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摘要

多年以來，半導體元件的推導大都基於泊松方程和電流平衡方

程式的迭代，通常將材料視為完美晶格，如此一來能帶圖和相對應

的能帶密度、載子有效質量和載子濃度都可以被寫成解析解。然而

當金氧半場效電晶體的尺度到達原子等級，基於多體物理且運算量

適當的模型將迫切需求，此模型必須將原子的週期位能效應考慮進

薛丁格方程式的哈密頓算符中，並選取適當基底求解方程，在所有

方法中，緊束縛近似法是最普遍的。在這篇論文中，我們將應用緊

束縛近似法來計算矽奈米線的能帶和有效質量，以此研究不同寬度

下，量子侷限效應對矽奈米線的影響，結果顯示量子侷限效應將增

大材料的能隙和載子有效質量，且因於矽在不同方向的電子傳輸有

效質量不同，量子侷限效應將改變傳導帶最低能態在倒置晶格空間

中的位子。我們進一步將此模型應用於二硫化鉬上，二硫化鉬是一

種具有很好的機械性質的二維材料，它可以承受很大的應力 (最高

到12%)，且它的奈米帶結構具有特別的表面特性，因此我們將緊束

縛近似法應用在二硫化鉬和它的奈米帶結構上，來研究它的應力效

應和表面性質，結果顯示外加拉伸應力會減小能隙和載子有效質

量，然而主導價帶在倒置晶格空間中位子的改變，反而大幅增加電

洞的有效質量。
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ABSTRACT

For several decades, the semiconductor device theory was basi-

cally based on semi-classical model, where Poisson, drift-diffusion, and

Schrödinger equation with effective mass or k.p method are solved to

obtain the solution. The materials were often treated as perfect crys-

tals, then the E-k relation and factors like density of state, effective

mass and carrier density can all be written as analytical terms. How-

ever, as the dimensions of metal-oxide field effect transistors reach a

few atomic scale, a model considering many-body physics with a rea-

sonable time consumption is necessary. The new method needs to

include the atomic potential into the Schrödinger Hamiltonian, then

choose a suitable basis to solve the eigenvalue problem. Among all

these approaches, the Tight Binding method (TBM) is the most pop-

ular. TBM directly uses the atomic orbital as the basis, and assumes

that the potential is bonded tightly at the central atom.

In this paper, we applied the tight binding method to silicon nanowires,

and calculated the bandgap, effective mass and density of states. We

studied the quantum confinement effect on the nanowires with differ-

ent width, and compared to the infinite quantum well and the perfect
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crystal models. The results show that the quantum confinement ef-

fect will enlarge the bandgap and the carrier effective mass, and also

rearrange the conduction band edge position in the k-space due to

the effective mass difference between the lateral and perpendicular

directions.

Then we further applied our model to the novel 2D material. Molyb-

denum disulfide (MoS2) is a 2D material with good mechanical and

chemical properties. It can endure a large strain (12%), and its

nanoribbon structure has interesting edge properties. So we applied

TBM to MoS2 and its nanoribbon to study the strain effects and edge

states properties. The results show that the tensile strain can make

the bandgap and the carrier effective mass smaller; however, the K-

to-Γ valley transition at the valence band edge gives it a larger hole

effective mass.
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Chapter 1 Introduction

1.1 Electronic Band Structure and Basic Semi-

conductor Physics

For decades, the semi-classical model based on Poisson Drift-Diffusion

has successfully predicted the behavior of semiconductor devices. To

simplify the problem, we need the assumptions like the near-free-

electron model and the effective mass approximation. Combined with

the concepts of density of states and Fermi-Dirac distribution, then

solve the Poisson Drift-Diffusion equation iteratively, the current-voltage

relation can be figured out.

According to the near-free-electron model, the electron wavefunc-

tion and the corresponding eigen energy are given by

ψ (r) =
1√
Ω
eik·r , E (k) =

~
2k2

2m∗ + EC , (1.1.1)

where Ω is the normalization factor, and EC is the reference energy

level. In the semiconductor physics it often means the conduction band

edge. The later is the so-called E-k relation. With this equation, the

density of state can be calculated by the number of electronic states

1
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per unit volume and per unit energy

NDOS =
2

V

dN

dE
=

2

V

dN

dk

dk

dE

=
2

V

(
L

π

)3

πk2
dk

dE
=
m∗

π~2

√
2m∗ (E − EC)

π~
(1.1.2)

Combined with Fermi-Dirac distribution, the carrier density can be

calculated by the integral over energy

n (E) =

∫ ∞

EC

NDOS
1

1 + exp
(
E−EF

kBT

)

= 2

(
2πm∗kBT

h2

)3/2

exp

(
EF − EC

kBT

)
,

(1.1.3)

where kB is the Boltzmann constant. To figure out the current-voltage

relation, one needs to know the potential distribution (EC) and the

fermi level (EF ) position by solving the Poisson’s equation and drift-

diffusion equation iteratively.

Poisson’s equation:

∇2φ = −q
ǫ

(
−n+ p+N+

D −N−
A

)
(1.1.4)

Electron current equation:

~Jn = −qnµn∇φ+ q∇ (nDn) , ∇ · ~Jn = 0 (1.1.5)

Hole current equation:

~Jp = −qpµp∇φ− q∇ (pDp) , ∇ · ~Jp = 0 (1.1.6)

2
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In the above model, the effective mass (m∗) in the carrier density

formula is given by the experimental measurement, and the E-k rela-

tion can be written as a simple equation. The model is successful for

large dimension devices (> 30 nm ). As the devices scale down, the

energy distribution in the material will change due to the boundary

condition. It will influence the effective mass and the bandgap. One

simple way to include the quantum effect is by solving the Schrödinger

equation based on the near-free-electron approximation. For example,

we can calculate the square nanowire subbands energy by solving the

infinite quantum well Schrödinger equation. The subband energy lev-

els are given by

Enx,ny
(kz) = EC +

n2xπ
2
~
2

2m∗L2
x

+
n2yπ

2
~
2

2m∗L2
y

+
~
2k2z
2m∗ (1.1.7)

However, in this method we still use the bulk effective mass. This

is not valid in nano scales. Physics considering more details in the

crystal potential is necessary.

3
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Figure 1.1: The left figure shows the calculated carrier density by classical Poisson

drift-diffusion solver and semi-classical Poisson-Schrödinger solver respectively. The

right figure points out the atomic scale potential we ignore when doing semi-classical

calculation.

1.2 Band Theory - First Principle

In a multielectron and multiatom system, the Hamiltonian has the

form

H = −
∑

i

~
2

2m
∇2

i −
1

4πǫ0

∑

i

Ze2

‖ri‖
+

1

4πǫ0

∑

i<j

e2

‖ri − rj‖
, (1.2.1)

which contains the interaction between different electrons and differ-

ent atomic orbitals. Although we hope to take into account the atomic

nature of a material, the Hamiltonian in the whole system is so dif-

ficult to solve. One popular first principle method to deal with the

multi-electron problem is the Kohn–Sham density functional theory

(DFT) [6], where the electron-electron interaction effects were taken

into account by assuming an effective potential term. The Schrödinger

4
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equation becomes

ĤKSψiσ(r) =

[
−1

2
∇2 + veff,σ(r)

]
ψiσ(r)

= εiσψiσ(r),

(1.2.2)

where veff,σ(r) is the effective KS potential and σ is the spin index.

