

season, water, and LAI dynamics (Bubier et al., 1998; Bonneville et al., 2008; Han et 

al., 2015; Zhang et al., 2016). Zhang et al. (2016) concluded that the air temperature, 

shallow depths soil temperature, and the photosynthetic active radiation (PAR) are high-

related to the CO2 flux, respectively. By means of the proportion of variance (R2) 

explained by a linear fit, the air temperature and the shallow depths soil temperature (0, 

2, and 4 cm) showed the strong relationship to the CO2 flux, with the R2 were higher 

than 0.7. In the correlation results of PAR and CO2 flux, the PAR was negative-related 

to the CO2 flux; moreover, the correlation coefficient (R) of the growing season was 

much higher than that of the non-growing season. The flooding period of wetland 

ecosystems had impacts on the pattern of the NEE exchange, which led to the smaller 
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range of the variation of the diurnal NEE. The effective photosynthetic leaf area may 

be reduced when the vegetation was submerged, so the exchange of CO2 may be 

influenced (Han et al., 2015). In addition, the LAI is dependent on the variation of the 

temperature and precipitation. According to the study conducted by Bonneville et al. 

(2008), the LAI also has the strong relationship to the NEE because the uptake of the 

CO2 has relations with the green photosynthesizing portion of plants.   

 

1.6. Objectives 

In this study, the estimation was focused on the CO2 flux between the wetland 

ecosystem and atmosphere. An ANN model with the back-propagation algorithm was 

applied to quantify the CO2 flux at three low-latitude wetland sites in East Asia and 

North America. Because ANN is more sensitive to the relationship between 

meteorological factors and C flux than other methods, this study will use the 

meteorological variables as the input parameters instead of the flux data and attribute 

data. Since the weather stations are more widespread than EC towers, this model is 

expected to apply to the places where is no tower established.  

Meteorological variables were used as the input parameters to train the ANN to 

predict the CO2 exchange. This model provides a quick, efficient, and highly accurate 

estimation, and can be conducted to estimate the dynamics of CO2 flux where there is 

no direct in-situ flux measurement. The simulation capability is helpful to characterize 

the spatial/temporal variations in low-latitude wetland ecosystems and improve the 

quantification of low latitude wetland C budget.  

The following is the purposes of this study. First of all, ANN models will be 

constructed to characterize the relationship between the meteorological variables and 
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CO2 flux in order to ensure this method is applicable in the wetland ecosystem. The 

data at each site will be used to train the ANN models and evaluate the model 

performance. The second objective is to verify the cross-site capability of ANN. The 

in-situ observations of low-latitude wetlands are limited, so this study attempts to apply 

the proposed ANN models to estimate the variations of CO2 flux. The ANN models 

trained by a common reed wetland ecosystem will be used as reference models, and 

data from the other two wetlands will be estimated according to the reference models.   
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2. Methods 

2.1. Site descriptions 

Three wetland ecosystem sites from two different countries were selected for this 

study. One site is situated in the southeast part of the Everglades National Park, Florida, 

United States; the others are located in the western part of the Guandu Nature Park, 

Taipei, Taiwan. Although the two areas are far from each other, they are similar in 

climate, vegetation, latitude, and elevation conditions. Data from these sites were used 

to train the ANN model to predict CO2 flux.  

 
Fig. 1. The location of the study sites. 

( Map source: http://alabamamaps.ua.edu/contemporarymaps/world/world/) 

 

2.1.1. Guandu Nature Park Tower One (GDP-T1) 

The Guandu tower one (25°7’N, 121° 28’E, hereafter GDP-T1) is registered on 

the Asiaflux network, and located in the western part of the Guandu Nature Park, which 
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is in the northwest part of Taipei City. This area is part of the Guandu Nature Reserve, 

so it will not be interrupt by human activities. This site is at the junction of Tamsui 

River and Jilong River, and merely 10 km away from the estuary of Tamsui River; 

therefore, the characteristics of hydrological properties, energy properties, and 

biogeochemical cycles in this area will be influenced by the tidal and stream flow. 

The GDP-T1 site is a grass marsh ecosystem which is dominated by para grass 

(Brachiaria mutica), with the canopy height about 1.2 m. Because this area is along 

with Tamsui River, the soil type is alluvium clay. In this site, the dry-wet seasonal 

variation is very mild. The climatic type is humid subtropical climate (Cfa). The annual 

mean temperature is 23.0 ℃, and the mean annual precipitation is about 2405.1 mm 

(Lee et al., 2015). The East Asian monsoon will influence the climate over different 

seasons, and typhoons have significant impact on this site during the summer especially.   

 

2.1.2. Guandu Nature Park Tower Two (GDP-T2) 

The second EC tower (hereafter GDP-T2) is also established in the Guandu Nature 

Park, and near the GDP-T1. The most environment condition is almost the same, 

including the topography, the soil type, and the climatic condition. Nevertheless, the 

predominant species here is common reed (Phragmites australis), and its canopy height 

is approximately 3.0 m. The two towers have different characteristics of the NEE and 

ecosystem respiration, and the difference shows that the two predominant species have 

different sensibilities to the environmental fluctuations. (Lee et al., 2015).  
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2.1.3. Florida Everglades short hydroperiod marsh (US-Esm) 

This station (25°26’16.43’’N, 80°35’40.56’’W) is registered in the Amerflux 

network, named Everglades short hydroperiod marsh (US-Esm) site, and co-located 

with the site managed by Florida Coastal Everglades Long Term Ecological Research 

(FCE LTER) program. The US-Esm site is located at the Everglades National Park, 

which is in the southern part of Florida. 

 This site is a freshwater marsh which is seansonally inundated for about four to 

five months per year, and dominated by sawgrass (Cladium jamaicense) and muhly 

grass (Muhlenbergia capillaris) with a mean canopy height of 0.73 m (Schedlbauer et 

al., 2012). The major soil type is shallow murl soil (about 0.14 m), overlying limestone 

bedrock (Schedlbauer et al., 2010). The climatic seasonality here is moderate 

(Schedlbauer et al., 2010), and the climatic type is humid subtropical climate (Cwa) in 

the Köpen’s climate classification. The annual mean temperature is 23.8 ℃, with an 

average maximum of 29.4 ℃ and an average minimum 18.2 ℃ (NCDC, 2017). The 

annual precipitation is 1346 mm (NCDC, 2017). In this area, approximately 60% of 

rainfall occurs during the wet season (June to September), and about 25% is in the dry 

season (November to April) (Duever et al., 1994). 

 

2.1.4. Brief summary 

According to Table 2, the three sites had some similarities and dissimilarities. 

There were two reasons why these three sites were chosen in this study. First, the GDP-

T1 and GDP-T2 site were established in the same place, so the conditions of 

environmental factors should be identical. If the datasets from GDP-T1 site can be 

simulated accurately by the GDP-T2 model, it is more likely that the GDP-T2 model 
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can apply to other ecosystems where the environmental conditions were similar. 

