=

S B % X z =z > 52 > 2= >
HEE REFERTAZRETARAIAEASE A
PR 3w L
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

AR TAE 2 BLAR BRI BAR S8 F AR A bk # 3R
On Improving Service-chain Deployment with Job

Dispatching in the Data Center Networks

H1
Chun-Yuan Hsu

mEHIR AARBEEE
Advisor: Cheng-Fu Chou, Ph.D.

3 KE 106 4 7 A
July 2017

doi:10.6342/NTU201703605

RV N R A
EESRE IS
AR TAF o B R AR I BAR P S I P AR Ak 0y 30 F

On Improving Service-Chain Deployment with Job
Dispatching in the Data Center Networks

WX AR A (£5% R04922136) AR 28 KREF M4
%%mﬁkzﬂéfﬂm X AERE 106 £ 7 B 27 BATHERE
BELRBA ORXRA - 45 L3EH

HER -
A & {3

pe \Tg,\z’(@j (#8 F#4z) 2 0y g
[82 5

2 X 42

%%Q%
NN

B R KA 45 SRR R R AR > SR B A AT R TR
FM—ERAFCHITER > AR BR P B HERFL T RS S
o 5 REENMR G & RARREA TR KW L0 3 HRK
HEEZMAMGEN LAEFIAK « AL ZRHFENIRKEE > A
A~ TR BB I ~ MR BRI RREE AR S K
B > G BT RO —LER > ERHLTALZE -

RO ZRHXER AT R > BRABCHEERF S MM
EHSETEMRE LA S ERATY - BEZRHATRE VBN
X~ FREE S BARA B > T mFRZIRMF SR > ARG EBAE
RS A AR FEAE o LT — R LB GPTA A RREY 2 H
SAH RS > BEATTHEMRATES o

REBRHENREA > BREFHEIFE > ERLEEBEIE > TRE
) ZARAR L BRAL o

i doi:10.6342/N'TU201703605

1

Middlebox 23R A MW %F X F ELNA E > RAT Kb
(firewall) ~ 4, 2243 Ik % (Proxy) » #8#-3b 1k #% 3% (Network Address Trans-
lation) % o & m {42 KA F B3 @K 5 488 12 2 middlebox > EHHF
R RAVE A R4 o 124069 middlebox X 2 2 SR At Bix BB 49
FRRREE M > BAEFAEREZ L ARG > B HEEBUREF SHEE o %
) AE B AL AE #40% 12 4 middlebox #%3k & $x A% 3 B AE £ — A% R 2B Lk
PAT > BAEFAENREZ LA BN o MAMAA T LR EFRFET &L
oo ALABTH P OARRALEAK FTELEREH S job o RMEH
) Bf 2 BL iz 26 job SR BURFS 42 69 3 F A REAF B RAEAF o Ib B8 3 49 AT
RELAZEEMEAGAREEKDB BTREREALERS AR
EMFAREAREEATLTRABRAEAGARER B MM B> i
B mEp A XL RELMAE > HASHERECMAE TS B#
) st A 42 B — 18 rack aware 89 7% F kA R MR BL MR o 8 A
BER A4 REAm AN job 5 BLAE A R A RFF AR F AR > B
FAVIR B 69 I% FokAE K0 Y E AR > B L AE R ZUb K B B R
12 M 6 A3 o

B4 5 : Middlebox ~ #8387 At i #R 1L ~ MRFrad

iii doi:10.6342/N'TU201703605

Abstract

Middleboxes, such as firewall, proxy and NAT, play an important role
in the existing network. However, we usually need traffic go through these
middleboxes in specific order. We call these requests Service-chain. Most of
middleboxes are expensive hardware-based appliances with fixed placement.
It is not flexible to deploy and might cause we waste lots of bandwidth. Net-
work function virtualization transforms these middleboxes to software to be
executed on general-purpose servers. It helps us do deployment more flexi-
ble. The question is how to do service chain deployment would be better. Due
to there have many jobs in the data center networks and enterprise networks,
we should do service chain deployment and job dispatching together so as to
find the global optimal solution. Moreover, most prior works do not aware
the number of used servers and cause the higher electricity cost. Therefore,
we discover the relation among the bandwidth, CPU resource and number of
used servers. And we formulate the service chain deployment and job dis-
patching problem as an integer linear programming model. However, it is
very difficult to solve this optimization model. Hence, we propose a Rack-
aware Service-chain deployment and Job dispatching (RSJ) algorithm to find
the solution effectively and efficiently. The simulation result shows that we
can improve the service chain deployment by doing job dispatching together.
Our proposed algorithm significantly reduces the processing time and also
can find a solution close to the optimal solution.

Keywords: Middlebox, Network function virtualization, service chain

iv doi:10.6342/NTU201703605

Contents

o jut
3};
Hh
>mg
sy
g)ﬂ,
o
Ty

R0

SLES

Abstract

1 Introduction
1.1 Middleboxes

ii

iii
1.2 Network Function Virtualization
1.3 Motivation

2 Related Work
2.1

iv

Service Chain Routing

2.2 VNF Placement

2.3 Service Chain Deployment
3 Design

3.1

Relation between Multiple Resources
3.2 Overview

3.3.1

3.3 Problem Formulation

332

Problem Definition L.
Integer Linear Programming Model
3.4 Rack-Aware Service-chain Deployment and Job Dispatching

doi:10.6342/NTU201703605

3.5 Complexity Analysis 31

4 Evaluation 32
4.1 SimulationSetup e 32
4.1.1 Configurations 32

4.1.2 TrafficPatterns 33

413 Methods 34

4.2 Impact of Weigthed Factorav 34

43 ImpactofJobRatio, 37
4.4 Impact of Number ofthe Demands 39

4.5 ProcessingTime. 41

5 Conclusion 43
Bibliography 44

vi doi:10.6342/NTU201703605

List of Figures

1.1 Middleboxes in the enterprise network [1] 2
3.1 Competition between bandwidth and number of used servers 10
3.2 Example of service chain deployment 21
4.1 Impact of weighted factor a (Objective value) 35
4.2 Impact of weighted factor o (Number of used servers) 36
4.3 Impact of weighted factor « (Total used bandwidth) 36
4.4 Impact of job ratio (Objective value) 38
4.5 Impact of job ratio (Number of used servers) 38
4.6 Impact of job ratio (Total used bandwidth) 39
4.7 Impact of size of the demand set (Objective value) 40
4.8 Impact of size of the demand set (Number of used servers) 40
4.9 Impact of size of the demand set (Total used bandwidth) 41
4.10 Processingtime 42

vii doi:10.6342/NTU201703605

List of Tables

3.1 Notationusedinourmodel 12

3.2 Variablesusedinourmodel 13

viii doi:10.6342/NTU201703605

Chapter 1

Introduction

1.1 Middleboxes

Middleboxes, or network functions, provide many functions other than packet for-
warding between source and destination in the networks. These functions primarily de-
ploy for security and performance or other benefits. In the aspect of security, the network
functions, such as firewalls, Instruction Detection Systems(IDS) and Instruction Preven-
tion Systems(IPS), filter packets based on security rules or detecting the malicious activ-
ities. In the aspect of performance, the network functions, such as proxy and WAN opti-
mizer, provide some function for accessing the data faster or increasing the data transfer
efficiency. Some network functions provide benefits other than security or performance
such as Network Address Translation(NAT) which modifies packet header for ease of
rerouting traffic without readdressing each host. Nowadays, middleboxes already play
an importance role in the network. Figure 1.1 [1] shows the different types middleboxes
and number of these middleboxes deployed in an enterprise network. It also shows that
middleboxes are already commonly used in the network.

