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摘要 

 

排程最佳化與工作分配是經典的研究問題，如何找到有效的方法進行作業排

程與機台分配來提高產能利用率進而獲利，科學家們仍不斷在尋找答案。然而，

除了經濟考量，近年來公平性的議題也備受重視。每個員工、機台、工廠等(以

下我們統稱為機台)都希望能在有限的資源下賺得最大利益，如何將工作公平地

分配給各機台是管理者面臨的難題。為了解決這個問題，我們設計了一個近似演

算法：iSMART，希望能在機台的工作品質或產能上限具有歧異性的情況下，最

大化各機台中的最小收益產能比。此演算法根據一個特殊的公平性指標在迭代，

每次都指派最有利的工作給此刻獲得最低分的機台。 

經過推導，我們證明出當工作利益與工作負荷為線性關係時，iSMART 是

一個 1
2
 因子近似演算法，在其表現最差的情況下也有最佳解的一半好。當工作

利益與工作負荷為凹函數或凸函數關係時，也存在有最差極值。而根據數值分析，

我們發現工作利益與負荷間的關係、機台品質、資源限制與工作機台比都會對於 

iSMART 演算法的表現有所影響，這些管理意涵讓管理者可依照其產業特性來

決定是否適合採用 iSMART 演算法。最終實驗顯示，iSMART 在追求公平性時

並不會犧牲掉太大的總體利益，是一個穩定且有效率的演算法。 

 

關鍵字：排程、工作分配、近似演算法、公平性、機台歧異性 
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Abstract 
 

    Scheduling and job allocation have been widely studied in the past few decades. 

Designing effective methods to determine job schedules as well as machine 

assignments helps companies increase productivity and earn more benefits. However, 

not only economic objectives but also fairness become important issues in recent 

years. Each agent/machine/factory (hereafter “machine”) is willing to earn the most 

benefit while being restricted by its limited capacity. Managers face the problem of 

how to assign jobs to heterogeneous machines in a fair way while job benefits might 

be different due to diverse machine quality. To address this question, we develop an 

approximation algorithm: iSMART. Based on a specific fairness indicator, the 

benefit-capacity ratio, iSMART maximizes the minimum fairness score among all 

machines by assigning the most beneficial job to the machine with lowest score in 

each iteration.  

 By analyzing the algorithm, we prove that iSMART is a factor-½ approximation 

algorithm when benefits and workloads are in a linear relationship. There are also 

bounds when benefits and workloads are in a convex or concave relationship. 

Numerical studies show that the performance of iSMART is influenced by 

benefit-workload relationship, machine quality, capacity tightness, and the ratio of the 

number of jobs to the number of machines. This provides managerial implications for 

decision makers to determine when to adopt the algorithm. We also show that 

iSMART is a reliable algorithm which does not sacrifice too much efficiency while 

pursuing fairness. 

 

Keywords: Scheduling, Job Allocation, Approximation Algorithm, Fairness, Machine 

Heterogeneity. 
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Chapter 1

Introduction

1.1 Background and motivation

Scheduling and job allocation has been widely discussed over decades and applied in

many fields. In the manufacturing industry, a factory manager needs to sequence jobs

to be processed on a machine to earn more profit, i.e., a machine-oriented objective that

maximizing machine benefit. In more complicated environments, there are more than

one machine to be scheduled, e.g., maximizing the minimum machine benefit. Schedules

might be created differently because of different job properties. For example, in an off-

line problem, information of jobs is known before planning. In other fields, like computer

science, the schedule of jobs assigned to multiple processors is a major concern. People try

to minimize average loading while designing the operating system. Beside manufacturing

and computer science, there are also many scheduling problems in one’s daily life. All of

these make scheduling and job allocation an important subject.

1
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Many approximation algorithms are developed since most scheduling and job alloca-

tion problems are NP-hard. The well-known longest processing time first (LPT) algo-

rithm is designed by Graham (1966, 1969). Later on, Walter (2013) proves that LPT will

always outperform restricted LPT (RLPT). A polynomial time approximation scheme

(PTAS) is used by Alon et al. (1998). There are many more approximation algorithms

for scheduling and job allocation studied in the literature.

The issue of fairness is also critical for allocation problems nowadays. Pointed out

by Liu (2016), a leading LED chip manufacturer in Taiwan, who owns around twenty

factories in Taiwan and China, faced exactly this issue. Once per month, the company

must decide which existing jobs should be assigned to which factories. Since factory

managers are evaluated according to the amount of revenues generated by completing

jobs (as well as other performance indicators), they take it really seriously. Some social

enterprises face fair allocation problems as well. With the idea of “giving them jobs,

not money,” a social enterprise (or sometimes a government) may hire jobless or even

homeless people as agents so that they may earn their livings. For example, “The Sock

Mob Homeless Volunteer Network” in London and “The Big Issue Taiwan” provide jobs to

the needs so that they can earn benefits by completing jobs. 1 For these social enterprises,

the objective is neither limited to job completion nor revenue maximization, but to bring

benefits to those in need and to distribute the benefits generated by job completion as

equally as possible. In other words, the focus is on fairness not on efficiency.

Liu (2016) designs an approximation algorithm for job allocation problem with a

1For more information, please see http://www.meetup.com/thesockmob/ and http://www.

bigissue.tw/.

2



doi:10.6342/NTU201704133

consideration of fairness. The algorithm assigns a job to the lowest cumulative machine

benefit at each iteration if the machine capacity is still enough to take the job workload.

However, in his problem, job benefits are the same no matter assigned to which machine.

Also, machines are identical, each machine has the same capacity. Thus, we extend from

Liu (2016), where jobs machines may earn different benefits completing the same job

because of different working quality. By the same time, capacities of machines are not

the same, some are available all day long while some might require break times.

The emerging needs of fair allocation motivates us to study a job allocation problem

with fairness as the main consideration. The model of our problem is made as general as

we can. We design an effective and efficient algorithm that can fairly allocate jobs without

violating the capacity constraint of each factory/machine/agent. We prove a bound of

our algorithm to ensure its worst-case performance guarantee. Numerical experiments

are also conducted to demonstrate its average performance. Based on the results, we

finally draw managerial implications for practice.

1.2 Research objectives

In this study, we consider the aforementioned job allocation problem with fairness. For

ease of exposition, we will call all factories/machines/agents as machines and examine the

problem of assigning jobs to machines. The most important feature of our job allocation

problem is that the decision maker should consider fairness among machines. In the

environment, each machine has its limited capacity and can afford only a certain amount

of workloads. However, job benefits may be different while assigning to different machines

3
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since each machine has its own output quality. In order to earn more profits, a machine is

willing to accept more jobs as long as there is enough capacity. The objective function in

our problem is to maximize the minimum benefit per unit capacity among all machines.

To approach this problem, we first prove its NP-hardness. Knowing that the problem

cannot be solved in a polynomial time, we then focus on obtaining an approximation

algorithm. We design our algorithm by learning through the literature. We prove the ex-

istence of the worst-case guarantee and conduct numerical experiments for our algorithm

under different scenarios.

1.3 Research plan

In the next chapter, we will review some relevant literature about scheduling and job

allocation, approximation algorithms, and fairness. In Chapter 3, we will describe our

optimization problem and show its NP-hardness. Analysis of our algorithm is provided

in Chapter 4, showing that there exists performance guarantee using our algorithm in

this problem. We then conduct numerical studies in Chapter 5 to test our algorithm’s

performance in practice and compared it to genetic algorithm. From the results, we then

give managerial insights and suggestions for environments in which the algorithm are

appropriate to be adopted. Chapter 6 concludes.

4
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Chapter 2

Literature Review

2.1 Scheduling and job allocation

Scheduling and job allocation problems have been widely studied in the literature. There

are many principles used to classify these problems. Such classifications are made based

on objective functions, relationships between jobs and machines, and properties of jobs.

Pinedo (2012) classifies job scheduling problems into two classes according to different

objective functions, those with a machine-oriented one and those with a job-oriented one.

In the former, maximizing the minimum or minimizing the maximum completion time

among all machines are commonly studied. Problems with weighted machines are also

well discussed. In the latter, four typical criteria based on jobs are typically investigated.

Researchers often minimize one of the lateness, tardiness, completion time, and flow time

of jobs as the objective function.

There may be different relationships between jobs and machines. For each job with

5
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only one stage, the problems vary with the number of machines. Gupta and Kyparisis

(1987) review scheduling problems that have only one single machine involved. If there

are more than one machine processing jobs in the system, it is categorized as a parallel

machine problem. When the machines are not exactly the same, it is called an unrelated

parallel machine problem. However, there are problems with jobs that have multiple

stages to be processed on predetermined machines. For these flow shop problems, Ruiz

and Vzquez-Rodrguez (2010) discuss different methods and solution approaches. If dif-

ferent jobs are processed with different processing orders, the problem is called a job shop

problem. Blazwicz et al. (1996) review a variety of studies discussing solution techniques

for job shop problems.

Based on the properties of jobs, scheduling problems can also be categorized as off-

line or on-line problems. In an off-line problem, information of jobs to be processed is all

given before planning. In contrast, in an on-line problem, jobs arrive at random times,

and relevant information of a job will be known only after the job arrives. A survey of

on-line problems was done by Fiat and Woeginger (1998).

According to the classification principles, our job allocation problem is categorized

as having a machine-oriented objective function, jobs with only one stage processed on

unrelated parallel machines, and an off-line problem. A unique feature of our problem

is that each job has two attributes—workload and benefit—along with different machine

capacities. We try to allocate jobs to machines while not violating machine capacity

constraints so that the lowest machine score is maximized. However, when machine

capacities are unlimited, workload is then not a restriction to the assignment and machine

scores would be different in the final solution. Thus, we focus on problems that their

6
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machine capacities that are limited.