Secondly, the environmental conditions in US-Esm site were also similar in terms of 

latitude and Köpen’s climate classification. However, it is important to note that the 

difference of mean annual precipitation between the GDP-T2 and US-Esm was 

significant, thus the comparison between the two places might be attributable to the 

difference in the precipitation in terms of the climatic condition. Besides, the datasets 

from the US-Esm site were observed in 2010. It might be helpful for examining the 

capability of the cross-site data simulation. 
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Fig. 2. The location of the towers.  
(a) The Guandu Nature Park tower one (GDP-T1) and tower two (GDP-T2). (b) The Florida 

Everglades short hydroperiod marsh (US-Esm) 

Table 2  The details of the study sites 
Site name GDP-T1 GDP-T2 US-Esm 

Location (25°7’N, 121° 28’E) 
(25°26’16.43’’N, 
80°35’40.56’’W) 

Dominant Species para grass common reed 
sawgrass and 

muhly grass 
Canopy height 1.2 m 3.0 m 0.73 m 

Soil type alluvium clay shallow murl soil 

Climatic type humid subtropical climate (Cfa) 
humid subtropical 

climate (Cwa) 
Annual mean 
temperature 

23.0 ℃ 23.8 ℃ 

Mean annual 
precipitation 

2405 mm 1346 mm 

Data period 2014 2010 
 
 

2.2. Study design 

There were four stages in this study. In the first place, three scenarios were set to 

discuss whether the data division is helpful for the model training. The three scenarios 

were including the all data group, the daytime data group, and the nighttime data group. 

According to the theory of EC method, the nighttime CO2 flux is hard to measure 

because the friction velocity is too weak. The unapparent relationship between the 

meteorological variables and CO2 flux may lead to the worse model performance, so 

the datasets will be grouped into daytime data and nighttime data to examine the results. 

In this stage, the observed data of each group from each study site was randomly 

divided into to two parts. The first part was used to train the ANN models, and the other 

part was for the simulation phase and calculating the model performances. The model 
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performances were evaluated by the three statistical indices mentioned in Section 2.7. 

Next, this study used the R and the statistical test to analyze the relationship between 

the meteorological variables and the CO2 flux. Through these results, the relationships 

between the meteorological variables and the CO2 flux could be more obvious. 

After the training and simulation phase, the models from the GDP-T2 were chosen 

as the main models to calculate the cross-site prediction. Because the dominant species 

in the GDP-T2 area was the common reed, which is the most widespread and 

representative species in the fresh wetland ecosystem (Clevering and Lissner, 1999; 

Park, Hong, and Kim, 2013; Vymazal, 2013; Lee et al., 2015), it is considered that the 

models trained by the GDP-T2 data are applicable to a great deal of areas where the 

environmental conditions are similar. Besides, if the capability of the cross-site 

prediction was proved, the models can be applied to more wetland ecosystems. 

The last phase was to compare the relationships between the main model and the 

other two sites, respectively. Same as the second phase, the ratios between the 

meteorological variables and the CO2 flux were testified by the R and the statistical test 

to discuss the differences in the two conditions (GDP-T1 vs. GDP-T2 and US-Esm vs. 

GDP-T2). 

2.3. Artificial Neural Network (ANN) 

The ANN technique, which imitates the concept of working network of biological 

brain, is a kind of machine learning. It calculates a great deal of data through an 

empirical non-linear regression model. ANN extract the relationship between the input 

and the output variables from observed datasets. The structure of ANN consists of three 

parts including neurons, weights, and layers. Neurons are the constitutive unit to 

calculate. In the computing step, a neuron will receive a set of input (𝑥𝑥) and weight (𝑤𝑤). 
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First, this set will be summarized by the summation function; then, the result (𝑧𝑧) will 

be transformed by the activation function into the output of this neuron (Fig. 3). 

Neurons may be connected to many other neurons by weights, which can be enforcing 

or inhibitory on the activation state of the connected neurons. According to the 

characteristic of calculation, neurons will form different layers. Typically, ANN are 

composed of multiple layers including an input layer, an output layer, and hidden 

layer(s).  

Because the meteorological variables and the C flux are continuous variable data, 

an ANN model with the back propagation algorithm was built and used to estimate in 

this study. The back propagation algorithm is a kind of supervised learning to train the 

model. The training process included forward pass and backward pass. In the forward 

pass phase, the input data was imported into the model in order to calculate a simulation 

value as the output of the model this time. Therefore, this model started the backward 

pass phase. This value was compared to the real output data. The difference between 

the real output and simulated output was called error. Then, the ANN model adjusted 

the weights according to the error of this time to minimize the error of next time. 

Through the two process, the training process stopped when the error was smaller than 

the threshold which the investigator set before the model was carried out. 
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Fig. 3. The structure of ANN. 

The black and orange neurons represent the input data and simulation data, respectively. The blue 

neurons are the computing units of this model. In the input layer, the number of neurons depends on 

the number of the input data variables; in the same way, the variable number of simulation data 

will decide the neuron number of the output layer. It is assumed that there are i, j, and k neurons in 

the input, hidden, and output layer, respectively. Weights link neurons between different layers. 

 

 

 
 

Fig. 4. The operation process in each neuron. 

In the computing step, 𝑦𝑦𝑖𝑖𝑛𝑛−1 represents the input data from the previous layer, and 𝑤𝑤𝑖𝑖 represents 

the corresponding weight. This set of data will be calculated by the summation function and the 

activation function chronologically. Finally, 𝑦𝑦𝑛𝑛 is the result of this neuron, and it will be sent to 

the next layer. 
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There was only one hidden layer in all the models in this study. Too many hidden 

layers make the model too complicated so that the model is possible to be overfitting to 

some specific data (Rowbottom, Webb, and Oldham, 1999). The activation function is 

Log-Sigmoid transfer function (Eq. (1)) and is described using Fig. 5.  

  

𝑓𝑓�𝑥𝑥� = 1

1+𝑒𝑒
−𝑥𝑥……………………………………..(1) 

 

 
Fig. 5. The Log-Sigmoid transfer function used in the ANN models. 

 

The number of neuron in the hidden layer was decided based on the constructive 

algorithm, which Kwok and Yeung (1997) proposed. The results of each model were in 

Table 3, and the RMSE curve figures were in the Appendix I for the purpose of 

preventing the influence of the random initial weights, every parameter setting was run 

in ten times to analyze.  
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Table 3  The numbers of neuron in the hidden layer of each model 
Group   

Site name 
All data Daytime data Nighttime data 

GDP-T1 7 5 7 

GDP-T2 5 4 3 

US-Esm 7 5 6 

 

2.4. Input and output variables 

Ooba et al. (2006) demonstrated the ANN model with the variables which were 

consist of energy balance terms, and ended up the best performance among all the input 

type. In this study, the input parameters excluded from the flux data such as latent heat 

flux (W m−2) and photosynthetic photon flux density (PPFD, µmol m−2 s−1). Some 

studies revealed that air temperature, water and the PPFD were the important variables 

which will influence the NEE of wetland ecosystems (Jimenez et al., 2012; Lee et al., 

2015). However, the latent heat flux and PPFD will not be measured in the general 

weather stations, so the VPD and net radiation, rather than the latent heat flux and PPFD, 

were used to provide the relevant information in this study. The stationarity of the 

background environment will also influence the exchange of materials between the 

atmosphere and the ecosystem (Baldocchi, 2001), therefore the wind data was taken 

into consideration. Similarly, the horizontal wind speed data was used in this study 

because of the data availability in the general weather station. 