In DFT, the electron density is given as [7]

ρ (r) =
∑

i

| φ (r) |2 , (1.2.3)

and the system energy will be

E [ρ] = Ts [ρ] + J [ρ] + Exc [ρ] +

∫
vext(r)ρ(r)dr, (1.2.4)

where Ts is the kinetic energy term, vext is the external potential, VH

is the Coulomb energy and Exc is the exchange-correlation energy.

The begin with, we guess an initial electron density, then calculate

the exchange-correlation energy by a chosen model, finally the ground

state energy can be solved iteratively. If the exact form for Exc [ρ] is

used, it should be cancelled with J [ρ] in the one-electron system. Even

if the exact exchange-correlation energy is a functional of the density,

this functional is not known explicitly. Approximations for Exc [ρ] like

LDA [8] or GGA [9–11] will generate self-interaction energy [12] and

result in an incorrect long-range behavior. So in this thesis we choose

the semi-classical tight binding method, which is lack of iterating cal-

5
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culation and can be fitted to the experimental data accurately by using

the proper parameters.

1.3 Tight Binding Method and Bloch States

In 1928, F. Bloch combined the wave nature of electrons and the pe-

riodic potential to construct the basic form of Schrödinger equation

in solids [13]. The theory argued that in a periodic potential U (r) =

U (r+R), the wavefunction will have the relationψ (r+R) = eik·Rψ (r),

where R is the periodic vector in the lattice. With Bloch theorem,

several band structure calculation tools could be developed with dif-

ferent choice of base. For example, the Pseudopotential method [14]

assumes an effective potential to replace the complex core potential.

The plane-wave method uses plane waves ψ (r) = 1√
Ω
ei(k−K)·r as the

base.

From the above section, we know that in DFT, one should guess

an initial electron density and solve the self-consistent problem. Now

suppose that we already know the ground state density ρ0, and choose

the atomic orbitals ψη : η = s, px, py, ... as a set of basis, assuming the

basis is orthogonal, we can easily solve the ground state Schrödinger

6
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equation
[
− ~

2

2m
∇2 + U eff

[
ρ0
]]
φi = H0φi = εiφi , (1.3.1)

where

φi =
∑

η

bηψη (1.3.2)

Afterwards, we put the remaining unknown terms in the Hamiltonian,

the Coulomb interaction and exchange-correlation terms, into the re-

pulsive energy, Erep, we can get the Tight Binding expression

ETB [ρ] =
∑

i

εi + Erep =
∑

i

εi +
1

2

∑

αβ

Uαβ , (1.3.3)

where Uαβ is the interaction energy of different orbital basis.

In bulk semiconductors, one can apply Bloch theorem. With the

lattice vector equals to R, the wavefunction then becomes

ψk (r) =
∑

R

eik·Rφ (r−R) =
∑

R,η

bηe
ik·Rψη (r−R) (1.3.4)

and the eigen equation will be

Hψk (r) = Eψk (r) , H = H0 + U (r) (1.3.5)

After some calculations and ignore the overlap term 〈ψα (r) | ψβ (r−R)〉
R 6=0,

we can get the Tight Binding eigen equation

bαE (k) = bαεα +
∑

β

bβ

∫
drψ∗

α (r)U (r)ψβ (r)

+
∑

β,R 6=0

bβ

∫
drψ∗

α (r)U (r)ψβ (r−R) eik·R
(1.3.6)

7
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Once we know the interaction terms, the equation can be written in a

matrix form.

bαE (k) = bαεα +
∑

β

bβU
self
α,β

+
∑

β,R
1st

bβU
1st

α,βe
ik·R

1st +
∑

β,R
2nd

bβU
2nd

α,βe
ik·R

2nd + ...

(1.3.7)

The details for calculating the interaction terms Uα,β were given by

Slater-Koster two-center integrals [15]. For each k vector, we can write

sown a matrix equation and sove the corresponding eigen states. In

reality, we often consider terms up to 2nd nearest interaction only.

Models aimimg for the III-V and IV group semiconductors have been

developed by several researchers. The sp3 first and second nearest

interaction model were developed by Chadi and Cohen [16]. This

model can only deal with the valence band correctly, and fail to fit the

X point states. Vogl, Hjalmarson, and Dow [2] added an s∗ orbital to

the sp3 basis to mimic the influence of the d orbital, and was successful

to reproduce the conduction band minimum. However, the transverse

masses at these points did not agree with experiments. Finally, the d

orbital was included by Jancu [4]. This sp3d5s∗ model was accurate

enough comparing to first principle methods and experiments, and

8
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was widely used in quantum transport simulation.

To produce those parameters, we can either calculate by the first

principle method, so called the ab-initio tight binding [17], or fit the

band edge values measured by experiments. Once we fit the parame-

ters of a new material, it is easy and fast to do the calculation again,

and the parameters are scalable and adjustable to apply on other

situations like, for example, different boundary conditions, different

amount of strains or atoms from the same group [18].

1.4 Tight Binding in Quantum Structures

Recent years, the development of Moore’s law has been slowed down,

for the process of scaling down planar MOSFETs met lots of difficul-

ties. As the integrated circuit industry comes to this turning point,

engineers must to investigate alternative structures and devices. Tran-

sistors with new structures like FinFET [19], nanowire FET [20], verti-

cal nanowire FET [21], heterostructure nanowire FET [22], tunneling

FET [23], or even 2D material FET [24] have been performed in the

research center worldwide. In 2015, 16-nm FinFETs first showed up

in our every day life with the form of smartphone CPU. Under the

scaling of device dimensions, the crystal symmetry, bond orientation,

9
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and quantum confinement will matter. Our bulk tight binding model

based on periodic boundary condition will need some alterations. We

will take the square nanowire structure in the following as an example.

In the bulk tight binding model, the wavefunction is the linear

combination of the atomic orbitals in the primitive cell atoms.

Primitive cell wavefunction:

ψk (r) =
∑

R,η

bηe
ik·Rψη (r−R) , (1.4.1)

where η = s, px, py, pz, .... For a square nanowire structure, the period-

icity in the two directions break, so we will have to include the orbitals

of all the atoms in the cross section into the base. The ”supercell”

wavefunction will become

Supercell wavefunction:

ψK (r) =
∑

Rwire,l,η

Bl,ηe
iK·Rwireψη (r−Rl −Rwire) , (1.4.2)

where l is the index describing the lth unit cells in the supercell. Thus

as we construct the nanowire Tight Binding Hamiltonian, we need to

take the atomic orbital energy and the interaction energy of all the

atoms in the cross section into account. In this thesis we will use this

model to calculate the silicon nanowire band structure.

