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摘要 
本論文總結了關於應用 resurgence trans-series 在量子力學和量子場論的知

識。我們重現了在微擾級數中的虛數項和瞬子-反瞬子對中的虛數項的相消。結

合所有來自非微擾半古典組態的貢獻之後，就可以構築出所謂的trans-series。

因為紅外重整子的存在，在量子場論中構建trans-series被認為是無法實現的。

近年來，因為在某些被緊湊化後的量子場論中發現了新的半古典組態，這些半古

典組態被認為可能對應到紅外重整子。利用 trans-series 來給部分量子場論在

弱藕荷常數極限下一個非微擾的定義可能是可以實現的。 

  關鍵詞: Resurgence,Borel resummation,瞬子, 重整子,微擾展

開,trans-series 
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Abstract

This thesis reviews the idea of resurgence trans-series and its application

on Quantum mechanics and Quantum field theory. The cancellation between

the imaginary part of the perturbative series and the imaginary part of the

instanton-anti-instanton configuration in quantum mechanics is shown. Com-

bining all the contribution from the non-perturbative semiclassical configura-

tion, the so-called trans-series can be constructed. Because of the existence

of IR renormalon, the construction of trans-series in QFT was not thought to

be valid. In recent years, new semiclassical configurations have been found

in some compactified theories. Those configurations are thought to be cor-

responded to the elusive IR renormalons. A non-perturbative definition of a

class of field theories by the trans-series in the weak coupled limit may be

possible.

Keywords: Resurgence, Borel resummation, instanton, renormalon, per-

turbative expansion, trans-series
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1 Introduction

Searching a good way to define quantum field theory

Qunatum field theory (QFT) is a framework which combines quantum physics

and special relativity. The Standard Model (SM) is the success of QFT which meets

the experimental results very well. When we use QFT to reproduce experimental

results, we often use perturbation theory. We choose our model to be simple so we

can solve exactly, then we turn on the interaction and make the theory become what

we want. After renormalization, we can do perturbative expansion with respect to

the interaction parameter, say g. So we can compute the contribution of g order by

order and we can write down our observable as a power series in g,

O(g) = a0 + a1g + a2g
2 + · · · =

∞∑
n=0

ang
n. (1.1)

Here a0 is the value of the observable when g = 0 which we can solve exactly. All

higher order terms an can be computed based on the original simple model. This

perturbation expansion works very well when we compute observables in some QFT

and QM, like the anomalous magnetic moment of electron in QED or the ground

state energy for some quantum mechanics problem. But in all these cases, we only

take the first few terms to do the prediction and we neglect the contribution from

the higher order terms. We think the contribution from the higher order terms are

so small that we can throw them away.

If all the higher order terms are smaller and smaller then this is harmless, but

in fact this is not the case. Higher order terms in perturbation series can become

very large thus the precondition of perturbation theroies breaks down and the series

do not make any sense, see [1, 2, 3, 4, 5]. The perturbative series is generically

factorially divergent and have zero radius of convergence. So what we are actually

computing and why the first few terms make good prediction to the experiments

become a serious question.

A useful mathmatical approach to this kind of divergent series problem is known

as Borel-Écalle resummation. This method can redifine the series and extract the

information from the divergent series. Borel resummation can reveal the underlying

non-perturbative strructure in the perturbative series. This can tell us there are

1 doi:10.6342/NTU201700825



at least how many non-perturbative structures are hidden in our theory. Borel

resummation can be applied to all the divergent series, but not all series are Borel

summable. For a Borel summable series, Borel resummation gives us a well-defined

answer, but for a non-Borel summable series, because there are poles lying on the

integration contour, we need to do analytic continuation to change the contour. The

value of the series depends on the integration contour we have chosen and the value

is ambiguous.

When one do Borel resummation to the perturbation series in QFT or QM, one

sometimes find it is non-Borel summable, thus the series is ambiguous. It was be-

lieved that the resolution to this phenomenon is the non-perturbative effects in QFT.

It was found that the series is non-Borel summable is simply because we only con-

sider the expansion around single saddle point. If we also consider the other saddle

points and doing expansion around them, the combination of the expansions around

different saddle points is Borel summable. The large order terms of the perturba-

tion series become meaningless because of the non-perturbative effects. When we do

perturbation expansions, we can not only consider the trivial vacuum background,

but also need to consider the nontrivial saddle points background (instantons, bions,

etc) because they are invisible in perturbation series (O(e−1/g)).

For example, considering all the saddle points, the semiclassical weak-coupling

expansion of the partition function is given by1,

Z(g2) =

∫
D[φ] e

− 1
g2
S[φ] ≈

∑
saddles n

Pn(g2) e
− 1
g2
Sn , (1.2)

Pn(g2) is the perturbative series (quantum fluctuations) around the saddle point

n and Sn is the action of the confiugration of the saddle point n . n contains

trivial vacuum (n = 0) background and non-perturbative sectors. The perturbative

series Pn(g2) (for all saddles) are also in general divergent, and can be either Borel

summable or non-summable, but it was believed if we can really find all the saddle

points in our series and do this expansion correctly, this expansion is well defined

(unique, ambiguity-free, finite) at weak coupling limit. Though the perturbative

series for single saddle points may be ill-defined (non-Borel summable), but the

combination of all the series is well-defined (Borel summable).

1We use the Wick rotated expression
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The idea of resurgence is that the perturbation series around different saddle

points are related in a nontrivial way. This idea comes from quantum mechanics

problem with degenerate vacua [6, 7, 8]. The ambigiuty of the perturbative series of

ground state energy can be cured by the ambiguity of the instanton-anti-instanton

configuration, which is known as the Bogomolny Zinn-Justim mechanism. This

gives us a hint that there may be a general relation between different saddles. The

expansion around trivial saddle points ecncodes the information around non-trivial

saddle points. There are some evidence of this relation in quantum mechanics [9,

10, 11, 12] but it is still unclear whether the same relation holds in QFT [13, 14].

The final goal is that we can only consider the perturbative expansions around

finite saddles then we can understand the perturbative expansions around all other

saddles. We can capture all the information of the function by only considering

finite saddle points. If we know this resurgence relation precisely, we can make

a unique ambiguity-free definition for physical observables by only considering the

perturbative expansion around only some saddle points. This may serve as a non-

perturbative definition of QFT and also reveal the underlying structure of QFT.

This thesis reviews the idea of resurgence trans-series in quantum mechanics

and shows that it may be applied to quantum field theory. Section 2 reviews some

basic knowledge about divergent series, Borel resummation, renormalons and trans-

series. Section 3 introduces the appplication of resurgence trans-series to quantum

mechanics. Section 4 discusses new semiclassical configuration in compactified field

theory and shows they may be related to the renormalon singularities. Section 5 is

some comments about the construction of trans-series in quantum mechanics and

the problems we would encounter in quantum field theory.

2 Perturbation series

When one wants to compute the expectation value of some operator A in quantum

field theory. One writes down the path integral and do perturbative expansion

around vacuum.

〈A〉 =

∫
D[φ] A e

i
~
∫
d4xL[φ] ∼=

∞∑
n=0

ang
n, (2.1)

3 doi:10.6342/NTU201700825



where an is the coefficient of the perturbation series and g is the coupling constant.

When we deal with this kind of expansions, we need to ask some questions.

1.Can the series be summed? Can we give this series a numerical value to define

them?

2.What is the relation between the expansions and the function A?

3.Can we give the function A an exact definition by the series?

Since we are doing perturbative expansions, we know there must be non-perturbative

parts (O(e
−1
g )) in the function A that we can not see in this expansion. So the answer

to the second question is the perturbative expansion is only part of A. With regard

to the third question, we can say if we can find all the missing non-perturbative

part of A, they we can combine all the parts to define A. For the first question, the

answer is Yes. We will discuss this later.

This kind of series in QM and QFT are in general divergent. Actually, for

n→∞, the perturbative series in QM takes the following asymptotic form [15].

an ∼ CnA
−nnb−1n!, (2.2)

n is the number of loops, the factor A depends on the action of the semiclassical

solution. For different theories, the coefficients Cn, A, b have different value, but

there is a n! factor in almost all the cases.

Thus the series has zero radius of convergence. No matter how small g is, it

diverges eventually. There is a strong physical reason for this phenomenon. Dyson

argued that this kind of series can not converge. If this series is convergent for some

small |g| and gives us some value, then it can be analytically continued to negative g

and describes the physics for small g < 0. But for g < 0, the situation is completely

different. The theory become unstable and of course can not be described by the

value we have obtained. This is known as the Dyson argument. The series diverge

simply because it is not analytic at g = 0.

For an unstable potential, the vacuum is not stable and it will eventually decay

by tunneling effect. So if the physcis of small positive g and small negative g are

related by analytic continuation. There must be a deep connection between the

tunneling effect and the zero radius of convergence.

4 doi:10.6342/NTU201700825



2.1 Borel resummation

There is one useful way to redefine the asymptotic divergent series and extract the

information from the asymptotic divergent series, which is known as the Borel-Écalle

resummation. First, we introduce the Borel transform. The original series is,

P (g) =
∞∑
n=0

ang
n. (2.3)

Assume an ∼ B−nn! or other factorially diverge form. This series has zero radius of

convergence. We define the Borel transform by,

BP (g) ≡
∞∑
n=0

an
n!
gn. (2.4)

The n-th term is divided by n! and this series can be summed. Then this function

now has a finite radius of convergence, it can be summed when |g| < |B|. So we

can compute BP (g) at least for some value of g in principle. The function (2.4) is

defined from (2.3) by the inverse Laplace transformation. So we can recover the

original series by doing a Laplace transform,

P (g) =

∫ ∞
0

dt e−t BP (gt). (2.5)

This procedure is called Borel resummation. You can also think we just write,

n! =

∫ ∞
0

dt e−t tn. (2.6)

Then we still get the same result. The integral (2.5) is not always doable. It

depends on the complex structure of the Borel transform BP (g). If BP (g) has no

singularity on the real positive axis, then (2.5) is well-defined and we call P (g) is

Borel summable. This is the case when P (g) is sign-alternating, an ∼ (−1)n.

When P (g) is sign-nonalternating, there are singularities lying on the positive

real axis of BP (g), see Fig. 1, the integral (2.5) is ambiguous. When there are

singularities, we can slightly change the integration contour C± to just go above or

below the singularities.

P±(g) =

∫
C±

dt e−tBP (gt). (2.7)

This is known as the lateral Borel sum. Different choice of contour would give us

different result, P± = ReP (g)± i ImP (g). We say this kind of series are non-Borel

summable and ambiguous.

5 doi:10.6342/NTU201700825
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6

t tt
poles on postive real axis

g

Figure 1: The poles of the function BP (g)

Let’s see some simple examples for Borel resummation. Consider two factorially

divergent series,

P1(g) =
∞∑
n=0

(−1)nn!gn,

P2(g) =
∞∑
n=0

n!gn.

(2.8)

After Borel transformed, they become,

BP1(g) =
∞∑
n=0

(−1)ngn =
1

1 + g
,

BP2(g) =
∞∑
n=0

gn =
1

1− g
.

(2.9)

Then,

P1(g) =

∫ ∞
0

dt e−t
1

1 + gt
,

P2(g) =

∫ ∞
0

dt e−t
1

1− gt
.

(2.10)

The integration of P1(g) can be done, but the integration of P2(g) is ambiguous.

In order to avoid the singularities, we need to change the integration contour and

the choice of contour leads to the ambiguity. We can choose to go above the pole

or to go below the pole and different paths give us different imaginary part. The

ambiguous imaginary part of P2(g) is ± iπ
g
e−1/g, see Appendix A.

The order of the ambiguity ImP (g) is e−1/g, it cannot be resolved by the original

perturbation series only. We say the perturbation series itself is ambiguous and

ill-defined. We need more information which we have neglected when we did the

perturbation theory.

6 doi:10.6342/NTU201700825



If one wants to compute the ground state energy in QM, one can do perturbative

expansions around the vacuum. For unstable potential, the perturbation series

around the vacuum is non-Borel summable, the imaginary part means the system

is unstable and it can decay. For stable potential without degenerate vacua, the

perturbation series is Borel summable and well-defined. But for stable potential

with degenerate vacua, the perturbation series is still non-Borel summable. Why

is there an ambiguity in stable potential? The resolution is non-perturbative effect

(instanton effect). In potential with degenerate vacua, there are instanton effects

which we did not consider.

In quantum mechanics, non-perturbative effect can cure the ambiguity. In double

well potential quantum mechanics problem, the contribution from instanton-anti-

instanton is also ambiguous, but if we combine this with the expansion around

vanumm, we can get a ambiguity free result. The ambiguity of the instanton-anti-

instanton would cancel the ambiguity of the perturbative series of vacumm[7, 16].

If we also consider the instanton effect, we can get a well-defined and ambiguous

result. This is known as the BZJ (Bogomonly, Zinn Justin) prescription. We will

see how does this work in section 3.

2.2 Source of divergence

The poles on the Borel plane and the divergence of the series are related. When we

apply Borel resummation on QM and QFT, their are two kinds of poles lying on the

Borel plane. The first kind of pole is the instanton pole, it appears in both QM and

QFT. The second kind of pole is known as the “Renormalon” , it appears in QFT

and is related to renormalization.

These two kinds of singularities have been thought to be very different. We

have known a lot on the instanton pole, they appear because of the factorial growth

of the number of Feynman diagrams. The number of n-loop Feynman diagrams

grows as n!. This makes the coefficient of the series an also grows as n!. For n-th

order contribution, even though each graph only gives us contribution of order 1,

all the diagrams give us of order n!gn. When n ∼= 1
g
� 1 the multiloop graphs

can be seen as soft fields which are semiclassical field configurations, in this case,

instantons. Instansons are related to the factorial growth of the Feynman diagrams.

7 doi:10.6342/NTU201700825
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6

t tt ttt t
Renormalons

g

d d
6

?

Instanton poles

Figure 2: Renormalons and the instanton poles. Renormalons are usually closer to

the origin.

This relation can also be seen by taking the ‘t Hooft’s limit,

Ng fixed, N →∞, (2.11)

N is the number of colors and g is the coupling constant. At weak coupling limit,

the instanton contribution is of order e−
8π
g . Under ‘t Hooft’s limit,

8π

g
∼ N →∞, (2.12)

the contribution of instanton is suppressed. On the other hand, it has been found

under this limit, the number of n-loop Feynman diagrams do not grow as n!, they

grow as Cn [17], where C is some numerical constant. It is a one-to-one correspon-

dence between the instanton and the factorial growth of the diagrams. Because

of the semiclassical origin of the instanton poles, we have already known how to

deal with them. The instanton pole can be resolved by considering the expansion

around the instanton background. We know the non-perturbative effect behind the

instanton poles is just the instantons.

However, there is another kind of pole on the Borel plane, the “Renormalon”.

This object appears in asymptotic free field theories, like QCD. Unlike instantons

pole is related to the factorial growth of various graphs at higher loop, renormalon

comes from a single graph with n loops which is factorially large, the so called

”bubble diagrams”. In field theory, there are two kinds of renormalons appear on the

Borel plane, UV renormalons and IR renormalons. They are located on the different

axis, if IR renormalons appear on the positive real axis, then UV renormalons appear

on the negative real axis. For a good introduction for renormalons, see [15, 18].

There is a good example to see what is renormalon divergence.

8 doi:10.6342/NTU201700825



2.2.1 Renormalon divergence

Consider the correlation functions of two vector currents of massless quarks in QCD.