In brief, the chosen four variables were air temperature (hereafter Tair, ℃), net 

radiation (hereafter Rn, W m−2), vapor pressure deficit (hereafter VPD, kPa), and 

horizontal wind speed (hereafter wind, m s−1) as the input. The CO2 flux (hereafter Fc, 

μmol m−2 s−1) was the output. 

In this study, half-hourly data from January to December 2014 in GDP-T1 and 
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GDP-T2 was used. The data from US-Esm was from the January to December 2010. 

All of the variables from the EC towers were averaged every 30 minute, and 17520 data 

sets in total from each tower.  

 

2.5. Data pre-processing 

In order to choose the data set which had an obvious relationship between the 

meteorological variables and CO2 flux, the data sets were selected based on two 

principles. The first and most important thing is that there was no missing data in the 

selected data set. Second, the variables should distribute over a reasonable range, and 

the procedure followed the standard protocol used in other flux studies (Baldocchi et al. 

2001).  

Three scenarios were designed to analyze the differences between these groups. 

The first condition was taking all the data into consideration, called the all data group 

(hereafter AL group). The model trained by this group might be more comprehensive 

on account of the diversification of data, or might underperform because the 

relationship is equivocal. The others were the daytime data group (hereafter DT group) 

and the nighttime data group (hereafter NT group) owing to the different properties of 

meteorological variables and CO2 flux. The atmospheric condition is unstable because 

the radiative heating in the daytime, it is helpful for the development of turbulent. In 

this situation, the mass is easy to exchange in vertical direction, and the variation of 

CO2 flux is easier to be measured. On contrary, the atmospheric condition is more stable 

in the nighttime. In this study, the division of data into daytime data and night data 

relied on the value of incoming shortwave radiation. 

After the process, the data sets were normalized to build up the ANN models. The 
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variations of climate conditions and CO2 flux are dynamic, so the minimum and 

maximum of data from specific temporal intervals may not be representative enough. 

Furthermore, in order to make the relationship between the meteorological variables 

and CO2 flux more obvious, the normalized values of each variable ranged from 0.15 

to 0.85. The extrema were calculated by the maximum and minimum of datasets which 

had been pre-processed. Thus, extremums of each group in the normalization phase 

were shown in Appendix I.  

After the data pre-processing, the numbers of the effective data was shown in 

Table 4. The the effective data was divided into training data and simulation data 

randomly, and the numbers of training and simulation data were shown in Table 5. In 

the selected data, depending on the total amount of each scenario in each site, about 

300-800 datasets were used to train the model and the rest was for the simulation.  
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Table 4  The numbers of effective datasets in each site  

Site name 
group 

GDP-T1 GDP-T2 US-Esm 

AL  4,982 3,232 8,228 
DT  3,014 1,791 5,180 
NT  1,968 1,441 3,048 

 

Table 5  The numbers of the training data and the simulation data in each site 
 GDP-T1 GDP-T2 US-Esm 

Number 
of data 

training simulation training simulation training simulation 

AL  982 4,000 732 2,500 728 7,500 
DT  514 2,500 791 1,000 680 4,500 
NT  968 1,000 941 500 548 2,500 

 

2.6. Model comparison indices 

The statistical indices were used to evaluate the performance of the models in this 

study. The performance of the model depended on the comparison of the observed and 

the predicted CO2 flux data. The indices were including the 𝑅𝑅, the RMSE, and the mean 

absolute percentage error (MAPE). Let 𝑛𝑛 be the sample number. The 𝑦𝑦𝑜𝑜,𝑖𝑖 and 𝑦𝑦𝑝𝑝,𝑖𝑖 

represented the 𝑖𝑖 th observed CO2 flux data, and the predicted CO2 flux data, 

respectively. 

 

 Correlation coefficient (𝑅𝑅) 

𝑅𝑅 =
∑ (𝑦𝑦𝑝𝑝,𝑖𝑖−𝑦𝑦𝑝𝑝,𝚤𝚤�����)(𝑦𝑦𝑜𝑜,𝑖𝑖−𝑦𝑦𝑜𝑜,𝚤𝚤�����)𝑛𝑛
𝑖𝑖

�∑ (𝑦𝑦𝑝𝑝,𝑖𝑖−𝑦𝑦𝑝𝑝,𝚤𝚤�����)2𝑛𝑛
𝑖𝑖 ∑ (𝑦𝑦𝑜𝑜,𝑖𝑖−𝑦𝑦𝑜𝑜,𝚤𝚤�����)2𝑛𝑛

𝑖𝑖

 ……………………..…(2) 

which the 𝑦𝑦𝑝𝑝,𝚤𝚤���� and 𝑦𝑦𝑜𝑜,𝚤𝚤���� represented the average of 𝑦𝑦𝑝𝑝,𝑖𝑖 and 𝑦𝑦𝑜𝑜,𝑖𝑖. The value of 

this index ranged from -1 to 1. This index indicates the correlation condition between 
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the observed data and the predicted data. In this study, the value of R should range from 

0 to 1. When the value is smaller than 0, it represents the prediction is unreasonable. 

Then, the correlation analysis and the significant test of each group was calculated and 

shown in Table 4. The significance level of correlation analysis is 0.05 (α = 0.05), and 

the hypothesis of significant test is as following: 

�𝐻𝐻0: the variables 𝐢𝐢𝐢𝐢𝐧𝐧′𝐭𝐭 related to each other significantly.
𝐻𝐻1:    the variables  𝐢𝐢𝐢𝐢 related to each other significantly.   

 

 Root Mean Square Error (RMSE) 

RMSE = �∑ �𝑦𝑦𝑜𝑜,𝑖𝑖−𝑦𝑦𝑝𝑝,𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

………………………….(3) 

The smaller RMSE is, the smaller error between the observed data and predicted 

data is. This index has the same unit with the original data, so it doesn’t distribute over 

a specific range. RMSE is more sensitive to the outliers than other indices; therefore, 

the MAPE was used to prevent the influence of the scale of original data. 