10
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Figure 1.2: The figure shows the periodicity of a silicon nanowire. The y, z directions

are confined with the confined width = W. The x direction is the transport direction

with the periodic boundary condition.

1.5 Molybdenum Disulfide and its Nanoribbon

A we mentioned above, 2D materials are candidate materials for the

next-generation electronic devices. However, the physics inside is still

unclear. With the Tight Binding tool, we can get into details the

characteristics of new 2D materials.

Transition metal dichalcogenides (TMDCs) have attracted much

attentions. The monolayer is composed of a sheet of transition met-

als sandwiched between two sheets of chalcogen (S, Se or Te). Each

layer is attracted to the other layers by van der waals force. The spe-

cial 2D scheme gives them good chemical and mechanical stability.

11
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Among the TMDCs, Molybdenum disulphide (MoS2) was found to

have topological superconducting phases [25], and it reveals interest-

ing edge properties in the nanoribbon structure [26–28]. Also the spin

polarization give it potentials on spintronic devices for quantum com-

puters [29, 30]. In some recent researches, the photoluminescence [31]

and electroluminescence [32] was demonstrated with MoS2. Optical

devices like photodetectors [33] and phototransistors [34] based on

MoS2 were then developed. MoS2 has good interface properties and is

capable of fabricating ultra thin devices due to its layered-structure,

and unlike the zero-bandgap grapheme, MoS2 has an indirect bandgap

of 1.3 eV for the bulk and 1.9 eV for the single layer. These properties

make it a candidate for next-generation FET. The first single-layer

MoS2 transistor was demonstrated in 2010 which has an electron mo-

bility of 200 cm2V −1s−1 and the on/off ratio of 1×108 [35]. A research

in 2013 [36] summarized the influence of Schottky barrier on the con-

tact resistance and the performance under different thickness. For thin

layer the transport mobility was suppressed by the substrate; other-

wise for large layer thickness, the finite interlayer conductivity lowered

the total mobility. Using the metal with smallest Schottky barrier and

the high-k dielectric (HfO2), the author demonstrated the best device

12
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with an electron mobility of 700 cm2V −1s−1 and an on-state current

density of 240 µA/µm. MoS2 transistors may reveal potentials in

Figure 1.3: The crystal structure of a single-layer MoS2. The figure was a copyright

from [1].

next-generation devices. However, the dimensions of devices from the

literatures seemed to be too large compared to those in the silicon-

based integrated circuit industry. In addition, the performance still

need some improvement. Therefore in this thesis, we will focus on the

impacts of applying strains and under quantum confinement effect by

our established tool−the quantum structure tight binding model.

13
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Chapter 2 Methodology

In this chapter, we will introduce the tight binding matrix in details.

The contents will begin from the bulk, expending to the nanowire.

Then we will show how to deal with the boundary condition and in-

clude strains into the model. In the end is the numerical methods for

effective mass and density-of-states calculation.

2.1 Tight Binding Hamiltonian: Bulk

To introduce the tight binding matrix in details, we will take the bulk

III-V material GaAs for example. The primitive unit cell contains two

atoms. If we choose sp3 orbitals as the base, and consider only first

nearest neighbor interaction, the matrix will be of the form



Es,Ga 0 0 0 H1s,2s H1s,2px H1s,2py H1s,2pz

0 Ep,Ga 0 0 H1px,2s H1px,2px H1px,2py H1px,2pz

0 0 Ep,Ga 0 H1py,2s H1py,2px H1py,2py H1py,2pz

0 0 0 Ep,Ga H1pz,2s H1pz,2px H1pz,2py H1pz,2pz

H2s,1s H2s,1px H2s,1py H2s,1pz Es,As 0 0 0

H2px,1s H2px,1px H2px,1py H2px,1pz 0 Ep,As 0 0

H2py,1s H2py,1px H2py,1py H2py,1pz 0 0 Ep,As 0

H2pz,1s H2pz,1px H2pz,1py H2pz,1pz 0 0 0 Ep,As




,

(2.1.1)

14
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where index 1 represents Ga, index 2 represents As. The terms Es, Ep

are the atomic orbital steady state energy.

H1α,2β = 〈ψ1,α (r) | H | ψ2,β (r−R)〉 is the first-nearest neighbor in-

teraction term between the α orbital of the atom 1 and the β or-

bital of the atom 2. From the relation 〈ψ1,α (r) | H | ψ2,β (r−R)〉 =

〈ψ2,β (r−R) | H | ψ1,α (r)〉∗, it can be shown that the Hamiltonian is

Hermitian. The first-nearest neighbor interaction term equals to

H1α,2β = 〈ψ1,α (r) | H | ψ2,β (r−R)〉

=

∫
drψ∗

1,α (r)U (r)ψ2,β (r−R) eik·R = U1α,2βe
ik·R

(2.1.2)

U1α,2β is the parameter we will need. According to the atomic physics

it contains the σ bonding and the π bonding parts. Fig. 2.1 gives an

insight into the influence of bonding degree and bonding length on the

interaction energy. For example the Epx,px term of a III-V material

equals to
(
1
3Vppσ +

2
3Vppπ

)
eik·R, where R is the vector between two

neighbor atoms.

In the final step, we need to plus all the first-nearest-neighbor

atoms to the same matrix element. Again in the III-V material ex-

ample, there are four first-nearest-neighbor atoms with vectors R =

{
a
4 (1, 1, 1) ,

a
4 (1,−1,−1) , a4 (−1, 1,−1) , a4 (−1,−1, 1)

}
. Then theH1s,2px

15



doi:10.6342/NTU201700233

Figure 2.1: The interaction energy under different conditions. R isthe vector be-

tween two neighbor atoms, and θ
x
is the angle between the bonding vector and the

x axis.

term will be

H1s,2px =
∑

R

Vspσ
R · âx
|R| eik·R

=
Vspσ√

3

[
eik·

a
4
(1,1,1) + eik·

a
4
(1,−1,−1) − eik·

a
4
(−1,1,−1) − eik·

a
4
(−1,−1,1)

]

(2.1.3)

Details of other orbital interaction terms are given in [15].

2.2 Tight Binding Hamiltonian: Nanowire

As we have mentioned previously, the break of periodicity gives the

nanowire Bloch wavefunction a new description

Bulk:

ψk (r) =
∑

R,η

bηe
ik·Rψη (r−R) , (2.2.1)
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Nanowire:

ψK (r) =
∑

Rwire,l,η

Bl,ηe
iK·Rwireψη (r−Rl −Rwire) . (2.2.2)

In the nanowire wavefunction, there are three places we need to alter:

1. The set of basis: In bulk zinc-blende structure, all the primi-

tive cells are considered the same. But in the nanowire, all the

primitive cells in the same cross section are different. Therefore

we need to sum over the primitive cell index l.