The number of flavor is Nf and

Πµν(q) = i

∫
d4xe−iqx 〈0|T [jµ(x)jν(0)] |0〉 = (qµqν − q2gµν)Π(Q2), (2.13)

jµ = ψ̄γµψ, (2.14)

where ψ is the quark field and Q2 = −q2. The Adler function is defined by,

D(Q2) = −4π2Q2dΠ(Q2)

dQ2
. (2.15)

We are going to compute the contribution of the fermion bubble diagrams shown

in Fig. 3 to the Adler function. The set of diagrams we will choose is gauge-

invariant, we need to notice that it is not the only set of diagrams that resulting

in renormalon. Of course at this order there are many other diagrams contribute

to the Adler function, but we only focus on those diagrams which are enough to

present the renormalon divergence.

Figure 3: The fermion bubble diagrams we choose for the Adler function. The

number of fermion loops inserted to the single gluon line can be infinity.

Since the coupling constant runs, we must choose a particular value of the cou-

pling constant to do the expansion. The Adler function is labeled by the external

momentum Q2. It seems we should choose αs(Q
2) as our parameter. However, this

is a good choice only when the contribution of the loop diagrams comes mostly from

k ∼ Q. This is true as long as the order of the perturbation expansion n is small.

However, when n become large, the naive estimate k ∼ Q is not valid.

9 doi:10.6342/NTU201700825



We can take a closer look at these graphs. Collecting all fermion bubble insertions

in the gluon line [19], no bubble, 1 bubble, 2 bubbles and so on2,

D = CQ2

∫
dk2 k2αs(k

2)

(k2 +Q2)3
, (2.16)

where C is some overall constant and αs(k
2) is the coupling constant. The coupling

constant is defined by,

αs =
g2

4π
. (2.17)

The running coupling can be expressed by,

αs(k
2) =

αs(Q
2)

1− β0αs(Q2)
4π

ln(Q2/k2)
, (2.18)

where β0 = 11
3
Nc− 2

3
Nf is the first coefficient of the β-function. Focusing on the IR

domain and omitting the constant, (2.16) becomes,

D(Q2) ≈ 1

Q4
αs

∞∑
n=0

(
β0αs
4π

)n
∫
dk2 k2(ln

Q2

k2
)n, αs = αs(Q

2), (2.19)

which can be rewritten as,

D(Q2) ≈ αs
2

∞∑
n=0

(
β0αs
8π

)n
∫
dy yne−y, y = 2 ln

Q2

k2
. (2.20)

The y integration gives rise to n!. The characteristic value of y saturating this

integral is,

y ∼ n, k2 ∼ Q2 exp
(
−n

2

)
. (2.21)

One can see that if Q2 is fixed and n become large enough, a factorial divergence is

created from the integral in the IR region. Naively we do not think k2 � Q2 would

contribute to the Adler function, but this is not true. When we do the perturbative

expansion to high orders, the momentum at IR contributes to the expansion and

leads to the factorial divergence. This is the infrared renormalon.

Let’s next focus on the UV region. When k2 is large,

D(Q2) ≈ Q2αs

∞∑
n=0

(
β0αs
4π

)n(−1)n
∫
dk2 1

k4
(ln

k2

Q2
)n. (2.22)

2This expression is simplified, the exact result of fixed k2 is in [20]
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Again, αs = αs(Q) and β0 is 11
3
Nc − 2

3
Nf . This can be rewritten as,

D(Q2) ≈ αs

∞∑
n=0

(−1)n(
β0αs
4π

)n
∫
dy yne−y, y = ln

k2

Q2
. (2.23)

The characteristic value saturating the y integration is,

y ∼ n, k2 ∼ Q2 exp(n). (2.24)

There is also a factorial divergence which comes from the integral of the UV region.

This series is sign-alternating and it is Borel-summable. Unlike IR renormalons, the

corresponding poles on the Borel plane is on the real negative axis. These are the

UV renormalons. After Borel transform on the perturbative series,

BD(αs) ∼
1

1− β0αs
8π

, IR,

BD(αs) ∼
1

1 + β0αs
4π

, UV,
(2.25)

and the location of the poles are,

αs =
8π

β0

, IR,

αs = −4π

β0

, UV.
(2.26)

Note the location of the renormalon is closer than the instanton pole in general (The

closest instanton-anti-instanton pole is at 4π in QCD). One can see the fermion

bubble diagrams contain factorial divergence, this divergence comes from only one

set of diagrams. Obviously, renormalon divergence are related to the IR and UV

behavior of the theory. UV renormalons are located on the negative real axis thus

it does not lead to ambiguity when we do Borel resummation. On the other hand,

IR renormalons give us ambiguity. This is also reasonable since it is related to the

momentum integration at IR region, at that scale, QCD is strong coupled.

There is another interesting phenomenon, the location of the UV renormalon

on the Borel plane is closer to the origin than the IR renormalon. The leading

large order behavior of the series is determined by the pole closest to the origin on

the Borel plane. For example, consider a function which is a combination of two

factorially divergent series,

R(g) =
∞∑
n=0

gnann! +
∞∑
m=0

gmbmm!, (2.27)

11 doi:10.6342/NTU201700825



the Borel transform is,

BR(g) =
1

1− ga
+

1

1− gb
, (2.28)

if a > b, the series of a is the leading contribution to the large order behavior of

R(a, b). The position of the pole on the Borel plane is at g = 1
a
, which is closer to

the origin than the other pole g = 1
b
. So the leading large order behavior in the

previous case is determined by the UV renormalon.

Let’s put our eye on (2.20) again. The integral of k2 contains the momentum at

IR region, we know this is meaningless when the theory is strong coupled. At small

k2 ∼ Λ2, we should cut off the integral. Λ is the value when,

β0αs(Q
2)

4π
ln
Q2

Λ2
= 1. (2.29)

So the integral becomes,

D(Q2) ≈ 1

Q4
αs

∞∑
n=0

(
β0αs
4π

)n
∫ ∞

Λ2

dk2 k2(ln
Q2

k2
)n. (2.30)

Changing the integration variable to y,

D(Q2) ≈ αs
2

∞∑
n=0

(
β0αs
8π

)n
∫ n∗

dy yne−y, n∗ = 2 ln
Q2

Λ2
. (2.31)

So the integral over y is cut off, it do not give us factorial divergence anymore. The

factorial growth is suppressed when n > n∗,

D(Q2) ∼ αs
2

n∗∑
n=0

(
β0αs
8π

)nn!, (2.32)

the series is truncated. Notice that at n = n∗, the asymptotic series reaches its

highest accuracy. Truncating at n = n∗ create an error of order e
− 8π
β0αs ∼ Λ4

Q4 . The

same order to the ambiguity of the Borel lateral sum and is also a non-perturbative

effect.

Renormalon is obviously related to the running of the coupling constant. It is

generated from single set of diagrams, and appear when the momentum is at the

scale of UV or IR, unlike instanton poles come from the growth of the number of the

various diagrams at high loop. There has been no known semiclassical configuration

corresponding to renormalon (the location of the poles are so close to origin that we

must find instanton-like configurations with less action than the instantons). But in
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recent years, it has been discovered that by compactifying the theory, there are new

semiclassical configurations appearing in the theory [13, 14]. The ambiguity of the

renormalon may be recovered by those new configurations, this may be a resolution

to the renormalon puzzle.

2.3 Trans-series approach

In quantum mechanics, the cancellation between perturbative part and non-perturbative

part gives us some hint about perturbation series. We need to consider all possible

hidden non-perturbative effects when we do expansion. This is called trans-series

expansion. The trans-series expansion for quantum mechanics is given by,

f(g) =
∞∑
n=0

∞∑
k=0

k−1∑
l=1

cn,k,l g
n[exp

(
−S
g

)
]k[ln

(
±1

g

)
]l. (2.33)

The term exp
{
−S

g

}
comes frrom the contribution of (anti)instantons and the term

ln
(
±1
g

)
comes from the quasi zero modes (instanton-anti-instanton pairs) integra-

tion. cn,k,l is the coefficient, k is the number of instanons or anti-instantons, l is the

number of quasi zero modes and +/− states for the interaction of the quasi zero

mode is repulsive/attractive.

There are some properties for the trans-series,

1.It encodes all the information for the function f(g), perturbative or non-perturbative

2.It is well-defined under analytic continuation.

3.The coefficients cn,k,l are correlated in a non-trivial way.

The trans-series unifies the perturbative and non-perturbative sectors. It was

believed that the trans-series contains all possible information of the function in an

encoding form. If we want to express some unknown function by a series expansion,

we should use trans-series expansion because it does not lose any information

There is a simple example to get the idea of trans-series expansion [13]. Consider

a 0-dimensional partition function Z1 = tr e−V1 with potential V1(x) = 1
2λ

sinh2(
√
λx).

This integral is related to the modified Bessel function of the second kind K0,

Z1(λ) =

∫ ∞
∞

dx e−
1

2λ
sinh2(

√
λx) =

1√
λ
e

1
4λK0(

1

4λ
). (2.34)
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The asymptotic perturbative expansion for K0( 1
4λ

) gives,

Z1(λ) ∼
√
π

2

∞∑
n=0

(−1)n(2λ)n
Γ(n+ 1

2
)2

n!Γ(1
2
)2

, λ→ 0+. (2.35)

This is a factorially divergent series, the coefficients are sign alternating and it is

Borel summable. On the other hand, if we change λ→ −λ, the potential becomes to

V2(x) = 1
2λ

sin2(
√
λx). The partition function Z2 = tr e−V2 is related to the modified

Bessel function of the first kind I0.

Z2(λ) =

∫ π/
√
λ

0

dx e−
1

2λ
sin2(

√
λx) =

π√
λ
e−

1
4λ I0(

1

4λ
) (2.36)

∼
√
π

2

∞∑
n=0

(2λ)n
Γ(n+ 1

2
)2

n!Γ(1
2
)2

, λ→ 0+. (2.37)

This is another factorially divergent series, the coefficients are not sign alternating

and it is not Borel summable. This gives us a mystery, it seems we can conclude

that Z1(−λ) = Z2(λ) by the perturbative expansion, but the perturbative series for

Z2(λ) is not Borel summable and this makes a contradiction. The periodic potential

V2(x) is stable and the partition function should be real, but if we define Z2(λ) by its

perturbative expansion, we have an ambiguous imaginary part in Z2(λ). We can not

define Z2(λ) by its asymptotic perturbative expansion, it does not contain all the

information of the function, there are missing non-perturbative parts inside. There

are several ways to recover this non-perturbative part, one can find the instantons

inside and compute their amplitude, or one can use analytic continuation to change

λ→ λe±iπ and the choice of the direction gives us another ambiguity to cancel the

one in the asymptotic expansion, or one can write down the integral representation

of I0(z) and do the correct expansion for it. The main point is that the perturbative

expansion does not define the function. The perturbative series of Z1(λ) can be

summed, it can be expressed by the hypergeometric function,

Z1(λ) =

√
π

2

1

2λ

∫ ∞
0

dt e−
t

2λ 2F1(
1

2
,
1

2
, 1;−t). (2.38)

The hypergeometric function 2F1(1
2
, 1

2
, 1;−t) has a cut (−∞,−1) along the negative

t axis. This integral is well defined for λ > 0, whereas for λ < 0, the integration

contour meets the branch cut. We need to define the integral for λ < 0 by analytic

continuation from Z1(λ). Rotating the phase of λ by an angle θ, λ → λeiθ, when
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θ approaches to ±π, the sign alternation series for Z1(λ) become to the sign non-

alternating series for Z2(λ). However, the choice of the direction of rotation is

important, the different choice of the phase creates an ambiguous imaginary part.

The difference can be obtained by,

Z1(eiπλ)− Z1(e−iπλ) =

√
π

2

1

2λ

∫ ∞
1

dt e−
t

2λ [2F1(
1

2
,
1

2
, 1, t− iε)− 2F1(

1

2
,
1

2
, 1, t+ iε)]

(2.39)

= −2i

√
π

2

1

2λ

∫ ∞
0

dt e−
t

2λ 2F1(
1

2
,
1

2
, 1,−t) (2.40)

= −2ie−
1

2λZ1(λ). (2.41)

Thus, combine these results, we can conclude that,

Z1(e±iπλ) = Z2(λ)∓ ie−
1

2λZ1(λ). (2.42)

The correct expression for Z2(λ) is,

Z2(λ) = Z1(e±iπλ)± ie−
1

2λZ1(λ). (2.43)

This Z2(λ) is a real function, and if we do the perturbative expansions for it, the ex-

pansion of Z1(e±iπλ) parts gives an imaginary part which cancels another imaginary

part.

Z2(λ) =

√
π

2

∞∑
n=0

(2λ)n
Γ(n+ 1

2
)2

n!Γ(1
2
)2
± ie−

1
2λ

√
π

2

∞∑
n=0

(2λ)n(−1)n
Γ(n+ 1

2
)2

n!Γ(1
2
)2

. (2.44)

This is a two-term trans-series expansion for the function Z2(λ). We can observe

some features in this simple case. First, the asymptotic perturbative expansion for

the function does not define the function, we need to do the trans-series expansion.

Second, the coefficients in the expansions are related, in this case, they differ simply

by a factor (−1)n.

There is an important phenomenon which gives us a hint of the cancellation of

the imaginary part from different saddle points. In QM, it has been observed that for

a theory which has instanton solution with the action of order e
−SI
g . The large order

behavior of the coefficient of the observable we want to compute will be cn ∼ n!
(2SI)n

,

this asymptotic behavior would result in a pole located on the Borel plane at g = 2SI .

This creates an ambiguity of the Borel resummation ±i2SIπ
g

exp
[
−2SI

g

]
. This is of
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the same order as the 2 instanton contribution. The imaginary part in the two

instanton contribution would cancel the imaginary part in the Borel resummation

of the trival vacuum. While it was believed that the resurgence framework can

be done in QM, there is no enough evidence to show that this also works in QFT

because of the existence of the renormalons.

3 Resurgence in QM

In quantum mechanics, the ground state energy can be either computed by Schrödinger

equation or the path integral approach. We can solve the Schrödinger equation and

find the ground state energy exactly. We can also use path integral approach. In

the path integral approach, we use the thermal partition funcion. The partition

function is,

Z(β) = tr e−βH . (3.1)

The ground state energy is,

E0 = − lim
β→∞

1

β
logZ(β). (3.2)

The partition can be expressed in the path integral formulation,

Z(β) =

∫
D[q(t)]e−SE(q), (3.3)

SE(q) is the Euclidean action for the theory, and the path integral is performed

under the periodic boundary condition.

SE(q) =

∫ β/2

β/2

dt LE(t) =

∫ β/2

β/2

dt [
1

2
p2 − V (q)], (3.4)

q(
−β
2

) = q(
β

2
), (3.5)

where p = ∂
∂q

. Note the Euclidean Lagrangian is just the Lagrangian with inverse

potential.

The path integral itself is exact and well defined. So if we can compute the path

integral exactly, we can find the ground state energy and compare the result to the

result computed by the Schrödinger equation. They should be exactly the same.
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But in most cases, we can only use perturbation expansion to compute the path

integral, non-perturbative information is lost. In order to construct the trans-series,

we need to find the non-perturbative saddles in the action and doing path integral

over them. We need to find the instanton contribution to the partition function.

The ground state energy should be expressed in this form.

E0(g) =
∑
k

∑
l

E
(k,l)
0 (g), (3.6)

E
(k,l)
0 should be realized as a power series in g, which is the expansion around the

saddle (k, l). k is the number of instanton and l is the number of quasi zero modes.

This expression also depends on the specific potential. For example, if the potential

is unstable, then we know there must be an imaginary part in the energy which

represents the decay time. Thus the expression of the energy is not Borel summable.

