I e il - R G E N - S
ALk~

Department of Information Management

College of Management
National Taiwan University

Master Thesis

ISMART 7082 1 T oI Beeds m oy B4
2.1 e A fe it 48
ISMART: An Approximation Algorithm for

Fair Job Allocation on Unrelated Machines

oo %
Yi-An Lin

R LB EL
Adviser: Ling-Chieh Kung, Ph.D.

P &% R 106 & 8 *

August 2017

doi:10.6342/NTU201704133

d0i:10.6342/NTU201704133

32 S KEZ(FE ~)R
DRLBEELE

An Approximation Algorithm for
Fair Job Allocation on Unrelated Machines

AHXREEE (23 r04725037) AR L E8 K
LENEEL L ~amzat+@abhx »ER 106 £ 6
A2 BATHARZBEFLERBRORE% LA

aRER : %é /%

kit HAEX
£ 32h

i A
ok ‘&/L@I

d0i:10.6342/NTU201704133

d0i:10.6342/NTU201704133

FI\L 'B:]—

AR ATENS EEE R LIRRA PERRArs L AR BB -y HA
Rpgdit g % - AR RS L LT L Rl

TR BCR R H ndy B30 31 4 B BEINE A RE R B A 4
FIART T ch™ o B AR — - A AT FA LTS R o BEHIE A KT
'F?z‘%E$ifﬁ‘€ﬁiﬁi‘ﬁﬂ”%ﬁ'ﬁé\iﬁ‘p’ﬁmuiﬁfgfy,z%ﬂ%ﬂ'égﬁjgﬁg
Fo e AN i o RGBS - TR PR R
HURBEIBEP O ZREEEF SR FEREE A R LS AFR

Gubdho R AATHT RHL AT RE o A F BRI Y SRR AT -

4

RFRU IEDOLAB thir B4 ~ B Ede ~ £ 54> 1 P4 25

AT g ARk B FIFT e 2 e s Jeff ek %3R4 2 s At A R

=

Fompla- Asd#E -~ F g %~ B RE R HEAE > HE Kiwi g

7 @B~ Hoho eh= @ B IR ~ & 3 e og L 4F ~ 5 2 enfe oiiadly o B3 Peter en

WAL R S AR A T R B B R S B
E#He TR T3 FAII A ENF 2 RE AP R

PEAPERDR R AREPEIARL T FREEDFE > Ui - TR B R

T F g ARE R A AT RRBEBFNE W L2 6 KR E AR

RehfiiE b e AR A RE LB Hodd o BT EFE P Ao 422K
WMALPERR Y DAL R BET R

BURBANFA RGP ET I A A E R SRR { BN LK E IR

B EA D FAREA SR B AN EY A LSRR AR A R

Hfe® R

TR A F TR g

%];X]-—‘ﬁ?—,{_{}_,\@

doi:10.6342/NTU201704133

d0i:10.6342/NTU201704133

%

P N L F/,}ﬁo—l?\“ [rn{ﬂ"‘ P o453]*ﬁ e (EGE (T
feedg Sk B AN FiEA B PAERIP AW AFS R
FOEBTE G ERSTRARRMY AR LR FBEL B 2 RE(

TS SR LR B T RT R A

A
—h
Ry
=
bl
5
#@
=
;“\
2
&
‘£

AP E e S RE I G TR o B0 RSB R AL ARG - BT LR
B2 ViISMART » # it el 21 (PR FR A UL BB fRT - &
AR LY B E AN AR R BRI R AR
& :’zﬁf;fs#;, B Al B R EE R M s S o

B Apmp N F 1 T F B v h b L MR B iISMART A
— B S FE TR AR ARBLPERT L § R R T o i
FIFET g s S Y Beh Ao 3t R AtRE e IR EEA 7
ANPFRI I EE TR M G0 S TRIUFE D TR S am e g
ISMART i & i ch i 8 SR R AERE R A7 kR 4 FHE R
AT E TR A4 ISMART &8 % - % F %7 > ISMART fig foo T jdph

EERT SN MR BT LRt] S

MAES TEAR L IEAf S 0L EE C 2T S B

doi:10.6342/NTU201704133

Abstract

Scheduling and job allocation have been widely studied in the past few decades.
Designing effective methods to determine job schedules as well as:machine
assignments helps companies increase productivity and earn more benefits. However,
not only economic objectives but also fairness become important issues in recent
years. Each agent/machine/factory (hereafter “machine”) is willing to earn the most
benefit while being restricted by its limited capacity. Managers face the problem of
how to assign jobs to heterogeneous machines in a fair way while job benefits might
be different due to diverse machine quality. To address this question, we develop an
approximation algorithm: iISMART. Based on a specific fairness indicator, the
benefit-capacity ratio, iISMART maximizes the minimum fairness score among all
machines by assigning the most beneficial job to the machine with lowest score in
each iteration.

By analyzing the algorithm, we prove that iISMART is a factor-%2 approximation
algorithm when benefits and workloads are in a linear relationship. There are also
bounds when benefits and workloads are in a convex or concave relationship.
Numerical studies show that the performance of ISMART is influenced by
benefit-workload relationship, machine quality, capacity tightness, and the ratio of the
number of jobs to the number of machines. This provides managerial implications for
decision makers to determine when to adopt the algorithm. We also show that
ISMART is a reliable algorithm which does not sacrifice too much efficiency while

pursuing fairness.

Keywords: Scheduling, Job Allocation, Approximation Algorithm, Fairness, Machine

Heterogeneity.

doi:10.6342/NTU201704133

Contents

List of Figures
List of Tables

1 Introduction

1.1 Background and motivation
1.2 Research objectives
1.3 Researchplan

2 Literature Review

2.1 Scheduling and job allocation
2.2 Approximation algorithms
23 Fairness oL

3 Problem Description and Formulation

3.1 Model

3.2 NP-hardness

vil

d0i:10.6342/NTU201704133

4 Analysis 15

4.1 Tterative Score Maximization Algorithm with Repeated Testing algovithmn-

iSMART oo aeNd L 15

4.2 Class 1: diverse machine capacity 19
4.2.1 Relationship 1: linear benefit-workload relationship 19

4.2.2 Relationship 2: convex benefit-workload relationship 20

4.2.3 Relationship 3: concave benefit-workload relationship 24

4.3 Class 2: diverse job benefito 25
4.3.1 Relationship 1: linear benefit-workload relationship 25

4.3.2 Relationship 2: convex benefit-workload relationship 27

4.3.3 Relationship 3: concave benefit-workload relationship 29

4.4 Time complexity analysis oo 31

5 Numerical Study 33
5.1 Experiment settingso 33
5.2 Benchmark algorithms o o000 34
5.3 Comparison of solution quality 35
5.4 Comparison of computation time 39

6 Conclusion and Future Works 43
A Supplemental Results of the Numerical Studies 45

1

d0i:10.6342/NTU201704133

Bibliography

il

d0i:10.6342/NTU201704133

v

d0i:10.6342/NTU201704133

List of Figures

5.1 Computation time (ms) of iSMART with fixed m=5 42

5.2 Computation time (ms) of iSMART with fixed n =400 42

5.3 Computation time (ms) of iSMART and LP with fixed m=5 42

5.4 Computation time (ms) of iISMART and LP with fixed n =400 42
v

d0i:10.6342/NTU201704133

vi

d0i:10.6342/NTU201704133

List of Tables

3.1 Listof notations. L L 13
4.1 Section table oL 18
42 Bounds. 31
5.1 Impact of the benefit-workload relationship (T) 37
5.2 Impact of machine quality (Q) 37
5.3 Impact of capacity tightness (C) 38
5.4 Impact of capacity variance (A) 38
5.5 Impact of number of jobs and machines () 38
5.6 Computation time (milliseconds) with fixed m=5. 40
5.7 Computation time (milliseconds) with fixed n =400 41

A.1 The average and worst-case performance of iISMART and GA - m = 5,n = 25 46

A.2 The average and worst-case performance of iSMART and GA - m = 5,n =50 47

Vil

d0i:10.6342/NTU201704133

A3

A4

A5

A6

The average and worst-case performance of iISMART and GA - m'=>5, n-=

viil

d0i:10.6342/NTU201704133

Chapter 1

Introduction

1.1 Background and motivation

Scheduling and job allocation has been widely discussed over decades and applied in
many fields. In the manufacturing industry, a factory manager needs to sequence jobs
to be processed on a machine to earn more profit, i.e., a machine-oriented objective that
maximizing machine benefit. In more complicated environments, there are more than
one machine to be scheduled, e.g., maximizing the minimum machine benefit. Schedules
might be created differently because of different job properties. For example, in an off-
line problem, information of jobs is known before planning. In other fields, like computer
science, the schedule of jobs assigned to multiple processors is a major concern. People try
to minimize average loading while designing the operating system. Beside manufacturing
and computer science, there are also many scheduling problems in one’s daily life. All of

these make scheduling and job allocation an important subject.

d0i:10.6342/NTU201704133

Many approximation algorithms are developed since most scheduling and job alloca-
tion problems are NP-hard. The well-known longest processing time“fitsty (LPT) algo-
rithm is designed by Graham (1966, 1969). Later on, Walter (2013) proves that"LPT will
always outperform restricted LPT (RLPT). A polynomial time approximation, scheme
(PTAS) is used by Alon et al. (1998). There are many more approximation algorithms

for scheduling and job allocation studied in the literature.

The issue of fairness is also critical for allocation problems nowadays. Pointed out
by Liu (2016), a leading LED chip manufacturer in Taiwan, who owns around twenty
factories in Taiwan and China, faced exactly this issue. Once per month, the company
must decide which existing jobs should be assigned to which factories. Since factory
managers are evaluated according to the amount of revenues generated by completing
jobs (as well as other performance indicators), they take it really seriously. Some social
enterprises face fair allocation problems as well. With the idea of “giving them jobs,
not money,” a social enterprise (or sometimes a government) may hire jobless or even
homeless people as agents so that they may earn their livings. For example, “The Sock
Mob Homeless Volunteer Network” in London and “The Big Issue Taiwan” provide jobs to
the needs so that they can earn benefits by completing jobs. ! For these social enterprises,
the objective is neither limited to job completion nor revenue maximization, but to bring
benefits to those in need and to distribute the benefits generated by job completion as

equally as possible. In other words, the focus is on fairness not on efficiency.

Liu (2016) designs an approximation algorithm for job allocation problem with a

'For more information, please see http://www.meetup.com/thesockmob/ and http://www.

bigissue.tw/.

d0i:10.6342/NTU201704133

consideration of fairness. The algorithm assigns a job to the lowest cumulative machine
benefit at each iteration if the machine capacity is still enough to take the job workload.
However, in his problem, job benefits are the same no matter assigned to which machine.
Also, machines are identical, each machine has the same capacity. Thus, we extend from
Liu (2016), where jobs machines may earn different benefits completing the same job
because of different working quality. By the same time, capacities of machines are not

the same, some are available all day long while some might require break times.

