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摘要

為了理解在光合系統中複雜激子的能量傳輸行為，建立一個粗粒化

模型是必要的。在本次工作中，我們開發了一個系統化的方法。藉由

最小分割法來建構光合系統的粗粒化模型。我們使用這個方法處理三

種不同的光合作用網路並且這些粗粒化模型可以很好的還原激子能量

傳輸的動態演變。這些粗粒化模型可以給我們對這些光合作用系統有

新的見解，也可以有效的讓我們理解複雜的動力學反應。
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Abstract

To understand complex excitation energy transfer (EET) networks in pho-

tosynthetic systems, building a coarse-grained model is necessary to obtain

a simplified representation. Here, we developed a systematic approach to

produce coarse-grained models for photosynthetic systems by combining a

minimum-cut method and a top-down clustering algorithm. The new ap-

proach was applied to investigate EET networks of three photosynthetic sys-

tems, and we demonstrate that our approach not only reproduces the popu-

lation dynamics very well but also provides novel insights into the spatial-

temporal EET dynamics in complex photosynthetic systems. The new ap-

proach could be a very powerful tool towards the elucidation of complex ki-

netic networks that is commonly encountered in Chemistry.
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Chapter 1

Introduction

Photosynthesis, the process converts light energy to chemical energy, fuels most life

on Earth. In the initial steps of photosynthesis, excitation energy transfer (EET) plays a

crucial process. Light energy captured in the antenna moves between pigments and finally

reaches the reaction center to trigger charge separation.

Photosynthetic systems utilize complex networks composed of chlorophyll molecules

in protein-pigment antenna complexes to harvest sunlight and transfer the excitation en-

ergy to the reaction center for energy conversion. The excitation energy transfer (EET)

networks of photosynthetic systems exhibit high quantum efficiency, and understanding

the mechanism of energy-flow control in these networks may lead to novel design princi-

ples for light harvesting that can improve artificial photosynthetic systems.

Nevertheless, the size and complexity of the photosynthetic networks often prevent a

clear understanding if the full details of the system is to be considered. To this end, many

previous studies have simulated and constructed simplified network models for various

photosynthetic systems. For instance, Ruban’s group have try to modeling the photosys-

tem II based on the assumption that the excitation energy transfer within a pigment-protein

complex is much faster than the intercomplex excitation energy transfer [14].

However, these simplified cluster model for photosynthesis networks are often con-

structed ad-hoc based on fitting to population dynamics or based on considerates of cou-

plings between sites [16, 15] Therefore, a systematic method to yeild reduced model for

EET dynamics in a photosynthetic system is desirable.
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In this study, we aim to take a graph theoretial perspective on photosynthetic EET

networks. In this regard, we will apply graph clustering methods to investgate EET path-

ways and bottlenecks in photosynthetic systems. (Hereafter, ”network” and ”graph” are

two terms that will be used interchangeably.)

The graph clustering is a central tool for the analysis of networks with applications

ranging from the field of social sciences to biology and to the growing field of complex

systems.[4]. The general aim of graph clustering is to separate graph into subgraphs,

called clusters, that are only loosely connected to each other in the given network. The

connections between the subgraphs would constitute the bottlenecks in the network. The

reduce model of the network is called coarse-grained model (CGM).

In this work, we applied Ford-Fulkerson Algrithm (FFA) and developed some ap-

proaches to build the CGMof EET networks. Finally we do some benchmark and compare

to the exact result from modified Redfield theory, and discussed the CGM we obtained.

2
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Chapter 2

Excitation Energy Transfer

In order to obtain the rate constant of EET in photosynthetic systems, we adopt the

modified Redfield theory (MRT) [5]. In this section we describe the derivation of MRT

rate constant and the constitution of EET networks.

