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ᄔ要

為了應付節節攀升的網路流量，網路系統也必須與時俱進，而第五

代移動通信系統（5G）正是為了解決此項問題而提出的目標。在 5G之

中，雲端接取網路因為將基帶處理器與無線寬頻頭端設備分離並集中

於中央統一管理，因而可以更有效率的使用計算資源。在本篇論文之

中，我們基於拉格朗日鬆弛法，輔以裝箱問題、排程、負載均衡算法，

以及在營運時將面臨到的資源限制，提出了一套應用於雲端接取網路

的工作分配策略來最大化網路營運商的收益。本篇論文亦模擬了各種

情況，並提供實驗模擬數據來說明本方法確能增加網路營運商的利潤。

關ᗖຒ：第五代移動通信系統、無線接取網路、工作分配策略、最

佳化、拉格朗日鬆弛法
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Abstract

Due to the rapid increase in the network traffic load, the Internet service

system must improve to meet the requirement. Fifth generation (5G) mobile

networks aim to deal with this problem, and cloud radio access networks (C-

RANs) is a popular approach to this goal. In a C-RAN, baseband processing

units are centralized into a pool, which allows us to have a better resource

utilization. In this thesis, we use the Lagrangian relaxation method combined

with bin packing, scheduling, and traffic shaping to derive a task allocation

strategy in a C-RAN that tries to maximize the profit of a network operator

whomay facemultiple kinds of constraints during its operation. After that, we

will present the experimental results to show the effectiveness of our proposed

method.

Keywords: 5G, cloud radio access network (C-RAN), task allocation strat-

egy, optimization, Lagrangian relaxation
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Chapter 1

Introduction

1.1 Background

With the ubiquity of access to the Internet and the advance in communication tech-

nology, larger amount of traffic services, such as online video streaming, data transfer

between servers, and mobile games, are wide usage. The numbers of cell phones, tablets,

and other electronic devices are increasing at a high speed. In 2016, there were around 29

millions mobile communication users in Taiwan [1], which is approximately equal to 1.26

devices per person. Although such increase in the number of electronic devices has made

life with high convenience, the network traffic load and required amount of processing

tasks are growing at a dramatic rate and pose a great burden on the network services and

required wireless transmission resource. It is estimated that by 2020, there will be around

11.6 billions of devices worldwide, and the traffic load per month will be 30.6 exabytes

[2]. Authors of [3] also stated that the expected data transmission amount of fifth genera-
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Table 1.1: Requirements of 5G

Requirement types Desirable value

Reasonable latency < 5 ms

High data rate and data volume 1 to 10 Gb per second

Long battery life 10 years

Scalability Able to serve 300,000 users per AP

tion (5G) wireless services will be approximately 1,000 times of that than forth generation

(4G) networks.

Overcoming such a demand becomes one of the most important challenges of 5G mo-

bile networks. Osseiran et al. proposed some desired goals, which are summarized in

Table 1.1, that 5G should meet [4]. Themetrics require the system performance and opera-

tion strategies so this work will concentrate on the task assignment and resource allocation

in the backhaul C-RAN systems.

Peng et al. had discussed heterogeneous networks (HetNets) and provided a possible

solution for the heavy traffic load in 5G to achieve theQoS objective [5], [6]. Traditionally,

in a HetNet, multiple base stations (BSs) are deployed to satisfy different needs of all

kinds user equipments (UEs). A BS consists of a baseband processing unit (BBU), which

is used for data transmission and processing, and a remote radio head (RRH), which takes

the responsibility of signal process [7]. The BBU component is separated from the front

BSs and is centralized in a BBU pool, while RRHs are still left non-centralized among all

BSs. The resource is centralized and can be shared to serve on demand by cloud servers.

The RRHs and C-RAN are connected through the fiber networks. The higher amount

of resource can be centralized to support higher traffic load requirement to improve the

2
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network resource utilization.

Such centralization brings high flexibility to the mobile network operators [8]. The

centralization management mechanism reduce the operation costs. For example, server

site rental fee or cooling energy will be less than un-centralized mechanism [8], [9]. Fur-

thermore, centralization environment provides some directions to improve the utilization

and performance. Several existingmethods, such as bin packing [10], scheduling [11], and

load balancing [12], require to be adopted in C-RAN. These studies had shown the cen-

tralization reduces capital expenditure (CAPEX) and operational expenditure (OPEX) [13]

than the decentralized network environment and subsequently achieved energy efficiency

(EE) [9], [14]. This is one of the reasons to handle resource allocation with non-distributed

schemes to enhance the cost-benefit from the the network operators perspective.

1.2 Motivation

Besides the cooling energy consumption and the site rental save, what matters more

is the power consumption of the operation of all servers. Even though centralization may

help lower possible cooling costs, the power consumption still poses a great problem to

5G operators, for that around 80% of the energy is consumed by BSs to operate a cellular

network [15]. Therefore, EE is a great concern when operators host a network. In the

past, when BBUs and RRHs are still tied together in a BS, the BSs must be turned on all

the time to be ready to serve UEs; therefore, it creates energy waste if there is no service

need.

One of the advantages to separate BBUs and RRHs is to build up the BBUs such

3
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that the resource is efficiently used and process required power is reduced. The traditional

resource handling method is individual processed by each BS. A set of BSmight exchange

message to observe high performance. Oppositely, the BBU pool is centralized and is

controlled by a coordinator to assign the tasks in a set of servers. When the traffic load is

low, a part of cloud servers can be suspended to save energy. Thus, it would be helpful

to achieve higher EE and lower capital and operational expenditures once a cloud host

is suspended and even turned off [14], [16]. When a server is turned off during off-peak

hours, the energy consumption might save about 60% [5].

It can be easily inferred that higher number of idle servers results in higher amount

of power consumption. Consequently, the strategic of this work is to increase the number

of idle servers through a near-optimal task allocation scheme. To show the importance of

task allocation strategy quality, we present a simple example below in Figure 1.1.

Figure 1.1A shows a scenario with 8 time intervals and 7 tasks. The black time scale

above marks the flow of time, and the red lines below denoted from 1 to 7 stand for the

task existence in the system. Task 1 appears from the time period 2 to 5, and tolerable

time period of task 6 is from time 5 to 8. Furthermore, this work assumes that a server

can only process one task at the same time, and every task is un-weighted. Figure 1.1B is

one the optimal solutions for this situation. If we expect every task should be served, then

we need to turn on three servers, denoted by red solid line, green dashed line, and cyan

dotted line. Such optimum is not unique: if we swap task 2 with task 3, we can still get

an optimal solution.

