AN

A 5 2 KRG TRE AR A AEIAG I 5 B AT
A8 3 T

Graduate Institute of Networking and Multimedia =Y

\

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

¢ F r’]}i %%/%%Eva é"% ﬁé *ﬁiﬂ(aﬂk RY 72 T
Aggregating Unused Memory with Efficient Remote
Swapping

T3

Ny

oy

Tzu-Hsien Kao

R @ R b B i
Advisor: Shih-Hao Hung, Ph.D.

+ERE 106 % 7 A
July, 2017

doi:10.6342/NTU201704017



CEE S PR e
DRXEBEEELTE

15 & ARG IR JE B s AR R A R A X e R AR = R
Aggregating Unused Memory with Efficient Remote
Swapping

WX AEHEREE (3% R01944033) AR 24 K2 EMEAH
LRI R RRZBALEEMSH L RER—BE &t H—08
ATHNEREBERLEBBRIREA » 45 ILE A

/ 7

(#8 F24%)

(&%)

o Kk

doi:10.6342/NTU201704017



NI

&H %

FALIEE Y 0 RBB LR E wlTHEZ ~ 12 A smake) A B R
Ja AT SE/E B AR B L ] EmiE i — ey A & 08 o

AEEBEY > §AFTERMAZIRNIBE - HEA L FEAE B H
WA R R REEEBRPHERARDL  RRTUAARETRAL
BRREG T ik o FFA— F B ARG KT o AR A KA RS
LR E s RALATAZRBELNEE - HHHELFLROBREE
AR RREATHOZANMATGRE  REPDLEHE - £F
WF 7k B 6 S BN o

ARERBOER TR E RS KRB N ESR R - RLE K AH
RGBT FARLABEDERGBA > 2 H S RARAATFROG T @
HERAGERTXN - FRMVGERB{ERDBTERREF 91 - &
FHRATARBREFTHRERINGRIL - FTREHY » KRERT
At TR AE — 1Y o

AR ZRH PAS Lab. 89 BALF] £ o Ao Az — A 2 F S 0h 84
b RATEIAR T S 6 Rk o Rl 2 BR 3R 6 A Ah fe B B 6Y (B L AL 4G
RN KOS o

RE B RH KO RAN A K A 34 > 2 KB B9 B AR 42
RERT G - FHBARARS FRAUMGIEA > F T ARMMERGK
G~ RATEE—F o

Z
=)
.

doi:10.6342/NTU201704017



eI

mE

HERABRBBESIOFE R AT EE RN ZHRAHKAE

ey J AR~ ARIER 89 77 ) IR Rk o AR & o AR 3 R 4 5 oAl
AFAMEMOTROKXFLFNAARA G - £ERKALT > &M
B 5 = ik A AR AR R B M i n 2 TR IR 60 Bl 0 BB R R
TEM AGA ER PR B TIEMAE A LB EMARA - KMRBANZ
BT B R RRIEHRAE > —REA A LR FOHBUREH AL

AR RBIT AR MR FRET R R ERZE > FFEZHHE
¥ A% LRSI B0 RAMARAS ARG AR T VAR 2 JB R 2 48 3%
P oo
KAMA R R XAEKXLE R EREE bt e s 6

BRE o B8 lE M A KRR AL (memcached) ~ IR AR S H AZ A
(Tensorflow) 323 A 5 (MUMmer) # 50Gbps 89 % i& & K # 88 3%
Bo BREFRBETRMGES T ARB ARG E 5 R FRTIEHF
B RAL AR SR AR g e E B R kA A R s R AR ERA T &L
BB IER 9 E A R4 (thrashing) At & ey R MR R A - R
Bl K 3K 0 4% ] &AM 69 7 X > TensorFlow 4R IR B 5 B AL AL BF » 248
VAMEARAE ] R BGEPT A A B R S0 IE M 0 1.24 18 ~ A4 R
BARBR R 16 42 69 2048 o 7 BLIA & 1% l RDMA over Converged Ethernet
(ROCE) #8% > &AM 69 #H] R & s % 7 13 IR 25 M AR 4K 69 B4 K o

WeEF © BT~ Es X EH ~ RDMA ~ RoCE

ii

doi:10.6342/NTU201704017



Abstract

In recent years, the performance of interconnection networks in the data-
center have been vastly improved with higher bandwidth and lower latency,
driven by the demand of big data analytics. With the high-speed network
technologies, sharing of resources among different servers becomes more ef-
ficient than ever. In this thesis, we study remote swap memory technologies
which allows one server to utilize the memory on a remote server as the swap
memory for the virtual memory system via a high-speed interconnection net-
work. We propose a portable remote memory swap mechanism with reliable
open-source system software and industrial standard hardware components.
The construction of the mechanism is done by configuring the software and
hardware beyond the operating system without level vendor-specific modi-
fications, so we believe the methodology is generic and is useful to a wide

range of applications.