The emerging needs of fair allocation motivates us to study a job allocation problem
with fairness as the main consideration. The model of our problem is made as general as
we can. We design an effective and efficient algorithm that can fairly allocate jobs without
violating the capacity constraint of each factory/machine/agent. We prove a bound of
our algorithm to ensure its worst-case performance guarantee. Numerical experiments
are also conducted to demonstrate its average performance. Based on the results, we

finally draw managerial implications for practice.

1.2 Research objectives

In this study, we consider the aforementioned job allocation problem with fairness. For
ease of exposition, we will call all factories/machines/agents as machines and examine the
problem of assigning jobs to machines. The most important feature of our job allocation
problem is that the decision maker should consider fairness among machines. In the
environment, each machine has its limited capacity and can afford only a certain amount

of workloads. However, job benefits may be different while assigning to different machines

d0i:10.6342/NTU201704133

since each machine has its own output quality. In order to earn more profits,.a machine is
willing to accept more jobs as long as there is enough capacity. The objective functionin

our problem is to maximize the minimum benefit per unit capacity among all-machines.

To approach this problem, we first prove its NP-hardness. Knowing that the problem
cannot be solved in a polynomial time, we then focus on obtaining an approximation
algorithm. We design our algorithm by learning through the literature. We prove the ex-
istence of the worst-case guarantee and conduct numerical experiments for our algorithm

under different scenarios.

1.3 Research plan

In the next chapter, we will review some relevant literature about scheduling and job
allocation, approximation algorithms, and fairness. In Chapter 3, we will describe our
optimization problem and show its NP-hardness. Analysis of our algorithm is provided
in Chapter 4, showing that there exists performance guarantee using our algorithm in
this problem. We then conduct numerical studies in Chapter 5 to test our algorithm’s
performance in practice and compared it to genetic algorithm. From the results, we then
give managerial insights and suggestions for environments in which the algorithm are

appropriate to be adopted. Chapter 6 concludes.

d0i:10.6342/NTU201704133

Chapter 2

Literature Review

2.1 Scheduling and job allocation

Scheduling and job allocation problems have been widely studied in the literature. There
are many principles used to classify these problems. Such classifications are made based

on objective functions, relationships between jobs and machines, and properties of jobs.

Pinedo (2012) classifies job scheduling problems into two classes according to different
objective functions, those with a machine-oriented one and those with a job-oriented one.
In the former, maximizing the minimum or minimizing the maximum completion time
among all machines are commonly studied. Problems with weighted machines are also
well discussed. In the latter, four typical criteria based on jobs are typically investigated.
Researchers often minimize one of the lateness, tardiness, completion time, and flow time

of jobs as the objective function.

There may be different relationships between jobs and machines. For each job with

d0i:10.6342/NTU201704133

only one stage, the problems vary with the number of machines. Guptarand Kyparisis
(1987) review scheduling problems that have only one single machine involved. If there
are more than one machine processing jobs in the system, it is categorized asa parallel
machine problem. When the machines are not exactly the same, it is called-an unrelated
parallel machine problem. However, there are problems with jobs that have multiple
stages to be processed on predetermined machines. For these flow shop problems, Ruiz
and Vzquez-Rodrguez (2010) discuss different methods and solution approaches. If dif-
ferent jobs are processed with different processing orders, the problem is called a job shop
problem. Blazwicz et al. (1996) review a variety of studies discussing solution techniques

for job shop problems.

Based on the properties of jobs, scheduling problems can also be categorized as off-
line or on-line problems. In an off-line problem, information of jobs to be processed is all
given before planning. In contrast, in an on-line problem, jobs arrive at random times,
and relevant information of a job will be known only after the job arrives. A survey of

on-line problems was done by Fiat and Woeginger (1998).

According to the classification principles, our job allocation problem is categorized
as having a machine-oriented objective function, jobs with only one stage processed on
unrelated parallel machines, and an off-line problem. A unique feature of our problem
is that each job has two attributes—workload and benefit—along with different machine
capacities. We try to allocate jobs to machines while not violating machine capacity
constraints so that the lowest machine score is maximized. However, when machine
capacities are unlimited, workload is then not a restriction to the assignment and machine

scores would be different in the final solution. Thus, we focus on problems that their

d0i:10.6342/NTU201704133

machine capacities that are limited.

2.2 Approximation algorithms

Most of the scheduling problems are NP-hard. By the definition of NP-hardness, un-
less P = NP, we cannot solve the problem in polynomial time. As a result, some
researchers propose exact algorithms by improving the generic branch-and-bound algo-
rithms (Haouari and Jemmali, 2008; Walter et al., 2016). More studies are devoted to

approximation algorithms or approximation schemes (Williamson and Shmoys, 2011).

Graham (1966, 1969) reports on a well-known minimum makespan problem for mul-
tiple identical machines. He designs the longest processing time first (LPT) algorithm,
a listing algorithm that sorts all jobs by their processing times in the descending order,
and then assigns jobs by this order once at a time to the currently least loaded machine
(i.e., the machine having the earliest completion time at the moment). He proves that

4

the performance guarantee of the algorithm is 3.

Another similar approximation algorithm is called restricted LPT (RLPT). Walter
(2013) proves that while solving the basic problem of non-preemptively scheduling inde-
pendent jobs on identical parallel machines so that the minimum (or earliest) machine
completion time is maximized, the minimum completion time of the LPT-schedule is at
least as long as the minimum completion time of the RLPT-schedule. In other words,
LPT will always outperform RLPT. He also shows that RLPT has an approximation

factor +.
m

For the “dual” version of the minimum makespan problem, the objective function

7

d0i:10.6342/NTU201704133

transforms to maximizing the minimum completion time among all machines.- Deuer-

meyer et al. (1982) find that the LPT algorithm can also be adopted/ The bhound'is

shown to be %. Furthermore, the bound is improved to iﬁ:é by Csirik et <al. |(1992),

where m is the number of machines. It converges to % when m approaches:infinity:

Alon et al. (1998) observe that a polynomial time approximation scheme (PTAS) can
be developed under some general assumptions. Classifying jobs by their processing times,
the original instance is reduced to a new instance which contains two groups of jobs (big
jobs and small jobs). The solution for the new instance is able to be converted to one for
the original instance. It is shown that the algorithm can have a 1 4+ € bound given any

arbitrary value of € > 0.

Some attention is directed toward a posteriori bounds for the makespan minimiza-
tion problem. In particular, Blocher and Sevastyanov (2015) improve the a posteriori
Coffman-Sethi bound by considering the maximum number of jobs on a machine rather
than the number of jobs on the critical machine. Also focusing on a posteriori bounds,
Massab et al. (2016) look for a tight bound for a two-machine problem, where the bound
is affected by the index of the last job assigned to the critical machine. Following their
ideas, we try to prove our bounds by considering the first job that cannot be directly
assigned due to the capacity constraints. However, the bounds we are trying to find are

a priori, not a posteriori.

Liu (2016) designs the capacitated highest-benefit job first (CHBF) algorithm for a
minimum machine benefit maximization problem. The algorithm sorts all jobs by their
benefits in a descending order and assigns a job to the minimum benefit machine in

each iteration. The bound is 1 when the job benefits are in a linear relationship to

2

d0i:10.6342/NTU201704133

workloads. Inspired by Liu (2016), we propose an approximation algorithm.for-the. fair
allocation problem with the exhibition of machine capacity and features of jobs (benefits
and workloads). We generalize the features to allow a job’s benefits to be different while

assigning to different machines, and machine capacities can be not the same.

2.3 Fairness

Fairness is an important issue for allocation problems, but the definition of fairness varies.

There are different fairness indicators from past studies, and here we review three of them.

First of all, the Santa Claus problem has been studied by Bansal and Sviridenk (2006).
In this problem, presents are prepared to be dispatched to kids. Since each kid has his
own preference for different presents, how to maximize the utility of the kid with the
minimum utility obtained from the allocated presents is the question. In this study, the

fairness indicator is the minimum utility among all kids.

Second, Bertsimas et al. (2011) study two classic fairness schemes, proportional fair-
ness and max-min schemes. Proportional fairness is the generalization of the Nash solu-
tion for a two-player problem, where a schedule is said to be fair if no reallocation can
result in a new schedule that is proportionally fairer. It can be explained by the following
example. Suppose that in a schedule we assign job 1 to machine 1 and job 2 to machine 2
with job benefits 7 and 5, respectively. If exchanging the two jobs makes the cumulative
machine benefits become 6 and 6, then the aggregate proportion change is 6;77 + 65;5 > 0.

We then say that the new schedule is proportionally fairer. In the setting of max-min

fairness, a decision maker needs to do a sequence of optimization steps to maximize the

d0i:10.6342/NTU201704133

minimum utility. At first, she maximizes the minimal utility of a player.and.makes.sure
that the utility of others at least arrives at the same level. Then, she maximizes the
second minimal utility of a player in the same way. This procedure is repeated until the
schedule can be no longer improved. The outcome of this procedure is considered as a

fair schedule.

Third, the fairness indicator adopted by Deuermeyer et al. (1982) is the minimum total
benefit generated among all machines, which they attempt to maximize. Enlightened by
Deuermeyer et al. (1982), we revise the fairness indicator to be the smallest ratio among
all machines, where the ratio equals to the total benefit generated by a machine divided

by its capacity.

10

d0i:10.6342/NTU201704133

Chapter 3

Problem Description and

Formulation

3.1 Model

In this study, we consider a problem of assigning n jobs (in set J) to m machines (in set
I). For job j assigned to machine ¢, there is a workload ¢; > 0 and a benefit b;; > 0.
That is, machine ¢ has to spend c¢; amount of time in order to earn b;; for completing
job j. The capacity of machine 7 is K; > 0, which is the maximum amount of time it
can spend. With the assumption that a job cannot be split to multiple machines, we try
to assign jobs to machines which maximizes the minimum score among the machines.
Here, we define the score of a machine as the total benefit of this machine divided by its
capacity. More precisely, let
1 if job j is assigned to machine %

Tij = ,V’iE[,jEJ7

0 otherwise

11

d0i:10.6342/NTU201704133

be our decision variables. Our job allocation problem can be formulated as

| 22 es bijrg
max min —_———
i€l Kz

s.t. ZC]'ZEZ‘]' S Kz Viel
i€l (3.1)

iel
z;; €{0,1} Viel jeJ
The first constraint states that the total workloads assigned to each machine will not
exceed its capacity, the second constraint ensures that each job is assigned to at most
one machine, and the last constraint guarantees integrality. The objective function is to

maximize the lowest score among all machines.