However, a bad task allocation mechanism may fail to assign the tasks properly, as

shown in Figure 1.1C and 1.1D. Figure 1.1C shows a situation where the system turns on

4
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1       2       3       4       5       6       7       8
Time

Task

(1)
(2)
(3)

(4)
(5)

(6)
(7)

(A) A scenario with 8 intervals and 7 tasks

1       2       3       4       5       6       7       8
Time

Task

(1)
(2)
(3)

(4)
(5)

(6)
(7)

(B) When we have 3 servers, all tasks may enter the
system

1       2       3       4       5       6       7       8
Time

Task

(1)
(2)
(3)

(4)
(5)

(6)
(7)

(C) Bad example: use 4 servers to serve the tasks

1       2       3       4       5       6       7       8
Time

Task

(1)
(2)
(3)

(4)
(5)

(6)
(7)

(D) Bad example: fails to serve the tasks while it is
possible

1       2       3       4       5       6       7       8
Time

Task

(3)
(4)

(5)
(6)

(7)

(E) If we only have 2 servers, some tasks will be
dropped

1       2       3       4       5       6       7       8
Time

Task

(1)
(2)

(4)

(6)
(7)

(F) Another choice of tasks if we have 2 servers

Figure 1.1: Different task allocation strategies

four servers to serve all the tasks (the fourth server is marked by an orange dashed dotted

line). In this case, the power consumption rise and lowers the final profit. Figure 1.1D

5
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demonstrates other worse task allocation result where the system is not able to serve task

2 while it is possible to do that, as shown in Figure 1.1B. When such case happens, the

network operator may have to bear the service failure penalty, which does harm to the

revenue.

Nevertheless, the resource is finite, and we cannot always have as many servers as we

wish. When the resource is not sufficient, we have to make some trade-off between the

tasks. Figure 1.1E and 1.1F show 2 different possible choices for operation. If we can

only have 2 servers at most, we can choose to block task (1) and (2) (Figure 1.1E) or task

(3) and (5) (Figure 1.1F).

Because properties vary from tasks to tasks, final profit may also differ if we make

different decisions. In addition, pursuit of high profit is becoming more touch when there

are more tasks, more servers, or when a server can process multiple tasks during one

interval. Thus, a good task allocation strategy is indispensable, and this is also the goal

of this thesis. In this thesis, we try to incorporate the bin packing, scheduling, and traffic

shaping technique to design a task allocation strategy that may help network operators

maximize the profit.

1.3 Thesis structure

The remaining part of this thesis is organized as below. Related work is listed in

Chapter 2, and in Chapter 3, the mathematical model is described. After that, the solu-

tion approach is presented in Chapter 4. Experiments are explained in Chapter 5, and the

conclusion is given in Chapter 6.

6
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Chapter 2

Related Work

2.1 Bin packing

The bin packing problem (BPP) describes a situation where a set of various sizes of

objects, which to be packed to bins later, and a set of bins exist, and the goal is to use a

minimum number of bins to pack all the objects. BPP is proved as an NP-hard problem

by [17]. Despite the hardness of this problem, some methods, such as first-fit (FF) and

best-fit (BF), are provided by [17]. The first-fit algorithm packs the object to the first bin

that can contain the object, while best-fit algorithm finds the bin with minimum residual

capacity that can take the item.

These methods are improved by sorting the weights of items in descending order ini-

tially, denoted as FFD (first-fit descending) and BFD (best-fit descending), respectively.

Both extension methods provide an approximation to the optimal arrangement. [18] gave

a proof that FFD and BFD provide worse number of bins was
11

9
OPT + 1 bins, where

7



..

doi:10.6342/NTU201704109

OPT is the optimum. The “descending” order is not the necessary condition to achieve

optimization. The sorting order leads to observation of high solution such as that a set of

tasks is sorted based on the designed weights according to the multipliers observed from

Lagrangian relaxation subproblems.

Bin packing technique is adopted by [10] to study the traffic load and server capacity

problem. A set of servers denotes the set of bins that packs a set of client requests, which

denotes the items. This concept is adopted in this work.

Hu et al. modeled the problem as a 2-D bin packing problem that includes signal

processing and bandwidth limits [19]. It shows that the first-fit and best-fit algorithms

are still applicable in C-RAN and uses best-fit descending as an approach to solve the

problem. This concept inspires us the concept to set multiple limits, such as the CPU and

the memory limits in this work when packing tasks into servers, and in the experiment

part, we will also use this as an evaluation for our result. The difference mainly consists

of 2 parts. The first one is that this work mainly focuses on BBU aggregation and does not

assume the tasks weighted. The second one is that the authors assume that the supply of

resource unlimited. Therefore, as we will see in the experiment section, some difference

exist in the experimental results.

Besides the original definition of bin packing that the goal is to minimize the number

of bins used [20]. Different targets, such as power consumption minimization, are set in

[21], and our target here is the maximization of an operator’s revenue.

8
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2.2 Task scheduling

Scheduling refers to the arrangement of work, and is widely applied in many indus-

tries, such as manufacturing [22], transportation [23], and online video streaming [24].

Scheduling aims to provide an order that each client receives its required service. Many

heuristics have been proposed like first in first out (FIFO), earliest deadline first (EDF),

and shortest job first (SJF) to sub-optimally solve the problem due to the problem hard-

ness [25]. Similar to BPP, these heuristics involve sorting. Several sorting targets lead

to various schedules. Other than sorting-based heuristics, fair scheduling heuristics (e.g.,

round-robin scheduling) is also proposed.

Scheduling can be used both in uni-core and multi-core situations, where a single task

and multiple tasks are processed simultaneously. Suppose a situation where a server can

serve only one task at one time, and multiple servers exist. Such scheduling problem will

become an “interval scheduling problem”, as illustrated in Figure 1.1. Task scheduling

takes time into consideration in addition to the BPP. In BPP, the packing process is done

in one interval. Namely, all items exist in one interval and only stay for only one time

slot. However, task requests may not come at the same time and may stay in the system

with several time slots. The traditional BPP schemes cannot be applied directly. Thus,

this work proposed a new method to solve the problem.

Fair scheduling technique is used in [26] and EDF is suitable for real-time traffic load

scheduling, as pointed by [27]. In our experiment, the EDF concept is also utilized during

the scheduling process. Authors of [11] decompose the problem into users and BSs, where

the BSs are divided intomultiple power zones (PZs) and power levels (PLs). A PZ includes

9
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several PLs. Douik et al. further add an upper bound on PLs [28]. This inspires us the

idea of scheduling in C-RAN by modeling the problem as a user-server-time assignment

problem. The difference is that each PL is exactly allocated to one user in [11], [28], but

multiple users can be processed by a server during one interval is addressed in this work.

2.3 Load balancing

Several studies had considered load balancing among servers during scheduling. The

main idea of the load balancing [29]–[31] is to distribute the traffic load among a given set

of cloud servers. The load balancingmechanisms aim to improve the quality of experience

[12]. Chabbouh et al. had studied the load balancing through setting the score, which is

measured by CPU, memory, and bandwidth utilization rate, in a multi-server environment.

They addressed the problem to avoid overload score to prevent items from distributing to

other resources [12]. The score concept is also discussed in [32] that the balancing process

is triggered when the score is higher than a given threshold. However, the virtual mechanic

(VM), which is configured a specific amount of resource before used, is contemplated in

this work. Thus, the traffic load is only considered within a VM.

How to pack the VMs, which are the task process units, in a turn-on servers is one of

the major issues in this work. VM concept requires low overhead even when the traffic

load is high, and we want to minimize the number of active servers in order to lower

the cost; hence, the traffic packing among the given power-on servers is the major issue.