If the potential is stable, then the energy should be real and the expression must be

Borel summable. For the stable potential which contains (anti)instanton, for single

perturbation series E
(k,l)
0 (g) it is non-Borel summable, but the combination E0(g)

of those series is Borel summable.

Potential Energy of single saddle E
(k,l)
0 (g) Energy E0(g)

Unstable Non-Borel summable Non-Borel summable

Stable Borel summable Borel summable

Stable with instanton Non-Borel summable Borel summable

3.1 Quantum mechanics in the anharmonic oscillator

We first consider the stable potential with no instanton exist. The Hamiltonian is,

H =
1

2
p2 + V (q), V (q) =

1

2
ω2q2 + gq4. (3.7)

We want to compute the ground state energy of this model. Using the standard

perturbation theory,

E0 =
ω

2
(1 + c1g + c2g

2 +O(g3)). (3.8)

The asymptotic behavior of the coefficients is [5],

cn ∼ (−1)nB−nn!, n� 1, (3.9)
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Figure 4: The shape of the anharmonic potential V (q)

where B = 1
3
ω3 in this potential, we also subtracted the constant Cn in (2.2). The

Borel transform of the series is,

BE0(g) =
ω

2

∞∑
n=0

cn
n!
gn =

ω

2

B

B + g
. (3.10)

So the Borel resummation of the ground state energy is,

E0 =
ω

2

∫ ∞
0

dt e−t
B

B + tg
, (3.11)

this integral is well defined since BE0 has no pole on the real positive axis. The

ground state energy has no ambiguous imaginary part. This is what we expected,

the potential is stable and the ground state energy is well defined.

Now let’s change the sign of g in the potential, g → −g. The perturbation series

Figure 5: The shape of the potential V (q) with the sign change g → −g
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now is not sign-alternating.

cn ∼ B−nn!, n� 1. (3.12)

It means the Borel transform of the ground state energy has a pole on the positive

real axis.

BE0(g) =
ω

2

B

B − g
. (3.13)

The Borel resummation is not well defined. In order to avoid the pole, we need to

do the lateral Borel resummation. The integral has an ambiguity, so the ground

energy has an imaginary part.

ImE0 = ±πω
2

B

g
exp

{
−B
g

}
. (3.14)

This is also reasonable because the potential after we changed the sign of g is un-

stable. The imaginary part of the energy represents the decay rate.

We can see that whether the series is summable or non-summable depends on

the sign of the coupling constant. We also know that the perturbation series for sta-

ble potential should be summable, for unstable potnetial should be non-summable.

But for the potential for which instantons exist, though the potential is stable, the

expansion around trival vacuum is still non-summable. We need to take instantons

into account and it would cancel the imaginary part of the energy.

3.2 Quantum mechanics in the double well potential

The following computation of this secion is based on [3, 21]. Consider a quantum

mechanics system with double well potential. The Hamiltonian is given by

H =
1

2
p2 + V (q), V (q) =

q2

2
(1− q√g)2. (3.15)

The Euclidean action is,

SE(q) =

∫ β/2

−β/2
dt [

1

2
q̇(t)2 − V (q(t)]. (3.16)

In perturbation theory there are two degenerate ground states sharing the same

energy at,

q = 0, q =
1
√
g
. (3.17)
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Figure 6: The shape of the double well potential V (q)

In the large β limit, there are instanton and anti-instanton solutions connecting

these two vacua. The solutions are,

qc(t) =
1
√
g

1

1 + e±(t−t0)
, (3.18)

(a) instanton (b) anti-instanton

Figure 7: An instanton configuration and an anti-instanton configuration for g = 1,

both at t0 = 0.

t0 is the location of the (anti)instanton, sometimes it is called the collective

coordinate, modulus or the zero modes. These trajectories are the classical solution

of the equation of motion. They satisfy the energy conservation constraint.

1

2
q̇2 + V (q) = E(β). (3.19)

For β → ∞, E(β) → 0. For more details of instanton calculation in Quantum

mechanics, it can be found in [3, 7]. What we want to compute is the multi-instanton
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contribution to the partition function. But it is better to consider the one instanton

contribution in the double well first.

3.2.1 One instanton contribution

It seems the one (anti)instanton configuration has no contribution to the ground

state energy at the first sight because the path integral of the ground state energy is

over all the periodic trajectories and the (anti)instanton trajectory dose not satisfy.

Actually this is not true. We will see how instanton effect split the two degenerate

states in the double well potential.

In the double well potential with the Hamiltonian (3.15), the Hamiltonian is

invariant under the exchange

q ↔ 1
√
g
− q. (3.20)

So the Hamiltonian commutes with the parity operator P which exchanges q and

1√
g
− q. The eigenfunctions of H are labeled by the qunatum numbers, ε and N ,

where ε stands for the parity and N is the N-th energy level.

Hψε,N(q) = Eε,Nψε,N(q), Pψε,N(q) = εψε,N(q). (3.21)

Where ε = ±1 and N goes from 0 to ∞. In perturbation theory, the energy for

different parity is equal. E1,0 = E−1,0.

Eε,N = N +
1

2
+O(g). (3.22)

But the instanton effect breaks this degeneracy. In order to see this effect, we

consider the ”twisted” partition function which is defined by,

Zt(β) = Tr
(
Pe−βH

)
, (3.23)

P is the parity operator. At the large β and small g limit, (3.23) become,

Zt(β) ≈ e−βE+ − e−βE− ≈ −2 sinh[
β(E+ − E−)

2
]e−β(E++E−)/2

β →∞, g → 0.

(3.24)

Where E+ and E− are E−1,0 and E1,0. They are the ground state energy with

different parity. Since E+ − E− is 0 in perturbation theory, E+ − E− is small, the

r.h.s can be rewritten by,

Zt(β) ≈ −β(E+ − E−)e
−β
2 [1 +O(g, e−β)]. (3.25)
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Zt(β) can be written in path integral formulation with twisted boundary condition,

Zt(β) =

∫
q(β/2)=P (q(−β/2))

D[q(t)] exp[−S(q(t))]. (3.26)

With,

S(q) =

∫ β/2

−β/2
[
1

2
q̇2(t) +

1

2
q2(t)(1−√gq(t))2]dt. (3.27)

The boundary condition is,

q(β/2) + q(−β/2) =
1
√
g
. (3.28)

The path integral formulation of Tr
(
e−βH

)
is dominated by the two trivial saddle

points,

q(t) = 0, q(t) =
1
√
g
. (3.29)

These are the location of the two degenerate ground states. This gives us the

usual perturbative expansion. However, these do not contirbute to the twisted path

integral (3.26) because they do not satisfy the boundary condition. We need to find

the solutions of the equation of motion which satisfy the boundary condition (3.28).

In the infinite β limit, the solutions are the (anti)instanton solutions (3.18). The

path integral around these non-trivial saddle points leads to the split of the ground

state energy.

Let’s expand the action around qc(t),

q(t) = qc(t) + qf (t), qc(t) =
1
√
g

1

1 + e±(t−t0)
, (3.30)

qf (t) is the fluctuations around the classical path. In quadratic order of qf (t)

S(q) ≈ S(qc) +
1

2

∫
dt1dt2 qf (t1)M(t1, t2)qf (t2), (3.31)

the action of instanton is,

S(qc) =
1

6g
, (3.32)

the operator M is given by,

M(t1, t2) =
δ2S

δqc(t1)δqc(t2)
= [−(

d

dt1
)2 + V ′′(qc(t1))]δ(t1 − t2). (3.33)
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The path integral around this path become,∫
D[q(t)]e−S(q) ≈ e−S(qc)

∫
D[qf (t)] exp

[
−1

2

∫
dt1dt2qf (t1)M(t1, t2)qf (t2)

]
.

(3.34)

The boundary condition of qf (t) depends on the boundary condition of q(t), since

qc(β/2) + qc(−β/2) + qf (β/2) + qf (−β/2) =
1
√
g
, (3.35)

and

qc(β/2) + qc(−β/2) =
1
√
g
, (3.36)

The boundary condition is,

qf (β/2) = −qf (−β/2). (3.37)

So we need to integrate over all anti-periodic trajectories. The Gaussian integration

for the bosonic modes gives,∫
D[qf (t)] exp

[
−1

2

∫
dt1dt2qf (t1)M(t1, t2)qf (t2)

]
= (detM)−

1
2 . (3.38)

Thus, if we want to find the instanton contribution for the path integral at the

leading order, what we need to do is to find the classical path and doing expansion

around it, find the operator M and finally calculate the determinant of the operator

M . The twisted partition function Zt(β) now can be expressed as,

Zt(β) ≈ N e−S(qc)(detM)−
1
2 , (3.39)

N is an overall normalization which is independent of the potential, it can be easily

eliminated by divided to other reference partition function. However, the determi-

nant of M may have zero modes and negative modes, we need to be careful when

we deal with them. The detail computation of detM is explained in the appendix.

V ′′(q) is,

V ′′(q) = 6gqc(t)
2 − 6

√
gqc(t) +

1

2
. (3.40)

Substituting the value of qc(t), the operator M is given by,

M(t1, t2) = [−(
d

dt1
)2 + 1− 3

2 cosh2(t1/2)
]δ(t1 − t2). (3.41)
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The operator M in this case has one zero mode and has no negative modes. The

zero mode comes from the freedom of the position of instanton. Because of the zero

modes, we need to remove it in the calculation of determinant. The integration over

the zero mode gives us a factor βS
1/2
c√
2π

. The partition function become,

Zt(β) ≈ N e−Sc βS
1/2
c√
2π

(det′M)−
1
2 , (3.42)

det′M is the determinant after removing the zero mode. Sc is S(qc) which is 1
6g

.

Let’s choose the reference partition function ZG to be the harmonic oscillator

with ω = 1, for large β limit, we have

ZG(β) = N (detM0)−
1
2 ≈ e−β/2, (3.43)

where

M0(t1, t2) = [−(
d

dt1
)2 + 1]δ(t1 − t2). (3.44)

After dividing by a good reference partition function,

Zt(β) = 2ZG(β)e−Sc
βS

1/2
c√
2π

(
det′M

detM0

)−
1
2 , (3.45)

the additional 2 factor comes from instanton and anti-instanton, they should give us

the same contribution. Now we only need to compute the fraction of the functional

determinant. There are several methods to compute this, see section 2.5 and 2.6 of

[21] or [22, 23]. The result is,

[
det′M

detM0

] =
1

12
. (3.46)

Finally, we find the leading order contribution of the instanton to the twisted par-

tition function.

Tr
(
Pe−βH

)
= Zt(β) ≈ 2

√
πg
βe−β/2e−

1
6g (1 +O(g)). (3.47)

The energy difference is,

E+ − E− = − 2
√
πg
e−

1
6g (1 +O(g)). (3.48)

The ground state energy degeneracy is splitted by instanton effect,

Eε,0 =
1

2
+O(g)− ε

√
πg
e−1/6g(1 +O(g)), (3.49)

ε is the eigenvalue of parity, 1 means parity even and −1 means parity odd.
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3.2.2 Multi instanton contribution

Let’s come back to our main subject, the resurgent structure of the double well. We

have learned that the ground state energy should be represented by the trans-series.

Consider the ground state energy expansion around the trival vacuum.

E0 =
∞∑
n=0

cng
n, (3.50)

where the asymptotic behavior is3

cn ∼ −3nn!, n� 1. (3.51)

The Borel transform of this series is,

BE0(g) =
−1

1− 3g
. (3.52)

So the resulting singularity on the Borel plane is at g = 1
3
, the ambiguity of this

pole is,

ImE0 = ∓π 1

3g
exp

{
− 1

3g

}
. (3.53)

This ambiguity should be canceld by other saddles. Recall that the action of single

instanton in the double well is Sc = 1
6g

. The order of the ambiguity gives us a hint

that this is a two instanton configuration effect and actually, it is.

We first consider the instanton-anti-instanton pair configuration. Since we are

considering the ground state energy, we need to integrate over all the periodic paths,

so the two instanton or the two anti-instanton configuration do not contribute. In

fact, an instanton-anti-instanton pair (IA) pair is not a classical path. It is just

a approximate saddle point. Only when the distance between the instanton and

anti-instanton is very large, this configuration can be seen as a saddle point (dilute

instanton approximation). We are looking for a configuration which is a sum of the

instanton and anti-instanton but separated by a distance θ. It is given by,

qθc (t) =
1
√
g

(
1

1 + et−θ/2
+

1

1 + e−t−θ/2
− 1), (3.54)

3We have suppressed the constant Cn, which is 3
π
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we want to compute the action of this path. It is convenient to introduce the

following notation,

q
θ/2
+ (t) =

1
√
g

1

1 + e−t−θ/2
,

q
θ/2
− (t) =

1
√
g

1

1 + et−θ/2
,

u(t) = q
θ/2
− (t),

v(t) = u(t+ θ) = q
−θ/2
− (t),

(3.55)

the path can be rewritten by,

qθc (t) = q
θ/2
− (t) + q

θ/2
+ (t)− 1 = q

θ/2
− (t)− q−θ/2− = u(t)− v(t). (3.56)

The action of this path is,

S(qθc ) =

∫
dt (

1

2
q̇c

2 + V (qc))

=

∫
dt [(

u̇

2
+ V (u)) + (

v̇

2
+ V (v))− u̇v̇ + V (u− v)− V (u)− V (v)]

=
1

3g
+

∫
dt [−u̇v̇ + V (u− v)− V (u)− V (v)],

(3.57)

the first tem is just the leading contribution of two instantons. Since the path is an

even function, we can change the integral to twice the integral from 0 to ∞. After

integration by part,

S(qθc ) =
1

3g
+ 2v(0)u̇(0) + 2

∫ ∞
0

dt [vü+ V (u− v)− V (u)− V (v)], (3.58)

then we can expand the integral in powers of v2, we stop at v2 because we only want

to compute the leading term of θ. We also use the equation of motion of u. We find,

S(qθc ) =
1

3g
+ 2v(0)u̇(0) + 2

∫
dt [

v2V ′′(u)

2
− v2V ′′(0)

2
], (3.59)

the function v decay from origin very fast, so the integral saturated when t is around

zero, where u = 1+O(eθ/2) there. Because V ′′(u) ∼ V ′′(1) = V ′′(0), the terms inside

the integral cancel. And,

v(0)u̇(0) ∼ −e
−θ

g
. (3.60)

The action at leading θ contribution is,

S(qθc ) =
1

g
[
1

3
− 2e−θ +O(e−2θ)]. (3.61)
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Now we can consider n instanton configuration separated by distance θi with the

constraint,

n∑
i=1

θi = β. (3.62)

We only need to keep the interaction between the nearest neighbour instantons at

the leading order. The action of n-instanton configuration is just a sum of two

instanton configuration.

S(θi) =
1

g
[
n

6
− 2

n∑
i=1

e−θi +O(e−θi−θj)]. (3.63)

We want to compute the n-instanton contribution to the partition, so we need to

calculate the quantum fluctuation around this action. Although this is not a classical

path of the equation of motion, at the large θi limit, it can be seen as a approximate

classical path. Expand the fluctuation to second order, we need to compute the

determinant of the operator M . At large θi limit, the spectrum of the operator M

can be seen as the same spectrum of the operator at the single instanton problem

but n times degenerate. The determinant of M is just the n = 1 case but with

power n. Thus, the n instanton contribution to the partition function is,

Z(n)
ε (β) = e−

β
2
β

n
(ε
e−1/6g

√
πg

)n
∫
θi≥0

δ(
n∑
i=1

θi − β)
∏
i

dθi exp

[
2

g

n∑
i=1

e−θi

]
. (3.64)

The e−β/2 is the ground state energy of harmonic oscillator, overall β comes from

the global time translation, the factor 1/n is because the configuration is invariant

under a cylic permutation. The integral over θi is because we need to include all

possible value of θi. Note for n odd, the instanton contributes to odd parity Z
(n)
−1

and for n even , the instanton contributes to even parity Z
(n)
1 .

