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摘  要 

平滑粒子動力法 (Smoothed Particle Hydrodynamics, SPH)為一種拉格朗日

(Lagrange)觀點下的無網格粒子數值模擬方法。相較於傳統固定式網格數值方法，

SPH 在處理自由液面與大形變流場問題上已被許多研究證實具有優勢。近期 SPH

被運用在求解淺水波方程式(shallow water equations, SWEs)去模擬或是處理各種水

力學問題，而發展出 SPH-SWEs 模式。然而，由於 SWEs 維度上的限制，目前

SPH-SWEs 無法處理計算維度外流體增減的問題，如側流、降雨和入滲等現象。因

此本研究發展變質量平滑粒子動力法，藉由流體粒子資量的增加或減少來模擬額

外維度上流體的增減，並將此新模式運用於研究降雨逕流過程中相關之問題上。 

為了測試此新發展之變質量 SPH 法，研究中選取了三個具有代表性的案例進

行模擬。模擬案例包含一維平坦傾斜渠道上的均勻降雨、一維三坡度渠道上不同

降雨延時之非均勻降雨與二維複雜地形上之均勻降雨。模擬結果顯示本研究所發

展之模式可以不使用源項函數以及增加粒子數來處理增加的流體質量，且在降雨

經流過程中所出現的水躍、乾溼床移動邊界流及超臨界/亞臨界/跨流等現象上，皆

有不錯的吻合程度，因而證明了此變質量 SPH 法的穩健與可靠性。 

本研究中亦將此變質量 SPH 法在運用於處理入滲的問題上，結合霍頓(Horton)

入滲方程進行求解，模擬逕流時流體減少之現象。另外，本研究亦嘗試以兩分量

壓力近似法(Two-component Pressure Approach, TPA)建立一維 SPH 下水道模式。藉

由TPA可使得 SPH能以單一控制方程式來同時模擬滿管壓力流與自由夜面流的流

況。而透過變質量流體粒子的運用，可將降雨逕流模式(增質量)、入滲模式(減質

量)與下水道模式(質量傳輸)結合成一套 SPH 淹水模式。 

關鍵字：平滑粒子動力法，淺水波方程式，無網格方法，變質量粒子，降雨逕流

過程，入滲，下水道  
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Abstract 

Smoothed Particle Hydrodynamics (SPH) is a kind of meshless particle numerical 

method with Lagrangian concept. Compared to traditional grid-based method, SPH is 

proved by many researches that it has advantages on dealing with free surface and large 

deformation problems. Recently SPH has been implemented on solving shallow water 

equations (SWEs) for simulating or handling the hydrodynamic problems and 

SPH-SWEs has been developed accordingly. However, due to the limitation of 

dimensions of SWEs, SPH-SWEs still cannot process the problems of fluid inflow 

/outflow beyond the computational domain, e.g. lateral flow, rainfall, and infiltration, 

etc. Thus this research constructs the mass-varied SPH model which uses the mass 

variation of fluid particle to simulate the fluid inflow/outflow on the external dimension 

and also applies this new model on investigating the rainfall-runoff processes. 

To validate this novel mass-varied SPH model, three benchmark case studies are 

adopted to conduct numerical simulations, including uniform rainfall over a 1D flat 

sloping channel, nonuniform rain falling over a 1D three-slope channel with different 

rainfall durations, and uniform rainfall over a 2D plot with complex topography. The 

simulated results indicate that the proposed treatment can avoid the necessity of a 

source term function of mass variation, and no additional particles are needed for the 

increase of mass. Rainfall-runoff processes can be well captured in the presence of 
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hydraulic jumps, dry/wet bed flows, and supercritical/subcritical/transcritical flows. The 

proposed treatment using mass-varied particles was proven robust and reliable for 

modeling rainfall-runoff processes. 

In this thesis the mass-varied SPH model is also utilized on solving the infiltration 

problems associated with Horton formula to simulate the fluid decrease during the 

runoff process. In addition, this research tries to develop a one-dimensional SPH sewer 

model with two-component pressure approach (TPA). With this approach, SPH can 

simulate the full-pipe pressure flows and free surface flows at the same time with single 

governing equation. Afterwards in future study, by means of mass-varied fluid particles, 

we can integrate the rainfall-runoff model (mass addition), infiltration model (mass 

reduction) and sewer model (mass transfer) into a SPH flood model. 

Key words: Smoothed particle hydrodynamics, Shallow water equations, Meshless 

method, mass-varied particle, Rainfall-runoff process, Infiltration, 

Sewer.   
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Chapter 1 Introduction 

1.1 Objectives 

The objective of this thesis is to implement Smoothed Particle Hydrodynamics 

(SPH) on investigation and application of river hydraulics and ground overland flows 

and to develop an effective and robust numerical method. SPH is a Largangian meshless 

numerical method which discretizes the physical domain with moving particles. Without 

the restriction of grids, SPH has remarkable performance on large deformation problems 

especially for flow conditions including free surface and dry/wet bed. Additionally in 

many realistic engineering problems and flood forecasts, simplified mathematical 

models are usually adopted to compute the fluid flow. In contrast to three-dimensional 

Navier-Stokes equations (NSEs), one-dimensional river cross sectional area-averaged 

shallow ware equations (SWEs) and two-dimensional depth-averaged SWEs use less 

computational resources during the numerical simulations. Since rivers are short and 

steep and the distributions of rainfall are uneven in seasons and regions in Taiwan, river 

discharges vary dramatically. This makes the flow conditions are challenging to predict. 

SPH is suitable for dealing with these situations due to its Lagrangian concept and 

particle nature. To date, there are numbers of models and solvers based on SPH-SWEs. 

However, an import issue still remains to be resolved. It comes from the restriction of 
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dimensions of SWEs. Unlike the 3D Navier-Stokes Equations, SWEs are 2D 

depth-averaged equations in the x-y plane or 1D cross-section-averaged equations in the 

streamwise direction. Thus, there is no extra dimension which can be used for 

inputting/outputting fluids beyond the computational domain. It means that the current 

SPH-SWEs model cannot processes the situations like lateral flow, rainfall, or 

infiltration. Therefore, a novel algorithm is developed using mass-varied fluid particles. 

This mass-varied SPH-SWEs model is able of conquering this difficulty and will be 

used to investigate the rainfall-runoff processes and infiltration. In addition, an 1D SPH 

sewer model is also constructed in this thesis. In future work, the SPH rainfall-runoff 

model and the SPH sewer model can integrate into a SPH flood model by means of 

fluid mass transfer between them. For example, when the runoff flows into sewers, the 

particle mass will decrease in the runoff and increase in the sewer. Or if a manhole 

occurs overflow the fluid and the particle mass will transfer from the sewers for the 

ground runoff. 

1.2 Research method and SPH  

In many hydraulic and environmental engineering problems, computational fluid 

dynamics (CFD) is used to analyze and predict the fluid motions in temporal and spatial 

domains numerically. According to observer's frame of references, CFD analysis has 

two concepts: the Lagrangian concept and the Eulerian concept. In Lagrangian concept 
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the observer follows an individual fluid parcel as it moves through space and time, 

while in Eulerian concept the observer focuses on specific locations in the space 

through which the fluid flows as time passes. Traditional CFD methods are usually 

based on Eulerian concept, e.g., finite difference method (FDM), finite element method 

(FEM) and finite volume method (FVM), etc. The foregoing methods discretize the 

computational domain with regular or irregular grids, and then utilize the difference 

formulas, the control volume integral and the technique of weighted residuals, 

respectively, to solve the fluid governing equations. However in some problems and 

situations, it is hard to apply Eulerian concept to describe the fluid motion with time 

passing on dealing with free surface, moving boundary, shock wave, 

supercritical/subcritical/tanscritical flow, adverse flow, converge flow, overtopping flow, 

and dry-wet interface flow, etc. Otherwise, when considering the surrounding flow field 

of dam break, gate operation of hydraulic structures, pollution diffusion and flow field 

of tidal surges in the bay, the Eulerian grid-based methods also have large restrictions. It 

is because that the outside or inside boundaries of these problems are moveable instead 

of locking in fixed regions. The restriction of grid geometry and the moving 

inside/outside boundaries make that the numerical grid generation has to be changed 

with the boundary of the flow field accordingly. These are the difficulties to the 

traditional grid-based CFD methods. 
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On the contrary, the Lagrangian CFD methods are the candidates for solving these 

issues. Among them, SPH is one of the increasingly popular Lagrangian particle 

methods. In this research, SPH is used to investigate the river hydraulics and the flood 

overland flow. Initially SPH has been introduced for solving 3D physical problems of 

celestial bodies in open space (Lucy, 1977; Gingold and Monaghan, 1977). Afterwards, 

SPH are developed into an efficient computational model and implemented on the area 

of computational fluid dynamics. Different from the grid-based methods which need 

additional treatments for moving boundaries, SPH can handle these easily with its 

particle nature. The physical quantities are carried by the particles in the computational 

domain. When particles move under the control of the governing equations, the 

quantities also change accordingly. This solving algorithm can get rid of the restriction 

of fixed grids. The major concept of SPH is using approximated functions to construct 

the connections between particles. Therefore the computation of SPH is closer to the 

interpolation of FDM, and is more efficient then FVM and FEM but has the comparable 

accuracy. Thus SPH can be an alternative tool for simulating the flow fields with severe 

conditions, and has the potential for dealing with flow fields with complex boundaries. 

In summary, SPH has the following major advantages and disadvantages: 

 

Advantages: 
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(1) Physical domains are discretized by particles. Without the restriction of fixed 

grids, SPH can solve problems with complex boundaries and severe flow 

conditions; especially the solid-liquid two-phase flows. 

(2) Due to the Lagrangian nature, the free surface can be captured by SPH 

automatically and the dry-wet bed situation in open channel flow needs no 

special treatments. 

(3) The governing equations under the Lagrangian concept have only the time 

derivatives term but no convection terms. Therefore the numerical dispersion 

and oscillations can be evidently avoided.  

Disadvantages: 

(1) When particles become over-cluster or over-scatter, the kernel will give the 

uneven weighting between particles during the computation. Therefore the 

accuracies of the results are affected.  

(2) SPH inconsistency: free surface particle near the boundary has the incomplete 

compact domain. This will cause the errors when doing the interpolation or 

differential operation and further influence the accuracies. More seriously it 

could lead to the numerical instability.  