To evaluate the performance of our proposed mechanism, we carry out mi-
crobenchmarks as well as realistic applications, including in-memory cache
(memcached), machine learning model training (Tensorflow), and genome
sequence alignment (MUMmer), on a setup with two servers connected via
50Gbps Ethernet. The experimental results show the efficiency of the our
mechanism. The remote memory swap mechanism is faster than traditional
memory swap mechanism with hard disks and saves the cost of adding physi-
cal memory to avoid thrashing of virtual memory. In our experimental results,
using our remote swap mechanism, TensorFlow training deep learning mod-

iii

doi:10.6342/NTU201704017



els was accelerated by 16 times, compared to swapping using local disk. It ran
only 1.24 times slower than running on a server with larger physical memory-,
to hold the entire data set. Due to the use of RDMA over Converged Etherg_st
(RoCE), our remote memory swap mechanism caused little overhead t(j bo{h :

Servers.

Keywords: Swap, Remote Swap, RDMA, RoCE

iv

doi:10.6342/NTU201704017



Contents \ s 4

%] 35 ii
iii
Chapter 1 1
Chapter 2 4
P.1 High-Speed Network and RDMA| . . . . . . . . . ... ... . ..... 4
2.2 Linux Memory Swap Mechanism . . ... ... ............. 5
R.3 Linux SCSTTargef . . . . . v v v v e e e e e e e e e e e e e, 6
Chapter 3 7
Chapter 4 Remote Memory Swap Framework 9
1.1 Designing the Remote Memory Swap Framework . . . . . . ... .. .. 9
“.2 Performance ISSUeS . . . . . . . . .. i 11
Chapter 5 Performance and Evaluation 12
5.1 Experimental Setup . . . . . . . . . . e 13

5.2 Performance Results of Micro-benchmark . . . ... ........... 13
5.3 Application Performance Results . . . . . . . . . . . . . . . ... . ... 14
5.3.1 Memcached . . . ... ... ... ... .. .. ... 14

5.3.2 TensorFlow . . . . . . . . o i e 14

533 MUMMEH . .« v v o e e e e e e e e e e e e 18
Chapter 6 [Conclusion and Future Work 19
: oraphy 21

v

doi:10.6342/NTU201704017



List of Figures

4.1 Remote Memory Swap Framework Architecturd . . . . . . . ... .. .. 10

5.1 Results of the Memcached Tests . . . . . . v v v v v v v v e e 15

5.2 Results of the TensorFlow Model Training Testd . . . . . . ... ... .. 16

5.3 Swap Usage Comparison of Training Different Model§ . . . . . ... .. 17

5.4 Results of the MUMmer Sequence Alignment Test . . . . . ... .... 18
vi

doi:10.6342/NTU201704017



List of Tables

B.1 Modern work in designing remote memory system . . . . . . . . ... . 8

5.1 Results of the Micro-benchmark Tesf . . . . . . . .. ... ... ..... 14

5.2 The Memory Usage of TensorFlow Models Training . . ... ... ... 16
vii

doi:10.6342/NTU201704017



viil

doi:10.6342/NTU201704017



Chapter 1

Introduction

Modern systems process large amount of data in memory with an improved through-
put. Such big-memory workloads seldom use the virtual memory because of the high cost
of swapping[4]. Swapping to disk may severely impinge on the overall performance for
these workloads. In recent years, the performance of interconnection networks in the dat-
acenter continues to increase. Modern networking technologies such as Infiniband [[10]
features low latency (in the order of microseconds), high throughput (up to 200Gbps), and
the support of Remote Direct Memory Access (RDMA) [117] operations to reduce CPU
utilization.

The advent of high-speed networking leads us to fine-grain sharing of various re-
sources in the datacenter, including the memories. In a traditional datacenter, certain
resources become underutilized because of mismatching workload requirements. For ex-
ample, compute cycles may be exhausted before memory capacity is reached, leaving a
fraction of the memory unused. Data gathered from datacenters show that server memory
is unused as much as 50% [2]. Therefore, disaggregating memories and placing them in
pools will be beneficial.

In order to use high-speed interconnects to access remote memory, the clients can
naively use remote memory pools as block pseudo-devices, and the server need to make
local memory available for clients. However this kind of implementation, need to be
modify both client and server side systems. These modifications make system unportable,

and hard to use.

doi:10.6342/NTU201704017



In this thesis, we study remote swap memory technologies which allows one server to
utilize the memory on a remote server as the swap space for the virtual memory-system
via a high-speed network. We designed a framework that enables one server to uglize the
memory in another server to execute large-scale memory-intensive applicati_’o;n;";‘-that de-
mand more memory than the server can provide by its physical memory. Via a high-speed
network, page faults in the virtual memory system can be satisfied quickly by swapping
infrequently used pages into the memory on a remote server.

To maximize the applicability of the framework, we set the following goals:

» The framework should be as portable as possible. To achieve this goal, we choose
to construct the framework with open source software and commodity hardware

components.

* The framework should be as efficient as possible. The remote memory swap mech-
anism should outperform traditional swap mechanism with hard disks and be com-

parable to solid-state disks (SSD).

* The framework should enable unmodified applications to benefit from remote swap-

ping over RDMA networks without operating system modifications.