While solving the fair allocation problem in (3.1), we further investigate on how much
efficiency is sacrificed when we maximize fairness. To see this, we consider the efficiency
problem by replacing the objective function in (3.1) by

max Z Z bijij,
iel jeJ
which is the total benefits generated by all machines. We call our main problem in (3.1)
the fairness problem and the one with the alternative objective function the efficiency
problem. To solve this, we propose an algorithm that effectively finds a near-optimal
solution for our fairness problem and ensure a satisfactory efficiency level. We denote
A

the solution to our algorithm as z;;, the solution to genetic algorithm as x

Z-Gj, the optimal
F

solution to the fairness problem as z;;, and the optimal solution to the efficiency problem

E
as x;;. Let
A G . pF
A . ZjeJ szxz’j G . Zje] bljxij X . ZjeJ leIij
$*=ming ————— %, s =min{ ———— 5, § =min{ ————— 3,
i€l K; iel K; i€l K;

d0i:10.6342/NTU201704133

Parameter

1 The set of machines

J The set of jobs

n The number of jobs

m The number of machines

K; The capacity of machine i (K; > 0)

¢j The finite workload of job j (¢; > 0)

bij The finite benefit of job j assigned to machine ¢ (b;; > 0)

Decision variable

1 if job j is assigned to machine ¢
Tij = Niel, jed

0 otherwise

Table 3.1: List of notations

and 2" = Z Z bijx?j.

icl jeJ

By plugging x% and xS separately into the objective function of the efficiency problem,

we get 24 = Dier 2jes bijmfj and 2% = Y., > icy bijx%, respectively. We will report

how the objective value of our algorithm deviates from a fairest solution by calculating “;—A

A

as well as the comparison of total benefits 2-. We will also report how genetic algorithm

s*

performs by calculating ‘Z—G and ZS—G to see if our algorithm is effective.

Table 3.1 lists the notations used in this model.

13

d0i:10.6342/NTU201704133

3.2 NP-hardness

In this section, we show that our problem is NP-hard.

Theorem 1. The job allocation problem in (3.1) is strongly NP-hard.

Proof. Consider a special case with m uncapacitated (i.e., K; > > jeJ Cijs © € I) machines
and n = 3m jobs with benefits b;; = b, for all < € I, 5 € J. Suppose that there is a bound

B which satisfies "

j=1b; = mB. If the benefits of all jobs satisfy % < b < B it is

9
indeed a 3-Partition problem. As 3-Partition problem is strongly NP-hard, the proof is

completed. n

Theorem 2. The job allocation problem in (3.1) with m =1 is NP-hard.

Proof. Our problem with one capacitated machine is a knapsack problem since there is
only one machine with constant capacity and the objective function can be viewed as

maximizing the total benefit the machine generates. O]

14

d0i:10.6342/NTU201704133

Chapter 4

Analysis

4.1 Iterative Score Maximization Algorithm with Re-

peated Testing algorithm—iSMART

To solve the problem, we design a heuristic algorithm to obtain an approximation solution.
Inspired by the capacitated highest-benefit job first (CHBF) algorithm invented by Liu
(2016), which assigns the job to the machine with the lowest cumulative benefit in each
iteration, here we assign the job to the machine with the lowest score. We want to increase
our objective value the most every time we assign a job, without violating the capacity

constraints. Below we detail the steps.

In each iteration, we try to maximize the objective value, so we choose the machine
with the lowest score and find the remaining unassigned jobs which generates the most
benefit to that machine. If there are multiple machines with the same lowest score, we
choose the one with minimum residual capacity. If the job cannot be assigned to the

15

d0i:10.6342/NTU201704133

machine because the residual capacity on that machine is not enough te’complete that
job, we try the next job that generates the next most benefit to that machine. If all the
remaining jobs cannot be assigned to that machine, then we choose the'machine with the
next lowest score and repeat the process. When a job cannot be assigned to.any machine,
it will be removed from the list of unassigned jobs. We reiterate this process until there
is no job to assign. For ease of exposition, we denote this algorithm as the Iterative Score
Maximization Algorithm with Repeated Testing—iSMART—algorithm. The pesdocode
of iSMART is in Algorithm 1. We define s; = % as the score for all machine 7, [

(3

as the currently lowest score machine and h as the highest benefit job for machine (.

In practice, benefits generated by a job often correlate with machine quality and job
complexity, i.e., bj; = qihcz-, where ¢; denotes machine quality, h is a scale factor and ¢ > 0
elaborates the relationship between benefit and workload. Moreover, capacity varies from
machine to machine, we assume K; = a;K, where K > 0 is the standard capacity of a
machine and a; > 0 illustrates the variation of each machine. There are usually way
lot more jobs to be done with limited machine capacities, which is Z]EJ cj > > e K
Without loss of generality, we assume that ¢y > ¢ > -+ >¢,, K1 > Ky > --- > K, and
¢ > q2 > > @ At the same time, ¢; < K,,, for all j € J, ¢, > 1 and K; > 2 for all

1 € I in all the following analyses.

Below we will discuss the iSMART algorithm in two classes of problems, each with
three different worst-case performance guarantees for three different benefit-workload re-
lationships. In the first class (C1), ¢; = 1, job benefits do not variate between machines
while machine capacities can be different. That is, b;; = b; = hc§- with K; = a;K for

all i € 1,7 € J. In the second class (C2), a; = 1, job benefits might be different within
16

d0i:10.6342/NTU201704133

Algorithm 1 iSMART

1

2

3:

10:

11:

12:

13:

14

15

cJ 0
: repeat
if J'=0 then

| < findLowestMachine(])
end if
h < findHighestJob(J \ J',1)
J «—JUh

if K, > c;, then

end if
if J' = J then

T+ I\, J 0
end if
cuntil I/ =Qor J =10

: return minig{si}

a1, K]« K —cp, J = J\h, J <0

Algorithm 2 findLowestMachine(I"”)

1:

min < oo, + 0

. for i € I" do

min < s;, [<1
end if
. end for

return [

if s; <min or s; = min & K; < K; then

17

d0i:10.6342/NTU201704133

Algorithm 3 findHighestJob(J”,1)
1: max < 0, h < 0

2: for j € J" do

3: if b;; > max then

4: max <— by, h < j
5: end if

6: end for

7. return h

machines while machine capacities are all the same. That is, b;; = ql-hc; with K; = K for
allt € I,j € J. Both of the two classes have three different relationships between benefit
and workload: linear, convex, or concave. Linear benefit-workload relationship (R1) is
for situations that benefits are proportional to workloads. Convex benefit-workload rela-
tionship (R2) occurs when jobs exhibit economy of scale, and thus a larger job generates
relatively more benefits by the same machine. This is more likely the case if these jobs
are manufacturing or production tasks. Finally, concave benefit-workload relationship
(R3) models the situation in which the marginal benefit of a machine decreases in a unit
of workload increase. This is a typical feature if the resulting products/services are to be

sold to the end market. Chapter 4.4 is the time complexity of iSMART.

Class-Relationship Rl1(t=1) R2(t<1l) R3(t>1)

Liu (2016) (¢; =1, a; = 1) - - -
Cl (g =1) §4.2.1 §4.2.2 §4.2.3

C2 (a; = 1) §4.3.1 §4.3.2 §4.3.3

Table 4.1: Section table

18

d0i:10.6342/NTU201704133

4.2 Class 1: diverse machine capacity

For class 1 (C1), ¢; = 1, job benefits are the same no matter assigned to,which maghine
although machine capacities might be different. By assuming ¢; > ¢o > 55> é,, we

know that by > by > --- > b, for all machines according to b;; = qihCE = hc§ = b;.

4.2.1 Relationship 1: linear benefit-workload relationship

We first prove that iSMART is a factor—% approximation algorithm when job benefit and
workload are proportional in the form b; = he¢; for some A > 0. Our algorithm can
generate a solution whose objective value is at least % of that from an optimal solution.
We denote s* as the objective value of an optimal solution and s* as that of the iSMART

solution.

Theorem 3. If b; = hc; for all j € J for some h > 0, we have

N —

Proof. First, an obvious upper bound of s* is % = h, as all machines are assigned one
1

job whose workload equals to its capacity. If we may prove that s* > %h, we will have

h > ss* and the proof is complete. We prove by contradiction, suppose that

1
2
sA < %h, and job 7 is the first job not assigned to its first-priority machine, say, machine
1, the one with the lowest score currently. The cumulative benefit of machine 7 is then
lower than %hKi at the time of assigning job j. This implies that b; < %hKi, since every

job assigned before job j are with higher benefit, the cumulative benefit of machine ¢ is

also greater than b;. Therefore, ¢; < %l according to b; = hc;. However, if the cumulative

19

d0i:10.6342/NTU201704133

benefit of machine ¢ must also be lower than %hKZ-, the total workloads of‘jobs that-have

K

been assigned to machine 7 must be less than %-.. This means the residual capacity of

%i, and there is a room to assign job j. “This| vielafies our

machine ¢ is greater than
assumption that job j cannot be assigned to machine i. With this contradiction, the

proof is complete, s* must be greater or equal to half of the optimal s*. m

Example 1 shows that the bound % is tight.

Example 1. Let ¢ be a small positive number. Suppose that ¢; = 1 for all i, a; = 1
for all 7, h = 1 and we have 2m jobs with workload % and 1 job with workload % + €.
We will use this setting in all the following examples. In this case, K; = K for all ¢ and
b; = ¢; for all j. The iSMART algorithm will result in m — 1 machines being allocated
2 jobs but one machine leaving with only 1 job. The machine with only 1 job will earn

score SA =

N =

+ . However, the optimal solution is to allocate each machine with 2 jobs

1
by ignoring the largest workload job, which results in s* = 1. As a result, ‘Z—A = 2J; ,

=l

which approaches % as € approaches 0.

4.2.2 Relationship 2: convex benefit-workload relationship

In this section, we prove that the iSMART algorithm has a performance guarantee when
job benefits are convex in workloads in the form b; = hcg- for some h > 0 and ¢t > 1. We
define Sy € (0, 1] according to the largest-workload job and smallest-capacity machine,
and A, € (0, 1] according to the mth-largest-workload job and largest-capacity machine

as

Bu =

1
Km’

20

d0i:10.6342/NTU201704133

Cm

5L:E-

We rely on three lemmas to build our main result.