2. The unit vectors: The unit vectors of a primitive cell are

~a1 =
a

2
(1, 1, 0) , ~a2 =

a

2
(1, 0, 1) , ~a3 =

a

2
(0, 1, 1) , (2.2.3)

where a is the lattice constant. When it comes to the nanowire

transporting through, for instance, [100] direction, the two unit

vectors become

~A1 = Na (0, 1, 0) , ~A2 = Na (0, 0, 1) . (2.2.4)

Here we assumed that the wire has a width W = N × a. The

remained third unit cell will be along the transport direction. The

shortest vector we can choose to complete the periodicity will be

of the length a, so the third unit vector is

~A3 = a (1, 0, 0) . (2.2.5)
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3. The reciprocal lattice: The reciprocal primitive vectors of bulk

zinc-blende semiconductors are given by

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3
=

2π

a
(1, 1,−1)

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3
=

2π

a
(1,−1, 1)

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3
=

2π

a
(−1, 1, 1) .

(2.2.6)

The concept of the wave vector comes from the periodic Bloch

states. So in the nanowire, the two confined direction will not

have the k-cpace. Instead, they form subbands projected at the

transport direction k-vector. Therefore, the nanowire Brillioun

zone is one-dimensional with the reciprocal unit vector equals to

~B =
2π

~A3

=
2π

a
(1, 0, 0) . (2.2.7)

Figure 2.2: The change of periodicity makes the size and the shape of the unit cell

different.
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2.3 Strains and Boundary Condition

In tight binding model, the interaction term is highly related to the

inter-nuclear distance. The related research could be traced back to

Harrison [37]. In this paper, interatomic matrix elements were given

by a simple universal fitting approach

(ll′m) = ηll′m
~
2

md2
. (2.3.1)

This method was derived aiming to solve the simple sp3 nearest-

neighbor model. The fitting process was: (1)Derive the Hamiltonian

for a specific structure. (fcc, bcc, ...) (2)Solve the eigen equation for

some symmetric points. (3)Compare each model and figure out the

parameter ηll′m. Each structure has its unique ηll′m and can be applied

to all the materials with the same structure. This formulas indicated

the relation between the interatomic distance and the interaction en-

ergy.

Vα,β(d) = Vα,β(d0)

(
d0
d

)η

, (2.3.2)

where d0 is the equilibrium distance, α and β are the orbitals in-

volved. Although it was just an approximated method and is not

accurate enough nowadays, the relation is still widely used in the re-

lated researches. However, since the shape of the orbital wavefunction
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does not really associate to the ionic position, η may not exactly equal

to 2. Since then, researchers have developed different methods to fit

the η parameter to improve the Si and Ge band structure calculation

accuracy [38–40]. This can be a powerful tool for the tight binding

model to include strains.

In the nanowire tight binding model, the bond of the surface atoms

will connect to the vacancy if we do not add any extra boundary

conditions. These vacancy states will form energy states within the

bandgap. In reality, atoms residing on the nanowire surface will be

passivated by the oxide or Hydrogen [41, 42]. The result is like filling

the surface states and generating a potential barrier preventing the

electrons from escaping to the vacancy. An appropriate boundary

condition needs to fit the passivated atoms energy, or at least mimic

the effects of those atoms. The approach was given by [43] and was

briefly explained by [44]. The concept for Hydrogen-state boundary is

that, we adjust the ground state orbital energy of Hydrogen (namely

Es) to be larger enough than the semiconductor orbital energy near

the bandgap (often Es), then use the relation given in Eqn. 2.3.2 to

calculate the interaction terms. It can help us get rid of the surface

states within the bandgap while not alter the band edge states.
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2.4 Effective Mass and Density of States

In the perfect crystal model, the E-k relation is given by an analytical

form E (k) = ~
2k2/2m∗. From this assumption, it can be shown that

the effective mass is equal to the free-electron effective mass and the

density-of-states is equal to

D1D,anal (E) =
1

~π

√
2m∗

(E − EC)
(2.4.1)

However, the actual E-k relation derived from the eigen equation

H (k)ψ (k) = Eψ (k) has no analytical form. We should calculate

the effective mass and the density-of-state by definition, and apply

the finite difference method.

Effective mass:

m∗ = ~
2

(
d2E (k)

dk2

)−1

= ~
2 ∆k2

| E (k +∆k)− 2E (k) + E (k −∆k) |
(2.4.2)

Density of state:

D1D (E) =
1

L

dN

dE
=

1

L

dN

dk

dk

dE
=

1

L

L

2π

dk

dE

=
1

2π

2∆k

| E (k +∆k)− E (k −∆k) |

(2.4.3)

Take the state degeneracy and the spin into account, we can get the

full-band density-of-states.

21



doi:10.6342/NTU201700233

Chapter 3 Silicon

This chapter covers the band structure of bulk silicon and silicon

nanowires. The nanowire band structure reveals the quantum con-

finement effect and the band folding issue. In the end of this chapter,

we will investigate external potential to the bandgap and subbands

splitting.

3.1 Bulk Silicon

In the beginning, we will try to construct the best Hamiltonian basis

for studying the Si material. In the previous sections, we have derived

the bulk Hamiltonian and introduced the development of the tight

binding model. Pervious study using the empirical pseudopotential

method (EPM) has been performed to analyze the percentage decom-

position of different orbital wave functions [45]. It indicated that the

X valley and the L valley are highly depending on the d orbital. it has

also been mentioned in Jancu [4] that the d orbital and the s∗ orbital

are necessary to calculate the full band correctly. Fig. 3.1 shows the

results of different models. The sp3d5s∗ first-nearest-neighbor model

is widely used since it can fit the energy states and the effective mass
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near the band edges well. In the later sections, we will apply this

model in the following nanowire calculation.

Figure 3.1: Bulk silicon band structures with sp3s∗ [2], sp3d5 [3] and sp3d5s∗ [4]

orbital basis respectively.

3.2 Silicon Slab and Surface States

Before getting to the nanowire calculation, we would like to demon-

strate some quantum slab results. Quantum slab is a kind of 2D

structure with only one direction confined, as Fig. 3.2 shows. In the

section 2.3 we have mentioned that surface atoms will form dangling

bond states if we do not apply any boundary condition. Fig. 3.3

shows the 5.5 nm thick quantum slab with and without hydrogen pas-
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sivation. The case without hydrogen passivation shows some obvious

surface states.

Figure 3.2: Quantum slab structure. The plane is large enough to be treated as

infinite.

Figure 3.3: 5.5 nm thick quantum slab without surface passivation and with hydro-

gen passivation.
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3.3 Silicon Nanowire

In this section, we will present the silicon nanowire band structures

along the [100] direction. The structure profile was shown in Fig. 2.2.

Four layers of atoms are necessary to complete the one-dimensional

periodicity. Surface atoms are passivated by increasing the dangling-

bond energy and adding hydrogen-like atoms with only s orbital. Con-

sidering the first-nearest-neighbor sp3d5s∗ model with the cross section

atom number equals to N, the boundary atom number equals to NH ,

and take into account the boundary hydrogen atoms, the ultimate

matrix size will be (10×N +NH). Details have been discussed in the

methodology section.