However, there still have many requests that need network traffic traverse an ordered

1 doi:10.6342/NTU201703605

Appliance type Number
Firewalls 166
NIDS 127
Conferencing/Media gateways 110
Load balancers 67
Proxy caches 66
VPN devices 45
WAN optimizers 44
Voice gateways 11
Middleboxes total 636
Routers ~ 900

Figure 1.1: Middleboxes in the enterprise network [1]

set of network functions. For example, we might need a flow go through firewall first and
then go through IDS before proxy so as to filter suspicious requests. These requests are
called Service Function Chain or Service Chain [2].

Middleboxes or network functions are implemented on special-purpose hardware-
based appliances. However, there would have several disadvantages when we use legacy
middleboxes. The first one is the price. Generally, the price of special-purpose hardware-
based appliances is very expensive. Second, we need to choose a fixed location to place
each middlebox. The fixed placement might cause a flow should traverse a longer path
to use middlebox and waste bandwidth. Also, it might very difficult to maintain these
middleboxes. For instance, we might have a period time can not use service provided
by middleboxes when middleboxes failed and need to be upgraded or moved to another

location.

2 doi:10.6342/NTU201703605

1.2 Network Function Virtualization

To cope the disadvantages of the special-purpose hardware-based appliances, Network
Function Virtualization(NFV) [3] has been proposed recently to transform the commodity
hardware-base appliances to software layer. NFV allows network functions to be executed
on the virtual machines hosted on the general-purpose servers. After middleboxes turn
to software layer, we call it Virtual Network Functions(VNF). NFV reduces the cost of
expensive hardware-base appliances and makes the network functions deployment can be
more flexible. We could elastically deploy network functions at the location which we
want. NFV also makes these VNF easy to maintain and upgrade, we just install a new

VNF to another server without suspending the service.

1.3 Motivation

NFV helps us deploy VNFs more flexible. However, the question is how to do ser-
vice chain deployment using NFV would be better? First, it is very important to route
service chain request carefully because we should make sure this request go through the
request service in a specific order. If we use a bad deployment, this flow might waste
lots of bandwidth and might also increase the latency. When a flow request a VNF, we
can install the required VNF on the shortest path of the flow using NFV to save the band-
width. On the other hand, if the CPU resources is very limited, we might route this flow go
through a longer path to reuse VNF and then save CPU resources. We can see there has
a competition between bandwidth and CPU resources. But with this property, we have
an opportunity based on the network condition to make network better. There already

have many researches on the service chain deployment. But most researches only focus

3 doi:10.6342/NTU201703605

on how to use available network resources to deploy service chain requests and how to
tradeoff bandwidth and CPU resources. However, there have many jobs other than ser-
vice chain requests in data center networks or the enterprise networks (e.g. MapReduce).
These jobs might be computational-intensive jobs or bandwidth-intensive jobs. These re-
searches only based on fixed job dispatching to deploy the service chain request. But
if we only do service chain deployment based on fixed job dispatching, it might not be
global optimal because service chain requests and jobs in the network share the network
resources. Therefore, we should do service chain deployment with dispatching these jobs
together to make network better. Another issue is that many previous researches try to
tradeoff bandwidth and CPU resources. However, they did not aware the number of used
servers and cause higher electricity cost.

Hence, we should do service chain deployment and job dispatching together to find
the global optimal solution. For the aspect of the tradeoff between bandwidth and CPU
resources, we should also aware the number of used server so that we can reduce the
electricity cost. To achieve these goals, we find out the relation among the bandwidth, CPU
resources and the number of used servers first. And then we formulate the service chain
deployment and job dispatching problem as an integer linear programming model. Finally,
we propose Rack-aware Service-chain deployment and Job dispatching (RSJ) algorithm

to solve this problem effectively and efficiently.

4 doi:10.6342/NTU201703605

Chapter 2

Related Work

In this chapter, we will introduce several related works. We classify previous works
into three categories, service chain routing, virtual network functions placement, and ser-

vice chain deployment.

2.1 Service Chain Routing

SIMPLE [4] and Adaptive service-chain routing [5] are be proposed to find a rout-
ing path for service chain request to make sure the traffic would go through the desired
sequence of network functions. SIMPLE focus on policy enforcement for efficient traf-
fic steering using SDN under fixed middlebox placement. SIMPLE also takes account
the middlebox load balancing problem in the constraint of limited TCAM table space in
switches. Adaptive service-chain routing focus on efficient traffic steering using SDN and
NFV based on fixed virtual network function placement. This research translates service
chain routing problem into a simple shortest path problem so that this problem can be
solved by the conventional shortest path algorithms, such as Dijkstra’s algorithm. Also,
it takes account the latency and model a delay model to estimate. Hence, this work might

choose different path for same service chain request based on latency.

5 doi:10.6342/NTU201703605

However, these works only focus on route the service chain requests base on fixed
network function placement but there might have a better placement can help them route
these requests much better. We do not only focus on service chain routing but also doing

the VNF placement.

2.2 VNF Placement

For the single VNF placement, EVNFP [6] provides a placement and allocation solu-
tion for single VNF requests. This work does not only consider the resource consumption
but also the elasticity. The elasticity means that we can elastically allocate and release re-
sources, but it incurs some costs, such as the time for installing or removing or reassigning
the resources. It presents a model for minimizing the operational costs in providing VNF
services including the elasticity overhead. And it also proposes a heuristic algorithm to
do VNF placement.

Our work focus on service chain deployment because there usually has many request
need to traverse an ordered set of VNFs. However, EVNFP did not consider the execution

of the service chain, and thus it can not handle the service chain requests well.

2.3 Service Chain Deployment

There have many prior researches focus on service chain deployment. In [7], the
service chain placement and chaining problem are formulated as a mixed integer quadrat-
ically constrained program. However, this work can only deploy one service chain each
time using this model so that it can not consider all service chain requests together to

optimize the service chain deployment. In [8], this work formulates the service chain

6 doi:10.6342/NTU201703605

deployment problem as an integer linear programming model, which consider all service
chain requests together. Also, [8] proposed a heuristic approach guiding the optimiza-
tion model to find a feasible solution efficiently. [9] discover that the relation between
bandwidth and CPU resources play a crucial role in service chain deployment problem.
Hence, [9] tradeoff the bandwidth and CPU resources by computing a path constraint for
each service chain request. And [9] deploy service chain request with this path constraint
incrementally so as to maximize the served traffic.

As we mentioned before, there have many jobs in the data center networks or enterprise
networks. However, these works do service chain deployment with fixed job dispatching.
These works only focus on the remaining available resources to deploy the service chain
requests. But we should consider service chain deployment and the job dispatching prob-
lem together so as to get a global optimal solution. Moreover, prior works only focus on
how to proper tradeoff the bandwidth and CPU resources but did not aware the number
of used servers and cause the higher electricity cost. Therefore, our work would do ser-
vice chain deployment and job dispatching together. We also discover the relation among
the bandwidth, CPU resources and number of used servers, and then we tradeoff these

competitive resources.

7 doi:10.6342/NTU201703605

Chapter 3

Design

In this chapter, we will describe our goal and design. First, we will show the relation
among bandwidth, CPU resources and the number of used servers. Second, we will briefly
describe our goal and design. Third, we model the service chain deployment and job
dispatching problem as an integer linear programming model. Finally, we will introduce

the proposed heuristic algorithm to solve this problem effectively and efficiently.

3.1 Relation between Multiple Resources

The bandwidth resources are a very precious resource in data center network. Hence,
we need to minimize the used bandwidth. However, if we only minimize the used band-
width, then we might use more CPU resources so that we might not have sufficient CPU
resources to serve more other requests as much as possible. There has a competition be-
tween bandwidth and CPU resources. When the flow traverses shortest path so as to save
the bandwidth, the opportunity of the desired VNF which already be installed on this path
is not high. Therefore, there might need to install a new VNF on VM to serve this flow
and might cause we use more CPU resource. On the other hand, if there has limited CPU

resources, then we should route the flow go a longer path to reuse the VNF and might

8 doi:10.6342/NTU201703605

cause we use more bandwidth. Therefore, we need to tradeoff there two resources to bet-
ter utilize and serve more requests.

