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ABSTRACT

For several decades, the semiconductor device theory was basi-
cally based on semi-classical model, where Poisson, drift-diffusion, and
Schrodinger equation with effective mass or k.p method are solved to
obtain the solution. The materials were often treated as perfect crys-
tals, then the E-k relation and factors like density of state, effective
mass and carrier density can all be written as analytical terms. How-
ever, as the dimensions of metal-oxide field effect transistors reach a
few atomic scale, a model considering many-body physics with a rea-
sonable time consumption is necessary. The new method needs to
include the atomic potential into the Schrodinger Hamiltonian, then
choose a suitable basis to solve the eigenvalue problem. Among all
these approaches, the Tight Binding method (TBM) is the most pop-
ular. TBM directly uses the atomic orbital as the basis, and assumes
that the potential is bonded tightly at the central atom.

In this paper, we applied the tight binding method to silicon nanowires,
and calculated the bandgap, effective mass and density of states. We
studied the quantum confinement effect on the nanowires with differ-

ent width, and compared to the infinite quantum well and the perfect

iv d0i:10.6342/NTU201700233



crystal models. The results show that the quantum confinement ef-
fect will enlarge the bandgap and the carrier effective mass, and also
rearrange the conduction band edge position in the k-space due to
the effective mass difference between the lateral and perpendicular
directions.

Then we further applied our model to the novel 2D material. Molyb-
denum disulfide (MoS,) is a 2D material with good mechanical and
chemical properties. It can endure a large strain (12%), and its
nanoribbon structure has interesting edge properties. So we applied
TBM to MoS, and its nanoribbon to study the strain effects and edge
states properties. The results show that the tensile strain can make
the bandgap and the carrier effective mass smaller; however, the K-
to-I" valley transition at the valence band edge gives it a larger hole

effective mass.
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Chapter 1 Introduction

1.1 Electronic Band Structure and Basic Semi-

conductor Physics

For decades, the semi-classical model based on Poisson Drift-Diffusion
has successfully predicted the behavior of semiconductor devices. To
simplify the problem, we need the assumptions like the near-free-
electron model and the effective mass approximation. Combined with
the concepts of density of states and Fermi-Dirac distribution, then
solve the Poisson Drift-Diffusion equation iteratively, the current-voltage
relation can be figured out.

According to the near-free-electron model, the electron wavefunc-

tion and the corresponding eigen energy are given by

R k?

)= = B =

+ Ec | (1.1.1)

where () is the normalization factor, and E¢ is the reference energy
level. In the semiconductor physics it often means the conduction band
edge. The later is the so-called E-k relation. With this equation, the

density of state can be calculated by the number of electronic states
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per unit volume and per unit energy

N 2dN 24N dk
DOS =V uE ~ V dk dE

_ 2 (L' odk_m' /2m" (E — E)
VA dE  mh? h

(1.1.2)
Combined with Fermi-Dirac distribution, the carrier density can be

calculated by the integral over energy

(1.1.3)
where kp is the Boltzmann constant. To figure out the current-voltage
relation, one needs to know the potential distribution (E¢) and the
fermi level (Ep) position by solving the Poisson’s equation and drift-
diffusion equation iteratively.

Poisson’s equation:
V2¢:—%(—n+p+Ng—NA) (1.1.4)

FElectron current equation:

—

Jy = —qnu Vo +qV (nDy) , V- J, =0 (1.1.5)

Hole current equation:

—

Jy = —apuNé — qV (pD,) , V- J,

) d0i:10.6342/NTU201700233
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In the above model, the effective mass (m*) in the carrier density
formula is given by the experimental measurement, and the E-k rela-
tion can be written as a simple equation. The model is successful for
large dimension devices (> 30 nm ). As the devices scale down, the
energy distribution in the material will change due to the boundary
condition. It will influence the effective mass and the bandgap. One
simple way to include the quantum effect is by solving the Schrodinger
equation based on the near-free-electron approximation. For example,
we can calculate the square nanowire subbands energy by solving the
infinite quantum well Schrodinger equation. The subband energy lev-
els are given by

2 272 2,212 2.2
nimeh?  nymeht REk:

2m* L2 i 2m* Lz ~ 2m*

By (k) = Ec + (1.1.7)

However, in this method we still use the bulk effective mass. This
is not valid in nano scales. Physics considering more details in the

crystal potential is necessary.
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Double gate MOSFET

—Carrier density from Si channel Si channel
Poisson drift-diffusion| . : Atomic scale | _. .
Sk 8i0, Si0; | " pmm— | SIO: $i0,
=== Carrier density from
Poisson-Schrodinger
Gate ] Gate Gate] Gate

Atomic potential fluctuation

Figure 1.1: The left figure shows the calculated carrier density by classical Poisson
drift-diffusion solver and semi-classical Poisson-Schrodinger solver respectively. The
right figure points out the atomic scale potential we ignore when doing semi-classical

calculation.

1.2 Band Theory - First Principle

In a multielectron and multiatom system, the Hamiltonian has the

form

M RRLEY
i 2m Vi 47T€0 |r; H 47‘(’60 = |r; —rj]| o

which contains the interaction between different electrons and differ-
ent atomic orbitals. Although we hope to take into account the atomic
nature of a material, the Hamiltonian in the whole system is so dif-
ficult to solve. One popular first principle method to deal with the
multi-electron problem is the Kohn—Sham density functional theory
(DFT) [6], where the electron-electron interaction effects were taken

into account by assuming an effective potential term. The Schrodinger
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equation becomes

ﬁKqu/}io(r): _%v2+veff,0(r) 77bi(7(r) ( )
1.2.2

— gio¢ia<r)7

where v.f7,(r) is the effective KS potential and o is the spin index.

In DFT, the electron density is given as [7]

p(r) = Z [o(x) *, (1.2.3)

and the system energy will be

Bl =T.0) + T+ Buclp) + [ vealodplide,  (124)

where T} is the kinetic energy term, v.,; is the external potential, Vi
is the Coulomb energy and F,. is the exchange-correlation energy.
The begin with, we guess an initial electron density, then calculate
the exchange-correlation energy by a chosen model, finally the ground
state energy can be solved iteratively. If the exact form for E,.[p| is
used, it should be cancelled with J [p] in the one-electron system. Even
if the exact exchange-correlation energy is a functional of the density,
this functional is not known explicitly. Approximations for E,. [p] like
LDA [8] or GGA [9-11] will generate self-interaction energy [12] and
result in an incorrect long-range behavior. So in this thesis we choose

the semi-classical tight binding method, which is lack of iterating cal-
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culation and can be fitted to the experimental data accurately by using

the proper parameters.

1.3 Tight Binding Method and Bloch States

In 1928, F. Bloch combined the wave nature of electrons and the pe-
riodic potential to construct the basic form of Schrodinger equation
in solids [13]. The theory argued that in a periodic potential U (r) =
U (r + R), the wavefunction will have the relation 1 (r + R) = e® R4 (1),
where R is the periodic vector in the lattice. With Bloch theorem,
several band structure calculation tools could be developed with dif-
ferent choice of base. For example, the Pseudopotential method [14]
assumes an effective potential to replace the complex core potential.
The plane-wave method uses plane waves ¥ (r) = %ei(k_K)'r as the
base.

From the above section, we know that in DFT, one should guess
an initial electron density and solve the self-consistent problem. Now
suppose that we already know the ground state density p°, and choose
the atomic orbitals 1, : 7 = s, ., py, ... as a set of basis, assuming the

basis is orthogonal, we can easily solve the ground state Schrodinger
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equation

2
—h—V2 + Ut [po}] ¢i = Hodi = €ii , (1.3.1)

2m

where

¢ = > by (1.3.2)
n

Afterwards, we put the remaining unknown terms in the Hamiltonian,
the Coulomb interaction and exchange-correlation terms, into the re-

pulsive energy, £, we can get the Tight Binding expression

Erplp] = Zéfi + B = Z&' + % ZUaﬁ 5 (1.3.3)
1 1 af

where U, is the interaction energy of different orbital basis.
In bulk semiconductors, one can apply Bloch theorem. With the

lattice vector equals to R, the wavefunction then becomes

de(r) =) e*Ro(r Zb e Ry (r — R) (1.3.4)

R

and the eigen equation will be
H¢k (I‘) = Ewk (I‘) , H = H() +U (I‘) (135)

After some calculations and ignore the overlap term (¢a (r) | ¢ (r — R))g

we can get the Tight Binding eigen equation

b E —basa+2bﬁ/drw U (x) s (x)
(1.3.6)
+ Z bs / driy) (r) U (r) (% (r—R) kR
3, R0
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Once we know the interaction terms, the equation can be written in a

matrix form.

boE (k) = baga + Y bsUsY
B

+ 3 bUL R ST U e
ﬂleSt /BaRgnd

(1.3.7)
The details for calculating the interaction terms U, g were given by
Slater-Koster two-center integrals [15]. For each k vector, we can write
sown a matrix equation and sove the corresponding eigen states. In
reality, we often consider terms up to 2"¢ nearest interaction only.
Models aimimg for the ITI-V and IV group semiconductors have been
developed by several researchers. The sp? first and second nearest
interaction model were developed by Chadi and Cohen [16]. This
model can only deal with the valence band correctly, and fail to fit the
X point states. Vogl, Hjalmarson, and Dow [2] added an s* orbital to
the sp? basis to mimic the influence of the d orbital, and was successful
to reproduce the conduction band minimum. However, the transverse
masses at these points did not agree with experiments. Finally, the d
orbital was included by Jancu [4]. This sp®d°s* model was accurate

enough comparing to first principle methods and experiments, and
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was widely used in quantum transport simulation.