2.1 Model Hamiltonian

In this work, we employ the Frenkel exciton Hamiltonian to describe photoexcitations

of a pigment-protein complex aggregate with N pigments, which also called sites. Written

in the electronic eigenbasis (the so called exciton basis), the Hamiltonian reads:

H = He +Hph +He−ph, (2.1)

He =
N∑
α

εα|α⟩⟨α|, (2.2)

Hph =
∑
i

ωib
†
ibi, (2.3)

He−ph =
N∑
α,β

|α⟩⟨β| ·
N∑

n=1

∑
i

Cα,nC
∗
β,ngniωi(bi + b†i )

≡
N∑
α,β

|α⟩⟨β| · (He−ph)αβ, (2.4)

where |α⟩ denotes the α-th exciton state, which is a linear combination of site excitation,

|α⟩ =
∑N

n Cα,n|n⟩. In addition, εα denotes the excitation energy of |α⟩, b†i (bi) is the

3
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creation (annihilation) operator of the i-th phonon mode, ωi is the frequency of the phonon

mode, and gni is the exciton-phonon coupling constant between the localized electronic

excitation on site n and the i-th phonon mode. The exciton-phonon coupling constant is

related to the displacement of the phonon coordinate in the excited state, which also defines

the site reorganization energy λn =
∑

i

∑
n g

2
niωi. Finally, basis transfermation from the

site basis to the exciton basis yields the
∑N

n Cα,nCβ,n factor, which can be considered as

the overlap between exciton wavefunctions |α⟩ and |β⟩.

The main idea behind the modified Redfield theory is to partition the Hamiltonian into

a zeroth-order Hamiltonian including the diagonal fluctuations in the exciton basis:

H0 = He +Hph +
N∑

α=1

|α⟩⟨α| · (He−ph)αα (2.5)

and the perturbation part:

V =
N∑

α̸=β

|α⟩⟨β| · (He−ph)αβ. (2.6)

2.2 Quantum master equation

We start from a general time-local quantum master equation that is derived using a

second-order cumulant expansion respect to perturbation V . The quantummaster equation

written in the interaction picture of H0 is

σ̇I(t) = −
∫ t

0

dτTrB {[VI(t), [VI(τ), σI(t)⊗ ρeqb ]]} , (2.7)

where VI(t) is defined in the interaction picture ofH0, i.e. VI(t) = eiH0tV (t)e−iH0t. Note

that in Eq. 2.7, we have assumed a product-state initial condition, ρ(0) = σ(0)ρeqb , where

ρeqb = e
−βHph

Z
is the equilibrium density matrix of the bath. This assumption is justified

with photoinduced EET process. Additionally, we also neglect the first-order average

of the perturbation, i.e. ⟨V ⟩ in perturbation. This assumption simplifies the equation of

motion.

4
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In the Schrödinger picture, the reduced density matrix is calculated by

σ(t) = TrB
{
U0(t)σI(t)ρ

eq
b U †

0(t)
}
. (2.8)

Note that U0(t) can not be simply separated into a system part and a bath part. Be-

cause the diagonal exciton-phonon coupling term contains both system and bath operator,

the partial trace has to be taken after solving U0(t)σI(t)U
†
0(t). Formally, the equation of

motion for the reduced density matrix is

σ̇(t) = −iTrB {[H0, σ(t)⊗ ρeqb ]} −
∫ t

0

dτTrB {[V, [V (−τ), σ(t)⊗ ρeqb ]]} . (2.9)

The modified Redfield omits the coherence part of the density matrix and only con-

siders the population trasfer between exciton states. The coherence part is the first term

in Eq. 2.9. So the equation of motion in MRT is

σ̇(t) = −
∫ t

0

dτTrB {[V, [V (−τ), σ(t)⊗ ρeqb ]]} , (2.10)

which can be evaluated to yield

σ̇αβ =
∑
γδ

(
Γδβ,αγ + Γ∗

γα,βδ − δβδ
∑
f

Γαf,fγ − δαγ
∑
f

Γ∗
βf,f,δ

)
σγδ(t), (2.11)

where

Γαβ,γδ =

∫ t

0

dτ⟨VαβVγδ(−τ)⟩. (2.12)

In Eq. 2.12, Vαβ(−τ) = ⟨α|V (−τ)|β⟩. In general, from Eq. 2.10 the full Redfield

tensor can be calculated in the modified Redfield representation. But in this work, we only

consider the population transfer.