(3) In the computing processes, SPH has to search the neighbor interaction 

particles for each particle and the interaction particles have to maintain a 
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certain number. Thus the particle searching algorithm will cost most 

computing time, sometimes it will slow down the efficiency when particle 

number becomes large. 

1.3 Synthesis 

The content of this thesis is divided into seven chapters: 

Chapter 1 includes the objectives, research method and synthesis. 

Chapter 2 is the literature review. 

Chapter 3 is the introduction of the SPH basic theory and the fundamental formulations. 

Chapter 4 describes the discretization of SWEs, SPH-SWEs model, the solving 

processes and the setup of boundary conditions 

Chapter 5 is the derivation of novel SPH model using mass-varied particles and the 

connection between the original and new approaches is also demonstrated.  

Chapter 6 is the module studies, including rainfall-runoff processes, infiltration and 

sewer. 

Chapter7 is the conclusions and suggestions. 
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Chapter 2 Literature review 

2.1 SPH theory 

Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless method 

introduced by Lucy (1977) and Gingold and Monaghan (1977). Its major features are 

using particles instead of grids to discretize the physical domain and dealing with spatial 

derivate terms with particle weighting. Recently SPH has become increasingly popular 

and has the wide-ranged applications on kinds of fields, e.g. astrodynamics (Monaghan 

and Lattanzio, 1985), Magnetohydrodynamics (Borve et al, 2001; Price, 2012), solid 

mechanics (Libersky et al., 1993; Bonet and Kulasegaram, 2000) and fluid dynamics 

(Monaghan, 1994; Monaghan, 2005), etc. To date, SPH has enormous developments on 

its basic theory, including boundary condition, fundamental formulations, efficiency, 

and error analysis, etc. The important literatures are listed as following: 

2.1.1 Wall boundary condition 

Monaghan (1994) used the solid boundary particles to impose the wall boundary 

conditions. These particles are fixed in certain positions. When the fluid particles are 

near the boundary, the solid boundary particles will give the repulsive force to prevent 

from the fluid particles flow through the wall boundary. Randles and Libersky (1996) 

proposed the mirror particles to represent the wall boundary. When the fluid particles 

flow near the boundary, another side of the boundary will generate the mirror particles. 
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The velocity of mirror particle has equal value with the velocity of fluid particle but the 

direction is reverse. Moreover, their density and pressure are also the same with fluid 

particles’. Ferrari et al (2009) combined the concepts of solid boundary particles and 

mirror particles. The wall boundary is also represented by solid boundary particles 

while when the fluid particles flow near the boundary, the virtual particles will be 

generated outside by point symmetry according to the solid boundary particle. These 

mirror particles have the similar features with the fluid particles, e.g. the velocity with 

same magnitude but reverse direction and the equal density and pressure. 

2.1.2 Inflow and outflow boundary 

Liu and Liu (2003) applied the periodic boundary learned from molecular 

dynamics on SPH simulations for Poiseuille flow and Couette flow. The function of the 

periodic boundary is that if the fluid particles go through such boundary, they will 

reencounter the domain from the corresponding boundary, and their physical quantities, 

such as mass, velocity and density, will not be changed. Federico et al (2012) developed 

a in/outflow algorithm for SPH. Three kinds of particles are implemented: inflow 

particles, inner fluid particles and outflow particles. Inner fluid particle is controlled by 

governing equations and in/outflow particle is used to impose the in/outflow boundary 

conditions. This algorithm is successfully applied on the open channel flows, including 

different regimes of hydraulic jumps and flood flowing through bridge. 
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2.1.3 SPH formula modification 

In order to exactly satisfy the linear and angular momentum for the pressure term, 

Monaghan (1988) derived the SPH antisymmetric gradient formula. While the 

symmetric gradient formula can exactly maintain the mass conservation when applying 

on the continuity equation. Bonet and Lok (1999) examined that if the equation of 

motion in variational form can satisfy the linear an angular momentum or not. They 

found that it conserves the linear momentum but the SPH gradient formula has to be 

modified for conserving the angular momentum. Thus they proposed the mixed 

correction modifying the kernel function and SPH gradient and divergence, and they 

also applied them on the free surface flows, such as dambreak flows and surges. 

2.1.4 Particle searching 

Liu and Liu (2003) proposed the all-pair searching to search the neighbor 

interaction particles in SPH. For a certain particle, this method has to do the searches in 

the whole domain and for all the particles. If there are N particles, the complexity of the 

method is O(N
2
). Rhoades (1992) introduced linked-list searching to enhance the 

searching efficiency. In linked-list searching, the computational domain is divided by 

small square cells with width 2h (h is the smoothing length). The particle searching 

carries out for the eight neighbor cells and the center cell where the target particle 

locates. The complexity of the linked-list searching is O(NlogN) when there are total N 
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particles. 

2.1.5 Error analysis 

Quinlan et al. (2006) utilized Taylor expansion to analyze 1D SPH truncation error. 

They concluded that the ratio of Δx/h (smoothing length h/ particle spacing Δx) is the 

important factor. Amicarelli et al. (2011) followed the research of Quinlan et al. (2006) 

analyzing the 3D SPH truncation error and derived the error formulas with polynomials 

of degree of zero, one and two. 

2.2 SPH application on shallow water equations and SPH-SWEs model 

Wang and Shen (1999) first applied SPH on solving SWEs and simulating the 

dambreak flows with wet-dry bed interface. Ata and Soulaimani (2005) proposed the 

new artificial viscosity formula which is different from the one given by Monaghan 

(1988). This new formula does not include any parameters such as smoothing length or 

constant numbers. Thus the artificial viscosity does not need to be tuned case by case 

and can also avoid producing the numerical oscillations due to the inappropriate setups 

of parameters. They applied this new viscosity formula on simulating the dambreak 

flows with wet bed. Rodriguez-Paz and Bonet (2005) derived the variational form of 

SWEs to describe the motion of shallow water wave and used the iteration to solve the 

nonlinear SPH summation depth formula. They also conducted the simulations of dam 

break with channel cross sections. De Leffe et al (2010) solved the dambreak flows and 
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soliton waves. Vacondio et al (2012b) modified the virtual boundary particle method 

introduced by Ferrari et al (2009) and simulated flow fields with different complex 

boundary geometries by using varational form of SPH-SWEs formulas. Vacondio et al. 

(2011; 2012a; 2012b) improved the closed boundary conditions of SPH with the use of 

virtual particles, enhanced the resolution of the small depth problems by using the 

particle splitting process with shock capturing method, and introduced the open 

boundary treatment considering the Riemann states. Chang et al. (2011) and Kao and 

Chang (2012) applied SPH on shallow-water dambreak flows in open channels and 

floodplains. Jian et al. (2015) and Pu et al. (2013) further developed the numerical 

modeling techniques for dambreak flows with SPH. Chang and Chang (2013) 

investigated non-rectangular and non-prismatic open channel flows with a novel 

specified interval time method of SPH-SWEs. In general, these SPH researches have 

targeted on rapidly-varying flows with steep velocity gradients such as transient or 

dambreak flows (Chang and Chang, 2017). 

2.3 Rainfall-runoff processes and models 

The rainfall-runoff process is an important hydrological phenomenon that relates 

the stream flow response of a river to a given amount of rainfall (Beven, 2001). 

Rainfall-runoff modeling can be classified into two major categories based on the 

hydrologic system: black box lumped modeling and physically based distributed 
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modeling (Chow et al., 1988). Lumped modeling averages parameters for the entire 

watershed, ignores flow-routing mechanisms, and transforms effective rainfall into an 

outflow hydrograph. It can quickly obtain results, but cannot provide detailed physical 

processes (Freeze and Harlan, 1969). Distributed modeling considers variations in 

variables and parameters based on understanding different physical processes. It solves 

the shallow water equations (SWEs) computationally using the fully dynamic wave 

approach or the simplified forms of the SWEs using the diffusive wave approximation 

or the kinematic wave approximation. A variety of numerical methods have been used 

to solve rainfall-runoff problems, including finite difference methods (Esteves et al., 

2000; Fiedler and Ramirez, 2000), finite volume methods (Cea et al., 2010; Costabile et 

al., 2013), and finite element methods (Vieux and Gauer, 1994).  

2.4 Infiltration 

Woolhiser et al. (1996) solved the Smith-Parlange infiltration model by using finite 

difference scheme on a characteristic computational net and showed that runoff 

hydrographs are strongly affected by trends in hydraulic conductivity, particularly for 

small runoff events. A model based on the MacCormack finite difference scheme with 

spatially variable infiltration was presented by Fiedler and Ramirez (2000). They 

simulated infiltration with Grenn-Ampt model coupled to the surface water component 

that allows dynamic interaction. Esteves et al. (2000) used an explicit finite difference 
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scheme and demonstrated that the best simulation results of infiltration were obtained 

by using calibrated values of the wetting front pressure. However their scheme needed a 

special treatment for preventing negative water depths. Liu et al. (2004) thought that 

fully 2D dynamics model was hard to implement because of thin water depth and 

complex surface boundaries. Therefore they developed a 2D kinetic wave model for 

simulating runoff generation on experimental infiltrating hillslope with Green-Ampt 

model. Chahinian et al. (2005) compared four different infiltration models to simulate 

flood events at the field scale: Philip, Morel-Seytoux, Horton and SCS. They concluded 

that Morel-Seytoux’s model is better and the results also revealed the issues related to 

the simulations of low flow events and intermittent rainfall events. Chen and Young 

(2006) extended Green-Ampt equation onto sloping surfaces and found that the slope 

effect is important for low-intensity and short duration rainfall events with ponded 

infiltration. Their results also showed that infiltration increases with increasing slope 

angle. In order to preserve the depth-positivity, Singh et al. (2014) proposed a model 

based on the 2D fully nonlinear SWEs solved by using a second-order central-wind 

shock-capturing scheme and the tempospatial variation of rainfall intensity and 

infiltration are taken into account as source and sink terms. 

2.5 Drainage systems and sewers 

Since that Preissmann slot method (PSM) suffers from the inability of describing 
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subatmospheric full-pipe flows, Vasconcelos et al (2006a) presented a new approach 

utilizing a shock-capturing technique that decouples the hydraulic pressure from 

surcharged pressures occurring only in pressurized conditions. Thus this approach is 

named two-component pressure approach (TPA). The feature of TPA is that it exploits 

the identity between the incompressible flow equations for elastic pipe walls and SWEs. 