2.2 Approximation algorithms

Most of the scheduling problems are NP-hard. By the definition of NP-hardness, un-

less P = NP, we cannot solve the problem in polynomial time. As a result, some

researchers propose exact algorithms by improving the generic branch-and-bound algo-

rithms (Haouari and Jemmali, 2008; Walter et al., 2016). More studies are devoted to

approximation algorithms or approximation schemes (Williamson and Shmoys, 2011).

Graham (1966, 1969) reports on a well-known minimum makespan problem for mul-

tiple identical machines. He designs the longest processing time first (LPT) algorithm,

a listing algorithm that sorts all jobs by their processing times in the descending order,

and then assigns jobs by this order once at a time to the currently least loaded machine

(i.e., the machine having the earliest completion time at the moment). He proves that

the performance guarantee of the algorithm is 4
3
.

Another similar approximation algorithm is called restricted LPT (RLPT). Walter

(2013) proves that while solving the basic problem of non-preemptively scheduling inde-

pendent jobs on identical parallel machines so that the minimum (or earliest) machine

completion time is maximized, the minimum completion time of the LPT-schedule is at

least as long as the minimum completion time of the RLPT-schedule. In other words,

LPT will always outperform RLPT. He also shows that RLPT has an approximation

factor 1
m

.

For the “dual” version of the minimum makespan problem, the objective function

7
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transforms to maximizing the minimum completion time among all machines. Deuer-

meyer et al. (1982) find that the LPT algorithm can also be adopted. The bound is

shown to be 3
4
. Furthermore, the bound is improved to 3m−1

4m−2 by Csirik et al. (1992),

where m is the number of machines. It converges to 3
4

when m approaches infinity.

Alon et al. (1998) observe that a polynomial time approximation scheme (PTAS) can

be developed under some general assumptions. Classifying jobs by their processing times,

the original instance is reduced to a new instance which contains two groups of jobs (big

jobs and small jobs). The solution for the new instance is able to be converted to one for

the original instance. It is shown that the algorithm can have a 1 + ε bound given any

arbitrary value of ε > 0.

Some attention is directed toward a posteriori bounds for the makespan minimiza-

tion problem. In particular, Blocher and Sevastyanov (2015) improve the a posteriori

Coffman-Sethi bound by considering the maximum number of jobs on a machine rather

than the number of jobs on the critical machine. Also focusing on a posteriori bounds,

Massab et al. (2016) look for a tight bound for a two-machine problem, where the bound

is affected by the index of the last job assigned to the critical machine. Following their

ideas, we try to prove our bounds by considering the first job that cannot be directly

assigned due to the capacity constraints. However, the bounds we are trying to find are

a priori, not a posteriori.

Liu (2016) designs the capacitated highest-benefit job first (CHBF) algorithm for a

minimum machine benefit maximization problem. The algorithm sorts all jobs by their

benefits in a descending order and assigns a job to the minimum benefit machine in

each iteration. The bound is 1
2

when the job benefits are in a linear relationship to

8
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workloads. Inspired by Liu (2016), we propose an approximation algorithm for the fair

allocation problem with the exhibition of machine capacity and features of jobs (benefits

and workloads). We generalize the features to allow a job’s benefits to be different while

assigning to different machines, and machine capacities can be not the same.

2.3 Fairness

Fairness is an important issue for allocation problems, but the definition of fairness varies.

There are different fairness indicators from past studies, and here we review three of them.

First of all, the Santa Claus problem has been studied by Bansal and Sviridenk (2006).

In this problem, presents are prepared to be dispatched to kids. Since each kid has his

own preference for different presents, how to maximize the utility of the kid with the

minimum utility obtained from the allocated presents is the question. In this study, the

fairness indicator is the minimum utility among all kids.

Second, Bertsimas et al. (2011) study two classic fairness schemes, proportional fair-

ness and max-min schemes. Proportional fairness is the generalization of the Nash solu-

tion for a two-player problem, where a schedule is said to be fair if no reallocation can

result in a new schedule that is proportionally fairer. It can be explained by the following

example. Suppose that in a schedule we assign job 1 to machine 1 and job 2 to machine 2

with job benefits 7 and 5, respectively. If exchanging the two jobs makes the cumulative

machine benefits become 6 and 6, then the aggregate proportion change is 6−7
7

+ 6−5
5
> 0.

We then say that the new schedule is proportionally fairer. In the setting of max-min

fairness, a decision maker needs to do a sequence of optimization steps to maximize the

9
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minimum utility. At first, she maximizes the minimal utility of a player and makes sure

that the utility of others at least arrives at the same level. Then, she maximizes the

second minimal utility of a player in the same way. This procedure is repeated until the

schedule can be no longer improved. The outcome of this procedure is considered as a

fair schedule.

Third, the fairness indicator adopted by Deuermeyer et al. (1982) is the minimum total

benefit generated among all machines, which they attempt to maximize. Enlightened by

Deuermeyer et al. (1982), we revise the fairness indicator to be the smallest ratio among

all machines, where the ratio equals to the total benefit generated by a machine divided

by its capacity.

10
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Chapter 3

Problem Description and

Formulation

3.1 Model

In this study, we consider a problem of assigning n jobs (in set J) to m machines (in set

I). For job j assigned to machine i, there is a workload cj > 0 and a benefit bij > 0.

That is, machine i has to spend cj amount of time in order to earn bij for completing

job j. The capacity of machine i is Ki > 0, which is the maximum amount of time it

can spend. With the assumption that a job cannot be split to multiple machines, we try

to assign jobs to machines which maximizes the minimum score among the machines.

Here, we define the score of a machine as the total benefit of this machine divided by its

capacity. More precisely, let

xij =


1 if job j is assigned to machine i

0 otherwise

,∀i ∈ I, j ∈ J,

11
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be our decision variables. Our job allocation problem can be formulated as

max min
i∈I

{∑
j∈J bijxij

Ki

}

s.t.
∑
j∈J

cjxij ≤ Ki ∀i ∈ I

∑
i∈I

xij ≤ 1 ∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I, j ∈ J.

(3.1)

The first constraint states that the total workloads assigned to each machine will not

exceed its capacity, the second constraint ensures that each job is assigned to at most

one machine, and the last constraint guarantees integrality. The objective function is to

maximize the lowest score among all machines.

While solving the fair allocation problem in (3.1), we further investigate on how much

efficiency is sacrificed when we maximize fairness. To see this, we consider the efficiency

problem by replacing the objective function in (3.1) by

max
∑
i∈I

∑
j∈J

bijxij,

which is the total benefits generated by all machines. We call our main problem in (3.1)

the fairness problem and the one with the alternative objective function the efficiency

problem. To solve this, we propose an algorithm that effectively finds a near-optimal

solution for our fairness problem and ensure a satisfactory efficiency level. We denote

the solution to our algorithm as xAij, the solution to genetic algorithm as xGij, the optimal

solution to the fairness problem as xFij, and the optimal solution to the efficiency problem

as xEij. Let

sA = min
i∈I

{∑
j∈J bijx

A
ij

Ki

}
, sG = min

i∈I

{∑
j∈J bijx

G
ij

Ki

}
, s∗ = min

i∈I

{∑
j∈J bijx

F
ij

Ki

}
,

12
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Parameter

I The set of machines

J The set of jobs

n The number of jobs

m The number of machines

Ki The capacity of machine i (Ki > 0)

cj The finite workload of job j (cj > 0)

bij The finite benefit of job j assigned to machine i (bij > 0)

Decision variable

xij =


1 if job j is assigned to machine i

0 otherwise

,∀i ∈ I, j ∈ J.

Table 3.1: List of notations

and z∗ =
∑
i∈I

∑
j∈J

bijx
E
ij.

By plugging xAij and xGij separately into the objective function of the efficiency problem,

we get zA =
∑

i∈I
∑

j∈J bijx
A
ij and zG =

∑
i∈I
∑

j∈J bijx
G
ij, respectively. We will report

how the objective value of our algorithm deviates from a fairest solution by calculating sA

s∗

as well as the comparison of total benefits zA

s∗
. We will also report how genetic algorithm

performs by calculating sG

s∗
and zG

s∗
to see if our algorithm is effective.

Table 3.1 lists the notations used in this model.

13
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3.2 NP-hardness

In this section, we show that our problem is NP-hard.

Theorem 1. The job allocation problem in (3.1) is strongly NP-hard.

Proof. Consider a special case with m uncapacitated (i.e., Ki ≥
∑

j∈J cij, i ∈ I) machines

and n = 3m jobs with benefits bij = bj for all i ∈ I, j ∈ J . Suppose that there is a bound

B which satisfies
∑n

j=1 bj = mB. If the benefits of all jobs satisfy B
4
< bj <

B
2

, it is

indeed a 3-Partition problem. As 3-Partition problem is strongly NP-hard, the proof is

completed.

Theorem 2. The job allocation problem in (3.1) with m = 1 is NP-hard.

Proof. Our problem with one capacitated machine is a knapsack problem since there is

only one machine with constant capacity and the objective function can be viewed as

maximizing the total benefit the machine generates.

14
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Chapter 4

Analysis

4.1 Iterative Score Maximization Algorithm with Re-

peated Testing algorithm—iSMART

To solve the problem, we design a heuristic algorithm to obtain an approximation solution.

Inspired by the capacitated highest-benefit job first (CHBF) algorithm invented by Liu

(2016), which assigns the job to the machine with the lowest cumulative benefit in each

iteration, here we assign the job to the machine with the lowest score. We want to increase

our objective value the most every time we assign a job, without violating the capacity

constraints. Below we detail the steps.