5
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The population transfer term (α = β, γ = δ) :

σ̇αα(t) =
∑
γ

(Rαγσγγ(t)−Rγασαα(t)). (2.13)

The transfer rate from |β⟩ state to |α⟩ state is given by

Rαβ(t) = 2 · ℜ
{∫ t

0

dτ⟨VβαVαβ(−τ)⟩
}
. (2.14)

Eq. 2.14 can be evaluated to yield:

Rαβ(t) = 2 · ℜ
{∫ t

0

dτF ∗
β (τ)Aα(τ)χαβ(τ)

}
, (2.15)

where

Aα(t) = e−iεαt−gαααα(t), (2.16)

Fα(t) = e−i(εα−2λααααt−g∗αααα(t) (2.17)

and the perturbation induced dynamical term can be evaluated to yeild

χαβ(t) = e2(gααββ(t)+iλααββt)

× (g̈βααβ(t)− (ġβααα(t)− ġβαββ(t)− 2iλβαββ)

× (ġαβαα(t)− ġαβββ(t)− 2iλαβββ)), (2.18)

whereA(t) and F (t) are related to the absorption and emission lineshape respecively, and

the lineshape function g(t) is defined as

gαβγδ(t) =

∫ t

0

dt1

∫ t1

0

dt2⟨(He−ph(t1))αβ(He−ph(t2))γδ⟩. (2.19)

The time-correlation function in the integral depends on the exciton-phonon couplings.

In condensed phased system, the number of phonon modes coupled to the exctions is so

large that we should use spectral density funcitons to describe such interactions. Here we

6
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define general spectral density functions, Jnm(ω), as coupling-weighted density of states:

Jnm(ω) =
∑
i

gnigmiω
2
i δ(ω − ωi). (2.20)

The spectral density is site-dependent and the definition generalizes the spectral den-

sity function to treat correlated-bath conditions. Diagonal Jnm(ω) describes cross corre-

lation between site energy fluctuations on n and m. The lineshape function at exciton

basis considering general bath spectral density functions Jnm(ω) can be evaluated from

Eq. 2.20 to obtain

gαβγδ(t) =
N∑
n,m

cα,nc
∗
β,ncγ,mc

∗
δ,m

∫ ∞

0

dω
Jnm(ω)

ω2

{
coth(

ω

2kBT
)[1− cos(ωt)] + i[sin(ωt)− ωt]

}

=
N∑
n,m

cα,nc
∗
β,ncγ,mc

∗
δ,m · gnm(t) (2.21)

Therefore, after the spectral densities Jnm(ω) are specified, the lineshape funcitons can

then be evaluated to calculate EET dynamics. To simplify the calculation, all the spectral

densities are over-damped Brownian oscillator in this work. The spectral density funciton

is

J(ω) =
2λ0

π

ωΓ0

ω2 + Γ2
0

, (2.22)

and there are only two parameter, where λ0 is reorganization energy and Γ0 is the cut-off

frequency.

2.3 Excitation energy transfer network

To simplify the calculation, we employ the Markovian limit in modified Redfield the-

ory. The transfer ratefrom |β⟩ state to |α⟩ state is given by

Rαβ = lim
t→∞

Rαβ(t) (2.23)

7
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The master equation of the system is,

d

dt
P = RP (2.24)

, where Pα is the exciton populaiton in |α⟩ state.

We can convert the EET rate constant matrix R into a network. The nodes of the net-

work is the exciton states of given system and the weight of each edges is the rate constant

between two nodes. We define a weighted graphG(V,E) to represent the network ,where

V denotes all the nodes of the network, and E denotes all the edges between two nodes.

A weighted graph is a network in which each edge is given a numerical weight, and in this

work the weight is denote the rate constant between two exciton states(nodes).

8
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Chapter 3

Network analysis

In this work, the process of network analysis can devide into two part. The first part is

constructing the minimum-cut binary tree (MBT). The second part is building the coarse-

grained model.

3.1 Minimum-cut binary tree

In a simple chemical reaction, for instance,

A
fast−−⇀↽−− B,

B slow−−→ C.

The total rate of the reaction could be determined by the slowest step, B −−→ C. In this

case, we can say that A and B are in one cluster, and the reaction can be reduced,

[AB] slow−−→ C,

and this is the rate-determining step(RDS).

Following the same idea, for a complex photosynthetic network, we assume that the to-

tal dynamics can be reduced by such ”rate-determining step”. In network analysis, finding

rate-determining step in a weighted graph is related to the minimum cut problem.

9
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We define a cut C(S, T ) to split a network into two subsets, S and T , which denote

the source set and target(sink) subset, and the weight of the cut is the sum of the weights

of the edges crossing the cut. And the minimum cut is a cut if the weight of the cut is not

larger than any other cut. This concept is similar to the RDS in the chemical reaction.