With TPA only minor modification is required for solving the surcharge flows and free 

surface flows at the same time with one single governing equation (Vasconcelos and 

Wright, 2007; Vasconcelos and Marwell, 2011; Bousso et al. 2013). Sanders et al. (2011) 

improved the numerical model of TPA to support storm sewer network simulations and 

enabled it to couple with a 2D overland flow model. Bourdarias and Gerbi (2007) also 

developed a model with finite volume scheme for free surface and pressurized flows. In 

their model the transition point between the two types of flows is treated as a free 

boundary associated to a discontinuity of the gradient pressure. Although they derived 

the model with flux integral, the final form of the governing equation is identical to the 

model of TPA. Casulli and Stelling (2013) proposed a semi-implicit numerical model 

for urban drainage system. Their model is robust and accurate and can deal with the 

occurrence of dry areas because the governing equations are discretized with the 

consistent mass conservative scheme. However when encountering the complex flow 

conditions, this model would be inefficient due to the two-layer iteration algorithm and 
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the solving process of Poisson pressure equation. 
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Chapter 3 Theories and Methods 

3.1 Introduction of SPH 

SPH is a meshfree method with Lagrangian description, which guarantees the 

conservation of momentum and mass. SPH particles are not only interpolation points 

but also carry material properties like real physical objects. In SPH, particles are used to 

discretize the computational domain (called particle representation) and the interaction 

among particles is connected by the use of the weighting kernel function. Governing 

equations in SPH is first represented by integral representation and discretized by 

particle approximation thereafter. Numerical algorithm updates the particles’ motions 

together with the physical quantities in each step. Therefore the solutions of the 

problems are obtained steps by steps.   

3.2 Central concept and fundamental formulations  

The central concept of SPH comes from integral representation and interpolation. 

An arbitrary function )(xf can be written as an integral form 

 xxxxx  


dff )()()(   (3.1) 

where 

 
 ,                

( )
0,                   


 

  


 x x
x x

 x x
 (3.2) 

is the Dirac delta function.
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After replacing the delta function )( xx  with a smoothing weighting function 

) ,( hW xx  , the integral representation of )(xf  is 

 xxxxx   dhWff I ) ,()()(  (3.3) 

The function ) ,( hW xx   should satisfy the following conditions: 

1. Normalization condition/unity condition 

 


 1) ,( xxx dhW  (3.4)

 

2. Delta function property 

 
0

lim ( ,  h) ( )
h

W 


   x x x x  (3.5)
 

3. Compact condition   

        ||            , 0) ,( hifhW  xxxx  (3.6) 

where   is a constant related to the radius of the smoothing function for the point at 

x (usually choose 2 ). The effective region of the smoothing weighting function W 

is called the support domain of particle in SPH and W is also known as the kernel 

weighting function. By using this compact condition, the integration over the entire 

computational domain can be localized as integrating over the support domain of the 

smoothing function. Thus, the integration of the entire computational domain can be 

changed into the integration of support domain as shown in Figure 3.1.  

In general, the errors of integral representation in SPH can be estimated as follows. 

After expanding )(xf  in a Taylor series about x  and keeping up to second order 
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terms, we can obtain 

xxxxxxxxxx  


dhWOfff I )  ,()])(())(()([)( 2

 

 

 

 
 

 xdhxxWxxxfxdhxxWhOxf ) ,()()() ,()]()([ 2

 (3.7)

 

Because W is an even function and satisfies the unity condition, we have 

 )()()( 2hOff I  xx  (3.8) 

which shows that the integral representation has a second order accuracy.  

3.3 Particle approximation 

A particle j with a density   and a small volume V  has the mass 

 jjj Vm  . (3.9) 

Substituting this relationship to transform the continuous integral representation of 

)(xf  into the particle approximation gives 

 
xxxxx  



dhWff ) ,()()(
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Thus,  

 



N

j

jj

j

j

iI hWf
m

f
1

) ,()()( xxxx


. (3.11) 

This equation states that the value of a field function for the particle i is approximated 

by a summation over all the particles in the support domain. The kernel function W is 
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associated to the distances between particles.    

For example, taking )(xIf  as the density )(x , Eq. (3.11) gives the following 

estimate for the density for particle i at the position x  

 ( ) ( ,  )i j j

j

m W h  x x x . (3.12)

 

If h is constant, we can integrate this estimate and obtain the following statement 

 
( ) ( ,  )j j ii j i

dV m W h m M       x x x
 

 (3.13) 

or  

 constant) ,( 
j

j

j

j

m
hWM


xx  (3.14)

 

which describes that the total mass is exactly conserved. However, in some situations, h 

is variable, so the integral is not exactly equal to M. However the mass conservation is 

still satisfied because of the conservation of particle number. See the later section for 

illustration.  

3.4 Derivation of fundamental formulations  

There are three approaches to derive the SPH interpolation formulation: 

1. Integral approach (Liu and Liu, 2003)  

2. Derivative approach (Monaghan, 2005) 

3. Variation approach (Bonet et al., 2004) 

In this thesis, we follow Monaghan’s steps to derive the SPH formulation because it is 
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more intuitional than the others. 

3.4.1 First derivative  

If W is a differentiable function, then we differentiate Eq. (3.11) to get  

 









j

j

j

j

x

W
f

m

x

f


 (3.15)

 

where )( jf x  is denoted by jf .If f  is a constant, the LHS of Eq. (3.15) vanishes, but 

the RHS of Eq. (3.15) does not. Thus, we apply the following identity equation to Eq. 

(3.15) to ensure the RHS of Eq. (3.15) does vanish if f is constant 
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where   is any differentiable function, and Eq.(3.15) becomes 
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where ijW denotes ) ,( hW ji xx  . Above equation vanishes if f is constant. There are two 

choices of   that can obtain the two versions of SPH first derivative formulation. For 

example, choosing 1 we can get 
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 (3.18)

 

and choosing    that gives 

 

















j i
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 (3.19)

 

Eq. (3.18) and Eq. (3.19) are the two different forms of SPH gradient operator which 
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can also be written as  

  
1

( ) ( )
N

i

j j i i iji
jj

f m f x f x W


 
      

 
  (3.20) 

 2 2

( ) ( )
( )

N
j ii

i i j i ij

j j i

f x f x
f m W

 

  
     

    
  (3.21) 

Eq. (3.20) is an antisymmetric form for particle i while Eq. (3.21) is a symmetric form 

for particle i (Liu and Liu, 2003). Eq. (3.20) is used to calculate the gradient of bottom 

elevation because b  should be zero when the terrain is flat (b = constant). Eq. (3.21) 

is used to calculate the inter force term T  (see section 4.4) due to its local 

conservation properties and intrinsic remeshing procedure (Price, 2012).  

3.4.2 Second derivative  

To derive the second derivative, we start with an integral approximation (Cleary 

and Monaghan, 1999): 

 xdFffDDhOfDI   )())()())(()(()()( 2
xxxxxx  (3.22)

 

where )()( qqq WF   and D represents the diffusion coefficient function. The SPH 

particle discretization form of I is 

  
j

ijjiji

j

j
FffDD

m
I ))((
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or 
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FffDD
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 (3.24)
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Because 0ijF  the physical quantity f will transfer from particle i to j if ji ff   and 

vice versa. 

3.5 The choices of kernel functions  

There are many kinds of kernel functions adopted from the previous studies. We 

just list three types commonly used as followings. Here,
hh

r
q

|| xx 


.
 

1) Gaussian kernel： 

 )exp(),( 2qhqW d   (3.25)
 

where d is  h2/1/1   in 1D and  2/1 h  in 2D. 

2) Quadratic kernel: 

 20                 
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 qqqhqW d  (3.26)

 

where d is h/1  in 1D and  2/2 h  in 2D. 

3) Cubic spline: 
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q

qqq

hqW d  (3.27)

 

where d is h/1  in 1D and  27/15 h  in 2D. In this thesis, we always use cubic 

spline for the kernel function. According to Monaghan (2005), although the higher order 

kernels perform well for equi-spaced particles, the features of positive definite 

dissipation terms in SPH are lost due to the sign changes of the gradient of the higher 
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order kernels. Fulk and Quinn (1996) and Price and Monaghan (2004) also found that in 

one dimension the cubic spline is a better kernel. Thus we adopt the cubic spline kernel 

for the purposes and implements. 
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Fig. 3.1 Particle approximation (Liu and Liu, 2003) 
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Chapter 4 SPH for shallow water equations and numerical techniques 

The Navier-Stokes equations in the Lagrangian nonconservation form is 

 

D 1

D
P

t 
    

v
g Θ

 

(4.1) 

 
D

Dt


   v  (4.2)

 

 
D

Dt


x
v  (4.3)

 

where Θ denotes the viscous diffusion term. In addition, for solving the thermodynamic 

problems, the fluid flow dynamic system will involve additional equations, for example, 

equation of state, energy/entropy equation or mass transfer equation, etc.   

4.1Shallow water equations and SPH-SWEs 

Shallow water equations (SWEs) are derived by integrating the Navier-Stokes 

equations over the flow depth, as 
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v

v
g v

 

(4.4) 

in which Z and bZ are the levels of the water surface and the channel bottom respectively. 

A uniform velocity profile is assumed in the vertical direction. The viscous diffusion 

term is computed by vΘ
2

0

 

here, and 0  is the kinetic viscosity of laminar flow. 

The use of SWEs has two main advantages. One is that the N dimension 

Navier-Stokes equations are equivalent to N-1 dimension shallow water equations. The 
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other one is that the shallow water equations can bring the effect of terrain into 

consideration through the bed gradient source term. Therefore, we can use the 

SPH-SWEs to simulate the natural rivers, hydraulic structures and ocean, macroscopic 

fluid flow, and ground flow phenomena.   