Lemma 1. Ifb; = hc§ for all 3 € J for some given h > 0 and t > 1, we -have

st < BThKEL

Proof. Intuitively, we know that s* < min {hTKj, hfgf, cee héii” } = hK! ! where all
machines are fully loaded with one job whose workload equals its capacity. This is clearly

an upper bound. When By = 1, we can easily understand that s* < hK! ! = B T hK!L

When 0 < fg < 1, the statement is still correct. For any machine, we know that
the best way to consume machine capacity is to fill it by large workloads so it earns
higher cumulative benefits according to b; = hcﬁ.. If all machines are filled with the same
workloads, the final score will be restricted by the smallest-capacity machine. By our

notation, the largest job’s workload is ¢; = fpK,,. In this case, the final score will not

L

be greater than assigning B

jobs with the largest workload ¢; to the least capacitated

1
5 BUh KL,

Km B thEG 0

machine. Thus, an upper bound of s* is

Lemma 2. Ifb; = hc§- for all j € J for some given h > 0 and t > 1, we have

1 n—m-—1
st Zmin{ %}hl{f{l.

20 (n—m

Proof. Suppose that job j is the first job that cannot be assigned to its first-priority
machine, say, machine i, the one with the lowest score currently. We define p as the
number of jobs that have been assigned to that minimum-benefit machine. For ease of
exposition, let o = min{%t, Z;—":;)}} be the bound to be proved.

21

d0i:10.6342/NTU201704133

By contradiction, we assume that s* < ahK% ! < ahK]™'. The cumtlative benefit
on machine ¢ is thus less than ahK!. We know that the job j cannot” be assigned to
machine ¢, which has already been assigned p jobs by iSMART, we have b; < %f{f, where
the equality holds if and only if all the p jobs and job j are equally large: As b= hcﬁ-,
this implies that ¢; < %Ki. Therefore, the consumed capacity on machine ¢ is at least
K, — \'/%Ki, otherwise machine ¢ would have enough capacity for job j. Since benefits of

jobs are now convex in their workloads, the least possible cumulative benefit of machine 7

K"_\t/%Ki t
(—)"

is for the p jobs to be equally large. In this case, the cumulative benefit is ph

Ki—{/2K;
We now show ph(#)t > ahK! to establish a contradiction. Some arithmetic

Ki—{/4K;
shows that ph(#)t > ahK! if and only if o < ﬁ. As the function ﬁ is

quasi-concave in p for any ¢ > 1, and the smallest and largest possible numbers of jobs

on machine 7 is 1 and n —m — 1, it implies that the global minimum of ﬁ is either 1

(n—m)

or n —m — 1. Thus, @ = min{y;, 1 < i Will always be satisfied. The proof is

then complete. O

The lower bound of s is the minimum of two values. Whether 2% or ?;_mn;)% will be

the smaller one depends on t. It can be easily verified that if ¢ > 2, we have 7(17;%} < %

because (Wf;l)t is decreasing in that case. However, as long as t < 2, (Wf;l)t is increasing at

n

—m—1
(n—m)?

)

p =1, and it is possible that > % Note that when ¢ approaches 1, eventually %

will be the smaller one (as long as n—m > 1), and this bound converges to % as Theorem

3 suggests for the linear benefit-workload relationship (where t = 1).
Lemma 3. Ifb; = hc§- for all j € J for some given h > 0 and t > 1, we have

s* > hBLK

22

d0i:10.6342/NTU201704133

Proof. According to the iSMART algorithm, we assign the first mth jobs one at atime

to the m machines. After that, the lowest score will be min {2—05, thé_l’ T Cﬁl” }, which
th = hBtKI™ > hBTKE L. The prove is then complete. =

Our main result, Theorem 4, is a direct combination of the above three lemmas.

Theorem 4. If b; = hc§ for all j € J for some given h >0 and t > 1, we have

max { mln{gm nn n:n)}} BL} "

= 1 S .
H

S

Proof. According to Lemma 2 and 3, we have s* > max{min{ 4, /=2 1} BEIRKE . Also,

(n—m)?t

we know that s* < h35 'Kt by Lemma 1. Thus, the proof can be completed by combining

all the three lemmas. O

When f, is large, 5, would dominate min{;, T(L;—mm_)%

}, and the performance guarantee

can be trivially found as Bi On the contrary, when f3y, is small, min{ 3 s %M} would

be a bound, and Lemma 1 further decreases this bound by having a denominator S *.
Note that it is possible for the worst-case performance guarantee to be above % In other
words, the convex relationship between benefits and workloads may actually help the

iSMART algorithm in achieving a better worst-case performance guarantee.

1 n—m—
28 (n—m)?t

t—1
Pu

max § min 1y gt }
Example 2 shows that the bound { ") tight.

Example 2. Having the same settings as example 1, we get K; = K for all ¢ and b; = c§-

for all j. The iISMART algorithm will result in m — 1 machines being allocated 2 jobs

but one machine leaving with only 1 job. The machine with only 1 job will earn score

K € t
sh = ; iy However, the optimal solution is to allocate each machine with 2 jobs by
. * 2(E)t (K 4e)t
ignoring the largest workload job, which results in s* = f{ As a result, = ﬁ,
2

23

d0i:10.6342/NTU201704133

: 1 2m+1—-m-—1 1
max{mln{277<2m+1,m)t }75f} %
" 2

(%_’_e)tfl vy (%_'_e)t‘l?
K K

which approaches % as € approaches 0. In this case,

which also approaches % as € approaches 0.

4.2.3 Relationship 3: concave benefit-workload relationship

Here we prove the performance guarantee when the benefit is concave in workload in the

form b; = hc} for all j € J for some h > 0 and ¢ < 1.

Theorem 5. Ifb; = hc§ for all j € J for some h >0 and t < 1, we have

Kt—l
2t

s*.

sh >

Proof. The same as the proof in Theorem 3 and Theorem 4. First, we establish an upper
bound for s*. When the relationship between job benefits and workloads are concave, the
most beneficial way to consume all the capacity of machine 7 is to use K; jobs with unit

workload. If all machines are assigned jobs of workload 1 until there is no more capacity,

we will have KTW = h as the objective value, which is clearly an upper bound of s*.

Then, we consider the moment of that the iSMART algorithm fails to assign a job

to its first-priority machine, say, job j fails to be assigned to machine 7. We prove by

.. . A K1 Kt1 Kt-1
contradiction, by assuming that s* < “oe-st < = h < L

h. This implies that at this
moment, machine 7 is with the lowest score and its cumulative benefit is lower than I;—;h
b; should be less than [;—;h as well, otherwise, it should have been assigned by iSMART
already. As a result, we know ¢; < %, and the residual capacity of machine i is less than
K; — % = % so that job j fails to be assigned to machine 7. For machine ¢, however,

the fact that its current benefit is lower than I;—:h implies that the currently occupied

24

d0i:10.6342/NTU201704133

capacity must be at most % (which happens when machine i is assigned‘only enejob).

This immediately implies that the residual capacity is above %, which’c¢ontradicts with

the fact derived above. Therefore, we have s* > %s*. |

. A _ o
xample 3. By example 2, 2 = 2(E)t
2

approaches % as € approaches 0. In this case,

let K,, = K = 2, our bound Kg’;l = 2;—;1 = % is also tight.

4.3 Class 2: diverse job benefit

For class 2 (C2), a; = 1, K; = a;K = K, job benefits might vary when assigning to
different machine due to different quality while all machine capacities are the same. By
assuming c¢; > ¢y > --- > ¢,, we know that b;; > by > --- > b;, for all machine ¢

according to b;; = ql-hc;. Meanwhile, when ¢; > g > -+ > @y, we have by > by > -+ >

b,; for all job j.

4.3.1 Relationship 1: linear benefit-workload relationship

In this section, when job benefit and workload are proportional (i.e., b;; = ¢;hc; for some
h > 0), we prove that iSMART is a factor—% approximation algorithm. We can generate

an objective value that is at least half as good as an optimal solution.
Theorem 6. If b;; = g;hc; for all j € J for some h > 0, we have

sh > —g*

N —

qgmhK
K

Proof. First, an upper bound of s* is = gmh, as all machines are assigned one job
whose workload equals to its capacity. This bound is restricted to the lowest quality

25

d0i:10.6342/NTU201704133

machine. If we can prove that s* > %th, we will have s > %th > %s*, and the proof

is complete. We prove by contradiction, suppose that s* < %th, and’job 7 is/the ‘first
job not assigned to its first-priority machine, say, machine 7, the one with the lewest score
currently. The cumulative benefit of machine ¢ is then lower than %thK at_the time
of assigning job j. This implies that b;; < %th[(, since every job assigned before job
J are with higher benefit, the cumulative benefit of machine ¢ is also greater than b;;.

Therefore, ¢; < g—;”_K < % according to b;; = ¢q;hc; and ¢1 > q2 > -+ > @y,. However, if

the cumulative benefit of machine ¢ must also be lower than %thK , the total workloads

of jobs that have been assigned to machine ¢ must be less than % as well. This means

the residual capacity of machine ¢ is greater than %, and there is a room to assign job

j. This violates our assumption that job 7 cannot be assigned to machine . With this

A

contradiction, s must be greater or equal to half of the optimal s*. O

Example 4 shows that the bound % is tight.

Example 4. Using the same settings in the previous examples, we assume € be a small
positive number, ¢; = 1 for all ¢, a; = 1 for all i, h = 1 and we have 2m jobs with workload
%K and 1 job with workload %K + €. In this case, b;; = ¢; for all ¢ and j. iISMART will
result in m — 1 machines being allocated 2 jobs but one machine leaving with only 1 job.

A1, - However, the optimal solution

N[

The machine with only 1 job will earn score s

is to allocate each machine with 2 jobs by ignoring the largest workload job. This results

. A l+£ .
in s* = 1. As a result, - = 22X which approaches % as e approaches 0.
s T 2

26

d0i:10.6342/NTU201704133

4.3.2 Relationship 2: convex benefit-workload relationship

Here we prove that the iISMART algorithm has a performance guarantee when job benefits
are convex in workloads in the form b;; = ql-hcz- for some h > 0 and ¢t > 1! Using:the same
definition as in class 1, fg = 3~ = 2 and [, = % = &2 where now K; = K,, = K. We

K K>

rely on three lemmas to build our main result.

Lemma 4. If b;; = q,-hc§- for all j € J for some given h > 0 and t > 1, we have

s* < B tgnh KL

Proof. Intuitively, we know that s* < min {qlth_l, @hK™L ... ,thKt_l} = ¢nh K1,
where all machines are fully loaded with one job whose workload equals its capac-
ity. This is clearly an upper bound. When Sy = 1, we can easily understand that

s* < gnhK'™" = B 'qmh K1

When pBy < 1, the statement is still correct. For any machine, we know that for
every machine the best way to consume its capacity is to fill it by large workloads so it
earns higher cumulative benefits according to b;; = qihcé for all 7. By our notation, the
largest job’s workload is ¢; = SgK. In this case, the final score will not be greater than
assigning ﬁLH jobs with the largest workload c¢; to the lowest quality machine. Thus, an

iﬁﬁthK

upper bound of s* is

Lemma 5. If b;; = qihc§- for all j € J for some given h > 0 and t > 1, we have

1 —m—1
s* > min {— &}thlftq.