To produce those parameters, we can either calculate by the first
principle method, so called the ab-initio tight binding [17], or fit the
band edge values measured by experiments. Once we fit the parame-
ters of a new material, it is easy and fast to do the calculation again,
and the parameters are scalable and adjustable to apply on other
situations like, for example, different boundary conditions, different

amount of strains or atoms from the same group [18].

1.4 Tight Binding in Quantum Structures

Recent years, the development of Moore’s law has been slowed down,
for the process of scaling down planar MOSFETSs met lots of difficul-
ties. As the integrated circuit industry comes to this turning point,
engineers must to investigate alternative structures and devices. Tran-
sistors with new structures like FiInFET [19], nanowire FET [20], verti-
cal nanowire FET [21], heterostructure nanowire FET [22], tunneling
FET [23], or even 2D material FET [24] have been performed in the
research center worldwide. In 2015, 16-nm FinFETs first showed up
in our every day life with the form of smartphone CPU. Under the

scaling of device dimensions, the crystal symmetry, bond orientation,
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and quantum confinement will matter. Our bulk tight binding model
based on periodic boundary condition will need some alterations. We
will take the square nanowire structure in the following as an example.
In the bulk tight binding model, the wavefunction is the linear
combination of the atomic orbitals in the primitive cell atoms.

Primitive cell wavefunction:

Uk (r) = Z by fp, (r = R) (1.4.1)
R,
where n = s, p,, py, Pz, .... For a square nanowire structure, the period-

icity in the two directions break, so we will have to include the orbitals
of all the atoms in the cross section into the base. The ”supercell”
wavefunction will become

Supercell wavefunction:

(% (I‘) - Z BlvneiK.me% (I‘ —Ri - Rwire) ) (1-4-2)

Rwirealan

where [ is the index describing the {** unit cells in the supercell. Thus
as we construct the nanowire Tight Binding Hamiltonian, we need to
take the atomic orbital energy and the interaction energy of all the
atoms in the cross section into account. In this thesis we will use this

model to calculate the silicon nanowire band structure.
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Figure 1.2: The figure shows the periodicity of a silicon nanowire. The y, z directions
are confined with the confined width = W. The x direction is the transport direction

with the periodic boundary condition.

1.5 Molybdenum Disulfide and its Nanoribbon

A we mentioned above, 2D materials are candidate materials for the
next-generation electronic devices. However, the physics inside is still
unclear. With the Tight Binding tool, we can get into details the
characteristics of new 2D materials.

Transition metal dichalcogenides (TMDCs) have attracted much
attentions. The monolayer is composed of a sheet of transition met-
als sandwiched between two sheets of chalcogen (S, Se or Te). Each
layer is attracted to the other layers by van der waals force. The spe-

cial 2D scheme gives them good chemical and mechanical stability.
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Among the TMDCs, Molybdenum disulphide (MoSs) was found to
have topological superconducting phases [25], and it reveals interest-
ing edge properties in the nanoribbon structure [26-28]. Also the spin
polarization give it potentials on spintronic devices for quantum com-
puters [29,30]. In some recent researches, the photoluminescence [31]
and electroluminescence [32] was demonstrated with MoSs. Optical
devices like photodetectors [33] and phototransistors [34] based on
MoSs were then developed. MoSs has good interface properties and is
capable of fabricating ultra thin devices due to its layered-structure,
and unlike the zero-bandgap grapheme, MoS, has an indirect bandgap
of 1.3 eV for the bulk and 1.9 eV for the single layer. These properties
make it a candidate for next-generation FET. The first single-layer
MoS, transistor was demonstrated in 2010 which has an electron mo-
bility of 200 cm?V ~1s™! and the on/off ratio of 1 x 10® [35]. A research
in 2013 [36] summarized the influence of Schottky barrier on the con-
tact resistance and the performance under different thickness. For thin
layer the transport mobility was suppressed by the substrate; other-
wise for large layer thickness, the finite interlayer conductivity lowered
the total mobility. Using the metal with smallest Schottky barrier and

the high-k dielectric (HfO;), the author demonstrated the best device

12 d0i:10.6342/NTU201700233



1

with an electron mobility of 700 em?V ~!s~! and an on-state current

density of 240 pA/um. MoS, transistors may reveal potentials in

Figure 1.3: The crystal structure of a single-layer MoS,. The figure was a copyright

from [1].

next-generation devices. However, the dimensions of devices from the
literatures seemed to be too large compared to those in the silicon-
based integrated circuit industry. In addition, the performance still
need some improvement. Therefore in this thesis, we will focus on the
impacts of applying strains and under quantum confinement effect by

our established tool—the quantum structure tight binding model.
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Chapter 2 Methodology

In this chapter, we will introduce the tight binding matrix in details.
The contents will begin from the bulk, expending to the nanowire.
Then we will show how to deal with the boundary condition and in-
clude strains into the model. In the end is the numerical methods for

effective mass and density-of-states calculation.

2.1 Tight Binding Hamiltonian: Bulk

To introduce the tight binding matrix in details, we will take the bulk
ITI-V material GaAs for example. The primitive unit cell contains two
atoms. If we choose sp® orbitals as the base, and consider only first

nearest neighbor interaction, the matrix will be of the form

14

/ Es,Ga 0 0 0 Hls,Qs Hls,pr Hls,pr Hls,QpZ \

0 By Ga 0 0 Hip,2s Hipop, Hip,2p, Hip,2p.

0 0 Ep ca 0 Hlpyﬂs Hlpw?pz Hlpyﬂpy Hlpw?pz

0 0 0 Epca  Hip.2s Hip.op, Hip.2p, Hip.2p.
H23,1s H23,1p1. H23,1py HQs,lpZ ES,AS 0 0 0 ’
Hop, 15 Hop,1p, Hop,1p, Hop,1p. 0 Ly as 0 0
H2py,ls Hpr,lpx H2py,1py H2py,1pz 0 0 Ep,As 0
\Hap.1s Hop1p, Hoporp, Hopoap. 0 0 0 Ep,A3)

(2.1.1)
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where index 1 represents Ga, index 2 represents As. The terms Fg, F,
are the atomic orbital steady state energy.

Hinos = (V10 (r) | H| Y25 (r—R)) is the first-nearest neighbor in-
teraction term between the « orbital of the atom 1 and the 3 or-
bital of the atom 2. From the relation (11, (r) | H | ¢25(r —R)) =
(o5(r —R) | H | Y14 (r))", it can be shown that the Hamiltonian is

Hermitian. The first-nearest neighbor interaction term equals to

Hinop = (Y10 (r) | H | h25(r —R))
(2.1.2)

— [ et U (1) s = R) T = DT
Ula2s 1s the parameter we will need. According to the atomic physics
it contains the ¢ bonding and the m bonding parts. Fig. 2.1 gives an

insight into the influence of bonding degree and bonding length on the

interaction energy. For example the E, , term of a III-V material

1
3

equals to (5Vppe + 2Vppr) €, where R is the vector between two
neighbor atoms.

In the final step, we need to plus all the first-nearest-neighbor
atoms to the same matrix element. Again in the III-V material ex-

ample, there are four first-nearest-neighbor atoms with vectors R =

{9(1,1,1),%(1,-1,-1),4%(-1,1,-1),%(—=1,—1,1)}. Then the Hiy 2,
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Figure 2.1: The interaction energy under different conditions. R isthe vector be-
tween two neighbor atoms, and 6, is the angle between the bonding vector and the

X axis.

term will be

R-a, o
H18,2px Z VSpO’ ‘R| kR

Details of other orbital interaction terms are given in [15].