But a graph withN vertices can at the most haveN(N−1)/2 cut, it’s expensive to find

the minimum cut by comparing all the weight of cuts. In 1956, Ford and Fulkerson had

proved that the minimum cut problem of the directed positive weight networks is equal

to the maximum flow problem, called maximum-flow minimum-cut theorem. [3] Ford

and Fulkerson also demonstrate a simple method to find the maximum flow [3], called

Ford-Fulkerson Algorithm (FFA) (Alg. 1).

The idea of FFA is as follow: As there is a path from the source node to sink node,

with available capacity on all edges in the path, we send flow along one of the paths. Then

we find another path, and so on. When there is no path from source to sink. The subset S

is the set of nodes reachable by source. And subset T is the set (G− S)

Algorithm 1: Ford-Fulkerson Algorithm (FFA)
input : Graph G and source s, sink t
output:Weight of minimum cut, F , residual graph, Gf

flow F = 0
for each edge E(u, v) ∈ G.E do

// initialize Gf

E(u, v).f = 0

while there exists a path p from s to t in the residual network Gf do
cf (p) = min{cf (u, v) : E(u, v) ∈ p}
F = F + cf (p)
for each edge E(u, v) ∈ p do

E(u, v).f = E(u, v).f + cf (p)
E(v, u).f = E(v, u).f − cf (p)

return F , Gf

The complexity of Ford-Fulkerson Algorithm (FFA) is only O(N(V )N(E)2), where

N denotes the number. But FFA is a greedy algorithm, it should fix the source node (s) and

the target node (t), in our work, we choose the highest eigenenergy state as the source node

and the lowest eigenenergy state as the sink node. By applying the FFA to the network,

we can get the minimum cut of the network and two separate sub-networks. If we keep

10
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doing FFA to the sub-networks iteratively, we would get a binary tree.[Fig. ??] And we

call this minimum-cut binary tree (MBT), which contains all the information of RDS in

the networks.

Algorithm 2: Construct Minimum-cut Binary Tree (CMBT)
input : Graph G
output: minimum cut tree
s = heighest energy state
t = lowest energy state
root.data = G
if Gf .size > 1 then

C,Gf = FFA(G, s, t)
// use Breadth-First-Search(BFS) to determine subgraph
subgraph S = BFS(Gf , s)
subgraph T = G− S
root.cut = C
root.lt = CMBT(S)
root.rt = CMBT(T )

else
return root // leaf

3.2 Coarse-grained model

When we obtain the minimum-cut binary tree, we need a method to build the coarse-

grained model. And we test if we should modified the MBT by normalizing the weight.

Finally, we test three simple method and then identify which one is better.

3.2.1 MBT normalized

The weight of minimum cut would be larger if the subnetworks have more members.

The weight has extensive property, and we also test if normalized the weight of minimum-

cut could give the better result.

Cnorm =
C

NV (S)×NV (T )
(3.1)

where C denotes the weight of minimum-cut.
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Figure 3.1: A simple minimum-cut binary tree, which original network has 4 nodes.

3.2.2 Simple cut-off method

The ideal is follow the FFA, the first cut should be the smallest minimum cut. So when

we choose a cut-off, the subtree should be in the same cluster.

Setting a cut-off. From the top of the MBT, if the weight of minimum cut is large than

the cut-off, then the sub-network is a cluster of the coarse-grained model. For example,

if the cut-off is 5, the coarse-grained model of the simple MBT is {AB}{C}{D}. And

if the smaller cut-off we choose, we would obtain the coarse-grained model with more

clusters. The limit would be the same with the original networks. By tuning the cut-off,

we can obtain any size of coarse-grained model. , Alg. 3

Algorithm 3: simple cut-off (SC) method
input : CGM, MBT, cut-off
output: coarse-grained model(CGM)
root = MBT.root
if root.cut > cut-off then

CGM.push(root)
else

SC(CGM, root.lt, cut-off)
SC(CGM, root.rt, cut-off)

return CGM

12
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3.2.3 Simple ratio cut-off method

This method is just do some modified of SC. We guess if that the nearest subtree has

strong relationship. Setting a cut-off ratio. From the top of the MBT, if the weight of

minimum cut divide by the weight of minimum cut of the top level is larger than the cut-

off ratio, then the sub-network is a cluster of the coarse-grained model. For example, if

the cut-off ratio is 3, the coarse-grained model is {AB}{C}{D}. Alg. 4 And we also can

obtain differece size by tuning the cut-off.