Now we need to do the integral of θi. However, the interatcion between the

instantons is attractive when g positive. For g → 0+, the integral is saturated when

the distance θi between instantons are small. When instanton and anti-instanton are

close to each other, we can not distinguish that it is an IA pair or just the fluctuations

around vacuum. This breaks our assumption of dilute instanton configuration. We

need to do regularization to this integral, we can first do the integral for g < 0,

then we do analytic continuation to g > 0. For negative g, the interaction between

instantons is repulsive and the dilute instanton approximation is preserved. The
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interesting thing is, the choice of the direction of analytic continuation leads to

ambiguity. This is the same phenomenon when we compute the Borel resummation

of the ground state energy expansion around vacuum. If we sum all instanton

contribution to the ground state energy, it would finally become ambiguity free.

This is the resurgence in quantum mechanics.

In order to do the integral, it is convenient to introuduce some notation.

λ(g) =
ε
√
πg
e−1/6g, (3.65)

µ = −2

g
, (3.66)

we also use the integral representation of the delta function,

δ(
n∑
i=1

θi − β) =
1

2πi

∫ i∞

−i∞
ds exp

[
−s(β −

n∑
i=1

θi)

]
. (3.67)

Define the function

I(s) =

∫ ∞
0

dθ exp
[
sθ − µe−θ

]
, (3.68)

the partition can be rewritten as

Z(n)
ε (β) ∼ βe−β/2

2πi

λn

n

∫ i∞

i∞
ds e−βsI(s)n. (3.69)

To evaluate I(s), we set

µe−θ = t, (3.70)

the integral becomes,

I(s) =

∫ µ

0

dt

t
(
µ

t
)se−t =

∫ ∞
0

dt

t
(
µ

t
)se−t +O(e−µ/µ). (3.71)

For µ positive and large, g → 0−, the corrections are small. We find,

I(s) ∼ µsΓ(−s). (3.72)

We want to sum all instanton contribution,

Z(β) = e−β/2 +
∞∑
n=1

Z(n)
ε (β), (3.73)
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using the expression of I(s),

Z(β) = e−β/2(1 +
β

2πi

∫ i∞

−i∞
ds e−βs

∞∑
n=1

λn

n
µnsΓ(−s)n)

= e−β/2(1− β

2πi

∫ i∞

−i∞
ds e−βs ln[1− λµsΓ(−s)]),

(3.74)

we set,

E = s+
1

2
, φ(E) = 1− λµE−1/2Γ(1/2− E). (3.75)

After integrate βe−βs by parts, we find,

Z(β) = − 1

2πi

∫ i∞

−i∞
dE e−βE

φ′(E)

φ(E)
. (3.76)

The asymptotic behavior of Gamma function makes the integral converge. The

contour can also be deformed to enclose the postive half plane Re(E) > 0. So this

integral is a sum of all residues,

Z(β) =
∑
N≥0

e−βEN . (3.77)

Where EN is the N -th state energy, they are also the solutions of the equation,

φ(E) = 1− λµE−1/2Γ(1/2− E) = 0. (3.78)

At the weak coupling limit, λ is very small, so the zero of φ(E) is close to the pole

of Γ(1/2− E).

EN = N +
1

2
+O(λ). (3.79)

We can expand the N -th state energy in power of λ,

EN(g) =
∞∑
n=0

E
(n)
N (g)λn. (3.80)

This is the multi-instanton contribution to all the energy levels at leading order.

The coefficient of order n can be found by solving (3.78). It can be rewritten as,

−iε =
e−1/6g

√
2π

(−2

g
)EΓ(

1

2
− E). (3.81)

The imaginary part comes from the square root of g. Using the Euler’s reflection

formula, we obtain,

cos πE

π
= iε

e−1/6g

√
2π

(−2

g
)E

1

Γ(1
2

+ E)
. (3.82)
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Compare LHS and RHS in order of λ, we can find E
(n)
N (g) order by order. For

example, E
(1)
N (g) is,

E
(1)
N (g) = − ε

N !
(
2

g
)N(1 +O(g)), (3.83)

and E
(n)
N (g) is,

E
(2)
N (g) =

1

(N !)2
(
2

g
)2N [ln

(
−2

g

)
− ψ(N + 1) +O(g ln g)], (3.84)

where ψ is the logarithmic derivative of the gamma function. For n-th order contri-

bution, it can in general be computed. It takes the form at leading order,

E
(n)
N (g) = −(

2

g
)nN{PN

n (ln
(
−g

2

)
) +O(g(ln g)n−1}, (3.85)

where PN
n (a) is a polynomial of degree n− 1. For example, for N = 0, one can find,

P2(a) = a+ γ, P3(a) =
3

2
(a+ γ)2 +

π2

12
, (3.86)

here γ is the Euler’s constant, γ = −ψ(1) = 0.57721 . . . . Remember we are comput-

ing the multi instanton contribution at leading order to the N -th energy level. We

changed the coupling constnat g to negative thus we can define the multi instanton

configuration. At the same time, the Borel sums of the energy without any instanton

is summable since the coupling is negative. Now we want to change the coupling

from negative to positive by analytic continuation, two things happen. The Borel

sums become non-summable and get an ambiguous imaginary part of order two in-

stanton. At the same time, the function ln
(
−2
g

)
also gets an ambiguous imaginary

part ±iπ. These imaginary parts would cancel each other and the energy is still

ambiguity free. The imaginary part of the ground state energy without instanton is

(3.53). The imaginary part P2 is,

ImE
(2)
0 (g) =

1

πg
e(−1/3g) Im[P2(ln(−g/2))] ∼ ±1

g
e−1/3g. (3.87)

The same order as the imaginary part of the ground state energy (3.53) without

instanton. In fact, they cancel each other. Similar cancellation appear at all order.

The leading imaginary part of E(1)(g) is canceled by E(3)(g). For the sub imaginary

part of E(0)(g), they are canceled by E(4)(g), E(6)(g) and to all order for n even.

Thus we can construct a rather complicated expression to the energy of double well
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potential.

EN(g) =
∑
n

EN,ng
n +

∞∑
n=0

∞∑
k=0

k−1∑
l=0

(
e−1/6g

πg
)k(ln

(
−2

g

)
)lcN,n,k,lg

n, (3.88)

where n is the order of the perturbative expansion, k is the number of instanton

and l is to sum over the polynomial Pn, it also represents the number of the quasi

zero modes (IA pairs). This is the trans-series of the double well potential. The

construction of the trans-series is verified in several different potential and can also

be extended to supersymmetry case [7, 24, 25].

4 Resurgence in QFT

In Quantum field theory, whether it is possible to construct the trans-series or not

is an interesting question. There are renormalons in asymptotically free theories4.

The infrared renormalons appear on the positive real axis of Borel plane have less

action than instanton, but we can not find such classical solutions coressponding to

those singularities. We also noticed in previous section that renormalon is related

to the running coupling and is a strong coupled effect, therefore it is a quantum

effect and it seems very hard to realize it classically. There are some conjectures

of the IR renormalons in asymptotic free theories, some claim they correspond to

the OPE vev takes nonzero value, others think that one may need to do second

renormalization of the theory. Although there are many different conjectures, no

one really gives a concrete argument for them.

Recent years, it has been discovered by Argyres and Ünsal [14, 29] that in the

compactified gauge theory with adjoint fermions, there are new semiclassical con-

figurations, e.g., bion-anti-bion events, which may correspond to the infrared renor-

malons. They conjectured that these new saddle points are the leading singularities

in the Borel plane and they are the incarnation of the renormalons in the weak cou-

pling limit. If this is true, it may be possible to construct the trans-series of QFT

and give it a non-perturbative definition at weak coupling limit. Since renormalon

comes from the infrared or ultraviolet momentum contribution, these saddles should

4It has been proved that there are no renormalons in φ4 theory and QED in 4d because of the

asymptotic behaivor of the beta function. [26, 27, 28]
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also relate to the different scales of the theory. However, the relation between the

bion-anti-bion configuration and the different scales is still unclear. Futhermore, the

position of the bion-anti-bion on the Borel plane is at 8π
Nc/4

, where the position of

the closest IR renormalon is 8π
β0

5, which do not coincide. There are still no enough

evidence to conclude these new semiclassical configurations correspond to the IR

renormalons.

After several months, Dunne and Ünsal published another paper [13] which dis-

cusses the resurgence relation may be carried out in the compactified CPN−1 model.

By spatial compactification and periodic boundary condition on the fermions, there

are new semiclassical configurations, the kink-instantons. Kink-instantons has ac-

tion of order eSI/N , which is the instanton action divided by a factor N . The

kink-anti-kink forms a bion and the bion-anti-bion configuration has ambiguous

imaginary parts. The position of the bion-anti-bion and the position of the closest

IR renormalon is the same order. This is a hint that IR renormalons may be realized

semiclassically.

The aim of this section is to show that when some theories are compactified

in a particular way, there are new semiclassical configurations and no significantly

phase transition during the compactified radius change. We want to show that

these new semiclassical configurations may correspond to the IR renormalons in the

non-compactified theory.

4.1 QCD(adj) on R3 × S1

We are going to discuss the four dimensional gauge theory with G = SU(N) gauge

group and Nf adjoint fermions. The theory is compactified to R3 × S1 with peri-

odic boundary condition for the fermions. This is the so called QCD(adj) with time

direction compactified by a spatial circle with circumference L. With this compact-

ification, the theory has no center symmetry changing phase transition when the

radius is varied [30]. At small circle size, the theory is weakly coupled and the semi-

classical analysis is valid. The gauge holonomy around S1 takes nozero value and

behaves as a Higgs field, the gauge group abelianizes at long distances, G→ U(1)r

where r is the rank of the gauge group. There are new semiclassical configurations,

5β0 is the first coefficient of the beta function, which is 11
3 Nc in pure bosonic QCD
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monopole instantons, appearing in the theory. Instead of the 4-d BPST instantons,

monopole instantons (or 3-d instantons, twisted instantons) Mi, i = 1, . . . , r + 1

make the leading contribution to the semiclassical expansion. A monopole instan-

ton anti-monopole instanton pair is a bion B = [MM̄ ]. There are two types of bion,

magnetic bion Bij = [MiM̄j] and neutral bion Bii = [MiM̄i], where magnetic bion

carries magnetic charge and neutral bion does not. What we are interested in is

the neutral bions since they do not carry any topological charge (magnetic charge,

instanton number) and may be related to the renormalon on the Borel plane. The

bion-anti-bion [BB̄] pair has the same quantum number as the perturbative vac-

uum, just like the IA pair in quantum mechanics. Using a generalized version of

the technique when calculating the IA pair in QM double well, we can compute

the imaginary part of the [BB̄] pair. Argyres and Ünsal found the location of the

[BB̄] pole is qualitatively of the same order as the IR renormalons and claim they

correspond to the elusive IR renormalons on the Borel plane.

4.1.1 4-d theory

The Largrangian for the 4-d theories with general gauge group G with Lie algebra

G and Nf massless adjoint fermions is,

L =
1

2g2
(Fµν , Fµν) +

2i

g2
(ψ̄f , σ̄

µDµψf ) +
iθ

16π2
(Fµν , F̃µν), (4.1)

where (·, ·) is the gauge invariant Killing form on G, f = 1, . . . , Nf is the flavor

index of the Weyl fermions and F̃µν := 1
2
εµνρσFρσ. We will focus on the gauge group

G = SU(Nc) case later, but now we can do some general discussion. Without mass

term insertion, we can use a chiral rotation to set the theta angle equal to zero,

θ = 0. The coupling constant is the following function of the energy scale µ at one

loop in perturbation theory.

exp

{
− 8π2

g2(µ)

}
= (

Λ

µ
)β0 , (4.2)

where Λ is the strong coupling scale and β0 is the coefficient of one loop beta function,

which is given by

β0 = h∨
11− 2Nf

3
, (4.3)
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when the fermions are in the adjoint representation, h∨ is the dual Coxeter number

of the Lie algebra. The condition for asymptotic freedom is Nf < 5, we can not add

too many fermions. We want to put the theory on R3 × S1 with the S1 of size L

in the x4 direction, and we impose periodic boundary condition on fermions. We

also assume the inverse radius L−1 � Λ so the theory is weakly coupled at the scale

of the compactification, g(L−1) � 1. We study the dynamics of the effective 3-d

theory at a scale µ, Λ� g/L� µ� 1/L.

4.1.2 3-d effective theory

Integrating the theory along the x4 direction gives us the 3-d effective Lagrangian,

which can also be seen as a dimensional reduction. We also assume the fields do not

depend on the compactified direction x4. We find,

L3d =
L

g2
[
1

2
FmnF

mn + |DmA4|2 + 2iψ̄f /Dψf − ψ̄f σ̄4A4ψf ]. (4.4)

We can use gauge transformations to rotate A4 to its Cartan subalgebra (CSA) with

generators Hi ⊂ G (i.e, we can diagonalize A4). We define the 3-d gauge fields by,

A4(x) :=
2π

L
φi(x)Hi, Hi ∈ CSA, i = 1, . . . , r, (4.5)

Am(x) := aim(x)Hi +Wα
m(x)Eα, Eα ∈ CSA⊥, α = 1, . . . , N2

c − 1− r, (4.6)

where Hi are the basis of the Cartan subalgebra and Eα are the roots, r is the rank

of the gauge group G, φi are scalar fields which are related to the gauge holonomy,

the am photons are massless bosons since they are in the CSA, the Wα fields are

charged by their roots. We denote φ := φiHi later. With these definition, keeping

only quadratic terms, the Lagrangian is,

L3d =
L

2g2
(fmn + d[mWn])

2 +
4π2

g2L
(∂mφ+ α(φ)Wα

mEα)2 +
2L

g2
ψf [i/d−

2π

L
σ̄4λ(φ)]ψλf .

(4.7)

The field strength is defined by fmn := ∂[man] and the covariant derivative is dm :=

∂m + iam. The charges of the Wm boson and ψf fermions are the roots α of G, and

weights λ of fundamental representation of G.

The different vacua are parameterized by different choice of 〈φ〉, the gauge in-

equivalent choices of φ corresponds to points on the affine Weyl chamber. The affine
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Weyl chamber, sometimes called the gauge cell, has a simple description. We denote

the affine Weyl chamber by T̂ ,

T̂ := [φ|αi(φ) ≥ 0, i = 1, . . . , r, and α0(φ) ≥ −1], (4.8)

where αi are a basis of simple roots, and α0 is the lowest root of this basis. The

points of T̂ correspond to the gauge inequivalent choices of φ. At interior points of

T̂ , the gauge group is Higgsed to abelian factors,

φ : G→ U(1)r for φ ∈ interior(T̂ ). (4.9)

This holds for general gauge group G. Once one compactifies the theory along one

direction, φ behaves like a Higgs field and Higgses the theory6. So now our 3-d

effective theory become a theory with gauge group U(1)r. We only want to focus on

the massless content of our theory, so we integrate out all the charged fields like the

W- bosons and those fermions not in CSA. The 3-d classical effective Lagrangian

for the massless modes become,

L3d =
L

2g2
(fmn, fmn) +

4π2

g2L
(∂mφ, ∂mφ) + i

2L

g2
(ψ̄f , /∂ψf ). (4.10)

Where fmn = ∂man − ∂nam stands for the U(1)r field strength. This is a 3-d U(1)r

gauge theory with r real, massless, neutral scalars and Weyl fermions. This is the

case when we choose the interior points of T̂ as our vacuum, while at the boundaries

of T̂ , the gauge symmetry is not completely broken and leaving nonabelian factors,

some of Wα-bosons and ψα fermions also become massless. But it is not what we

are interested in now.