The electricity cost is also a large cost in the data center. For the energy cost, if we only
focus on how to tradeoff bandwidth and CPU resource, then we might use higher number
of servers and might casue higher electricity cost. Hence, we also need to improve server
utilization to make fewer working servers so that we can save the power and reduce the
electricity cost.

The question is what is the relation among bandwidth, CPU resource, and the number
of used servers? We do simulation to find out the relation. First, we generate several
service chain demands and each time we use the optimization model to minimize the total
used bandwidth with constraining the number of used servers of these demands. The result
shows on Figure 3.1. Figure 3.1 shows that the total used bandwidth is higher when we
use fewer servers. With using more servers, the total used bandwidth becomes lower. At
the same time, we can see the number of VMs also become higher. From figure 3.1, we
find that there has competition between bandwidth and number of used servers and it also
prove that the bandwidth and CPU resources are actually two competitive resources. The
fact is that when we limit the number of used servers, we also limit the CPU resources.
Hence, when we tradeoff bandwidth and number of used servers, we also achieve tradeoff

bandwidth and CPU resources. Moreover, we also can achieve reduce the electricity cost.

9 doi:10.6342/NTU201703605

4 ‘ \ l 45

—e—Bandwidth 3
—a—Number of VMs
3.8 -40
m
Q
Qo
g3.6 -35
= =
ke >
; —
o
234 130 =
- :
§e]
3 z
232 125
8
o
=
3 -120
28 | | | | L | L | | 15
6 7 8 9 10 11 12 13 14 15 16

Number of used servers

Figure 3.1: Competition between bandwidth and number of used servers

3.2 Overview

We have two goals in this paper. The first one is we need to do service chain deploy-
ment and job dispatching together. If we only deploy service chain and do not care the
other jobs in the network, then we might not have a global optimal solution. As we men-
tioned before, we need to tradeoff two competitive resources bandwidth and CPU so as to
serve more requests. Also, only tradeoft bandwidth and CPU is not enough, we need to
reduce the number of used servers as much as possible so as to save the electricity cost. We
already know that bandwidth and the number of used servers are competitive resources so
that we need to tradeoft these two resources to better utilize. After we find out the relation
among bandwidth, CPU resources and the number of used servers, we know that we only
need to tradeoff bandwidth and number of used servers so that we can also achieve trade-

off bandwidth and CPU resources. Hence, the second goal is to minimize the bandwidth

10 doi:10.6342/N'TU201703605

and the number of used servers. First, we formulate the service chain deployment and job
dispatching problem as an integer linear programming model. However, this optimization
model is very difficult to solve in a reasonable time. Therefore, we proposed a Rack-aware
Service-chain deployment and Job dispatching (RSJ) algorithm to find the solution of this

problem effectively and efficiently.

3.3 Problem Formulation

3.3.1 Problem Definition

We model a network as an directed graph G = (V, E). For each edge e = (u,v) € E
and v € V in the graph, C. = C(u,v) is the link capacity and C, is the server CPU
capacity. V is the vertex set and we also define V' = V; U V), where V is the set of
switches and V}, is the set of servers. The CPU capacity of switch is 0 and the CPU
capacity of server is greater than 0. The virtual network function set is F' = {fi, fo,...}.
D = Dg U Dj denotes the set of demands, and Dg denotes the set of service chain
demands and D; denotes the set of general data center job which does not have service
chain request. For each demand d € D, the source of the demand is represented by srcy
and the destination is represented by dst;. Sq = (Sa,1, Sa2, -.-) is the service chain of the
demand d and |S,| denotes number of services or virtual network functions in the service
chain. For ease of modeling the problem, we set srcy, dsty to be sq, S4,5,/+1 respectively
and sS40, Sa,s,+1 ¢ S. The traffic rate of the demand d is ;. Also, the demand d would
consume CPU cost at destination server is represented by dst_cpuy. We define the CPU
cost of VNF f with traffic rate R is L(f, R) and each VM m has the limited CPU capacity

Cyn(f). Moreover, we have several assumptions. We assume each VM can run at most one

11 doi:10.6342/NTU201703605

VNF f € F. We also assume that these has not same service request in a service chain

demands. And the same service request in different service chain demands can share a

VM which host the service if the VM still has sufficient capacity.

The notations used in the formulation are sumarized in table 3.1.

Table 3.1: Notation used in our model

Notation | Description
G Network topology as a directed graph
E Set of all links
V Set of all nodes
V, Set of all switch nodes
Vi, Set of all server nodes
Ce Link capacity
Cy CPU capacity of node v
F Set of virtual network functions
D Set of demands include SFC demands and data center jobs
STy Source of demand d
dsty Destination of demand d
Sy Service chain of demand d
R Traffic rate
dst_cpuy | The CPU cost of demand d at the destination server
L(f,R) | The CPU cost of VNF f with traffic rate R
Cw(f) | The VM capacity for VNF f

12

doi:10.6342/NTU201703605

We have several variables in our model. The variable m}, € N is the number of
VNF f should install on server v. And the variable my; . , € {0, 1} indicates whether the
service s; of demand d should map to server v or not, that is, if m;w = 1, we would

route demand d go through server v and the service s; would be served in server v. Note

\%4

that so and s|5,41 are source and destination of demand d and also use variables m,

and m}lfsd"sdwm to decide the source and destination, so we need to setup 54,0, Sq,5,(+1
at the first. The variable mﬁsl_’s”hw indicates whether the link (u,v) is the part of path
between two consecutive services (s;, $;+1) in demand d. Because service chain is that the
request need to go through several service functions in a specific order, so each time we
consider two consecutive services and we need to find a path between these two service
functions. And the variable m? indicates whether the server is used or not.

The variables used in our integer linear programming model is list in table 3.2.

Table 3.2: Variables used in our model
Variable | Description

mfc’v Number of VNF f install on server v
m}ifsi v Indicator variable for service s; of demand d map to server v
dsisii0,u0 | Indicator variable for the link (u, v) is a part of path between Sj, ;11
m Indicator variable for the server v is used or not

v

13 doi:10.6342/NTU201703605

3.3.2 Integer Linear Programming Model

We formulate the service chains deployment and job dispatching problem as an in-
teger linear programming model for placing virtual network functions and routing the
service chain requests and also dispatching data center jobs together to minimize the cost
of network resource bandwidth and the number of used servers when the requirements of
demands could still be satisfied.

The optimization problem of service chain deployment and job dispatching is formu-

lated as following:

Mimimize :

used BW usedServer
Qv k +(1—a)x ———— (3.1)
Z(U,U)GE C(U, U) "/:9‘
subject to:
Yo €V, mecw « Co(f) + Z le/’SdJSd‘Jrlvv * dst_cpug < C, (3.2)
fer deD
Yo eV, ferF:

(mff,v - 1) * Om(f) < Z mt‘i/,si,v * L(Siv Rd) < mff’v * Cm(f) (33)

deD,s;€Sq:s;=f

[Sal

\V/(U,U) E E7 Z Z de,si,si+1,u,v * Rd S C(u7 /U) (34)

deD i=0

14 doi:10.6342/NTU201703605

Vd €D, v eV, sq;,where 0 <i < |9 :

E E _ 1%
Z My s 551,00 — Z My s s51uw — Mdsiv

YueV:(v,u)eE YueV:(u,v)eE

Yd ED, S; € Sd U {Sd,|sd‘+1}, Z m;si’v =1

veV)

Vo €Vy, de€ D, s; € SqU {540, Sd,ISdHl}’ mt‘i/ﬂsiuv = mf
0,v # srcq
VdED, eV, my,,,, =
1,v=sreq
0,v # dsty
\V/d GD, dStd 7& NOTL@, VU S V’ mgsd|s [+1 v
t])1Sq)
17 v = dStd

Vd €D, dsty = None, Yv € V,, v =0

m
boa|sgl+1

Vd €D, dsty; = None, v = srcy, m(‘i/’sd syl =

15

—mYy (3.5)

d,si41,0

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

doi:10.6342/N'TU201703605

The objective function 3.1 of our model aims for minimizing a weighted combination
of network resources bandwidth and number of used servers. The equation of the used

bandwidth and the number of used servers is formulated as 3.12 and 3.13.