Figure 3.4: Silicon nanowire [100] band structure with (a) W = 1.49 nm, (b) W =

2.58 nm and (c) W = 5.30 nm.
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Figure 3.5: Silicon nanowire band gap and conduction band edge effective mass (Γ

point) versus the wire width. a is the lattice constant.

Fig. 3.4 shows the band diagram of [100] direction silicon nanowire

with W = 1.49 nm, W = 2.58 nm and W = 5.30 nm. The bandgap and

the electron effective mass near the Γ valley under different wire width

are shown in Fig. 3.5. The effective mass was calculated by Eqn. 2.4.2.

According to the quantum confinement effect, the bandgap broadening

is roughly equal to

∆Eg =
π2~2

2m∗2
e W

2
+

π2~2

2m∗2
h W

2
∝ 1

W 2
(3.3.1)

However, in real cases, the effective mass also increases with the di-

mension scaling, so the bandgap will magnify more seriously than the
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Figure 3.6: [100] direction band structure calculated by the primitive unit cell (2

atoms) and the cube unit cell (8 atoms).

semi-classical prediction. We can see that for a thicker wire, m∗
e is

close to the bulk value (0.19m0). The properties will be more like the

bulk.

It is known that the bulk silicon has an indirect bandgap. However,

Fig. 3.4 indicates that the silicon nanowire has a direct bandgap. This

is the result of band folding. We have explained in the section 2.2 that

the first Brillouin zone will shrink when the unit cell enlarges. As a

result, the states with a large wavevector will fold back to the first

Brillouin zone as shown in Fig. 3.4. To find the wavevectors of the

folded states, we need to compare the Brillouin zone (BZ) of the two
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Figure 3.7: 2D projection of the first Brillouin zone (BZ). The blue line is the

primitive unit cell BZ, while the brown line is the cube unit cell BZ.

unit cells. The 2D projection of the Brillouin zone (BZ) in Fig. 3.7

gives us some clues. The blue line is the primitive unit cell BZ, while

the brown line is the cube unit cell BZ. To fill the primitive first

Brillouin zone, four unit cells are needed. So the Γ valley of the large

cell will contain the states at the positions of the three red dots. We

can apply this method to find the folded states at other symmetric

points. Also, schemes to unfold all the states systematically have

been performed. It can be shown that those folded states are the

superposition of the original states [46–48].

The concept of the band folding can now be applied to the nanowire
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Figure 3.8: The difference of the transverse effective (0.19m0) and the longitudinal

effective mass (0.98m0) for silicon makes the density-of-state effective mass at the

six X valleys different.

band structure. For the transport direction, four layers of atoms are

necessary for the nanowire tight binding calculation, which makes the

unit cell two times longer than the primitive cell. As a result, the first

BZ will be half of the original BZ, and the X valley will fold back to the

Γ point. For the other two confined directions, the periodicity breaks

and all the states will fold into the 1D k-space, forming the dense sub-

bands shown in Fig. 3.4. The subbands splitting can be approximated

as π2~2/2m∗2W 2 in the simple infinite quantum wire model, while our

results with corrected effective mass are more accurate. Therefore, a

smaller wire will have a larger subband splitting.

Another feature we can observe in Fig. 3.4 is the conduction band

minimum splitting. For a bulk silicon, the conduction band minimum
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has six degenerate states with the effective mass equal to (0.19×0.19×

0.98)1/3m0. However, for the case of nanowires, the six equivalent ∆

conduction valleys splits into two groups. The four ∆4 valleys related

to the confined directions are projected to Γ point in the 1D Brillouin

zone. The left two ∆2 valleys along the transport direction have higher

energy due to smaller effective mass along confined direction (0.19

m0), and occur at 0.17(2πa ). So, the six degenerate states split into

two groups, as explained in Fig. 3.8. Notice that the four ∆4 valleys

do not fold back to 0.17(2π
a
). They locate right on the Γ valley. The

detailed explaination and the relation between the valley splitting and

the wire width were given in [49].

3.4 Band Structure under External Potential

In the real nanowire MOSFET device,the wire will be covered by a

layer of oxide. Outside the oxide is the metal contact with an applied

gate voltage. To mimic the gate voltage effect, we added an extra po-

tential on the wire cross section. According the the derivation of tight

binding method, the off-diagonal terms in the Hamiltonian are related

to the interaction energy from different orbitals. We can assume that

the external bias only affects on the diagonal term. This method was
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Figure 3.9: 5.30 nm wide Silicon nanowire band structure (a) without bias, (b) with

convex potential, and (c) with concave potential.

applied in early studies [50].

Fig. 3.9 shows the band structure of 5.30 nm width nanowire

with two kinds of nununiform curved potential. From both cases,

the electrons gather in low conduction band energy positions. The

effective bandgap reduces due to the quantum confined stark effect,

as we showed in Fig. 3.10.

Also we observed that the separation between ∆4 valley and ∆2

valley enlarges in both cases. The distance between subbands at the

same valley also increases. And in the case of the concave potential,

the degenerate states split.

Finally in Fig. 3.12, we demonstrated how the external potential

changes the carrier distribution. We plotted the conduction band min-
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Potnetial in the wire cross section

E
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V

Effective bandgap

Original
bandgap

Figure 3.10: An extra potential distributed in the wire cross section will reduce the

effective bandgap. It is associated to the Quantum Confinement Stark Effect.

imum wavefunction square along the wire cross section direction. The

result shows that a convex potential gathers electrons, while a concave

potential drives electrons to the near surface. This meets our common

sense. In a nanowire MOSFET device, we apply a gate voltage to drive

the electrons to the oxide-semiconductor interface. The influence of a

concave potential is just the same as a gate voltage.
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Figure 3.11: 5.30 nm wide Silicon nanowire band structure with different magnitudes

of concave potentials.
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Figure 3.12: 5.30 nm wide Silicon nanowire conduction band electron wavefunction

square (a) without bias, (b) with convex potential, and (c) with concave potential.
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Chapter 4 MoS2

In the section 1.5, we have introduced the properties and applications

of MoS2. In this section, we will calculate the band structures of

single-layer and multi-layer MoS2 then will apply the model to study

the effects of the quantum confinement and strains.