Note that, while parallelizing the application and divide the data to run on multiple
servers should be able to achieve better performance and scalability than our approach.
Our framework aims to provide a convenient, transparent way to mitigate the problem of
resource fragmentation.

Other storage devices like SSD may have comparable performance to remote memory
system via high-speed network, but the price of high-performance SSD and the lifetime
of SSD have been issues for adopting SSD as swap devices in practice [14, 3, 22].

As aresult, our proposed framework provides a portable remote memory swap mech-
anism with reliable open-source system software and industrial standard hardware com-
ponents. The construction of the mechanism is done by configuring the software and
hardware beyond the operating system without level vendor-specific modifications, so we

believe the methodology is generic and is useful to a wide range of applications.

doi:10.6342/NTU201704017



To evaluate the performance of our proposed mechanism, we carry out micro-benchmarks
as well as realistic applications, including in-memory cache (memcached); machinelearn=
ing model training (Tensorflow), and genome sequence alignment (MUMmer), on & setup
with two servers connected via 50Gbps Ethernet. The RDMA over Converg_’edt.']iEthernet
[20] (RoCE) protocol allows RDMA operations over an Ethernet network.

The experimental results show the efficiency of the our mechanism. First, the remote
memory swap mechanism is faster than traditional memory swap mechanism with hard
disks. The cost of additional physical memory for virtual memory thrashing avoidance
can be saved. Our experiment results from our micro-benchmark reveal the worst case,
where our remote swapping mechanism outperformed hard disk setup by 3.4 times and ran
only 3 times slower than running on a big-memory server with larger physical memory to
hold the entire data set.

From the proposed remote swap mechanism, applications are also benefited. For ex-
ample, when using our remote swap mechanism, training time of TensorFlow models was
accelerated by 16 times, compared to swapping using local disk. It ran only 1.24 times
slower than running on a server with sufficient physical memory to hold the entire data
set.

Finally, due to the use of RoCE, our remote memory swap mechanism caused little
overhead to both servers. By using the low CPU utilization RDMA operations, our re-
mote memory swap mechanism provide a new vision to utilize remote memories for local
system performance improvement.

The rest of the thesis is organized as follows. Chapter 2 discusses the related work.
Chapter 3 provides the relevant background. Chapter 4 present the design and implemen-
tation. An experimental evaluation of the remote memory pager is discussed in Chapter

5. We conclude our work in Chapter 6.

doi:10.6342/NTU201704017



Chapter 2

Background

In this chapter we overview necessary background and explain the benefits from re-
mote memory swapping. Remote memory swapping is composed of three main compo-
nents: high-speed interconnect network, Linux memory swap mechanism, and network
block storage device.

The latency of swapping is determined by software processing time and hardware
transfer time. First, high-speed interconnect network provides low response time and
high bandwidth which can transfer data many times faster than traditional disks, and us-
ing RDMA operations can reduce the CPU processing time of network protocol, which
is discussed in Chapter P.1] Then, in Chapter we introduce the Linux memory swap
mechanism and compare the pros and cons between the traditional swapping methods
like swapping memory to disks, and swapping memory to remote memory. Finally we
overview the Linux SCSI target, a block storage networking standard which supports a
rapidly growing number of fabric modules, and all existing Linux block devices as back-
stores. We explain how and why we use this network block storage for remote memory

swapping in Chapter 2.3.

2.1 High-Speed Network and RDMA

Over the years, Ethernet speed has increased from 10 megabits per second (Mbps) to

200 gigabits per second (Gbps) and researchers are already planning to scale up to 1 ter-

4

doi:10.6342/NTU201704017



abits per second (Tbps). Since 10 gigabit Ethernet (10GbE) or faster interconnections has
become an inexpensive commodity with a growing installation base, servers with-10GbE
network interfaces have been around. Due to more efficient processors, a faster_-:_leI Ex-
press (PCle) bus, and more sophisticated transfer protocols, the capability to h’avéé‘-e; single

file transfer saturate a link become more common.

As centralized services, such as backup servers, often need to handle parallel data
transfers contending for bandwidth, there is a need to deploy faster technologies to ac-
commodate the aggregation of those flows[16, 7, 11]. Dell’Oro Group predicts in its
recently released Ethernet Switch —Data Center Five Year Forecast Report[§] that 400-
Gbps switch ports will begin to ramp strongly in 2019. Meanwhile, more than half of data
center switch ports will operate at either 25Gbps or 100 Gbps in 2020, the market research
firm believes. While it is possible to get TCP to saturate 40Gbps or faster connections, it
is very sensitive and requires careful tuning. Even then requires significant CPU power
to achieve.

RDMA protocol is a well-proven data center technology offering high performance
and efficiency. RDMA protocol supports zero-copy networking. It is designed for com-
munication within interconnected compute nodes, I/O nodes and devices in a system area
network. RDMA operations allow one side of the communication parties to exchange in-
formation directly with the remote memory without the involvement of the remote host.
This enables better computation and communication overlap, thus provide potentials for

performance improvements.

Latency of RDMA operations between two nodes is quite comparable to local memory
access latency[[12]. Thus using RDMA operations provides the potential of significant

performance improvement for remote memory swapping.