 

 Mean absolute percentage error (MAPE) 

MAPE =
∑ 100×|(𝑦𝑦𝑜𝑜,𝑖𝑖−𝑦𝑦𝑝𝑝,𝑖𝑖)/𝑦𝑦𝑜𝑜,𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
………………….....…(4) 

MAPE represents the error as a percentage of the observed data. This index is not 

influenced by the scale of the observed and predicted data, and is good for the 

comparison of different models. Based on the theory of Lewis (1982), when the MAPE 

is small, the model performs well. The criteria of the MAPE value and the 

corresponding interpretation is in Table 6. 
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Table 6  The criteria of MAPE 

Criterion interval Forecasts capability 

<10% highly accurate 

10% ~ 20% good 

20% ~ 50% reasonable 

>50% inaccurate 
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3. Results 

3.1. The model performance in each site 

The model performances in the simulation phase are shown in Table 6, and all 

figures of the simulation result are in Appendix III. The best result occurred in the AL 

group of the GDP-T1 site. However, if the AL group were divided into the daytime part 

and the nighttime part to calculate the statistical indices, the results changed 

consequently (shown in Table 7).  

Because the AL data included daytime and nighttime data, and were normalized 

with the same extremums, so the characteristics of daytime data and nighttime were 

concentrated on some part of the range between [0, 1] after the normalization. If the 

relationship between meteorological variables and CO2 flux of daytime/nighttime data 

was quite apparent, it might influence the overall results of the AL group. In other words, 

the model performance of simulation result could not be determined by the results 

calculated by the whole data of the AL group.  

Although the difference was quite small, the best result occurred in the daytime 

group of the GDP-T1 in terms of R. If the results of the undivided group (i.e. AL group) 

were partitioned into daytime part and nighttime part, the RMSE values were higher 

than the divided groups (i.e. DT / NT group) and the R values became lower.  

In the Fig. 6, the black line represented the observed data, and the red line was the 

results of the model simulation. The simulation of the ANN model not only depicted 

the trend of the variation of the CO2 flux, but also predicted the values accurately. 

Although some peaks were not as fitting as other data, the major portion was highly 

accurate. In other words, if the environmental conditions are similar to the historical 

conditions, this model can provide the considerably reliable estimation results. 



doi:10.6342/NTU201703598

 

30 
 

 
Fig. 6. The simulation result of the AL group of GDP-T1 from selected time period. 

 

The total result in the three site proved that the meteorological variables have the 

capability to predict the variation of CO2 flux. In these sites, the accuracy of the AL 

groups was the best among the three scenarios. The diversification of data may be 

helpful for the model to be more comprehensive, and the same condition can be 

observed in Table 3. The undivided groups had to use more calculation resource to train 

the model, and the numbers of neuron in the hidden layer were more than other groups.  

Notably, all the MAPE values in each site were less than 20% in Table 7, which 

represented that the forecasts capabilities of the models were good, but the 

performances of the three nighttime groups were poor in terms of R, especially the 

result of the GDP-T2 site. In the Fig. 7, though the simulation data estimated the rough 

variation of CO2 flux more and less, it didn’t display the fluctuation of the CO2 flux. In 

addition, most results were underestimated. The other figures of simulation in each site 

were in Appendix IV.  

 

 
Fig. 7. The simulation result of the NT group of GDP-T2 from selected time period 
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Table 7  The model performance of each group in the simulation phase 

site group 
MAPE 

(%) 
RMSE 

(μmol ∙ m-2 ∙s-1) 
R 

(unitless) 

GDP-T1 

AL 7.8% 3.1369 0.94* 

DT 10.9% 3.6240 0.89* 

NT 18.2% 2.0354 0.65* 

GDP-T2 

AL 6.4% 2.9628 0.91* 

DT 9.1% 3.1602 0.87* 

NT 8.6% 1.5823 0.59* 

US-Esm 

AL 5.5% 0.9283 0.81* 

DT 7.2% 1.0117 0.60* 

NT 9.2% 0.7227 0.62* 

* represents that the result reaches a statistically significant level ( p-value <0.05). 

 

Table 8  Comparison of the model performance in daytime and nighttime interval of 
each group in the simulation phase 

Time period Data group 
GDP-T1 GDP-T2 US-Esm 

RMSE R RMSE R RMSE R 

Daytime 
AL_daytime 3.6019  0.89*  3.3856  0.84*  1.0168  0.60*  

DT 3.6240  0.89*  3.1602  0.87*  1.0117  0.60*  

Nighttime 
AL_nighttime 2.2394  0.53*  2.3345  0.28*  0.7571  0.55*  

NT 2.0354  0.65*  1.5823  0.59*  0.7227  0.62*  
* represents that the result reaches a statistically significant level (p-value <0.05). 

(Unit of RMSE is μmol ∙ m-2 ∙ s-1, and R is unitless) 

 

 

3.2. The data distribution at each site 

Using the single variable to build the ANN model and calculate the R between the 

observed Fc and simulation Fc and the results were shown in Table 9. Namely, all 

results were significantly related to the CO2 flux except the wind of daytime data at the 

GDP-T1 and US-Esm site.  

The trends in the order of the magnitude of R in the three groups were similar in 



doi:10.6342/NTU201703598

 

32 
 

all sites. In the AL group situation, the Rn was the predominant variable to the 

simulation of Fc among the four inputs at all the sites. The results of R revealed that the 

results of Rn was highly-correlated to the Fc, and all the values were less than -0.7 in 

these sites. The second and the third variable at all the sites were quite approximate. At 

GDP-T2 and US-Esm, the second and the third variable were VPD and Tair, 

respectively. On contrast, the R of Tair was higher than that of VPD at GDP-T1. The 

absolute values of wind were the smallest at all the sites similarly. It showed that the 

wind data was modestly correlated to the Fc data. In terms of the data of AL group, the 

capability of predicting Fc data in each result were more or less look-alike. 

Among the DT groups, the sequential orders of R were almost the identical with 

the results of AL group, but there was a little bit different in the second and the third 

variable. The second variable was VPD at GDP-T1 site and GDP-T2 site, but the result 

of the US-Esm site was opposed to the other sites. The lowest values were the R of the 

wind at all the sites. Notably, the results of the GDP-T1 and the US-Esm site didn’t 

reach the significant level which meant those simulation results using the daytime wind 

data as the input variable didn’t correlate to the observed data. Finally, in the NT group, 

there were some differences of the orders in these sites. The orders of the GDP-T1 and 

the GDP-T2 were totally the same, and the values of each input variable were close to 

each other roughly. The values of Tair were the highest, and those of the wind data were 

the lowest. The characteristics of the US-Esm were entirely different. Unlike the other 

two data groups, the highest R at the US-Esm site was the Rn. However, the Tair was 

the lowest one at the US-Esm site.  