Algorithm 4: simple ratio (SR) method
input : CGM, MBT, cut-off
output: coarse-grained model(CGM)
root = MBT.root
if root.lt.cut/root.cut > cut-off then

CGM.push(root.lt)
else

SR(CGM, root.lt, cut-off)
if root.rt.cut/root.cut > cut-off then

CGM.push(root.rt)
else

SR(CGM, root.rt, cut-off)
return CGM

3.2.4 Ascending cut-off method

Since each time we do the FFA, the source and target would be differece. So the

simple-cut method may not be enough. The whole MBT’s minimum-cuts may be equally

important. This is another modified of SC. Consider all the nodes in one set, and then

eliminate some elements into another set step by step, from smallest cut-off to largest cut-

off. This method can give us 2 to N clusters CGM. For example, the smallest weight of

the Fig. 3.1 is 2, then we can get 2 clusters model, {ABC}{D}. And the second weight is

3, we get {AB}{C}{D}. Finally the largest weight is 6, we get {A}{B}{C}{D}. Alg.

5
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Algorithm 5: ascending cut-off (AC) method
input : CGM, MBT, cut-off
output: coarse-grained model(CGM)
cut-off list is from 0 to cut-off, we can simply implentment by sorting all cut value of MBT
root = MBT.root
CGM = {1..N}
for each cut-off ∈ cut-off list do

subtree =
find the maximum cut, which is smaller than cut-off, subtree of MBT

subtree = maxcut{subtree.lt, subtree.rt}
GCM = {{GCM − subtree}{subtree}}

return CGM

3.3 Reduced dynamics

We test several approaches and need to identify which one would perform better. We

follow the definition of the coarse-grained model, the model would reproduce complexity

phenomena by simpler representation. So we try that if the coarse-grained model built in

above can reproduce the propagation dynamics of the networks. We also need to know

the transfer rates between cluster to cluster, we make an assumption that as the states were

in the same cluster, they would reach thermal equilibrium quickly. In this quasi-thermal

equilibrium approximation, we can define the transfer rate between clusters, Eq. 3.2

kFI =
∑
α∈F

∑
β∈I

Rαβ
e
−

ϵβ
kBT

ZI

(3.2)

, where ZI is the partition function of the cluster I .

And we can compare the reproduce population dynamics and the total dynamics to

know which method is better in a simpler system. We define a cost function to show how

similar of reduced dynamics and original dynamics. Eq. 3.4

cost =
1

NcT

Nc∑
I=1

∫ T

0

dt(P I
original(t)− P I

reduced(t))
2 (3.3)

P I
original(t) =

∑
state∈I

P state
original(t) (3.4)

,where Nc is number of clusters in coarse-grained model. T is a enough long time, in

14
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Figure 3.2: EET network ananlysis process

our work is 60 ps. And the using the better method to analysis more complex system. In

additionally, we also check how the CGM. Because sometime the small cost is that the

networks just separate by single node, and the population dynamics would not be change

a lot. The total process is simple, shows in [Fig. 3.2].

We compare these method in following context, and the notation would be simplified

as Tabel 3.1.

3.3.1 MBT rearrangement

In our study we also found that sometimes the MBT gives suspicious-looking tree

that seems to lead to unreasonable clustering results. For example, in Fig. 3.3 we show

a specific case. Nevertheless, we found that the MBT rearrangement does not improve

the results when dealing with CGM of photosynthetic complexes. Therefore, the MBT

rearangement results will not be presented here.

15
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Table 3.1: The notation of each method: In the context, we use the simple notation to
denote each method.

MBT normalized Methods Notation
No Simple Cut-off Method SC
No Simple Ration Cut-off Method SR
No Ascending Cut-off Method AC
Yes Simple Cut-off Method norm-SC
Yes Simple Ration Cut-off Method norm-SR
Yes Ascending Cut-off Method norm-AC

Figure 3.3: Reconstruct MBT by rearranging the subtree: (a) is the specific three nodes
network. H denotes the highest exciton state. M denotes the second heigh exciton state.
And L denotes the lowest exciton state. (b) shows the MBT construct by FFA. (c) shows
the rearangement of MBT, the subtree with slower rate will switch with the faster one.
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Chapter 4

Fenna-Mattews-Olson complex

Fenna-Mattews-Olson (FMO) complex is a simple photosynthetic system in bacteria,

we first test our methods on this system.

