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中文ᄔ要

鍺銻碲化合物 (Ge-Sb-Te compound) 因其相變的特質，最早被

應用於非揮發性記憶體 [47]。近年來，該類化合物應用於熱電

(thermoelectric) 方面的可能性亦被探討。經實驗上證實，經由適當

的製程方式，該化合物的熱電優值 (zT)可在約攝氏 300度的操作環境

下增加至 2.5以上，表現極佳 [45]。

本研究旨在使用第一原理計算，以立方碲化鍺 (cubic GeTe)晶體為

基底，探討立方銻碲鍺化合物的晶體結構、電子結構、傳輸性質，以

及銻在該化合物中扮演的角色。我們首先說明了立方碲化鍺極易產生

鍺空缺 (Ge vacancies)和銻取代缺陷 (Sb substitutions)以形成銻碲鍺化

合物。接著，我們發現銻碲鍺化合物能在存在大量缺陷之情況下維持

晶體結構之穩定性。而後，我們發現該系統的能帶結構在有大量缺陷

的情況下，仍可與完美的立方碲化鍺晶體之能帶結構相去不遠。這些

證據說明，缺陷在鍺銻碲化合物中扮演調整費米能級的功能。也因為

如此，我們提出剛性能帶模型，利用完美的立方碲化鍺晶體之能帶結

構進行波茲曼方程式的計算，以估計鍺銻碲化合物的傳輸性質。最後，

在與實驗結果比對後，我們推測：對於鍺銻碲薄膜，其生長的基板可

能是決定其熱電性質的一大重要因素。

銻碲鍺化合物是極有潛力的熱電材料，本研究為未來該化合物方面

的研究奠定了基礎。

關鍵字：熱電、能量學、能帶展開、剛性能帶模型、波茲曼傳輸理

論、第一原理
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Abstract

Ge-Sb-Te (GST) compounds have been known for their application to

non-volatile memories due to their good phase change property [47]. Re-

cently, their applicability to thermoelectric usage has also been discussed. It

has been shown that by proper preparation procedures, their thermoelectric

figure of merit (zT) can be boosted over 2.5 near 300◦C [45].

In this study, we adopt first-principles calculations and use cubic-phase

GeTe as an example to investigate the crystal structure, electronic structure,

transport properties, and the role of Sb in cubic GST. First, we show that a

considerable amount of Ge vacancies and Sb substitutions are both easily in-

troduced into cubic GeTe to form cubic GST. Second, we find that the crystal

structure of cubic GST can sustain a large amount of defects. Third, we show

that the band structure of cubic GST remains similar to that of cubic GeTe

in the presence of many defects. These findings indicate that the role of the

defects in GST is largely tuning the Fermi level. Thus, we adopt a rigid band

model and use the cubic GeTe band structure to estimate the transport prop-

erties of cubic GST. Finally, by directly comparing our calculational results

to experiment results, we conclude that the substrate plays a substantial role

in determining the transport properties of GST thin films.

GST is a very promising type of thermoelectric materials. We believe that

this study provides a guideline for the future development on GST.

Key words: thermoelectric, energetics, band unfolding, rigid band model,

Boltzmann transport theory, first-principles
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Chapter 1

Introduction

1.1 Thermoelectric materials

Energy usage is crucial for the human society. While electricity is a form of energy

that can be well manipulated and exploited by current technologies, heat is still often un-

controllable and hard to make use of. Thermoelectric materials provide a way to alleviate

this problem [4,51]. Through the Seebeck effect [43], thermoelectric materials are capable

of generating electrical current (or voltage) with the presence of a temperature gradient.

In other words, they can transform heat into electricity.

For a thermoelectric material to have a favourable energy conversion efficiency, one

usually wants it to fulfil three requirements. First, large Seebeck coefficient (S)—in order

to achieve larger voltage per unit temperature gradient; second, large electrical conduc-

tivity (σ)—in order to have more current generated per voltage; and third, small thermal

conductivity (κ)—in order to maintain the temperature imbalance of the system. All of

these requirements can be summarized as a measure of the dimensionless thermoelectric

figure of merit, which is defined as

zT = S2σ

κ
T, (1.1)

where T is the temperature, and the numerator P = S2σ is called the power factor. There-

fore, one wants to create thermoelectric materials with zT as large as possible. However,

1
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note that temperature is one of the factors in zT ; this implies that various thermoelectric

materials may be suitable for different operating temperature ranges.

While the zT values of conventional thermoelectric materials are often below 1.0 [24,

30,51], they can be boosted by band structure engineering and thermal conductivity reduc-

tion, which are often achieved by proper alloying or doping [1,43,51]. The lead telluride

(PbTe) based thermoelectric materials are a good example to demonstrate this process of

improvement.

PbTe is a IV-VI compound that crystalizes into a cubic rocksalt structure (Fm3̄m

group) [3, 10]. First, it was reported that PbTe has a peak zT only near 1.0 at about

650K [10, 13, 30]. However, many kinds of dopants have been explored, such as Tl [15],

Mg [12], Na [32], and Se [12, 33]. It was demonstrated that the zT of PbTe can be effec-

tively improved by the doping of additional elements. Moreover, it was reported that bulk

PbTe can reach an exceptionally high zT of 2.2 at 800K if doped with Ag and Sb [16].