2.2 Linux Memory Swap Mechanism

Linux virtual memory system manages all physical memory resources. When free

pages available to virtual memory system fall below a threshold, pageout requests are

5

doi:10.6342/NTU201704017



triggered by the kernel thread kswapd to swap pages out to swap devices. Page-in requests
are invoked on demand as page faults occur. Page-out data are placed to these-devices

based on their priorities[5]. 1

=
-

Any block device can be used as a swap space, e.g., Hard Disk Drives (HDDS) and
Solid State Drives (SSDs). Swapping devices such as HDDs or even SSDIs operate at
several orders of magnitude slower than main memory modules. Excessive paging activity
to and from the swapping device renders a system crawling as the CPU is mostly waiting
for I/0O activity.

For remote memory swapping, pre-allocated RAM disks on remote nodes perform this
role. Although swapping to RAM disks performs worse than running with enough local
memory, it still performs much better than swapping to HDDs. The CPU utilization can
downgrade to 20% while swapping to a local RAM disk, 8% while swapping to remote

memory, and less than 1% while swapping to local disk[21].

2.3 Linux SCSI Target

iSCSI (Internet Small Computer System Interface) provides SCSI accesses over IP net-
works. iSCSI Extensions for RDMA [[18] (iSER) is a network protocol that extends iSCSI
to use RDMA. iSER permits data to be transferred directly into and out of remote SCSI
computer memory buffers over InfiniBand and Ethernet networks without intermediate
data copies by using RDMA.

LinuxIO [13] (LIO) is the standard open-source SCSI target in Linux. It supports al-
most all prevalent storage fabrics. LIO supports kernel level RAM disk as backstore,
which implement the methods of accessing data on disk. A backstore subsystem plugin is
a physical storage object that provides the block device underlying a SCSI endpoint. Us-
ing the kernel level RAM disk can avoid the high memory protection overhead of using
the user level RAM disk.

By using the kernel level RAM disk supported by LIO and iSCSI with the iSER proto-

col, the high CPU utilization of using the remote RAM disk as swap space can be avoided.

doi:10.6342/NTU201704017



Chapter 3

Related Work

Studies of memory disaggregation deal with the remote memory as an extension to
the local memory space. Remote memory swapping, a disaggregation approach which
considers remote memory as swap space, have demonstrated the ability to be deployed
transparently with little/no modification to the OS or the running applications.

However, the performance and promises were often limited by slow networks and high
CPU overheads. Several works have studied the remote memory swapping for different
purposes as shown in Table B.1]. We differentiate them by network technology, bandwidth
and portability.

Nswap [25] proposed a block device driver which combines networks and swap de-
vices to allow cluster nodes with over-committed memory to use idle memory and to swap
its pages over the network. They used slow 100Base-T Ethernet and hard disks to examine
their remote memory swap mechanism. Performance of the Nswap is limited due to the
low hard disks and the lack of high-speed network. Also, operating system on both client
and server sides need to be modified.

HPBD [12] proposed the design and implementation of a high performance network-
ing block device (HPBD) over 10Gbps InfiniBand fabric, which serves as a swap device of
kernel Virtual Memory (VM) system for page transfer to/from remote memory servers. To
deploy HPBD, installation of the kernel module and the management daemon are needed.
The applications they used for experiments like gsort, which access remote memory not

so frequently. Nuzura [8] measured the performance of some HPC applications instead,

7

doi:10.6342/NTU201704017



| Network | Bandwidth | Modification of OS |

Nswap[25] TCP 100Mbps needed
HPBD[12] InfiniBand 10Gbps needed
Nuzura[8] RoCE 10Gbps needed
INFINISWAP[9] || InfiniBand 56Gbps needed

Table 3.1: Modern work in designing remote memory systemm |

which required several times of local memory on their system. Nuzura proposed an ap-

proach similar to HPBD. They implemented a remote memory swap system and examined

the availability of remote memory swapping via their own UZURA 10Gbps RoCE inter-

connects.

INFINISWAP [9] implemented a remote memory swap system on a 56Gbps, 32-machine

InfiniBand interconnected RDMA cluster and evaluated it using multiple unmodified memory-

intensive applications. It shows that when working sets do not fit in memory, applications

performance degrade linearly using INFINISWAP instead of experiencing a super-linear

drop. INFINISWAP implemented their mechanism by implementing a kernel module and

a user space daemon, which should be installed when deploying the cluster environment.

Our work are tested on the 50Gbps Ethernet which is becoming around in datacen-

ters. The framework we proposed is different from the previous works in that operating

system and system software we used are not modified. When deploying servers, using

our remote memory swap mechanism is not necessary to install special device driver or

modified kernel to support applications which require pages from remote memory. Ser-

vice providers can use the stable version operating system and system software to serve

big-memory workloads reliably.

doi:10.6342/NTU201704017



Chapter 4

Remote Memory Swap Framework

The main goal of remote memory swapping is to efficiently expose remote memories
to user applications without any modifications to those applications or the OSes of indi-
vidual machines. It must also be reliable and low operation overhead so that application
performance on remote machines remains unaffected. Thus, the purpose of our work is to
design an efficient, portable framework for swapping memory to remote memory, which
means we should use existing reliable software to contribute our framework instead of
implementing new kernel modules or system daemons.