2.2 Tight Binding Hamiltonian: Nanowire

As we have mentioned previously, the break of periodicity gives the

nanowire Bloch wavefunction a new description

Bulk:

r)=> be Ry, (r—R) (2.2.1)
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Nanowire:

Y (1) = Y Brye™ R, (v — Ry — Ruire) - A 4

Rwirealan
In the nanowire wavefunction, there are three places we need to alter:
1. The set of basis: In bulk zinc-blende structure, all the primi-
tive cells are considered the same. But in the nanowire, all the
primitive cells in the same cross section are different. Therefore

we need to sum over the primitive cell index /.

2. The unit vectors: The unit vectors of a primitive cell are

i =—=(1,1,0) , @ = @QU,@:%@LU, (2.2.3)

N |
N |

where a is the lattice constant. When it comes to the nanowire
transporting through, for instance, [100] direction, the two unit

vectors become
A1 =Na(0,1,0) , Ay = Na(0,0,1) . (2.2.4)

Here we assumed that the wire has a width W = N X a. The
remained third unit cell will be along the transport direction. The
shortest vector we can choose to complete the periodicity will be
of the length a, so the third unit vector is

Ay =a(1,0,0) . (2.2.5)
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3. The reciprocal lattice: The reciprocal primitive vectors of bulk

zinc-blende semiconductors are given by

by =2om— 22 M gy )
aj - az X as a
aq - ag X as a

by = 2m— b 22 _ (g 11) .

CL1°C?2><ELE), a

The concept of the wave vector comes from the periodic Bloch
states. So in the nanowire, the two confined direction will not
have the k-cpace. Instead, they form subbands projected at the
transport direction k-vector. Therefore, the nanowire Brillioun

zone is one-dimensional with the reciprocal unit vector equals to

L or 2
B===22(1,0,0). (2.2.7)
A, a

Qe‘\gé"f—:’ﬁ e e e e Periodicity in the transport direction
O
*

S N ™

=== Bulk: 2-atom primitive cell
= Nanowire: lattice constant a

z .
Unit vectors

Bulk
—<5 d; =5 (1,1,0),d, =5(1,0,1),d5 =5 (0,1,1)

-

o0 .
L e‘ Nanowire (W =N x a)
-70® %

e %@? X 4, = Na(0,1,0), 4, = Na(0,0,1), A5 = a(1,0,0)

Figure 2.2: The change of periodicity makes the size and the shape of the unit cell

different.
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2.3 Strains and Boundary Condition

In tight binding model, the interaction term is highly related to the
inter-nuclear distance. The related research could be traced back to
Harrison [37]. In this paper, interatomic matrix elements were given

by a simple universal fitting approach

(I'm) = L (2.3.1)
= Mirm 55 - 3.

This method was derived aiming to solve the simple sp® nearest-
neighbor model. The fitting process was: (1)Derive the Hamiltonian
for a specific structure. (fcc, bee, ...) (2)Solve the eigen equation for
some symmetric points. (3)Compare each model and figure out the
parameter ny,,. Each structure has its unique 7y, and can be applied
to all the materials with the same structure. This formulas indicated

the relation between the interatomic distance and the interaction en-

ergy.

Vap(d) = Vi 5(dp) <%>n : (2.3.2)

where dj is the equilibrium distance, o and S are the orbitals in-
volved. Although it was just an approximated method and is not
accurate enough nowadays, the relation is still widely used in the re-

lated researches. However, since the shape of the orbital wavefunction
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does not really associate to the ionic position, 7 may not exactly equal
to 2. Since then, researchers have developed different methods to fit
the n parameter to improve the Si and Ge band structure calculation
accuracy [38—40]. This can be a powerful tool for the tight binding
model to include strains.

In the nanowire tight binding model, the bond of the surface atoms
will connect to the vacancy if we do not add any extra boundary
conditions. These vacancy states will form energy states within the
bandgap. In reality, atoms residing on the nanowire surface will be
passivated by the oxide or Hydrogen [41,42]. The result is like filling
the surface states and generating a potential barrier preventing the
electrons from escaping to the vacancy. An appropriate boundary
condition needs to fit the passivated atoms energy, or at least mimic
the effects of those atoms. The approach was given by [43] and was
briefly explained by [44]. The concept for Hydrogen-state boundary is
that, we adjust the ground state orbital energy of Hydrogen (namely
E;) to be larger enough than the semiconductor orbital energy near
the bandgap (often E;), then use the relation given in Eqn. 2.3.2 to
calculate the interaction terms. It can help us get rid of the surface

states within the bandgap while not alter the band edge states.
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2.4 Effective Mass and Density of States

In the perfect crystal model, the E-k relation is given by an analytical
form E (k) = h?k?/2m*. From this assumption, it can be shown that
the effective mass is equal to the free-electron effective mass and the
density-of-states is equal to

1 2m*

DlD,anal (E> — ﬁ m

(2.4.1)

However, the actual E-k relation derived from the eigen equation
H (k)¢ (k) = Ev (k) has no analytical form. We should calculate
the effective mass and the density-of-state by definition, and apply
the finite difference method.

Effective mass:

&E (k)
* 2
m* =nh ( T >

5 AK?
| E(k+ Ak) —2E (k) + E (k — Ak) |

(2.4.2)
Density of state:
1dN 1dNdk 1 L dk
Do) = 108 = T dkdE ~ LondE
(2.4.3)

1 N
T | E(k+ Ak) — E (k— Ak) |

Take the state degeneracy and the spin into account, we can get the

full-band density-of-states.
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Chapter 3 Silicon

This chapter covers the band structure of bulk silicon and silicon
nanowires. The nanowire band structure reveals the quantum con-
finement effect and the band folding issue. In the end of this chapter,
we will investigate external potential to the bandgap and subbands

splitting.

3.1 Bulk Silicon

In the beginning, we will try to construct the best Hamiltonian basis
for studying the Si material. In the previous sections, we have derived
the bulk Hamiltonian and introduced the development of the tight
binding model. Pervious study using the empirical pseudopotential
method (EPM) has been performed to analyze the percentage decom-
position of different orbital wave functions [45]. It indicated that the
X valley and the L valley are highly depending on the d orbital. it has
also been mentioned in Jancu [4] that the d orbital and the s* orbital
are necessary to calculate the full band correctly. Fig. 3.1 shows the
results of different models. The sp3d®s* first-nearest-neighbor model
is widely used since it can fit the energy states and the effective mass
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near the band edges well. In the later sections, we will apply this

model in the following nanowire calculation.

10

sp’s”

J. Phys. Chem. Solids
Vol. 44, No. 5, 1983

sp’d’

J. Phys. Chem. Solids
Vol. 59, No. 3, 1998

spid’s®

Phys. Rev. B
Vol. 57, No. 11, 1998

-10

=15

L I X K I

Figure 3.1: Bulk silicon band structures with sp®s* [2], sp*d® [3] and sp3d®s* [4]

orbital basis respectively.

3.2 Silicon Slab and Surface States

Before getting to the nanowire calculation, we would like to demon-
strate some quantum slab results. Quantum slab is a kind of 2D
structure with only one direction confined, as Fig. 3.2 shows. In the
section 2.3 we have mentioned that surface atoms will form dangling
bond states if we do not apply any boundary condition. Fig. 3.3

shows the 5.5 nm thick quantum slab with and without hydrogen pas-
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3.3 Silicon Nanowire

In this section, we will present the silicon nanowire band structures
along the [100] direction. The structure profile was shown in Fig. 2.2.
Four layers of atoms are necessary to complete the one-dimensional
periodicity. Surface atoms are passivated by increasing the dangling-
bond energy and adding hydrogen-like atoms with only s orbital. Con-
sidering the first-nearest-neighbor sp3d®s* model with the cross section
atom number equals to N, the boundary atom number equals to Ny,
and take into account the boundary hydrogen atoms, the ultimate
matrix size will be (10 x N + Ng). Details have been discussed in the

methodology section.

W =1.49 nm W =258 nm

N7

Energy (eV)
g

[w]

)

-1
-0.5 0.5 -0.5

(a)  ku(27/a) (b)  ku(27/a)

Figure 3.4: Silicon nanowire [100] band structure with (a) W = 1.49 nm, (b) W =
2.58 nm and (¢) W = 5.30 nm.
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Figure 3.5: Silicon nanowire band gap and conduction band edge effective mass (I"

point) versus the wire width. a is the lattice constant.