This result further triggered people’s interest in the role of Sb in the PbTe system [9, 17].

Because of the encouraging improvements and the simple crystal structure that facilitates

further analysis, PbTe has been a popular base material for thermoelectric research in the

past decade.

1.2 Antimony-doped germanium tellurides

Germanium telluride (GeTe), a group IV telluride like PbTe, however, has not received

that much of attention. Similar to PbTe, GeTe has a cubic rocksalt structure (β-phase) at

high temperature. Nevertheless, GeTe transforms into a rhombohedral phase (α-phase)

below 700K [3, 38]. It is noteworthy that Ge vacancies are easily formed in this system,

which leads to the highly deviated stoichiometry and p-type behavior in GeTe [11, 22].

The thermoelectric property of GeTe-based materials has recently captured people’s

interest. It is reported that GeTe can have zT over 0.8 near 720K, and its power factor out-

performs other tellurides [22]. To improve its thermoelectric performance, some dopants

have been studied for GeTe as well, such as Bi [23,46], Se [49], and Mn and Sn [50]. The

zT value was boosted over 1.1 and even to 1.9 between 720K and 800K [23,46, 49, 50].

2
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Recalling that Sb doping has played a curious role in PbTe system, it is not surprising

that Sb may likewise play an interesting role in GeTe. Indeed, although germanium anti-

mony tellurides (Ge-Sb-Te or GSTs) have been known for their application to non-volatile

memory [47], their thermoelectric performance was only investigated recently [48]. In

particular, GeTe-rich GST systems were reported being capable of having zT from 1.3 to

1.85 in the temperature range of 620-720K [35, 39, 40]. Later on, Chen et al. [7] pointed

out that the high-T cubic phase of GST usually possesses better thermoelectric property

than the low-T rhombohedral phase, and suggested that preparing GST into thin films

may stabilize the cubic phase down to a lower temperature regime. Recently, Wong et al.

successfully created cubic phase GeTe-rich GST thin films with a remarkable zT over 2.5

at 570K [45].

From the results described above, we see that GST have various advantages in ther-

moelectric applications. First, the thermoelectric property of GSTs can sometimes surpass

that of PbTe. Second, GSTs can function well at lower operating temperature. And third,

unlike PbTe, GSTs do not contain toxic elements, reducing the environmental concerns.

These merits indicate that GSTs are versatile thermoelectric materials and worth further

investigation.

Although GeTe has been well understood, the effect of Sb doping in cubic GST has

not been investigated theoretically. Therefore in this work, we use β-GeTe as an exam-

ple and perform first-principles calculations to investigate the band structure and crystal

structure of cubic GST. Since experiment results show that Ge atoms, Ge vacancies (de-

noted VGe, V for “vacancy”), and Sb atoms (denoted SSb, S for “substitution”) share the

same sites without explicit ordering [7,8,26–28,39,42], we only consider the cases where

both VGe and SSb are on Ge-sublattice. Under this setting, we show that VGe and SSb fa-

vor the presence of each other, which explains the extended stoichiometry observed in

experiments [45]. Moreover, we discover that the function of these defects is mainly tun-

ing the Fermi level while leaving the system with GeTe characteristics. Based on these

observations, it is demonstrated that the electronic transport properties of cubic GST can

be effectively estimated from the β-GeTe electronic structure. Finally, by comparing our

3
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computed results to experiment, we point out the relevance of the substrate to the transport

properties of GST films.

4
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Chapter 2

Computational Methodology

2.1 First-principles calculations

Density functional theory (DFT) calculations are performed to investigate atomic re-

laxations and electronic structures. We use the Vienna Ab initio Simulation Package

(VASP) [19,20] with the electron-ion interaction described by projector augmented wave

(PAW) [6, 21] pseudopotentials, and the exchange-correlation functional is chosen with

the generalized gradient approximation (GGA) [34].

The equilibrium lattice constant of the primitive cell (PC) for cubic GeTe is first ob-

tained, and then supercells (SC) are constructed for further investigation. Spin-orbit cou-

pling (SOC) is not included for atomic relaxation calculations, whereas it is included in

all self-consistent calculations. Specifically for the atomic relaxation calculations of SC,

cell volumes are constrained. After careful convergence tests, the plane-wave energy cut-

off is set to be 200 eV for all calculations, and a Γ-centered 12×12×12 Monkhorst-Pack

grid is adopted for the k-mesh of PC calculations. The k-meshes for SC calculations are

then obtained by scaling directly from the PC k-mesh. For example, a 2×3×3 SC will be

calculated with a Γ-centered 6×4×4 Monkhorst-Pack grid.

5
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2.2 Band unfolding

2.2.1 Band visualization problem

The size of first Brillouin zone (FBZ) is inversely proportional to the size of the cell

to which it corresponds. In particular, SC FBZ are smaller than that of (1×1×1) PC, so

that the SC bands will look like they are “folded”, causing difficulty in visualizing and

comparing band structures.

To tackle this problem, we use the state-of-the-art zone-unfolding technique as imple-

mented in the BൺඇൽUP [29] code to obtain the representation of SC bands in PC FBZ.

The method was originally proposed by Popescu and Zunger in Ref. [37]. We will briefly

introduce the main idea in the next subsection.