4.1 Effective Hamiltonian

To describe EET dynamics in FMO, we follow the simulations carried out by Wu et

al. [16] and adopt the effective Hamiltonian proposed by Schmidt et al. [12]. Excitonic

couplings in this Hamiltonian were calculated based on a 1.3 Å crystal structure [13]. This

model Hamiltonian has been tested and shown to yield time-resolved transient-absorption

and fluorescence spectra that are in excellent agreement with the experiments, hence the

model should reproduce accurate population dynamics in the FMO system. (Tabel 4.1)

Table 4.1: The effective Hamiltonian of FMO is obtained from Schmidt et al. work[12]
.(unit: cm−1)

BChl1 BChl2 BChl3 BChl4 BChl5 BChl6 BChl7 BChl8
12505 94.8 5.5 -5.9 7.1 -15.1 -12.2 39.5
94.8 12425 29.8 7.6 1.6 13.1 5.7 7.9
5.5 29.8 12195 -58.9 -1.2 -9.3 3.4 1.4
-5.9 7.6 -58.9 12375 -64.1 -17.4 -62.3 -1.6
7.1 1.6 -1.2 -64.1 12600 89.5 -4.6 4.4
-15.1 13.1 -9.3 -17.4 89.5 12515 35.1 -9.1
-12.2 5.7 3.4 -62.3 -4.6 35.1 12465 -11.1
39.5 7.9 1.4 -1.6 4.4 -9.1 -11.1 12700

17
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Table 4.2: The rate constant matrix of FMO is obtained from modified Redfield theory,
and the parameters of spectral density function is from Wu et al. work[16].(unit: ps−1 )

state 1 state 2 state 3 state 4 state 5 state 6 state 7 state 8
-0.373 1.159 0.191 0.293 0.128 0.092 0.084 0.004
0.309 -2.417 0.052 1.089 1.855 0.098 0.922 0.018
0.047 0.045 -1.342 0.249 0.138 3.632 0.179 0.275
0.022 0.485 0.127 -2.996 1.133 0.071 2.079 0.039
0.004 0.654 0.051 0.869 -3.82 0.062 1.563 0.064
-0.002 0.022 0.897 0.036 0.042 -4.414 0.019 1.082
-0.007 0.052 0.013 0.453 0.507 0.009 -4.872 0.031
0.0 0.0 0.011 0.007 0.017 0.45 0.026 -1.513

Figure 4.1: Check the rate constant matrix by comparing the population dynamics ofMRT
result(a) to Wu et al. work(b).

4.2 Rate constant matrix

The parameters of the spectral density function is obtained from Wu et al. work[16].

T = 300.0K−1, λ0 = 35.0 cm−1, Γ = 666.7 cm−1 (Tabel 4.2)

4.3 MRT population dynamics

To test if MRT [Fig. 4.2] could give the proper result of excitons population dynamics,

we first check by comparing our result with Wu et al. work[16]. See Fig. 4.1 The transfer

rate of MRT is smaller, but this difference would not impact on the coarse-grained. We

can construct the MBT by FFA. Fig. 4.2

18
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Figure 4.2: FMO Minimum-Cut Binary Tree (unit: ps−1 ): The ellipses denote the sub-
graphs and each number α in the ellipse denotes the α-th exciton state.
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Figure 4.3: FMO cost comparing: Each color denotes a different method. In the case of
FMO, the

4.4 Network analysis

In the chapter 3, we can build CGM at some options. First, if the MBT need to rear-

range? Second if the weight of minimum-cut need to normalize? And after modifying the

MBT, choosing a method to build the coarse-grained model. Each method would give us

a difference CGM. Fig. 4.3

By the simplest strategy, we can choose the lowest cost method. In additionally, we

also check what the order of the cluster that the given method cut out. But FMO networks

is too small, so all these methods do not show obviously difference. Many CGM are the

same although we use different method to build. And the SR method can only build three

coarse-grained model whether we tune the cut-off ratio. So we would focus on the SC and

AC methods.