Furthermore, the arrival tasks might cover several time slots with a given tolerable delay

time. The processing time can be distributed in various snippets. Suppose a task only
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stays in one server throughout its process period, which is similar to [11]. This study

tries to shape the load over a set of processing time slots. Accordingly, this work aims to

minimize the number of active cloud servers, which is powered on to handle the tasks, to

reduce the required power-on cost.
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Chapter 3

Mathematical Model

3.1 Problem description

In a C-RAN system, there is a resource pool consisting of several servers ready to

serve clients in multiple time intervals. The decision here is to let tasks “enter” the system.

Because it would be computation-intensive to conduct admission control for every time

interval, the process is done at a batch scale. In other words, the intervals are divided

into several batches, and the decision process will be performed at the beginning of each

batch. A task may come at any time, and after its arrival, it will register itself in the system.

Because admission control only takes place at the start of a batch, if that task comes during

the middle of a batch, it is not until the next batch can it enter the system.

When the next batch begins, the systemwill decide which tasks to take. The processing

time, requirement of CPU and memory, possible revenue, and the status of the resource

pool are all possible considerations that may be applied during the admission control pro-
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cess. During the process, not only the admission status but also the allocation strategy

is made, for there may be multiple BBUs in the system, and the decision that which task

will go to which server may bring difference to the final profit. After the decision process

is done, service of these admitted tasks is begun according to the designated schedule.

Afterwards, when the service is completed (or the task is due, whichever comes first), the

system may charge the client, and the allocated resource is released and ready to serve the

next client.

Besides the revenue side, we should also consider the expenditure side. In Chapter

1, the idea of the power burden of network operators was introduced. Therefore, when

turning on a server for an interval, we should pay the electronic fee. In addition, we

consider the start-up cost, which must be paid when a server is turned on. Finally, the

block penalty refers to the penalty that is imposed on the network operator if a client is

blocked from the system.

The terms used in our model is defined in Table 3.1.

3.2 Problem formulation

The profit of an organization is calculated by gross profit minus cost. Revenue for a

firm comes from its clients, and during the service, cost will simultaneously occur. We

assume that every client is linked with a charging price and that the cost accrues when the

server provides service. The costs taken into consideration are listed in Table 3.1. In this

thesis, we model the target problem as an optimization problem of the following objective

function:
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Table 3.1: Given parameters

Notation Description

T The index set of time intervals, which is {1, 2, 3, . . . , τ}

I The index set of tasks, which is {1, 2, 3, . . . , i}.

Di The demand of computing resource of task i ∈ I

Ri The demand of memory resource of task i ∈ I

Vi The revenue rate of task i ∈ I

Ni Penalty of task i if task i ∈ I is not served

δτi An indicator function, which is 1 if task i ∈ I comes at time interval τ , and

0 otherwise

γi Required processing time of task i ∈ I

ϵi Maximum allowed delayed time of task i ∈ I from its arrival and departure

emn An indicator function, which is 0 if taskm does not want to be assigned to

be the server where task n stays (taskm and n are mutually exclusive), and

1 otherwise

θ Estimated minimum number of blocked tasks

S The index set of servers in C-RAN, which is {1, 2, 3, . . . , s}.

Cs Computing capacity of server s, s ∈ S

Ms Memory capacity of server s, s ∈ S

As The cost rate of turning on server s for a time interval

Es The cost of turning on server s again

O Minimum required number of turned-on servers

15



..

doi:10.6342/NTU201704109

Table 3.2: Decision variables

Notation Description

aτis 1 if task i is assigned to server s at time interval τ , and 0 otherwise

bi 1 if required processing time of task i is not satisfied, i.e., task i is blocked,

and 0 otherwise

xτs 1 if server s is switched on at time interval τ , and 0 otherwise

yτs 1 if server s is switched on again at time interval τ , and 0 otherwise

max
∑
τ∈T

∑
i∈I

∑
s∈S

Viaτis −
∑
i∈I

Nibi −
∑
τ∈T

∑
s∈S

Asxτs −
∑
τ∈T

∑
s∈S

Esyτs (3.1)

Decision variables in this equation are shown in Table 3.2. Constraints are explained

in details in the following sections.

3.3 Task assignment constraints

In this section, constraints related to task assignment will be discussed.

If a task is permitted to enter the system, then there must be exactly one server assigned

to this task for processing between the task’s arrival and deadline. Also, the assigned

server must be turned on in order to serve the client. If a task does not receive required

amount of service time, it is considered as blocked, and penalty will occur. Therefore,

these constraints can be modelled as follows:

∑
s∈S

aτis ≤ 1, ∀i ∈ I, τ ∈ T (3.2)
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aτis ≤ uis, ∀τ ∈ T, i ∈ I, s ∈ S (3.3)

∑
s∈S

uis ≤ 1, ∀i ∈ I (3.4)

∑
τ∈T

∑
s∈S

aτis ≤ γi,∀i ∈ I (3.5)

aτis ≤ xτs,∀τ ∈ T, i ∈ I, s ∈ S (3.6)

∑
τ ′∈T

tτ ′δτ ′i ≤
∑
s∈S

aτistτ , ∀i ∈ I, τ ∈ T (3.7)

∑
s∈S

aτistτ <
∑
τ ′∈T

tτ ′δτ ′i + γi + ϵi, ∀i ∈ I, τ ∈ T (3.8)

aτms + aτns ≤ emn + 1,∀m,n ∈ I, τ ∈ T, s ∈ S (3.9)

γi −
∑
τ∈T

∑
s∈S

aτis

γi
≤ bi, ∀i ∈ I (3.10)
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bi ≤ γi −
∑
τ∈T

∑
s∈S

aτis, ∀i ∈ I (3.11)

θ ≤
∑
i∈I

bi (3.12)

Explanation of the constraints:

• Constraint 3.2: a task may be served by at most one server during a interval.

• Constraint 3.3, 3.4: a task can stay only on one server at most.

• Constraint 3.5: assigned intervals of a task will not be greater than its required pro-

cessing time.

• Constraint 3.6: a server has to be on to serve tasks.

• Constraint 3.7: the service will begin after a task’s arrival.

• Constraint 3.8: the service will terminate before a task’s deadline.

• Constraint 3.9: two tasks cannot be assigned to the same server if they do not want

to.

• Constraint 3.10: a task is considered as blocked if it does not receive enough service.

• Constraint 3.11: a task is not considered as blocked if it receives enough service.

• Constraint 3.12: at least θ tasks will be blocked from the system (for auxiliary use).

Since the feasible space of dual problems may be large and furthermore increases the
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duality gap between the primal problem and the dual problems, we can give an conserva-

tive estimation for θ. Here we propose a heuristic, which guarantees that θ will never be

overestimated.