2.2.2 Band unfolding principles

According to Bloch’s theorem [2], for a periodic quantum system described by a given

unit cell, its eigenstates can be sufficiently characterized by two quantum numbers: n, the

“band index”, and k, the “crystal momentum vector” that lies in the FBZ defined from

that unit cell.

Suppose that a commensurate SC is constructed using a PC lattice. That is, the PC

lattice vectors {ai} and the SC lattice vectors {Aj} are related through an invertible trans-

formation matrix M like


A1

A2

A3

 =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 ·


a1

a2

a3

 , Mij ∈ Z. (2.1)

Let {|kin⟩}i,n and {|Kjm⟩}jm be the sets of eigenstates for the PC system and the SC

system, respectively. It can then be shown that for any j, |Kjm⟩ can be expressed as a

linear combination of |kin⟩ [5, 44]. That is,

|Kjm⟩ =
∑
i,n

F (ki, n;Kj, m)|kin⟩ ∀j, (2.2)

6
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where F (ki, n;Kj, m) is the contribution to |Kjm⟩ from |kin⟩.

We now seek a way to map the calculated |Kjm⟩ onto the PC FBZ. Since from Eq. 2.2,

it is obvious that a |Kjm⟩ corresponds to multiple |kin⟩, the mapping is expected to be a

weighted one-to-many mapping. We can first define a spectral weight function as

PKjm(ki) =
∑

n

|⟨Kjm|kin⟩|2, (2.3)

which represents the contribution of |Kjm⟩ to a specific ki. We then define the spectral

function,

AKj
(ki, E) =

∑
m

PKjm(ki)δ(Em(Kj) − E), (2.4)

whereEm(Kj) denotes the energy eigenvalue of |Kjm⟩. This spectral function reflects the

amount of contribution from the SC eigenstates at Kj in the SC FBZ to any point (ki, E)

in the PC FBZ. By summing over spectral functions of every Kj ,

A(ki, E) =
∑

j

AKj
(ki, E), (2.5)

we then recover the effective SC band structure in PC FBZ, where the “intensity”A(ki, E)

indicates the contribution from all SC eigenstates to the point (ki, E).

2.3 Transport property calculations

2.3.1 Introduction

When it comes to thermoelectricmaterials, transport properties are especially of our in-

terest. Herewe adopt Boltzmann theory calculations as implemented in theBඈඅඍඓTඋൺP [25]

code to determine the electron-contributed transport properties with a given band struc-

ture, Fermi level, and temperature. Note that since these calculations involve considerable

amount of approximations, it is usually considered satisfactory if the computed values and

experimentallymeasured values agree within the same order of magnitude. Wewill briefly

7
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introduce how to compute the transport quantities in the following. For more details, one

can see Ref. [2, 14, 52].

2.3.2 Quantities of interest

In the presence of a temperature gradient∇T and an electric fieldE, the electric current

density J and the electronic heat current densityQ of a system can be written as [2,14,25,

36, 41]:

J = σ(E − S∇T ), (2.6a)

Q = TσSE − K∇T, (2.6b)

where σ, S and K (not to be confused with theKj in section 2.2.2) are rank-two tensors.

Here, σ is the electrical conductivity, S is the Seebeck coefficient, and the electronic

thermal conductivity is defined as the heat current density per unit temperature gradient

in the absence of a charge current:

κe = − ∂Q
∂(∇T )

∣∣∣∣∣
J=0

= K − TσS2. (2.7)

These transport quantities can be measured directly in experiment, hence we aim for esti-

mating them from calculations.

2.3.3 Boltzmann equation

When a system is in thermal equilibrium at temperature T , the electron occupation

follows the Fermi-Dirac distribution:

f0(En(k), µ, T ) = 1
e(En(k)−µ)/kBT + 1

, (2.8)

where n is the band index and k is the electron wave vector. However, transport properties

occur when a system is out of thermodynamic equilibrium, hence the electron occupation

is perturbed from Fermi-Dirac distribution.

8
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A naïve semiclassical approach to this situation is to assume that the system will be

driven into a stationary (instead of equilibrium) distribution by electron collisions [2].

The Boltzmann theory then states that, for a state |kn⟩, the stationary nonequilibrium

distribution at position r and time t should satisfy the Boltzmann equation:

∂f

∂r
· v(n,k) + 1

~
∂f

∂k
· F + ∂f

∂t
=
[

∂f

∂t

]
coll

, (2.9)

where [∂f/∂t]coll is the collision term,

v(n,k) = 1
~

∂En(k)
∂k

(2.10)

is the group velocity of electrons, and F is the external force. If the external force is

provided by an electric field E, then

F = −eE (2.11)

Some points regarding Eq. 2.9 should be noted. First, f should have the quantum

numbers (n,k) as its arguments. Second, the equation can be evaluated for every r, n, k

and t. Third, the equation does not take into account interband transitions.

We will next explain how to cast Eq. 2.9 into a more favourable form.

2.3.4 Relaxation time approximation

There is a problem with Eq. 2.9, which is the unknown of the expression for the colli-

sion term [∂f/∂t]coll. Here we introduce the “relaxation time” approximation, which has

been proved to be efficient to counter this problem in many occasions.