Electric and Magnetic charges

The electric λ and magnetic µ charges in the 4-d U(1)r theory are defined by,

λ :=

∫
S2
∞

∗f, µ :=
1

2π

∫
S2
∞

f, (4.11)

6At generic points on the affine Weyl chamber, the gauge symmetry is broken down to U(1)r

while r is the rank of the gauge group. However, the effective potential of φ may preserve the

gauge symmetry. Only when the point on the affine Weyl chamber is at the minimum of the

effective potential, it is quantum mechanically stable. Actually, only for SU(N) gauge group, the

gauge symmetry is completely broken down to U(1), while for other gauge group, there are still

non-abelian symmetry survive.
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where the 2-form U(1)r field strength is defined by f := 1
2
fµνdx

µ ∧ dxν , while the

dual field strength is ∗f := 1
2
f̃ ∗µνdx

µ ∧ dxν . Here

f̃ :=
1

2
εµνρσfρσ (4.12)

Our original gauge group is G and all fields transfrom in some rep of G. So the

electric charges, λ, of the fields U(1)r ⊂ G live on the gauge lattice ΓG. But now all

the dynamical fields in our theory are in the adjoint representation, thus the electric

charges are in the root lattice Γr = Γadj of G. By the Dirac quantization condition,

the allowed magnetic charges µ are in the co-weight lattice Γ∨w. But if we add

new massive fields inside which are not in the adjoint representation, the massive

sources can have charge in the larger weight lattice Γw, then by Dirac quantization,

the allowed magnetic charges are in the co-root lattice Γ∨w, which is smaller than the

co-weight lattice.

We can define the corresponding electric and magnetic point operator. The

Wilson loop operator wrapping the S1 direction at a point P ⊂ R3 represents the

3-d effective electric point operator. The Wilson loop can be represented by a sum

of a set of operators with different charges.

TrP exp

[
i

∫
S1

A4dx
4

]
=
∑
λ

exp[2πiλ(φ)]. (4.13)

The eletirc operator at point P with charge λ is then,

E[λ, P ] := exp[2πiλ(φ)](P ). (4.14)

For the magnetic operator, the t’Hooft line operator on R3×S1 wrapping the S1 di-

rection represents a monopole operator at some point inR3. The monopole operator

at point P ⊂ R3 with charge µ is given by,

M [µ, P ] creates a gauge field singularity at P,with

∫
S

f = 2πµ, (4.15)

for any closed surface S, f is the U(1)r 2-form field strength.

The 3-d dual photon

Since the U(1)r field strengths (fmn, fmn) decouple from all the other fields con-

tent, we can replace them by the dual photon fields σ(x) because they give us the

same equation of motion [31, 32]. Consider a theory contanins the 3-d U(1)r gauge
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fields am, vector field bm and a scalar field σ. The partition fucntion is given by,

Z =

∫
[dam][dbm][dσ] exp

[
−
∫
d3x L

]
, (4.16)

where the Lagrangian L is,

L :=
g2

4L
(∂mσ + bm)2 +

i

2
εmnpbm(fnp). (4.17)

We input U(1)r gauge invariance for am and additional symmetry to σ and bm,

σ → σ + σ′, bm → bm − ∂mσ′. (4.18)

If we fix this symmetry by setting σ = 0 and integrating out bm fields, we get

Z =

∫
[dam] exp

[
− L

2g2

∫
d3x (fmn, fmn)

]
. (4.19)

which is the U(1)r field strength part of (4.10). If we integrate out am and set bm = 0

to fix the gauge symmetry, we find,

Z =

∫
[dσ] exp

[
− g

2

4L

∫
d3x (∂mσ, ∂mσ)

]
. (4.20)

This is the dual photon expression of the original U(1)r gauge field am. Finally, our

3-d effective Lagrangian becomes,

L3d =
g2

4L
(∂mσ, ∂mσ) +

4π2

g2L
(∂mφ, ∂mφ) + i

2L

g2
(ψ̄f , /∂ψf ). (4.21)

The σ and φ fields are dimensionless, where the ψf fermions have dimension 3
2
.

There are r real scalar bosons σ, r real real scalar bosons φ and r Weyl fermions ψf ,

all the fields are massless. Under this duality, the magnetic point operator becomes

a local operator,

M [µ, P ] := exp[2πiσ(µ)](P ). (4.22)

This is equivalent to inserting in an gauge invariant operator e2πiσ(µ)(P ) · e2πi
∫
C b(µ)

with the Dirac string C ending at P into the path integral. Integrating out bm fields

and fixing the gauge by setting σ = 0 gives us the original field strength integration

with the boundary condition (4.15). Integrating out am fields and setting bm = 0 to

fix the gauge gives us the monopole operator.

Effective potential for φ
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Up to now, it seems the choice of φ is arbitrary, but this is not true in quantum

theory. Actually, when we do path integral and integrate out all other fields, it

will generate an effective potential for φ. For nf = 1, there is a supersymmetry in

our theory and it prohibits the potential of φ be generated. For nf 6= 1, when we

integrated all the massive modes in loops, it would generate an effective potential

for φ [33]. Note that we only need to integrate out those modes with masses greater

than µ since we are considering the theory at scales µ ≤ L−1. The effective potential

for φ takes the form,

Vpert(φ) = L−3(v0(φ) + g2v2(φ) + g3v3(φ) + . . . ). (4.23)

where vn(φ) are dimensionless functions of φ. For analytic 1-loop contribution to

the effective potential, v0, we can expand it around the minimum,

v0 ∼ (φ− φ0)∨ · v0,2 · (φ− φ0) +O(φ− φn)3, (4.24)

where φ0 is the position of the minimum of φ, v0,2 is a positive-definite matrix. The

higher order terms only give corrections of positive order of g and they would not

change the minimum of φ significantly. So at 1-loop level, the φ fields take a unique

vacuum value.

The effective potential of φ at one loop is obtained by intergrating out all other

fields at one loop order,

Vpert(φ) = − 1

V
ln

 ∏
f det

(
−D2

Rf

)
det
(
−D2

adj

)∏
b det

(
−D2

Rb

)
. (4.25)

This is for the gauge theory with fermions in representation Rf and bosons in rep-

resentation Rb, V is the volume of R3. For there are Nf adjoint massless fermions

with SU(Nc) gauge group, the effective potential is given by [14],

Vpert(φ) =
8(Nf − 1)

π2L3

∑
1≤i≤j≤Nc

g(φi − φj) with
∑

1≤i≤Nc

φi = 0, (4.26)

the minimum of φ is,

φj =
Nc + 1− 2j

2Nc

, j = 1, . . . , Nc, (4.27)

where φj is the j-th element of the diagonal matrix φ. This minimum is at the

interior point of T̂ so the analysis we have done is reliable. We can see for SU(Nc),

the eigenvalues of the holonomy are equally separated, which preserve the ZNc center

symmetry.

38 doi:10.6342/NTU201700825



4.1.3 Topological configurations on R3 × S1

Now we will focus on the case with gauge group SU(Nc). We want to study the

semiclassical configurations inside our 3-d effective theory and we will find out that

there appear monopole-instantons in our theory. The monopole-instantons are clas-

sified by two quantum numbers, the magnetic charge µ and the topological charge

ν.

µ :=
1

2π

∫
S2
∞

f, ν :=
1

16π2

∫
R3×S1

(Fµν , F̃µν), (4.28)

f is the 3-d effective U(1)Nc−1 2-form field strength, ( , ) is the gauge invariant Killing

form. The topological charge (instanton number) is in terms of the microscopic 4-d

field strength. The Killing form is normalized to make sure the smallest instanton

number on R4 is 1. The self-dual equation for the 4-d BPST instanton is,

Fµν = F̃µν :=
1

2
εµνρσFρσ. (4.29)

After dimensional reduction to 3-d and we assume the gauge fields are independent

of x4, the equation becomes,

Fmn = εmnpDpA4 =
2π

L
εmnpDpφ. (4.30)

This equation gives us the solutions of Nc types of elementary monopole-instantons

Mj, j = 0, . . . , Nc,. In general, we expect that there are Nc−1 elementary monopole-

instantons related to the Higgsing to U(1)Nc−1. We have one more monopole-

instanton because the adjoint Higgs field is compact. The monopole-instantons

are in ono-to-one correspondence to the simple roots αj, the additional monopole-

instanton corresponds to the lowest root α0. Each monopole-instanton Mj carries

magnetic charge µ(j) and topological charge ν(j). The magnetic charges are given

by,

µ(j) = α∨j , j = 0, . . . , Nc − 1, (4.31)

where α∨j are the affine or simple co-roots. The topological charges are,

ν(j) =
1

Nc

, (4.32)
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which is independent of the index j in SU(Nc) case. The action for a single

monopole-instanton is,

S(j) =
SI
Nc

, (4.33)

where SI is the action of the usual 4d BPST instanton, which is 8π/g2 for QCD.

The anti monopole-instanton M̄j carries opposite magnetic and topological charges.

Under this dimensional reduction, the 4-d BPST instantons are just a combination

of the monopole-instantons. They are not the leading contribution in the semiclas-

sical analysis. The monopole operator carries fermion zero modes when Nf ≥ 1,

accordging to Nye-Singer index theorem [34, 35], the monopole has 2Nf fermionic

zero modes. The monopole operator in QCD(adj) on R3 × S1 is given by,

Mj = Cj exp
[
−Sj(φ) + 2πiσ(α∨j )

]
det
f,f ′

[αj(ψf ) · αj(ψf ′)] (4.34)

this is an operator in the effective 3d theory, if we choose the value of gauge holonomy

φ to be the minimum of the effective potential of φ, Sj = SI
Nc

. σ are the dual photon

fields and ψf are the Nf fermions. The coefficient Cj should be determined by the

zero-mode integral.

Amplitude of the topological molecules

We call a pair of monopole-instanton-anti-monopole-instanton [MM̄ ] a bion.

There are two types of bion, one is called the magnetic bion, another one is called

neutral bion. For a magnetic bion, we denote them by [MiM̄j]. It carries magnetic

charges and has no topological charge,

(µ, ν) = (α∨i − α∨j , 0). (4.35)

For a neutral bion, we denote it by [MiM̄j]. It carries no magnetic charge and

topological charge,

(µ, ν) = (0, 0). (4.36)

For a general bion amplitude, we can obtain it by inserting a monopole and an

anti-monopole into the path integral with a distance r,

Bij :=

∫
d3r

〈
Mi(R +

1

2
r)M̄j(R−

1

2
r)

〉
. (4.37)
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If the separation between the two monopole is large enough, i,e, the integral is dom-

inated when r � rb where rb is some length scale large enough for us to claim that

there is a bion exist, then this bion is well defined in the theory. Using the explicit

form of the monopole operators, we find the bion amplitude is in the following form,

Bij = Cije
−Si−Sje2πiσ(α∨i −α∨j ), (4.38)

where

Cij = CiCj(
g2

2L
)2Nf

(αi, αj)
2Nf

(2π)2Nf

∫
d3r e−V

ij
eff(r), (4.39)

and

V ij
eff(r) = −(α∨i , α

∨
j )

2π

g2
(1 + e−mφr)

L

r
+ 4Nf ln(r). (4.40)

Here mφ is the mass of the field φ in the perturbative vacuum, Ci are normalization

factors. The mass term is mφ ∼ g/L for Nf > 1, which decouples at the small

radius limit. So we can use 0 to replace e−mφr. For Nf = 1, since the theory is

supersymmetric, there is no effective potential for φ so it is massless. We can use 1

to replace e−mφr.

The effective potential V ij
eff(r) describes the interaction between the monopole and

the anti-monopole. The second term in the potential is attractive which is induced

by fermion zero mode exchange, while the first term is the Coloumb interaction which

is repulsive for (αi, αj) < 0 and attractive for (αi, αj) > 0. This interaction term is

repulsive for magnetic bion i 6= j buy attractive for neutral bion i = j. Therefore,

the amplitude is well defined for magnetic bion but requires regularization for neutral

bion. After rescaling the variables, the quasi zero mode integral
∫
e−Veff for magnetic

bion takes the following form,

L(g2, Nf ) =

∫ ∞
0

dz exp

[
− 1

g2z
− (4Nf − 2) ln z

]
= (

1

g2
)3−4NfΓ(4Nf − 3). (4.41)

This is an ambiguity free result. On the other hand, the same integral for neutral

bion is,

L̃(g2, Nf ) =

∫ ∞
0

dz exp

[
1

g2z
− (4Nf − 2) ln z

]
(4.42)

This integral is dominated by the small separation region and we need to do analytic

continuation to regularize it. By rotating g2 → −g2, we find L̃(−g2, Nf ) = L(g2, Nf )
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is well defined. Next, we come back to positive g2,

L̃(g2, Nf )→ L(−g2, Nf ) = (− 1

g2
)3−4NfΓ(4Nf − 3) = −I(g2, Nf ). (4.43)

While this equality is only valid for integer Nf , if Nf is fractional, the branch cut

would make the integral ambiguous. This result is also ambiguity free because the

monopole and anti-monopole both carry fermionic zero modes.

4.1.4 Topological molecules and IR renormalons in QCD(adj) on R3×S1

We want to focus on those topological molecules which can produce ambiguous

imaginary part, just like the quantum mechanical case. The interaction of the

magnetic bion is repulsive when the separation between the monopole-anti-monopole

is small and is attractive when the separation is large, thus this configuration has no

imaginary part and is well defined. Also, since it carries magnetic charges, it cannot

lead to the pole on the Borel plane. The neutral bions have the same quantum

number as the perturbative vacuum, they may correspond to the singularities on

the Borel plane.

The interaction for a neutral bion is attractive, the path integral needs to be

regularized by changing the coupling to negatvie first, g2 → −g2, then analyti-

cally continuing back to positive. However, the amplitude for a neutral bion is also

ambiguity free, this is because the monopole-instanton has a fermionic zero mode,

the neutral bion dose not have an imaginary part for Nf integer. So no imaginary

part is generated by the magnetic bion and neutral bion, we need to see the next

leading order, the two bion amplitude [BijBkl]. We want to focus on those two

bion configurations without magnetic charge and topological charge. They are the

bion-anti-bion [BijBji] = [BB̄] configurations. There is no fermionic zero mode for

a single bion, so the [BB̄] configuration has an ambiguity at the order exp
[
−4 SI

Nc

]
.

Sicne the bion-anti-bion is the leading semi-classical configuration which has ambi-

guity, it should correspond to the singularity which is closest to the orgin on the

Borel plane and determine the leading large order behavior of the expansion around

perturbative vacuum.

Let’s consider QCD(adj) on R4. The 4-d BPST instanton-anti-instanton comfig-
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Figure 8: The poles on the Borel t plane for QCD(adj) on different manifold.

urations correspond to poles on the Borel t plane at,

t = 2nSI =
16nπ2

g2
, n = 1, 2, . . . . (4.44)

But there are IR renormalons in QCD-like asymptotic free theories, the IR renor-

malons for QCD(adj) on R4 are at,

t =
16π2

g2β0

n =
48π2

g2Nc(11− 2Nf )
, n = 2, 3, . . . , (4.45)

The IR renormalons are closer to the origin by a factor β0.

It was known that no semiclassical confiugration can cure the IR renormalons.