Then, the original data distributions were used to analyze the characteristics at 

each site. Data were divided into five groups, and the average and mode of the Fc were 

calculated in each group. In Fig. 8 -10, the average and mode of each group were shown 
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on the blue line with stars and red line with circles, respectively. The error bars were 

defined by twice standard deviation of each group, and stretch out from the average of 

each group. The horizontal axis represented the meteorological variables, and the 

vertical axis represented the CO2 flux.  
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Table 9  The result of the R with Fc in each site. 
Site name GDP-T1 GDP-T2 US-Esm 

AL  
input R order R order R order 
Tair 0.5743*  2 0.4249*  3 0.3408* 3 
Rn 0.9333* 1 0.9043* 1 0.7860* 1 

wind 0.2590* 4 0.2605* 4 0.3175* 4 
VPD 0.5723* 3 0.4873* 2 0.4567* 2 

DT 

input R order R order R order 
Tair 0.3360* 3 0.3836* 3 0.3449* 2 
Rn 0.8575* 1 0.7872* 1 0.5286* 1 

wind 0.0317  4 0.2102* 4 0.1258  4 
VPD 0.3906* 2 0.4156* 2 0.3156* 3 

NT  
input R order R order R order 
Tair 0.5729* 1 0.5541* 1 0.2818* 4 
Rn 0.3576* 3 0.3819* 3 0.5308* 1 

wind 0.2352* 4 0.2759* 4 0.3142* 3 
VPD 0.4701* 2 0.4748* 2 0.4349* 2 

* represents that the result reaches a statistically significant level ( p-value <0.05). 

 

3.2.1. All data  

In Fig. 8, the blue line with star represented the average of Fc of each group, and 

the red line with circle represented the mode of Fc of each group. In general, the CO2 

flux and the meteorological variables varied inversely. With the rise of the values of 

meteorological variables, the values of CO2 flux decreased. The scale of vertical axis 

of the US-Esm site was smaller than the other sites because of the variation of Fc at the 

US-Esm site. In most conditions, the values of mode of the GDP-T1 and the GDP-T2 

site were higher than the averages. In other words, some strong extreme values, which 

were smaller than the modes, influenced the averages of those groups. This condition 

could be found in the results of wind and VPD. On contrary, the values of mode of the 
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US-Esm site were lower than the average, and this conditions occurred in the results of 

Tair and VPD obviously. The more apparent the difference between the mode and the 

average were, the larger the length of the error bar was. It also coincided with the impact 

of the extremums. That is to say, the extremums might influence the overall conditions 

of the AL group.  

 

3.2.2. Daytime data 

The characteristics of daytime data were more obvious than the AL group. The 

data distributions in the figures of the GDP-T1 and the GDP-T2 were more centered, 

and the lengths of error bar became a little bit smaller than those of AL group. In the 

results of Tair and Rn (Fig. 9), the relationship was clearer than the AL group. The 

larger the values of meteorological variables were, the smaller the averages of Fc were. 

Because the higher values of Tair and Rn might be helpful for the photosynthesis of 

vegetation, so the C uptake increased. There were similar conditions in the results of 

VPD. However, in the results of wind (Fig. 9), this relationship was still not obvious. 

The relationship between the wind and the Fc might not be linear, or the variation was 

hard to observe in these figures of wind. 
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Fig. 8. The data distributions of AL group at each site 

 

 

3.2.3. Nighttime data 

In the nighttime group, the trends of the average were consistent with that of the 

modes, and the two kinds of values were quite close to each other than AL and DT data. 

In addition to the influence of data division which made the characteristics more 
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apparent, it might be influenced by the original data scale of the data. Because the 

variation of Fc in the nighttime data was small, the influences of extrema values might 

also be slight. The variations of four kinds of meteorological variables in the GDP-T1 

and GDP-T2 were similar. When the meteorological variables increased, the values of 

Fc also increased. However, the relationship in the figures of US-Esm were a little bit 

different from other sites. That responded to the results shown in Table 12. In the 

figures of Tair in the GDP-T1 and GDP-T2, when the values of Tair increased, those of 

Fc increased, too. The variation in US-Esm was nearly a horizontal line, and the right 

tail even went down slightly. Similar conditions could be found in the other kinds of 

meteorological variables. 
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Fig. 9. The data distribution of DT group of each site 
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Fig. 10. The data distribution of NT group of each site 

  



doi:10.6342/NTU201703598

 

40 
 

3.3. The capability of cross-site prediction 

The models trained by the data from the GDP-T2 site was used as the reference 

models to verify the capability of cross-site prediction. The model performances of the 

cross-site prediction in both sites were good or reasonable in terms of the MAPE, and 

the other indices were also good.  

In the same way as the divided model performances of the simulation results at 

each site, the better results occurred in the DT group at GDP-T1 sites, and in general, 

the results of GDP-T1 were better than the US-Esm in terms of the R values (shown in 

Table 10). Because the GDP-T1 is quite near the GDP-T2, the climatic condition is 

more similar. It is reasonable that the reference models predict the data from GDP-T1 

more accurately. In the results of the GDP-T1 site, the difference of R was significant 

in both daytime period and nighttime period. The R of DT group was almost twice of 

that of the daytime data of AL group, and the R of NT group was up to six times larger 

than that of the nighttime data of AL group. Moreover, it is noted that the results of R 

in the condition of nighttime data of the US-Esm site were different from other results. 

The simulation result of NT model was worse than that of AL model in the US-Esm 

data.  
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Table 10  The simulation results of GDP-T1 and US-Esm in the GDP-T2 model 

site group 
MAPE 

(%) 
RMSE 

(μmol ∙ m-2 ∙s-1) 
R 

(unitless) 

GDP-T1 

AL 17.8% 7.4267 0.79* 

DT 17.6% 6.1745 0.73* 

NT 33.6% 2.7298 0.55* 

US-Esm 

AL 14.1% 2.1281 0.72* 

DT 29.9% 3.6070 0.38* 

NT 47.3% 2.8695 0.28* 

* represents that the result reaches a statistically significant level ( p-value <0.05). 

 

Table 11  Comparison of the model performance in daytime and nighttime interval of 
each group in the simulation phase 

Group 
Time 

period 

GDP-T1 US-Esm 
RMSE 

(μmol ∙ m-2 ∙s-1) 
R 

(unitless) 
RMSE 

(μmol ∙ m-2 ∙s-1) 
R 

(unitless) 

AL 
Daytime 

8.5967 0.47* 1.9061 0.36* 

DT 6.1745 0.73* 3.6070 0.38* 

AL 
Nighttime 

5.1425 0.09* 2.4599 0.50* 

NT 2.7298 0.55* 2.8695 0.28* 
* represents that the result reaches a statistically significant level ( p-value <0.05). 

 

3.4. The comparison of data distribution between different site 

The variation of Fc in these three sites were quite different, the data used in this 

study was calculated the average hourly C flux (shown in Fig. 11). In this figure, the 

differences between the three sites were obvious. The black line with circle represented 

the C flux of GDP-T1, the red line with cross represented that of GDP-T2, and the blue 

line with star represented that of US-Esm. The curves of GDP-T1 and GDP-T2 were 

similar, but the range of the GDP-T1 was larger than that of GDP-T2. By comparison, 

the variation of the US-Esm was quite gentle and unapparent, and the shape of this 



doi:10.6342/NTU201703598

 

42 
 

curve was nearly flat.  