27 (n—m)t

Proof. Suppose that job j is the first job that cannot be assigned to its first-priority
machine, say, machine i, the one with the lowest score currently. We define p as the

27

d0i:10.6342/NTU201704133

number of jobs that have been assigned to that minimum-benefit machine. .For ease of

exposition, let v = min{, ’(Z_—";L—)}} be the bound to be proved.

By contradiction, we assume that s* < agq,, hK*~1. The cumulative benefit on machine
¢ is thus less than ag,hK'. We know that the job j cannot be assigned témachine 1,

, where the

which has already been assigned p jobs by iSMART, we have b;; < aq%hm

equality holds if and only if all the p jobs and job j are equally large. As b;; = qihcz-, this
implies that ¢; < ¢ C;]TT;K < ¢ %K . Therefore, the consumed capacity on machine 7 is at
least K — %K , otherwise machine ¢ would have enough capacity for job j. Due to the
characteristic of convexity, the least possible cumulative benefit of machine ¢ is for the p

K—{/5K
jobs to be equally large. In this case, the cumulative benefit is ph(Tp)t.

t/aK
We now show ph(i) > agnh K" to establish a contradiction. Some arithmetic

shows that ph(ﬂ) > aq,,hK' if and only if o < . As a function of p, it can

(p+1

be verified that ; is quasi-concave in p for any ¢ > 1. We know that the smallest and

p+1)
largest possible numbers of jobs on machine ¢ is 1 and n—m —1, respectively. This implies
that the global minimum of)t is either 1 or n—m—1, and thus a = mln{ 2% ?n m— 1} <

m)?t

ﬁ will always be satisfied. The proof is then complete. O
Lemma 6. Ifb; = hc§ for all 3 € J for some given h > 0 and t > 1, we have

s > gnhBL K

Proof. According to the iSMART algorithm, we assign the first mth jobs one at a time to

the m machines. After that, the lowest score will be min {qlgc?‘, ‘12[’?37 e q’"l’écfn }7 which

qm h cm

is exactly = ¢nhPL K1, The prove is then complete. O

We now state our main result, which is a direct combination of the above three lemmas.

28

d0i:10.6342/NTU201704133

Theorem 7. If b;; = q,-hcz- for all j € J for some given h > 0 and t > 1y we:have

max { mln{gm nn n:n)}} ﬁL} o

- t—1
H

S

Proof. According to Lemma 5 and 6, we have s* > max{min{Z% 2 (o) e B g m Kt

(n—m)t

Also, we know that s* < B Ygmh K* by Lemma 4. Thus, the proof can be completed by

combining all the three lemmas. O]

Example 5 shows that this bound is tight.

Example 5. Having the same settings as example 4, we get b;; = cﬁ- for all ¢+ and j.

iSMART will result in m — 1 machines being allocated 2 jobs but one machine leaving

A_ (5t9!

T . However, the

with only 1 job. The machine with only 1 job will earn score s

optimal solution is to allocate each machine with 2 jobs by ignoring the largest workload

. . . 2(%) A (5 +e)t . 1
ko 2 s — 2 =
job. This results in s* = =Z~. As a result, % = TSR which approaches 3 as €
max { mln{m5 7%;7;:}1 n;n)%} Qlt} 1

' which also approaches

(%) - (5)

approaches 0. In this case,

1
5 as € approaches 0.

4.3.3 Relationship 3: concave benefit-workload relationship

Here we prove the performance guarantee when the benefit is concave in workload in the

form b;; = q + ihcz» for all j € J for some h > 0 and t < 1.

Theorem 8. If bj; = q;hc} for all j € J for some h >0 and t < 1, we have

thl
s> s*.
Z o

Proof. The same as the proof in Theorem 6 and Theorem 7. First, we establish an upper
bound for s*. When the relationship between job benefits and workloads are concave,

29

d0i:10.6342/NTU201704133

the most beneficial way to consume all the capacity of machine ¢ is to use K jobs:with

unit workload. If all machines are assigned jobs of workload 1 until“thereis mo more

quhlt quhlt quhlt

e i } = ¢nh as thé objective value,

capacity, we will have min{

which is clearly an upper bound of s*.

Then, we consider the moment of that the iSMART algorithm fails to assign a job

to its first-priority machine. Let that job be job j and that machine be machine 7. We

prove by contradiction, by assuming that s* < %,:13* < %th. This implies that at

this moment, machine 7 is with the lowest score and its cumulative benefit is lower than
I;—:th, and therefore the job benefit b;; should be less than that as well (otherwise, it

should have been assigned by iISMART already). As a result, we know ¢; < % tfdm < %,
qi

and the residual capacity of machine ¢ is less than K — % = % (otherwise, there would
be a room to assigned job j to machine 7). For machine i, however, the fact that its
current benefit is lower than I;—fth implies that the currently occupied capacity must be

at most & (which happens when machine i is assigned only one job). This immediately

implies that the residual capacity is above %, which contradicts with the fact derived

t—1
above. Therefore, we have s* > Kzt s*. O

Example 6. This bound is also tight since here in class 2, K,, = K, and by example 3

we know that it is tight.

We summarize all the worst-case performance guarantees we obtain in Table 4.2.
Numerical results are provided in Chapter 5.

30

d0i:10.6342/NTU201704133

Class-Relationship | R1 (¢t =1) R2 (t< 1) R3 (t>1)
max { min{ &, 2=m=1} g¢ } 4
C1 (Qi = 1) % ;t—(l) - Két?
H
mo { min(e=mstyat)
C2 (ai = 1) % ﬂltiil th

Table 4.2: Bounds

4.4 Time complexity analysis

In this section, we briefly derive the time complexity of iSMART. In each iteration,
iSMART finds the lowest score machine and the job benefits this machine the most.
That is, scanning through m machines and n jobs. We repeat the iteration n times so
that all jobs are assigned. The time complexity of iSMART is then O(mn?). Numerical

results of time are provided in Section 5.4.

31

d0i:10.6342/NTU201704133

32

d0i:10.6342/NTU201704133

Chapter 5

Numerical Study

5.1 Experiment settings

In our numerical study, we check both solution performance and time performance of
iSMART on this fair job allocation problem by running experiments on a personal com-
puter with Windows 10, 8GB RAM and Intel i7-6770 3.4GHz CPU. In all experiments,
we set ¢; ~ U(0,100), i.e., ¢; is a randomly chosen real number between 0 and 100. We
set up several factors to see how the solution varies in different settings. The first factor is
the relationship between job benefits and workloads. We consider four scenarios, in which
the job benefit is linear in, non-decreasing and convex in, non-decreasing and concave in,
and unrelated with the job workload. The second factor is machine quality. We consider
two scenarios, where all machines are with the same quality, or there will be a variation.
The third factor is capacity tightness. We consider two scenarios, one with loose machine
capacity, and one with tight machine capacity. The fourth factor is capacity variation.
We consider two scenarios, where all machines are with the same capacity, or there will

33

d0i:10.6342/NTU201704133

be a variation. We adopt the following settings for each factor:

e Benefit-workload relationship (labelled as T): scenario L (for linear): “b;; | =.Gic;;
scenario X (for convex): b;; = qic?; scenario A (for concave): b;; = @;,/€;; scénario
R (for unrelated): b;; ~ U(0,100).

e Machine quality (labelled as Q): scenario I (for identical): ¢; = 1; scenario D (for
diverse): ¢; ~ U(0.8,1.2).

e Capacity tightness (labelled as C): scenario L (for loose): K; = q; <%), sce-
nario T (for tight): K; = 3q; <¥)

e Capacity variation (labelled as A): scenario I (for identical) a; = 1; scenario D (for

diverse): a; ~ U(0.8,1.2).

For the comparison of solution quality, we combine the above factors with several m and
n (m =5 with n = 25, 50, 150 and m = 20 with n = 100, 200, 600), as a total of 192
scenarios, each with 100 instances. For the comparison of computation time, we randomly
select 100 instances for each different problem scales (m = 5 with n = 20, 40, 60, ..., 400

and n = 400 with n =5, 10, 15, ..., 40).

5.2 Benchmark algorithms

We compare iSMART with IP or LP and genetic algorithm to see its performance. An IP
solution is an optimal solution to our problem; we solve it with AMPL using the solver
CPLEX. However, due to problem complexity and memory limitation, only one scenario
in our study is IP solvable: m = 5 with n = 20 for computation time. When we are

34

d0i:10.6342/NTU201704133

unable to get an IP solution, we release the binary constraint of our preblem and'solve

an LP relaxation.

For genetic algorithm, We implement it as follows. First, we randomly ereate a pool of
100 feasible solutions. In each iteration we choose two pairs of parents (four chremosomes)
from the best half of our pool and one pair of parents (two chromosomes) from the other
half. Then we perform a crossover on each pair of parents by randomly select a cross-point
which divides the selected solutions into the head part and tail part. Six child solutions
are then created by connecting the head part to the another tail part between each pair of
parents. All child solutions are given a 1% chance to mutate. When mutation happens,
one job will change its destined machine randomly. We then check the feasibility of child
solutions. At the end of each iteration, we compare feasible child solutions with those in
the pool and replace the lower ones so that the pool remain 100 feasible solutions. This
step makes the solutions in the pool better and better after iterations. The above process
will be repeated 2000 times. At the end, the algorithm will report the best solution in

the pool.

5.3 Comparison of solution quality

Too see how the solution quality is, we compare the solution between LP, iSMART and

GA. We denote solution of “fairness” version as s, s*, and s%; solution of “efficiency”

version as 2", z*, and z%. They are then compared to generate Tables A.1-A.6 in Ap-
pendix. For the remaining, we use LP solutions because IP solutions are not attainable.

To understand how each factor affects the performance of iISMART, we calculate the

35

d0i:10.6342/NTU201704133

average performance of each scenario and then generate Tables 5.1, 5.2 5.3, and.5.4.

Moreover, Table 5.5 shows how iISMART is affected by different m and™n.

In Table 5.1, in the “fairness” version, iSMART and GA perform: the besti when
benefits are linear in workloads. For the iSMART algorithm, the performance falls when it
comes to convex and unrelated relationship between benefits and workloads, and performs
the least desirable in concave relationship. The reason behind this observation could be
the way iISMART assign jobs, it chooses jobs based on jobs’ benefit. If benefits are
linear in workloads, the value of each job tends to be the same. It means that it is
easier for iISMART to assign jobs to achieve “fairness” and “efficiency”. When benefits
are convex in workload, high-benefit jobs and low-benefit jobs tend to have relatively
similar workloads, and thus machine capacity does not introduce a huge difficulty to the
performance of iISMART. If the relationship between benefit and workload is concave, job
benefits are lower when workloads are higher. iISMART puts the low cost-performance
jobs first to the currently inferior machine, that might be why it performs worse than in
linear and convex. However, for genetic algorithm, concave relationship is in its second

best, while convex and unrelated relationship get the third and fourth, respectively.