In SPH-SWEs each particle represents a water column. The height of the water 

column is the water depth dw, which is the distance between the free water surface level 

and the bottom bed level. These particles at the x-y plane move according to the 

topography of the terrain described by b(x, y) as shown in Figure 4.1. For implementing 

SWEs, two assumptions should be considered. One is that the velocity on the vertical 

direction of the bottom, zv , is small. This means that the instantaneous spatial variation 

of dw is small. The z position of the bottom of each column can be given by 

 ),( yxbz   (4.5) 

Differentiated with respect to time, the vertical velocity can be evaluated as 
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 v bvz  (4.7) 

where ( ,  )u vv is the velocity of the water column projected onto the corresponding 

particle on 2D x-y plane (see Fig. 4.1). Another assumption is that 

 w wd   (4.8)
 

where w denotes the constant 3D density of fluid, and  means the 2D projecting 
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density of the fluid. Because the fluid motion is assumed to be incompressible, the 

water density w  is uniform and constant. With these two assumptions, SPH-SWEs 

can be derived analogous to the standard 2D SPH interpolation formulations. Finally, 

the SWEs can be written as follows: 

 D

Dt


   v  (4.9)
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( )
D

f
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g
g b

t



     

v
S  (4.10)

 

where ( ,  )u vv  is the velocity vector on x-y plane, b is the bottom elevation, g is the 

gravity acceleration and fS is the friction source term. Because of the hydrostatic 

assumption applied herein, the shallow water equations need no additional state 

equations to solve the dynamic pressure. And the last two terms, b and fS , can be 

regarded as the force source terms and play important roles when dealing with problems 

in natural rivers or irregular channels. In SPH-SWEs, Eq. (4.9) and Eq. (4.10) are 

always rewritten as following u-dw form with the relationship Eq. (4.8): 
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In this thesis, the Q-A form of SWEs is also used for the simulations of 1D rivers and 

1D sewers (Kao and Chang, 2012): 
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In the above, Eqs. (4.11) and (4.13) are the continuity equations, while Eqs. (4.12) and 

(4.14) are the momentum equations. In these equations, t is the time, A is the wetted 

cross-section area, Q is the discharge, dw is the water depth, R is the rainfall intensity, f 

is infiltration rate, v  is the horizontal velocity vector (= ( ,  )u vv ), u is the x-component 

of v , v is the y-component of v , 
0S  is the bed slope, b is the bottom elevation, 

fS

(
fS ) is the friction slope, which is calculated according to either Manning’s friction law 

(Kao and Chang, 2012; Chang and Chang, 2013) or the Darcy-Weisbach friction law 

(Delestre et al., 2009), and g is the gravitational acceleration.  

4.2 Water depth/cross-section wetted area evolution 

As mentioned before, in SPH, the scale function )(xf  can be approximated as 

follows: 

 

N
j i

i j ij

j j

m
f f W


  (4.15) 

where jm  is the mass of particle j (=
0 jx    in 1D and 

0 0 jx y    in 2D); 0x  

and 0y  are the initial particle spacings in the x- and y-directions, respectively; 
j  

is the density of particle j defined as w A   in 1D and w wd   in 2D; w  is the 

constant water density (1000 kg/m
3
); N is the number of particles within the support 

domain of particle i; 
i

ijW  is the kernel function; and 
i

i ijW  is the first derivative of the 

kernel function.  
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On the other hand, in some simulation, the smoothing length, h, can be set to vary 

in some region domain in order to enhance the resolution or the computational effort. 

For large smoothing length, there are more particles in the kernel support that can obtain 

more accurate results. On the contrary, for small smoothing length, there are fewer 

particles in the support domain, which can speed up the computing. The smoothing 

length is updated according to the density (Benz, 1990): 

 

1/

0,

0,

mD

i

i i

i

h h




 
  

 
 (4.16)

 

where 0,i , 0,ih  are the initial density and smoothing length of the i-th particle, 

respectively, and mD is the number of dimensions ( 1 in 1D and 2 in 2D ). 

The variations of the projecting density   responds to the variations of water 

depth dw. When the fluids exhibit the expansions or contractions, the density   may 

vary enormously. To keep the number of neighbor particles and mass roughly constant, 

the varying smoothing length scheme is therefore used. Instead of solving the continuity 

equation explicitly this scheme uses Eq. (4.17) as the mass constrain for stability reason 

by substituting   into Eq. (4.15) (Rodriguez-Paz and Bonet, 2005) 

 
j

ijiji hWm ) ,(x  (4.17) 

Eq. (4.17) is nonlinear due to the dependency of ih  on i  (Eq. (4.16)). A simple 

Newton-Raphson iteration is used to solve this system. First, defining a residual 
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( )( )k

iRes   for the k –th iteration of the density 

 ( ) ( , )k k

i i j i j i

j

Res m W h   x  (4.17) 

in which the smoothing length evolves according to 
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Using Newton-Raphson iterative formula 
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where the derivative of the residual is calculated by using the chain rule 
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where i  is a correction factor that arises with the variable-h formulation (Bonet et al., 

2004), and || jiijr xx  .  
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After substituting Eq. (4.19) and Eq. (4.20) into Eq. (4.19), the equation becomes 
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The iterative procedure will complete and achieve the convergence when 
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is satisfied. Taking 1010  allows the convergence being reached within a few 

iterations. The solving processes of the Q-A form of SWEs are similar and it can refer to 

Chang and Chang (2013). 

4.3 Using mass-varied particles and the modified smoothing length 

updating formulation  

Some difficulties are associated with using SPH to solve SWEs. Unlike the 3D 

Navier-Stokes Equations, SWEs are 2D depth-averaged equations in the x-y plane or 1D 

cross-section-averaged equations (also called the Saint-Venant equations) in the 

streamwise direction l. Thus, no dimension exists for vertical rainfall inputs. Therefore, 

mass-varied particles are used in the SPH-SWEs in this study to overcome this issue 

when modeling the model rainfall-runoff process. Figure 4.2 illustrates the concept of 

how mass-varied particles work. In modeling discharge flows without rainfall, river 

flows are discretized with water slide particles using a 1D SPH method (Chang et al., 

2011), while surface overland flows are discretized with water column particles using a 

2D SPH method (Kao and Chang, 2012) (both are presented in blue in Fig. 4.2b). As 

rainfall occurs, the additional masses are added to the water slides or columns according 

to the product of their bottom area and the variation in water depth (presented in orange 
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in Fig. 4.2b). With this new treatment, the SPH-SWEs can address mass-varied flow 

fields, such as rainfall, infiltration, lateral flows, etc., without adding particles. 

Furthermore, this treatment does not need to construct the source term of mass variation 

in advance, which is helpful for encoding. 

As previously discussed, no extra dimension is available to input rainfall particles 

when modeling the rainfall-runoff process based on SWEs using traditional methods. 

However, the rainfall process can be simulated by altering the water depth (which is the 

particle density  ) of each particle. Note that if we treat the particle mass as a constant 

value, the mass and momentum conservation of each particle cannot be achieved 

simultaneously because the mass and momentum of the raindrop adds to the system. 

Thus, the particle mass should be varied. 

To reflect the rainfall effect on the evolution of the water depth of a fluid particle, 

we transform the rainfall amount into the increase of the mass of a fluid particle ( m ) 

based on Eq. (4.24): 

 w w wm V d V R t V            (4.24) 

where V is the particle volume ( m


 ) and t  is the time step. 

However, the use of mass-varied fluid particles violates the assumption of constant 

mass in Eq. (4.16). We further assess the consequence of using Eq. (4.16) under the 

scenario of using fluid particles with varying mass in Fig. 4.3. When there is no rainfall, 
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the smoothing length of particle i updated according to Eq. (4.16) decreases as the water 

depth of particle i is increased to keep the number of fluid particles within the support 

domain of particle i fixed (as shown by comparing Fig. 4.3a and b). If rainfall occurs, 

the support domain decreases (by comparing Fig. 4.3a and c). However, at this instant 

there are fewer fluid particles in the support domain of particle i because Eq. (4.16) 

assumes that the total particle mass is constant in the support domain. The insufficient 

number of neighboring particles due to the inappropriately small smoothing length leads 

to numerical instability in the calculation of particle density. Therefore, we aim to derive 

a new formulation that updates the smoothing lengths of fluid particles in this study.  

First, the particle number within the support domain of particle i is calculated using 

Eq. (4.25) (Violeau, 2012): 
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  (4.25) 

where Vi is the volume of particle i, 
mD  is constant ( 1 2   and 2  ) and N  is 

the average particle number within the support domain of each fluid particle. Then, we 

assume that the particle number ( N ) within the support domain of particle i is constant, 

as shown in Eq. (4.26). 
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From Eq. (4.26), we can obtain an equivalent equation as follows: 
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where 0,iV  is the initial volume of particle i. After rearranging Eq. (4.27), the new 

formulation for updating the smoothing lengths of fluid particles can be presented as 

follows. 
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 (4.28) 

Note that Eq. (4.28) is identical to Eq. (4.16), as the particle mass remains constant.  

Two approaches for determining the water depths (wetted cross-section areas) of 

fluid particles, including solving the coupled system of Eqs. (4.17) and (4.28) and 

solving the continuity equations of Eqs. (4.11) and (4.13), have been compared. We aim 

to show the connection between the SPH summation operator of particle density and the 

SPH approximation of the continuity equation for mass-varied particles. First, Eq. (4.28) 

becomes Eq. (4.29) by differentiating with respect to ρ. 
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 (4.29) 
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Using the chain rule for the smoothing length and applying Eq. (4.29) leads to the 

following expression. 

 
m
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Next, we take the time derivative of Eq. (4.17) to obtain the following equation. 
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Substituting Eq. (4.30) into Eq. (4.31) and applying the following equations (Eqs. (4.32) 

and (4.33)), Eq. (4.31) can be rewritten as Eq. (4.34): 
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where 
m

d1
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i j ij
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   . Then, substituting Eq. (4.24) into Eq. (4.34), the SPH 

approximation of the continuity equation is as follows.  
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As a result, we demonstrate that the use of the SPH summation operator for 

particle density (Eq. (4.17)) is related to a type of implicit discretization of the 

continuity equation (Vila, 1999). 
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4.4 Discretization of the momentum equation 

The Lagrangian variational approach shown in Eq. (4.36) is adopted to describe the 

motion of particles in shallow water flows (Rodriguez-Paz and Bonet, 2005): 
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 (4.36) 

where L is the Lagrangian functional, which is expressed as L = K – π. K is the 

kinematic energy and π is the potential energy, which is the sum of the external energy 

( ext ) and the internal energy ( int ). N is the total number of particles.  

Substituting L = K – π into Eq. (4.36) and denoting the inertial, external and 

internal forces as iI , iF  and iT , respectively, we can obtain the following equations. 
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iF  and iT can be calculated based on the following relationships: 
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In the above, the pressure force p is calculated based on the hydrostatic law as 

20.5 w wgd .  

After adding the stabilization term, Eq. (4.39) becomes 
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where   is the correction factor and 
ij  is the artificial viscosity (see section 4.7). 