Fig. 3.4 shows the band diagram of [100] direction silicon nanowire
with W =1.49 nm, W = 2.58 nm and W = 5.30 nm. The bandgap and
the electron effective mass near the I' valley under different wire width
are shown in Fig. 3.5. The effective mass was calculated by Eqn. 2.4.2.
According to the quantum confinement effect, the bandgap broadening
is roughly equal to

m2h2 T2 h2 1

AE, =
97 oW T amwE X

(3.3.1)

However, in real cases, the effective mass also increases with the di-

mension scaling, so the bandgap will magnify more seriously than the
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Silicon [100] E-k

=Primitive cell]
(2 atoms)

Energy (eV)

== Primitive cell
=== (Cube unit cell

(lattice constant a)

New X valley

Figure 3.6: [100] direction band structure calculated by the primitive unit cell (2

atoms) and the cube unit cell (8 atoms).

semi-classical prediction. We can see that for a thicker wire, m} is
close to the bulk value (0.19mg). The properties will be more like the
bulk.

It is known that the bulk silicon has an indirect bandgap. However,
Fig. 3.4 indicates that the silicon nanowire has a direct bandgap. This
is the result of band folding. We have explained in the section 2.2 that
the first Brillouin zone will shrink when the unit cell enlarges. As a
result, the states with a large wavevector will fold back to the first
Brillouin zone as shown in Fig. 3.4. To find the wavevectors of the

folded states, we need to compare the Brillouin zone (BZ) of the two
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First Brillouin Zone (2D projection)
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Primitive cell BZ
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@
v
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Figure 3.7: 2D projection of the first Brillouin zone (BZ). The blue line is the

primitive unit cell BZ, while the brown line is the cube unit cell BZ.

unit cells. The 2D projection of the Brillouin zone (BZ) in Fig. 3.7
gives us some clues. The blue line is the primitive unit cell BZ, while
the brown line is the cube unit cell BZ. To fill the primitive first
Brillouin zone, four unit cells are needed. So the I'" valley of the large
cell will contain the states at the positions of the three red dots. We
can apply this method to find the folded states at other symmetric
points. Also, schemes to unfold all the states systematically have
been performed. It can be shown that those folded states are the
superposition of the original states [46—48].

The concept of the band folding can now be applied to the nanowire
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Figure 3.8: The difference of the transverse effective (0.19mg) and the longitudinal
effective mass (0.98my) for silicon makes the density-of-state effective mass at the

six X valleys different.

band structure. For the transport direction, four layers of atoms are
necessary for the nanowire tight binding calculation, which makes the
unit cell two times longer than the primitive cell. As a result, the first
BZ will be half of the original BZ, and the X valley will fold back to the
I' point. For the other two confined directions, the periodicity breaks
and all the states will fold into the 1D k-space, forming the dense sub-
bands shown in Fig. 3.4. The subbands splitting can be approximated
as m2h? /2m*2W? in the simple infinite quantum wire model, while our
results with corrected effective mass are more accurate. Therefore, a
smaller wire will have a larger subband splitting.

Another feature we can observe in Fig. 3.4 is the conduction band

minimum splitting. For a bulk silicon, the conduction band minimum
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has six degenerate states with the effective mass equal to (0.19x 0.19 x
0.98)/3my. However, for the case of nanowires, the six equivalent A
conduction valleys splits into two groups. The four Ay valleys related
to the confined directions are projected to I' point in the 1D Brillouin
zone. The left two A, valleys along the transport direction have higher
energy due to smaller effective mass along confined direction (0.19

27r)

my), and occur at 0.17(F). So, the six degenerate states split into
two groups, as explained in Fig. 3.8. Notice that the four Ay valleys
do not fold back to 0.17(2%). They locate right on the I' valley. The

detailed explaination and the relation between the valley splitting and

the wire width were given in [49].

3.4 Band Structure under External Potential

In the real nanowire MOSFET device,the wire will be covered by a
layer of oxide. Outside the oxide is the metal contact with an applied
gate voltage. To mimic the gate voltage effect, we added an extra po-
tential on the wire cross section. According the the derivation of tight
binding method, the off-diagonal terms in the Hamiltonian are related
to the interaction energy from different orbitals. We can assume that

the external bias only affects on the diagonal term. This method was
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Figure 3.9: 5.30 nm wide Silicon nanowire band structure (a) without bias, (b) with
convex potential, and (c) with concave potential.
applied in early studies [50].

Fig. 3.9 shows the band structure of 5.30 nm width nanowire
with two kinds of nununiform curved potential. From both cases,
the electrons gather in low conduction band energy positions. The
effective bandgap reduces due to the quantum confined stark effect,
as we showed in Fig. 3.10.

Also we observed that the separation between A, valley and A,
valley enlarges in both cases. The distance between subbands at the
same valley also increases. And in the case of the concave potential,
the degenerate states split.

Finally in Fig. 3.12, we demonstrated how the external potential

changes the carrier distribution. We plotted the conduction band min-
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Potnetial in the wire cross section

/\

E

Figure 3.10: An extra potential distributed in the wire cross section will reduce the

effective bandgap. It is associated to the Quantum Confinement Stark Effect.

imum wavefunction square along the wire cross section direction. The
result shows that a convex potential gathers electrons, while a concave
potential drives electrons to the near surface. This meets our common
sense. In a nanowire MOSFET device, we apply a gate voltage to drive
the electrons to the oxide-semiconductor interface. The influence of a

concave potential is just the same as a gate voltage.
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Figure 3.11: 5.30 nm wide Silicon nanowire band structure with different magnitudes

of concave potentials.
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Figure 3.12: 5.30 nm wide Silicon nanowire conduction band electron wavefunction

square (a) without bias, (b) with convex potential, and (c¢) with concave potential.
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Chapter 4 MoS;

In the section 1.5, we have introduced the properties and applications
of MoSsy. In this section, we will calculate the band structures of
single-layer and multi-layer MoSsy then will apply the model to study

the effects of the quantum confinement and strains.

4.1 MoS, Tight Binding Model

Studies related to MoS, tight binding calculation are still in develop-
ment. The earliest one has just been published in 2013 [51], where
they used the generic algorithm to violently fit the density functional
theory. To fit the full-band correctly in a wide range of energies, they
chose non-orthogonal first-nearest Mo(sp*d®), S(sp®d®) orbitals as the
basis. Usually we choose orthogonal basis for fitting and treat these
base as orbital wavefunctions. But, in reality, these orbital wavefunc-
tions are overlapping and are not orthogonal. Applying the overlap
integral, the Schrodinger equation becomes a generalized eigenvalue
problem

Hyy = (1+ S)YE (4.1.1)
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where
Suy = /wﬂ(r)@by(r)dr — Oy - (4.1.2)

In this model, they also included the spin-orbit coupling since the
spin-orbit-induced spin splitting in two-dimensional transition-metal
dichalcogenide semiconductors is large [52]. This model gave an excel-
lent fitting result. However, the fitting process was time-demanding
and was lack of physical conceptions. Therefore, scientists tried to
simplify the model by using the smallest basis with only necessary
orbitals. A research also published in 2013 [53] analyzed the orbital
compositions of the generalized-gradient approximation (GGA) result
near the band edge. The author summarized that the wavefunctions
are dominated mostly by d orbitals of Mo atoms, especially d.:, d,,
and d,2_,» orbitals. The results considering only first-nearest nigh-
bor atoms could fit only the band edge. After taking third-nearest
neighbor atoms into accounts, they successfully fitted the band in full
k-space. The three-band model was simple, and the orbital character-
istics were rather clear. The disadvantages were obvious—three bands
were not enough to further analyze the properties. The band structure
was lack of too many energy states. To improve the model, a recent

research published in 2015 [54] included the p orbitals of S atoms and
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the d,., d,. orbitals of Mo atoms into the basis, totally 11 components.
The author chose the DFT-HSE06 band structure [55] as a reference
for their fitting. The fitted result was in consistent with the DF'T ones.

We summarized the three models in Fig. 4.1. Notice that the bandgap

Monolayer MOS2 Band Struture

4
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e
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s

K

(]

xﬂl(/[o(sp?’ds) - S(sdeS)
Three-band I
Mo(d’) - S(p*)

Energy (eV)

A

<N

M K r

= o

Figure 4.1: Monolayer MoS, band structure with different models from reference.

predicted by the three models are different. The difference is due to
the different first-principle reference they chose. It is known that the
traditional DFT functionals based on the local density approximation
(LDA) and on the generalized gradient approximation (GGA) under-
estimate the bandgap [56-58|. The reason is that the exciton binding
energy of MoS, is quite large, making the electronic bandgap differs
a lot from the optical bandgap (1.88 eV) measured by photolumines-
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cence. However, the exciton binding energy measured or calculated by
different researches [59-62] were different (0.6 eV — 0.9 eV/). Further
researches on this novel material is necessary to confirm its properties.