In “efficiency” version, iSMART ranks benefit-workload relationship in the same se-
quence as that of fairness version. For genetic algorithm, the result is slightly different
from that in fairness version, GA now performs better in concave than convex. In any
case, data shows that iSMART performs relatively well than GA in both “fairness” and
“efficiency” versions. We can also see that while pursuing fairness, efficiency remains in

a high level and did not sacrifice too much using the iSMART algorithm.

Note that the convexity or concavity of the relationship between benefit and workload

36

d0i:10.6342/NTU201704133

has important managerial implication. When the relationship is convex, basieally. the
problem environment is of significant economy of scale so that marginal’benefit increases
as workloads increase. On the contrary, when the relationship is concave, the product
is of diminishing marginal benefit as workloads increase. This understanding will help
managers to decide whether to choose the iSMART algorithm as their solution tool when

they face the fair job allocation problem studied in this paper.

A
S S
T & o

Q
bHN}
¥4NO

L |0992 0982 0994 0.979

0.932 0.807 0.971 0.879

0.812 0.888 0.896 0.944

o= X

0.931 0.766 0.991 0.905

Table 5.1: Impact of the benefit-workload relationship (T)

Table 5.2 shows that iSMART has a better performance when machine qualities are
the same, which is when the conversion rate is stable among machines. This will be
helpful for iSMART to put the highest benefit job in the lowest score machine in each

iteration, because it consumes a constant capacity no matter assigned to which machine.

Q s ¢ 22
sk sk zL

>
Q
Q

18]

N
o

I 10944 0.866 0.969 0.935

D | 0.890 0.855 0.957 0.919

Table 5.2: Impact of machine quality (Q)

Table 5.3 shows that iISMART performs better when the capacity is loose comparing
to tight. This is an intuitive result, because jobs can be assigned more appropriately by

37

d0i:10.6342/NTU201704133

iSMART when it is more flexible to assign jobs.

A G A fe)
L | 0945 0.899 0.985 0.965
T | 0.888 0.822 0.941 0.889

Table 5.3: Impact of capacity tightness (C)

Table 5.4 is the results of capacity variation. The data reports that there is no big

difference if there is a variation of capacity among machines or not.

>
Q
I
>
Q

S

sk

>
o |®
H

183
I
w |
o

I |0917 0.860 0.963 0.962

0.963 0.928

D | 0917 0.861

Table 5.4: Impact of capacity variance (A)

Furthermore, by examining Table 5.5, we find that the performance ratios of iSMART
is higher when increases. We believe that with more options of job candidates to be

selected, our algorithm can assign more valuable jobs to machines.

>
Q

SA SG z z

sk sk 2L 2L

5 | 0896 0.820 0.957 0.910

10 | 0.922 0.867 0.966 0.931

30 | 0.932 0.896 0.967 0.940

Table 5.5: Impact of number of jobs and machines ()

In summary, the average performance of all instances of iSMART is larger than 0.9,

38

d0i:10.6342/NTU201704133

which is better than the average performance of GA. Numerical experiments show-that iS-
MART is a good algorithm for this problem with high robustness. In particutar, iSMART
performs better when job benefits are linear or convex to workloads, machine qualifies are
stable, machine capacities are loose, and > is large. These results will suggest.decision

makers when to apply the iSMART algorithm is suitable.

5.4 Comparison of computation time

We compare the average computation time for different problem scales in Tables 5.6 and
5.7. Figures 5.1 and 5.2 shows that the numerical experiments fit our analysis of time
complexity in Section 4.4. With a fixed m, when n becomes larger, the computation time
of iSMART increases in a quadratic manner. On the other hand, with a fixed n, when
m becomes larger, the computation time of iSMART increases linearly. Moreover, we
compared with iSMART and LP in Figures 5.3 and 5.4 and see that our algorithm runs

fast while LP spends much longer time in solving when n and m are larger.

39

d0i:10.6342/NTU201704133

n 1P LP iSMART GA

20 | 55503.3 2.0 0.6 1372.5
40 - 3.8 1.2 2373.0
60 - 7.2 1.7 3427.3
80 - 12.7 2.2 4450.7
100 - 16.7 3.2 9418.3
120 - 26.1 4.2 6505.0
140 - 31.5 4.7 7441.4
160 - 35.2 5.9 8425.3
180 - 46.3 6.8 9572.8
200 - 52.5 8.2 10536.4
220 - 59.6 10.2 11743.7
240 - 60.3 10.5 12750.1
260 - 72.4 12.2 13884.4
280 - 81.7 13.9 14907.3
300 - 96.4 15.1 15741.2
320 - 107.9 16.6 17012.4
340 - 126.5 17.9 18429.6
360 - 133.6 19.7 19206.7
380 - 150.7 21.5 20269.4
400 - 160.6 23.3 21052.2

Table 5.6: Computation time (milliseconds) with fixed m =5

40

d0i:10.6342/NTU201704133

m LP iSMART GA

5 | 160.6 23.3 21052.2
10 | 548.0 39.0 21276.6
15| 953.9 51.1 21232.9
20 | 1655.2 69.6 21059.2
25 | 2606.2 83.9 21368.3
30 | 3875.1 104.5 21182.0
35 | 5500.3 117.8 21379.0
40 | 7894.7 135.6 21686.0

Table 5.7: Computation time (milliseconds) with fixed n = 400

41

d0i:10.6342/NTU201704133

20

|
120 140
|

15
100
1

£ E o
E o g
1 E;O 2[;0 3[;0 4[;0 5I WIO 1I5 ZIO 2I5 3|0 3I5 4IO
n m
Figure 5.1: Computation time (ms) Figure 5.2: Computation time (ms)
of iSMART with fixed m =5 of iSMART with fixed n = 400
7 * [SMART
AP o * iSMART
9 4 4 LP
g E g
g E ¥
< I I T T i |H T T 477 T T T 4.|
100 200 300 400 5 10 15 20 25 30 35 40
Figure 5.3: Computation time (ms) Figure 5.4: Computation time (ms)
of iSMART and LP with fixed m = of iISMART and LP with fixed n =
) 400

42

d0i:10.6342/NTU201704133

Chapter 6

Conclusion and Future Works

In this study, we consider a fair job allocation problem on unrelated machines as the
main concern. Inspired by the previous literatures, we formulate an integer programming
problem which maximizes the lowest fairness score of a machine subject to capacity
constraints. Since the optimal solution cannot be solved in polynomial time, we then
develop our own algorithm to solve this kind of problem. We prove that the performance

guarantee of our algorithm is at least % when the job benefits are linear (¢ = 1) in

max { min{Q%, E:_w;;)% },Bf}

workloads, = when the job benefits are convex (¢ > 1) in workloads,
H
and Ké’;_l when the job benefits are concave (¢ < 1) in workloads. Moreover, the numerical

study indicates that our algorithms works better when benefits are linear or convex than
concave, machine qualities are the same than different, capacity is loose than tight, and
is big than small. It also reported that our algorithm did not sacrifice too much efficiency

in order to pursue fairness.

Some further investigations may further improve in this study. One promising di-

rection is to extend our problem settings, for example, job workloads might be different

43

d0i:10.6342/NTU201704133

among machines. It would be more general if it is extended. Anotherdirectiontis to
remove some assumptions, such as jes G > Y icr K. If our algorithm’still works ‘well
and there exist a performance guarantee, it would be more powerful to he adopted in

practice.

44

d0i:10.6342/NTU201704133

Appendix A

Supplemental Results of the

Numerical Studies

45

d0i:10.6342/NTU201704133

average minimuny
mon|T Q C Al % % T &% S Sh
5 25 |L I L I]0.957 0937 0972 0.953 | 0.902 0.882 0.927:-0:909
5 25| L I L D|0975 0960 0988 0.974 | 0.927 0.897 0.953 0.914
5 25 |L I T I 0964 0962 0977 0976 | 0.882 0.929 0.916 0.945
5 25 |L I T D|0970 0.963 0984 0.975|0.902 0.899 0.938 0.910
5 25 |L D L TI]0992 0.993 0981 0.937 | 0.958 0.947 0.912 0.874
5 25| L D L D|0990 0.994 0986 0.962 | 0.961 0.951 0.945 0.884
5 25|L D T I 0989 0997 0.979 0.955 | 0.950 0.969 0.929 0.889
5 25| L D T D |098 0.997 0981 0.957 | 0.942 0.974 0.933 0.892
5 25|A I L I |0914 0914 0.958 0.949 | 0.861 0.890 0.908 0.887
5 25|A I L D |0927 0.935 0.965 0.968 | 0.791 0.870 0.868 0.916
5 25|A I T TI/|0.827 0.890 0.854 0.935 | 0.709 0.823 0.776 0.874
5 25A I T D|0.798 0.897 0.842 0.936 | 0.711 0.850 0.751 0.866
5 25|A D L I |0812 0906 0.955 0.921 | 0.669 0.858 0.928 0.862
5 25|A D L D |0.842 0.920 0.947 0.936 | 0.723 0.852 0.860 0.867
5 25|A D T I |0.738 0.881 0.839 0.905 | 0.568 0.819 0.743 0.854
5 25|A D T D |0.735 0.883 0.820 0.906 | 0.619 0.806 0.756 0.854
5 26| X I L I]0967 0.88 0991 0.939|0.894 0.712 0.970 0.825
5 26| X I L D|0965 0.888 0.993 0.948 | 0.885 0.743 0.955 0.790
5 25| X I T TI]0.890 0.732 0.934 0.799 | 0.757 0.502 0.854 0.668
5 26 |X I T D |0.894 0.736 0947 0.797 | 0.796 0.532 0.888 0.623
5 256 |X D L TI]0913 0.873 0959 0.899 | 0.833 0.756 0.934 0.805
5 25| X D L D|0919 0.88 0.959 0.907 | 0.777 0.702 0.925 0.741
5 25| X D T 1]0.836 0.734 0918 0.779 | 0.705 0.564 0.828 0.656
5 26| X D T D 0844 0.737 0935 0.778 | 0.719 0.606 0.862 0.641
5 25 |R I L I]0937 0872 0990 0.962 | 0.805 0.716 0.969 0.841
5 25|R I L D |0928 0.879 0991 0.959 | 0.765 0.739 0.964 0.829
5 25|R I T 1]0.863 0.756 0.969 0.848 | 0.675 0.605 0.916 0.699
5 25|R I T D |0871 0.760 0.969 0.853 | 0.722 0.558 0.930 0.672
5 25|R D L TI]0925 0.877 0991 0.958 | 0.743 0.729 0.962 0.902
5 25|R D L D |0920 0.875 0.991 0.956 | 0.700 0.741 0.958 0.832
5 25|R D T 1T |0.867 0.758 0971 0.851 | 0.658 0.613 0.938 0.704
5 25| R D T D |08 0.758 0.968 0.847 | 0.595 0.610 0.922 0.653