 

 
Fig. 11. Ensemble averages of hourly CO2 flux of the three sites. 

 

In order to compare the relationship between the meteorological variables and CO2 

flux, the results of the R were used to explain the characteristics of CO2 flux variation. 

Based on the ratio of the meteorological variables and the CO2 flux, the values of R 

(shown in Table 12) were calculated to interpret the comparisons between the three 

sites. According to Table 12, all the R values of GDP-T1 and GDP-T2 were higher than 

those of US-Esm and GDP-T2. All the results of AL group and DT data results related 

to the data of GDP-T2 significantly, but there were some values of US-Esm site didn’t 

in the NT data group. 

In the results of AL group, the values of Rn was the highest in both groups, and 

the value of wind was the lowest. All the R values of GDP-T1 were highly correlated 

to the ratio of GDP-T2, and the values were higher than 0.8. In the results of US-Esm 

site, only the result of Rn was higher than 0.8. The results of Tair and VPD were 
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moderately correlated (R=0.6654 and 0.4860, respectively), and that of wind was 

modestly correlated (R=0.2635).  

If the data was divided into daytime and nighttime group, the results of R changed 

more or less. The trend was similar to the AL group in the DT group, but there were 

some slight differences in the values. All the results of the GDP-T1 were smaller than 

those in the AL group, they still in the range of highly-correlated values (R≥0.7). The 

values of the US-Esm also reduced, and the highest value in the DT group was the ratio 

of Tair. In the NT group, the results of the GDP-T1 were totally opposite to the other 

two group. The highest value was the ratio of wind, and the lowest one was the ratio of 

Rn. In the results of the US-Esm in the NT group, the ratio of Tair was the highest 

(R=0.4059), and the others didn’t related to the data of the GDP-T2 significantly. 

Because three of four ratios of the US-Esm site did not relate to those of the GDP-T2, 

the characteristics between the meteorological variables and CO2 flux were different in 

the nighttime data. Therefore, it might be the reason why the result of cross-site 

simulation in the NT model was worse than that of the AL model. 

 
Table 12  The R of each site 

group All data (AL) Daytime data (DT) Nighttime data (NT) 

Site 

ratio 
GDP-T1 US-Esm GDP-T1 US-Esm GDP-T1 US-Esm 

Fc / Tair 0.9568* 0.6654* 0.9249* 0.4676* 0.3506* 0.4059* 

Fc / Rn 0.9568* 0.8083* 0.9391* 0.4288* 0.2392* -0.1662 

Fc / wind 0.8599* 0.2635* 0.7873* 0.1201* 0.7573* 0.0550 

Fc / VPD 0.9042* 0.4860* 0.8723* 0.2334* 0.2994* 0.0958 

* represents that the result reaches a statistically significant level (p-value <0.05).  
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4. Discussion  

4.1. The data period in each site 

The time period of the data in these sites was different. The data period of GDP-

T1 and GDP-T2 was from 2014, and that of US-Esm was 2010. Because both the GDP-

T1 site and the GDP-T2 site were in the Guandu Nature Park, the data period of these 

two sites should be the same in order to discuss the difference of the Fc variation 

between the two sites in the similar climate condition. The better condition was to 

choose the same period in the US-Esm site to compare, but the data in 2010 was better 

than another period on the basis of the data availability. The 2010 data is more complete, 

which provided various conditions to test the ability of the model performance. 

Therefore, 2010 data in the US-Esm was used in this study. 

 

4.2. The advantage of the meteorological variables as the input data 

Most of the previous studies used the micrometeorological data (e.g. the sensible 

heat flux, latent heat flux, soil heat flux) or the parameters which are hard to collect 

(e.g. LAI and NDVI). Although these variables can provide the highly relevant 

information about the variation of CO2 flux, the costs of the data collection were 

considerable in aspects of time and money. Compared to other kinds of data, the 

meteorological variables are easier to be obtained from the weather stations around the 

world, and the resolution of the data will be higher relatively. Therefore, even the results 

of simulation of the models which using the meteorological variables as the input data 

were not very accurate, it was still a potential way in the estimation of CO2 flux. 
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4.3. The comparison of MAPE in different site 

According to Table 7 and Table 10, there were a little bit different in the variation 

trend. Table 10 was taken as an example. The results of AL group showed that the 

simulation performance of GDP-T1 was better than US-Esm in terms of the R values. 

However, the values of MAPE and RMSE in the US-Esm simulation were smaller than 

those of GDP-T1. This conditions could be explained based on the definitions of MAPE 

and RMSE.  

First, the MAPE value represented the error as a percentage of the observed data. 

The data from these sites was totally different. The characteristics of meteorological 

conditions and CO2 dynamics in these sites were not the same. Nonetheless, the total 

number of the GDP-T1 site and the US-Esm site were different. That is to say, the two 

MAPE values should not be compared to each other.  

Second, the RMSE value has the same unit with the original data, so it will be 

influenced by the scalar of the original data. The original Fc of the GDP-T1 was 

distributed from the -40 to 25 μmol ‧ m-2 ‧ s-1, but that of the US-Esm site was between 

the -14 and 13 μmol ‧ m-2 ‧ s-1. The range of the data of US-Esm was smaller, and it 

might affect the RMSE value. 

 

4.4. The results of data division 

According to the current studies, the discussion of the effects of data division is 

limited, and only Moffat et al. (2007) divided the data into daytime and nighttime data. 

In this study, the difference between daytime and nighttime data was taken into 

consideration, and the results of the divided group were compared to those of the 

undivided group. Based on the comparison of the two kinds of data, the importance of 



doi:10.6342/NTU201703598

 

46 
 

data division was more obvious. The results of MAPE could not be compared to the 

different data group, but the values of RMSE were higher, and the values of R were 

lower in the AL group. That is to say, the model performances of the undivided group 

were worse than the divided group. 

The improvements in the model performances of the cross-site simulations were 

clearer than those of the simulation at each site. However, the values of R in the cross-

site simulation were in the range between the modestly correlated and the moderately 

correlated except the results of DT model at the GDP-T1 site. There might be some 

characteristics of the data distribution should be analyzed further. Even though the 

capability of the cross-site simulation in the NT model was not accurate, the capability 

of the DT model could provide the understanding of C uptake of the low-latitude 

wetland ecosystem. 
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5. Conclusions and Future Works 

In this study, the meteorological variables were used as the input data to construct 

the ANN models in order to estimate the variation of CO2 flux, and the results proved 

that it is workable. All the results of MAPE were in the range of reasonable simulation, 

so the ANN models can be used to quantify the CO2 flux in the wetland ecosystems. 

Among all the results, the best results of the GDP-T1 and GDP-T2 site occurred in the 

simulation of the DT model, and their values of R were 0.89 and 0.87, respectively. The 

best results of the US-Esm site occurred in the simulation of the NT models, and the 

values of R was 0.62. Even though there were not micrometeorological data, the 

predicted data still fitted the variation of observed data well. The division groups (DT 

and NT group) provided the knowledge of different characteristics in specific temporal 

condition. For the most part, the models trained by the DT data is helpful to the 

understanding of the C sequestration. 