In the following sections, we will apply the non-orthogonal first-
nearest sp>d® model [51] on the study of strains and nanostructures.
When the structure of a material changes, the orbital composition
and the energy state position in the band structure will also change.
Therefore, a model containing a large enough basis is necessary. Al-
though this model is more complicated, containing non-orthogonal ba-
sis, and was fitted by a process lack of physical conceptions, it contains
enough orbital informations. So it is the best model for nanostructure

researches.

4.2 Strain Effects

As we mentioned previously, the transistor devices fabricated by MoS,
suffer from low mobility. In the industry, engineers have been adopting
strains on silicon to improve its mobility. Strained silicon can be easily
fulfilled by growing Si-Ge alloy. As for MoSs, the processes to apply
strains were difficult and still in development due to its 2D structure.

One popular method is to grow MoS; on a suitable substrate, than
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give the substrate an external compressive stress. The MoSs sheet on
top of the substrate will form a wrinkled structure with strains [5].
Nevertheless, a reproducible and stable process is still unavailable.

Also the physics behind strained MoSs still needs further researches.

Pre-strained elastomeric substrate

—

—

gt
S—

Newralaxis | f ‘h

Deposmon of 2D material

‘ The strain is relased

Wrinkled 2D material

Figure 4.2: To apply strains in MoS,, engineers grow MoS,; on the substrate then

give the substrate a compressive strain [5].

Due to Poisson contraction effect, the two S-atom planes will be-
come closer with an in-plane tension. Meanwhile, an in-plane ten-
sile strain applied in one direction (uniaxial strain) will compress the
atoms in the other direction. We found the in-plane and the out-of-

plane Poisson’s ratio from the literature [63]

€ e

o) =—*=—-"=0.21 (4.2.1)
Crx Cyy
/ /

T -} ) (4.2.2)
Crx Cyy
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In this section, we will include the strain effect into the tight binding
model according to the theory introduced in section 2.3 with the given

Poisson’s ratio.

(a) 0% Biaxial Strain g)) 1.5% Biaxial Strain
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Figure 4.3: Monolayer MoS, under (a) 0%, (b) 1.5%, (c) 6% and (d) 10% biaxial

strains on the X-Y lateral plane.

First, we added an uniform tentile strain in the in-plane direc-
tion, so called the ”biaxial” strain, which means we give a strain in
both x and y direction with the same magnitude. Fig. 4.3 shows the
band structure calculation results. Before applying the biaxial tensile
strains, MoSs has a direct bandgap at the K valley. The valence band
energy becomes larger with an increasing tensile strain. The I' valley
rises faster than the K valley, and finally exceeds the K valley with

the biaxial tensile strain larger than 1.5%. The material bandgap be-
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Figure 4.4: (a) The K-K direct bandgap and the K-I" indirect bandgap under differ-
ent biaxial strains. (b) The carrier effective mass at K valley under different biaxial

strains.

comes indirect. We applied the strains up to the maximum MoS, can
endure—12% [64]. In our calculation, when the biaxial tensile strain is
larger than 10%, the valence band maximum touches the conduction
minimum. The material becomes metallic.

With the electronic band structure, we can figure out the bandgap
and the effective mass. The relation between the bandgap and the bi-
axial strains is shown in Fig. 4.4 (a). The bandgap is roughly inversely
proportional to the biaxial strain. A direct-to-indirect bandgap tran-
sition happens at 1.5% biaxial strain. Fig. 4.4 (b) shows the carrier

effective mass at the K valley along K-to-I' direction. The electron
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Figure 4.5: Monolayer MoS, band structures (a) without strains, with (b) 4%, (c)
12% tensile strains at x directions, and (f) 4%, (g) 12% tensile strains at y directions.

(d) Structure profile.
effective mass and the hole effective mass both decrease as the biaxial
strain increases with a similar trend.

Next, a tensile strain is added in only one in-plane direction, which
is called "uniaxial” strain. The other in-plane direction will feel a
compressive strain. The vertical direction will be compressed as well.
The compressive ratio can be calculated by Poisson’s ratio (Eqn. 4.1.3,
Eqn. 4.1.4). Fig. 4.5 shows the results. Here y direction is equivalent
to the Mo-S bond direction, whereas x direction is 30 degree away
from the Mo-S bond. With an uniaxial strain larger than 4% for both
x and y direction, the direct bandgap exceeds the indirect bandgap.
Unlike the biaxial strain, a uniaxial strain of 12% does not close down

the bandgap.
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Figure 4.6: 2D E-k diagram at the valence band maximum with (a) 0%, (b) 1.5%
and (c) 6% uniaxial tensile strains. The direction is shown in the brown double

arrow.

Before calculating the effective mass, we plotted the 2D band struc-
ture of the valence band maximum state (Fig. 4.6). The deformations
on the shape of the band structure by the uniaxial tensile strain is
inhomogeneous. The direction with a tensile strain in the real space
will be compressive in the k-space. We can intuitively assume the ef-
fective mass along the tensile strain direction to be smaller when the
strain increases. Our calculations of the effective mass will focus on
the direction along the tensile strain and along I' to K valley.

The relation between the bandgap and the uniaxial strains is shown
in Fig. 4.7 (a). The bandgap is roughly inversely proportional to the
uniaxial strain. A direct-to-indirect bandgap transition happens at

4% uniaxial tensile strain. The effect is similar to the previous case
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Figure 4.7: (a) The K-K direct bandgap and the K-I" indirect bandgap under dif-
ferent uniaxial strains. (b) The carrier effective mass at K valley under different

uniaxial strains.

with biaxial strains, whereas the magnitude of strains causing direct-
to-indirect bandgap transition is larger. Fig. 4.7 (b) shows the carrier
effective mass at K valley along the strain direction. In this case, we
applied the uniaxial tensile strain along the x direction, and calculated
the effective mass along the x direction as well. The electron effective
mass and the hole effective mass both decrease with increasing uniaxial
tensile strains. The trend is similar to the biaxial strain.

From the bulk MoS, calculation, we have indicated that the direct-
to-indirect bandgap transition happens when the tensile strain reaches
a critical value. Therefore, the dominated hole effective mass is ac-
tually at I' valley under large strain conditions. Fig. 4.8 shows the

hole effective mass under tensile strains at the I" valley. Fig. 4.8 (a)

43 d0i:10.6342/NTU201700233



Hole Effective Mass under Tensile Strains (I")
5 T T T T T

» Along the strain 1 »Homogeneous
4- | direction a4
_
o | Indirect o | | Indirect
E 37 I bandgap 1 E 3 bandgap
~~ 1 . ~— | .
* 1 dominated by | % 1\ dominated by
- 2 u I valley. 1 g 21 ) M valley.
I\I\. ] !
17 ! “E-m_g g . -
| 1 I L N
0 +———t————— )~
0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

(a) Uniaxial Strain (b) Biaxial Strain

Figure 4.8: The hole effective mass at [' valley along I' to K valley direction with
different (a) uniaxial tensile strains (also along I' to K direction) and (b) biaxial
tensile strains. Note that for strain smaller than the red dash line, the effective

mass is decided by K valley so we don’t list the effective mass of T valley

is the I' valley hole effective mass along the x direction with applied
uniaxial tensile strains along the same direction. Fig. 4.8 (b) is the
[' valley hole effective mass with applied biaxial tensile strains. The
magnitudes for both cases are obviously much larger than those at
the K valley. It can be summarized from the calculation results that
although the badngap and the carrier effective mass both decrease
with increasing strains, the hole effective mass suddenly jump up af-
ter the critical strain (4% for uniaxial strain, 6% for biaxial strain) is
reached. When the strain is larger than this critical point, the I' val-

ley dominates and the mobility of hole could drop significantly. The
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continuous improvement with increasing tensile strains is only on the

electron transport.

4.3 MoS> Nanoribbon

As MoSy devices scale down, the quantum confinement effect may

affect their performance. Also the influence from edge atoms becomes

more obvious. In this chapter, we will study how the properties of

MoSs change when reaching nano scales.
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Figure 4.9: Structures of the zigzag nanoribbon and the armchair nanoribbon.

The nano structure of MoSs is called "nanoribbon” (NR). There are

two kinds of MoSs nanoribbon, transporting through different direc-

tion. The armchair nanoribbon (ANR) transports through the Mo-S
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bond, while the zigzag nanoribbon (ZNR) transports through the Mo-
Mo (or S-S) atom array. The angle between these two directions is
30 or 90 degrees. The orthogonal direction will be confined and ter-
minated by Mo or S atoms (Fig. 4.9). Researches have been done
to examine the terminated atoms [65-67|. It was reported that under
hydrodesulfurization conditions, S-terminated edges become more sta-

ble. Our calculation will focus on the more controllable S-terminated

NR.