Sal
usedBW =Y "> "ml, .. * Ra (3.12)
e€E deD i=0
usedServer = Z mS (3.13)
veVy

We use a weighted factor o € [0, 1] for network administrator to decide how to tradeoff
bandwidth and number of used servers. However, even network administrator can decide
a to tradeoff these two resources, it is still difficult to intuitively quantify our objective
function only using how many Gbps of bandwidth and number of used servers because we
do not know how important between 1 Gbps and 1 server. Hence, for ease of understanding
how to choose «, we use the combination of bandwidth utilization and the percentage of
used servers. When o = 0, the objective function is to minimize the number of used
servers in data center. Instead, if & = 1, the objective function would become minimizing
network bandwidth. If we want to save bandwidth, then we should route the demands to
the nearest available server which may not be used before. On the other hand, if we want
to use fewer servers to save the energy cost, then we should make the demands served by
the server which is already used before. It also means that demands should reuse VM as
much as possible so that it would traverse a longer path and use more bandwidth.

Constraint 3.2 limits the CPU cost of all VMs and all the jobs on the server v not greater
than the server CPU capacity. Constraint 3.3 ensures that the CPU cost of the demands

served by the VM which is for f on the server v does not exceed the VM capacity. And

16 doi:10.6342/NTU201703605

it also ensures that the number of VM is minimum to serve the demands, that is, it would
not open additional VM which would not use. Constraint 3.4 ensures that the traffic of
demands on the link will less than the link capacity. Constraint 3.5 is chaining allocation
and routing demands constraint. For each consecutive two services pair, it is used to
decide both which link belongs to the path and which server should install VM and serve
the service. Left side of constraint 3.5 is the difference of the outdegree of d of network
node v and the indegree of d of network node v and then we would get a value 1, 0 or -1,
which implies the network node v is the source or on the desired path or the destination.
And the right side of constraint 3.5 determines the source or the destination of the path.
By this constraint, we make sure there should have a path between these to consecutive
services pair. For example, consider if we want to setup service pair (s;, s;11) and also

want to find a path between (s;, s;11). There will have several cases. If mgsl_w = 1 and

\%4

d,s:11,0 = 0, then the left side of the equation must be 1, that means the network node v

will serve s; and also be the source of path of (s;, s;11). If m), , = 0and m}imw =1,
the left side of equation must be 1, which means the network node v will serve s;,, and
also be the destination of path of (s, si11). If my . , = 0and my, , = 0, then the
right side of equation must be 0 and both of two variables on the left side of equation must
be 1 because there already setup a source node for a demand so that if the next service is
not assigned to the source node then there must exist a network node that the next service
should traverse to and lead to a outdegree. Therefore, there has a network node that does

not serve the service and has a indegree so that the outdegree of this node must be 1. The

|4 —

last case is my ., =

1 and m(‘{:siﬂm = 1, this means these two consecutive services pair
are assigned to the network node v and both of link indicator variable on the left side will

be 0 because one of our goal is minimize bandwidth cost. But when o = 0, that means we

17 doi:10.6342/NTU201703605

do not need to minimize bandwidth cost, then both of link indicator variable on the left
side may be 1. This situation would cause a loop and waste bandwidth. Therefore, if we

want to set o = 0, then we need to add a new constraint 3.14 to prevent loop.

Vd € D,v €V, s4;, where 0 <1i < |Sy] :

E E
z : M si5i101,0,u + z : M si55501,u0 <2 (314)

YueV:(v,u)eE YueV:(u,v)eE

Constraint 3.6 ensures that each service will be assigned to exact one server. And
constraint 3.6 also guarantees that there must assign a server for unknown destination
demand. Constraint 3.7 is used to indicate whether the server is used or not. This constraint
help us to count number of used servers. If there has a service be assigned to the server
or the source or destination of the demand on the server, then the server indicator variable
must be 1. Constraint 3.8 and Constraint 3.9 setup the source and the known destination
of demands. Constraint 3.10 makes sure the unknown destination of demand will not be
assigned to switch nodes. If we do not add this constraint in our model, our model still
can work due to we set the CPU capacity of switch nodes to 0. But we can intuitively
know we should not dispatch the jobs to a switch but a server. By doing so, it can help
this model reduce finding unnecessary solutions. Constraint 3.11 guarantees the unknown
destination demands would not dispatch to the source. Because the jobs that we want to
dispatch are like MapReduce jobs or network applications, this means these jobs may need
some resources or some goal want to finish on other servers but not on the original server.

Hence, we need to avoid dispatch these jobs to their source servers.

18 doi:10.6342/NTU201703605

In addition, although we limit the CPU resource with minimizing the number of used
servers, it also means we could install VMs as much as possible in the used servers. Be-
cause we also dispatch the data center jobs, so we already satisfy the requirement of all
requests and jobs. Hence, it means there might have additional CPU resources not be used
so that we might install more VMs on used servers to save bandwidth.

We model the service chain deployment and job dispatching problem as an integer
linear programming model. We can use this model to optimize the utilized resources in
the data center network. However, our model is very difficult to solve and get a good
solution in a reasonable time. Because our model need to examine all possible servers
whether install VNFs or not and how much VNFs and decide each service of each service
chain requests whether map to this server to be served and find the desired paths between
these servers for all service chain requests and all jobs. Actually, this problem could be
reduced to edge-disjoint paths(EDP) problem [10], which is a NP-hard problem. In [9],
this paper already proved that the path selection and VNF placement problem is a NP-hard
problem. We would extend this provement to our problem, which is not only take account
the path selection and VNF placement but also consider job dispatching. Given a graph
G with every link capacity is R in the EDP problem, there has three nodes pair(os, t1),
(02,12), (03,t3) and the EDP problem wants to find three dis-joint paths to connect o; to
t; foriin {1,2,3}. We construct a graph G’ = G in our problem. We add a node r, which
has the only one VM in the &/, to the graph G’ and add the directed links (¢1,7), (7, 02)
with link capacity R. If we have a service chain demand with traffic rate i want to go
through the only VM in node r and a job with traffic rate R from o3 to ¢, then there has
a feasible solution in our problem if and only if the EDP problem has a feasible solution.

Therefore, we reduce our problem to EDP problem and prove that it is NP-hard to find the

19 doi:10.6342/NTU201703605

feasible solution of our problem.

Since it is difficult to find the solution for all demands as a whole. Instead, we could
find the solution for a demand each time. Therefore, we propose a Rack-aware Service-
chain deployment and Job dispatching (RSJ) algorithm to find the solution effectively and

efficiently.

20 doi:10.6342/NTU201703605

3.4 Rack-Aware Service-chain Deployment and Job Dis-
patching

Our work proposed Rack-aware Service-chain deployment and Job dispatching (RSJ)
algorithm to find the solution of the service chain deployment and job dispatching problem
effectively and efficiently. In the section, we describe our proposed RSJ algorithm which
is based on choosing one or more proper racks to deploy whole service chain or part of
service chain each time for a demand and also dispatch.