For details of the derivation, we refer readers to Rodriguez-Paz and Bonet (2005) and 

Ata and Soulaïmani (2005). Substituting Eqs. (4.37) and (4.40) into Newton’s second 

law, i i i I F T , the particle acceleration  D
D it

v  can be evaluated as follows: 
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D

D
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g b
t

 
     

 

v
t S  (4.41) 

where /i i imt T  (Vacondio et al., 2012a).  

4.5 Evolution of bed gradient term and friction term  

Because of free motion of fluid particles, the elevation and the Manning coefficient 

roughness of each particle are both allowed to vary with particle location, and the 

interpolations of these two variables (Eq. (4.42) and Eq. (4.43)) are performed with the 

help of the bottom particles. The bottom particles are different from the fluid particles. 

They are also introduced at the beginning of the simulation, but are not controlled by 

governing equations. Moreover, they are fixed and distributed on a Cartesian uniform 

grid during the whole simulation (Vacondio et al., 2011). Hence, the bottom elevation 

and the Manning coefficient roughness of fluid particle i can be calculated respectively 

by 
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where bp denotes the bottom particles,  ,  
bp bp bp
ibp ibp i j bpW W h x x  denotes the corrected 
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kernel (Bonet and Lok, 1999), and Vbp is equal to 0x  in 1D and 0 0x y   in 2D. 
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 (4.44) 

In addition, after calculating the bottom elevation for each fluid particle using Eq. (4.42), 

the bottom elevation gradient of fluid particle i can be provided by using Eq. (4.45). 

  
N
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i bp bp i i ibp
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b V b b W     (4.45) 

where 
i

i ibpW  is the corrected gradient of kernel function (Bonet and Lok, 1999). Eq. 

(4.45) can be aslo derived by substituting f = b into Eq. (3.20). 

By means of a correction matrix L , the corrected gradient of kernel function can 

be written as  

 
i i

ibp i ibpW W  L  (4.46) 

where L  is calculated by 
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Actually there are three different ways for computing b : 

1. Computing the bottom elevation of fluid particle (bi) by using the bottom particles, 

then use the antisymmetric gradient formulation to computing ib : 

N
bp

ibpi bp bp

bp

b V b W  for each fluid particle, then    
N

j i

j i i iji
j j

m
b b b W



 
    

  
  

2. Directly computing ib  for each fluid particle by using the bottom particles: 
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N
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i bp bp i ibp
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b V b W    

3. Computing the bottom elevation of fluid particle (bi) by using the bottom particles, 

then use the antisymmetric gradient formulation to computing ib between the fluid 

particles and the bottom particles: 

N
bp

ibpi bp bp

bp

b V b W  for each fluid particle, then computing 
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bp bp i i ibp i j ii
bp

b V b b W h
 

     
 
 x x . 

The dam break event of the Toce river valley (Kao and Chang, 2012) is used as the test 

case for these three computing manners, but not any obvious differences between them 

were founded. In this thesis the 3rd manner is adopted.  

4.6 Velocity correction in momentum equation for mass variation and 

extreme small water depth 

In the rainfall process (or infiltration), the calculated friction term becomes 

unstable due to very shallow water. Therefore, a correction (Eq. (4.48)) is adopted to 

evaluate the friction force term (Liang et al., 2007; Costabile et al., 2013): 
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v
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 (4.48) 

where *iv  is the velocity computed by Eq. (4.41), excluding the friction term. 

Furthermore, as raindrops fall and become flowing fluid, the velocity of each fluid 

particle will change due to the conservation of momentum (Zhang and Cundy, 1989). 
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The corrected velocity of a fluid particle with varied mass is given by Eq. (4.49): 

 
particle mass after rainfall

( ) 'm m m v v
 (4.49) 

where 'v  is the corrected velocity and m  is the mass increase associated with 

raindrops or the mass decrease when infiltration occurs.

 

4.7 Artificial viscosity and stabilization term 

In hydrodynamic modeling, sometimes the simulation will generate unphysical 

numerical oscillation around the shock wave region. A shock wave is not a true physical 

discontinuity but a transition zone whose mean free paths is a few- molecules-long. To 

maintain the conservation law across the shock wave region needs to transform kinetic 

energy into heat energy. Such energy transformation can be treated as a kind of viscous 

dissipation in physical. Therefore, the inner force term of equation of motion is 

modified as follows: 
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where ij is the additional artificial viscosity in order to stabilize the numerical results. 

There are two common choices of ij . One is (Monaghan, 1989) 
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and 
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where )(5.0 jiij   , jiij    which   can be any variables and 

2 2

0 00.01 x y     is a small constant for preventing denominator from becoming zero, 

c is the speed of infinitesimal perturbation, which can be sound or a water wave 

( wgd ), a and b are constants which relate to the strength of the artificial viscosity, 

and usually set around 1.0.  

Another method is modified from the Lax-Friedrichs flux (Ata and Soulaïmani, 

2005), where the center flux is replaced by  

 ijji xFxF  )]()([
2

1
 (4.53)

 

After some simplification processes, ij  is obtained as 
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 (4.54)

 

The advantage of the latter viscosity formula is that there needs no parameters to be 

tuned. 

4.8 Time stepping and integration 

Due to the symplectic nature of the leap-frog time integration scheme, it can 

conserve both the linear and angular momentums of a fluid particle. Thus, we use it to 

update the physical variables such as the position and velocity of a fluid particle, i.e., 

Eqs. (4.55) to (4.59). 
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In above equations, f denotes any other updated physical quantities such as  or 

pollution concentration C. In addition, because SPH is an explicit scheme, the time step 

is determined by satisfying the Courant-Friedrichs-Lewy (CFL) condition: 
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h
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  v

 (4.60) 

where CFLC  is the Courant number (0.4 in this study). 

4.9 Nearest neighboring particle searching (NNPS) 

In SPH method, the smoothing kernel function of each particle has a compact 

support domain with a radius h . Only a finite number of particles are inside the 

support domain of the concerned particle, and involved in the concerned particle’s 

weighting calculation. These particles are called the nearest neighboring particles of the 

concerned particle. The algorithm of how to search these particles will deeply affect the 
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computational efficiency. When particle number is too large, the search algorithm will 

cost the most computing resources. Two search algorithms are introduced here, all-pair 

search and link list. 

4.9.1 All-pair search 

All-pair search is the most direct particle search algorithm. For a given particle i, 

computing the distance ijx  from i to any other particle j, and j runs from 1 to the total 

particle number N. If iij h|| x , the j-th particle is determined to be within the support 

domain of the particle i with the smoothing length ih . Thence j is referred as i’s nearest 

neighboring particle. However, if the smoothing length is not isometric, the particles 

will not belong to each other’s nearest neighboring particles, and the Newton’ third law 

of motion, the law about action and reaction forces, will not be satisfied. The 

complexity of the all-pair search is of order )( 2NO , where N is the total number of 

particles. 

4.9.2 Linked-list 

In this search algorithm (Monaghan and Lattanzio, 1985), computational domain is 

divided in square cells with size 2h ( 2 ). For the concerned particle in the cell, only 

the particles in the neighboring cells will have the interactions. Thus, we just need to 

consider the particles in the neighboring cells and calculate the distances ijx  between 

the concerned particle i and those neighboring particles. 
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Take the 2D xy-plane domain for example, if the mainstream direction is along the 

y-direction, the code will sweep through the cells along the y-direction, for each cell 

along x-direction. To avoid repeating the calculation, for the center cell, ik, only the 

neighboring cells of N, NE, E and SE are involved in the neighboring search calculation. 

The rest of the four cells were already considered through the previous sweepings. In 

1D domain, it is much easier because we just calculate only two cells in a step, the 

center cell ik, and the next downstream cell. In 3D, 13 out 26 neighboring cells are 

considered in a single sweeping. They are 4 cells in nth layer and 9 cells in the next 

layer. In Fig. 4.4, the possible neighbors of the fluid particles are in the adjacent cells. 

The neighboring fluid particles which have the practical interactions with the concerned 

particle are marked by black dots in the circular. In Fig. 4.5, the mainstream direction is 

at the y direction, so the sweeping direction goes from left to right and then from down 

to up. For example, first choose a certain y-th column, the code runs from the bottom 

cell to the top cell of the column. Thereafter, the code moves to the next right column 

and repeats the step. 

4.10 Wall boundary conditions 

Wall boundary conditions are used to maintain the well-defined properties of 

dynamics system with the governing equations. There are many kinds of wall boundary 

condition treatments in the literatures, but only some of them are introduced here. 
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Another type of particle, usually called the solid boundary particle, is used to impose 

the boundary conditions and to confine the flow domain. In addition, when the fluid 

particles flow near the boundaries, the compact support domain of the kernel functions 

will be truncated. Thus, some treatments should be taken on those particles to reduce the 

errors associated with the application of wall boundary conditions. 

4.10.1 The Ghost particles method 

In this method, the solid boundary particles aren’t controlled by governing 

equations. They do not move but fixed at the original positions during the whole 

simulation. In addition, they impose an external force on fluid particles, preventing 

them from flowing across the boundary. However, the fluid particles have no effects on 

the solid boundary particles. The repulsive boundary force is exerted analog to the 

molecular force of Lennard-Jones form: 
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where the constant 1n  and 2n  are usually taken as 12 and 4, respectively. The value of 

D is depended cases by cases and is taken in the same scale with the square of the 

maximum velocity of particles. 0x  is usually chosen close to the initial particle spacing. 

Note that the spacing of boundary particles is usually half of the initial fluid particles 
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spacing so that the simulation can get the better simulation results. 

Furthermore, to complement the support domain, a new kind of particles is used, 

called the ghost particles. These particles are generated symmetrically according to the 

corresponding fluid particles in each step, and involved in the neighbor particle 

searching algorithm and kernel function calculation. Similarly, the parameters of the 

ghost particles are also not evolved during the simulation, just like the solid boundary 

particles. In Fig. 4.6, the ghost particles are set at least four columns at the boundary to 

reduce the truncation effect of the kernel function. 