However, we have found that when QCD(adj) on R4 is compactified to R3×S1, new

topological molecules which have no topological charge and can generate imaginary

parts, like [BijBji], [BijBjkBki] appear, corresponding to the poles on the Borel t

plane at,

t =
16π2

g2Nc

n, n = 2, 3 . . . , (4.46)

The resulting singularities are shown in fig.8. The position of those singularities

produced by two bion molecules or three bion molecules is the same order as the
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position of IR renormalons. It has been conjectured that when the 4-d theory is

compactified to 3-d, the positions of the poles on the Borel t plane change continu-

ously with the compactified radius. If this is true, the bion-anti-bion configurations

may be the elusive IR renormalons in QCD and the resurgence trans-series can also

be applied to QCD.

4.2 CPN−1 model on R1 × S1

There is another interesting model that resurgence relation may be carried out,

the CPN−1 model. This 2-d theory is a complex version of O(N) non-linear sigma

model. It has some important properties which also appear in QCD, like asymptotic

freedom, gauge symmetry, instantons, confinement and mass gap, which is a useful

toy model to realize QFT. It has been found that there are IR renormalons in CPN−1

model on R2, but just like in most quantum field theories which have renormalons,

we can not find the semiclassical configurations corresponding to the IR renormalons.

Dunne and Ünsal found that if one compactifies the theory, something interesting

happens.

Since we want to understand CPN−1 model on R2, this is equivalent to CPN−1

model on R1 × S1 with the the circumference of S1, L → ∞. If we want to do

semiclassical analysis on the compactified theory, we need to take the length L to

be small, thus the theory is weakly coupled and the analysis is reliable.

If we want to apply the result we have obtained at small L to big L, there must

be no phase transition in our theory. If there is a phase transition, then what we

obtained in small L region are meaningless at large L. However, when CPN−1 model

is thermal compactified (anti-periodic boundary condition on fermions), there is a

phase transition between the confined phase and deconfined phase. On the other

hand, if we use spatial compactification (peridoic boundary condition on fermions)

on CPN−1 model, there are not any phase transition at N →∞ or rapid-crossovers

at N finite. Therefore, we can do semiclassical analysis on it by taking L small,

then change L→∞ to go back to R2, since there is no significant phase transition,

we deduce the results we obtain at small L is still reliable.

When the CPN−1 model is spatial compactified by a circumference L = 2πR

with periodic boundary condition on fermions, new semiclassical configurations ap-
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pear, just like in the QCD(adj) case! These new configurations are called kink-

instantons. These kink-instantons can combine with anti-kink-instantons and form

a bion. Again, the bion-anti-bion [BB̄] configurations may correspond to the closest

IR renormalon in CPN−1 model.

4.2.1 CPN−1 model

Consider the CPN−1 model defined on 2-d Euclidean space-time with one dimension

is spatial (not thermal) compactified, R1 × S1. We use corrdinates (x1, x2), where

x2 is the compactified dimension of length L = 2πR. The classical action is,

S =
2

g2

∫
d2x (Dµn)†Dµn. (4.47)

The field n is an N-component complex vector of norm 1,

n = (n1, n2, . . . , nN)T ,
N∑
i=1

|ni|2 = 1. (4.48)

The covariant derivative is Dµ = ∂µ + iAµ, where Aµ is determined by its equation

of motion,

Aµ =
i

2
(n†∂µn− ∂µn†n). (4.49)

There is a U(1) gauge symmetry,

n(x)→ eiα(x)n(x), Aµ(x)→ Aµ(x)− ∂µα(x). (4.50)

The degree of feedom of this theory is 2N − 2, there are 2N real fields and two

constraints, the norm constraint and the gauge symmetry. The topological theta

term is,

Sθ = iΘQ, (4.51)

where Q is the topological charge,

Q = − 1

2π

∫
d2x εµν∂µAν . (4.52)

CPN−1 theories are asymptotic free, the first coefficient of the beta function is

independent of the fermion number Nf . The runnging coupling is,

exp

{
− 4π

g2(µ)

}
= (

Λ

µ
)β0 , β0 = N, (4.53)
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where Λ is the strong coupling scale, β0 is the first coefficient of the 1-loop beta

function and µ is the energy scale of the coupling g2(µ). We need to consider

theories with fermions, the fermions can induce the potential for the gauge holonomy.

Consider the CPN−1 model with Nf Dirac fermions, the action of the fermion is,

Sf =
2

g2

∫
d2x [−iψ̄fγµDµψf +

1

4
((ψ̄fψf )

2 + (ψ̄fγ3ψf )
2 − (ψ̄fγµψf )

2)]. (4.54)

For Nf = 1, the theory is N = (2, 2) supersymmetric.

We want to do semiclassical analysis to CPN−1 model, so we need to take the

compactification length L small to make the theory weak coupling.

4.2.2 Gauge holonomy

The gauge fields can take nonzero values along the compactified dimension. It is

convenient to consider the holonomy,

Ω(x1) = exp

[
i

∫ L

0

A2(x1, x2)dx2

]
, (4.55)

which is a N ×N matrix. It acts on the bosonic fields and the fermionic fields as a

global U(N) transformation.

n(x1, x2 + L) = Ω(x1)n(x1, x2), ψ(x1, x2 + L) = Ω(x1)ψ(x1, x2), (4.56)

where Ω(x1) ⊂ U(N). For a general choice of value of the background gauge fields,

the global U(N) symmetry breaks down to U(1)N , in addition to the relation n†n = 1,

we have det Ω(x1) = 1. The matrix can be diagonalized,

Ω(x1) =


e2πµ1+φf1 (x1) 0 . . . 0

0 e2πµ2+φf2 (x1) . . . 0
...

0 0 . . . e2πµN+φfN (x1)

 , 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µN ≤ 1.

(4.57)

Here µi is the classical background value of the gauge fields, φfi is the quantum

fluctuation around the classical background. This is the gauge inequivalent choice of

the gauge holonomy. The choice of µi is arbitary classically but it receives quantum

corrections. The effecitve potential for µi just like the effective potential for φ in

the QCD(adj) case, and is obtained by integrating out all other fields (KK modes)
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with energy scale higher then µ [33]. (we can get the one-loop effective potential for

the gauge holonomy). Whether the boundary condition for fermion is thermal or

spatial changes the effective potential significantly. The one-loop effective potential

for the gauge holonomy for different compactification is given by,

V−[Ω] =
2

πβ2

∞∑
n=1

1

n2
(−1 + (−1)nNf )(| tr Ωn| − 1), (themal) (4.58)

V+[Ω] = (Nf − 1)
2

πL2

∞∑
n2

(| tr Ωn| − 1), (spatial) (4.59)

The minimum of the potential in the thermal case is,

Ωthermal = ei
2πk
N


1

1
. . .

1

 , (4.60)

where k labels the position of eigenvalues. In the thermal case, the eigenvalues of

the holonomy attract each other. This breaks the ZN center symmetry.

In the spatial case, the minimum of the potential is,

Ωspatial =


1

ei
2π
N

. . .

ei
2π(N−1)

N

 , (4.61)

all the eigenvalues of the holonomy repel each other, this result is just like the gauge

holonomy in the QCD(adj) case. The ZN center symmetry is preserved under this

holonomy. We will focus on the spatial compactification case later. The one-loop

potential has a dependence on the number of flavors. For Nf > 1, the minumum

takes the form (4.61). For Nf = 1, because of the theory has a N = (2, 2) super-

symmetry, the effective potential vanishes. For Nf = 0, since there is no difference

between the thermal and spatial compactification, the center symmetry is broken

and the minimum takes the form (4.60). But we can still recover the center symme-

try in Nf = 0 and Nf = 1 case, if we put heavy fermions inside and integrate out

them, we can get the Nf = 0 and Nf = 1 theroy with center stability.
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4.2.3 Free energy

Since we want to understand the theory with large L by looking at the theory with

L small. We do not want the theory has a rapid phase transition when L change.

The leading order of the free energy density is given by the minimum of the effective

potential of gauge holonomy. For thermal case, the minimum is at Ωthermal = 1, the

free energy is

Fthermal =
2

πβ2
(N − 1)

∞∑
n=1

1

n2
(−1 + (−1)nNf ) = −(2N − 2)

π

6β2
(1 +

Nf

2
), (4.62)

so when β is large, the theory is expected be in the confined phase with O(N0)

free energy, when β is small, the theory is at the deconfined phase with O(N1) free

energy. The change of the free energy is finite at finite-N and becomes a sharp phase

transition at N → ∞. The analysis we have done at small β does not help us to

understand large β.

One the other hand, the free energy for the spatial case is,

Fspatial = (Nf − 1)
2

πL2

∞∑
n=1

1

n2
(| tr Ωn| − 1). (4.63)

The minimum of Ω is obtained by minimizing the value of | tr Ω|, then | tr Ω2| and

all the way to | tr Ω
N
2 |. The highest order we need to consider is N

2
, higher order will

not change the value of Ω. Since we minimize all the value of | tr Ωn|, the summation

appearing in the free energy give us a quantity of O(N0), therefore, unlike in the

thermal case, there is not a rapid change of free energy.

4.2.4 Topological configurations on R1 × S1

The leading semiclassical configuraions in CPN−1 on R2 are the 2d instantons. The

equations of the 2d instantons can be obtained by completing the square in the

Lagrangian,

L = (Dµn)†Dµn = |(Dµ ± iεµνDν)n|2 ∓ iεµν∂µ(n†∂νn). (4.64)

The self-dual equations are,

Dµn = ∓iεµνDνn. (4.65)
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The instanton solutions saturate the BPS bound,

S =
2

g2
| ∓ iεµν

∫
(Dµn)†Dνn| ≥

4π

g2
|Q|, (4.66)

and satisfy the constraint,

Dµn = 0, at |x| → ∞, (4.67)

where Q is the topological charge which we have defined in (4.52). For an instanton

solution with topological charge 1, the actions is SI = 4π
g2 . It is convenient to use

homogeneous coordinates for the fields and complex coordinates to describe the

instantons.

n =
v

|v|
, Aµ =

i

2
(
v†∂µ − ∂µv†v

v†v
), z = x1 + ix2. (4.68)

Equation (4.65) becomes to

∂µv(x1, x2) = ∓iεµν∂νv(x1, x2) =⇒ ∂zv(z, z̄) = 0, ∂z̄v(z, z̄) = 0, (4.69)

which means the (anti)instanton solution is (anti)holomorphic. In general case, the

instantons are polynomials in z, with maximal degrees m, where m is the topological

charge and with no common roots (the solutions with common roots are gauge

equivalent with no common roots). For CP 1 on R2, the single instanton solution is,

v =

 1

(z − z0)/ρ

 , (4.70)

which has topological charge 1. There are two complex moduli parameteres, z0 is

the location of the instanton, |ρ| is the size of the instanton and arg(ρ) is the phase

of the instanton. In general CPN−1 case, there are 2N real moduli parameteres for 1

instanton which are correspond to 2N zero modes. Two parameters are the position,

one is the size and 2N−3 are the internal orientational phase of the instanton. They

represent to translation, dilatation and orientation respectively.

Kink-instantons in CP 1

In the compactified theory, new semiclassical configurations appear, the kink-

instantons. We first discuss the kink-instantons in CP 1.

We only have two complex fields in CP 1, n1, n2. Where n1, n2 acquire a phase

by holonomy when x2 → x2 + L.

n(x1, x2 + L) = Ω(x1)n(x1, x2), (4.71)
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We can use θ and φ to parameterize the fields.

n =

n1

n2

 =

ei 2πµ1x2
L

ei
2πµ2x2

L

e−iφ2 cos θ
2

ei
φ
2 sin θ

2

 , (4.72)

the θ(x1, x2) field and the φ(x1, x2) field are periodic in x2. So we can write down

the action,

S =
2

g2

∫
R1×S1

|Dµni|2 =
1

2g2

∫
R1×S1

(∂µθ)
2 + sin2 θ(∂µφ+ ζδµ2)2, (4.73)

where we denote ζ = 2π
L

(µ2−µ1). Because φ and θ are both periodic, we can fourier

decompose them and reduce the theory to a 1d theory.

θ(x1, x2) =
∑
n

θ(x1)ei
2πnx2
L , φ(x1, x2) =

∑
n

φ(x1)ei
2πnx2
L . (4.74)

We only need to keep the zero Kluza-Klein modes since we can take L very small,

higher modes decoupled. However, the first Kluza-Klein mode is important even

when L→ 0, we would discuss this later. The action become,

Szero =
L

2g2

∫
R
(∂1θ)

2 + sin2 θ(∂1φ)2 + ζ2 sin2 θ. (4.75)

The equations of motions are,

∂2
1θ − sin θ cos θ((∂1φ)2 + ζ2) = 0, (4.76)

∂2
1φ+ 2∂1φ cot θ = 0. (4.77)

We can set φ = constant to solve the second equation. The first equaiton reduces

to a 1d non-linear differential equation. This is the kink solution.

∂2
1θ − ζ2 sin θ cos θ = 0. (4.78)

The solution of this is the Jacobi amplitude function,

θ(x1) = −am(
√
−(ζ2 − c1)(t+ c2)2| a2

a2 − c1

). (4.79)

With the gauge holonomy we have found in previous section, we can find the action

of this configuration.

K1 : S1 =
4π

g2
× (µ1 − µ2) =

SI
2
. (4.80)
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This is a kink-instanton connecting from θ = 0 to θ = π. It also carries topological

charge Q = 1
2
. The action of the kink is half of the 2d instanton. In CPN−1 case, the

action of kink is 1/N of the 2d instanton. The action of the kink is determined by the

eigenvalues of the gauge holonomy Ω. So we can only find this kind of kink soutions

under spatial compactification. The kink is an interpolation between x1 = −∞ to

x1 =∞.

K1 :

ñ1

ñ2

 (−∞) =

1

0

 =⇒

ñ1

ñ2

 (∞) =

0

1

 . (4.81)

Where ñ is defined by the periodic part of n.

ñj = e−i
2πµjx2

L nj, ñ(x1, x2 + L) = ñ(x1, x2). (4.82)

The kink-instanton has two real moduli parameters, one is the position and another

one is the phase. We denote the anti-kink-instanton by K̄1, which has opposite

topological charge.

Affine Kink-instantons in CP 1

In CP 1 case, besides the kink-instanton which arises from the zero KK-modes,

there is another kink-instanton which arises from the first KK-modes, which is called

the affine kink-instanton.

In order to see the affine kink-instanton, we keep the first KK-mode in the fields,n1

n2

 =

 ei(−
φ
2

+
2πµ1x2

L
) cos θ

2

ei(
φ
2

+
2π(−1+µ2)x2

L
) sin θ

2

 (4.83)

. It carries an extra unit of KK-momentum in x2 direction. After substitute this

into the CP 1 action, we do dimensional reduction to 1d theory. We get,

Sfirst =
L

2g2

∫
R
(∂tθ)

2 + sin2 θ(∂tφ)2 + ζ ′2 sin2 θ, ζ ′ =
2π(µ2 − µ1 − 1)

L
. (4.84)

We can also use the equation of motion to find the kink-instanton solution, the

solution interpolates from θ = π to θ = 0,

K2 :

ñ1

ñ2

 (−∞) =

0

1

 ,

ñ1

ñ2

 (∞) =

1

0

 , (4.85)

and has the same topological charge and action as K1,

Q = 1− µ2 + µ1 =
1

2
, S2 =

4π

g2
× (1− µ2 + µ1) =

SI
2
. (4.86)
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K1 and K2 have the same topological charge and action, but they interpolate −∞

and ∞ in an opposite way. It is important to note that K2 is not K̄1, K2 carries

positive topological charge.

The differences between K1 and K2 can be seen easily by changing the value of

µ1 − µ2. The actions of K1 and K̄1 are the same, the actions of K2 and K̄2 are also

the same, but they are not equal to each other any more. We have 2 types of kinks

in CP 1 model, in CPN−1 model, we have N types of kinks.