FI(1) FR@1Q) F(Q)

4— ¢

Demand 1

7
Z
Rack 1 Rack 2 Rack 3 Rack 4 Rack 2

(a) (b)

Figure 3.2: Example of service chain deployment

Nowaday, the servers are packed to a rack in the data center. If the traffic traverses
across racks, it might use the precious core level bandwidth. For example, figure 3.2 shows
two examples of service chain deployment for a demand which need to traverse VNF f1,
2, 3 in order from server A to server C. Figure 3.2(a) separate the service chain across
rack and figure 3.2(b) makes the service chain stay in a rack. We can see the figure 3.2(a)
use lots of bandwidth compare to figure 3.2(b). Moreover, if we separate the service chain

to several racks, there might not only increase the used bandwidth but also have possibility

21 doi:10.6342/N'TU201703605

of higher number of used servers depend on how to choose racks. However, if we deploy
service chain in a rack and also aware the number of used servers to choose rack, we might
reduce the bandwidth and used servers. Therefore, the concept of our algorithm is based
on how to choose an appropriate rack to deploy service chain.

How to choose rack for a service chain demand is very important in our algorithm.
First, we should recall the objective function 3.1 in our ILP model. We can see there has
a weighted factor « in our objective function. If the network administrator does not care
about the bandwidth cost, then the weighted factor o would be small. It means we should
more care about the used servers while choosing rack. Therefore, we need to depend on «
to choose rack. Our goal is to minimize the objective function. We could use the objective
function as our score function to choose rack which affects the objective value is smallest,
that means we prefer choosing the smaller score of rack has the higher priority. However,
we do not know the total used bandwidth and the total number of used servers. We need
to estimate these two metrics. Suppose the rack of source of demand is r; and we pick
rack r; and try to calculate the score. We should not only calculate the path between rack
r; and r; but also need to add the path between rack r; and the rack of destination of
demand to estimate the used bandwidth of this service chain demand. The expectation
used bandwidth is formulated as equation 3.15. For the number of used servers, we need
to calculate the additional servers which would open after we deploy service chain in
the rack. If the rack has not sufficient CPU resources for the service chain demand, and
although the exceeded part of service chain could not open new server on this rack, it still
would cause we open a new server on other racks. Because we want the rack can place
the whole service chain, so if the rack has not sufficient CPU resources, then we should

give this rack higher scores. Therefore, the expectation of the number of used servers

22 doi:10.6342/NTU201703605

is equation 3.16, which we predict the number of servers would be open after deploying
the service chain Sy in the rack r;. And then we get the rack score function which is

formulated as equation 3.17.

expect BW = Ry (hop(r;,r;) + hop(r;j, r45t)) (3.15)
expectServer = predictServer(Sy,r;) (3.16)
expect BW expectServer

Rack Score = a * (3.17)

el A 1 el
Total BW +(@) * TotalServer

Algorithm 1 presents the pseudo code of RSJ algorithm. The concept of RSJ algorithm
is based on rack score 3.17 find one or more racks to deploy service chain for a demands
each time. For job we can dispatch, we choose the destination server based on finding
the minimal shortest path on opened servers first. Finally, we compute the shortest path
between these servers, which are this demand should traverse to and use the required VNF.

In RSJ algorithm, the first thing is to decide the execution order (line 1). We should
choose the higher cost demand first because if we deploy the higher cost demand later, then
there might no rack has sufficient CPU resource to serve whole service chain and cause
this service chain should separate to several racks and then affect our objective value to be
worse. Hence, we would like to process the higher cost demand first. We sort the demand
set by Ry * |Sy| * CPU_COST,,.,. Longer service chain might use more bandwidth an
CPU resources and larger traffic size also means the bandwidth cost might higher. Also,
we calculate the average CPU cost in service chain and required CPU cost in destination

server. This calculation implies this demand would use how much resources. In addition,

23 doi:10.6342/NTU201703605

Algorithm 1: Rack-aware Service chain deployment and Job dispatching Algorithm

Imput: G = (V,E), D
Output: Variables m5 ., my g s Mg 5.\

1 Sort Dby Ry * |Sy| * CPU_COSTye with descending order and then move
demands with unknown dst to the end;

m!, mY, m¥ « (;

ford € D do

mY < 0, excludeSet + 0;

dstPi < |Sd|

for r € RackSet do // calculate the rack scores

M <+ M U{(r,a* (expect BW) [total BW + (1 — «) *
(expectServer(Sq,r))/TotalServer)};

8 preRack, prePi < rack(srcy), 0;
9 while M = () do

N S B A W

10 r, minM < pop(min(M));
1 1sDst = False;
12 if r == rack(dst,;) then // set flag to put max subset SFC to dst rack
13 L 1sDst = True;
14 if placeSFCinRack(G, Rq, Sq, prePi,r,mY , dstPi) then
15 ‘ break;
16 else
17 excludeSet < excludeSet U {r};
18 Pi
placeMazSubsetSFCinRack(G, Ry, S, prePi, dstPi,r,mY ,isDst);
19 if Pi # —1 then
20 if isDst == T'rue then
21 ‘ dstPi = Pi;
22 else
23 L Update M; // use remaining part of SFC
24 | preRack =, prePi = Pi;
25 else
26 Reject d;
27 | continue;
28 Sort m) by move servers in the destination rack to the end;
29 if dst; == None then
30 dsty < find destination in opened servers with the minimal shortest path ,
if can not find, then find in the remaining servers;
31 mY < mY U{dstq};
32 m% < mY records demand d should traverse which servers to ensure the

requirement. We find the shortest path between these servers;

33 m! «+ When we find rack and place service chain in rack, we also record the
request VNF would be installed on which servers and store result in G, we take
the result from G;

34 return m!, mY, m®;

24 doi:10.6342/NTU201703605

we move the unknown destination demands to the end of the sorted list. Because these
demands mean we can dispatch it, we should deploy these demands later so as to deploy
these demands on proper racks, instead of deploying these demands to the rack which other
rack might not be chosen by other demands and might cause we open unnecessary servers.
Therefore, after we move this kind of demands to the last, we could deploy service chain
and dispatch these demand on opened servers to reduce the bandwidth and CPU cost.

Before we start our algorithm, we could allocate some resources first since there have
some resources which must use for demands. In the calculation, we would allocate the
CPU resources to the source and the already known destination servers of demands at the
first, and then we would know which servers must open and help us choosing right rack
to improve the rack utilization. Also, by doing so, we would not allocate too much CPU
resources of a server for other demands and cause some demands, whose destination is
that server, could not be served. We also allocate the bandwidth out from source server
and into the destination for these demand in the calculation. If we find an allocation could
not be done, then we reject this demand.