In this chapter, we present the design and analysis of the performance issues in our
framework. We propose the main design and discuss the design issues in Chapter 4.1. In

Chapter 4.2 we discuss the potential performance issues and the trade-offs.

4.1 Designing the Remote Memory Swap Framework

As shown in Figure .1, our remote memory swap mechanism serves the kernel’s
paging requests by communicating with remote memory servers. The client is direct con-
nected to server via 50Gbps RoCE network without network switch.

The client is an iSCSI initiator, which serves I/O requests stream from the virtual mem-
ory system by sending requests to the remote memory servers. The server is a RAM disk
iSCSI target, which provides its own local memory for paging store and push/pull pages

from client using RDMA operations with the iSER protocol.

9

doi:10.6342/NTU201704017



User Memory

Client / Server
{ Pre-allocated
User Process ‘M (VM) § Kernel Space
H User RAM disk
nN— / =
Kernel ¢ |
Linux Kernel Swapped
VMM Memory
—A
iSCSI (iSER) iSCSI (iSER)
Initiator Target
NIC Driver NIC Driver

RDMA ~
_[ NIC (RoCE) NIC
J\L/ ’

50Gbps Ethernet Network

Figure 4.1: Remote Memory Swap Framework Architecture

Using the iSCSI, a reliable software emulation for local block storage, remote resources
at the block level can be used efficiently. We use iSCSI because it is widely used in file
systems for data storage. Introduced in Chapter 2.3, when using the remote RAM disk as
swap space, low memory protection overhead is promised by the kernel level RAM disk

supported by iSCSI, and low operation overhead is promised by using iSER protocol.

In our framework, user processes can run natively or in virtual machine (VM) environ-
ments. User applications can access remote swap space as the extension of local memory,
and VMs can use remote swap space as their VRAM by Linux Kernel-based Virtual Ma-
chine (KVM) memory overcommiting[[19]. Remote memory swapping capability allows
VMs to take the benefits of remote memory transparently by allocating more virtualized
memory than there are physical memory on the system. Therefore, cloud computing envi-
ronments and data centers can utilize their unused memory in RoCE interconnected clus-

ters.

10

doi:10.6342/NTU201704017



4.2 Performance Issues

Asynchronous Communication: In a client-server architecture, the, swapping pro-
cess sends out paging requests to remote memory swap server and waits to,be ngved. In
the swap-in (page-in) case, the client user process/thread which requires remote bages is
blocked until the server responses. RDMA operations can reduce asynchronous‘commu-
nication overhead by its low CPU utilization and fast response time.

Remote Memory Overhead: RDMA operations implement zero-copy remote DMA,
but virtual memory system copy pages to/from remote swap space. Linux kernel uses
4KB page size for x86/x64 architecture. In 50Gbps interconnected cluster, a client may
requests up to 1600K pages per second to remote memory servers, but due to the RAM
disk emulation overhead, a memory server can only serve 160K pages requests by our
measurement. We trade off portability of applications and OSes against the utilization of

RDMA operations for performance in this work.

11

doi:10.6342/NTU201704017



Chapter 5

Performance and Evaluation

In this chapter, we evaluate the performance of the proposed framework comparing
to a traditional system with HDDs swapping, to a system with our remote memory swap

mechanism.

We use 4 different test programs. One is a micro-benchmark, which allocates a 8 GB
array and sequentially write integers into this array. Because writing memory sequentially
performs traditional HDDs the best due to the locality, this test reveal the worst case of
our mechanism compared to the disk swapping. The second application is memcached.
Memcached is a frequently used in-memory cache for various applications. Improvements
of in-memory cache performance from remote swapping may provide a ground for bene-
fits of other workloads using memcached. The third application is TensorFlow. Training
large deep learning models using TensorFlow may demand more memory than the server
can provide by its physical memory. The last application is MUMmer, which is a sys-
tem for rapidly aligning entire genomes, whether in complete or draft form. Aligning
entire genomes sequence data will require very high-performance computers, of the type

currently available only at the largest sequencing and bioinformatics centers.

For each of the tests, we run these applications 10 times and report the average per-

formance number.

12

doi:10.6342/NTU201704017



5.1 Experimental Setup

The experiments are conducted on two Intel Core i7-5930K servers with 32GB DDR3=
1333 RAM on each server. Server and client nodes are connected to ROCE netwgfk using
Mellanox MT27708A0 with opensource OFED Linux driver. The HDD cc')nfiguration on
each node is WESTERN DIGITAL WD10EZEX 1TB SATA600. The operating system is
CentOS 7.3 with Linux kernel version is 3.10.0.

To compare the performance impact of remote paging with local memory performance,
we change the total local memory size available to the OS and vary the swapping devices.
Three testing applications and one micro-benchmark test are used in our evaluation. In
each test, we test our mechanism with 3 setups: enough local memory, remote memory
swapping and local disk swapping. We use the performance of applications running with
enough memory as the baseline for evaluation. We use all of the 32GB memory physically

available for the local memory setup test.