To find a conservative estimation of θ, we work from the opposite site: what is the

maximum number of tasks that can be taken?, and the following procedure is applied in

every interval

1. Identify all tasks that exist in this interval and other tasks that overlap with those

tasks

2. Store them into a group G, find earliest arrival time A and latest deadline D in G

3. Calculate total resource capacity from A to D

4. Assign tasks from the smallest one, subtract used resource

5. Repeat until no enough resource is available

6. Count the number of allocated tasks

7. Minimum number of blocked tasks is therefore found

3.4 Capacity constraints

The residual computing capacity of a server is calculated as Total computing capac-

ity − Resource used by tasks assigned to this server. Since the computing and memory

resource are considered, two constraints can be set according to this rule.
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∑
i∈I

aτisDi ≤ Csxτs, ∀s ∈ S, τ ∈ T (3.13)

∑
i∈I

aτisRi ≤ Msxτs, ∀s ∈ S, τ ∈ T (3.14)

Explanation of the constraints:

• Constraint 3.13: at any time interval, allocated CPU resource will not exceed a

server’s capacity.

• Constraint 3.14: at any time interval, allocated memory resource will not exceed a

server’s capacity.

3.5 Server switch constraints

There are always at leastO servers on, whereO can be set to different values according

to the environment requirement. If a server is off in interval τ − 1 and on in interval τ ,

reopen cost is paid. Reopen cost will never be paid in two adjacent time intervals. By this

nature, this cost is paid no more than
T

2
times, that is, 0 ≤

∑
τ∈T

yτs ≤
T

2
.

O ≤
∑
s∈S

xτs, ∀τ ∈ T (3.15)

xτs − x(τ−1)s ≤ yτs, ∀s ∈ S, τ ∈ T (3.16)
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yτs + y(τ+1)s ≤ 1,∀τ ∈ T, s ∈ S (3.17)

Explanation of the constraints:

• Constraint 3.15: at any interval, at least O servers are on.

• Constraint 3.16: reopen happens when a server is from off to on.

• Constraint 3.17: reopen will never happen consecutively.
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Chapter 4

Solution Approach

In this chapter, description of our solutionmethod is given. First, the objective function

and constraints are introduced. Next, we are going to solve subproblems related to the

decision variables, and finally comes the derivation the primal feasible solution.

4.1 Lagrangian relaxation method

Lagrangian relaxation (LR) is one of the mathematical methods that can be used in

constrained optimization problems such as integer programming and combinatorial prob-

lems [33]. In a constrained optimization problem, finding the optimal solution may be

difficult because one decision variable may affect another one due to the constraints. The

advantage of Lagrangian method is that it decomposes the original problem (or the primal

problem) into several subproblems (or dual problems) that can be solved independently

and easily with a more straightforward algorithm by removing difficult constraints and
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associating them with corresponding multipliers (µ). Because some constraints are re-

moved (or relaxed), the objective value for the subproblems will be looser compared to

the original problem. In a maximization optimization problem, results from subproblems

will be an upper bound (UB) for the primal problem, and we should aim to minimize the

results from subproblems iteratively to find feasible solutions.

There are many approaches that can be used to solve the dual problem, and the sub-

gradient method [34] is a popular one. In this thesis, we also use this method to solve our

dual problem. When the subproblems are solved, we may use the results µ generated there

in the primal problem. This allows us to use our proposed method to solve the original

problem and to compare the objective value with that from dual problems.

The flow of this method is summarized in algorithm 1.

Algorithm 1: Lagrangian relaxation procedure

1 Initialize the parameters

2 While the convergence level is not reached yet :

3 Solve each subproblem optimally , record the result

4 Use the result from subproblems to solve the primal problems

5 Update the optimal result found so far

6 Check termination condition

7 Adjust multipliers
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4.2 Lagrangian relaxation objective function and constraints

When a constraint contains multiple decision variables, this constraint often poses a

hindrance on the way toward the desired value. Therefore, those constraints containing

more than one decision variables are relaxed, and each of these relaxed constraints be-

comes an element of LR objective function (LROF, which is also the objective function

of the dual problem) in the form of µ. For example, constraint 3.6 is relaxed, so there will

be an item ∑
τ∈T

∑
i∈I

∑
s∈S

µτis (aτis − xτs)

in the LR objective function. After a constraint is relaxed, it is excluded from the original

constraints, making it easier to find the optimal solution in a less tight condition.

Constraints with multiple decision variables are:

1. Constraint (3.6) - a server is turned on in order to serve

2. Constraint (3.13) - requirement less than CPU capacity

3. Constraint (3.14) - requirement less than memory capacity

4. Constraint (3.16) - reopen cost

5. Constraint (3.10) - blocked if required service is not reached

6. Constraint (3.11) - not blocked if required service is reached

7. Constraint (3.3) - a task will stay only on one server
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Relaxing constraints with multiple decision variables, we can derive LROF from the

objective function (equation 3.1) as:

min−
∑
τ∈T

∑
i∈I

∑
s∈S

Viaτis

+
∑
i∈I

Nibi

+
∑
τ∈T

∑
s∈S

Asxτs

+
∑
τ∈T

∑
s∈S

Esyτs

+
∑
τ∈T

∑
i∈I

∑
s∈S

µ1
τis (aτis − xτs)

+
∑
τ∈T

∑
s∈S

µ2
τs

(∑
i∈I

aτisDi − xτsCs

)

+
∑
τ∈T

∑
s∈S

µ3
τs

(∑
i∈I

aτisRi − xτsMs

)

+
∑
τ∈T

∑
s∈S

µ4
τs

(
xτs − x(τ−1)s − yτs

)
+
∑
i∈I

µ5
i

γi −
∑
τ∈T

∑
s∈S

aτis

γi
− bi


+
∑
i∈I

µ6
i

(
bi − γi +

∑
τ∈T

∑
s∈S

aτis

)

+
∑
τ∈T

∑
i∈I

∑
s∈S

µ7
τis (aτis − uis)

(4.1)

The first four elements of equation 4.1 (LROF, and the objective function of the dual

problem) are identical to the objective function. Before relaxation, there are 16 constraints.

Since 7 constraints are relaxed, only 9 constraints exist in the LROF:

1. Constraint (3.2) - at a time, a task is served by only one server
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2. Constraint (3.3) - service is done by a single server

3. Constraint (3.5) - make sure a task get enough service

4. Constraint (3.7) - service begins after a task’s arrival

5. Constraint (3.8) - service is done before a task’s deadline

6. Constraint (3.9) - mutually exclusive tasks that cannot be put together

7. Constraint (3.12) - estimated minimum blocked tasks

8. Constraint (3.15) - minimum required amount of turned on servers

9. Constraint (3.17) - reopen cost when a server is turned on again

After the LROF is built, we can start to develop and solve subproblems in respective

to the decision variables. To establish a subproblem, we first select one decision variable

from the LROF. Next, items containing that decision variable in the LROF are extracted,

which furthermore consist the objective function of the subproblem. In this model, there

are five decision variables, a, x, y, b, and u, so there will be also five subproblems, which

will be discussed later in subsequent sections and denoted as SP1 to SP5.