In each iteration, we try to maximize the objective value, so we choose the machine

with the lowest score and find the remaining unassigned jobs which generates the most

benefit to that machine. If there are multiple machines with the same lowest score, we

choose the one with minimum residual capacity. If the job cannot be assigned to the

15
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machine because the residual capacity on that machine is not enough to complete that

job, we try the next job that generates the next most benefit to that machine. If all the

remaining jobs cannot be assigned to that machine, then we choose the machine with the

next lowest score and repeat the process. When a job cannot be assigned to any machine,

it will be removed from the list of unassigned jobs. We reiterate this process until there

is no job to assign. For ease of exposition, we denote this algorithm as the Iterative Score

Maximization Algorithm with Repeated Testing—iSMART—algorithm. The pesdocode

of iSMART is in Algorithm 1. We define si =
∑
j∈J bijxij

Ki
as the score for all machine i, l

as the currently lowest score machine and h as the highest benefit job for machine l.

In practice, benefits generated by a job often correlate with machine quality and job

complexity, i.e., bij = qihc
t
j, where qi denotes machine quality, h is a scale factor and t > 0

elaborates the relationship between benefit and workload. Moreover, capacity varies from

machine to machine, we assume Ki = aiK, where K > 0 is the standard capacity of a

machine and ai > 0 illustrates the variation of each machine. There are usually way

lot more jobs to be done with limited machine capacities, which is
∑

j∈J cj >
∑

i∈I Ki.

Without loss of generality, we assume that c1 ≥ c2 ≥ · · · ≥ cn, K1 ≥ K2 ≥ · · · ≥ Km and

q1 ≥ q2 ≥ · · · ≥ qm. At the same time, cj ≤ Km for all j ∈ J , cn ≥ 1 and Ki ≥ 2 for all

i ∈ I in all the following analyses.

Below we will discuss the iSMART algorithm in two classes of problems, each with

three different worst-case performance guarantees for three different benefit-workload re-

lationships. In the first class (C1), qi = 1, job benefits do not variate between machines

while machine capacities can be different. That is, bij = bj = hctj with Ki = aiK for

all i ∈ I, j ∈ J . In the second class (C2), ai = 1, job benefits might be different within

16
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Algorithm 1 iSMART

1: J
′ ← ∅

2: repeat

3: if J
′
= ∅ then

4: l← findLowestMachine(I)

5: end if

6: h← findHighestJob(J \ J ′, l)

7: J
′ ← J

′ ∪ h

8: if K
′

l ≥ ch then

9: xlh ← 1, K
′

l ← K
′

l − ch, J ← J \ h, J
′ ← ∅

10: end if

11: if J
′
= J then

12: I ← I \ l, J ′ ← ∅

13: end if

14: until I = ∅ or J = ∅

15: return mini∈I{si}

Algorithm 2 findLowestMachine(I ′′)

1: min←∞, l← 0

2: for i ∈ I ′′ do

3: if si < min or si = min & Ki < Kl then

4: min← si, l← i

5: end if

6: end for

7: return l

17
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Algorithm 3 findHighestJob(J ′′, l)

1: max← 0, h← 0

2: for j ∈ J ′′ do

3: if bil > max then

4: max← bil, h← j

5: end if

6: end for

7: return h

machines while machine capacities are all the same. That is, bij = qihc
t
j with Ki = K for

all i ∈ I, j ∈ J . Both of the two classes have three different relationships between benefit

and workload: linear, convex, or concave. Linear benefit-workload relationship (R1) is

for situations that benefits are proportional to workloads. Convex benefit-workload rela-

tionship (R2) occurs when jobs exhibit economy of scale, and thus a larger job generates

relatively more benefits by the same machine. This is more likely the case if these jobs

are manufacturing or production tasks. Finally, concave benefit-workload relationship

(R3) models the situation in which the marginal benefit of a machine decreases in a unit

of workload increase. This is a typical feature if the resulting products/services are to be

sold to the end market. Chapter 4.4 is the time complexity of iSMART.

Class-Relationship R1 (t = 1) R2 (t < 1) R3 (t > 1)

Liu (2016) (qi = 1, ai = 1) - - -

C1 (qi = 1) §4.2.1 §4.2.2 §4.2.3

C2 (ai = 1) §4.3.1 §4.3.2 §4.3.3

Table 4.1: Section table
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4.2 Class 1: diverse machine capacity

For class 1 (C1), qi = 1, job benefits are the same no matter assigned to which machine

although machine capacities might be different. By assuming c1 ≥ c2 ≥ · · · ≥ cn, we

know that b1 ≥ b2 ≥ · · · ≥ bn for all machines according to bij = qihc
t
j = hctj = bj.

4.2.1 Relationship 1: linear benefit-workload relationship

We first prove that iSMART is a factor-1
2

approximation algorithm when job benefit and

workload are proportional in the form bj = hcj for some h > 0. Our algorithm can

generate a solution whose objective value is at least 1
2

of that from an optimal solution.

We denote s∗ as the objective value of an optimal solution and sA as that of the iSMART

solution.

Theorem 3. If bj = hcj for all j ∈ J for some h > 0, we have

sA ≥ 1

2
s∗.

Proof. First, an obvious upper bound of s∗ is hKi
Ki

= h, as all machines are assigned one

job whose workload equals to its capacity. If we may prove that sA ≥ 1
2
h, we will have

sA ≥ 1
2
h ≥ 1

2
s∗, and the proof is complete. We prove by contradiction, suppose that

sA < 1
2
h, and job j is the first job not assigned to its first-priority machine, say, machine

i, the one with the lowest score currently. The cumulative benefit of machine i is then

lower than 1
2
hKi at the time of assigning job j. This implies that bj <

1
2
hKi, since every

job assigned before job j are with higher benefit, the cumulative benefit of machine i is

also greater than bj. Therefore, cj <
K
2 i

according to bj = hcj. However, if the cumulative
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benefit of machine i must also be lower than 1
2
hKi, the total workloads of jobs that have

been assigned to machine i must be less than K
2 i

. This means the residual capacity of

machine i is greater than K
2 i

, and there is a room to assign job j. This violates our

assumption that job j cannot be assigned to machine i. With this contradiction, the

proof is complete, sA must be greater or equal to half of the optimal s∗.

Example 1 shows that the bound 1
2

is tight.

Example 1. Let ε be a small positive number. Suppose that qi = 1 for all i, ai = 1

for all i, h = 1 and we have 2m jobs with workload K
2

and 1 job with workload K
2

+ ε.

We will use this setting in all the following examples. In this case, Ki = K for all i and

bj = cj for all j. The iSMART algorithm will result in m − 1 machines being allocated

2 jobs but one machine leaving with only 1 job. The machine with only 1 job will earn

score sA = 1
2

+ ε
K

. However, the optimal solution is to allocate each machine with 2 jobs

by ignoring the largest workload job, which results in s∗ = 1. As a result, sA

s∗
=

1
2
+ ε
K

1
,

which approaches 1
2

as ε approaches 0.

4.2.2 Relationship 2: convex benefit-workload relationship

In this section, we prove that the iSMART algorithm has a performance guarantee when

job benefits are convex in workloads in the form bj = hctj for some h > 0 and t > 1. We

define βH ∈ (0, 1] according to the largest-workload job and smallest-capacity machine,

and βL ∈ (0, 1] according to the mth-largest-workload job and largest-capacity machine

as

βH =
c1
Km

,
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βL =
cm
K1

.

We rely on three lemmas to build our main result.

Lemma 1. If bj = hctj for all j ∈ J for some given h > 0 and t > 1, we have

s∗ ≤ βt−1H hKt−1
m .

Proof. Intuitively, we know that s∗ ≤ min
{
hKt

1

K1
,
hKt

2

K2
, · · · , hK

t
m

Km

}
= hKt−1

m , where all

machines are fully loaded with one job whose workload equals its capacity. This is clearly

an upper bound. When βH = 1, we can easily understand that s∗ ≤ hKt−1
m = βt−1H hKt−1

m .

When 0 < βH < 1, the statement is still correct. For any machine, we know that

the best way to consume machine capacity is to fill it by large workloads so it earns

higher cumulative benefits according to bj = hctj. If all machines are filled with the same

workloads, the final score will be restricted by the smallest-capacity machine. By our

notation, the largest job’s workload is c1 = βHKm. In this case, the final score will not

be greater than assigning 1
βH

jobs with the largest workload c1 to the least capacitated

machine. Thus, an upper bound of s∗ is
1
βH

βtHhK
t
m

Km
= βt−1H hKt−1

m .

Lemma 2. If bj = hctj for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥ min

{
1

2t
,
n−m− 1

(n−m)t

}
hKt−1

m .

Proof. Suppose that job j is the first job that cannot be assigned to its first-priority

machine, say, machine i, the one with the lowest score currently. We define p as the

number of jobs that have been assigned to that minimum-benefit machine. For ease of

exposition, let α = min{ 1
2t
, n−m−1
(n−m)t

} be the bound to be proved.
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By contradiction, we assume that sA < αhKt−1
m ≤ αhKt−1

i . The cumulative benefit

on machine i is thus less than αhKt
i . We know that the job j cannot be assigned to

machine i, which has already been assigned p jobs by iSMART, we have bj ≤ αhKt
i

p
, where

the equality holds if and only if all the p jobs and job j are equally large. As bj = hctj,

this implies that cj ≤ t

√
α
p
Ki. Therefore, the consumed capacity on machine i is at least

Ki− t

√
α
p
Ki, otherwise machine i would have enough capacity for job j. Since benefits of

jobs are now convex in their workloads, the least possible cumulative benefit of machine i

is for the p jobs to be equally large. In this case, the cumulative benefit is ph(
Ki− t
√

α
p
Ki

p
)t.