4.10.2 The simplified MVBP method 

The modified virtual boundary particle (MVBP) method is introduced by 

(Vacondio et al., 2012b). This method is a simplified from MVBP. Like MVBP method, 

for a given fluid particle, two fictitious particles are generated related to a certain wall 

boundary particle by using the local point-symmetry. If the distance between the fluid 

particle and the wall boundary particle is less than 2h, two fictitious particles will be 

located at 

 ibf xxx  21,  
(4.62) 

 ibf xxx  42,  (4.63)
 

where fx , bx  and ix  are the positions of fictitious particles, wall boundary particles 

and inner fluid particles, respectively. In Fig. 4.7, fictitious particles are used just for 
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interpolating the physical quantities of the inner fluid particles, which flowing near the 

wall boundary, and thereafter these fictitious particles will be removed in the next 

computing step. Furthermore, in this method two additional wall boundary particles are 

added on the corner when internal angles of the corner is small than or equal to 180 

degrees ( 180 ) for reducing the kernel truncation effect. Similarly, the wall boundary 

particles still work as a role which imposes the boundary forces on the inner fluid 

particles. And the formulation of the boundary force used in this method was introduced 

by Monaghan et al. (2004). By this formulation, the forces acting on the boundary 

particles can also be calculated, or even used to simulate the floating objects. The force 

per unit mass on fluid particle i due to boundary particle k is 

 k

ki

k
ik yxB

mm

m
nf ),(


  (4.64)

 

where B(x, y) is a function to be chosen, kn  is the unit normal vector from the fluid 

particle to the boundary. The total boundary force per unit mass on fluid i is  k iki ff . 

Moreover, according to the action-reaction forces of Newton’s third law of motion,

ikikik mm ff  , the forces acting on the solid boundary particle k cad be evaluated as: 
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  (4.65)

 

And the total force per unit mass on boundary particle k due to all fluid particles is

 k kik ff . The equation of motion of fluid particle i becomes
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),( yxB  is written as a product )()( xy  . The distance is measured from the boundary 

particle to fluid particle, and the connection (normal) direction is denoted by y, the 

vertical (tangential) direction is denoted by x. Therefore )(x  is defined as: 
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where bx  is the wall boundary particle spacing, ikx means the tangential distance 

between the wall boundary particle and the fluid particle. The function )(x  can 

ensure that a fluid particle moving parallel to the wall boundary will feel the same 

boundary force. )(y  is defined by 
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 (4.68)

 

where ||/02.0 2

iks yc , hyq ik /||  and iky denotes the normal distance between the 

wall boundary particle and the fluid particle.   estimates the maximum force per mass 

used to stop the particle moving with the maximum speed, and 1/ iky can ensure to 

prevent a faster moving particle from penetrating the walls.  

Generally, ghost particles give fewer disturbances to the flow field. However, when 
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dealing with complicated domain geometries, the simplified MVBP is much easier to 

use, although a few non-physical pressure oscillations might be introduced. 

4.10.3 Periodic boundary condition  

By applying periodic boundary condition, fluid particles near the lateral boundary 

will interact with particles at the complementary lateral boundary on other side of the 

domain. Namely, the influence support domain of particle i will be extended to the 

complementary boundary side continuously. In Fig. 4.8, the support domain of the 

particle i is extended beyond the top lateral boundary and continued through the 

periodic boundary at the bottom of the figure. 

4.11 Open boundary conditions  

It is more intuitive by using the open boundary conditions when dealing with 

problems on some landscapes, like the river or channel. Another advantage is that the 

open boundary can be used to limit the computational domain to our interest; thence it 

saves the memories and computing time. However, in meshfree methods, it is not 

straightforward to apply the open boundary conditions as traditional grid-based methods. 

In SPH scheme with open boundary conditions, particles will be inserted in and 

removed from the computational domain. But it should avoid making perturbations on 

the inner fluid when inserting particles (Federico et al., 2012). Two methods for the 

open boundary are introduced below. 
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4.11.1 Method of specified time interval for 1D Q-A form of SWEs 

Method of specified time interval can be used to evaluate the open boundary 

conditions for 1D SWEs with any channel cross-sectional areas (Chang and Chang, 

2013). Fig. 4.9 illustrates the method of specified time interval. The characteristic 

equations are discretized by the finite difference approximations as following: 
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In addition, the linear interpolation relationship among points C, D and R in Fig. 4.9 are 
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With above Eqs. (4.69)-(4.75), we can know the velocities and water depths at the 

in/outflow boundaries (e.g. points P, L, R, and S in Fig. 4.9). Afterwards, the open 

boundary conditions are solved according to the local Froude number at the in/outflow 

boundaries:  

1.a subcritical inflow condition: the water discharge is prescribed and the water depth  
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is calculated through Eq. (4.77) which is derived from combining Eq. (4.71) and  

Eq. (4.76): 

 p p pQ A u  (4.76) 
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1.b subcritical outflow condition: the water depth is prescribed and the water discharge 

is determined by using Eq. (4.79) which is derived from combining Eq. (4.69) and 

Eq. (4.78): 
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2.a supercritical inflow condition: 

 Both pQ  and ,w pd  are prescribed. (4.65) 

2.b supercritical outflow condition: there is not necessary to specify the boundary 

conditions there. 

The setup of inflow zone and outflow zone is the same with 2D domain (see setion 4.9.2 

and Fig. 4.10).
 

4.11.2 Riemann invariants for 2D u-dw form of SWEs 

In 2D open boundary problems since there are infinite characteristic curves, it is 

difficult to determine the suitable one to be used. Thus to date only the Riemann 
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invariants can be used to solve the 2D open boundary problems in SPH instead of 

solving the discretization of characteristic equations (Vacondio et al., 2012a; Federico et 

al., 2012). In Fig. 4.10, there are two buffer zones filled with open boundary particles. 

One is the inflow zone located at the upstream of the fluid domain, and the other one is 

at the outflow zone of the downstream. Open boundary particles are added to update the 

acceleration and the water depth of the fluid particles as well as apply the boundary 

conditions. Each buffer zone is at least 2h long and will be placed 4 rows of open 

boundary particles for complementing the kernel support of fluid particles near the 

buffer zone. At the inflow zone, the inflow particle which flows across the inflow 

threshold and exits from the inflow region will become a fluid particle. At the same time, 

a new inflow particle is created and inserted into the inflow zone. Similarly, a fluid 

particle which crosses the outflow threshold will become an outflow particle. When the 

outflow particles cross the outlet, they will be removed from computing domain. These 

removed particles can be deleted or stored for reuse. The water depths and velocities of 

the open boundary particles are assigned or updated according to the characteristic 

boundary method with the extrapolation formula as follows (Vacondio, 2010): 
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where the superscript o indicates the in/outflow particles and the superscript f denotes 
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the fluid particles. The kernel iW  corrected by Shepard filter (Eq. (4.44)) is used here 

since that the support domain of kernel function of open boundary particles is not 

complete. 

The open boundary conditions are imposed on these two buffer zones according to 

the characteristic method with Riemann invariants ( )2cv (Toro, 1997) and the local 

Froude number as follows: 

1.a subcritical inflow condition: 
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,, )(
2
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 o

nbnib dvv
g

d , bv  is imposed. (4.63) 

where, nbv ,  and bd  are the normal velocity and the water depth calculated at the 

boundary, and niv ,  is the normal velocity of the inner fluid particles.  

1.b subcritical outflow condition: 

 
)(2, b

oo

nnb ddgvv  , bd  is imposed. (4.64) 

2.a supercritical inflow condition: 

 Both bv  and bd  are imposed. (4.65) 

2.b supercritical outflow condition: 

 
o

nnb vv ,

, o

nb dd   (4.72) 

4.12 Green-Ampt Infiltration module 

The infiltration simulation is one of the phenomena that cause the mass reduction 
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from the runoff flows. In this thesis, the revised Green-Ampt model (Mein and Larson, 

1973; Fiedler and Ramirez, 2000; Liu et al., 2004) is adopted and the equations are 

written as: 
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where F is the cumulative infiltration capacity, f is the infiltration rate, Ks is the 

saturated hydraulic conductivity of the soil (or the infiltration coefficient, it can be the 

function of space, e.g. Ks= Ks(x, y) (Woolhiser et al., 1996)), ∆𝜃 = 𝜃𝑠 − 𝜃𝑖, and 𝜃𝑠 is 

the saturated volumetric water content, 𝜃𝑖 is the initial volumetric water content, and 

𝛹 is the soil suction at the wetting front.  

Water will pond on the surface at the moment when the rainfall intensity starts to 

be greater than the infiltration rate. Thus ponding time tp represents the time between the 

starting of the rainfall and the time at which ponding occurs on the ground surface. At 

ponding time tp, the present cumulative infiltration Fp can be calculated with Eq. (4.73) 

by substituting the infiltration equal to the rainfall intensity, f = R 
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So the ponding time can be calculated by 

 /p pt F R  (4.76) 

The equivalent time origin for potential infiltration after ponding is  
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The real infiltration is obtained by translating the curve back to the right by t0 (Liu et al., 

2004). The infiltration capacity F at the next step is computed by solving the iteration of 

Eq. (4.74) 
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Eq. (4.78) is valid even for the variable saturated hydraulic conductivity Ks. At the end f 

n+1 is determined by using Eq. (4.73).   

4.13 1D SPH sewer module 

Herein we develop a SPH sewer module for simulating the storm sewers based on 

two-component approach (TPA) (Vasconcelos et al., 2006b; Vasconcelos and Weight, 

2007; Sanders and Bradford, 2011). TPA assumes that the unsteady pressurized flow is 

compressible and an elastic behavior for the pipe walls and it is a framework describing 

the flow regime transition that decouples the hydrostatic pressure from surcharged 

pressures occurring only in pressurized conditions. Thus TPA can solve the coupling 

free surface and pressurized flows in pipes by only using SWEs and the addition of the 

surcharge head term. The 1D Lagrangian Q-A form of SWEs associated with TPA for 

prismatic conduits such as pipe is given by: 
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where ds is the pressure head when the pipe is under the pressurized condition of 

full-pipe flow and computed by 
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where a is the acoustic wave-speed and pipeA A A   represents the difference between 

the flow cross-sectional area and the pipe cross-sectional area. The SPH discretization 

of Eq. (4.80) for particle i is  

 

 , s,, s,2

0, ,2 2

D

D

          

ji i i
ij

ji j i

w j jw i i
ii j i i f i

j i j

QQ Q Q
m W

t A A A

d dd d
gA m W gA S S

A A

 
     

 

 
      

 





 (4.82) 

The algorithm for computing ds is as follows (Vasconcelos et al., 2006a). 