In this approximation, if the temperature is assumed uniform throughout the system

(note that uniform temperature does not imply thermal equilibrium), then the collision

term is approximated as [14]

[
∂f

∂t

]
coll

= −f − f0(En(k), µ, T )
τnk(r)

, (2.12)

9
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where f0 is the Fermi-Dirac distribution as defined in Eq. 2.8, and τnk(r) is the semi-

empirical relaxation time function which characterizes the time needed for the system to

reach f0 distribution if the external force F is suddenly removed.

With this approximation, the Boltzmann equation Eq. 2.9 is then shaped into a solvable

differential equation.

2.3.5 Temperature gradient

In Eq. 2.12, the T in f0 is independent of position. That is, we are considering a system

that is being driven into a stationary nonequilibrium state where temperature is uniform.

If we want to consider a system kept in a temperature gradient, slight modification is

required.

We now let the temperature become a function of position. Because the Fermi level µ

depends on local electron density and local temperature, which both depend on position, µ

is also a function of position. The thermal equilibrium Fermi-Dirac distribution function

hence becomes local [14]:

f0(En(k), µ(r), T (r)) = 1
e(En(k)−µ(r))/kBT (r) + 1

. (2.13)

By combining Eq. 2.9, Eq. 2.11, Eq. 2.12, and Eq. 2.13, we have the modified Boltzmann

equation:

∂f

∂r
· v(n,k) − e

~
∂f

∂k
· E + ∂f

∂t
= −f − f0(En(k), µ(r), T (r))

τnk(r)
. (2.14)

It is now possible to obtain the distribution function f for a system in the presence of an

electric field and a temperature gradient by solving Eq. 2.14.

2.3.6 Expressions of transport quantities

It can be shown that by assuming a small temperature gradient and a small electric

field, and using Eq. 2.14 within appropriate approximations, we will derive the following

10
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expressions for the transport tensors [14, 25, 36, 41]:

σαβ(µ, T ) = e2
∫

dE

(
−∂f0(E, µ, T )

∂E

)
Σαβ(E), (2.15a)

[σS]αβ(µ, T ) = e

T

∫
dE

(
−∂f0(E, µ, T )

∂E

)
(E − µ)Σαβ(E), (2.15b)

Kαβ(µ, T ) = 1
T

∫
dE

(
−∂f0(E, µ, T )

∂E

)
(E − µ)2Σαβ(E), (2.15c)

where the α and β are Cartesian indices, and

Σαβ(E) = 1
Ω
∑
n,k

vα(n,k)vβ(n,k)τnkδ(E − En(k)) (2.16)

is the transport distribution function (TDF).

It is inevitable that the calculated transport tensors will contain relaxation time τnk,

and the determination of τnk is hard and beyond the scope of this thesis. However, we can

apply further simplification by assuming a constant relaxation time [25, 36], that is,

τnk(r) = τ ∀n, r,k. (2.17)

In this way, although the electrical conductivity σ and the electronic thermal conductivity

κe still contain the relaxation time τ , the τ in σ and Σ in Eq. 2.15b cancel out, so that the

Seebeck coefficient S can be derived without ambiguity.

With these equations, we can thus use the band structure of a system to compute its

transport properties at a given Fermi level and temperature.

11
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Chapter 3

Theoretical analysis of cubic GST

system

3.1 Introduction

To simulate the cubic GST system, we first reproduce the data and PC of β-GeTe, and

then construct SC to investigate the influence of the presence of VGe and SSb on the crystal

structure and electronic structure. In Ref. [11], Edwards et al. already had a very detailed

discussion of the intrinsic defects in the GeTe system, including vacancies and antisite

defects. Some results regarding VGe in this work will be compared to their work. As for

the transport properties, we will make estimates and then extensively compare them to the

experimental work on GST thin films by Wong et al. in Ref. [45].

Figure 3.1: The conventional cell of cubic rocksalt structure β-GeTe (Fm3̄m group),
where the purple balls are Ge atoms, and the yellow balls are Te atoms.

12
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Figure 3.2: The band structure of β-GeTe with projections onto (a) Ge s- and p-orbitals,
and (b) Te s- and p-orbitals. The high symmetry points according to which the band
structure is drawn are defined in A.1.
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Figure 3.3: The density of states (DOS) for β-GeTe, where (a) shows the projections onto
Ge s- and p-orbitals, (b) is the projections on Te s- and p-orbitals. The black curves are
the total DOS.
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3.2 Electronic structure of β-GeTe

The crystal structure of β-GeTe is illustrated in Fig. 3.1, where the space group sym-

metry is Fm3̄m. The relaxed lattice parameter (for conventional cell) is 6.01 Å. The band

structure is plotted in Fig. 3.2, and the (projected) density of states is plotted in Fig. 3.3.

All of these are consistent with previous work [11,31,38]. Note that in the following anal-

yses, we will be particularly interested in the bands right below the valence band maxima

(VBM). These bands are associated with the p-orbitals of Te atoms as shown in both the

projected band structure plot (Fig. 3.2) and the projected density of states plot (Fig. 3.3).

3.3 Energetics

Using the PC obtained in Sec. 3.2, we construct SCs to evaluate the change in the total

energy when defects are inserted. The total energies are calculated after the structures are

fully relaxed.

3.3.1 Configuration of a VGe and a SSb

We first consider the energy dependence on the distance between VGe and SSb. We

calculate the total energy of a 6 × 6 × 6 SC containing one VGe and one SSb, where they

are arranged as first to fifth nearest neighbors on the Ge-sublattice. The results suggest that

VGe and SSb may not have a preferred configuration. This information helps us organize

the calculation carried out in the next subsection.