Single-Layer Armchair Nanoribbon with Different Width
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Figure 4.10: The MoS; armchair nanoribbon density-of-state per area with the
widths equal to (a) 1.59 nm, (c¢) 7.93 nm, (e) 15.9 nm, (g) 31.7 nm, and the band
structures with the widths equal to (b) 1.59 nm, (d) 7.93 nm, (f) 15.9 nm, (h)31.7

nm. The inset shows the structure of the armchair nanoribbon.

ANR band structures with different widths are shown in Fig. 4.10.
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Figure 4.11: Wavefunction absolute value versus the atom position.

We also calculated the density-of-state by the method discussed in the
methodology. From Fig. 4.10, we can see that the subbands become
denser with an increasing width. It is reasonable because the subbands
splitting is approximated inversely proportional to the square of the
width according to the infinite quantum well model. However, the
density-of-state per volume remains in the same order, which means
that the current density won’t change a lot. One surprising feature is
that an intermediate state appears between the bandgap. The density-
of-state of this state is larger when the width is the smaller.

To examine the intermediate state property, we analyzed the wave-
function absolute value versus the atom position. We found that the

intermediate state wavefunction absolute value is largest near the edge
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Figure 4.13: The MoS; armchair nanoribbon density-of-state per area with the
uniaxial tensile strains equal to (a) 0%, (c) 4%, (e) 8%, (g) 12%. The band structures
with tensile strains equal to (b) 0%, (d) 4%, (f) 8%, (h) 12%. The nanoribbon width

is 31.7 nm. The strain is applied along the transport direction.

atoms. So, we can conclude that the intermediate band is mainly

formed by edge atoms.
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Figure 4.14: (a) Sructure profile. (b) Figure explaining the band folding issue. (c)

Valence band mzximum under 0%, (d) 4% and (e) 8% tensile strains.

Fig. 4.12 summarizes the properties under different width. When
the device scales down to 10 nm, the carrier effective mass and the
bandgap suddenly increase, which can be explained by the quantum
confinement effect. Since the hole effective mass at the K valley is
smaller then the one at the I' valley, the K valley will drop more
quickly than the I' valley. At the width smaller than 2 nm, the I'
valley dominates so the hole effective mass suddenly increases.

Afterward, we add a tensile strain along the ANR transport direc-
tion and see the effects. The E-k diagram and the density-of-state (di-
vided by area) of a 31.7 nm width nanoribbon are plotted in Fig. 4.13.
When the applied strain increases, the bandgap decreases. However,

the valence band density-of-state near the band edge becomes smaller.
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Figure 4.16: The density-of-state per area of zigzag nanoribbon with the width equal

to (a) 2.75 nm, (c) 6.86 nm, (e) 13.73 nm, and the band structures with nanoribbon

width equal to (b) 2.75 nm, (d) 6.86 nm, (f) 13.73 nm. (g) The zigzag structure.
Also from the density-of-state, we found that the edge state density-
of-state does not change with increasing strains. It is reasonable since
the edge atom concentration does not change at all. At 12% strains,
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the valence band maximum is really close to the edge state minimum
at X valley. It will significantly affect the properties.

We know that monolayer MoSs becomes indirect bandgap with a
large strain. But, for the nanoribbon structure, it always has a direct
bandgap at I" valley. This can be explained by the band folding issue.
States at K valley and M valley will all fold into I' valley to form
mixing bands. From Fig. 4.14 we can see that the original I' valley
states rise faster than the folded K valley states, and finally dominate
the valence band properties with its large hole effective mass.

In Fig. 4.15, we show the effective mass with the applied tensile
strains both orthogonal and perpendicular to the transport direction.
The red lines correspond to the tensile strain along the transport direc-
tion, while the black line correspond to the tensile strain perpendicular
to the transport direction. Both of these strains can reduce the carrier
effective mass. From the previous discussion, we know that when the
tensile strain is along the confined direction, the transport direction
will feel a compressive strain, and stretch the k-space, which may re-
sult in a larger effective mass. However, the rearrangement of atoms
under any kinds of strains actually alters the shape of the band struc-

ture. As a result, the tensile strain along the both directions reduce
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the carrier effective mass.

For the other transport direction, zigzag direction, the calculation
results will be totally different. Fig. 4.16 shows the results. The
intermediate states now spread over the bandgap across the Fermi
level. It makes the zigzag nanoribbon metal-like. Those intermediate
states are formed by the edge atoms as well. So for this direction,
carriers can be injected into the bulk region by the edge atoms. Same
as the armchair nanoribbon, the edge-state density-of-state is largest
when the ribbon width is shortest. So the carrier injection from the
edge atoms can be enhanced by narrowing the nanoribbon. We have

published the results above in [68].

4.4 Multi-Layer MoS,

It is known that MoS, connects to each layer by van der Waals force.
In tight binding method, we can simply add an interaction term and
some fitted parameters to describe the interlayer characteristics. Our
calculation for multi-layer MoSs band structures are shown in Fig.
4.17. MoSs changes from direct bandgap to indirect bandgap with
only two layers. The bandgap of six-layer MoS, already approaches

the bulk. Notice that the energy states for bulk MoS, should be
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distributed in the 3-D k-space, so we can see many subbands in six-

layer MoSs band structure, but not for bulk. Finally in Fig. 4.18,
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Figure 4.17: (a) Single-layer and double-layer MoSs band structures. (b) Six-layer

MoSs, and bulk MoS,; band structures.

we show the density-of-state and the E-k diagrams of monolayer and
five-layer nanoribbon with both ANR and ZNR. For ANR, the result
is similar to the strain effect, where the bandgap shrinks as well as the
valence band density-of-state. More edge states appear since there are
more edge atoms for a thicker ribbon, while the density-of-state does
not change a lot. For ZNR, more layers of atoms form more states
within the bandgap. The difference between the conduction band and
the valence band become more unclear. It may help to enhance its

metal-like properties.
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Figure 4.18: Density-of-state per area of (a) 1-layer, (c) 5-layer armchair nanoribbon,
and the band diagram of (b) 1-layer, (d) 5-layer armchair nanoribbon (width = 3.17
nm). Density-of-state per area of (e) 1-layer, (g) 5-layer zigzag nanoribbon, and the

band diagram of (f) 1-layer, (h) 5-layer zigzag nanoribbon (width = 2.75 nm).
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Chapter 5 Conclusion

We established a band structure calculation tool based on the tight
binding method. Given the bulk material parameters fitted by first-
principle results or experiments, the model could be extended to study
the quantum structure, strain effects, or surface properties. In this
thesis, we first applied the first-nearest neighbor sp3d®s* tight binding
model on silicon nanowires. It predicts that the bandgap increases due
to the quantum confinement effect. The trend is the same as the one
calculated by the semi-classical method which directly solves the 2D
Schrodinger equation across the nanowire, where the energy splitting is
inversely proportional to the wire width square. The difference is that
our tight binding model can give a more correct bandgap prediction by
calculating the correct effective mass with the E-k diagram. The gate
voltage effect was also investigated by adding an external potential.
The external potential changes the carrier distribution, reduces the
bandgap, and alters the band splitting. This silicon tight binding
model can be applied to the quantum transport model by combining
with Non Equilibrium Green’s Functions for the further researches.

Next, we applied the tight binding method to the novel 2D material
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MoSs. An appropriate basis was chosen to study the quantum struc-
tures and strain effects. We confirmed that the quantum confinement
effect of MoSy begins when the nanoribbon width is shorter than 10
nm. For the strain effects, we found that an applied strain can reduce
the carrier effective mass and the bandgap. But, the direct-to-indirect
bandgap transition makes the dominated hole effective mass changes
from the smaller one at the K valley to the larger one at the I' valley.
The final hole mobility will actually decrease. In the MoS; nanoribbon
study, we found that the edge states play an important role when the
ribbon width is smaller enough. A largest applied strains (12%) can
even closely merge the valence band maximum with the edge states.
These edge states may induce the light absorption or act as an interface
states for electronic transport. In the future, the quantum structure
tight binding model we developed will be useful for the study of a new

material.
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A.1 Appendices

A.1.1 Tight Binding Parameters

Silicon

Es -2.15168
Ep 4.22925
Es* 19.1165
Ed 13.7895
sso -1.95933
s*s*o  -4.24135
ss*c  -1.5223
spo 3.02562
s*po  3.15565
sdo -2.28485
s*do  -0.80993
ppo 4.10364
ppT -1.51801
dpo -1.35554
pdm 2.38479
ddo -1.68136
ddm 2.5888
ddd -1.814