1. free surface flow: if no transition occurs, dw is a function of cross sectional area and 

ds is zero throughout the computational domain 

2. free surface flow → surcharge flow: dw is equal to pipe diameter and ds becomes 

positive at that location and computed by Eq. (4.81) (pressurization) 

3. surcharge flow → not surcharge flow:  

a. with ventilation: free surface flow is regenerated (dw = dw (A), ds = 0). 

b. without ventilation: low pressure transient wave is generated, dw is kept at the 

value of pipe diameter and ds becomes negative.  
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Besides, two binary parameters are needed to record the three states for each particle 

(free surface flow, pressure flow, depression flow): sur (surcharge) and vent 

(ventilation): 

1. sur = 1 if surcharge, else sur = 0.  

2. vent = 0 if with ventilation, else vent = 1.  

Thus, for each particle when the state is  

a. free surface flow: sur = 0 and vent = 0 

b. pressure flow: sur = 1 

c. depression flow: sur = 0 and vent = 1 

The surcharge state of a fluid particle is decided by the comparison between the flow 

cross sectional area and the pipe cross sectional area: 

  1 else 0i pipeA A sur sur      (4.83)  

The ventilation state of a fluid particle i is decided by its two neighbor particles, i-1 and 

i+1 in 1D situation such as (multiplicative relationship)  

 
1

1 1

n n n n

i i i ivent vent vent vent

      (4.84) 

We use vent = 0 with ventilation because the state of ventilation should be able to 

transfer. For example, if a fluid particle with undecided state is next to a fluid particle 

with ventilation, it will become ventilation state. Or if a fluid particle without 

ventilation (vent = 1) contacts with a fluid particle with ventilation (vent = 0), then it 
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will become ventilation state too in next step due to Eq. (4.84) (even if this particle 

contacts the non-ventilation particle at the same time). 

4.14 Calculation process 

The calculation process of SPH-SWEs is illustrated in Fig. 4.11. After inputting 

initial conditions from data files, boundary particles are generated according to the 

imposed boundary conditions. Next the code will execute the nearest neighbor particle 

searching and calculate the smoothing kernel function. Afterwards, calculation of 

density and force terms are carried out for the governing equations. At the end, the 

physical quantities are updated by integrating the governing equations, and if the 

smoothing length is variable, it is also updated before entering the next loop. The flow 

charts circled by the dotted line are included in the main loop, and it will repeat until the 

program computation is finished.  
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Fig. 4.1 Definition sketch of SPH with shallow water equations 
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Fig. 4.2 (a) Hydrologic phenomena of rainfall, overland flows and river flows and (b)  

SPH-SWE modeling of hydrologic phenomena. 
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Fig. 4.3 Variations in the smoothing length of a fluid particle with different water depths, (a)   

       the smoothing length h and water depth dw, (b) a smoothing length of 0.5 h and a    

       water depth of 2 dw and (c) a smoothing length of 0.5 h, water depth of dw and  

       additional water depth Δdw caused by rainfall. 
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Fig. 4.4 Linked-list and neighbor particles (SPHysics). 

 

Fig. 4.5 Sweeping through grid cells in 2D domain (SPHysics). 
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Fig. 4.6 Illustration of the ghost particle method. 

 

Fig. 4.7 Illustration of the MVBP method (Vacondio et al., 2012b). 
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Fig. 4.8 Illustration of periodic boundary: lateral periodic boundaries (SPHysics). 

 

Fig. 4.9 Sketch of the method of specificed time interval (Chang and Chang, 2013) 
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Fig. 4.10 Illustration of open boundary condition: inflow zone and outflow zone. 

 

 

Fig. 4.11 The calculation flow chart (Liu and Liu, 2003). 



doi:10.6342/NTU201700904

66 

 

Chapter 5 Model validations and applications 

In this section, the new treatment of using mass-varied particles in the SPH-SWE 

is examined based on three benchmark cases and two applications including uniform 

rainfall over a 1D flat channel, nonuniform rainfall over a 1D three-slope channel, 

uniform rainfall over a 2D experimental plot, Green-Ampt infiltration and 1D pipe flow 

with a hydraulic jump. The convergence of the particle number is explored for the first 

and third cases because the steady simulated results are given in these two cases. In 

addition, we investigate the accuracy of the simulated results compared to the exact 

solutions, the measured data and the simulated solutions resulting from mesh-based 

numerical models. It should be emphasized that a remeshing procedure proposed by 

Chaniotis et al. (2002) is performed at each step in the first four cases to provide the 

physical information regarding the particles on a dry bed. Following the remeshing 

procedure, the positions of the fluid particles are reinitialized on a uniform grid at the 

end of each step. Then, the physical quantities of the reinitialized fluid particles are 

updated via Eq. (3.11). All of the numerical simulations are performed using an Intel(R) 

Core(TM) i7-2600 CPU 3.4 GHz PC equipped with 4GB RAM. 

To investigate the convergence and numerical accuracy of the proposed treatment, 

the relative L2 norm error based on the velocity is calculated as follows: 
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where N is the number of uniform grids or measured points and the superscript ref 

denotes the reference solution obtained from exact solutions, measured data, SPH-SWE 

simulated solutions at the highest spatial resolution, or mesh-based simulation solutions. 

5.1 Uniform rainfall over a 1D flat channel 

The first case study is uniform rainfall over a 1D 4 m-long flat channel with a 

slope of 0.05 (Delestre et al., 2009). The total simulation time is 250 s. A rainfall 

duration from t = 5 s to t = 125 s is defined for rainfall with a constant intensity of 50 

mm/h. This rainfall is converted to runoff within the region of 0 to 3.95 m in the channel. 

Initially, the water depth of each fluid particle is set to be an extremely small water 

depth of 10
-4 

cm. A fixed wall is established at the upstream boundary, and a free 

outflow boundary condition is imposed downstream. A Darcy friction factor of 0.15 is 

adopted to compute the friction force on a fluid particle. 

5.1.1 Convergence analysis of the particle number 

Particle numbers of 50, 100, 200, 400 and 800 (i.e., the initial particle spacings 

0
x  are 0.08, 0.04, 0.02, 0.01 and 0.005 m, respectively) in the computational domain 

are considered. The reference velocities are obtained by the proposed SPH-SWE 

treatment at the highest spatial resolution (800 particles used). The L2 norm errors based 
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on the velocity are calculated in 41 uniform grids with a distance of 0.1 m at t = 60 s 

(during the steady stage). Table 5.1 shows the L2 norm errors based on the velocities at 

different particle numbers. The L2 norm error decreases as the particle number increases. 

The convergence rate is 0.76, and the proposed treatment in this case is approximately 

convergent to  0.76

0O x . The simulated SPH-SWE results for an initial particle 

number of 200 are presented in the following numerical accuracy discussion. 

5.1.2 Numerical accuracies of discharge, water depth, velocity and Froude number 

A comparison of the simulated results and data measured by Delestre et al. (2009) 

is displayed in Fig. 5.1 based on the outlet hydrograph. The simulated results exhibit 

good agreement with the measured data. The outlet unit discharge remains at 6.6× 10
-5

 

m
2
/s during the period from t = 60 s to t = 125 s (the so-called steady stage of the 

hydrograph). Thus, we present the simulated profiles of water depth, velocity and the 

Froude number in the flat channel at t = 10 s (before the steady stage), 60 s (during the 

steady stage) and 160 s (after the steady stage) in Fig. 5.2 The exact solutions in the 

steady stage in Fig. 5.1 derived by Delestre et al. (2009) are also given in the figures, 

and the result of using the original smoothing length updating formula (Eq. (4.16)) is 

shown in Fig. 5.2a. Using Eq. (4.16), the error is larger when the water depth is small 

and the error gradually increases in the upper half of the channel. When the mass 

increase becomes sufficiently large, it is difficult for Eq. (4.16) to obtain the correct 
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solution. However, the new smoothing length updating formula (Eq. (4.28)) yields 

results that match the exact solutions very well. Figs. 5.2a and 5.2b show that the water 

depth and velocity in the channel increase before the steady stage, reach a maximum in 

the steady stage, and decrease after the steady stage. The simulated profiles of the 

Froude number shown in Fig. 5.2c indicate that the flow during the runoff process is 

supercritical, and the Froude number is approximately 1.5. In summary, the mass-varied 

particle treatment can be effectively used in the entire rainfall-runoff modeling process. 

5.2 Nonuniform rainfall over a 1D three-slope channel 

The experimental model of nonuniform rainfall over a three-slope channel 

proposed by Iwagaki (1955) is adopted as the second case study to explore the 

influences of terrain, rainfall duration and rainfall spatial distribution on the hydrograph. 

The configuration is given in Fig. 5.3. A 24 m-long flume with a Manning’s roughness 

coefficient of 0.009 sm
-1/3

 is divided into three sections with equal lengths of 8 m. From 

the upper to lower ends, the slopes of the three sections are 0.020, 0.015 and 0.010 in 

sequence. Constant rainfall intensities of 389, 230 and 288 cm/hr are imposed in the 

upper, middle and lower sections, respectively. A fixed wall is located at the upstream 

boundary, and a free outflow boundary condition is specified downstream. The initial 

particle spacing is 0.1 m (240 particles), and an extremely small water depth of 10
-4 

cm 

is assigned as the initial water depth of each fluid particle. Rainfall durations of 10 s, 20 
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s and 30 s are considered herein. 

Figures 5.4a to 5.4c give the temporal evolution of the outlet hydrographs of the 10 

s, 20 s and 30 s rainfalls, and Figs. 5.4d to 5.4f show the temporal evolution of the outlet 

water depths associated with the 10 s, 20 s and 30 s rainfalls. The simulated results are 

in agreement with the measured data in both the ascending and recession limbs of the 

profiles. In addition, every profile of unit discharge and water depth at the outlet 

displays a protrusion at approximately t = 30 s. The magnitude of the protrusion 

increases as the rainfall duration increases. The simulated results are relatively 

consistent with the measured data. This protrusion is formed when the upstream flow 

with a larger momentum catches up to the downstream flow with a smaller momentum. 

At the location of the flow convergence, the water depth increases abruptly, which 

results in the formation of protrusions in the outlet hydrograph and the water depth 

profile. Figures 5.5a to 5.5c then illustrate the temporal evolution of the Froude number 

at the outlet for 10 s, 20 s and 30 s rainfalls. The outlet flows of the three rainfall 

durations change from subcritical to supercritical at approximately t = 10 s. Overall, the 

new proposed treatment exhibits good performance for the problem of nonuniform 

rainfalls of different rainfall durations over a 1D three-slope channel. 