4.1 MoS2 Tight Binding Model

Studies related to MoS2 tight binding calculation are still in develop-

ment. The earliest one has just been published in 2013 [51], where

they used the generic algorithm to violently fit the density functional

theory. To fit the full-band correctly in a wide range of energies, they

chose non-orthogonal first-nearest Mo(sp3d5), S(sp3d5) orbitals as the

basis. Usually we choose orthogonal basis for fitting and treat these

base as orbital wavefunctions. But, in reality, these orbital wavefunc-

tions are overlapping and are not orthogonal. Applying the overlap

integral, the Schrödinger equation becomes a generalized eigenvalue

problem

Hψk = (1+ S)ψkE , (4.1.1)
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where

Sµ,ν =

∫
ψµ(r)ψν(r)dr − δµ,ν . (4.1.2)

In this model, they also included the spin-orbit coupling since the

spin-orbit-induced spin splitting in two-dimensional transition-metal

dichalcogenide semiconductors is large [52]. This model gave an excel-

lent fitting result. However, the fitting process was time-demanding

and was lack of physical conceptions. Therefore, scientists tried to

simplify the model by using the smallest basis with only necessary

orbitals. A research also published in 2013 [53] analyzed the orbital

compositions of the generalized-gradient approximation (GGA) result

near the band edge. The author summarized that the wavefunctions

are dominated mostly by d orbitals of Mo atoms, especially dz2, dxy

and dx2−y2 orbitals. The results considering only first-nearest nigh-

bor atoms could fit only the band edge. After taking third-nearest

neighbor atoms into accounts, they successfully fitted the band in full

k-space. The three-band model was simple, and the orbital character-

istics were rather clear. The disadvantages were obvious−three bands

were not enough to further analyze the properties. The band structure

was lack of too many energy states. To improve the model, a recent

research published in 2015 [54] included the p orbitals of S atoms and
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the dyz, dxz orbitals of Mo atoms into the basis, totally 11 components.

The author chose the DFT-HSE06 band structure [55] as a reference

for their fitting. The fitted result was in consistent with the DFT ones.

We summarized the three models in Fig. 4.1. Notice that the bandgap

Figure 4.1: Monolayer MoS2 band structure with different models from reference.

predicted by the three models are different. The difference is due to

the different first-principle reference they chose. It is known that the

traditional DFT functionals based on the local density approximation

(LDA) and on the generalized gradient approximation (GGA) under-

estimate the bandgap [56–58]. The reason is that the exciton binding

energy of MoS2 is quite large, making the electronic bandgap differs

a lot from the optical bandgap (1.88 eV) measured by photolumines-
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cence. However, the exciton binding energy measured or calculated by

different researches [59–62] were different (0.6 eV − 0.9 eV ). Further

researches on this novel material is necessary to confirm its properties.

In the following sections, we will apply the non-orthogonal first-

nearest sp3d5 model [51] on the study of strains and nanostructures.

When the structure of a material changes, the orbital composition

and the energy state position in the band structure will also change.

Therefore, a model containing a large enough basis is necessary. Al-

though this model is more complicated, containing non-orthogonal ba-

sis, and was fitted by a process lack of physical conceptions, it contains

enough orbital informations. So it is the best model for nanostructure

researches.

4.2 Strain Effects

As we mentioned previously, the transistor devices fabricated by MoS2

suffer from low mobility. In the industry, engineers have been adopting

strains on silicon to improve its mobility. Strained silicon can be easily

fulfilled by growing Si-Ge alloy. As for MoS2, the processes to apply

strains were difficult and still in development due to its 2D structure.

One popular method is to grow MoS2 on a suitable substrate, than
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give the substrate an external compressive stress. The MoS2 sheet on

top of the substrate will form a wrinkled structure with strains [5].

Nevertheless, a reproducible and stable process is still unavailable.

Also the physics behind strained MoS2 still needs further researches.

Figure 4.2: To apply strains in MoS2, engineers grow MoS2 on the substrate then

give the substrate a compressive strain [5].

Due to Poisson contraction effect, the two S-atom planes will be-

come closer with an in-plane tension. Meanwhile, an in-plane ten-

sile strain applied in one direction (uniaxial strain) will compress the

atoms in the other direction. We found the in-plane and the out-of-

plane Poisson’s ratio from the literature [63]

σ‖ = −
ǫ′yy
ǫxx

= −ǫ
′
xx

ǫyy
= 0.21 (4.2.1)

σ⊥ = − ǫ
′
zz

ǫxx
= −ǫ

′
zz

ǫyy
= 0.27 . (4.2.2)
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In this section, we will include the strain effect into the tight binding

model according to the theory introduced in section 2.3 with the given

Poisson’s ratio.

Figure 4.3: Monolayer MoS2 under (a) 0%, (b) 1.5%, (c) 6% and (d) 10% biaxial

strains on the X-Y lateral plane.

First, we added an uniform tentile strain in the in-plane direc-

tion, so called the ”biaxial” strain, which means we give a strain in

both x and y direction with the same magnitude. Fig. 4.3 shows the

band structure calculation results. Before applying the biaxial tensile

strains, MoS2 has a direct bandgap at the K valley. The valence band

energy becomes larger with an increasing tensile strain. The Γ valley

rises faster than the K valley, and finally exceeds the K valley with

the biaxial tensile strain larger than 1.5%. The material bandgap be-
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Figure 4.4: (a) The K-K direct bandgap and the K-Γ indirect bandgap under differ-

ent biaxial strains. (b) The carrier effective mass at K valley under different biaxial

strains.

comes indirect. We applied the strains up to the maximum MoS2 can

endure−12% [64]. In our calculation, when the biaxial tensile strain is

larger than 10%, the valence band maximum touches the conduction

minimum. The material becomes metallic.

With the electronic band structure, we can figure out the bandgap

and the effective mass. The relation between the bandgap and the bi-

axial strains is shown in Fig. 4.4 (a). The bandgap is roughly inversely

proportional to the biaxial strain. A direct-to-indirect bandgap tran-

sition happens at 1.5% biaxial strain. Fig. 4.4 (b) shows the carrier

effective mass at the K valley along K-to-Γ direction. The electron
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Figure 4.5: Monolayer MoS2 band structures (a) without strains, with (b) 4%, (c)

12% tensile strains at x directions, and (f) 4%, (g) 12% tensile strains at y directions.

(d) Structure profile.

effective mass and the hole effective mass both decrease as the biaxial

strain increases with a similar trend.

Next, a tensile strain is added in only one in-plane direction, which

is called ”uniaxial” strain. The other in-plane direction will feel a

compressive strain. The vertical direction will be compressed as well.

The compressive ratio can be calculated by Poisson’s ratio (Eqn. 4.1.3,

Eqn. 4.1.4). Fig. 4.5 shows the results. Here y direction is equivalent

to the Mo-S bond direction, whereas x direction is 30 degree away

from the Mo-S bond. With an uniaxial strain larger than 4% for both

x and y direction, the direct bandgap exceeds the indirect bandgap.

Unlike the biaxial strain, a uniaxial strain of 12% does not close down

the bandgap.
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Figure 4.6: 2D E-k diagram at the valence band maximum with (a) 0%, (b) 1.5%

and (c) 6% uniaxial tensile strains. The direction is shown in the brown double

arrow.

Before calculating the effective mass, we plotted the 2D band struc-

ture of the valence band maximum state (Fig. 4.6). The deformations

on the shape of the band structure by the uniaxial tensile strain is

inhomogeneous. The direction with a tensile strain in the real space

will be compressive in the k-space. We can intuitively assume the ef-

fective mass along the tensile strain direction to be smaller when the

strain increases. Our calculations of the effective mass will focus on

the direction along the tensile strain and along Γ to K valley.