4.3 Task assignment subproblem - SP1

Extracting items with a in equation 4.1, we can develop the objective function for this

subproblem:

min
∑
i∈I

∑
τ∈T

∑
s∈S

(
−Vi + µ1

τis −
µ5
i

γi
+ µ6

i + µ2
τsDi + µ3

τsRi + µ7
τis

)
aτis (4.2)
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Constraints: (3.2), (3.5), (3.7), (3.8), and (3.9)

Because setting an element of aτis to 1 does not affect whether another element of aτis

is set to 1 or not, this subproblem can be divided into T × I × S subproblems. For each

time, we may select the server swith a minimum value that does not host any rivals of this

task and set the according element of a. Hence, we can use a greedy algorithm to solve

this subproblem, which is explained below:

Because a task can stay on only one server, to find the optimal value, we may test all

servers and select the best value as the result. The procedure is as follows:

Algorithm 2: Algorithm for subproblem 1

1 for each task i :

2 for each time t from arrival to deadline :

3 for each server s:

4 calculate the coefficient C[ t ][ i ][ s ]

5 find the server with minimum value and cause no conflict with other tasks

6 select time with minimum value

7 set decision variable a according to the result

4.4 Server power on subproblem - SP2

Extracting items with x in equation 4.1, we can develop the objective function for this
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subproblem:

min


∑
τ∈T

∑
s∈S

(
As −

∑
i∈I

µ1
τis − µ2

τsCs − µ3
τsMs + µ4

τs − µ4
(τ+1)s

)
xτs, ∀τ < T

∑
τ∈T

∑
s∈S

(
As −

∑
i∈I

µ1
τis − µ2

τsCs − µ3
τsMs + µ4

τs

)
xτs, ∀τ = T

(4.3)

Constraints: (3.15)

Because setting an element of x to 1 does not affect whether another element of x is

set to 1 or not, we can use a greedy algorithm to solve this subproblem, which is explained

below:

Algorithm 3: Algorithm for subproblem 2

1 for each time t :

2 for each server s:

3 calculate coefficient C given t , s

4 if C < 0:

5 set x[ t ][ s ] to 1

6 else :

7 store C

8 if open too less server :

9 open servers with maximum C
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4.5 Server re-power on related subproblem - SP3

Extracting items with y in equation 4.1, we can develop the objective function for this

subproblem:

min
∑
τ∈T

∑
s∈S

(
Es − µ4

τs

)
yτs (4.4)

Constraints: (3.17)

Because setting an element of y (for instance, y3) to 1 prevents another element of y

(in this case, y2 and y4) from setting to 1, a simple greedy algorithm cannot be applied.

To demonstrate this effect, we will consider a relatively small example. Imagine that

if we have 3 elements in the decision set, −4,−6,−5, and this set is ordered and cannot

be sorted or modified; that is, the original order must be preserved. A simple greedy

algorithm will not work here by choosing −6; however, the optimal answer for this set is

−9, by selecting −4 and −5.

The answer of a server for this subproblem can be derived from the following recur-

rence relation:

Yt =



0, t = 0

min(Cτs, 0), t = 1

min(Yt−1, Yt−2 + Cτs), t ≥ 2

where Yt stands for the answer from interval 1 to interval t, and Cτs means the coeffi-

cient of yτs in this subproblem. The final answer for this server can be found at YT , and

aggregating the answer from all servers will produce the final result for this subproblem.
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Having this recurrence equation, we can solve this subproblem using dynamic pro-

gramming (DP) approach, which is explained below:

Algorithm 4: Algorithm for subproblem 3

1 Let Y[ T ] = the optimum for the first T elements

2 Initialize Y[ T ] to 0

3 for all time t and server s pairs ( t , s ):

4 find coefficient C[ t ][ s ]

5 for each server s:

6 find answer for Y[ 1 ] and Y[ 2 ]

7 for all time t after 2:

8 if Y[ t−1 ] > Y[ t−2 ] + C[ t ][ s ]:

9 mark t as used

10 Y[ t ] = min( Y[ t−1 ], Y[ t−2 ] + C[ t ][ s ] )

11 from the final time:

12 if t is marked:

13 set y[ t ][ s ]

14 go back 2 time intervals

15 else :

16 go back 1 time interval

Proof of this approach can be done by a strong mathematical induction:

Proof.
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1. Let Yn be the optimal answer when first n elements are considered

2. When n = 1 ∨ 2, Y1, Y2 can be found trivially

3. Assume when n = k, Y1, Y2, . . . , Yk are correctly found

4. When n = k + 1, Yk+1 = min(Yk, Yk−1 + Ck+1)

5. By strong mathematical induction, our method is proven

4.6 Block subproblem - SP4

By eliminating elements other than b, this subproblem can be written as:

min
∑
i∈I

(
Ni − µ5

i + µ6
i

)
bi (4.5)

Constraints: (3.12)

The solution to this subproblem is similar to what is used to solve a and x (greedy

algorithm).

Algorithm 5: Algorithm for subproblem 4

1 for each task i :

2 find coefficient C[ i ]

3 sort C

4 set b[ i ] to 1 if C[ i ] < 0
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5 if sum( b ) < estimated blocked number:

6 set unset indices to 1

4.7 Auxiliary subproblem - SP5

The last element that has not yet been discussed is u. If we extract elements with u,

we will get the following objective function for this subproblem:

min
∑
τ∈T

∑
i∈I

∑
s∈S

−µ7
τisuis (4.6)

Constraints: (3.4)

This subproblem is relatively simple by setting uis to 1 if −µ7
τis is negative and 0

otherwise.

4.8 Getting primal feasible solution

After calculation of the five subproblems discussed above is done, we can find some

information in the obtained result. Using information obtained from SP1 to SP5, we can

build a strategy for task assignment. The brief procedure is as follows:

1. Sort clients according to their µ value

2. Sort servers according to their µ value
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3. Assign clients to servers in their respective order

4. Switch on or off servers according to their status

5. Calculate objective value

First, we propose the algorithm called TABLE (task allocation by LR evaluation).

Through subproblems, importance of tasks and servers are represented in the form of µ;

therefore, the sum of µ values can be used as an index. Furthermore, CPU and memory

requirement and deadline of tasks are also important to task allocation strategy. We define

the mu_importance function as

MI =
TV ×ms

C ×M × b2

, where the symbols are explained below in details.

• MI: importance in regards of µ, this is also the base of sorting.

• TV : total value that can be generated from a task.

• ms: sum of µ that is related to the task, which is calculated by

∑
τ∈T

∑
s∈S

µ1
τis

, where i is the index of that task.

• C: CPU requirement of a task.

• M : memory requirement of a task.
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• b: residual buffer time of a task.

If task a has a higher mu_importance than task b, then task a will be allocated before task

b. Description of the concept of this algorithm is represented next.

In order to generate a higher revenue, it can be easily seen that we should take tasks

with a higher value, so therefore TV appears in the numerator. On the other hand, if a

task takes more resource than another one, it is likely that it will prevent other tasks from

entering the system; as a result, both C and M appear in the denominator part. Next, we

are considering the result generated from subproblem 1. Asmentioned earlier, we takeµ1
τis

into consideration. µ1
τis corresponds to the unmatchness between task i and server s during

time interval τ . Because we are considering the importance of a task, we accumulate all

µ1
τis with a given task ID i. Hence, a higher sum of µ1

τis means a greater difference, which

can be treated as a measure of importance, between the task and the server, and a task

with higher µ value should be processed first. Finally, the residual buffer time shows the

urgency of a task: when residual buffer time of a task is larger, it usually means that the

task are willing to wait and can be processed later. Under this circumstance, the resource

can be allocated to tasks that are due soon, and this procedure can prevent potential penalty

that may be generated from blocked tasks (tasks that do not receive enough service).