The second part of this study is to verify the cross-site simulation capability of the 

ANN models. The results of GDP-T1 were better than those of the US-Esm. The best 

results occurred in the simulation of the GDP-T1 in the DT model, and the values of R 

was up to 0.73. Although the results of the US-Esm were not superior to those of the 

GDP-T1, the results of R were close to the moderately correlated. Therefore, it showed 

that the cross-site simulation is feasible, but these models should be applied to where 

the climatic conditions are quite similar.  

In this study, the ANN models performed well in simulating the Fc data in each 

site which showed the potential for predicting the Fc with the meteorological variables 

and being applied more extensively although there is still much to be desired in the 

accuracy of cross-site simulation. To improve the model performances, the influence of 
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the seasonality might be taken into consideration. Because the EC towers which 

observing the wetland ecosystem are sparse, these results might provide more 

information of the exchange of the C, and can help to estimate the variation of CO2 flux 

more accurately. Thereby, the estimation results can be used for analyzing the variation 

and trend of the CO2 flux, and help to explain the global missing C sink. 
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Appendix I: The maximum (max) and the minimum (min) of input 

parameters used in the normalization process at each site. 

 

GDP-T1 

group 
variable 

AL group DT group NT group 

max min max min max min 

Tair 44.72 2.56 44.29 5.04 41.19 3.19 

Rn 1062.00 -298.00 1054.31 -254.42 37.96 -117.29 

wind 10.23 -1.77 10.23 -1.74 5.36 -0.91 

VPD 5.46 -0.70 5.46 -0.68 3.50 -0.36 

Fc 24.57 -39.28 24.08 -39.19 18.19 -3.14 

GDP-T2 

group 
variable 

AL group DT group NT group 

max min max min max min 

Tair 50.22 4.40 50.14 4.86 43.77 5.54 

Rn 2286.22 -521.92 2108.59 -468.69 2286.22 -521.92 

wind 7.71 -1.25 7.70 -1.24 7.56 -1.23 

VPD 8.59 -1.24 8.57 -1.14 5.57 -0.70 

Fc 24.19 -37.67 22.40 -37.35 19.04 -8.49 

US-Esm 

group 
variable 

AL group DT group NT group 

max min max min max min 

Tair 44.65 -11.16 44.65 -11.16 42.45 -6.94 

Rn 1257.34 -344.12 1253.22 -320.80 354.34 -184.77 

wind 8.70 -1.17 8.69 -1.13 7.73 -1.00 

VPD 3.67 -0.65 3.67 -0.65 3.46 -0.61 

Fc 12.62 -13.50 5.64 -12.27 11.12 -4.99 
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Appendix II: The RMSE curve of three groups in the training phase. 

 
1. GDP-T1 

 
a. All data 

 

 
 
 
b. Daytime data 
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c. Nighttime data 
 

 
 
 
 

2. GDP-T2 
 
 
a. All data 
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b. Daytime data 
 

 
 
 
c. Nighttime data 
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3. US-Esm 
 
 
a. All data 

 

 
 
 
b. Daytime data 
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c. Nighttime data 
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Appendix III: The simulation results in each site. 

 
The simulation results in each site. 
1. GDP-T1 
a. All data  
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b. Daytime data 
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c. Nighttime data 
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2. GDP-T2 
a. All data 
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b. Daytime data 

 
 
c. Nighttime data 
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3. US-Esm 
a. All data 
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b. Daytime data 
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c. Nighttime data 
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Appendix IV: The cross-site simulation results. 

 
1. GDP-T1 
2. All data 
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3. Day data 
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4. Night data 
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5. US-Esm 
6. All data 
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7. Day data 
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8. Night data 
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Appendix V: The code used in the training phase. 

 
clear all; 
close all; 
clc; 

 
me='17th';  site='GDP-T1';  folder='GDP-T1';  folder2='All data';   % all data 
% load the extrema 
ex=load(strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',me,'_',site,'_extremum.txt')); 
max=ex(5,1); min=ex(5,2);   
% load the extrema 
T = load(strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',me,'_',site,'_training.txt'));   
INPUT=[T(:,1:4)]';OUTPUT=[T(:,5)]'; 

  
x=785; y=922; z=982;  
training_A=INPUT(:,1:x);validation_A=INPUT(:,x+1:y);testing_A=INPUT(:,y+1:z); 
TrainOut_A=OUTPUT(1,1:x);ValOut_A=OUTPUT(1,x+1:y);TestOut_A=OUTPUT(1,y+1:z)
; 

  
for n = 1:1:15; % the number of neuron in the hidden layer  

for m = 1:1:10;  
net=feedforwardnet(n,'trainlm'); 
net=configure(net, INPUT, OUTPUT); 
net.layers{1}.transferFcn = 'logsig'; 
net.layers{2}.transferFcn = 'purelin'; 
% the data division of training, validation, and testing group 
net.divideFcn='divideind'; 
net.divideParam.trainInd=[(1:x)]; 
net.divideParam.valInd=[(x+1:y)]; 
net.divideParam.testInd=[(y+1:z)]; 
 
net.inputweights{1,1}.initFcn='rands';   
net.biases{1}.initFcn='rands'; 
net=init(net);                   
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% parameters in the training phase 
net.trainParam.show=1000; 
net.trainParam.epochs=5000;         % iteration 
net.trainParam.goal=0.000001;       % threshold of error 
 
net=train(net,INPUT,OUTPUT); 
 
wt_in=net.IW{1,1};  
wt_out=net.LW{2,1}; 
bias_in=net.b{1};   
bias_out=net.b{2};  
 
zh1=sim(net,training_A); 
zh2=sim(net,validation_A); 
zh3=sim(net,testing_A); 

 
figure(m) 
plotregression(TrainOut_A,zh1,strcat(site,'-TrainData n=',num2str(n),' and 

m=',num2str(m))); 
saveas(gcf,[strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-R-

square TrainOut-n=',num2str(n),' and m=',num2str(m),'.tif')]); 
plotregression(ValOut_A,zh2,strcat(site,'-ValData n=',num2str(n),' and m=',num2str(m))); 
saveas(gcf,[strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-R-

square ValOut-n=',num2str(n),' and m=',num2str(m),'.tif')]); 
plotregression(TestOut_A,zh3,strcat(site,'-TestData n=',num2str(n),' and 

m=',num2str(m))); 
saveas(gcf,[strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-R-

square TestOut-n=',num2str(n),' and m=',num2str(m),'.tif')]); 
  
% denormaliztion 
zh11=zh1*(max-min)+min; 
zh21=zh2*(max-min)+min; 
zh31=zh3*(max-min)+min; 
  