After sorting the demands and the prepared works, we pop a demand each time from
the sorted list. And then we calculate the rack score for all racks and choose the smallest
one to deploy (line 3-27). We would check that the bandwidth into and out from this
rack is sufficient if it needs. And then we try deploy the whole service chain to this rack.
Algorithm 2 details how to deploy the service chain in the rack and we will describe later.
Algorithm 2 would try to find a feasible solution. If we can find solution of deploying
whole service chain into chosen rack, then we finish finding the rack (line 14-15). But if
this rack could not deploy this service chain, then we deploy the max consecutive subset

of this service chain from the front of chain to the chosen rack and then recalculate the

25 doi:10.6342/NTU201703605

rack score excluding the chosen racks for the remaining service chain of this demand
until there has no rack could choose (line 9-24), then we will reject it. However, if we
choose a rack which has destination server when still finding rack, we would also try to
place whole remaining part of service chain. But if it can not, we would try to place max
consecutive subset of chain from the end of service chain to this rack. By doing so, we
could make sure the rack, which has destination server, would be the last rack be traversed
for required service of demand in specific order. Moreover, if there has same rack score
of racks. For first «% demands, we would prefer the rack with lower expect BIW. If there
still have racks which has same expect BIW, then we choose the rack with larger number
of reuse VMs. And for the remaining demands, we would prefer the rack with larger
number of reuse VMs. If there still have racks which has same value, then we choose rack
with lower expect BW. Because when the rack scores are same, it means the influence
to objective value is same. Therefore, how to choose proper rack is an opportunity for
future demands need. However, we know the demands ahead in sorted list means the
required resources is larger. The kind of demands might cause larger used bandwidth.
Therefore, we should deploy them more prefer lower used bandwidth and choosing install
new VM to save bandwidth. At the same time, this behavior also make an opportunity for
future demands to reuse VMs. And we also use «, which is the bandwidth importance for
network administrator, to achieve the goal which network administrator wants to tradeoff.

After we have done choosing racks to deploy service chain, when algorithm 2 find
a feasible solution of deploying whole or part of service chain, that means the service
chain can be deployed into the chosen rack, we would allocate CPU resources and install
the VNFs on the servers based on the solution. Note that, because we might choose rack

which has destination server first and then the other rack. Hence, we should move the

26 doi:10.6342/NTU201703605

server, which is in the rack which has destination server, to the end of ml‘{ and we will get
the right order of the server we want to route demand traverse to (line 28). If the demand
is that the job we can dispatch, then we choose a server from opened servers by selecting
server with the minimal path from the server, which should traverse to for last service of
demand, to each opened server (line 29-31). Also, with this solution, we would know
that each service in service chain of the demand should go through which server to use
the required VNF and even the destination server we dispatch the demand to. Therefore,
we compute the shortest path between these servers to route the demand (line 32). After
we deployed all demands, then we take the information, which are which VNF should be
installed to which server and should be opened how many VMs for the VNF, from the
graph G = (V, F) (line 33). We store each server would install which VNF and should
open how many VMs for the VNF when each time we choose a rack and deploy whole or
max subset of service chain (line 14,18). Finally, we finish deploy service chain and do
job dispatching.

Next, we will describe how we deploy whole or part of service chain in a rack. Algo-
rithm 2 presents the pseudo code of this algorithm. Suppose we want to deploy a service
chain in to a rack. Each time we choose a server in the rack for one service to traverse
to use. We start the procedure from the first service in service chain to the last one. In
algorithm 2, there has two main parts, the first one is trying to find the server which has
the required VNF which could be reused, the second part is that there has no server has
the required VNF which could be reused so that we need to choose a server to install VNF
and has the the minimal influence on objective value.

Since we already choose appropriate racks to deploy service chain based on «, and

the deployment in the rack should more focus on number of used servers, this is because

27 doi:10.6342/NTU201703605

Algorithm 2: Deploy Service-chain in Rack

1
2

Input: G = (V, E),rack,d, S

Output: sol :record demand d should go which server to find the required VNF
i<+ 0, sol + 0;

vlist < rack;

3 while i < |S| do

4
5

10
11
12
13
14
15
16
17

18

19
20

21
22
23
24

25
26
27
28
29
30
31
32
33
34

35
36

37

38

s < S[i|;

Sort vlist with 1. if s can also reuse in previous server 2. number of the
consecutive reusable VM from s in descending order 3. choose source 4. put
destination to last;

for v € vlist do // choose server which can reuse s

if sol # () and o == 1 then
L continue;

if s can be reused in v then
if v is previous chosen server then
‘ Add s to set of v in sol;
else
if in-link and out-link capacity of v is enouth then
Update in-link and out-link capacity of v;
sol < sol U {(v,{s})};

else
L continue;
break;
else // no server can reuse s, re-choose server to install s

Sort vlist with 1. ServerScore in ascending order 2. put destination to last
3. remainingLoad in descending order;

for v € viist do

sLoad <« calculate the expected CPU cost on v;

if remainingLoad, < sLoad then
L continue;

if v is previous chosen server then

Add s to set of v in sol;

Update remainingLoad, and VM load in v

else

if in-link and out-link capacity of v is enouth then
Update in-link and out-link capacity of v;
decision < sol U {(v,{s})};
Update the remainingLoad,,;

else
L continue;
else
L return ();
|+ = 1;
return sol;

28 doi:10.6342/NTU201703605

the bandwidth cost between servers in rack is small and if we make the service chain stay
in a server so that we could not only save bandwidth but also reduce the number of used
servers. However, the question is how we choose server to deploy service chain. If we
only minimize the number of used servers, we might try to reuse VM as much as possible
and cause that we might route demand out from a server to reuse a VM from another
server and back to the server to reuse another VM. This situation might cause use more
bandwidth but minimize the CPU resources so that it can serve more demands. On the
other hand, if we want to minimize the bandwidth, we should not try to reuse VM as much
as possible, instead, we should make services stay in same server to reduce path hops.
However, as we mentioned before, the bandwidth cost in rack would not use too much to
affect the objective value too much. Therefore, minimizing number of used servers and
trying to reduce path hop is our strategy.

In the first part (line 6-18), we need to decide the servers order for assigning the service
and the order we store in vlist first. Then we sort vlist based on a) if this service could
find a reusable VNF in previous chosen server b) number of consecutive services, which
could find reusable VNFs in the server, from the service we want to assign to server at this
time c) source server d) put destination server to the last (line 5). Note that, the sorting is
first use (a) to sort, if there still has same condition, then do (b) and so on. After we do
this sorting on vlist, we would get the order we want. Then, we choose server following
this order and we would check whether the service can find reusable VNF in the server or
not. If it can, then we done assignment of the service (line 6-18). If not, we would try all
servers in vlist until no server can assign to. Moreover, when o = 1, which means we do
not care the number of used servers, so if it is not first service, we would not try to reuse

VM and leave the assignment to the second part (line 7-8).

29 doi:10.6342/NTU201703605

In the second part (line 19-36), it would choose server based on the minimal impact
on objective function. We also need to decide the order of servers in the rack to assign the
service. However, we need to find out which server, we assign the service to, has the mini-
mal impact on the objective value. Therefore, we also use the score function ServerScore
as same as rack score equation 3.17. For expect BW, we calculate the expectation used
bandwidth for each server. If we choose the server which is previous chosen server, then
the expect BW would be 0. On the other hand, if we choose another server, then the
expect BW would be 2R because we need to route to the top-of-rack switch and then route
to the chosen server. For expectSever, if the chosen server already opened VM of the re-
quired VNF but has not sufficient capacity to be reused, the chosen server should open
new VM for installing the required VNF because there has no reusable required VNF of
the service in the rack after the first part. However, although we still need open new VM,
there might still has some remaining capacity could use so that we might have more capac-
ity for future need if we choose the lower loading of VNF. Hence, if the chosen server has
the required VNF, then the exzpectServer would be (Load of VNF f on v)/Cu(f).
If not, then expectServer would be C,,(f)/C, if server v already opened, otherwise,
expectServer would be 1. Therefore, we would sort vlist by a) score in ascending order
b) put the destination server to the end of list ¢) remaining server capacity in descending
order (line 20). After sorting, then we calculate the CPU cost of the service in the chosen
server (line 22). If the remaining server capacity is not sufficient to serve the service, then
we choose the next server in vlist. If it has sufficient capacity to serve, then if the chosen
server is the previous chosen server, we assign the service to the chosen server and add
to the solution, and then we finish the assignment of this service (line 25-27). Otherwise,

we would try all servers in vlist until no server can assign to. If we still could not find a

30 doi:10.6342/NTU201703605

server for the service, then we could not find a feasible solution and return (.