Kink-instantons in CPN−1

The kink-instantons in CPN−1 model can be constructed by embedding the kink-

instantons in CP 1 to CPN−1. We use the complexified hyper-spherical coordinates

to describe the fields,

ñ =


eiφ1 0 . . . 0

0 eiφ2 . . . 0
...

0 0 . . . eiφN




cos θ1

2

sin θ1
2

cos θ2
2

...

sin θ1
2

sin θ2
2
. . . sin θN−1

2

 , (4.87)

where φi ∈ [0, 2π) and θi ∈ [0, π]. In CPN−1 model, there are N complex fields,

so there should be 2N real fields. Because we have the constraint n†n = 1 and the

gauge symmetry, the degree of freedom of CPN−1 model is 2N − 2. Here the fields

(θ1 . . . θN−1) are independent, and one of (φ1 . . . φN) can be gauged away. Including

the effect of the gauge holonomy, the fields are,

n =


ei

2πµ1x2
L 0 . . . 0

0 ei
2πµ2x2

L . . . 0
...

0 0 . . . ei
2πµNx2

L

 ñ. (4.88)

The fundamental and affine kinks in CPN−1 are corresponding to the simple roots

and affine roots of SU(N) algebra. By choosing the fields to be the follwing values,

we can see the existence of the kink-instantons in CP 1 in CPN−1 model.

θ1 = · · · = θk−1 = π, θk = θk(x1), θk+1 = 0, θk+2 = · · · = θN−1 = 0. (4.89)

Substituting this into the action (4.73), then the do dimensional reduction, we get,

S =
L

2g2

∫
R
(∂1θk)

2 + sin2 θk[∂1(φk+1 − φk)]2 + (
2π(µk+1 − µk)

L
)2 sin2 θk, (4.90)
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which is the same as (4.75). The field θ is replaced by θk, (φk+1 − φk) = φ and

2π(µk+1−µk)

K
= ζ. The Kk kink configuration is,

Kk : ñ(−∞) =



0
...

1

0
...

0


≡ ek, ñ(∞) =



0
...

0

1
...

0


≡ ek+1, (4.91)

where eN+1 ≡ e1, k = 1, . . . , N . ek+1 − ek are associated with the simple roots and

the affine root of the SU(N) algebra. The kink events can be characterized by them,

Kk : ñ(∞)− ñ(−∞) =



0
...

−1

1
...

0


= ek+1 − ek ≡ αk. (4.92)

Also, the action of the kink is given by,

Kk : Sk =
4π

g2
× (µk+1 − µk) =

SI
N
, (4.93)

where we used the spatial compactified center stable gauge holonomy (4.61). The

action of the kinks is 1
N

of the 2d instantons in CPN−1 model. This is an important

point, since the renormalon singularities are closer to the origin then the instanon

singularities by a factor 1
β0

on the Borel t plane. The first coefficient β0 of the β

function is N in CPN−1 model. The kink-instanton configurations can give the same

order of singularities on the Borel plane as the renormalons. We deduce that the

kinks(or the combination of the kinks) are the semiclassical configurations which

may correspond to the renormalons in CPN−1 model.

Topological molecules’ amplitude

We have seen that the kink events can be labeled by,

Kj : ñ(∞)− ñ(−∞) = αj, αj ∈ Γ∨r (4.94)
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where Γ∨r is the co-root latice of SU(N). The amplitudes of these kink events are

given by,

Kj = exp

[
−SI
N

]
, SI =

4π

g2
− iΘ, j = 1, . . . , N. (4.95)

Since the theta angle Θ is of period 2π, Θ
N

has N different values. For a single

kink-instanton amplitude, it is a multi-branched quantity,

Kj = exp

[
− 4π

g2N
+ i

Θ + 2πk

N

]
, k = 1, . . . , N. (4.96)

We can include the interactions by writing the kink amplitudes as,

Kj = e−αj ·Y , j = 1, . . . , N − 1, (4.97)

KN = ηe−αN ·Y , η = e
− 4π
g2

+iΘ
, (4.98)

where

〈Kj〉 =
〈
e−αj ·Y

〉
= e

− 4π
g2

(µj+1−µj). (4.99)

Y is a N -component complex field, it can be expressed by its real part and imaginary

part,

Y (x1) = ReY (x1)− i ImY (x1), (4.100)

the real part ReY (x1) is the N -component sigma model connection,

ReY (x1) =
4π

g2
{µ1, µ2, . . . , µN}. (4.101)

The imaginary part ImY (x1) accounts for the induced interactions. When the

theory has Nf ≥ 1, the kink amplitudes will be modified, each elementary kink-

instanton carries 2Nf fermionic zero modes [34, 35]. The amplitudes of the kink-

instantons are given by,

Kj = e−αj ·Y det
f,f ′

[(αj · ψf−)(αj · ψf
′

+ )], j = 1, . . . , N − 1, (4.102)

KN = ηe−αN ·Y det
f,f ′

[(αN · ψf−)(αN · ψf
′

+ )], η = e
− 4π
g2

+iΘ
. (4.103)

A kink-anti-kink event is a bion, which is labeled by KiK̄i = [Bii], it has no topo-

logical charge and can not be distinguished from the vacuum. We should take them
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into account when we do path integral. For a kink Ki and an anti-kink K̄i separated

by a distance τ , the interatcion term induced by bosonic exchange is given by,

Sint(τ) = −8ζ
αi · αi
g2

e−ζτ , ζ ≡ 2π(µi+1 − µi)
L

=
2π

LN
, (4.104)

where for the fermion zero-mode exchange, the interaction is,〈
Nf∏
f=1

[αi(ψf )]
2(t− τ/2)

Nf∏
f=1

[αi(ψ̄f )]
2(t+ τ/2)

〉
= (

αi · αi
2

)2Nf (
g2

2L
)2Nf e−2Nf ζτ .

(4.105)

Therefore, the bion amplitude is given by,

Aii = AiAi(
αi · αi

2
)2Nf (

g2

2L
)2Nf2

∫ ∞
0

dτ e−V
ii
eff(τ), (4.106)

which involves the integral over the quasi-zero mode τ . The effective potential

between the two kinks is,

V ii
eff(τ) = −8ζ

αi · αi
g2

e−ζτ + 2Nfζτ. (4.107)

We use the Lie algebra convention αi · αi = 1, the qusai zero mode integral is given

by,

I(g2) =

∫ ∞
0

dτ e−V
ii
eff(τ) =

∫ ∞
0

dτ exp

[
8ζ

g2
e−ζτ − 2Nfζτ

]
. (4.108)

However, the interaction between the kinks is attractive, the integral is dominated

at small τ and the kink-anti-kink configuration become meaningless. As we have

encountered in QM case, we need to do analytic continuation to rotate g2 → g2e±iπ.

Then the interaction has a repulsive component. We do the integration for −g2 and

rotate back to the original g2. The result is,

I(g2, Nf )→ Ĩ(−g2, Nf ) = (−g
2N

8π
)2NfΓ(2Nf ), (4.109)

where Ĩ(g2, Nf ) is,

Ĩ(g2, Nf ) =

∫ ∞
0

dτ exp

[
−8ζ

g2
e−ζτ − 2Nfζτ

]
= (

g2N

8π
)2NfΓ(2Nf ). (4.110)

For Nf ≥ 1, the result is real and unambiguous, but for Nf = 0, taking Nf = ε→ 0
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and subtracting the pole term7, we find,

Ĩ(g2, Nf = ε) = (
g2N

8π
)2εΓ(2ε) =

1

2ε
+ log

(
g2N

8π
− γ
)

+O(ε)→ log

(
g2N

8π
− γ
)

(4.111)

I(g2, Nf = 0) = log

(
−g

2N

8π
− γ
)

= Ĩ(g2)± iπ. (4.112)

Therefore, for Nf = 0, the bion amplitude has an ambiguity,

[Bii]θ± = [KiK̄i]θ± = (log

(
g2N

8π

)
− γ)2A2

i e
−2Sk ± iπ2A2

i e
−2Sk , (4.113)

where θ± denotes the direction we chose to do analytic continuation, Sk = SI
N

is

the action of the kink-instanton and γ is the Euler-Mascheroni constant. So there

is a non-perturbative ambiguous imaginary part arising from the bion confiugration

in the pure bosonic theory, whereas for Nf ≥ 1, there is no ambiguity in the bion

configuration.

Let’s focus on the next leading topological molecules, the bion-anti-bion molecules

[BijBji]. The quasi-zero mode integrals is given by,

I(g2) =

∫ ∞
0

dτ exp(V (τ)), V (τ) = (µB, µB)
8ζ

g2
e−ζτ , (4.114)

where µB := αi−αj ∈ Γ∨r . Again, this integral is dominated by small τ and we need

to do regularization. It gives us an amplitude of the form,

[BijB̄ij]θ± = Re[BijB̄ij] + i Im[BijB̄ij]θ± ∼ e−4Sk ± iπe−4Sk . (4.115)

This is the leading ambiguity in the theory with Nf ≥ 1 fermions.

4.2.5 IR renormalons and bions

We have seen that when QCD(adj) is compactified in a paticular way, there are new

semiclassical configurations in it. Those new semiclassical configurations (monopole-

instantons) form new topological molecules (bions, bion-anti-bion pairs). Some of

the topological molecules ([BijBji], [BijBjkBki]) have ambiguous imaginary parts,

just like the instanton-anti-instanton pair in QM. We have conjectured that these

7Actually, the quasi-zero mode integral is divergent. The divergent term is due to the large

separation of the kink and anti-kink, the double-counting of the uncorrelated [K]− [K̄] events. It

should be subtracted off.
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imaginary parts can cancel the imaginary parts of the IR renormalons in non-

compactified QCD(adj). However, the order of the imaginary part of the IR renor-

malon is not the same as the topological molecules, so it is impossible for them to

cancel each other.

In CPN−1 model, by similar procedure, we found new semiclassical configurations

(kinks). These kinks can form bions ([Bii] = KiK̄i) and the combinations of the

bions have ambiguous imaginary parts. They give us imaginary parts of order e−
SI
N

and is of the same order as the imaginary parts of the IR renormalons. Therefore,

the ambiguity we have found in compactified theory may cancel the ambiguity of

the IR renormalons in non-compact theory.

Let’s start from the perturbation series in CPN−1 model. We denote asymptotic

perturbative series in CPN−1 model by P (g2),

P (g2) =
∞∑
n=0

ang
2n. (4.116)

We define the Borel transform of P (g2) by BP (g2),

BP (g2) :=
∞∑
n=0

an
n!
g2n. (4.117)

And we define the Borel resummation of P (g2) by B(g2)8,

B(g2) =

∫ ∞
0

e−tBP (g2t)dt (4.118)

If the function BP (g2t) has no pole on the positive real axis, then this integration

can be done and B(g2) is real. If there are poles lying on the positive real axis, the

series is non-Borel summable. If we still want to define the sum, we need to change

the integration contour to avoid the poles. The integration has ambiguities, this is

called the lateral Borel sum. The ambiguities depend on whether the choice of the

integration path is above or below the poles,

B(g2)θ± = ReB(g2)± i ImB(g2). (4.119)

8We often define the divergent series P (g2) as its Borel resummation B(g2), so P (g2) and B(g2)

are the same thing
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Figure 9: Lateral Borel sums, the different choices of the path give us different

results.

In CPN−1 model on R2, the leading imaginary part of the Borel sum is of the

form [36, 37],

ImB(g2) ∼ e
− 2nSI

β0 ∼ πe−
2nSI
N , n = 2, 3, . . . , (4.120)

which comes from the IR renormalons. Let’s recall the semiclasscial configurations

we have found in CPN−1 on R× S1; we have N types of kinks Ki, i = 1, 2 . . . N . A

kink-anti-kink pair forms a bion,

KiK̄i = [Bii], (4.121)

For Nf ≥ 1, since kink configuration carries fermionic zero modes, the bion ampli-

tude is real and it has no ambiguity. The leading ambiguity appears at the 4-th

order, the bion-anti-bion amplitude. The ambiguity of the bion-anti-bion amplitude

is of order e−
4SI
N , and the leading IR renormalon is also of order e−

4SI
N . So if the

imaginary part of the bion-anti-bion in the compactified theory and the imaginary

part of the IR renormalon in the original theory cancels each other,

ImB(g2)θ± on R2 + Im[BijB̄ij]θ± on R1 × S1 = 0, to order of e−
4SI
N , (4.122)

then there must be a deep relation between the CPN−1 on R2 and CPN−1 on R1×S1

with periodic boundary condition on fermions.

For Nf = 0, there is an ambiguous imaginary part in bion amplitudes. Therefore,

in a pure bosonic CPN−1 theory, the leading ambiguity is of order e−
2SI
N , but the

closest IR renormalon on R2 is of order e−
4SI
N so there is a mismatch. There are
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Instanton-anti-instanton pole
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Figure 10: Upper figure: The conjectured pole structure of the Borel plane for

CPN−1 on R2. Lower figure: The semiclassical singularities corresponding to the

topological molecules in CPN−1 on small R×S1. There is an extra singularity closer

to the origin for Nf = 0. For Nf ≥ 1, the pole structure of the topological molecules

and the IR renormalons concide. Although the analysis is done in weakly coupled

region and the IR renormalons come from strongly coupled region, we conjectured

that the pole structure does not change significantly. This is an evidence to show

that bion-anti-bion pairs on R1 × S1 may be the semiclassical realization of the IR

renormalons on R2.

59 doi:10.6342/NTU201700825



several possibilities. First possibility is that the IR renormalons can not always

be realized by semiclassical configurations. Namely, there would be two types of

singularities on the Borel plane, one type is the instanton pole which can be realized

semiclassically, the other type is the IR renormalon which can not be realized by

the semiclassical configurations. Second possibility is that the conjectured Borel

plane structure for Nf = 0 CPN−1 model is wrong, there is also an extra singularity

appearing closer to the origin when Nf = 0, but we have not found this kind of

thing happen yet. Third, some kind of phase transition may have happend when we

change the length of the compactified direction from small-L limit to large-L, the

analysis we have done in weak coupling region does not work for strong coupling.

Let’s see the cancellation to the leading order in the compactified theory, in the

small-L limit, the 2-d field theory can be reduced to a 1-d quantum mechanics, the

asymptotic perturbative expansion of the ground state energy in units of the natural

frequency ω in CPN−1 model on R× S1 is given by [13, 38],

P (g2) = E0(g2)ω−1 =
∞∑
n=0

ang
2n, an ∼ −

2

π
(

1

4ω
)nn!(1− 5

2n
+O(n−2). (4.123)

This is a non-alternating series and hence non-Borel summable. The Borel transform

of it is,

BP (g2) = − 2

π

∞∑
n=0

(
g2

4ω
)n = − 2

π

1

1− g2

4ω

. (4.124)

The lateral Borel sums are,

B(g2)θ± =

∫ ∞
0,C±

BP (g2t) e−tdt = ReB(g2)∓ i8ω
g2
e
− 4ω
g2 (4.125)

= ReB(g2)∓ i 16π

g2N
e
− 8π
g2N . (4.126)

On the otherhand, the leading ambiguity comes from the bion amplitude,

[Bii]θ± = Re[Bii] + Im[Bii]θ± (4.127)

= (log

(
g2N

8π

)
− γ)

16

g2N
e
− 8π
g2N ± i 16π

g2N
e
− 8π
g2N . (4.128)

Remarkably, they canel each other exactly,

ImBθ± + Im[Bii]θ± = 0, to the order of e−
2SI
N . (4.129)
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This is an evidence that the resurgence relation works in the compactified CPN−1

model with periodic fermions. The exact resurgence relation in CP 1 QM has

been found by Toshiaki Fujimori,Syo Kamata,Tatsuhiro Misumi,Muneto Nitta and

Norisuke Sakai [25, 39], it seems the relation should also work in CPN−1 QM.