We can choose any number of clustering. For instance we can test the population

20
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Figure 4.4: FMO 4 clusters population dynamics: The solid lines are the CGM dynamics,
and the dash lines are the exact MRT dynamics.

dynamics with 4 clusters built by method SC, norm-SC, or norm-AC, see Fig. 4.4 The

solid lines are the original population dynamics and the dashed lines are dynamics by the

quasi-thermal equilibrium approximation. We can see that they are almost the same.

For a small network like FMO, all the clustering do not show obviously different. The

coarse-grained model of FMO may be good in 4(or more) clusters. In Fig. 4.5, we show

the simpler network of FMO. And in Fig. 4.6, we map the coarse-grained model into real

space. We can see the energy flow can go through two pathways from highest energy

exciton state to lowest energy exciton state.
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Figure 4.5: FMO 4 clusters coarse-grained model with abstract diagram, we can see the
EET flow simply.
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Figure 4.6: FMO 4 clusters coarse-grained model in real space: Each ball’s centor denote
the centor of each exciton state. And each color denote the cluster of CGM. The size of
ball shows the relative population in the cluster base on the eigenenergies.
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Chapter 5

Light Harvesting Complex II

LHCII complex is a membrane protein, it participates in the 1st steps of photosynthesis

by harvesting sunlight and transfer excitation energy to the core complex. The structure

of LHCII is a trimer. To simplified the system, we only consider the monomer of LHCII.

5.1 Effective Hamiltonian

To describe EET dynamics in a monomeric subunit of the LHCII complex, we follow

the simulations carried out by Wu et al. [16] and adopt the effective Hamiltonian (Ta-

ble 4.1) proposed by Novoderezhkin et al. [9]. Excitonic couplings in this Hamiltonian

were calculated based on a 2.72 Å crystal structure [7] using a transition-dipole-transition-

dipole interaction model for chlorophylls, and the site energies were determined by fitting

to various experimental linear spectra of the LHCII systems. This model Hamiltonian has

been tested and shown to yield time-resolved transient-absorption and fluorescence spec-

tra that are in excellent agreement with the experiments, hence the model should reproduce

accurate population dynamics in the LHCII monomer system. Note that although a more

recent modification to themodel Hamiltonian has bee proposed to improve the simulations

of two-dimensional electronic spectra [1], the differences in the updated Hamiltonian are

minor and should not affect the conclusion of our study.
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5.2 Rate constant matrix

For simplicity, we only consider the low-frequency Debye spectral density and ignore

all the high-frequency components. This approximation neglects population dynamics

from resonant electron-phonon couplings[9, 11, 15, 10, 6], which is acceptable considering

our main purpose of calculating excitation energy transfer rate. The parameter of MRT is

from previous work[16]. T = 300.0K−1, λ0 = 85.0 cm−1, Γ = 628.4 cm−1 (Tabel 5.2)

5.3 MRT population dynamics

We also compare the MRT population dynamics with previous Wu et al. work[16].

In Fig. 5.1, we can see the transfer rate of MRT is smaller, but this difference would not

impact on the coarse-grained.

5.4 Network analysis

The MBT of LHCII monomer is Fig. 5.2 And we also compare all the methods and

check their costs. Fig. 5.4

As the CGM has more clusters, the reproduced population dynamics should close to

the exact population dynamics, and has lower cost. But we can see that some methods has

small cost when number of clusters is small, but get larger when the number of clusters is

larger. Fig. 5.4 So we think that may not obtain suitable CGM. The method AC, norm-

SC, norm-SR and norm-AC (Fig. 5.5 ) are apparently decrease as the numbers of cluster

increase.

In additionally, comparing thesemethods, threemethods aremodified with normalized

MBT. That maybe mean that the transfer rate constant has extensive property. Because SR

and SC methods are not able to build the coarse-grained model with an arbitray number

of clusters, so we focus on method 002 and method 012. The only different between them

is if we normalize the MBT.