5.2 Performance Results of Micro-benchmark

Our micro-benchmark program allocates a 8 GB array and sequentially write integers
into this array. In this test, we set the local memory size as 4GB and a RAM disk at remote
server as swap area.

As shown in Table B.1], the performance of remote-swap setup is only 3 times slower
than the local memory setup, and is 3.4 times faster than the disk-swap setup even in the
worst case. Also, the low CPU utilization of remote-swap setup is benefited from our
remote memory swap mechanism. The results of micro-benchmark show that our remote
memory swap mechanism can perform much better than traditional disk swapping even
in the worst case.

Due to the asynchrony of different components in the operating system, an accurate
measurement is not possible without thorough analysis of the swapping mechanism of
the kernel, which is beyond the scope of this work. We have measured and profiled the

behavior of the proposed mechanism in another work.

13

doi:10.6342/NTU201704017



| | CPU Wait Time | User CPU Usage | Elapsed Time |

Real Os 100% 3.11s
HDD 22.28s 32% 32.82s
RDMA 0.32s 96% 9.63s )

Table 5.1: Results of the Micro-benchmark Test

5.3 Application Performance Results

5.3.1 Memcached

Memcached is an in-memory object caching system that provides a simple key-value
interface. We use twemperf[26], a tool to measure memcached server performance. Our
experiments request the local memcached server for 19.5GB data in different block size
from 32 to 1024 KB. We use 200 clients to generate requests for each block size test. In
this test, we set the local memory size as 12GB and a RAM disk at remote server as swap
area.

As shown in Figure .1, the results of the response rates of the remote-swap setup are
lower from only 1.46 times to 4 times than local memory while the response rates of using
disk setup are lower from 2 times to 68.5 times than local memory setup. The results of
P99 response time and duration time also show that our remote memory swap mechanism

performs tolerably in some cases for in-memory caching system.

5.3.2 TensorFlow

TensorFlow is an open source software library for machine learning using data flow
graphs. Even though the deep learning on GPU runs much faster than on CPU, for the tasks
which are not critical, CPU may be a smart, cost-effective choice. In cloud computing
environment, some deep learning tasks on the cheaper CPU instances instead of GPU
instances run only slightly slower with about 2/3rds of the cost of the GPU instance[[15].
With remote swapping, throughput of TensorFlow may be improved in an interconnected
cluster.

We choose 2 famous deep learning applications: image classification and text summa-

14

doi:10.6342/NTU201704017



32K

64K

128K

256K

512K

Orsp/s 7500rsp/s 15000rsp/s 22500rsp/s 30000rsp/s
M Real RDMA H HDD

(a) Response Rates

256K

512K

Oms 1000ms 2000ms 3000ms 4000ms
M Real RDMA W HDD

(b) P99 Response Time

1519.4

512K

1024K

Os 400s 800s 1200s 1600s
B Real RDMA H HDD

(c) Duration Time

Figure 5.1: Results of the Memcached Tests

rization. For image classification test, we use two different models in TensorFlow models:
Resnet and Inception, which are two Convolutional Neural Network (CNN) image classi-
fication models. We uses the textsum model to test the text summarization traingng perfor-
mance. Textsum is a sequence-to-sequence with attention model for text summarization,

for our tests.

15

doi:10.6342/NTU201704017



We follow the example code for training the models[m]. The ImageNet[@] dataset is

T
..r.l ...4(.
=

used for image classification tests, and we use the official toy data and VQCWO

run the textsum training. Training runs 50 steps for each test.

Inception | Resnet | Textsum
6.8GB | 8.5GB | 9.6GB

Real
Inception2G
Inception4G

InceptionHDD
Resnet2G
ResnetdG

ResnetHDD
textsum4G
textsum8G
textsumHDD

5.0x 10.0x 15.0x 20.0x

(a) Duration Time Relative to Local Memory Setup

Real
Inception2G
Inception4G

InceptionHDD
Resnet2G
Resnet4dG

ResnetHDD
textsum4G
textsum8G
textsumHDD

0.3x 0.5x 0.8x 1.0x

(b) CPU Usage Relative to Local Memory Setup

Figure 5.2: Results of the TensorFlow Model Training Tests

In the tests, we set the local memory size as 2GB, 4GB for image classification tests
and 4GB, 8GB for text summarization to examine the performance of different swapping
usage. Our machine freezes when we run the 2GB for classification and the 4GB for text
summarization using disk setup, so we only have the 2GB image classification and 8GB
text summarization results for disk setup. Table .2 shows the memory usage measured
when using the local memory setup.

As shown in Figure .2, the performance of remote-swap setup is 16 times faster than
disk-swap setup and is only 1.24 times slower than local memory setup in Resnet training

test. Training models is memory-intensive as shown in Figure 5.3(a). When training the

16

doi:10.6342/NTU201704017



I I
700000 1 —— Swap in
—— Swap out
600000 ‘ '
OO I O T v T T T
2
>
=)
- 400000
N
@
2 300000 _—
Q
Q
[}
& 200000
100000 -
0
l l
T T T T T
0 200 400 600 800 1000
Time [sec.]
(a) Resnet
I
—— Swap in
—— Swap out ‘
800000
£ 600000
=
Q
N
w ‘
2 400000 H
Q
[=%
o
=
2]
200000 Ll —
0 ‘ \
0 100 200 300 400 500 600 700
Time [sec.]