The relation between the bandgap and the uniaxial strains is shown

in Fig. 4.7 (a). The bandgap is roughly inversely proportional to the

uniaxial strain. A direct-to-indirect bandgap transition happens at

4% uniaxial tensile strain. The effect is similar to the previous case
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Figure 4.7: (a) The K-K direct bandgap and the K-Γ indirect bandgap under dif-

ferent uniaxial strains. (b) The carrier effective mass at K valley under different

uniaxial strains.

with biaxial strains, whereas the magnitude of strains causing direct-

to-indirect bandgap transition is larger. Fig. 4.7 (b) shows the carrier

effective mass at K valley along the strain direction. In this case, we

applied the uniaxial tensile strain along the x direction, and calculated

the effective mass along the x direction as well. The electron effective

mass and the hole effective mass both decrease with increasing uniaxial

tensile strains. The trend is similar to the biaxial strain.

From the bulk MoS2 calculation, we have indicated that the direct-

to-indirect bandgap transition happens when the tensile strain reaches

a critical value. Therefore, the dominated hole effective mass is ac-

tually at Γ valley under large strain conditions. Fig. 4.8 shows the

hole effective mass under tensile strains at the Γ valley. Fig. 4.8 (a)

43



doi:10.6342/NTU201700233

Figure 4.8: The hole effective mass at Γ valley along Γ to K valley direction with

different (a) uniaxial tensile strains (also along Γ to K direction) and (b) biaxial

tensile strains. Note that for strain smaller than the red dash line, the effective

mass is decided by K valley so we don’t list the effective mass of Γ valley

is the Γ valley hole effective mass along the x direction with applied

uniaxial tensile strains along the same direction. Fig. 4.8 (b) is the

Γ valley hole effective mass with applied biaxial tensile strains. The

magnitudes for both cases are obviously much larger than those at

the K valley. It can be summarized from the calculation results that

although the badngap and the carrier effective mass both decrease

with increasing strains, the hole effective mass suddenly jump up af-

ter the critical strain (4% for uniaxial strain, 6% for biaxial strain) is

reached. When the strain is larger than this critical point, the Γ val-

ley dominates and the mobility of hole could drop significantly. The
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continuous improvement with increasing tensile strains is only on the

electron transport.

4.3 MoS2 Nanoribbon

As MoS2 devices scale down, the quantum confinement effect may

affect their performance. Also the influence from edge atoms becomes

more obvious. In this chapter, we will study how the properties of

MoS2 change when reaching nano scales.

Figure 4.9: Structures of the zigzag nanoribbon and the armchair nanoribbon.

The nano structure of MoS2 is called ”nanoribbon” (NR). There are

two kinds of MoS2 nanoribbon, transporting through different direc-

tion. The armchair nanoribbon (ANR) transports through the Mo-S
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bond, while the zigzag nanoribbon (ZNR) transports through the Mo-

Mo (or S-S) atom array. The angle between these two directions is

30 or 90 degrees. The orthogonal direction will be confined and ter-

minated by Mo or S atoms (Fig. 4.9). Researches have been done

to examine the terminated atoms [65–67]. It was reported that under

hydrodesulfurization conditions, S-terminated edges become more sta-

ble. Our calculation will focus on the more controllable S-terminated

NR.

Figure 4.10: The MoS2 armchair nanoribbon density-of-state per area with the

widths equal to (a) 1.59 nm, (c) 7.93 nm, (e) 15.9 nm, (g) 31.7 nm, and the band

structures with the widths equal to (b) 1.59 nm, (d) 7.93 nm, (f) 15.9 nm, (h)31.7

nm. The inset shows the structure of the armchair nanoribbon.

ANR band structures with different widths are shown in Fig. 4.10.
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Figure 4.11: Wavefunction absolute value versus the atom position.

We also calculated the density-of-state by the method discussed in the

methodology. From Fig. 4.10, we can see that the subbands become

denser with an increasing width. It is reasonable because the subbands

splitting is approximated inversely proportional to the square of the

width according to the infinite quantum well model. However, the

density-of-state per volume remains in the same order, which means

that the current density won’t change a lot. One surprising feature is

that an intermediate state appears between the bandgap. The density-

of-state of this state is larger when the width is the smaller.

To examine the intermediate state property, we analyzed the wave-

function absolute value versus the atom position. We found that the

intermediate state wavefunction absolute value is largest near the edge
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Figure 4.12: (a) The carrier effective mass and (b) the bandgap with different nanori-

bon width.

Figure 4.13: The MoS2 armchair nanoribbon density-of-state per area with the

uniaxial tensile strains equal to (a) 0%, (c) 4%, (e) 8%, (g) 12%. The band structures

with tensile strains equal to (b) 0%, (d) 4%, (f) 8%, (h) 12%. The nanoribbon width

is 31.7 nm. The strain is applied along the transport direction.

atoms. So, we can conclude that the intermediate band is mainly

formed by edge atoms.
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Figure 4.14: (a) Sructure profile. (b) Figure explaining the band folding issue. (c)

Valence band mzximum under 0%, (d) 4% and (e) 8% tensile strains.

Fig. 4.12 summarizes the properties under different width. When

the device scales down to 10 nm, the carrier effective mass and the

bandgap suddenly increase, which can be explained by the quantum

confinement effect. Since the hole effective mass at the K valley is

smaller then the one at the Γ valley, the K valley will drop more

quickly than the Γ valley. At the width smaller than 2 nm, the Γ

valley dominates so the hole effective mass suddenly increases.

Afterward, we add a tensile strain along the ANR transport direc-

tion and see the effects. The E-k diagram and the density-of-state (di-

vided by area) of a 31.7 nm width nanoribbon are plotted in Fig. 4.13.

When the applied strain increases, the bandgap decreases. However,

the valence band density-of-state near the band edge becomes smaller.
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Figure 4.15: (a) Structure profile. (b) Electron effective mass and (c) hole effective

mass with two different directions of strains.

Figure 4.16: The density-of-state per area of zigzag nanoribbon with the width equal

to (a) 2.75 nm, (c) 6.86 nm, (e) 13.73 nm, and the band structures with nanoribbon

width equal to (b) 2.75 nm, (d) 6.86 nm, (f) 13.73 nm. (g) The zigzag structure.

Also from the density-of-state, we found that the edge state density-

of-state does not change with increasing strains. It is reasonable since

the edge atom concentration does not change at all. At 12% strains,
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the valence band maximum is really close to the edge state minimum

at X valley. It will significantly affect the properties.

We know that monolayer MoS2 becomes indirect bandgap with a

large strain. But, for the nanoribbon structure, it always has a direct

bandgap at Γ valley. This can be explained by the band folding issue.

States at K valley and M valley will all fold into Γ valley to form

mixing bands. From Fig. 4.14 we can see that the original Γ valley

states rise faster than the folded K valley states, and finally dominate

the valence band properties with its large hole effective mass.

In Fig. 4.15, we show the effective mass with the applied tensile

strains both orthogonal and perpendicular to the transport direction.