5.3 Uniform rainfall over a 2D plot with complex topography 

In the third case, the proposed treatment is validated based on a rainfall experiment 
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performed by Tatard et al. (2008). This experiment was carried out over a 10 m × 4 m 

plot with a slope of 1% in the longitudinal direction, as shown in Fig. 5.6. The rainfall 

duration was 2 hours and 15 minutes, with a constant intensity of 70 mm/h. In the 

numerical simulations, a Manning’s roughness coefficient of 0.02 sm
-1/3

 is used to 

calculate the bed friction imposed on the fluid particles. A fixed wall is established at 

the upstream boundary, and a free outflow boundary condition is established 

downstream. An extremely small water depth of 10
-4 

m is prescribed as the initial water 

depth of each fluid particle. 

5.3.1 Convergence analysis of the particle number 

Five initial particle numbers of 1,000, 4,000, 16,000, 64,000 and 256,000 (i.e., 

initial particle spacings 
0

x  of 0.2, 0.1, 0.05, 0.025 and 0.0125 m, respectively) are 

adopted to perform the convergence analysis. The reference velocities are obtained by 

the proposed treatment at a highest spatial resolution (256,000 particles used) to 

calculate the L2 norm errors based on the water velocity using Eq. (5.1). The L2 norm 

errors of different particle numbers are calculated in 189 uniform grids with a distance 

of 0.5 m, and the errors are presented in Table 5.2. The L2 norm error decreases as the 

particle number increases. The convergence rate based on the velocity is 1.38. The 

proposed treatment for this case is approximately convergent to  1.38

0O x . The 

simulated results based on 16,000 particles are then used to analyze the accuracy. 
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5.3.2 Numerical accuracies of discharge, water depth, velocity and Froude number 

The numerical accuracy of the proposed treatment for the third case is tested 

against the measured velocities of Tatard et al. (2008). Applying Eq. (5.1) with the 62 

measured velocities, the L2 norm error based on the velocity is 0.0982. Figure 5.7 shows 

the correlation between the simulated and measured velocities. The velocities simulated 

using the proposed treatment exhibit good agreement with the measured velocities. 

We also compare the proposed SPH-SWEs treatment to two mesh-based schemes. 

One is a finite difference method (FDM) adopted by Tatard et al. (2008), and the other 

is a Mixed-Hybrid Finite Element method (MHFEM) applied by Mügler et al. (2011). 

The L2 norm errors based on the velocities determined using the FDM and the MHFEM 

are both 0.1200. Therefore, the present study provides better numerical accuracy 

compared to the two mesh-based schemes. 

In addition, Figures 5.8a to 5.8c present the simulated contours of water depth, 

velocity and Froude number. The deeper the water depth is, the larger the velocity in the 

main rill, as shown in Figs. 5.8a and 8b. Fig. 5.8c shows that the runoff includes mixed 

flow regimes of both subcritical and supercritical flows. Most of the subcritical flows 

are distributed in the upper half of the runoff area, while the flows in the main rill are 

supercritical. The higher Froude numbers appear in the offshoots of the rill. Here, we 

show the capacity of SPH modeling with mixed flow regimes caused by rainfall over 
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complex terrain. 

5.4 Green-Ampt infiltration  

Previous three case studies are the situations of fluid mass addition, and this forth 

is conducted to test the situation of fluid mass reduction. This overland flow with 

infiltration event on a plane was first carried out by Woolhiser et al. (1996). 

Green-Ampt infiltration model is adopted for the simulations and the related parameters 

are given as follows: the wetting front suction 𝛹 = 44 cm, the volumetric moisture 

content deficit (capacity minus initial) at the wetting front ∆𝜃 = 0.25 and the effective 

hydraulic conductivity Ks = 3.53 × 10
-4 

cm/s (Fiedler and Ramirez, 2000). The rainfall 

intensity is 177.6 mm/h, and the rainfall duration is 20 min. The plane is 50 m-long and 

20 m-wide with bed slope = 0.04 and its Manning friction coefficient is 0.1 sm
-1/3

 . The 

numerical simulation was performed using initial particle spacing 0 0x y   = 0.25 m 

and initial time step 0t = 0.1 s. 

The simulated discharge at the outlet of plane is displayed in Fig. 5.9 and 

compared with the outcome of Fiedler and Ramirez (2000). In general the two results 

are close except the peak values. In 2D SPH-SWEs model the discharge is obtained by 

averaged integral over the variables of (u, v, dw) while the values of (u, v, dw) at certain 

location is calculated with SPH kernel interpolation. Not only the simulated values of (u, 

v, dw) are affected by the wall boundary condition but also the support domain of the 
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kernel interpolation is truncated by the wall boundary even if the modification of 

truncation is given. Thus comparing with the 1D result of Fiedler and Ramirez (2000), 

the 2D result with SPH-SWEs has lower peak values. This case study displays that this 

mass-varied SPH-SWEs model can correctly handle the fluid mass addition and 

reduction at the same time.   

5.5 1D pipe flow with SPH-SWEs 

In this section the basic ability of the 1D SPH-SWEs for sewer module is 

examined. This is a 1D steady case that both the free surface flow and pressurized flow 

are coexisted and contacted by a hydraulic jump. A pipe with constant cross-sectional 

circular area has three parts from the upstream end to the downstream end: a 2 m-long 

horizontal section, a 4 m-long inclined section with an angle 10
o
 between the horizontal 

line and a 2 m-long horizontal section. The inner diameter of the pipe is 0.22 m. A 

constant inflow discharge 0.03 m
3
/s is preserved at the inlet of the upstream end and a 

constant piezometric head 0.554 m is imposed as the downstream end boundary 

condition. The Manning frication coefficient is zero sm
-1/3

 (Aldrighetti, 2007; Casulli 

and Stelling, 2013). The initial particle spacing 0x  is 0.01 m and the initial time step 

0t  is 0.003 s.  

Figure 5.10 demonstrates the simulated result of SPH-SWEs. The upstream end of 

the pipe is a free surface flow with the water depth around 0.15 m. The water flows 
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along the pipe and chokes at the downstream end around which a hydraulic jump occurs 

and the flow becomes a pressurized flow. The water surface curve matches the 9 

experimental measured points. However the hydraulic jump is still not at the same 

position of the experiment result (Aldrighetti, 2007). Basically this 1D SPH-SWEs 

sewer module is fine but still needs modifications for the better performance and more 

tests for verification. For the ongoing work, the mass transfer mechanism between the 

2D rainfall-runoff module and the 1D sewer module will be developed. 
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Table 5.1  

The L2 norm errors based on the velocity at t = 60 s for four different particle numbers 

in the first case study. 

Number of particles L2 norm error  

 (1) 50  0.0711 

 (2) 100  0.0613 

 (3) 200  0.0506 

 (4) 400  0.0131 

 (5) 800  - 

 

Table 5.2 

The L2 norm errors based on the velocity for four different particle numbers in the third 

case study. 

Number of particles L2 norm error 

 (1) 1000  1.0002 

 (2) 4000  0.9175 

 (3) 16000  0.5658 

 (4) 64000  0.0490 

 (5) 256000  - 
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Fig. 5.1 The simulated and measured hydrographs of the case study in section 5.1. 
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Fig. 5.2 The simulated profiles of (a) water depth, (b) velocity and (c) Froude number 

along the channel at t = 10 s, 60 s and 160 s in the case study in section 5.1.
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Fig. 5.3 The profile of bed elevation of the case study in section 5.2. 
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Fig. 5.4 The simulated hydrography and the simulated profiles of water depth in the    

        case study in section 5.2, (a) and (d) rainfall duration = 10 s, (b) and (e) 

rainfallduration = 20 s and (c) and (f) rainfall duration = 30 s. 
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Fig. 5.5 The temporal evolution of the Froude number at the outlet of the second case   

study, (a) a rainfall duration = 10 s, (b) rainfall duration = 20 s and (c) rainfall 

duration = 30 s.
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Fig. 5.6 The topography of the 2D plot of the case study in section 5.3.
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Fig. 5.7 The correlation between the simulated and measured velocities at the 62  

measured points of the case study in section 5.3.
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Fig. 5.8 The simulated contours of water depth, velocity and Froude number of the  

case study in section 5.3.
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Fig. 5.9 The simulated discharge by SPH-SWEs with Green-Apmt infiltration. 
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Fig. 5.10 The simulated result of SPH-SWEs for 1D pipe flow with TPA. 
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Chapter 6 Conclusions  

In this thesis, a novel SPH-SWEs treatment that uses mass-varied particles is 

developed to model the rainfall-runoff process. Mass-varied particles are used for the 

first time in SPH to simulate mass-varied systems. To obey the conservation laws during 

a rainfall event, the particle mass should vary. Furthermore, by changing the mass of the 

released particles, additional particles do not need to be added, as the total mass of the 

system increases during the simulations. Evaluating water depths via iterations can also 

avoid solving additional source terms of mass variation. However, the original 

smoothing length update formula yields incorrect values, as the change in water depth is 

caused by mass variations instead of changes in the relative particle positions. Therefore, 

a modified smoothing length updating formula is derived based on different 

assumptions. The combined use of mass-varied particles and the modified smoothing 

length formula for modeling rainfall-runoff processes is the major focus of this thesis.  

Three benchmark case studies and two applications are then used to assess the 

abilities of the proposed treatment. The numerical results demonstrate that the outlet 

hydrograph, water depth and velocity field exhibit good agreement with the exact 

solutions and experimental data. Additionally, the proposed treatment can address every 

stage of uniform/nonuniform rainfall events. The runoff “catch-up” phenomenon due to 
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the difference in flow momentums can also be observed in the study. The simulated 

Froude numbers are reasonably predicted, even for complex bed topography. For the 

modeling of fluid reduction during the rainfall-runoff processes, the adopted infiltration 

model has good performance with mass-varied SPH-SWEs. The basic functions of the 

1D sewer module have also been constructed although modifications are still needed for 

improvements. The mass transfer mechanism between the 2D rainfall-runoff module 

and the 1D sewer module is an ongoing work for the future study. In general it can be 

concluded that the robustness and reliability of the newly proposed SPH-SWEs 

treatment have been proven for modeling rainfall-runoff processes in the presence of 

hydraulic jumps, dry/wet bed flows and supercritical/subcritical/transcritical flows. As a 

result, this study has extended the range of SPH-SWEs applications from only modeling 

discharge flows in open channels or floodplains without rainfall to modeling 

rainfall-runoff processes in watersheds. 
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