A 0.01989

o7
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MOSQ

E, E, o Aso
Mo 5.5994 6.7128 2.6429 1.0675
S 7.6595 -2.1537 8.7689  0.2129

Ei1(Mo,Mo) E;(Mo,S) Ei(S,S) Ex(S,S)
sso 0.1768 -0.0917 0.3093  0.3207
spo 1.091 1.6515 -0.921  -0.1302
pso  -1.091 -0.6656 0.921 0.1302
ppo  -0.3842 1.4008 0.7132  0.7053
ppr 0.5203 204812 -0.192  -0.098
sdo -0.5635 -1.0654 -0.2016 0.1164
dsoc  -0.5635 0.2177 -0.2016 0.1164
pdo  -0.2316 -2.1898 -0.5204 -0.0334
dpo  0.2316 2.8732 0.5204 0.0334
pdm  0.0582 1.9408 -0.1203 -0.037
dpm  -0.0582 -0.7739 0.1203  0.037
dde  0.3602 -3.1425 0.8347 -0.23
ddw  0.0432 2.4975 0.7434  0.005
ddo  0.1008 -0.3703 -0.1919 -0.1104
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MOSQ

O1(Mo-Mo) O;(Mo-S) 0;(S-S) 0(S,S)
sso -0.0575 0.0294  -0.0532 -0.143
spo 0.0057 0.1765  0.024  0.0196
pso -0.0057 01042 -0.024  -0.0196
ppo 0.0296 0.1865  0.0478  -0.0486
ppr 0.0946 0.0303  -0.0104 0.0117
sdo -0.1082 01432 0.0946  0.0297
dso  -0.1082 0.048  0.0946  0.0297
pdo  0.0212 02002 0.0724  -0.0087
dpo  -0.0212 0.0942  -0.0724 0.0087
pdr  -0.0448 0.2435  0.0772 -0.0031
dpr  0.0448 0.0132  -0.0772 0.0031
ddo  -0.0216 0.0273  0.1849  0.006
ddr  -0.0285 0.194 -0.0429  -0.0378
dds  0.0432 0.1261  -0.0333 0.0007

99

d0i:10.6342/NTU201700233



Bibliography

[1] F. Schwierz, “Nanoelectronics: flat transistors get off the ground,”

Nature nanotechnology, vol. 6, no. 3, pp. 135-136, 2011.

[2] P. Vogl, H. P. Hjalmarson, and J. D. Dow, “A semi-empirical
tight-binding theory of the electronic structure of semiconduc-
tors,” Journal of Physics and Chemaistry of Solids, vol. 44, no. 5,

pp. 365-378, 1983.

[3] S. Y. Ren, X. Chen, and J. D. Dow, “Tight-binding sp*d® Hamil-
tonian for Si,” Journal of Physics and Chemistry of Solids, vol. 59,

no. 3, pp. 403-410, 1998.

[4] J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, “Empirical
spds* tight-binding calculation for cubic semiconductors: General

method and material parameters,” Physical Review B, vol. 57,

no. 11, p. 6493, 1998.

[5] R. Roldédn, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea,
“Strain engineering in semiconducting two-dimensional crystals,”
Journal of Physics: Condensed Matter, vol. 27, no. 31, p. 313201,

2015.

60 d0i:10.6342/NTU201700233



[6] W. Kohn and L. J. Sham, “Self-consistent equations including ex-

7]

9]

[10]

change and correlation effects,” Physical review, vol. 140, no. 4A,

p. A1133, 1965.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk,
T. Frauenheim, S. Suhai, and G. Seifert, “Self-consistent-charge
density-functional tight-binding method for simulations of com-

plex materials properties,” Physical Review B, vol. 58, no. 11, p.

7260, 1998.

S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent
electron liquid correlation energies for local spin density calcula-
tions: a critical analysis,” Canadian Journal of physics, vol. 58,

no. 8, pp. 1200-1211, 1980.

C. Lee, W. Yang, and R. G. Parr, “Develop-
ment of the colle-salvetti correlation-energy formula into
a functional of the electron density,” Phys. Rev. B,
vol. 37, pp. 785-789, Jan 1988. [Online]. Available:

http://link.aps.org/doi/10.1103 /PhysRevB.37.785

A. D. Becke, “Density-functional exchange-energy approx-

imation with correct asymptotic behavior,” Phys. Reuw.

61 d0i:10.6342/NTU201700233



A, vol. 38, pp. 3098-3100, Sep 1988. [Online|. Available:

http://link.aps.org/doi/10.1103 /PhysRevA.38.3098

[11] J. P. Perdew and W. Yue, “Accurate and simple density functional
for the electronic exchange energy: Generalized gradient approxi-
mation,” Phys. Rev. B, vol. 33, pp. 8800-8802, Jun 1986. [Online].

Available: http://link.aps.org/doi/10.1103/PhysRevB.33.8800

[12] J. P. Perdew and A. Zunger, “Self-interaction correction to
density-functional approximations for many-electron systems,”
Phys. Rev. B, vol. 23, pp. 5048-5079, May 1981. [Online].

Available: http://link.aps.org/doi/10.1103/PhysRevB.23.5048

[13] F. Bloch, “Uber die quantenmechanik der elektronen in kristall-

gittern,” Zeitschrift fir physik, vol. 52, no. 7-8, pp. 555—600, 1929.

[14] H. Hellmann, “A new approximation method in the problem of
many electrons,” The Journal of Chemical Physics, vol. 3, no. 1,

pp. 61-61, 1935.

[15] J. C. Slater and G. F. Koster, “Simplified LCAO method for the
periodic potential problem,” Physical Review, vol. 94, no. 6, p.

1498, 1954.

62 d0i:10.6342/NTU201700233



[16]

[17]

[18]

[19]

[20]

[21]

D. Chadi and M. L. Cohen, “Tight-binding calculations of the
valence bands of diamond and zincblende crystals,” physica status

solidi (b), vol. 68, no. 1, pp. 405-419, 1975.

O. F. Sankey and D. J. Niklewski, “Ab initio multicenter tight-
binding model for molecular-dynamics simulations and other ap-

plications in covalent systems,” Physical Review B, vol. 40, no. 6,

p. 3979, 1989.

L. Goodwin, A. Skinner, and D. Pettifor, “Generating transfer-
able tight-binding parameters: application to silicon,” EPL (FEu-

rophysics Letters), vol. 9, no. 7, p. 701, 1989.

B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang,
C. Tabery, C. Ho, Q. Xiang, T.-J. King et al., “FinFET scal-

ing to 10 nm gate length,” in FElectron Devices Meeting, 2002.

IEDM’02. International. IEEE, 2002, pp. 251-254.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber,
“High performance silicon nanowire field effect transistors,” Nano

letters, vol. 3, no. 2, pp. 149-152, 2003.

T. Bryllert, L.-E. Wernersson, L. Froberg, and L. Samuelson,

“Vertical high-mobility wrap-gated InAs nanowire transistor,”

63 d0i:10.6342/NTU201700233



22]

23]

[24]

[25]

[26]

IEEE FElectron Device Letters, vol. 27, no. 5, pp. 323-325, 2006.

J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber,
“Ge/Si nanowire heterostructures as high-performance field-effect

transistors,” Nature, vol. 441, no. 7092, pp. 489-493, 2006.

F. Capasso and R. A. Kiehl, “Resonant tunneling transistor with
quantum well base and high-energy injection: A new negative
differential resistance device,” Journal of Applied Physics, vol. 58,

no. 3, pp. 1366-1368, 1985.

B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and
A. Kis, “Single-layer MoSs transistors,” Nature nanotechnology,

vol. 6, no. 3, pp. 147-150, 2011.

N. F. Yuan, K. F. Mak, and K. T. Law, “Possible topological
superconducting phases of MoS,,” Physical review letters, vol.

113, no. 9, p. 097001, 2014.

M. Bollinger, J. Lauritsen, K. W. Jacobsen, J. K. Ngrskov,
S. Helveg, and F. Besenbacher, “One-dimensional metallic edge
states in MoSs,” Physical review letters, vol. 87, no. 19, p. 196803,

2001.

64 d0i:10.6342/NTU201700233



[27] A. R. Botello-Méndez, F. Lopez-Urias, M. Terrones, and H. Ter-
rones, “Metallic and ferromagnetic edges in molybdenum disulfide

nanoribbons,” Nanotechnology, vol. 20, no. 32, p. 325703, 2009.

(28] E. Erdogan, 1. Popov, A. Enyashin, and G. Seifert, “Transport

7

properties of MoSy nanoribbons: edge priority,” The European

Physical Journal B, vol. 85, no. 1, pp. 1-4, 2012.

[29] K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of val-
ley polarization in monolayer MoSy by optical helicity,” Nature

nanotechnology, vol. 7, no. 8, pp. 494-498, 2012.