Table A.1: The average and worst-case performance of iISMART and GA - m = 5,n = 25

46

d0i:10.6342/NTU201704133

average minimuny
mon|T Q C Al % % T &% S Sh
5 H0|L I L TI]099 0967 0993 0.975|0.969 0.945 0.974.,..0:957
5 H0|L I L D|0994 0983 0.998 0.991 | 0.985 0.951 0.990 0.956
5 S0 |L I T I 0989 0988 0.993 0993 | 0951 0.969 0.977 0.978
5 H0|L I T D|0993 0987 0996 0.992 | 0.985 0.970 0.990 0.977
5 H0|L D L TI]0998 0.999 0.995 0.968 | 0.993 0.973 0.986 0.925
5 H0|L D L D|0998 0.998 0.993 0.977 | 0.986 0.974 0.964 0.937
5 S0 |L D T I 0997 0999 0.996 0.980 | 0.987 0.991 0.983 0.908
5 H0|L D T D|0998 0.999 0.996 0.981 | 0.984 0.996 0.990 0.928
5 50|A I L I 0969 095 0.985 0.975|0.950 0.936 0.965 0.937
5 50|A I L D|0969 0.967 0.982 0.988 | 0.897 0.938 0.903 0.958
5 H50(A I T TI|0.810 0.923 0.827 0.946 | 0.780 0.897 0.783 0.913
5 50 A I T D|0813 0.920 0.830 0.944 | 0.725 0.874 0.759 0.892
5 50| A D L I |0814 0930 0975 0.946 | 0.709 0.875 0.958 0.914
5 50| A D L D |083 0941 0954 0.952 | 0.707 0.853 0.861 0.916
5 50 A D T I |0.713 0.897 0.810 0.914 | 0.608 0.843 0.761 0.855
5 50 A D T D|0.717 0.896 0.808 0.914 | 0.606 0.837 0.745 0.854
5 H0|X I L TI]099 0936 0.999 0.970 | 0.989 0.895 0.992 0.926
5 H0|X I L D|0993 0.933 0.998 0.965 | 0.966 0.838 0.988 0.888
5 50X I T I |0971 0.796 0.980 0.830 | 0.937 0.715 0.947 0.738
5 50| X I T D|0964 0.791 0.980 0.827 | 0.938 0.673 0.959 0.715
5 50| X D L TI]0947 0918 0.964 0.932 | 0.870 0.865 0.940 0.877
5 H0|X D L D|0945 0921 0961 0.929 | 0.849 0.828 0.927 0.806
5 50| X D T T]0.898 0.781 0.964 0.807 | 0.818 0.685 0.943 0.696
5 50| X D T D |08 0.785 0964 0.810 | 0.825 0.678 0.939 0.690
5 H0|R I L TI]0.967 0923 0.998 0.978 | 0.877 0.866 0.991 0.918
5 H0|R I L D|0966 0.922 0998 0.974 | 0.764 0.824 0.989 0.898
5 S50 |R I T I 0921 0.780 0.987 0.839 |0.792 0.614 0.960 0.677
5 H0|R I T D|0926 0.781 0.988 0.844 | 0.722 0.620 0.896 0.720
5 H0|R D L TI]0968 0919 0998 0.978 | 0.879 0.855 0.992 0.929
5 H0|R D L D|0.969 0927 0998 0.978 | 0.885 0.814 0.988 0.901
5 50| R D T TI]0.922 0.791 0.988 0.851 | 0.737 0.697 0.969 0.735
5 50| R D T D|0916 0.787 0.988 0.850 | 0.746 0.655 0.955 0.740

Table A.2: The average and worst-case performance of iISMART and GA - m = 5,n = 50

47

d0i:10.6342/NTU201704133

average minimunt
mon |T QCAl% % T &% FoimSE
5 150 L I L TI1{0.999 0.990 0.999 0.993 | 0996 0.982 0.997,.0:987
5 150 L I L DJ|0.999 0.995 1.000 0.998 | 0.998 0.985 0.999 0.988
5 150 (L I T TI(0999 0.998 0.999 0.999 | 0.996 0.996 0.998 0.997
5 150 L I T DJ|0.999 0.998 1.000 0.999 | 0.998 0.996 0.999 0.997
5 10| L D L T 1.000 1.000 1.000 0.990 | 0.999 0.999 0.999 0.976
5 150 | L D L DJ1.000 0.999 0.995 0.992 | 0.998 0.983 0.966 0.969
5 150 L D T I |1000 1.000 1.000 0.997|0.999 1.000 0.999 0.981
5 10| L D T D 1.000 1.000 1.000 0.997 | 0.998 0.999 0.999 0.993
5 150 A I L T 0994 0.982 0.997 0.992 | 0.989 0.972 0.992 0.986
5 150 A I L D|0965 0983 0.970 0.993 | 0.878 0.961 0.888 0.978
5 150 A I T I |0.809 0931 0.812 0.944 | 0.778 0.905 0.783 0.916
5 150 A I T D |0.806 0930 0.811 0.942|0.754 0.889 0.761 0.899
5 150 A D L I 0804 0.928 0.984 0.965 | 0.694 0.851 0.974 0.947
5 150 A D L D|0816 0940 0.949 0.965 | 0.673 0.843 0.855 0.938
5 150 A D T I |0.693 0.882 0.795 0.918 | 0.590 0.796 0.763 0.876
5 150 A D T D |0.691 0.878 0.796 0.917 | 0.594 0.798 0.747 0.862
5 150X I L T 1.000 0.972 1.000 0.990 | 0.999 0.956 1.000 0.976
5 150X I L DJ|0.999 0.963 1.000 0.979 | 0.995 0.884 0.997 0.906
5 150 (X I T I (0993 0.830 0.994 0.849 | 0.988 0.791 0.990 0.810
5 150X I T DJ|0991 0.831 0.994 0.848 | 0.986 0.782 0.990 0.798
5 1560 X D L T0952 0933 0.963 0.953 | 0.903 0.871 0.933 0.918
5 150 | X D L D098 0.936 0.962 0.945 | 0.884 0.859 0.914 0.896
5 150X D T TI/0910 0.805 0.976 0.830 | 0.854 0.751 0.963 0.781
5 1560 X D T D| 0906 0.804 0.975 0.829 | 0.849 0.725 0.959 0.753
5 150|R I L T/{0989 0.961 1.000 0.993 | 0.958 0.937 0.999 0.981
5 150 R I L D|0.990 0.955 1.000 0.983 | 0.950 0.849 0.997 0.887
5 150|R I T 190952 0.788 0.992 0.824 | 0.862 0.694 0.980 0.726
5 160 R I T DJ|0951 0.786 0.992 0.823 | 0.863 0.691 0.969 0.731
5 10| R D L TI/]0990 0.961 1.000 0.993 | 0.965 0.926 0.999 0.976
5 150/ R D L D098 0.954 1.000 0.984 | 0.941 0.850 0.998 0.898
5 150/ R D T T1]0.952 0.786 0.991 0.821 | 0.870 0.729 0.979 0.764
5 10| R D T D092 0.789 0.992 0.828 | 0.894 0.709 0.972 0.757

Table A.3: The average and worst-case performance of iSMART and GA - m = 5,n = 150

48

d0i:10.6342/NTU201704133

average mininmi
mon |T QCA|l % % & I |% &m-\F=k
20 100 L I L I 0965 0.902 0.978 0.953 | 0.936 0.806 . 0.9510.902
20 100 L I L D|0982 0.905 0.993 0.960 | 0.958 0.852 0.976::0.917
20 100 L I T TI|0961 0.928 0.977 0.967 | 0.918 0.880 0.945 0.933
20 100 L I T D|098 0930 0.993 0.969 | 0.963 0.895 0.983 0.945
20 100 L D L I |0998 0.980 0.994 0.942 | 0.993 0.925 0.979 0.909
20 100 L D L D|0998 0.982 0.993 0.951|0.979 0.934 0.975 0.897
20 100 L D T I |0.997 0.992 0.992 0.957 | 0.987 0.968 0.961 0.926
20 100 L D T D |0.997 0.992 0.994 0.959 | 0.984 0.965 0.983 0.935
20 100 A I L I |0916 0.854 0.963 0.953 | 0.883 0.811 0.934 0.930
20 100 A I L D {0935 0.856 0.981 0.959 | 0.860 0.816 0.932 0.924
20 100 A I T I |0.832 0.829 0.867 0.932 | 0.725 0.785 0.789 0.901
20 100 A I T D |0.785 0.824 0.840 0.932 | 0.747 0.791 0.800 0.899
20 100 A D L I |0.769 0.810 0.967 0.923 | 0.716 0.770 0.951 0.895
20 100 A D L D |0.772 0.815 0.958 0.927 | 0.679 0.759 0.902 0.889
20 100 A D T I |0.701 0.784 0.847 0.901 | 0.587 0.742 0.790 0.870
20 100 A D T D |0.678 0.786 0.819 0.901 | 0.603 0.738 0.758 0.870
20 100 X I L I 0981 0.774 0.995 0.931 | 0.946 0.704 0.976 0.889
20 100 X I L D |0975 0.768 0.997 0.927 | 0.943 0.652 0.985 0.855
20 100X I T I 0905 0.629 0.931 0.786 | 0.821 0.533 0.905 0.722
20 100 X I T D 0917 0.639 0.966 0.792 | 0.853 0.548 0.932 0.714
20 100 X D L I |0887 0.752 0.956 0.892 | 0.801 0.654 0.947 0.834
20 100 X D L D |0.882 0.749 0.955 0.893 | 0.810 0.659 0.940 0.832
20 100 | X D T I |0.809 0.619 0.918 0.769 | 0.724 0.532 0.888 0.710
20 100 X D T D |0.801 0.611 0946 0.763 | 0.716 0.527 0.930 0.678
20 100 R I L I 0922 0.649 0.996 0.960 | 0.807 0.541 0.991 0.915
20 100 R I L D |0925 0.651 0.996 0.959 | 0.801 0.560 0.987 0.868
20 100 R I T I |0.847 0.530 0.982 0.836 | 0.624 0.428 0.968 0.756
20 100 R I T D |0.852 0524 0.982 0.831 | 0.652 0.417 0.963 0.739
20 100 R D L I 0928 0.658 0.996 0.958 | 0.809 0.576 0.988 0.922
20 100 R D L D |0926 0.649 0.995 0.954 | 0.750 0.547 0.982 0.880
20 100 R D T I |0.847 0.522 0.982 0.834 | 0.645 0.411 0.967 0.765
20 100 R D T D |0.854 0530 0.982 0.835]0.642 0.396 0.969 0.739