3.3.2 Formation of defects

Here we investigate the formation energies of the defects. A 4 × 4 × 4 SC is adopted,

and the total energies of a perfect SC, SC with a single VGe, SC with a single SSb, and

SC with a VGe–SSb pair are calculated and listed in Table. 3.1. The total energy of the

perfect SC is obtained by scaling directly from the total energy of PC. In the case where

VGe–SSb pair is presented, they are arranged as nearest neighbors on the Ge-sublattice for

15
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Table 3.1: Total energies of SC and creation energies of defects (eV).
w/o SSb w/ SSb ∆Esub

w/o VGe −509.175 −508.381 0.79

w/ VGe −504.637 −505.269 −0.63

∆Evac 4.54 3.11 —

convenience. ∆Evac is the formation energy of VGe, or, the energy needed to remove a

Ge atom and place it at infinity. ∆Esub is the formation energy of SSb, or the substitution

energy needed to change a Ge atom into a Sb atom.

Our result shows that it is more likely to form VGe in the presence of SSb, since ∆Evac

will be reduced by 1.43 eV. Or, we can interpret the data in the way that a Ge atom is

inclined to be substituted with a Sb atom when a VGe is nearby, for the substitution energy

∆Esub turns from positive to negative. These evidences indicate that VGe and SSb enhance

the presence of each other in GeTe system.

3.3.3 Formation of a SSb in VGe-rich environment

We are interested in the substitution energy∆Esub in the presence of two VGe. A 4×4×

4 SC containing two VGe is calculated. Note that there are many possible configurations

for the two VGe. Here we select a site on Ge-site as the central site, and consider only

the cases where both VGe are arranged as nearest neighbors (on the Ge-sublattice) of the

central site. Each case is labeled by 2V i
Ge, where a larger i indicates a larger distance

between the two VGe. We then compute the total energy for each case with the central site

being either Ge or a substituted Sb. The method of configuration is illustrated in Fig. 3.4,

and the energies are listed in Table. 3.2.

In general, the result shows that the presence of SSb can decrease the total energy of

VGe-rich GeTe system. In other words, although VGe is already a somewhat easily formed

intrinsic defect in GeTe, SSb can further stabilize them and make the system tolerate even

more VGe. Note however that the case 2V 4
Ge shows that the presence of SSb will increase
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Table 3.2: Creation energy of SSb in the presence of two VGe (eV).
2V i

Ge w/o SSb w/ SSb ∆Esub

2V 1
Ge −499.864 −500.410 −0.55

2V 2
Ge −499.616 −500.019 −0.40

2V 3
Ge −499.940 −500.376 −0.44

2V 4
Ge −499.873 −499.632 0.24

Figure 3.4: Illustration of the atomic arrangements for the calculations of VGe-rich envi-
ronment. i is the index used in Table. 3.2.
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the total energy. Nevertheless, this merely indicates that when there are many VGe, they

will probably favor staying close by rather than on the opposite sides of SSb.

3.3.4 Summary of the energetics

From the results presented in previous sections, we have found that VGe and SSb facili-

tate the formation of each other in the GeTe system based on an energy point of view. This

addresses the question why GST compounds are often reported with large concentration

of VGe [18, 28, 45, 48].

3.4 Structural relaxation

Here we investigate the crystal structure relaxation induced by inserting defects. A

4×4×4 SC is adopted in the calculation. Similar to Fig. 3.1, for visualization, the purple

balls and the yellow balls are used to represent Ge atoms and Te atoms, respectively.

Additionally, VGe are represented by black balls, and SSb are represented by orange balls.

Except for the site at the center, each Ge atom is attached with a red arrow, and each Te

atom is attached with a green arrow. The arrows indicate the magnitude and direction of

the displacement of each atom after adding the defects. For visual convenience,the scale

of the arrow length is different in each figure. To simplify the figures, we will show only

the first and second nearest layers of Ge and Te with respect to the defect at the center.

3.4.1 Single defect induced relaxation

Relaxations of two 4 × 4 × 4 SCs each containing a VGe (type-VGe) or SSb (type-SSb)

are calculated. The results are illustrated in Fig. 3.5.

It is obvious that in both relaxation types, the induced displacement is significant only

for the atoms on the Cartesian x-, y-, and z-axis, while it is negligible for other atoms. We

thus explicitly extract the data of those atoms, including the first nearest Te layer (denoted

by NL1
Te) and the second nearest Ge layer (denoted by NL2Ge), into Table. 3.3. The largest

induced atomic displacement in the presence of VGe is 0.154 Å, which is consistent to the
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Figure 3.5: Structural relaxation of a 4 × 4 × 4 SC in the presence of (a) a single VGe

(black ball) at the center, and (b) a single SSb (orange ball) at the center.

result given by Edwards et al. [11]

Table 3.3: Displacement data for the atoms on Cartesian axes in Fig. 3.5.
(a) Type-VGe (b) Type-SSb

NL1
Te 0.002 Å outward 0.067 Å outward

NL2
Ge 0.154 Å inward 0.061 Å outward

For the type-VGe relaxation, it is not surprising that NL2Ge will move inward, since the

removal of a Ge atom at the center will release considerable space. However, although

being closer to the center, NL1Te barely move. This may be due to the combination of geo-

metric and chemical tendencies. Like NL2Ge, NL1
Te also tends to move inward in response

to the released space. Nevertheless, due to their anion role in GeTe system, Te atoms tend

to grab electrons from Ge atoms. Since a Ge atom is now removed, the surrounding Te

atoms move away from the vacancy in order to seek compensation from the Ge atoms on

the opposite sides. These two kinds of tendency cancel out, which leads to the steadiness

of NL1
Te.