TrainOut_A1=TrainOut_A*(max-min)+min; 
ValOut_A1=ValOut_A*(max-min)+min; 
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TestOut_A1=TestOut_A*(max-min)+min; 

  
% RMSE 
rmse=[sqrt(mse(TrainOut_A1-zh11)) sqrt(mse(ValOut_A1-zh21)) sqrt(mse(TestOut_A1-

zh31))]; 
r=[regression(TrainOut_A,zh1) regression(ValOut_A,zh2) 

regression(TestOut_A,zh3)];%regression value 
 
% MAPE 
m1=sum(abs((TrainOut_A-zh1)./TrainOut_A))./length(zh1); 
m2=sum(abs((ValOut_A-zh2)./ValOut_A))./length(zh2); 
m3=sum(abs((TestOut_A-zh3)./TestOut_A))./length(zh3); 
mape=[m1 m2 m3]; 
  
w=[wt_in,wt_out'];   
save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-weight-

',num2str(n),'-',num2str(m),'.txt')],'w','-ascii','-double'); 

 
b=[bias_in',bias_out]; 
save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-bias-

',num2str(n),'-',num2str(m),'.txt')],'b','-ascii','-double'); 
  
Fc_o=T(:,5)'; Fc_s=[zh1 zh2 zh3];  
m4=sum(abs((Fc_o-Fc_s)./Fc_o))./length(Fc_o); 
rmse_all=sqrt(mse(Fc_o-Fc_s));  
r_all=regression(Fc_o,Fc_s); All=[m4 rmse_all r_all]; 
  
training=[Fc_o' Fc_s' T(:,6:7)];  
 
save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-

training data-',num2str(n),'-',num2str(m),'.txt')],'training','-ascii','-double'); 
save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-All 

stat-',num2str(n),'-',num2str(m),'.txt')],'All','-ascii','-double'); 
 save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-

Fc_s normalized-',num2str(n),'-',num2str(m),'.txt')],'Fc_s','-ascii','-double'); 
save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-

RMSE-',num2str(n),'-',num2str(m),'.txt')],'rmse','-ascii','-double'); 
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save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-R-
',num2str(n),'-',num2str(m),'.txt')],'r','-ascii','-double'); 

save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-
MAPE-',num2str(n),'-',num2str(m),'.txt')],'mape','-ascii','-double'); 

save([strcat('D:\Guandu ANN\',me,' meeting\',folder,'\',folder2,'\training\',site,'-
',num2str(n),'-',num2str(m)),'.mat'],'net'); 

  
close all 

end 
end 
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Appendix VI: The code used in the simulation phase. 

 
clear all; 
close all; 
clc; 
 
for z=1:1:3 

for j=1:1:3 
    me='17th';num='500';  fn=['GDP-T1';'GDP-T2';'US-Esm'];    

folder=fn(z,:);  
  
    nn=[7 5 7;5 4 3;7 5 6];                  n=nn(z,j); 
    LL=[8 5 2;5 2 1;15 9 5];                L=LL(z,j); 
    

fn2=['All data';'Day data';'Nig data']; folder2=fn2(j,:); 
 

    if folder2=='Nig data' 
        folder2='Night data'; 
    end 
    type=['-A';'-D';'-N']; site=type(j,:); 
    if site=='-A' 
        site='' 
    end 
  
    S = load(strcat('D:\Guandu ANN\',me,' 

meeting\',folder,'\',me,'_',folder,site,'_simulation.txt'));   
    ex=load(strcat('D:\Guandu ANN\',me,' 

meeting\',folder,'\',me,'_',folder,site,'_extremum.txt')); 
    max=ex(5,1); min=ex(5,2); 
     
    for m=1:1:10; 
        for i=1:L; 
        load(strcat('D:\Guandu ANN\',me,' 

meeting\',folder,'\',folder2,'\training\',folder,site,'-',num2str(n),'-
',num2str(m),'.mat')); 

        INPUT=[S(1+str2num(num)*(i-1):str2num(num)+str2num(num)*(i-
1),1:4)]'; 
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        OUTPUT=[S(1+str2num(num)*(i-1):str2num(num)+str2num(num)*(i-
1),5)]'; 

        zh=sim(net,INPUT); 
         
        zh1=zh*(max-min)+min;  
        OUTPUT1=OUTPUT*(max-min)+min;  
        en=[OUTPUT' zh'];  
 
        close all 
        end 
    end 
 
    for m=1:1:10; 
        for i=1:1:L 
            T=load(strcat('D:\Guandu ANN\',me,' 

meeting\',folder,'\',folder2,'\simulation\comdata-',folder,site,'-
n=',num,'-',num2str(m),'-',num2str(i),'.txt')); 

            Ob=T(:,1); Si=T(:,2)'   % normalized data 
            TT(1,1+str2num(num)*(i-1):str2num(num)*i)=Ob; 
            TT(2,1+str2num(num)*(i-1):str2num(num)*i)=Si; 
            Fc_all=TT'; 
        end 
   
            [R,r]=corrcoef(Fc_all); 
            OUTPUT=Fc_all(:,1); 
            OUTPUT1=OUTPUT*(max-min)+min; 
            zh=Fc_all(:,2); 
            zh1=zh*(max-min)+min; 
            M=length(Fc_all); 
            b= sum(abs((OUTPUT-zh)./OUTPUT))/M;   

% MAPE calculated by normalized data 
 
            c= (sum((OUTPUT1-zh1).^2)/M)^0.5;  

%RMSE calculated by de-normalized data 
            d= R(1,2); 
            e= r(1,2); 
            MRRP=[b c d e]; 
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    Fc_alls=[Fc_all S(:,6:7) OUTPUT1 zh1];  
    save([strcat('D:\Guandu ANN\17th 

meeting\',folder,'\',folder2,'\simulation\',folder,site,'-',num,'-all simulation 
data Fc-m=',num2str(m),'.txt')],'Fc_alls','-ascii','-double'); 

    save([strcat('D:\Guandu ANN\17th 
meeting\',folder,'\',folder2,'\simulation\',folder,site,'-',num,'-MRRP-
m=',num2str(m),'.txt')],'MRRP','-ascii','-double'); 

  
end 
    for m=1:1:10; 
        MRRP=load(strcat('D:\Guandu ANN\',me,' 

meeting\',folder,'\',folder2,'\simulation\',folder,site,'-',num,'-
MRRP-m=',num2str(m),'.txt')); 

        MAPE=MRRP(1,1); 
        RMSE=MRRP(1,2); 
        R=MRRP(1,3); 
        P=MRRP(1,4); 
  
        final(m,1)=MAPE; 
        final(m,2)=RMSE; 
        final(m,3)=R; 
        final(m,4)=P; 
    end 
save([strcat('D:\Guandu ANN\17th 

meeting\',folder,'\',folder2,'\simulation\',folder,site,'-',num,'-Final MRRP of 
simulation-m=',num2str(m),'.txt')],'final','-ascii','-double'); 

 
clearvars -except z j me num fn folder   
  
end 

end 
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