We now show ph(
Ki− t
√

α
p
Ki

p
)t ≥ αhKt

i to establish a contradiction. Some arithmetic

shows that ph(
Ki− t
√

α
p
Ki

p
)t ≥ αhKt

i if and only if α ≤ p
(p+1)t

. As the function p
(p+1)t

is

quasi-concave in p for any t > 1, and the smallest and largest possible numbers of jobs

on machine i is 1 and n−m− 1, it implies that the global minimum of p
(p+1)t

is either 1

or n −m − 1. Thus, α = min{ 1
2t
, n−m−1
(n−m)t

} ≤ p
(p+1)t

will always be satisfied. The proof is

then complete.

The lower bound of sA is the minimum of two values. Whether 1
2t

or n−m−1
(n−m)t

will be

the smaller one depends on t. It can be easily verified that if t ≥ 2, we have n−m−1
(n−m)t

< 1
2t

because p
(p+1)t

is decreasing in that case. However, as long as t < 2, p
(p+1)t

is increasing at

p = 1, and it is possible that n−m−1
(n−m)t

> 1
2t

. Note that when t approaches 1, eventually 1
2t

will be the smaller one (as long as n−m > 1), and this bound converges to 1
2

as Theorem

3 suggests for the linear benefit-workload relationship (where t = 1).

Lemma 3. If bj = hctj for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥ hβtLK
t−1
m .
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Proof. According to the iSMART algorithm, we assign the first mth jobs one at a time

to the m machines. After that, the lowest score will be min
{
hct1
Km

,
hct2
Km−1

, · · · , hc
t
m

K1

}
, which

is exactly hctm
K1

= hβtLK
t−1
1 ≥ hβtKt−1

m . The prove is then complete.

Our main result, Theorem 4, is a direct combination of the above three lemmas.

Theorem 4. If bj = hctj for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥
max

{
min{ 1

2t
, n−m−1
(n−m)t

}, βtL
}

βt−1H

s∗.

Proof. According to Lemma 2 and 3, we have sA ≥ max{min{ 1
2t
, n−m−1
(n−m)t

}, βtL}hKt
m. Also,

we know that s∗ ≤ hβt−1H Kt
m by Lemma 1. Thus, the proof can be completed by combining

all the three lemmas.

When βL is large, βtL would dominate min{ 1
2t
, n−m−1
(n−m)t

}, and the performance guarantee

can be trivially found as
βtL
βt−1
H

. On the contrary, when βL is small, min{ 1
2t
, n−m−1
(n−m)t

} would

be a bound, and Lemma 1 further decreases this bound by having a denominator βt−1H .

Note that it is possible for the worst-case performance guarantee to be above 1
2
. In other

words, the convex relationship between benefits and workloads may actually help the

iSMART algorithm in achieving a better worst-case performance guarantee.

Example 2 shows that the bound
max

{
min{ 1

2t
,n−m−1
(n−m)t

},βtL

}
βt−1
H

is tight.

Example 2. Having the same settings as example 1, we get Ki = K for all i and bj = ctj

for all j. The iSMART algorithm will result in m − 1 machines being allocated 2 jobs

but one machine leaving with only 1 job. The machine with only 1 job will earn score

sA =
(K
2
+ε)t

K
. However, the optimal solution is to allocate each machine with 2 jobs by

ignoring the largest workload job, which results in s∗ =
2(K

2
)t

K
. As a result, sA

s∗
=

(K
2
+ε)t

2(K
2
)t

,
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which approaches 1
2

as ε approaches 0. In this case,
max

{
min{ 1

2t
, 2m+1−m−1
(2m+1−m)t

}, 1
2t

}
( K

2 +ε

K

)t−1 =
1
2t( K

2 +ε

K

)t−1 ,

which also approaches 1
2

as ε approaches 0.

4.2.3 Relationship 3: concave benefit-workload relationship

Here we prove the performance guarantee when the benefit is concave in workload in the

form bj = hctj for all j ∈ J for some h > 0 and t < 1.

Theorem 5. If bj = hctj for all j ∈ J for some h > 0 and t < 1, we have

sA ≥ Kt−1
m

2t
s∗.

Proof. The same as the proof in Theorem 3 and Theorem 4. First, we establish an upper

bound for s∗. When the relationship between job benefits and workloads are concave, the

most beneficial way to consume all the capacity of machine i is to use Ki jobs with unit

workload. If all machines are assigned jobs of workload 1 until there is no more capacity,

we will have Kih1
t

Ki
= h as the objective value, which is clearly an upper bound of s∗.

Then, we consider the moment of that the iSMART algorithm fails to assign a job

to its first-priority machine, say, job j fails to be assigned to machine i. We prove by

contradiction, by assuming that sA < Kt−1
m

2t
s∗ ≤ Kt−1

m

2t
h ≤ Kt−1

i

2t
h. This implies that at this

moment, machine i is with the lowest score and its cumulative benefit is lower than
Kt
i

2t
h.

bj should be less than
Kt
i

2t
h as well, otherwise, it should have been assigned by iSMART

already. As a result, we know cj <
Ki
2

, and the residual capacity of machine i is less than

Ki − Ki
2

= Ki
2

so that job j fails to be assigned to machine i. For machine i, however,

the fact that its current benefit is lower than
Kt
i

2t
h implies that the currently occupied
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capacity must be at most Ki
2

(which happens when machine i is assigned only one job).

This immediately implies that the residual capacity is above Ki
2

, which contradicts with

the fact derived above. Therefore, we have sA ≥ Kt−1
m

2t
s∗.

Example 3. By example 2, sA

s∗
=

(K
2
+ε)t

2(K
2
)t

approaches 1
2

as ε approaches 0. In this case,

let Km = K = 2, our bound Kt−1
m

2t
= 2t−1

2t
= 1

2
is also tight.

4.3 Class 2: diverse job benefit

For class 2 (C2), ai = 1, Ki = aiK = K, job benefits might vary when assigning to

different machine due to different quality while all machine capacities are the same. By

assuming c1 ≥ c2 ≥ · · · ≥ cn, we know that bi1 ≥ bi2 ≥ · · · ≥ bim for all machine i

according to bij = qihc
t
j. Meanwhile, when q1 ≥ q2 ≥ · · · ≥ qm, we have b1j ≥ b2j ≥ · · · ≥

bnj for all job j.

4.3.1 Relationship 1: linear benefit-workload relationship

In this section, when job benefit and workload are proportional (i.e., bij = qihcj for some

h > 0), we prove that iSMART is a factor-1
2

approximation algorithm. We can generate

an objective value that is at least half as good as an optimal solution.

Theorem 6. If bij = qihcj for all j ∈ J for some h > 0, we have

sA ≥ 1

2
s∗.

Proof. First, an upper bound of s∗ is qmhK
K

= qmh, as all machines are assigned one job

whose workload equals to its capacity. This bound is restricted to the lowest quality
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machine. If we can prove that sA ≥ 1
2
qmh, we will have sA ≥ 1

2
qmh ≥ 1

2
s∗, and the proof

is complete. We prove by contradiction, suppose that sA < 1
2
qmh, and job j is the first

job not assigned to its first-priority machine, say, machine i, the one with the lowest score

currently. The cumulative benefit of machine i is then lower than 1
2
qmhK at the time

of assigning job j. This implies that bij <
1
2
qmhK, since every job assigned before job

j are with higher benefit, the cumulative benefit of machine i is also greater than bij.

Therefore, cj <
qm
2qi
K ≤ K

2
according to bij = qihcj and q1 ≥ q2 ≥ · · · ≥ qm. However, if

the cumulative benefit of machine i must also be lower than 1
2
qmhK, the total workloads

of jobs that have been assigned to machine i must be less than K
2

as well. This means

the residual capacity of machine i is greater than K
2

, and there is a room to assign job

j. This violates our assumption that job j cannot be assigned to machine i. With this

contradiction, sA must be greater or equal to half of the optimal s∗.

Example 4 shows that the bound 1
2

is tight.

Example 4. Using the same settings in the previous examples, we assume ε be a small

positive number, qi = 1 for all i, ai = 1 for all i, h = 1 and we have 2m jobs with workload

1
2
K and 1 job with workload 1

2
K + ε. In this case, bij = cj for all i and j. iSMART will

result in m− 1 machines being allocated 2 jobs but one machine leaving with only 1 job.

The machine with only 1 job will earn score sA = 1
2

+ ε
K

. However, the optimal solution

is to allocate each machine with 2 jobs by ignoring the largest workload job. This results

in s∗ = 1. As a result, sA

s∗
=

1
2
+ ε
K

1
, which approaches 1

2
as ε approaches 0.
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4.3.2 Relationship 2: convex benefit-workload relationship

Here we prove that the iSMART algorithm has a performance guarantee when job benefits

are convex in workloads in the form bij = qihc
t
j for some h > 0 and t > 1. Using the same

definition as in class 1, βH = c1
Km

= c1
K

and βL = cm
K1

= cm
K

, where now K1 = Km = K. We

rely on three lemmas to build our main result.

Lemma 4. If bij = qihc
t
j for all j ∈ J for some given h > 0 and t > 1, we have

s∗ ≤ βt−1H qmhK
t−1.

Proof. Intuitively, we know that s∗ ≤ min
{
q1hK

t−1, q2hK
t−1, · · · , qmhKt−1

}
= qmhK

t−1,

where all machines are fully loaded with one job whose workload equals its capac-

ity. This is clearly an upper bound. When βH = 1, we can easily understand that

s∗ ≤ qmhK
t−1 = βt−1H qmhK

t−1.

When βH < 1, the statement is still correct. For any machine, we know that for

every machine the best way to consume its capacity is to fill it by large workloads so it

earns higher cumulative benefits according to bij = qihc
t
j for all i. By our notation, the

largest job’s workload is c1 = βHK. In this case, the final score will not be greater than

assigning 1
βH

jobs with the largest workload c1 to the lowest quality machine. Thus, an

upper bound of s∗ is
1
βH

βtHqmhK
t

K
= βt−1H qmhK

t−1.