For the type-SSb relaxation, the mechanism is rather straightforward. Since the sub-
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stitutional Sb atom (period 4) is bigger in size than the original Ge atom (period 3), NL1Te

is pushed outward, and NL2
Ge moves outward as well as a secondary response. The fact

that the displacement magnitudes of NL1Te and NL2
Ge are nearly the same supports this

explanation.

3.4.2 Relaxation induced by the combination of VGe and SSb

Figure 3.6: Structural relaxation of a 4 × 4 × 4 SC in the presence of a VGe and a SSb.

For further verification, we also calculated the relaxation of a 4 × 4 × 4 SC containing

both a VGe and a SSb as illustrated in Fig. 3.6. The two defects are arranged as nearest

neighbors on the Ge-sublattice. The displacement magnitudes of the atoms are confirmed

all smaller than 0.2 Å.

3.4.3 Summary of relaxation analysis

It has been shown that the relaxation induced by VGe and SSb in GeTe systems is fairly

small. Furthermore, if the defects are disordered as described in Ref. [7,8,26–28,39,42],

the relaxation is likely to average out. Not only does this suggest that doping Sb into GeTe

will not change the crystal structure, but it supports the fact that the cubic structure of GST

samples can sustain very large concentration of vacancies [18, 28, 45, 48].
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Since cubic GST’s crystal structure is not too deviated from the rocksalt structure, we

expect its band structure to be similar to that of β-GeTe as well. Note that if we want

to make estimate for electronic transport properties, the bands around the Fermi level are

specifically important. Because GST are often reported as p-type semiconductors due to

the large amount of intrinsic VGe [7,35,39,45], the bands below the VBM are particularly

of interest. As mentioned in Sec. 3.2, the GeTe bands below the VBM are contributed by

Te-p orbitals. Recall that Te atoms are exceptionally steady in the type-VGe relaxation,

therefore the bands contributed by them should remain especially stable going from the

β-GeTe to GST. Therefore, using the rigid band model based on the β-GeTe electronic

structure in order to estimate cubic GST’s transport properties is expected to be a valid

and effective approach.

3.5 Unfolded band structures

In this section, we investigate explicitly how the band structure is going to be affected

by various concentrations of defects. SC with various sizes are constructed and inserted

with a few defects. After being fully relaxed, their unfolded band structures are then

obtained by using the BൺඇൽUP [29] code. As for band structure plots, the PC k-path

along which the unfolded bands are drawn is identical to the one used in Fig. 3.2, and the

Fermi level in each graph is set to be zero.

3.5.1 Electron counting

Some prior knowledge regarding the relation between the composition, number of

electrons, and electronic states could be helpful for understanding the position of the Fermi

levels in the figures that we are going to discuss.

To begin with, any SC that we calculate corresponds to a normalized chemical formula:

Ge(1−CV−CS)Sb(CS)Te, (3.1)

where CV is the concentration of VGe, and CS is the concentration of SSb. Then, according
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to the valence electrons of each atom given in A.2, the normalized total number of valence

electrons used in the DFT calculation is equal to

N = 10 − 4CV + 1CS. (3.2)

Also, we have found that regardless of which SC we use, the integrated number of states

at VBM will always follow

IDOS
∣∣∣
VBM

= 10 − 2CV. (3.3)

Eq. 3.3 suggests that the states below VBM is independent of the presence of SSb. This is

not surprising, since the states below VBM originally provided by Ge atoms can be fully

compensated by the states of Sb atoms.

Using Eq. 3.1, 3.2, and 3.3, we can thus have a sense of the position of the Fermi level

of each SC.

3.5.2 Band structure with defects

Here we consider the unfolded bands from SC calculations with different sizes where

each contains one VGe or one SSb. The SC used and their corresponding normalized chem-

ical formula and defect concentrations are listed in A.3. The smaller the SC is, the larger

the defect concentration it has.

The result for the SC containing one VGe is shown in Fig. 3.7. As described by Eq. 3.3

and 3.2, we simultaneously lose 4 electrons and 1 state below VBM whenever a VGe is

formed. Since the loss of state cannot compensate the loss of electrons, the Fermi level is

lowered into the valence band. On the other hand, the result for the SC containing SSb is

given in Fig. 3.8. On the contrary, in these cases the Fermi level moves into the conduction

band due to the extra electrons provided by Sb. Clearly, for all the cases considered above,

the region near the VBM barely reveals new features, and the overall dispersions remain

very similar to the β-GeTe band structure up to 12 at.% of defect.
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Figure 3.7: Unfolded bands for (a) 3×3×3 SC (b) 2×3×3 SC (c) 2×2×3 SC (d) 2×2×2
SC, each containing one VGe.
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Figure 3.8: Unfolded bands for (a) 3×3×3 SC (b) 2×3×3 SC (c) 2×2×3 SC (d) 2×2×2
SC, each containing one SSb.
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3.5.3 Band structure with both VGe and SSb

For further confirmation, we investigate the combined influence by both types of de-

fects on the band structure. Note that in Ref. [45], the unfolded band structure of a 4×4×4

SC containing a VGe and a SSb, arranged as first nearest neighbors on the Ge-sublattice,

is already shown very similar to the β-GeTe band structure. Here, we want to consider a

SC containing two VGe and one SSb, which was previously discussed in Sec. 3.3.3. Since

2V 1
Ge is shown to have the lowest total energy among all possible configurations listed in

Table 3.2, it is chosen as our SC here. The unfolded bands of 2V 1
Ge is shown in Fig. 3.9(a).