Figure 5.3: Swap Usage Comparison of Training Different Models

(b) Textsum

big models like Resnet, the slow swap device like HDD impinges on the overall perfor-

mance.

The performance downgrade is not significant in training the textsum model when

using a slow disk swap because the concentrative swap usage of textsum model training

as shown in Figure b.3(b). The result showed that the overhead was varied depended on

the application memory access pattern.

17

doi:10.6342/NTU201704017



5.3.3 MUMmer

-

In bioinformatics, a sequence alignment is a way of arranging the seqﬁé'fl'ceﬂslof DN’A
RNA, or protein to identify regions of similarity that may be a consequence ot‘(\ uac—i d)nal
structural, or evolutionary relationships between the sequences. One of the mhst suc;\ess—h;
ful algorithms for computing alignments between genome sequences is M UMmer[.]

The test reads 100-character substrings sampled from the Bacillus anthracis genome
(GenBank ID: NC_003997.3 ). Thus, each read exactly aligns to the genome end-to-end
at least once, and possibly more depending on the repeat content of the genome. In this
test, we set the local memory size as 8GB and a RAM disk at remote server as swap area.

On average, the local memory setup for our genome sequence aligning test uses aver-
age 94% CPU and requires 13GB memory space which is accessed frequently. As shown
in Figure 5.4, performance of the disk-swap setup is 30 times slower than the local mem-
ory setup. The experimental results show that disk-swap setup is too slow to satisfy page
faults from the application. Performance of the remote-swap is only 2 times slower than
local memory setup, which means our remote memory swap system can provide tolerable

virtual memory performance for a high performance application like sequence alignment.

1.0x 1x
Real [{1.00 Real 1.00
RDMA [2.04 RDMA 0.46
HDD 30.07 HDD 10.03
10.0x 20.0x 30.0x 40.0x 0.25x 0.5x 0.75x 1x

(a) Duration Time Relative to Local Memory Setup  (b) CPU Usage Relative to Local Memory Setup

Figure 5.4: Results of the MUMmer Sequence Alignment Test

18

doi:10.6342/NTU201704017



o NI

Chapter 6

Conclusion and Future Work

In this thesis, we study the availability of utilizing remote memory in RoCE intercon-
nected environment. We proposed a portable, efficient remote memory swap mechanism
and evaluate the performance of 3 big-memory memory-intensive applications. Our ex-
perimental results showed that using our remote memory swap mechanism, TensorFlow
training deep learning models can run up to 16 times than swapping using local disk, and
runs only 1.24 times slower than local memory system. Our solution allows remote mem-
ory swapping to enhance local memory hierarchy by the virtual memory system via a
high-speed network by configuring the software and hardware, without operating system
modifications.

Because of the hardware limitations, we experimented our remote memory swap frame-
work in a direct connected network environment without network switches. Therefore,
performance of swapping memory to multiple remote memory pools is not available, and
fault-tolerance of remote memory swapping is also unavailable with only one swap device.

In our future work, we plan to enable the remote memory swap mechanism with multi-
client/multi-server architecture with fault-tolerance. We also intend to investigate designs
that can automatically set up and manage the remote memory swap mechanism in a RoCE
cluster effectively without modifications of system software and operating system to uti-

lize remote memory and interconnected high-speed network bandwidth.

19

doi:10.6342/NTU201704017



20

doi:10.6342/NTU201704017



Bibliography

[1] TensorFlow Models. https://github.com/tensorflow/models

[2] B. Abali, R. J. Eickemeyer, H. Franke, C. Li, and M. Taubenblatt. Disaggregated
and optically interconnected memory: when will it be cost effective?  CoRR,

abs/1503.01416, 2015.
[3] A.Badam. Bridging the Memory-Storage Gap. PhD thesis, October 2012.

[4] A.Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift. Efficient virtual memory
for big memory servers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 237-248, New York, NY, USA, 2013.
ACM.

[5] David A Rusling. Linux memory management. http://www.tldp.org/LDP/t1k/

mm/memory . html.

[6] Dell’Oro Group. Ethernet Switch —Data Center Five Year Forecast Report.
http://www.delloro.com/products-and-services/ethernet-switch-

data-center.

[7] Gilad Shainer. 100 Gbps Headed For The Data Center. http:
//www .networkcomputing.com/data-centers/100-gbps-headed-data-

center/407619707.

[8] M. GOTO, M. SATO, K. NAKASHIMA, and K. KUMON. Implementing remote
swap memory using rdma over 10gb ethernet. IEICE technical report. Computer

systems, 106(287):7-12, oct 2006.