Lemma 5. If bij = qihc
t
j for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥ min

{
1

2t
,
n−m− 1

(n−m)t

}
qmhK

t−1.

Proof. Suppose that job j is the first job that cannot be assigned to its first-priority

machine, say, machine i, the one with the lowest score currently. We define p as the
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number of jobs that have been assigned to that minimum-benefit machine. For ease of

exposition, let α = min{ 1
2t
, n−m−1
(n−m)t

} be the bound to be proved.

By contradiction, we assume that sA < αqmhK
t−1. The cumulative benefit on machine

i is thus less than αqmhK
t. We know that the job j cannot be assigned to machine i,

which has already been assigned p jobs by iSMART, we have bij ≤ αqmhKt

p
, where the

equality holds if and only if all the p jobs and job j are equally large. As bij = qihc
t
j, this

implies that cj ≤ t

√
αqm
pqi
K ≤ t

√
α
p
K. Therefore, the consumed capacity on machine i is at

least K − t

√
α
p
K, otherwise machine i would have enough capacity for job j. Due to the

characteristic of convexity, the least possible cumulative benefit of machine i is for the p

jobs to be equally large. In this case, the cumulative benefit is ph(
K− t
√

α
p
K

p
)t.

We now show ph(
K− t
√

α
p
K

p
)t ≥ αqmhK

t to establish a contradiction. Some arithmetic

shows that ph(
K− t
√

α
p
K

p
)t ≥ αqmhK

t if and only if α ≤ p
(p+1)t

. As a function of p, it can

be verified that p
(p+1)t

is quasi-concave in p for any t > 1. We know that the smallest and

largest possible numbers of jobs on machine i is 1 and n−m−1, respectively. This implies

that the global minimum of p
(p+1)t

is either 1 or n−m−1, and thus α = min{ 1
2t
, n−m−1
(n−m)t

} ≤

p
(p+1)t

will always be satisfied. The proof is then complete.

Lemma 6. If bj = hctj for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥ qmhβ
t
LK

t−1.

Proof. According to the iSMART algorithm, we assign the first mth jobs one at a time to

the m machines. After that, the lowest score will be min
{
q1hct1
K

,
q2hct2
K

, · · · , qmhc
t
m

K

}
, which

is exactly qmhctm
K

= qmhβ
t
LK

t−1. The prove is then complete.

We now state our main result, which is a direct combination of the above three lemmas.
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Theorem 7. If bij = qihc
t
j for all j ∈ J for some given h > 0 and t > 1, we have

sA ≥
max

{
min{ 1

2t
, n−m−1
(n−m)t

}, βtL
}

βt−1H

s∗.

Proof. According to Lemma 5 and 6, we have sA ≥ max{min{ 1
2t
, n−m−1
(n−m)t

}, βtL}qmhKt.

Also, we know that s∗ ≤ βt−1H qmhK
t by Lemma 4. Thus, the proof can be completed by

combining all the three lemmas.

Example 5 shows that this bound is tight.

Example 5. Having the same settings as example 4, we get bij = ctj for all i and j.

iSMART will result in m − 1 machines being allocated 2 jobs but one machine leaving

with only 1 job. The machine with only 1 job will earn score sA =
(K
2
+ε)t

K
. However, the

optimal solution is to allocate each machine with 2 jobs by ignoring the largest workload

job. This results in s∗ =
2(K

2
)t

K
. As a result, sA

s∗
=

(K
2
+ε)t

2(K
2
)t

, which approaches 1
2

as ε

approaches 0. In this case,
max

{
min{ 1

2t
, 2m+1−m−1
(2m+1−m)t

}, 1
2t

}
( K

2 +ε

K

)t−1 =
1
2t( K

2 +ε

K

)t−1 , which also approaches

1
2

as ε approaches 0.

4.3.3 Relationship 3: concave benefit-workload relationship

Here we prove the performance guarantee when the benefit is concave in workload in the

form bij = q + ihctj for all j ∈ J for some h > 0 and t < 1.

Theorem 8. If bij = qihc
t
j for all j ∈ J for some h > 0 and t < 1, we have

sA ≥ Kt−1

2t
s∗.

Proof. The same as the proof in Theorem 6 and Theorem 7. First, we establish an upper

bound for s∗. When the relationship between job benefits and workloads are concave,
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the most beneficial way to consume all the capacity of machine i is to use K jobs with

unit workload. If all machines are assigned jobs of workload 1 until there is no more

capacity, we will have min
{
Kq1h1t

K
, Kq2h1

t

K
, · · · , Kqmh1t

K

}
= qmh as the objective value,

which is clearly an upper bound of s∗.

Then, we consider the moment of that the iSMART algorithm fails to assign a job

to its first-priority machine. Let that job be job j and that machine be machine i. We

prove by contradiction, by assuming that sA < Kt−1

2t
s∗ ≤ Kt−1

2t
qmh. This implies that at

this moment, machine i is with the lowest score and its cumulative benefit is lower than

Kt

2t
qmh, and therefore the job benefit bij should be less than that as well (otherwise, it

should have been assigned by iSMART already). As a result, we know cj <
K
2

t

√
qm
qi
≤ K

2
,

and the residual capacity of machine i is less than K − K
2

= K
2

(otherwise, there would

be a room to assigned job j to machine i). For machine i, however, the fact that its

current benefit is lower than Kt

2t
qmh implies that the currently occupied capacity must be

at most K
2

(which happens when machine i is assigned only one job). This immediately

implies that the residual capacity is above K
2

, which contradicts with the fact derived

above. Therefore, we have sA ≥ Kt−1

2t
s∗.

Example 6. This bound is also tight since here in class 2, Km = K, and by example 3

we know that it is tight.

We summarize all the worst-case performance guarantees we obtain in Table 4.2.

Numerical results are provided in Chapter 5.
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Class-Relationship R1 (t = 1) R2 (t < 1) R3 (t > 1)

C1 (qi = 1) 1
2

max

{
min{ 1

2t
,n−m−1

(n−m)t
},βt

L

}
βt−1
H

Kt−1
m

2t

C2 (ai = 1) 1
2

max

{
min{ 1

2t
,n−m−1

(n−m)t
},βt

L

}
βt−1
H

Kt−1

2t

Table 4.2: Bounds

4.4 Time complexity analysis

In this section, we briefly derive the time complexity of iSMART. In each iteration,

iSMART finds the lowest score machine and the job benefits this machine the most.

That is, scanning through m machines and n jobs. We repeat the iteration n times so

that all jobs are assigned. The time complexity of iSMART is then O(mn2). Numerical

results of time are provided in Section 5.4.
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Chapter 5

Numerical Study

5.1 Experiment settings

In our numerical study, we check both solution performance and time performance of

iSMART on this fair job allocation problem by running experiments on a personal com-

puter with Windows 10, 8GB RAM and Intel i7-6770 3.4GHz CPU. In all experiments,

we set cj ∼ U(0, 100), i.e., cj is a randomly chosen real number between 0 and 100. We

set up several factors to see how the solution varies in different settings. The first factor is

the relationship between job benefits and workloads. We consider four scenarios, in which

the job benefit is linear in, non-decreasing and convex in, non-decreasing and concave in,

and unrelated with the job workload. The second factor is machine quality. We consider

two scenarios, where all machines are with the same quality, or there will be a variation.

The third factor is capacity tightness. We consider two scenarios, one with loose machine

capacity, and one with tight machine capacity. The fourth factor is capacity variation.

We consider two scenarios, where all machines are with the same capacity, or there will
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be a variation. We adopt the following settings for each factor:

� Benefit-workload relationship (labelled as T): scenario L (for linear): bij = qicj;

scenario X (for convex): bij = qic
2
j ; scenario A (for concave): bij = qi

√
cj; scenario

R (for unrelated): bij ∼ U(0, 100).

� Machine quality (labelled as Q): scenario I (for identical): qi = 1; scenario D (for

diverse): qi ∼ U(0.8, 1.2).

� Capacity tightness (labelled as C): scenario L (for loose): Ki = ai

(∑
j∈J cj

m

)
; sce-

nario T (for tight): Ki = 3
4
ai

(∑
j∈J cj

m

)
.

� Capacity variation (labelled as A): scenario I (for identical) ai = 1; scenario D (for

diverse): ai ∼ U(0.8, 1.2).

For the comparison of solution quality, we combine the above factors with several m and

n (m = 5 with n = 25, 50, 150 and m = 20 with n = 100, 200, 600), as a total of 192

scenarios, each with 100 instances. For the comparison of computation time, we randomly

select 100 instances for each different problem scales (m = 5 with n = 20, 40, 60, ..., 400

and n = 400 with n = 5, 10, 15, ..., 40).

5.2 Benchmark algorithms

We compare iSMART with IP or LP and genetic algorithm to see its performance. An IP

solution is an optimal solution to our problem; we solve it with AMPL using the solver

CPLEX. However, due to problem complexity and memory limitation, only one scenario

in our study is IP solvable: m = 5 with n = 20 for computation time. When we are
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unable to get an IP solution, we release the binary constraint of our problem and solve

an LP relaxation.

For genetic algorithm, We implement it as follows. First, we randomly create a pool of

100 feasible solutions. In each iteration we choose two pairs of parents (four chromosomes)

from the best half of our pool and one pair of parents (two chromosomes) from the other

half. Then we perform a crossover on each pair of parents by randomly select a cross-point

which divides the selected solutions into the head part and tail part. Six child solutions

are then created by connecting the head part to the another tail part between each pair of

parents. All child solutions are given a 1% chance to mutate. When mutation happens,

one job will change its destined machine randomly. We then check the feasibility of child

solutions. At the end of each iteration, we compare feasible child solutions with those in

the pool and replace the lower ones so that the pool remain 100 feasible solutions. This

step makes the solutions in the pool better and better after iterations. The above process

will be repeated 2000 times. At the end, the algorithm will report the best solution in

the pool.