Next, the servers are sorted by their µ values in a similar manner, except that in this

case, it is µ2 and µ3 that are compared. µ2 stands for the difference between the CPU

capacity and the requirement, while µ3 represents the memory difference. To find the

server with higher priority, we sum all µ2 and µ3 as the mu_importance of this server,

given the server index s, and sort the servers according to this result.
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TABLE algorithm is summarized in the following pseudo code:

Algorithm 6: TABLE algorithm

1 calculate mu_importance of the tasks

2 sort the tasks in mu_importance descending order

3 calculate mu_importance of the servers

4 sort the tasks in mu_importance descending order

5 for each task :

6 for each server :

7 if server can take the task :

8 break

9 else :

10 take the task

Next, when tasks are being assigned to servers, we may find some “peaks” of uti-

lization rate. These peaks may hinder us from allocating service to tasks (due to their

deadlines.) When such case happens, we first try to remove some tasks from servers and

then assign the new task to the server. After that, we see if all tasks removed in the previ-

ous step can be put back. If it succeeds, then this new task, which may not enter the system

before this procedure, may enter the system now. This procedure is named as ROTATE

(reassignment of tasks aim to equilibrium).

ROTATE algorithm is summarized in the following pseudo code:

Algorithm 7: ROTATE algorithm

1 for each task :
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2 for each server :

3 if server can take the task :

4 break

5 else :

6 remove the tasks already in this server until this task can enter

7 take this task

8 put all removed tasks back

9 if all removed tasks can go back:

10 break # ROTATE method succeeds

11 else :

12 restore the original state ( before this task enters )

Finally, after the process is done, we check if there is any server that is having a deficit.

In other words, the revenue does not cover the costs. If it happens, we further consider

that whether turning the server off and marking all tasks belonged to this server as blocked

will be better or not (actually a comparison between a greater loss and a smaller loss). If

turning off this server is better, we will turn off the server and drop all tasks on this server,

and these tasks will be considered as blocked and the block penalty will be imposed. This

algorithm is abbreviated as TOWEL (turn off when evaluated loss).

TOWEL algorithm is summarized in the following pseudo code:

Algorithm 8: TOWEL algorithm

1 for each server :

2 if loss happens:
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3 check the revenue change when turned off

4 if turn off is better :

5 turn off this server

6 mark all tasks in this server as blocked

The overall primal problem algorithm can be written as:

Algorithm 9: Primal problem solution

1 solve the dual problem

2 for each task :

3 TABLE()

4 ROTATE()

5 for each server :

6 TOWEL()

7 calculate the final objective value
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Chapter 5

Computational Experiments

In this chapter, we will list several scenarios and examine the trends in the chart. This

chapter will consist of four parts, which focus on different aspects of the system. These

parts are listed below:

1. Task quantity - test how task quantity affects the objective function.

2. Server quantity - test how server quantity affects the objective function, given that

the total computational capacity is fixed.

3. Task processing time - due to the different nature of clients, some groups of user

take a longer time in the system, while other may only take a short period in the sys-

tem. We will examine what will happen when the average processing time becomes

longer.

4. Buffer time - generally, if clients tend to wait longer for them to be served, they

will be less likely to be blocked from the system, which subsequently prevents the
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operator from being fined. In this part, different values of allowed buffer time will

be examined, and the difference between objective values will also be illustrated.

5. Task block penalty - when a task is blocked from the server, its corresponding

penalty will be imposed on the network operator. When the penalty changes, so

does the objective value. In this part, the relationship between the penalty and the

objective value will be examined.

6. Task revenue rate - operators may propose many deals to customers, and different

prices may be given to different customers. If the revenue rate is higher, we can

expect a higher profit, so we will try different rates and see the change in the result.

7. Server cost rate - as discussed earlier, the electronic fee is a great burden for oper-

ators. For instance, in summer, the electronic fee rate will be higher than in winter.

This part will try to find the impact that server cost rate brings on the objective value.

The arrival, deadline, demand, and other characteristics are generated randomly using

$RANDOM in bash. For each experiment, 8 curves are produced. The first curve is the

baseline. For baseline, we use the next-fit algorithm that is introduced in section 2.1 and

denote the solution as BP-FF. In addition, we take the approach proposed by [19] and

denote it as BFD (best-fit descending) in the context and Xu et al. in the charts. The next

three lines are results for our proposed TABLE, TOWEL, and ROTATE algorithm. Next

comes the result that combines the above proposed methods, which is denoted as Primal.

The last curve is the result from subproblems (LR dual problems), which is an upper bound

for the primal problem and is denoted as Dual in the following sections.

Also, in each section, the improvement ratio is calculated. The improvement ratio is
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calculated by
Primal − Baseline

Baseline
where Baseline is substituted by BP-FF and BFD de-

scribed above.

5.1 Experiment on task quantity

First, we will examine the trend of the objective function. The control variable here is

the number of the tasks. In our experiment, the quantity of tasks ranges from 200 to 800.

5.1.1 Uniform arrival

In the first case, we will test the performance when the clients come steadily. This is

a simulation for daily cases, where users come in a regular fashion. In the next case, we

will find the result when arrival of the clients is not stable. The result of a steady arrival

rate is drawn in Figure 5.1.

The analysis consists of two parts: when task number is less than and greater than 400.

In our setting, the demand of 400 tasks is approximately equal to the server capacity, and

we will examine these situations separately.

Part 1: |I| from 100 to 400 This is the case where the demand does not exceed (or

slightly greater than due to the randomness of data generation) the server capacity. In this

part, BFD performs better than our method. In such cases, we can expect that most of

the existent tasks will be packed into servers, so there will not be much difference in the

revenue part. But on the cost side, BFD starts the process from the task with the highest
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Figure 5.1: Uniform arrival time

demand and packs the tasks to the server with fewest capacity that can accommodate

it. This process will then pack task to the servers that are already in use (because their

available capacity is smaller), and in the end, fewer servers will be turned on. Hence, the

cost from turning on and re-turning on servers will be lower, which helps the revenue.

Part 2: |I| from 500 to 800 When the demand exceeds the capacity, because we can

almost be certain that some tasks will be blocked. In BFD, it only considers the demand

of the tasks, therefore, it will fail to achieve a higher profit. On the other hand, in TABLE

method, because the tasks are sorted by their mu_importance, tasks with higher cost-price

ratios will be considered first. In addition, when there are more tasks to choose from, we

can select more profitable tasks. Therefore, as shown in the figure, when there are more

tasks, the objective value rises and our method has a better performance than BFD.
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Table 5.1: Improvement ratio for uniform arrival

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

200 15236 11511 32.36 18590 -18.04

300 26314 21614 21.74 30378 -13.37

400 37822 34120 10.85 42747 -11.52

500 45770 35973 27.23 40619 12.68

600 49221 34311 43.46 31016 58.70

700 51500 30847 66.95 25360 103.07

800 53395 27683 92.88 20319 162.78

5.1.2 Bursty arrival

This case is very similar to the first scenario, except the pattern of the arrival time of the

tasks. In the last experiment, the distribution of arrival time follows uniform distribution.