3.5 Complexity Analysis

In this section, we find out the complexity of RSJ algorithm. Each time we try to
place whole or max subset of service chain would use algorithm 2 to find the deployment
in a rack. Algorithm 2 would find a server for each service. Hence, the complexity of
the algorithm 2 is O(|S| * |V,|), where V,. denotes the server set in the rack. Therefore,
the complexity of placing whole or max subset of services in a rack is O(|S| * |V,]).
RSJ algorithm would find one or more racks to deploy the service chain. Hence, the
finding rack procedure would repeat O(| R|), where R denotes the rack set. Therefore, the
complexity of finding rack procedure is O(|R| * |S| * |V;|) .After finishing the finding
rack procedure, we would dispatch demand to find a destination for it. The dispatching
step would find the minimal shortest path among servers, which means it would repeat
O(|V]). And we use the Dijkstra’s algorithm to find the shortest path, and complexity of
this algorithm is O(|V'|+| E|+| E| log | E'|). Then, we get the complexity of the dispatching
step is O(|V'] x (V| + |E| + |E|log|E|)) if job ratio is not equal to 0. For the routing
step, we would find the shortest path between the chosen servers and each service would
assign to one of these servers. Thus, the complexity of routing step is O(|S| (|V|+|E| +
|E|log |E]). And we would repeat O(|D|). Finally, we could get the complexity of RSJ
algorithm is O(|D| = ((|R| = |S| = |V..|) + (|S| + [V]) = (V| + |E| + |E| log|E|))) if job
ratio is not equal to 0. If job ratio is equal to 0, that means we do not need to dispatch
demands, then the complexity of RSJ algorithm would be O(|D| * ((|R]| % |S| = |V;|) +

ST+ (V] + [E] + [Ellog | E]))).

31 doi:10.6342/NTU201703605

Chapter 4

Evaluation

In this section, we show how we evaluate our design and the results. First, we list our
simulation configurations and all methods we will compare. In our evaluation, we focus
on objective value which is a combination of bandwidth utilization and the percentage of
used servers. It can show how much resources cost and also implies the tradeoft which net-
work administrator wants. We also show the used bandwidth and number of used servers
and we observe the variety. Second, we show that our methods can improve service chain
deployment in different weighted factor .. Third, we show the improvement of our meth-
ods in different job ratio. Finally, we show the improvement of our methods in different
size of demand set and also compare the processing time between optimal method and our

proposed algorithm.

4.1 Simulation Setup

4.1.1 Configurations

We do the simulation to show the performance of our design in a data center networks,

a 8-ary Fat-tree [11]. For Fat-tree, we set the link capacity between core switch and aggre-

32 doi:10.6342/NTU201703605

gation switch to 4 Gbps, the link capacity between aggregation switch and edge switch to
2 Gbps and edge switch to server to 1 Gbps. For each server, we set the server capacity to
40000 [9]. For each virtual machine, we set the VM capacity to 10000 [9]. We generate
a VNF set I, which has 15 distinct VNFs. For each VNF f € F, we set the CPU cost of
VNF f with traffic rate Rto L(f, R) = 10 Rand L(f, R) = 10 % R = In(R) with proba-
bility 90% and 10% respectively [9]. We use IBM CPLEX Optimization Studio 12.7 [12]
as the integer linear programming solver. All simulations were performed on a computer

with Intel Core 17-4790 processor and 16 GB RAM using operating system Ubuntu 16.04.

4.1.2 Traffic Patterns

We use the power law distribution [13] to generate the traffic size with the minimum
demand size 10 Mbps [9]. The length of service chain is uniformly chosen from 0 to 8.
Each service chain is sequentially constructed by uniformly choosing from VNF set F’
with length of the service chain. The CPU cost at the destination is chosen from 2000
to 5000 uniformly if the length of service chain is 0 and normal distribution with mean
= 1000 and variance = 500 if the length of service chain is greater than 0. Because there
might have many computational intensive jobs in data center and these jobs might not need
to use VNF, so we give these jobs higher CPU cost. For fixed job dispatching, we make
the jobs which we can dispatch use the probability 40-90% would choose the destination

outside the rack [14].

33 doi:10.6342/NTU201703605

4.1.3 Methods
We comapre our proposed algorithm with different methods.
Original Optimal: It uses our optimization model with fixed job dispatching.

RSJ: Our proposed Rack-aware Service-chain deployment and Job dispatching algo-

rithm.

Optimal: It uses our optimization model with job dispatching.

4.2 Impact of Weigthed Factor «

Fig 4.1 shows the objective value with different weighted factor . We can see that the
optimal has the best performance. However, our proposed algorithm is very close to the
optimal. It also shows that the optimal and our proposed algorithm are both outperform
than the original optimal which is fixed job dispatching. With increasing of «, the ob-
jective value decreases in different methods, this is because the bandwidth resources are
plentiful so that the bandwidth utilization would more smaller than the percentage of used
servers. Therefore, with the growth of «, the objective value would be smaller because
the weighted value of the percentage of used servers is smaller relatively. Although there
three methods would very close when o« = 1, however, the optimal actually still best and
our proposed algorithm also very close to the optimal. And the original optimal is still
worse than the optimal and our proposed algorithm. Figure 4.2 shows the number of used
servers in different weighted factor oe. The optimal and our proposed algorithm still better
than the original optimal. However, when o = 1, the optimal and original optimal have
the same number of used servers. Because @ = 1 means we do not care the number of used

servers, so it would use more CPU resources to save the used bandwidth and cause use all

34 doi:10.6342/NTU201703605

of servers. And Our proposed algorithm would not use all of servers due to our deploying
service chain method would still try to stay in same server and would cause we would not
use all of servers but the number of used server would still higher than o # 1. Figure 4.3
shows the used bandwidth in different weighted factor a. When o = 0, that means we do
not care the bandwidth cost, so it would cause these methods use more bandwidth to save
the CPU resources and then minimize the number of used servers. However, the optimal
can dispatch job so that it might use more bandwidth to minimize the used servers. This is
why the use bandwidth is slightly greater than the original optimal. Our algorithm used the
minimal bandwidth because we deploy the service chain into rack. With the characteristic

of rack, we still can use less bandwidth even though we do not care the used bandwidth.

0.6 I
—o—Optimal
—-2-RSJ
Original Optimal
05 o5 x10° |
6
i
55
0.4 g .
o g
= g
E 845
>
g 0.3+ 4\
©
QO 35
8 0.997 0.9975 0.998 “0.9985 0.999 0.9995 1
0.2
0.1+ \
0 L | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

«

Figure 4.1: Impact of weighted factor o (Objective value)

35 doi:10.6342/N'TU201703605

1

1

1

1

Number of used servers

Total used bandwidth(Gbps)

30

T
—o—0Optimal
-a-RSJ
20 - | - Original Optimal
10+
00 -
90 -
80 -
70 -
A
60 -
et =
50 | | L | L | L | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
«

Figure 4.2: Impact of weighted factor o« (Number of used servers)

35

q

30

N
o

N
o
s

-
)]

-
o

T T
—o—Optimal
-2-RSJ
—+—Original Optimal

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: Impact of weighted factor a (Total used bandwidth)

36 doi:10.6342/N'TU201703605

4.3 Impact of Job Ratio

We also do simulation with different job ratio. We use the weighted factor a = 0.5 to
do this simulation. We want to know how much improvement compare to original optimal
in different job ratio. As the result shown in figure 4.4, the optimal would degrade to the
original optimal when job ratio is 0. At this time, our algorithm is worse than the original
optimal because it is optimal when job ratio is 0. With the growth of job ratio, the optimal
and our algorithm would outperform than the original optimal. Due to the original optimal
is fixed job dispatching, so we expect to the objective value should in the same level no
matter the growth of the job ratio and the result in figure 4.4 also confirm our expectation.
Figure 4.5 shows that the number of used servers in different job ratio. We can see this
figure is similar to figure 4.4 because the percentage of used servers is very larger than
the bandwidth utilization. Therefore, the number of used servers dominate the objective
value. Even though we have this situation, however, our algorithm still can base on « to
tradeoff two competitive resources and approach the optimal. Figure 4.6 shows the used
bandwidth in different job ratio. The total used bandwidth is not stable because there might
has some heavy flow in the demand set. And as we mentioned before, the number of used
servers dominate the objective value, hence, although the optimal or our algorithm might
not better than the original optimal in used bandwidth, the objective value still better than
the original optimal. But when job ratio is small, the used bandwidth might not easy to
compare which method is better. However, with increasing of job ratio, the performance of
the optimal and our algorithm still better than the original optimal because we can dispatch
more jobs to improve the performance. Also, our algorithm also can approach the optimal

and outperform than the original optimal in used bandwidth.