Figure 3.9: (a)Unfolded bands of the 2V 1
Ge SC from Table 3.2. (b) Zoom-in band structure

of β-GeTe for comparison.

In this case, the defect concentration is 4.7at.% (3.1 at.% of VGe, 1.6 at.% of SSb).

It is obvious from Eq. 3.2 and 3.3 that in this configuration, the system exhibits a p-type

behavior with its Fermi level below the VBM. The dispersions are again very similar to

those of β-GeTe. Although there are some splittings near −5 eV, they are too deep and

is irrelevant to transport properties. However, it is noteworthy that there is also a minor

splitting of about 0.3 eV at the W-point near −0.5 eV. This splitting gives an estimate of
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the error bar that we may have if we are to calculate the transport properties of cubic GST

using β-GeTe band structure.

3.5.4 Quantitative measure of band rigidity

To obtain a quantitative measure of the rigidities of SC electronic structures, we com-

pute the “root-mean-square deviation (RMSD) per energy eigenvalue” of the unfolded

spectra by comparing them to the PC spectrum. In order to do this, a Γ-centered 4 × 4 × 4

Monkhorst-Pack k-mesh is adopted to calculate the PC spectrum, and the SC electronic

structures are unfolded onto this k-mesh, subsequently. Here, only the states below the

VBM are considered. And for the purpose of reducing numerical noise, in each unfolded

spectra, the spectral points with intensities smaller than 9% of the maximum intensity are

dropped. Then, using the bottom of valence band as the reference point for alignments,

we assign each of the remainder spectral peaks to its closest energy eigenvalue in PC

spectrum and calculate the distance between them. Lastly, with proper weighting and av-

eraging, we derive the RMSD per energy eigenvalue for each SC’s unfolded spectrum.

From the fact that the bottom s-bands, as shown in Fig. 3.2, are irrelevant to the transport

properties and are completely separated from other bands, we also compute the RMSD

per energy eigenvalue solely for the p-bands near the VBM by excluding the contribution

by the s-bands. Since Fig. 3.7(d), 3.8(d), and 3.9(a) are the most representative unfolded

band structures for they have the largest concentration of defects or show the combined

influence by both types of defects, we only calculate the RMSD per energy eigenvalue

for the SCs corresponding to these figures. The results for the three unfolded spectra are

listed in Table. 3.4. As we can see, the deviation per energy eigenvalue, which gives an

estimate of the error bar that we may have when calculating transport properties, is less

than a small value of 0.2 eV.

3.5.5 Summary of unfolded bands

It has been explicitly shown that the band structure of β-GeTe is barely affected by

the presence of either VGe, SSb, or a combination of them up to large concentrations. This
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Table 3.4: Root-mean-square deviation per energy eigenvalue for the unfolded spectra.
The unit is in eV.

s-bands
Corresponding supercell included excluded

Fig. 3.7(d) 2 × 2 × 2 w/ 1VGe 0.187 0.175

Fig. 3.8(d) 2 × 2 × 2 w/ 1SSb 0.111 0.081

Fig. 3.9(a) 4 × 4 × 4 w/ 2VGe & 1SSb 0.108 0.118

agrees with the prediction from the structural analyses in Sec. 3.4.

Moreover, if we set VBM as reference point (E = 0), the Fermi level and the number

of electrons per normalized chemical formula (Eq. 3.2) of each SC will strictly follow a

linear relation, as shown in Fig. 3.10.
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Figure 3.10: Fermi level versus number of electrons per chemical formula of each SC.

These evidences suggest that the effect of adding VGe and SSb into GST system is

actually just tuning the Fermi level of the system. Therefore, the validity of the rigid band

model of using β-GeTe electronic structure to estimate cubic GST’s transport properties
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is again verified.

3.6 Boltzmann theory calculations and direct comparison

to experiment data

In the previous sections, the rigid band model approach of using the β-GeTe electronic

structure to estimate cubic GST’s transport properties has been shown to be promising.

In this section, we test the applicability of the approach by directly comparing the ex-

perimentally measured transport data to our Boltzmann theory calculations done by the

BඈඅඍඓTඋൺP [25] code.

Since the GST thin films reported by Wong et al. [45] possess so far the best thermo-

electric performance, we choose them as our subject of comparison.