5.3 Comparison of solution quality

Too see how the solution quality is, we compare the solution between LP, iSMART and

GA. We denote solution of “fairness” version as sL, sA, and sG; solution of “efficiency”

version as zL, zA, and zG. They are then compared to generate Tables A.1-A.6 in Ap-

pendix. For the remaining, we use LP solutions because IP solutions are not attainable.

To understand how each factor affects the performance of iSMART, we calculate the
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average performance of each scenario and then generate Tables 5.1, 5.2, 5.3, and 5.4.

Moreover, Table 5.5 shows how iSMART is affected by different m and n.

In Table 5.1, in the “fairness” version, iSMART and GA perform the best when

benefits are linear in workloads. For the iSMART algorithm, the performance falls when it

comes to convex and unrelated relationship between benefits and workloads, and performs

the least desirable in concave relationship. The reason behind this observation could be

the way iSMART assign jobs, it chooses jobs based on jobs’ benefit. If benefits are

linear in workloads, the value of each job tends to be the same. It means that it is

easier for iSMART to assign jobs to achieve “fairness” and “efficiency”. When benefits

are convex in workload, high-benefit jobs and low-benefit jobs tend to have relatively

similar workloads, and thus machine capacity does not introduce a huge difficulty to the

performance of iSMART. If the relationship between benefit and workload is concave, job

benefits are lower when workloads are higher. iSMART puts the low cost-performance

jobs first to the currently inferior machine, that might be why it performs worse than in

linear and convex. However, for genetic algorithm, concave relationship is in its second

best, while convex and unrelated relationship get the third and fourth, respectively.

In “efficiency” version, iSMART ranks benefit-workload relationship in the same se-

quence as that of fairness version. For genetic algorithm, the result is slightly different

from that in fairness version, GA now performs better in concave than convex. In any

case, data shows that iSMART performs relatively well than GA in both “fairness” and

“efficiency” versions. We can also see that while pursuing fairness, efficiency remains in

a high level and did not sacrifice too much using the iSMART algorithm.

Note that the convexity or concavity of the relationship between benefit and workload
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has important managerial implication. When the relationship is convex, basically the

problem environment is of significant economy of scale so that marginal benefit increases

as workloads increase. On the contrary, when the relationship is concave, the product

is of diminishing marginal benefit as workloads increase. This understanding will help

managers to decide whether to choose the iSMART algorithm as their solution tool when

they face the fair job allocation problem studied in this paper.

T sA

sL
sG

sL
zA

zL
zG

zL

L 0.992 0.982 0.994 0.979

X 0.932 0.807 0.971 0.879

A 0.812 0.888 0.896 0.944

R 0.931 0.766 0.991 0.905

Table 5.1: Impact of the benefit-workload relationship (T)

Table 5.2 shows that iSMART has a better performance when machine qualities are

the same, which is when the conversion rate is stable among machines. This will be

helpful for iSMART to put the highest benefit job in the lowest score machine in each

iteration, because it consumes a constant capacity no matter assigned to which machine.

Q sA

sL
sG

sL
zA

zL
zG

zL

I 0.944 0.866 0.969 0.935

D 0.890 0.855 0.957 0.919

Table 5.2: Impact of machine quality (Q)

Table 5.3 shows that iSMART performs better when the capacity is loose comparing

to tight. This is an intuitive result, because jobs can be assigned more appropriately by
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iSMART when it is more flexible to assign jobs.

C sA

sL
sG

sL
zA

zL
zG

zL

L 0.945 0.899 0.985 0.965

T 0.888 0.822 0.941 0.889

Table 5.3: Impact of capacity tightness (C)

Table 5.4 is the results of capacity variation. The data reports that there is no big

difference if there is a variation of capacity among machines or not.

A sA

sL
sG

sL
zA

zL
zG

zL

I 0.917 0.860 0.963 0.962

D 0.917 0.861 0.963 0.928

Table 5.4: Impact of capacity variance (A)

Furthermore, by examining Table 5.5, we find that the performance ratios of iSMART

is higher when n
m

increases. We believe that with more options of job candidates to be

selected, our algorithm can assign more valuable jobs to machines.

n
m

sA

sL
sG

sL
zA

zL
zG

zL

5 0.896 0.820 0.957 0.910

10 0.922 0.867 0.966 0.931

30 0.932 0.896 0.967 0.940

Table 5.5: Impact of number of jobs and machines ( n
m

)

In summary, the average performance of all instances of iSMART is larger than 0.9,
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which is better than the average performance of GA. Numerical experiments show that iS-

MART is a good algorithm for this problem with high robustness. In particular, iSMART

performs better when job benefits are linear or convex to workloads, machine qualities are

stable, machine capacities are loose, and n
m

is large. These results will suggest decision

makers when to apply the iSMART algorithm is suitable.

5.4 Comparison of computation time

We compare the average computation time for different problem scales in Tables 5.6 and

5.7. Figures 5.1 and 5.2 shows that the numerical experiments fit our analysis of time

complexity in Section 4.4. With a fixed m, when n becomes larger, the computation time

of iSMART increases in a quadratic manner. On the other hand, with a fixed n, when

m becomes larger, the computation time of iSMART increases linearly. Moreover, we

compared with iSMART and LP in Figures 5.3 and 5.4 and see that our algorithm runs

fast while LP spends much longer time in solving when n and m are larger.
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n IP LP iSMART GA

20 55503.3 2.0 0.6 1372.5

40 - 3.8 1.2 2373.0

60 - 7.2 1.7 3427.3

80 - 12.7 2.2 4450.7

100 - 16.7 3.2 5418.3

120 - 26.1 4.2 6505.0

140 - 31.5 4.7 7441.4

160 - 35.2 5.9 8425.3

180 - 46.3 6.8 9572.8

200 - 52.5 8.2 10536.4

220 - 59.6 10.2 11743.7

240 - 60.3 10.5 12750.1

260 - 72.4 12.2 13884.4

280 - 81.7 13.9 14907.3

300 - 96.4 15.1 15741.2

320 - 107.9 16.6 17012.4

340 - 126.5 17.9 18429.6

360 - 133.6 19.7 19206.7

380 - 150.7 21.5 20269.4

400 - 160.6 23.3 21052.2

Table 5.6: Computation time (milliseconds) with fixed m = 5

40



doi:10.6342/NTU201704133

m LP iSMART GA

5 160.6 23.3 21052.2

10 548.0 39.0 21276.6

15 953.9 51.1 21232.9

20 1655.2 69.6 21059.2

25 2606.2 83.9 21368.3

30 3875.1 104.5 21182.0

35 5500.3 117.8 21379.0

40 7894.7 135.6 21686.0

Table 5.7: Computation time (milliseconds) with fixed n = 400
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Figure 5.1: Computation time (ms)

of iSMART with fixed m = 5

Figure 5.2: Computation time (ms)

of iSMART with fixed n = 400

Figure 5.3: Computation time (ms)

of iSMART and LP with fixed m =

5

Figure 5.4: Computation time (ms)

of iSMART and LP with fixed n =

400
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Chapter 6

Conclusion and Future Works

In this study, we consider a fair job allocation problem on unrelated machines as the

main concern. Inspired by the previous literatures, we formulate an integer programming

problem which maximizes the lowest fairness score of a machine subject to capacity

constraints. Since the optimal solution cannot be solved in polynomial time, we then

develop our own algorithm to solve this kind of problem. We prove that the performance

guarantee of our algorithm is at least 1
2

when the job benefits are linear (t = 1) in

workloads,
max

{
min{ 1

2t
,n−m−1
(n−m)t

},βtL

}
βt−1
H

when the job benefits are convex (t > 1) in workloads,

and Kt−1
m

2t
when the job benefits are concave (t < 1) in workloads. Moreover, the numerical

study indicates that our algorithms works better when benefits are linear or convex than

concave, machine qualities are the same than different, capacity is loose than tight, and n
m

is big than small. It also reported that our algorithm did not sacrifice too much efficiency

in order to pursue fairness.