37 doi:10.6342/NTU201703605

0.3 T T
—o—Optimal
4 —-&-RSJ
—»—Original Optimal
0.28 - |
0.26
(0]
3
© 0.24
>
[0
=
3}
2.0.22
o)
O
0.2
0.18
01 6 L | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Job ratio
Figure 4.4: Impact of job ratio (Objective value)
75 T
—o—Optimal
L -a-RSJ
—— Original Optimal
70 -
® 65
[0
c
3
5 60
(0]
(]
=)
> 55
(0]
Ke)
[S
>
< 50
45
40 | | | | | | 1 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Job ratio

Figure 4.5: Impact of job ratio (Number of used servers)

38 doi:10.6342/N'TU201703605

18

-
\14

—_
o
T

—_
(&)
T

Total used bandwidth(Gbps)
@® S
I

—_
N
T

0.01 0.02 0.03 0.04 0.05
Job ratio

11 [-e-Optimal
-a-RSJ
Original Optimal

10 ! | ! | ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Job ratio

Figure 4.6: Impact of job ratio (Total used bandwidth)

4.4 Impact of Number of the Demands

We also do simulation on different number of demands. We use oo = (.5 and job ratio

= 0.5 to do this simulation. As the result shown as figure 4.7, we can see that the optimal

is the best and our proposed algorithm still can very close to the optimal. And these two

methods are both much better than the original optimal. Figure 4.8 shows the number of

used server in different number of demands. The result is similar to the figure 4.7 and the

reason is same as the figure 4.5. And figure 4.9 shows that the used bandwidth in different

number of demands. With the growth of the number of demands, the optimal still best and

our algorithm also can approach the optimal and better than the original optimal.

39

doi:10.6342/N'TU201703605

0.45 ‘ \

—e—Optimal
—-4—-RSJ
0.4 —»—Original Optimal

0.35

0.3

Objective value

0.2

0.15

| | | 1 |
30 40 50 60 70 80 90 100 110 120
Number of demands

0.1 ! ! ! !

Figure 4.7: Impact of size of the demand set (Objective value)

110

T T
—o—Optimal
-4—-RSJ A
100 - —»—Original Optimal

90

80

70

60

Number of used servers

50

40

| | | |
30 40 50 60 70 80 90 100 110 120
Number of demands

3 0 1 1 1 |

Figure 4.8: Impact of size of the demand set (Number of used servers)

40 doi:10.6342/N'TU201703605

N
[6)]

—o—Optimal
-4-RSJ
Original Optimal

N
o
T

Total used bandwidth(Gbps)
— n N w w
(&) o [6)] o (&)}

—_
o

o

| | | | | | |
30 40 50 60 70 80 90 100 110 120
Number of demands

)]

Figure 4.9: Impact of size of the demand set (Total used bandwidth)

4.5 Processing Time

We also compare the processing time between our proposed algorithm and the opti-
mal. Figure 4.10 shows the results when the number of demands is 125. Our algorithm
significantly faster than the optimal. This shows that our algorithm can find a good solu-
tion efficiently. And it also shows that the optimal need to process so much time when the

number of demands is only 125. Hence, it is necessary to reduce the processing time.

41 doi:10.6342/N'TU201703605

Processing Time (sec)

25000

24500 -

24000 -

23500 A

23000 ~

22500 +

22000 A

21500 +

21000~

107

RS
E= Optimal

125

Figure 4.10: Processing time

42

doi:10.6342/N'TU201703605

Chapter 5

Conclusion

In this thesis, we discover the relation among the bandwidth, CPU resources and the
number of used servers. And we achieve tradeoff these resources. We also consider the
job dispatching in the data center networks or enterprise networks to improve the service
chain deployment. We formulate the service chain deployment and job dispatching prob-
lem as an integer linear programming model. However, this optimization model is very
difficult to solve. Therefore, we propose a Rack-aware Service-chain deployment and
Job dispatching (RSJ) algorithm to solve this problem effectively and efficiently. In our
simulation, we evaluate the optimal method and our RSJ algorithm and the original op-
timal which is optimal method under fixed job dispatching. The simulation result shows
that there has a significantly improvement with doing job dispatching together compare to
fixed job dispatching. Moreover, the result also shows that our proposed RSJ algorithm
can find a good solution very close to the optimal and significantly reduce the processing

time.

43 doi:10.6342/NTU201703605

Bibliography

[1] Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Norbert Egi, and Guangyu Shi.
The middlebox manifesto: enabling innovation in middlebox deployment. In Pro-
ceedings of the 10th ACM Workshop on Hot Topics in Networks, page 21. ACM,
2011.

[2] Paul Quinn and Tom Nadeau. Problem statement for service function chaining. 2015.

[3] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael Bu-
genhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al. Network
functions virtualisation: An introduction, benefits, enablers, challenges and call for

action. In SDN and OpenFlow World Congress, pages 22-24, 2012.

[4] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Min-
lan Yu. Simple-fying middlebox policy enforcement using sdn. ACM SIGCOMM

computer communication review, 43(4):27-38, 2013.

[5] Abhishek Dwaraki and Tilman Wolf. Adaptive service-chain routing for virtual net-
work functions in software-defined networks. In Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization, pages 32-37.

ACM, 2016.

[6] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, and
Raouf Boutaba. Elastic virtual network function placement. In Cloud Network-
ing (CloudNet), 2015 IEEFE 4th International Conference on, pages 255-260. IEEE,
2015.

44 doi:10.6342/NTU201703605

[7] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains
of virtual network functions. In Cloud Networking (CloudNet), 2014 IEEE 3rd In-

ternational Conference on, pages 7—13. IEEE, 2014.

[8] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-
inho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together the nfv pro-
visioning puzzle: Efficient placement and chaining of virtual network functions. In
Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium

on, pages 98—106. IEEE, 2015.

[9] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server usage.

In Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Inter-

national Conference on, pages 1-9. IEEE, 2016.

[10] Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal
Talwar, and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion

routing on undirected graphs. Combinatorica, 30(5):485-520, 2010.

[11] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commod-
ity data center network architecture. In ACM SIGCOMM Computer Communication

Review, volume 38, pages 63—74. ACM, 2008.

[12] CPLEX Optimization Studio 12.7. https://www.ibm.com/bs-en/marketplace/

ibm-ilog-cplex.

[13] Xin Li and Chen Qian. Low-complexity multi-resource packet scheduling for net-
work function virtualization. In Computer Communications (INFOCOM), 2015

IEEE Conference on, pages 1400-1408. IEEE, 2015.

[14] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic charac-
teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement, pages 267-280. ACM, 2010.

45 doi:10.6342/NTU201703605