Table A.4: The average and worst-case performance of iSMART and GA - m = 20,n =

100

49

d0i:10.6342/NTU201704133

average mininmi
mon |T QCA|l % % & I |% &m-\F=k
20 200 L I L I |0992 0.953 0.995 0.979 | 0.984 0.930 . 0.9910.964
20 200 L I L D|0997 0.960 0.999 0.988 | 0.987 0.890 0.992:::0.967
20 200 L I T I |0992 0977 0.995 0.990 | 0.977 0.966 0.985 0.979
20 200 L I T D {0997 0977 0.999 0.990 | 0.990 0.962 0.997 0.984
20 200 L D L I |1.000 0.998 0.999 0.973|0.997 0.984 0.997 0.955
20 200 L D L D |0999 0.997 0.996 0.980 | 0.998 0.965 0.980 0.960
20 200 L D T TI]0999 0.999 0.999 0.985 | 0.998 0.994 0.997 0.971
20 200 L D T D {0999 0999 0.999 0.985 | 0.996 0.994 0.997 0.969
20 200 A I L I |0971 0.910 0.988 0.977 | 0.960 0.894 0.974 0.967
20 2000 A I L D |0969 0914 0.98 0.984 | 0.910 0.884 0.926 0.969
20 200 A I T I |0.801 0.865 0.818 0.941 | 0.785 0.846 0.797 0.926
20 200 A I T D|0.800 0.870 0.824 0.942 | 0.769 0.835 0.787 0.918
20 200 A D L I |0.752 0.843 0.977 0.948 | 0.689 0.812 0.970 0.921
20 200 A D L D |0.766 0.853 0.962 0.953 | 0.667 0.817 0.904 0.927
20 200 A D T I |0.662 0.812 0.798 0.913 | 0.628 0.772 0.775 0.885
20 200(A D T D|0.670 0.816 0.803 0.915 | 0.603 0.769 0.764 0.889
20 200 X I L I |0998 0.864 0.999 0.968 | 0.994 0.825 0.998 0.946
20 200X I L D |0995 0.859 0.999 0.971 | 0.985 0.808 0.996 0.928
20 200X I T I 0977 0.720 0.984 0.825 | 0.960 0.665 0.964 0.789
20 200X I T D |0.968 0.718 0.985 0.826 | 0.948 0.665 0.979 0.783
20 200 X D L I |0919 0.819 0955 0.927 | 0.875 0.784 0.939 0.907
20 200 X D L D |0912 0.817 0.955 0.928 | 0.856 0.757 0.932 0.878
20 200 X D T I |0.852 0.689 0.966 0.802 | 0.803 0.631 0.953 0.758
20 200 X D T D |0.852 0.692 0964 0.806 | 0.810 0.633 0.957 0.756
20 2000 R I L I |0959 0.757 0.999 0.982 | 0.866 0.696 0.998 0.966
20 2000 R I L D 0959 0.755 0.999 0.977 | 0.869 0.679 0.996 0.938
20 2000 R I T I |0.89 0.620 0.993 0.836 | 0.773 0.545 0.985 0.795
20 200 R I T D |0.908 0.614 0.992 0.834 | 0.727 0.535 0.984 0.765
20 2000 R D L I |0957 0.756 0.999 0.981 | 0.878 0.691 0.997 0.963
20 200 R D L D |0961 0.759 0.999 0.979 | 0.842 0.677 0.996 0.934
20 2000 R D T I 0902 0.623 0.992 0.837 | 0.768 0.558 0.981 0.785
20 200 R D T D |0904 0.610 0.992 0.832 | 0.748 0.507 0.983 0.753

Table A.5: The average and worst-case performance of iSMART and GA - m = 20,n =

200

20

d0i:10.6342/NTU201704133

average mininmi
mon |T QCA|l % % & I |% &m-\F=k
20 600 | L I L I |0999 0.988 0.999 0.995 | 0.998 0.976 . 0.937 0.991
20 600 | L I L D | 1000 0.978 1.000 0.998 | 0.999 0.886 1.000::0:993
20 600 | L I T I |0.999 0.997 1.000 0.999 | 0.998 0.995 0.999 0.998
20 600 | L I T D |1.000 0.997 1.000 0.999 | 0.999 0.994 1.000 0.997
20 600 | L D L I |1.000 1.000 1.000 0.992 | 1.000 0.998 1.000 0.985
20 600 | L D L D | 1000 0.999 0.996 0.994 | 1.000 0.972 0.978 0.980
20 600 | L D T I |1.000 1.000 1.000 0.998 | 1.000 1.000 1.000 0.996
20 600 | L D T D |1.000 1.000 1.000 0.998 | 1.000 1.000 1.000 0.995
20 600 | A I L T]0994 0.956 0.998 0.993 | 0.991 0.947 0.995 0.989
20 600 | A I L D {0977 0951 0.983 0.995 | 0.908 0.897 0.915 0.984
20 600 A I T I |0.809 0.900 0.812 0.941 | 0.797 0.887 0.800 0.926
20 600 | A I T D|0.805 0.900 0.812 0.941 | 0.786 0.875 0.792 0.920
20 600 | A D L I |0.743 0.860 0.982 0.966 | 0.678 0.816 0.979 0.957
20 600 A D L D |0.748 0.862 0.963 0.966 | 0.685 0.826 0.897 0.956
20 600 A D T I |0.650 0.812 0.790 0.914 | 0.596 0.771 0.776 0.901
20 600 | A D T D|0.652 0.812 0.789 0.913 | 0.606 0.754 0.767 0.894
20 600 | X I L I |1.000 0.931 1.000 0.991 | 1.000 0.915 1.000 0.983
20 600 | X I L D|0999 0.918 1.000 0.989 | 0.997 0.857 0.999 0.953
20 600 | X I T I 0994 0.787 0.995 0.848 | 0.991 0.755 0.991 0.820
20 600 | X I T D|0991 0.789 0.995 0.849 | 0.987 0.746 0.993 0.821
20 600 | X D L I |0928 0.859 0.956 0.953 | 0.879 0.821 0.946 0.944
20 600 | X D L D|0927 0.852 0.955 0.948 | 0.890 0.812 0.940 0.913
20 600 | X D T I |0871 0.734 0973 0.829 | 0.824 0.695 0.965 0.809
20 600 | X D T D |0.870 0.734 0.973 0.831 | 0.837 0.690 0.964 0.800
20 600 R I L I 0983 0.863 1.000 0.995 | 0.913 0.825 1.000 0.988
20 600 | R I L D|0984 0.855 1.000 0.989 | 0.927 0.799 0.999 0.951
20 600 | R I T I 0930 0.694 0.991 0.818 | 0.840 0.638 0.986 0.773
20 600 | R I T D |0.936 0.696 0.992 0.820 | 0.842 0.642 0.983 0.766
20 600 R D L I 098 0.861 1.000 0.995 | 0.942 0.833 1.000 0.988
20 600 | R D L D | 0984 0.858 1.000 0.992 | 0.923 0.803 0.999 0.947
20 600 | R D T I |0935 0.697 0.992 0.819 | 0.836 0.645 0.983 0.778
20 600 | R D T D |0.930 0.695 0.992 0.821 | 0.822 0.646 0.982 0.767

Table A.6: The average and worst-case performance of iSMART and GA - m = 20,n =

600

51

d0i:10.6342/NTU201704133

52

d0i:10.6342/NTU201704133

Bibliography

Alon, N., Y. Azar, G.J. Woeginger, T. Yadid. 1998. Approximation schemes for scheduling

on parallel machines. Journal of Scheduling 1(1) 55-66.

Bansal, N., M. Sviridenk. 2006. The santa claus problem. Proceedings of the 38th Annual

ACM Symposium on Theory of Computing. Seattle, WA, USA, 31-40.

Bertsimas, D., V.F. Farias, N. Trichakis. 2011. The price of fairness. Operation Research

59(1) 17-31.

Blazwicz, J., W. Domschke, E. Pesch. 1996. The job shop scheduling problem: Conven-
tional and new solution techniques. Furopean Journal of Operational Research 93(1)

1-33.

Blocher, J.D., S. Sevastyanov. 2015. A note on the Coffman-Sethi bound for LPT schedul-

ing. Journal of Scheduling 18(3) 325-327.

Csirik, J., H. Kellerer, G. Woeginger. 1992. The exact LPT-bound for maximizing the

minimum completion time. Operations Research Letters 11(5) 281-287.

Deuermeyer, B.L., D.K. Friesen, M.A. Langston. 1982. Scheduling to maximize the

93

d0i:10.6342/NTU201704133

minimum processor finish time in a multiprocessor system. SIAM. J. on Algebraic.and

Discrete Methods 3(2) 190-196.

Fiat, A., G.J. Woeginger. 1998. Online Algorithms: The State of the: Art. . Springer,

Berlin, Germany.

Graham, R.L. 1966. Bounds for certain multiprocessing anomalies. Bell System Technical

Journal 45(9) 1563-1581.

Graham, R.L. 1969. Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics 17(2) 416-429.

Gupta, S.K., J. Kyparisis. 1987. Single machine scheduling research. Omega 15(3) 207—

227.

Haouari, M., M Jemmali. 2008. Maximizing the minimum completion time on parallel

machines. JOR: A Quarterly Journal of Operations Research 6(4) 375-392.

Liu, C.-W. 2016. Job allocation with a consideration of fairness. Master’s thesis, National

Taiwan University, Taipei, Taiwan.

Massab, 1., G. Paletta, A.J. Ruiz-Torresh. 2016. A note on longest processing time algo-
rithms for the two uniform parallel machine makespan minimization problem. Journal

of Scheduling 19(2) 207-211.

Pinedo, M. 2012. Scheduling Theory, Algorithms, and Systems. Springer, Berlin, Ger-

many.

Ruiz, R., J.A. Vzquez-Rodrguez. 2010. The hybrid flow shop scheduling problem. Euro-
pean Journal of Operational Research 105(1) 1-18.

o4

d0i:10.6342/NTU201704133

Walter, R. 2013. Comparing the minimum completion times of two .longest-first
scheduling-heuristics. Central European Journal of Operations Research 21(1) 125~

139.

Walter, R., M. Wirth, A. Lawrinenko. 2016. Improved approaches to the exact solution

of the machine covering problem. Journal of Scheduling 20(2) 147-164.

Williamson, D.P.; D.B. Shmoys. 2011. The design of approximation algorithms. Cam-

bridge University Press, London, UK.

95

d0i:10.6342/NTU201704133