Some further investigations may further improve in this study. One promising di-

rection is to extend our problem settings, for example, job workloads might be different
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among machines. It would be more general if it is extended. Another direction is to

remove some assumptions, such as
∑

j∈J cj >
∑

i∈I Ki. If our algorithm still works well

and there exist a performance guarantee, it would be more powerful to be adopted in

practice.
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Appendix A

Supplemental Results of the

Numerical Studies
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average minimum

m n T Q C A sA

sL
sG

sL
zA

zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

5 25 L I L I 0.957 0.937 0.972 0.953 0.902 0.882 0.927 0.909

5 25 L I L D 0.975 0.960 0.988 0.974 0.927 0.897 0.953 0.914

5 25 L I T I 0.964 0.962 0.977 0.976 0.882 0.929 0.916 0.945

5 25 L I T D 0.970 0.963 0.984 0.975 0.902 0.899 0.938 0.910

5 25 L D L I 0.992 0.993 0.981 0.937 0.958 0.947 0.912 0.874

5 25 L D L D 0.990 0.994 0.986 0.962 0.961 0.951 0.945 0.884

5 25 L D T I 0.989 0.997 0.979 0.955 0.950 0.969 0.929 0.889

5 25 L D T D 0.988 0.997 0.981 0.957 0.942 0.974 0.933 0.892

5 25 A I L I 0.914 0.914 0.958 0.949 0.861 0.890 0.908 0.887

5 25 A I L D 0.927 0.935 0.965 0.968 0.791 0.870 0.868 0.916

5 25 A I T I 0.827 0.890 0.854 0.935 0.709 0.823 0.776 0.874

5 25 A I T D 0.798 0.897 0.842 0.936 0.711 0.850 0.751 0.866

5 25 A D L I 0.812 0.906 0.955 0.921 0.669 0.858 0.928 0.862

5 25 A D L D 0.842 0.920 0.947 0.936 0.723 0.852 0.860 0.867

5 25 A D T I 0.738 0.881 0.839 0.905 0.568 0.819 0.743 0.854

5 25 A D T D 0.735 0.883 0.820 0.906 0.619 0.806 0.756 0.854

5 25 X I L I 0.967 0.885 0.991 0.939 0.894 0.712 0.970 0.825

5 25 X I L D 0.965 0.888 0.993 0.948 0.885 0.743 0.955 0.790

5 25 X I T I 0.890 0.732 0.934 0.799 0.757 0.502 0.854 0.668

5 25 X I T D 0.894 0.736 0.947 0.797 0.796 0.532 0.888 0.623

5 25 X D L I 0.913 0.873 0.959 0.899 0.833 0.756 0.934 0.805

5 25 X D L D 0.919 0.886 0.959 0.907 0.777 0.702 0.925 0.741

5 25 X D T I 0.836 0.734 0.918 0.779 0.705 0.564 0.828 0.656

5 25 X D T D 0.844 0.737 0.935 0.778 0.719 0.606 0.862 0.641

5 25 R I L I 0.937 0.872 0.990 0.962 0.805 0.716 0.969 0.841

5 25 R I L D 0.928 0.879 0.991 0.959 0.765 0.739 0.964 0.829

5 25 R I T I 0.863 0.756 0.969 0.848 0.675 0.605 0.916 0.699

5 25 R I T D 0.871 0.760 0.969 0.853 0.722 0.558 0.930 0.672

5 25 R D L I 0.925 0.877 0.991 0.958 0.743 0.729 0.962 0.902

5 25 R D L D 0.920 0.875 0.991 0.956 0.700 0.741 0.958 0.832

5 25 R D T I 0.867 0.758 0.971 0.851 0.658 0.613 0.938 0.704

5 25 R D T D 0.855 0.758 0.968 0.847 0.595 0.610 0.922 0.653

Table A.1: The average and worst-case performance of iSMART and GA - m = 5, n = 25
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average minimum

m n T Q C A sA

sL
sG

sL
zA

zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

5 50 L I L I 0.990 0.967 0.993 0.975 0.969 0.945 0.974 0.957

5 50 L I L D 0.994 0.983 0.998 0.991 0.985 0.951 0.990 0.956

5 50 L I T I 0.989 0.988 0.993 0.993 0.951 0.969 0.977 0.978

5 50 L I T D 0.993 0.987 0.996 0.992 0.985 0.970 0.990 0.977

5 50 L D L I 0.998 0.999 0.995 0.968 0.993 0.973 0.986 0.925

5 50 L D L D 0.998 0.998 0.993 0.977 0.986 0.974 0.964 0.937

5 50 L D T I 0.997 0.999 0.996 0.980 0.987 0.991 0.983 0.908

5 50 L D T D 0.998 0.999 0.996 0.981 0.984 0.996 0.990 0.928

5 50 A I L I 0.969 0.956 0.985 0.975 0.950 0.936 0.965 0.937

5 50 A I L D 0.969 0.967 0.982 0.988 0.897 0.938 0.903 0.958

5 50 A I T I 0.810 0.923 0.827 0.946 0.780 0.897 0.783 0.913

5 50 A I T D 0.813 0.920 0.830 0.944 0.725 0.874 0.759 0.892

5 50 A D L I 0.814 0.930 0.975 0.946 0.709 0.875 0.958 0.914

5 50 A D L D 0.834 0.941 0.954 0.952 0.707 0.853 0.861 0.916

5 50 A D T I 0.713 0.897 0.810 0.914 0.608 0.843 0.761 0.855

5 50 A D T D 0.717 0.896 0.808 0.914 0.606 0.837 0.745 0.854

5 50 X I L I 0.996 0.936 0.999 0.970 0.989 0.895 0.992 0.926

5 50 X I L D 0.993 0.933 0.998 0.965 0.966 0.838 0.988 0.888

5 50 X I T I 0.971 0.796 0.980 0.830 0.937 0.715 0.947 0.738

5 50 X I T D 0.964 0.791 0.980 0.827 0.938 0.673 0.959 0.715

5 50 X D L I 0.947 0.918 0.964 0.932 0.870 0.865 0.940 0.877

5 50 X D L D 0.945 0.921 0.961 0.929 0.849 0.828 0.927 0.806

5 50 X D T I 0.898 0.781 0.964 0.807 0.818 0.685 0.943 0.696

5 50 X D T D 0.887 0.785 0.964 0.810 0.825 0.678 0.939 0.690

5 50 R I L I 0.967 0.923 0.998 0.978 0.877 0.866 0.991 0.918

5 50 R I L D 0.966 0.922 0.998 0.974 0.764 0.824 0.989 0.898

5 50 R I T I 0.921 0.780 0.987 0.839 0.792 0.614 0.960 0.677

5 50 R I T D 0.926 0.781 0.988 0.844 0.722 0.620 0.896 0.720

5 50 R D L I 0.968 0.919 0.998 0.978 0.879 0.855 0.992 0.929

5 50 R D L D 0.969 0.927 0.998 0.978 0.885 0.814 0.988 0.901

5 50 R D T I 0.922 0.791 0.988 0.851 0.737 0.697 0.969 0.735

5 50 R D T D 0.916 0.787 0.988 0.850 0.746 0.655 0.955 0.740

Table A.2: The average and worst-case performance of iSMART and GA - m = 5, n = 50

47



doi:10.6342/NTU201704133

average minimum

m n T Q C A sA

sL
sG

sL
zA

zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

5 150 L I L I 0.999 0.990 0.999 0.993 0.996 0.982 0.997 0.987

5 150 L I L D 0.999 0.995 1.000 0.998 0.998 0.985 0.999 0.988

5 150 L I T I 0.999 0.998 0.999 0.999 0.996 0.996 0.998 0.997

5 150 L I T D 0.999 0.998 1.000 0.999 0.998 0.996 0.999 0.997

5 150 L D L I 1.000 1.000 1.000 0.990 0.999 0.999 0.999 0.976

5 150 L D L D 1.000 0.999 0.995 0.992 0.998 0.983 0.966 0.969

5 150 L D T I 1.000 1.000 1.000 0.997 0.999 1.000 0.999 0.981

5 150 L D T D 1.000 1.000 1.000 0.997 0.998 0.999 0.999 0.993

5 150 A I L I 0.994 0.982 0.997 0.992 0.989 0.972 0.992 0.986

5 150 A I L D 0.965 0.983 0.970 0.993 0.878 0.961 0.888 0.978

5 150 A I T I 0.809 0.931 0.812 0.944 0.778 0.905 0.783 0.916

5 150 A I T D 0.806 0.930 0.811 0.942 0.754 0.889 0.761 0.899

5 150 A D L I 0.804 0.928 0.984 0.965 0.694 0.851 0.974 0.947

5 150 A D L D 0.816 0.940 0.949 0.965 0.673 0.843 0.855 0.938

5 150 A D T I 0.693 0.882 0.795 0.918 0.590 0.796 0.763 0.876

5 150 A D T D 0.691 0.878 0.796 0.917 0.594 0.798 0.747 0.862

5 150 X I L I 1.000 0.972 1.000 0.990 0.999 0.956 1.000 0.976

5 150 X I L D 0.999 0.963 1.000 0.979 0.995 0.884 0.997 0.906

5 150 X I T I 0.993 0.830 0.994 0.849 0.988 0.791 0.990 0.810

5 150 X I T D 0.991 0.831 0.994 0.848 0.986 0.782 0.990 0.798

5 150 X D L I 0.952 0.933 0.963 0.953 0.903 0.871 0.933 0.918

5 150 X D L D 0.958 0.936 0.962 0.945 0.884 0.859 0.914 0.896

5 150 X D T I 0.910 0.805 0.976 0.830 0.854 0.751 0.963 0.781

5 150 X D T D 0.906 0.804 0.975 0.829 0.849 0.725 0.959 0.753

5 150 R I L I 0.989 0.961 1.000 0.993 0.958 0.937 0.999 0.981

5 150 R I L D 0.990 0.955 1.000 0.983 0.950 0.849 0.997 0.887

5 150 R I T I 0.952 0.788 0.992 0.824 0.862 0.694 0.980 0.726

5 150 R I T D 0.951 0.786 0.992 0.823 0.863 0.691 0.969 0.731

5 150 R D L I 0.990 0.961 1.000 0.993 0.965 0.926 0.999 0.976

5 150 R D L D 0.988 0.954 1.000 0.984 0.941 0.850 0.998 0.898

5 150 R D T I 0.952 0.786 0.991 0.821 0.870 0.729 0.979 0.764

5 150 R D T D 0.952 0.789 0.992 0.828 0.894 0.709 0.972 0.757

Table A.3: The average and worst-case performance of iSMART and GA - m = 5, n = 150
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average minimum