Beyond that, we also tested the overall performance of our method when the tasks come

in a bursty pattern. The result is shown in Figure 5.2.

To simulate a bursty pattern, we first select some burst start points and the bursty

period. After the bursty period is set, the tasks can come only during these periods.

The chart is also similar to Figure 5.1, but however, method TOWEL and ROTATE do

not perform as good as when tasks come on a regular basis. This is because BFD, TOWEL

and ROTATE do not take the importance of the tasks into consideration, and therefore fails

to achieve a higher objective value when not all tasks can enter the system.

We can also see how bursty arrival affects the objective value: all results are worse
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Figure 5.2: Bursty arrival time

when compared with the last experiment. One explanation is that because the capacity

of the servers is finite, when there are many tasks coming in a sudden, there will not be

enough buffer time for the servers to serve the tasks. In other words, those tasks that are

not served are considered as blocked, and the penalty, which lowers the revenue, will be

imposed on the objective value. In addition, due to the block penalty, the objective value

becomes negative when the penalty exceeds the revenue.

5.2 Experiment on fixed capacity with different number

of servers

In the second part of our experiment, we will test how the combination of server quan-

tity and capacity affects the objective value. For example, if the system capacity is fixed

at X , then which one will be better, 2 servers with each server with a capacity of
X

2
, or
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Table 5.2: Improvement ratio for bursty arrival

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

200 9856 4236 132.67 11825 -16.65

300 16479 7754 112.52 17181 -4.09

400 20389 6407 218.23 16818 21.23

500 24291 3725 552.11 17474 39.01

600 26919 -583 4717.32 13657 97.11

700 28619 -4861 688.75 4234 575.93

800 27390 -9560 386.51 -773 3643.34

4 servers with each server with a capacity of
X

4
? Or to be more general, when the total

capacity is X , and we have n servers with each server with a capacity of
X

n
, which one

of a larger or a smaller n will bring a higher revenue?

In addition to that, we tested 3 different conditions: when the server capacity is more

than the expected required amount of service of the tasks, when the server capacity is

approximately equal to the need of the tasks, and when the server capacity is less than the

requirement of the tasks.

5.2.1 High capacity

We will first examine how the combination of servers affects the objective value. We

illustrate the trend using server quantity from 2 to 10. The result is shown in Figure 5.3A.

Exaggerating the trend by excluding the LR curve, we can see the trend better in Figure

5.3B. It can be seen that when there are more (but smaller) servers, the objective value will
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Figure 5.3: Capacity greater than requirement

also rise. This is becausewhen there aremore servers, amore flexible arrangement of tasks

between servers can be achieved. To illustrate this effect, we can imagine that requirement

is about 60% of available resource. When there are only 2 servers, we have to turn both

on in order to serve all tasks. In contrast, when we have 10 servers, we can turn on only
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Table 5.3: Improvement ratio for high capacity

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

2 18752 9618 94.97 17228 8.85

4 21543 13894 55.05 20497 5.10

6 22370 13951 60.35 24040 -6.95

8 22611 15769 43.39 26253 -13.87

10 23554 15301 53.94 25459 -7.48

6 servers out of the 10. In this way, we can save costs, and this will subsequently elevate

the operational revenue.

In this situation, BFD performs better than our method. Similar to the discussion in

section 5.1, BFD tends to aggregate tasks in as less as possible servers, and therefore

lowers the cost for turning on the servers. In the following subsections, we will examine

other situations where the capacity is not that abundant.

5.2.2 Medium capacity

When the system capacity is close to the need of the clients, the chart is very similar to

the counterpart of the “higher” version in section 5.2.1. This is reasonable because in these

2 situations, generally no tasks will be blocked due to the sufficient supply of resource.

The result is shown in Figure 5.4A and Figure 5.4B.

In section 5.2.1, BFD performs better; however, when the resource is more limited,

BFD does not perform as well as the previous result. Like the discussion in section 5.1,

when resource are limited, our method has a better performance in finding the “right” tasks
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Figure 5.4: Capacity approximately equal to requirement

5.2.3 Low capacity

When the capacity is relatively smaller than the required amount of service, the trend
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Table 5.4: Improvement ratio for medium

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

2 14866 1489 898.39 9548 55.70

4 16654 2031 719.99 8782 89.64

6 17750 4620 284.20 9482 87.20

8 17578 4417 297.96 8497 106.87

10 18335 4436 313.32 11459 60.01

Table 5.5: Improvement ratio for low capacity

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

2 8776 -7473 217.44 -5469 260.47

4 10368 -5457 289.99 -4010 358.55

6 10558 -4762 321.71 -3684 386.59

8 11140 -3770 395.49 3993 178.99

10 10473 -4122 354.08 -1310 899.47

discussed above does not significantly exist anymore. When the system capacity is less

than the need, all servers are very likely to work from beginning to end. This concept

is similar to the bottleneck that will be discussed in cost accounting. When there is a

bottleneck during a product line, that bottleneck must be run at full speed to avoid further

decrease to the efficiency. When there are not enough servers, generically all servers must

be on all the time in order to server more tasks. However, when all servers are on, the

advantage discussed above does not exist, and that is why there is no significant increase

in objective value by the increase of the number of servers. Also, in this scenario, our

method performs better than BFD. The result is depicted in Figure 5.5A and Figure 5.5B.
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Figure 5.5: Capacity less than requirement

5.3 Experiment on processing time

In the third part, we will discuss the correlation between the max processing time γ and

the objective function. In general, when γ becomes larger, it will also be more difficult to
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Figure 5.6: Processing time

assign the tasks properly because every task now takes more resource in the system and

furthermore decreases the available resource that may be reserved for other use when the

clients do not stay in the system so long.

In our experiment, processing time of each task follows a uniform distribution. In the

following chart, the x axis denotes the max possible processing time for each task. For

instance, a value of 10 for xmeans that the processing time follows a uniform distribution

in the interval of [1, 8]; that is, the expected processing time is
1 + 8

2
= 4.5. The result is

shown in Figure 5.6.

The first observable phenomenon, which can be easily explained, is that all objective

values rise through the increase of tasks’ processing time. Since Vi in the objective func-

tion denotes the revenue rate of task i and Vi×γi equals the revenue that can be generated

from this task, when γi becomes larger, the revenue also rises. From the chart, it can be

discovered that when γi grows in an exponential fashion, so does the objective function.
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Table 5.6: Improvement ratio for processing time

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

1 -1209 -1209 0.00 -1084 -11.53

2 626 -74 945.95 1751 -64.25

4 4525 2900 56.03 7875 -42.54

8 10351 5998 72.57 7891 31.17

16 20389 6407 218.23 15623 30.51

32 54713 17920 205.32 21014 160.36

64 99893 25519 291.45 7452 1240.49

Next, we can see that when the processing time is relatively small, there is no signif-

icant difference between these methods; however, when the overall processing time be-

comes larger and larger, difference between the methods also gets more noticeable. Here

we can also see that because TABLE method takes the importance of tasks into consider-

ation, it succeeds to find the tasks with a higher priority and assign them into the system

first. On the contrary, BFD, ROTATE and TOWELmethods fail to do so when the system

becomes more “crowded.”