We can check the CGMs. In first cut, they both cut out exciton state 1, 2 and 5. And in
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Figure 5.1: Check the rate constant matrix by comparing the population dynamics ofMRT
result(a,b) to Wu et al. work(c,d).
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Figure 5.2: LHCII monomer MBT (unit: ps−1 ): The ellipses denote the subgraphs and
each number α in the ellipse denotes the α-th exciton state.
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Figure 5.3: The modified MBT of LHCII: The capacity of minimum-cut is normalized.
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Figure 5.4: LHCII cost comparing: Each color denotes different methods of building
coarse-grained model. And some methods like SC and norm-SC can not build coarse-
grained model with an arbitrary number of clusters.
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Figure 5.5: LHCII cost comparing: The methods have decreasing cost as increasing the
number of clusters.

next cut, method 012would cluster exciton state 4 and 7, but themethod 002would just cut

out the node one-by-one. Exciton state 4 and 7 are localized at a613 and a614, and the EET

transfer rate from state 7 to state 4 is 1.0 ps−1. So it’s reasonble to merge them together.

Finally, we choose method 012. And this result also consists with Novoderezhkin et al.

and Wu et al. works[8, 16].

5.5 Coarsed-grained model

In Fig. 5.5 and Fig. 5.6, we can see that the 9 clusters CGM fits population dynam-

ics perfectly. And from small number of clusters, such as 5 clusters CGM, the network

structure is simple and we can find that the 3rd exction state is the intermediate and may

be important in this photosynthetic network. And in the 7 clusters model, the 9th and 10th

exciton state is the terminal and could be neglect in the network. And Fig. 5.8 is the 9
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clusters CGM in the real space. In Fig. ??, although the 9 clusters CGMhas the best fitting

coarse-grained dynamics. We can still obtain some graph information from 3-8 clusters

CGMs. We can see that cluster {4,7} has departed early, and this result demonstrates that

node 4 and 7 is the trap in the LHCII monomer EET networks. This can be compare with

the result of Schlau-Cohen et al. work [11].
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Figure 5.6: Coarse-grained dynamics. (a)-(g) each denotes the cluster population calcu-
lated by using the simplified model with 3-9 clusters respectively(solid line). For compar-
ison, the clustered population calculated from the full 14-site model are also denote(dash
line). 33
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Figure 5.7: LHCII 3-9 clusters CGMs represent in abstract diagrams respectively. (unit:
ps)
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Figure 5.8: LHCII 9 clusters CGM in real space: Each color denotes a cluster. We can see
the node 3(red ball) and node 6(yellow ball) are the intermediate. And the node 8(green
ball) maybe the bottleneck state.
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Chapter 6

Photosystem I

Photosystem I(PSI) is an integral membrane protein, and the lowest excited state is

located at the reaction center. The reaction center is actually the sink of the excitation

energy transfer network.

6.1 Effective Hamiltonian

The effective Hamiltonian for PSI constructed by Fleming and coworkers [2].

6.2 Rate constant matrix

This rate constant also obtained from MRT. This work is calculated by Ai, Qing. The

spectral density function is the same, the Debye spectral density.T = 300.0K−1, λ0 =

100.0 cm−1, Γ = 100.4 cm−1

6.3 Network analysis

The MBT is large so we do not plot here, and we the methods compare is Fig. 6.1.

And we also choose the method norm-AC because it success in LHCII. Fig. 6.2

Refer to the Fig. 6.2, the CGM of PSI may be good in 12 clusters or more. We can see

that the CGM has two big clusters, which is opsite from reaction center, and we can find
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Figure 6.1: PSI cost comparing
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Figure 6.2: PSI norm-AC
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that some states can comute these two big clusters. The rate to reaction center is slower

and the critical clusters would be the cluster {3, 65}, {4} and {5}.
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Figure 6.3: PSI 12 clusters CGM (unit: ps): We can devide the PSI into two big cluster
and some isolated node.

43



doi:10.6342/NTU201704140

44



doi:10.6342/NTU201704140

Chapter 7

Conclusions

In this work, we demonstrate that CGM of EET networks can reporduce population

dynamics correctly. We test FMO, LHCII monomer and PSI EET networks and demon-

strate we develop a systematic process for clustering photosynthetic networks.

We demonstrate the better options of clustering graph. First, rearanging the subtree of

the MBT is not necessary, and this operation would destroy the information of bottlenecks

in the given networks. Second, the capacity of minimum-cut is extensive. So the MBT

should normalize the capacity. Third, the simple cut-off method and ratio cut-off method

do not consider the total information of MBT. These two method usually stop at the top

of MBT. So the elimination cut-off method is the best.

We can finally build the CGM of networks and obtain the pathways by the process we

develop.
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