[30] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled
spin and valley physics in monolayers of MoS; and other group-
vi dichalcogenides,” Physical Review Letters, vol. 108, no. 19, p.

196802, 2012.

[31] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim,
G. Galli, and F. Wang, “Emerging photoluminescence in mono-

layer MoSs,” Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010.

[32] R. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. Ferrari,
P. Avouris, and M. Steiner, “Electroluminescence in single layer

MoSs,” Nano letters, vol. 13, no. 4, pp. 1416-1421, 2013.

65 d0i:10.6342/NTU201700233



[33] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and
A. Kis, “Ultrasensitive photodetectors based on monolayer

MoSs,” Nature nanotechnology, vol. 8, no. 7, pp. 497-501, 2013.

[34] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang,
X. Chen, and H. Zhang, “Single-layer MoSy phototransistors,”

ACS nano, vol. 6, no. 1, pp. 74-80, 2011.

[35] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and
A. Kis, “Single-layer MoS, transistors,” Nature nanotechnology,

vol. 6, no. 3, pp. 147-150, 2011.

[36] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller,
“High performance multilayer MoSs transistors with scandium

contacts,” Nano letters, vol. 13, no. 1, pp. 100-105, 2012.

[37] S. Froyen and W. A. Harrison, “Elementary prediction of linear
combination of atomic orbitals matrix elements,” Physical Review

B, vol. 20, no. 6, p. 2420, 1979.

[38] L. Brey, C. Tejedor, and J. Verges, “Scaling of the Hamiltonian
and momentum in semiconductors,” Physical Review B, vol. 29,

no. 12, p. 6840, 1984.

66 d0i:10.6342/NTU201700233



[39] T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diago-
nal parameter shifts due to nearest-neighbor displacements in em-

pirical tight-binding theory,” Physical Review B, vol. 66, no. 12,

p. 125207, 2002.

[40] J.-M. Jancu and P. Voisin, “Tetragonal and trigonal deformations
in zinc-blende semiconductors: a tight-binding point of view,”

Physical Review B, vol. 76, no. 11, p. 115202, 2007.

[41] C.-Y. Yeh, S. Zhang, and A. Zunger, “Confinement, surface, and
chemisorption effects on the optical properties of Si quantum

wires,” Physical Review B, vol. 50, no. 19, p. 14405, 1994.

[42] D. Ma, C. Lee, F. Au, S. Tong, and S. Lee, “Small-diameter
silicon nanowire surfaces,” Science, vol. 299, no. 5614, pp. 1874—

1877, 2003.

[43] S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, “Boundary
conditions for the electronic structure of finite-extent embedded

semiconductor nanostructures,” Physical Review B, vol. 69, no. 4,

p. 045316, 2004.

[44] Y. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin, and

G. Klimeck, “Electronic properties of silicon nanowires,” IEFEE

67 d0i:10.6342/NTU201700233



transactions on electron devices, vol. 52, no. 6, pp. 1097-1103,

2005.

[45] S. L. Richardson, M. L. Cohen, S. G. Louie, and J. R. Che-
likowsky, “Electron charge densities at conduction-band edges of

semiconductors,” Physical Review B, vol. 33, no. 2, p. 1177, 1986.

[46] T. B. Boykin and G. Klimeck, “Practical application of zone-
folding concepts in tight-binding calculations,” Physical Review

B, vol. 71, no. 11, p. 115215, 2005.

[47] A. Ajoy, K. V. Murali, and S. Karmalkar, “Brillouin zone un-
folding of complex bands in a nearest neighbour tight binding

scheme,” Journal of Physics: Condensed Matter, vol. 24, no. 5,

p. 055504, 2012.

[48] C.-C. Lee, Y. Yamada-Takamura, and T. Ozaki, “Unfolding
method for first-principles LCAQO electronic structure calcula-
tions,” Journal of Physics: Condensed Matter, vol. 25, no. 34,

p. 345501, 2013.

[49] T. B. Boykin, G. Klimeck, M. Eriksson, M. Friesen, S. Copper-

smith, P. von Allmen, F. Oyafuso, and S. Lee, “Valley splitting in

68 d0i:10.6342/NTU201700233



[50]

[51]

[52]

[53]

[54]

strained silicon quantum wells,” Applied Physics Letters, vol. 84,

no. 1, pp. 115-117, 2004.

N. Neophytou, A. Paul, M. S. Lundstrom, and G. Klimeck,
“Bandstructure effects in silicon nanowire electron transport,”

IEEFE Transactions on electron devices, vol. 55, no. 6, pp. 1286—

1297, 2008.

F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, “A generic tight-
binding model for monolayer, bilayer and bulk MoSs,” AIP Ad-

vances, vol. 3, no. 5, p. 052111, 2013.

Z. Zhu, Y. Cheng, and U. Schwingenschlogl, “Giant spin-
orbit-induced spin splitting in two-dimensional transition-metal

dichalcogenide semiconductors,” Physical Review B, vol. 84,

no. 15, p. 153402, 2011.

G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, “Three-
band tight-binding model for monolayers of group-VIB transi-

tion metal dichalcogenides,” Physical Review B, vol. 88, no. 8, p.

085433, 2013.

E. Ridolfi, D. Le, T. Rahman, E. Mucciolo, and C. Lewenkopf, “A

tight-binding model for MoSy monolayers,” Journal of Physics:

69 d0i:10.6342/NTU201700233



Condensed Matter, vol. 27, no. 36, p. 365501, 2015.

[55] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals
based on a screened Coulomb potential,” The Journal of Chemical

Physics, vol. 118, no. 18, pp. 8207-8215, 2003.

[56] S. Lebegue and O. FEriksson, “Electronic structure of two-
dimensional crystals from ab initio theory,” Physical Review B,

vol. 79, no. 11, p. 115409, 2009.

[57] A. Ramirez-Torres, D. Le, and T. S. Rahman, “Effect of mono-
layer supports on the electronic structure of single-layer MoS,,”

in IOP Conference Series: Materials Science and Engineering,

vol. 76, no. 1. IOP Publishing, 2015, p. 012011.

[58] J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado,
D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen et al.,
“2-Dimensional transition metal dichalcogenides with tunable di-

rect band gaps: MoSy(;_)Ses, monolayers,” Advanced Materials,

vol. 26, no. 9, pp. 1399-1404, 2014.

[59] C.Zhang, A. Johnson, C.-L. Hsu, L.-J. Li, and C.-K. Shih, “Direct

imaging of band profile in single layer MoS, on graphite: quasi-

70 d0i:10.6342/NTU201700233



particle energy gap, metallic edge states, and edge band bending,”

Nano letters, vol. 14, no. 5, pp. 2443-2447, 2014.

[60] H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement
and environment on the electronic structure and exciton binding

energy of MoSs from first principles,” Physical Review B, vol. 86,

no. 24, p. 241201, 2012.

[61] A. Ramasubramaniam, “Large excitonic effects in monolayers of
molybdenum and tungsten dichalcogenides,” Physical Review B,

vol. 86, no. 11, p. 115409, 2012.

[62] M. M. Ugeda, A. J. Bradley, S.-F. Shi, H. Felipe, Y. Zhang, D. Y.
Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen et al., “Gi-
ant bandgap renormalization and excitonic effects in a monolayer

transition metal dichalcogenide semiconductor,” Nature materi-

als, vol. 13, no. 12, pp. 1091-1095, 2014.

[63] T. Li, “Ideal strength and phonon instability in single-layer

MoSs,” Physical Review B, vol. 85, no. 23, p. 235407, 2012.

[64] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of

ultrathin MoSs,” ACS nano, vol. 5, no. 12, pp. 9703-9709, 2011.

71 d0i:10.6342/NTU201700233



[65]

[66]

[67]

[68]

H. Schweiger, P. Raybaud, G. Kresse, and H. Toulhoat, “Shape
and edge sites modifications of MoSy catalytic nanoparticles in-
duced by working conditions: A theoretical study,” Journal of

Catalysis, vol. 207, no. 1, pp. 76-87, 2002.

J. V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsge, B. S. Clausen,
E. Leegsgaard, and F. Besenbacher, “Size-dependent structure of

7

MoSy nanocrystals,” Nature nanotechnology, vol. 2, no. 1, pp.

53-58, 2007.

K. Dolui, C. D. Pemmaraju, and S. Sanvito, “Electric field effects
on armchair MoS, nanoribbons,” Acs Nano, vol. 6, no. 6, pp.

4823-4834, 2012.

S.-F. Chen and Y .-R. Wu, “Electronic properties of MoSs nanorib-
bon with strain using tight-binding method,” physica status solidi

(b), 2017.

79 d0i:10.6342/NTU201700233