5 Conclusion and Future directions

Resurgence theory works well in quantum mechanics. We can define observables

in quantum mechanics non-perturbatively by the construction of trans-series. By

finding all the non-perturbative saddles in path integral, the physical quantities are

well-defined. The coefficients of the expansion still need to be taken care of since

we do not know how to express all the coefficients. Some evidences of the non-

trivial relation between the coefficients of different saddle points have been found in

quantum mechanics [10, 11].

In quantum field theories, because the coupling constant runs with the scale,

there are renormalons closer to the origin by a factor of order Nc then the instantons.

In some theories after compactification, we can find new semiclassical configurations

which has the action less then the instantons by a factor of order Nc too. However,

only in few theories, the position of the singularity produced by the new semiclas-

sical configuration concide with the IR renormalon. In addition, the origin of the

renormalons and the instanon-anti-instanton singularities seems to be so different.

One comes from the factorial growth of only one set of Feymann diagrams, another

one comes from the factorial growth of various Feymann diagrams. As we have seen

in section 2, the renormalon divergence comes from the high momentum and low

momentum contribution to the Adler function, which is very different from instanton

divergence. We can ask, can renormalon really be realized by semiclassical config-

urations, just like instanton-anti-instanton singularities? If it can, then there must

be a deep connection between the running of the coupling and those semiclassical

configurations. Unfortunately we have not seen this kind of relation yet. Perhaps

this kind of semiclassical realization can only be used in quantum mechanics case.

Let’s summarize the problems about the semiclassical realization to renormalons.

The first is why the position of the newly found semiclassical configurations do not
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concide with the IR renormalons in some theories. If the position of the renor-

malons would change with compactified radius, then how to show that? Second,

in some theories, the compactification of one direction to small radius results in

phase transition. We cannot continuously change the radius from small to infinity,

so even though we find new semiclassical configuration, they cannot correspond to

the renormalons in the original theory. Third, as mentioned above, the renoamalons

are obviously related to the running coupling, so the new semiclassical configuration

should also related to it, but we did not find such relation until now.
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Appendices

A Ambiguity of Borel resummation

Consider this factorially divergent series,

P (g) =
∞∑
n=0

n!gn (A.1)

The sign of this series is non-alternating so it is not Borel summable.. After Borel

transformed, it becomes

BP (g) =
∞∑
n=0

gn =
1

1− g
(A.2)

Now the original series P (g) can be represented by BP (g)

P (g) =

∫ ∞
0

dt e−tBP (gt) =

∫ ∞
0

dt e−t
1

1− gt
(A.3)
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Figure 11: The pole on the Borel complex t plane

It has a pole on the positive real axis. In order to compute the integral, we need

to do analytic continuation to avoid the pole. We can choose the path to be C+ or

C−.

P (g + iε) =

∫
C+

dt e−t
1

1− gt
= ReP (g) + i ImP (g), (A.4)

P (g − iε) =

∫
C−

dt e−t
1

1− gt
= ReP (g)− i ImP (g). (A.5)

-

6

t
t = 1

g

t

((((((((((

hhhhhhhhhh

C+

C−

Figure 12: The different choice of paths

Thus the integral is ambiguous, it has two possible different values. The discon-

tinuity is,

P (g + iε)− P (g − iε) = 2i ImP (g) =

∫
C+−C−

dt e−t
1

1− gt
. (A.6)

This is a contour integral around the pole at t = 1
g
, the value is given by 2πi

multiplying the residue, ∫
C+−C−

dt e−t
1

1− gt
=

2πi

g
e−

1
g . (A.7)

Therefore, the ambiguous imaginary part of the series P(g) is ±iπ
g
e−1/g.
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B Computation of the functional determinant in

Quantum Mechanics

Consider an operator M(t1, t2) given by (3.33) with some boundary conditions which

depend on the boundary condition of the path integral. The determinant of M is

realized as the product over its eigenvalues. Let qn be the orthonormal eigenfunctions

of M . ∫
dt2M(t1, t2)qn(t2) = λnqn(t1). (B.1)

We can write more precisely,

[− d2

dt2
− V ′′(qc(t))]qn(t) = λnqn(t), (B.2)

and ∫
dt qn(t)qm(t) = δnm. (B.3)

The determinant of M is,

detM =
∏
n

λn. (B.4)

In general, the operator which we often want to compute can have zero modes and

negative modes,

[− d2

dt2
− V ′′(qc(t))]q0(t) = 0, (B.5)

if q0(t) is not 0, then q0(t) is a zero mode of M .

[− d2

dt2
− V ′′(qc(t))]qa(t) = λaqa(t), (B.6)

if λa < 0 then qa(t) is an negative mode of M .

We first discuss the issue of zero mode. Naively, the zero mode makes the

functional determinant become zero. We need to be careful with this. What we

want to compute is the integral,∫
D[qf (t)] exp

[
−1

2

∫
dt1dt2qf (t1)M(t1, t2)qf (t2)

]
= (detM)−

1
2 . (B.7)
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If we expand qf (t) by its normalized eigenmodes qn(t) of M and q0(t) is the zero

mode,

qf (t) =
∑
n≥0

cnqn(t), (B.8)

then the integral become,

(detM)−
1
2 =

∫ ∏
n

dcn√
2π
e−

1
2

∑
n≥0 λnc

2
n =

∫
dc0√
2π

(det′M)−
1
2 , (B.9)

where

det′M =
∏
n6=1

λn, (B.10)

is the determinant of which zero mode is removed. The integral of c0 results in

infinity. In order to compute this, we need to know what is the zero mode q0(t).

Actually, q0(t) is propotional to q̇c(t). Recall that qc(t) is a solution of the EOM of

the Euclidean action.

q̈c(t) + V ′(qc(t)) = 0, (B.11)

doing derivative on t, we get,

d2

dt2
q̇c(t) + V ′′(qc(t))q̇c(t) = 0, (B.12)

thus q̇c(t) is a zero mode of M . The relation between q0(t) and q̇c(t) is,

q0(t) =
1

||q̇c||
q̇c(t). (B.13)

The norm is given by,

||q̇c(t)||2 =

∫ β/2

−β/2
dt q̇c(t)

2, (B.14)

we can use the energy conservation (3.19),

||q̇c(t)||2 =

∫ β/2

−β/2
dt

1

2
q̇c(t)

2 −
∫ β/2

−β/2
dt V (qc(t)) = Sc, (B.15)

which is just the action of the instanton trajectory. Note c0 is the collective param-

eter of q0(t), t0 is the collective parameter of q̇c(t). We can find the relation between

c0 and t0. Doing variation to q0 with respect to c0,

q0(t)δc0 =
1

||q̇c(t)||
q̇c(t)δc0. (B.16)
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We can also do variation to q̇c with respect to t0,

q0(t)δc0 =
1

||q̇c(t)||
q̇c(t)δc0 = q̇c(t)δt0. (B.17)

Then we can find the Jacobian of changing c0 to t0, which is,

J =
δc0

δt0
= S1/2

c . (B.18)

At the end, the integral of c0 becomes,∫
dc0√
2π

=
S

1/2
c√
2π

∫ β/2

−β/2
dt0 =

βS
1/2
c√
2π

. (B.19)

This is why we need to multiply this factor at Sec 3.1.1., it comes from the zero

mode integration. Therefore, the determinant (B.9) becomes,

(detM)−
1
2 =

βS
1/2
c√
2π

(det′M)−
1
2 . (B.20)

We have extracted the zero mode from the determinant.

The situation of the negative modes are simpler. A negative mode would make

the determinant of M become negative and (detM)
1
2 would become imaginary.

If there is an imaginary part in the ground state energy, it means the potential

is unstable. The vacuum which we do expansion is a false vacuum and it would

eventually decay. So if the vancum we choose is stable, we don’t need to worry

about the negative mode, it will not appear in the operator M .

Appendix B.A Gelfand-Yaglom method

There are several ways to compute the functional determinant. The most intuitive

way is to find all the spectrum of the operator, then doing regularization. However,

it is hard to do this usually. There is one useful method to compute the functional

determinant in Quantum mechanics without knowing all the spectrum. It is known

as the Gelfand-Yaglom theorem [40].

Consider a second order differential equation with some boundary conditions at

the interval [−β
2
, β

2
]. The eigenfunction equation is given by,

Mφ(t) = [− d2

dt2
+ V (t)]φ(t) = λφ(t), (B.21)
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where M = [ d
2

dt2
+ V (t)] is the operator which we want to compute the determinant,

λ is the eigenvalue. We denote φ
(1,2)
λ (t) to be the solutions with the initial condition,

φ
(1)
λ (−β/2) = 1, φ

(2)
λ (−β/2) = 0,

φ̇
(1)
λ (−β/2) = 0, φ̇

(2)
λ (−β/2) = 1.

(B.22)

These two solutions do not need to satisfy the boundary condition, since the ODE

is second order, we can always find solutions satisfy (B.22). We can use them to

construct a matrix,

Eλ(t) =

φ(1)
λ (t) φ

(2)
λ (t)

φ̇
(1)
λ (t) φ̇

(2)
λ (t)

 . (B.23)

Every solutions of the eigenfunction equation with arbitrary initial condition can be

construct by the matrix Eλ(t),φλ(t)
φ̇λ(t)

 = Eλ(t)

φλ(−β
2
)

φ̇λ(−β
2
)

 . (B.24)

Now we can write down the most general boundary condition for the eigenvalue

problem,

A

φλ(−β
2
)

φ̇λ(−β
2
)

+B

φλ(β2 )

φ̇λ(
β
2
)

 =

0

0

 , (B.25)

where A and B are matrices which depend on the boundary condition. For example,

Drichlet: A =

1 0

0 0

, B =

0 0

1 0


Neumann: A =

0 0

0 1

, B =

0 1

0 0


Periodic: A =

1 0

0 1

, B =

−1 0

0 −1


Antiperiodic: A =

1 0

0 1

, B =

1 0

0 1


We can use (B.24) to rewrite (B.25), then we find,

[A+BEλ(
β

2
)]

φλ(−β
2
)

φ̇λ(−β
2
)

 =

0

0

 . (B.26)
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So if this equation is satisfied for some special value of λ, there is a solution of this

eigenvalue problem and this λ is the eigenvalue. The condition on λ is,

det

[
A+BEλ(

β

2
)

]
= 0. (B.27)

Since det
[
A+BEλ(

β
2
)
]

equal to 0 only when λ is equal to the eigenvalue, we can

write,

det

[
A+BEλ(

β

2
)

]
=
∏
i

(λi − λ) = det(M − λ), (B.28)

so if we want to compute the determinant of M , we only need to construct the

matrix Eλ(t). We do not need to know all the spectrum of M . If there are zero

modes in M and we want to remove them, we just write,

det′M = − ∂

∂λ
det(M − λ)|λ=0. (B.29)

If there are more than one zero modes, we just need to do more derivatives.

Let’s take the periodic boundary condition as an example. First we note A = 1

and B = −1 then the determinant become,

det

[
1− Eλ(

β

2
)

]
= 1− Tr

(
Eλ(

β

2
)

)
+ det

[
Eλ(

β

2
)

]
. (B.30)

Since the Wronskian is constant,

det

[
Eλ(

β

2
)

]
= 1. (B.31)

The condition of λ become,

Tr

(
1− Eλ(

β

2
)

)
= 2− φ(1)

λ (
β

2
)− φ̇(2)

λ (
β

2
) = 0, (B.32)

and

detM = [2− φ(1)
λ (

β

2
)− φ̇(2)

λ (
β

2
)]|λ=0. (B.33)

So we only need to find φ
(1,2)
λ (t) for the operator M . It is easy to find for λ equal to

0. We need to solve

[− d2

dt2
+ V (t)]φ0(t) = 0. (B.34)

The two linear independent zero modes are given by,

φ0(t) = Aq̇c(t) +Bq̇c(t)

∫ t

−β/2
dt′

1

q̇c(t′)2
. (B.35)

68 doi:10.6342/NTU201700825



We have known that q̇c(t) is one of the zero mode solution of M . The other one

can be easily found by assuming the solution is q̇c(t)a(t). Solve a(t) can give us the

result (B.35). We can translate t0 to make q̈c(−β/2) = 0. Then we can find φ
(1,2)
λ (t)

for λ = 0 are,

φ
(1)
0 (t) =

q̇c(t)

q̇c(−β/2)
, φ

(2)
0 (t) = q̇c(−β/2)q̇c(t)

∫ t

−β/2
dt′

1

q̇c(t′)2
. (B.36)

And we obtain the determinant is,

detM = [2− φ(1)
0 (

β

2
)− φ̇(2)

0 (
β

2
)], (B.37)

for periodic boundary condition. For other different boundary conditions, we just

need to change the matrices A and B.

When we need to remove the zero mode in detM , we need to compute φ
(1,2
λ (t)

to first λ order. We can use φ
(1,2
0 and the Green’s function to construct it. To first

order, it is

φ
(1,2)
λ (t) = φ

(1,2)
0 (t) + λ[φ

(1)
0 (t)

∫ t

−β/2
dt′φ

(2)
0 (t′)φ

(1,2)
0 (t′)− φ(2)

0 (t)

∫ t

−β/2
dt′φ

(1)
0 (t′)φ

(1,2)
0 (t′)] +O(λ2).

(B.38)

We find,

det′M = − ∂

∂λ
detM |λ=0 = − ∂

∂λ
[2− φ(1)

λ (
β

2
)− φ̇(2)

λ (
β

2
)]|λ=0. (B.39)

Let’s use the operator M appear in section (3.1.1) as an example. We want to

compute (3.46). Note we need to use anti-periodic boundary condition. The operator

is given by,

M(t) = − d2

dt2
+ 1− 3

2 cosh2(t/2)
, (B.40)

there is one zero mode inside this operator. From (B.28) and (B.29), we find,

det′M = − ∂

∂λ
[φ

(1)
λ (t) + φ̇

(2)
λ (t)]|λ=0, (B.41)

it can be rewritten by q̇c(t),

det′M =
1

2

∫ β/2

−β/2
dt q̇c(t)

2

∫ β/2

−β/2

dt′

q̇c(t′)2
. (B.42)

Recall the instanton solution is,

qc(t) =
1
√
g

1

1 + et
, q̇c(t) = − et

(1 + et)2
, (B.43)
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then we can compute (B.42). The first integral is just the action of the instanton.

Sc =
1

6g
. (B.44)

The second integral is,∫ β/2

−β/2

dt′

q̇c(t′)2
= g

∫ β/2

−β/2
dt [(e−

t
2 + e

t
2 )4] = 2g[3β + 8 sinh(β/2) + sinh(β)], (B.45)

so the determinant is

det′M =
β

2
+

4

3
sinh(β/2) +

1

6
sinh(β). (B.46)

We also need to compute the reference determinant, which is given by,

M0(t) = − d2

dt2
+ 1, (B.47)

where

φ
(1)
0 (t) = cosh(t+ β/2), φ

(2)
0 (t) = sinh(t+ β/2), (B.48)

for anti-periodic boundary condition,

detM0 = 2 + 2 cosh(β). (B.49)

Finally, after takes the limit β →∞,

det′M

detM0

=
1

12
. (B.50)

This is the final result we want to know. Using this method, we can compute the

determinant without solving the eigenfunction equation completely. This method

can also be generalized to Sturm-Liouville problems. See [23].
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