The red lines correspond to the tensile strain along the transport direc-

tion, while the black line correspond to the tensile strain perpendicular

to the transport direction. Both of these strains can reduce the carrier

effective mass. From the previous discussion, we know that when the

tensile strain is along the confined direction, the transport direction

will feel a compressive strain, and stretch the k-space, which may re-

sult in a larger effective mass. However, the rearrangement of atoms

under any kinds of strains actually alters the shape of the band struc-

ture. As a result, the tensile strain along the both directions reduce
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the carrier effective mass.

For the other transport direction, zigzag direction, the calculation

results will be totally different. Fig. 4.16 shows the results. The

intermediate states now spread over the bandgap across the Fermi

level. It makes the zigzag nanoribbon metal-like. Those intermediate

states are formed by the edge atoms as well. So for this direction,

carriers can be injected into the bulk region by the edge atoms. Same

as the armchair nanoribbon, the edge-state density-of-state is largest

when the ribbon width is shortest. So the carrier injection from the

edge atoms can be enhanced by narrowing the nanoribbon. We have

published the results above in [68].

4.4 Multi-Layer MoS2

It is known that MoS2 connects to each layer by van der Waals force.

In tight binding method, we can simply add an interaction term and

some fitted parameters to describe the interlayer characteristics. Our

calculation for multi-layer MoS2 band structures are shown in Fig.

4.17. MoS2 changes from direct bandgap to indirect bandgap with

only two layers. The bandgap of six-layer MoS2 already approaches

the bulk. Notice that the energy states for bulk MoS2 should be
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distributed in the 3-D k-space, so we can see many subbands in six-

layer MoS2 band structure, but not for bulk. Finally in Fig. 4.18,

Figure 4.17: (a) Single-layer and double-layer MoS2 band structures. (b) Six-layer

MoS2 and bulk MoS2 band structures.

we show the density-of-state and the E-k diagrams of monolayer and

five-layer nanoribbon with both ANR and ZNR. For ANR, the result

is similar to the strain effect, where the bandgap shrinks as well as the

valence band density-of-state. More edge states appear since there are

more edge atoms for a thicker ribbon, while the density-of-state does

not change a lot. For ZNR, more layers of atoms form more states

within the bandgap. The difference between the conduction band and

the valence band become more unclear. It may help to enhance its

metal-like properties.
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Figure 4.18: Density-of-state per area of (a) 1-layer, (c) 5-layer armchair nanoribbon,

and the band diagram of (b) 1-layer, (d) 5-layer armchair nanoribbon (width = 3.17

nm). Density-of-state per area of (e) 1-layer, (g) 5-layer zigzag nanoribbon, and the

band diagram of (f) 1-layer, (h) 5-layer zigzag nanoribbon (width = 2.75 nm).
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Chapter 5 Conclusion

We established a band structure calculation tool based on the tight

binding method. Given the bulk material parameters fitted by first-

principle results or experiments, the model could be extended to study

the quantum structure, strain effects, or surface properties. In this

thesis, we first applied the first-nearest neighbor sp3d5s∗ tight binding

model on silicon nanowires. It predicts that the bandgap increases due

to the quantum confinement effect. The trend is the same as the one

calculated by the semi-classical method which directly solves the 2D

Schrödinger equation across the nanowire, where the energy splitting is

inversely proportional to the wire width square. The difference is that

our tight binding model can give a more correct bandgap prediction by

calculating the correct effective mass with the E-k diagram. The gate

voltage effect was also investigated by adding an external potential.

The external potential changes the carrier distribution, reduces the

bandgap, and alters the band splitting. This silicon tight binding

model can be applied to the quantum transport model by combining

with Non Equilibrium Green’s Functions for the further researches.

Next, we applied the tight binding method to the novel 2D material
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MoS2. An appropriate basis was chosen to study the quantum struc-

tures and strain effects. We confirmed that the quantum confinement

effect of MoS2 begins when the nanoribbon width is shorter than 10

nm. For the strain effects, we found that an applied strain can reduce

the carrier effective mass and the bandgap. But, the direct-to-indirect

bandgap transition makes the dominated hole effective mass changes

from the smaller one at the K valley to the larger one at the Γ valley.

The final hole mobility will actually decrease. In the MoS2 nanoribbon

study, we found that the edge states play an important role when the

ribbon width is smaller enough. A largest applied strains (12%) can

even closely merge the valence band maximum with the edge states.

These edge states may induce the light absorption or act as an interface

states for electronic transport. In the future, the quantum structure

tight binding model we developed will be useful for the study of a new

material.
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A.1 Appendices

A.1.1 Tight Binding Parameters

Silicon

Es -2.15168

Ep 4.22925

Es* 19.1165

Ed 13.7895

ssσ -1.95933

s*s*σ -4.24135

ss*σ -1.5223

spσ 3.02562

s*pσ 3.15565

sdσ -2.28485

s*dσ -0.80993

ppσ 4.10364

ppπ -1.51801

dpσ -1.35554

pdπ 2.38479

ddσ -1.68136

ddπ 2.5888

ddδ -1.814

λ 0.01989
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MoS2

Es Ep Ed λso

Mo 5.5994 6.7128 2.6429 1.0675

S 7.6595 -2.1537 8.7689 0.2129

E1(Mo,Mo) E1(Mo,S) E1(S,S) E2(S,S)

ssσ 0.1768 -0.0917 0.3093 0.3207

spσ 1.091 1.6515 -0.921 -0.1302

psσ -1.091 -0.6656 0.921 0.1302

ppσ -0.3842 1.4008 0.7132 0.7053

ppπ 0.5203 -0.4812 -0.192 -0.098

sdσ -0.5635 -1.0654 -0.2016 0.1164

dsσ -0.5635 0.2177 -0.2016 0.1164

pdσ -0.2316 -2.1898 -0.5204 -0.0334

dpσ 0.2316 2.8732 0.5204 0.0334

pdπ 0.0582 1.9408 -0.1203 -0.037

dpπ -0.0582 -0.7739 0.1203 0.037

ddσ 0.3602 -3.1425 0.8347 -0.23

ddπ 0.0432 2.4975 0.7434 0.005

ddδ 0.1008 -0.3703 -0.1919 -0.1104
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MoS2

O1(Mo-Mo) O1(Mo-S) O1(S-S) O2(S,S)

ssσ -0.0575 0.0294 -0.0532 -0.143

spσ 0.0057 -0.1765 0.024 0.0196

psσ -0.0057 -0.1042 -0.024 -0.0196

ppσ 0.0296 -0.1865 0.0478 -0.0486

ppπ 0.0946 0.0303 -0.0104 0.0117

sdσ -0.1082 -0.1432 0.0946 0.0297

dsσ -0.1082 -0.048 0.0946 0.0297

pdσ 0.0212 -0.2002 0.0724 -0.0087

dpσ -0.0212 -0.0942 -0.0724 0.0087

pdπ -0.0448 0.2435 0.0772 -0.0031

dpπ 0.0448 -0.0132 -0.0772 0.0031

ddσ -0.0216 0.0273 0.1849 0.006

ddπ -0.0285 0.194 -0.0429 -0.0378

ddδ 0.0432 0.1261 -0.0333 0.0007
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