21

doi:10.6342/NTU201704017


https://github.com/tensorflow/models
http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.delloro.com/products-and-services/ethernet-switch-data-center
http://www.delloro.com/products-and-services/ethernet-switch-data-center
http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707
http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707
http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707

[9] J.Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient memory disaggre-
gation with infiniswap. In 14th USENIX Symposium on Networked Systems-Design
and Implementation (NSDI 17), pages 649-667, Boston, MA, 2017. USENILX.Asso-

ciation.

[10] InfiniBand Trade Association. The InfiniBand Architecture. http*//wuw.

infinibandta.org/specs.

[11] E. Kissel, M. Swany, B. Tierney, and E. Pouyoul. Efficient wide area data transfer
protocols for 100 gbps networks and beyond. In Proceedings of the Third Interna-
tional Workshop on Network-Aware Data Management, NDM ’13, pages 3:1-3:10,
New York, NY, USA, 2013. ACM.

[12] S. Liang, R. Noronha, and D. K. Panda. Swapping to remote memory over infini-
band: An approach using a high performance network block device. In 2005 IEEE

International Conference on Cluster Computing, pages 1-10, Sept 2005.
[13] Linux SCSI Target. LinuxIO. http://linux-iscsi.org.

[14] K. Liu, X. Zhang, K. Davis, and S. Jiang. Synergistic coupling of ssd and hard disk
for qos-aware virtual memory. In 2013 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pages 24-33, April 2013.

[15] Max Woolf. Benchmarking TensorFlow on Cloud CPUs: Cheaper Deep Learning

than Cloud GPUs. http://minimaxir.com/2017/07/cpu-or-gpu/.

[16] H.S. S. Nichole Boscia. Comparison of 40g rdma and traditional ethernet technolo-

gies. NAS Technical Report: NAS, 01 2014.

[17] RDMA Consortium. An RDMA Protocol Specification (Version 1.0). http: //www.

rdmaconsortium.org/home/draft-recio-iwarp-rdmap-v1.0.pdf.

[18] RDMA Consortium. iSCSI Extensions for RDMA Specification (Version 1.0).

http://www.rdmaconsortium.org/home/draft-ko-iwarp-iser-v1.PDF.

22

doi:10.6342/NTU201704017


http://www.infinibandta.org/specs
http://www.infinibandta.org/specs
http://linux-iscsi.org
http://minimaxir.com/2017/07/cpu-or-gpu/
http://www.rdmaconsortium.org/home/draft-recio-iwarp-rdmap-v1.0.pdf
http://www.rdmaconsortium.org/home/draft-recio-iwarp-rdmap-v1.0.pdf
http://www.rdmaconsortium.org/home/draft-ko-iwarp-iser-v1.PDF

[19] Red Hat, Inc. Overcommitting with KVM. https://access.redhat.
com/documentation/en-US/Red Hat Enterprise Linux/6/html/

Virtualization Administration Guide/chap-Virtualization- - .

=
o

Tips_and tricks-Overcommitting with KVM.html.

[20] RoCE Initiative. RoCE Introduction. http://www.roceinitiative.org/roce-

introduction/.

[21] A. Samih, R. Wang, C. Maciocco, T. Y. C. Tai, R. Duan, J. Duan, and Y. Solihin.
Evaluating dynamics and bottlenecks of memory collaboration in cluster systems. In
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting (ccgrid 2012), pages 107-114, May 2012.

[22] M. Saxena and M. M. Swift. Flashvm: Virtual memory management on flash. In Pro-
ceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference,

USENIXATC’10, pages 14-14, Berkeley, CA, USA, 2010. USENIX Association.

[23] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney. High-throughput se-
quence alignment using graphics processing units. BMC Bioinformatics, 8:474 —

474, 2007.

[24] Stanford Vision Lab. ImageNet. http://image-net.org/.

[25] K. G. Tia Newhall, Sean Finney and M. Spiegel. Nswap: A network swapping
module for linux clusters. In Proceedings of Euro-Par’03 International Conference
on Parallel and Distributed Computing (Klagenfurt, Austria, August 2003), volume

2790 of Lecture Notes in Computer Science. Springer, 2003.

[26] Twitter. twemperf (mcperf). https://github.com/twitter/twemperf.

23

doi:10.6342/NTU201704017


https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-Virtualization-Tips_and_tricks-Overcommitting_with_KVM.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-Virtualization-Tips_and_tricks-Overcommitting_with_KVM.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-Virtualization-Tips_and_tricks-Overcommitting_with_KVM.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-Virtualization-Tips_and_tricks-Overcommitting_with_KVM.html
http://www.roceinitiative.org/roce-introduction/
http://www.roceinitiative.org/roce-introduction/
http://image-net.org/
https://github.com/twitter/twemperf

	誌謝
	摘要
	Abstract
	Introduction
	Background
	High-Speed Network and RDMA
	Linux Memory Swap Mechanism
	Linux SCSI Target

	Related Work
	Remote Memory Swap Framework
	Designing the Remote Memory Swap Framework
	Performance Issues

	Performance and Evaluation
	Experimental Setup
	Performance Results of Micro-benchmark
	Application Performance Results
	Memcached
	TensorFlow
	MUMmer


	Conclusion and Future Work
	Bibliography