m n T Q C A sA

sL
sG

sL
zA

zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

20 100 L I L I 0.965 0.902 0.978 0.953 0.936 0.806 0.951 0.902

20 100 L I L D 0.982 0.905 0.993 0.960 0.958 0.852 0.976 0.917

20 100 L I T I 0.961 0.928 0.977 0.967 0.918 0.880 0.945 0.933

20 100 L I T D 0.984 0.930 0.993 0.969 0.963 0.895 0.983 0.945

20 100 L D L I 0.998 0.980 0.994 0.942 0.993 0.925 0.979 0.909

20 100 L D L D 0.998 0.982 0.993 0.951 0.979 0.934 0.975 0.897

20 100 L D T I 0.997 0.992 0.992 0.957 0.987 0.968 0.961 0.926

20 100 L D T D 0.997 0.992 0.994 0.959 0.984 0.965 0.983 0.935

20 100 A I L I 0.916 0.854 0.963 0.953 0.883 0.811 0.934 0.930

20 100 A I L D 0.935 0.856 0.981 0.959 0.860 0.816 0.932 0.924

20 100 A I T I 0.832 0.829 0.867 0.932 0.725 0.785 0.789 0.901

20 100 A I T D 0.785 0.824 0.840 0.932 0.747 0.791 0.800 0.899

20 100 A D L I 0.769 0.810 0.967 0.923 0.716 0.770 0.951 0.895

20 100 A D L D 0.772 0.815 0.958 0.927 0.679 0.759 0.902 0.889

20 100 A D T I 0.701 0.784 0.847 0.901 0.587 0.742 0.790 0.870

20 100 A D T D 0.678 0.786 0.819 0.901 0.603 0.738 0.758 0.870

20 100 X I L I 0.981 0.774 0.995 0.931 0.946 0.704 0.976 0.889

20 100 X I L D 0.975 0.768 0.997 0.927 0.943 0.652 0.985 0.855

20 100 X I T I 0.905 0.629 0.931 0.786 0.821 0.533 0.905 0.722

20 100 X I T D 0.917 0.639 0.966 0.792 0.853 0.548 0.932 0.714

20 100 X D L I 0.887 0.752 0.956 0.892 0.801 0.654 0.947 0.834

20 100 X D L D 0.882 0.749 0.955 0.893 0.810 0.659 0.940 0.832

20 100 X D T I 0.809 0.619 0.918 0.769 0.724 0.532 0.888 0.710

20 100 X D T D 0.801 0.611 0.946 0.763 0.716 0.527 0.930 0.678

20 100 R I L I 0.922 0.649 0.996 0.960 0.807 0.541 0.991 0.915

20 100 R I L D 0.925 0.651 0.996 0.959 0.801 0.560 0.987 0.868

20 100 R I T I 0.847 0.530 0.982 0.836 0.624 0.428 0.968 0.756

20 100 R I T D 0.852 0.524 0.982 0.831 0.652 0.417 0.963 0.739

20 100 R D L I 0.928 0.658 0.996 0.958 0.809 0.576 0.988 0.922

20 100 R D L D 0.926 0.649 0.995 0.954 0.750 0.547 0.982 0.880

20 100 R D T I 0.847 0.522 0.982 0.834 0.645 0.411 0.967 0.765

20 100 R D T D 0.854 0.530 0.982 0.835 0.642 0.396 0.969 0.739

Table A.4: The average and worst-case performance of iSMART and GA - m = 20, n =

100
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average minimum

m n T Q C A sA

sL
sG

sL
zA

zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

20 200 L I L I 0.992 0.953 0.995 0.979 0.984 0.930 0.991 0.964

20 200 L I L D 0.997 0.960 0.999 0.988 0.987 0.890 0.992 0.967

20 200 L I T I 0.992 0.977 0.995 0.990 0.977 0.966 0.985 0.979

20 200 L I T D 0.997 0.977 0.999 0.990 0.990 0.962 0.997 0.984

20 200 L D L I 1.000 0.998 0.999 0.973 0.997 0.984 0.997 0.955

20 200 L D L D 0.999 0.997 0.996 0.980 0.998 0.965 0.980 0.960

20 200 L D T I 0.999 0.999 0.999 0.985 0.998 0.994 0.997 0.971

20 200 L D T D 0.999 0.999 0.999 0.985 0.996 0.994 0.997 0.969

20 200 A I L I 0.971 0.910 0.988 0.977 0.960 0.894 0.974 0.967

20 200 A I L D 0.969 0.914 0.986 0.984 0.910 0.884 0.926 0.969

20 200 A I T I 0.801 0.865 0.818 0.941 0.785 0.846 0.797 0.926

20 200 A I T D 0.800 0.870 0.824 0.942 0.769 0.835 0.787 0.918

20 200 A D L I 0.752 0.843 0.977 0.948 0.689 0.812 0.970 0.921

20 200 A D L D 0.766 0.853 0.962 0.953 0.667 0.817 0.904 0.927

20 200 A D T I 0.662 0.812 0.798 0.913 0.628 0.772 0.775 0.885

20 200 A D T D 0.670 0.816 0.803 0.915 0.603 0.769 0.764 0.889

20 200 X I L I 0.998 0.864 0.999 0.968 0.994 0.825 0.998 0.946

20 200 X I L D 0.995 0.859 0.999 0.971 0.985 0.808 0.996 0.928

20 200 X I T I 0.977 0.720 0.984 0.825 0.960 0.665 0.964 0.789

20 200 X I T D 0.968 0.718 0.985 0.826 0.948 0.665 0.979 0.783

20 200 X D L I 0.919 0.819 0.955 0.927 0.875 0.784 0.939 0.907

20 200 X D L D 0.912 0.817 0.955 0.928 0.856 0.757 0.932 0.878

20 200 X D T I 0.852 0.689 0.966 0.802 0.803 0.631 0.953 0.758

20 200 X D T D 0.852 0.692 0.964 0.806 0.810 0.633 0.957 0.756

20 200 R I L I 0.959 0.757 0.999 0.982 0.866 0.696 0.998 0.966

20 200 R I L D 0.959 0.755 0.999 0.977 0.869 0.679 0.996 0.938

20 200 R I T I 0.896 0.620 0.993 0.836 0.773 0.545 0.985 0.795

20 200 R I T D 0.908 0.614 0.992 0.834 0.727 0.535 0.984 0.765

20 200 R D L I 0.957 0.756 0.999 0.981 0.878 0.691 0.997 0.963

20 200 R D L D 0.961 0.759 0.999 0.979 0.842 0.677 0.996 0.934

20 200 R D T I 0.902 0.623 0.992 0.837 0.768 0.558 0.981 0.785

20 200 R D T D 0.904 0.610 0.992 0.832 0.748 0.507 0.983 0.753

Table A.5: The average and worst-case performance of iSMART and GA - m = 20, n =

200
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average minimum

m n T Q C A sA

sL
sG

sL
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zL
zG

zL
sA

sL
sG

sL
zA

zL
zG

zL

20 600 L I L I 0.999 0.988 0.999 0.995 0.998 0.976 0.937 0.991

20 600 L I L D 1.000 0.978 1.000 0.998 0.999 0.886 1.000 0.993

20 600 L I T I 0.999 0.997 1.000 0.999 0.998 0.995 0.999 0.998

20 600 L I T D 1.000 0.997 1.000 0.999 0.999 0.994 1.000 0.997

20 600 L D L I 1.000 1.000 1.000 0.992 1.000 0.998 1.000 0.985

20 600 L D L D 1.000 0.999 0.996 0.994 1.000 0.972 0.978 0.980

20 600 L D T I 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.996

20 600 L D T D 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.995

20 600 A I L I 0.994 0.956 0.998 0.993 0.991 0.947 0.995 0.989

20 600 A I L D 0.977 0.951 0.983 0.995 0.908 0.897 0.915 0.984

20 600 A I T I 0.809 0.900 0.812 0.941 0.797 0.887 0.800 0.926

20 600 A I T D 0.805 0.900 0.812 0.941 0.786 0.875 0.792 0.920

20 600 A D L I 0.743 0.860 0.982 0.966 0.678 0.816 0.979 0.957

20 600 A D L D 0.748 0.862 0.963 0.966 0.685 0.826 0.897 0.956

20 600 A D T I 0.650 0.812 0.790 0.914 0.596 0.771 0.776 0.901

20 600 A D T D 0.652 0.812 0.789 0.913 0.606 0.754 0.767 0.894

20 600 X I L I 1.000 0.931 1.000 0.991 1.000 0.915 1.000 0.983

20 600 X I L D 0.999 0.918 1.000 0.989 0.997 0.857 0.999 0.953

20 600 X I T I 0.994 0.787 0.995 0.848 0.991 0.755 0.991 0.820

20 600 X I T D 0.991 0.789 0.995 0.849 0.987 0.746 0.993 0.821

20 600 X D L I 0.928 0.859 0.956 0.953 0.879 0.821 0.946 0.944

20 600 X D L D 0.927 0.852 0.955 0.948 0.890 0.812 0.940 0.913

20 600 X D T I 0.871 0.734 0.973 0.829 0.824 0.695 0.965 0.809

20 600 X D T D 0.870 0.734 0.973 0.831 0.837 0.690 0.964 0.800

20 600 R I L I 0.983 0.863 1.000 0.995 0.913 0.825 1.000 0.988

20 600 R I L D 0.984 0.855 1.000 0.989 0.927 0.799 0.999 0.951

20 600 R I T I 0.930 0.694 0.991 0.818 0.840 0.638 0.986 0.773

20 600 R I T D 0.936 0.696 0.992 0.820 0.842 0.642 0.983 0.766

20 600 R D L I 0.986 0.861 1.000 0.995 0.942 0.833 1.000 0.988

20 600 R D L D 0.984 0.858 1.000 0.992 0.923 0.803 0.999 0.947

20 600 R D T I 0.935 0.697 0.992 0.819 0.836 0.645 0.983 0.778

20 600 R D T D 0.930 0.695 0.992 0.821 0.822 0.646 0.982 0.767

Table A.6: The average and worst-case performance of iSMART and GA - m = 20, n =

600
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