With other things being equal, the increase in processing time (demand per interval

is constant) results in the increase in the total demand. Consistent with previous discus-

sion, the performance of BFD is not good when demand exceeds server capacity as the

processing time goes above the threshold.
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5.4 Experiment on tolerance and waiting time

The final part of the experiment will try to find the correlation between the waiting

time ϵ and the objective value. Generally, the larger ϵ is, the more flexibility there will be,

and subsequently, the chance of being blocked from the system of a task gets lower and

helps improve the result. In this experiment, we will show the results of different ϵ values.

With tolerance, we may achieve traffic shaping because the task can stay in the buffer

for a while before begin serviced. In this way, the system can transform the traffic burst

into a relatively smooth pattern, and as the tolerance becomes larger, the possibility of

traffic shaping also increases.

Figure 5.7 shows the objective value for different ϵ values. The curve is consistent with

our guess, which is that ϵ is in a positive correlation with the objective value. Also, BFD

performs worse because the resource is limited; however, the objective value obtained

from BFD also increases by the increase in the buffer time.

From the chart, we can also find an interesting phenomenon: when ϵ ∈ [1, 20], the

objective value steadily increases with ϵ, but however, when ϵ ∈ [20, 80], the objective

value does not increase as noticeably as when ϵ is lower. Such result gives us an implica-

tion that when ϵ reaches a threshold, the objective value will be approximately constant.

In other words, a value of 20 units for ϵ is large enough to provide the desired amount

of flexibility of assignment of the clients to the system in this scenario. This idea can be

useful for operators because an operator can set a quality of service (QoS) threshold and

tell its users the maximum possible delay for their service. If the delay is not acceptable
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Figure 5.7: Different allowed buffer time

in practice (in this experiment, delay of 20 units of time), then operator should add more

servers (or computing resources) to the system.

5.5 Experiment on task block penalty

In this part, we will test how task penalty affects the objective value. It can be easily

guessed that when the penalty is higher, the objective value will go down. This is because

when the number of tasks are determined, there is no other influence that can be done to

the objective value. The result is shown in Figure 5.8.

From the chart, we can find that when the task penalty grows in a linear fashion, so is

the objective value, which is consistent with our previous guess.
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Table 5.7: Improvement ratio for buffer time

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

0 12105 -1027 1278.68 -11909 201.65

2 18562 4239 337.89 -8983 306.63

5 23323 15603 49.48 -1324 1861.56

10 30713 25508 20.41 4042 659.85

20 39745 37456 6.11 16818 136.32

40 41341 40641 1.72 27000 53.11

80 41241 40266 2.42 26948 53.04
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Figure 5.8: Different task penalty
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Table 5.8: Improvement ratio for task block penalty

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

0 42153 33039 27.59 21538 95.71

20 40253 31199 29.02 19178 109.89

40 38353 29359 30.63 16818 128.05

60 36453 27519 32.46 14458 152.13

80 34553 25679 34.56 12098 185.61

100 32986 23839 38.37 9738 238.73

5.6 Experiment on task revenue rate

Next, the relationship between the expected revenue rate and the objective value is

examined. If the expected revenue rate is higher (maybe due to the nature of the potential

clients), we may be able to serve the tasks with higher revenue rates, which will further

increases the profit of a network operator. In this scenario, we will test expected task

revenue rate from 20 to 100. The result is shown in Figure 5.9.

When the expected revenue rate is higher, the objective value is higher, too. Compared

with BFD, when the revenue rate is higher, the difference between their method and ours

slightly becomes larger. This is due to the point that BFD only considers the loading of

the tasks and does not consider the revenue. Since a task with higher demand does not

guarantee higher profit rate, simply assign from the task with highest demand will fail to

find the most profitable tasks.
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Figure 5.9: Expected task revenue rate

Table 5.9: Improvement ratio for task revenue rate

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

20 -11452 -15571 26.45 -19752 42.02

40 29358 20009 46.72 11568 153.79

60 58092 41969 38.42 32548 78.48

80 109547 91449 19.79 73968 48.10

100 130840 108309 20.80 87868 48.91
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Figure 5.10: Cost for turning a server on for an interval

5.7 Experiment on server cost rate

The last part of our experiments will go through the cost rate of the servers; that is, A

andE in our model. The trend of the curve is similar to the task penalty section previously

discussed: when cost rate is higher, the objective value will go down. We graph the result

in Figure 5.10.

The cost rate and the objective value are in a linear relationship. The reason behind it

is also similar to the task penalty: change in the cost rate will bring a determinable increase

or decrease to the objective value because we can expect that the number of active servers

is fixed, with other things being equal.
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Table 5.10: Improvement ratio for server costs

Scenario Primal BP-FF Imp. ratio

to BP-FF

BFD Imp. ratio

to BFD

2 38353 29359 30.63 16818 128.05

4 -3257 -14866 78.09 -27307 88.07

6 -44168 -59091 25.25 -71432 38.17

8 -85038 -103316 17.69 -115557 26.41

10 -125727 -147541 14.79 -159682 21.26
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Chapter 6

Conclusion and Future Work

In this chapter, conclusion is given, and we also list some possible improvements that

may be helpful to future researchers.

6.1 Conclusion

Task allocation strategy plays an important role for 5G operators, and the development

of C-RAN allows us to design various strategies to serve the clients. In this thesis, wemod-

elled the scenario as an optimization problem with constraints that may be encountered

in real life and used the Lagrangian relaxation method, from which we derive the task

assignment result. Moreover, in addition to the Lagrangian relaxation method, we also

combined bin packing, task scheduling, and traffic shaping technique when considering

the original task allocation problem in the proposed heuristic.

After that, multiple aspects are considered during the experiment part. We evaluated
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the performance when task quantity, server quantity, processing time, and tolerance time

are variable respectively, with statistical chart and interpretation given for each case. Also,

we tried to find the change in the objective value when the given variables in the objective

function changes. The performance was then compared with best-fit descending method.

From the result, we can see that when the supply of resource is sufficient, BFD is able to

produce a better result. However, when the resource is limited (as often the case in daily

life), the Lagrangian multipliers are able to significantly improve the objective value, and

when combined with other approaches, the outcome can be further enhanced.

6.2 Future work

In this thesis, we assume that every client can only stay at one server; however, we

may further consider the situation where a client may stay on multiple servers throughout

its lifetime. In such cases, migration happens. By migration, we can aggregate tasks from

multiple servers into one (or fewer) server(s), which may further lower possible cost. On

the other hand, migration cost may happen during the migration process. We suggest that

future researchers may take the migration technique into consideration.

Also, we do not consider other miscellaneous costs that may occur when our procedure

is run on real servers. For example, we do not consider the transmission delay, and in

real life, clients may not come in the same pattern as we designed. The difference in the

arrival pattern may affect the final result. Also, since the intervals being served need not

be consecutive in our model, when the service process is interrupted by the system, the

current state must be saved before it can be used later. The swap-in and swap-out cost
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is also one of the costs that can be considered. If these criteria can be integrated to the

model, we believe that the model will be much more closer to the real life situations.
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