3.6.1 Experimental results by Wong et al. [45]

We now introduce some information regarding the GST thin films that we will make

comparisons with. They are prepared on Si substrates, and are shown to be in the Fm3̄m

cubic rocksalt phase throughout the operating temperature range of 25–300◦C. They are

reported with an extreme stoichiometry of Ge0.566Sb0.171Te with up to 25 at.% vacancies,

which can be explained by our energetics calculations in Sec. 3.3 and structural relaxation

calculations in Sec. 3.4. Using the VBM as the reference point (E = 0), ultraviolet pho-

toelectron spectroscopy (UPS) data show that their Fermi level decreases from −0.24 to

−0.52 eV with respect to the increase in temperature. Accordingly, we begin our calcula-

tion by scanning the Fermi level from −0.1 eV to −0.5 eV on the β-GeTe band structure

with an energy step of 0.1 eV. The positions of the scanned levels are illustrated in A.4.

For more details regarding the GST thin films, one can refer to Ref. [45].
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3.6.2 Seebeck coefficient

As explained in Section 2.3, Seebeck coefficients are quantities that can be calculated

without ambiguity in Boltzmann theory under the constant relaxation time approxima-

tion. The comparison of the computed and the measured Seebeck coefficient is shown in

Fig. 3.11. Clearly, the Fermi level at −0.1 eV gives a very accurate estimation.
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Figure 3.11: Seebeck coefficient as a function of temperature. “Exp.” is the measured
Seebeck coefficient of the GST thin flims provided by Wong et al. [45]

3.6.3 Carrier concentration

Carrier concentration is another quantity that can be obtained without ambiguity. The

comparison of the computed and the measured carrier concentration is shown in Fig. 3.11.

The experimental result of the carrier concentration shows a significant increase with tem-

perature. Wong et al. attribute this to the decrease of Fermi level into deeper bands [45].

Here, by directly comparing the computed curves and the measured curve, it is shown that

the Fermi level should drop from −0.1 eV to −0.4 eV with temperature. This agrees with
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the observed amount of decrement of the Fermi level, and the errorbar of Fermi level we

predicted in Sec. 3.5.3.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  50  100  150  200  250  300  350  400

N
 (

×1
020

cm
-3

)

T(°C)

-.1 eV
-.2 eV

-.3 eV
-.4 eV

-.5 eV
Exp.

Figure 3.12: Carrier concentration versus temperature. “Exp.” is the measured carrier
concentration of the GST thin flims provided by Wong et al. [45]

3.6.4 Relaxation time

As described in Sec. 2.3, under the constant relaxation time approximation for Boltz-

mann theory, electrical conductivity and electronic thermal conductivity are inevitably

derived with an relaxation time factor. This forbids us from directly comparing the com-

puted data to the experimental data. However, we can estimate the relaxation time twice by

comparing both the computed electrical conductivity and electronic thermal conductivity

to the experiment results, and check if the two values derived individually are consistent.

The calculated electrical conductivity over the relaxation time (σ/τ ) and the mea-

sured electrical conductivity of the GST thin films are plotted in Fig. 3.13. As shown in

the figure, the observed electrical conductivity is ~105 Ω−1m−1. If we believe that the
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Figure 3.13: The curves labelled with “eV” are the calculated electrical conductivity
over relaxation time (σ/τ ). “σExp.” is the data of the measured electrical conductivity of
the GST films provided by Wong et al. [45]

Fermi level really does lie in the range in which we do the calculation (−0.1 to −0.5 eV),

the computed σ/τ is ~1020 Ω−1m−1s−1. This means that the relaxation time should be

~10−15 s.

The calculated electronic thermal conductivity over the relaxation time (κele/τ ) and

the measured total thermal conductivity of the GST thin films are plotted in Fig. 3.14.

The computed κele/τ is ~1015 W −1m−1K−1s−1, the observed total thermal conductivity

is ~100 W −1m−1K−1. Here we cannot extract the electronic contribution to the total

thermal conductivity. However, if we assume that the electronic thermal conductivity is

approximately of the same order of magnitude of the total thermal conductivity, then the

relaxation time should be ~10−15 s, which is consistent with the estimation from electrical

conductivity comparison.
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Figure 3.14: The curves labelled with “eV” are the computed electronic thermal conduc-
tivity over relaxation time (κele/τ ). “κtot,Exp.” is the data of the measured total conductivity
of the GST films provided by Wong et al. [45].

3.6.5 Summary of transport calculations and speculation on the sub-

strate

We have demonstrated that by using the β-GeTe band structure, we can make rea-

sonable estimates of the transport properties of the cubic GST systems. Furthermore, by

comparing to the experimental transport data, our rigid band model predicts a Fermi level

of the GST thin films to lie between −0.1 to −0.5 eV below VBM, which is in good

agreement with −0.24 to −0.52 eV observed by the UPS measurement [45].

However, using Eq. 3.2 and the composition mentioned in Sec. 3.6.1, the number of

electrons per normalized chemical formula of the GST thin films should be 9.12. If the

linear relation between the number of electrons and the depth of chemical potential in

Fig. 3.10 is correct, then the GST thin films should have their Fermi level much lower

than−0.5 eV, which disagrees with both the experiment measurement and our calculation.
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Thus, there must be some source that provides extra electrons to the GST thin films so that

the Fermi level is pushed to the observed position. We speculate that it is the substrate that

is responsible for such compensation. In other words, when it comes to the preparation

of GST thin films, substrates may contribute a decisive influence, through the Fermi level

tuning, on the transport properties of the films.

3.7 Conclusion

In this work, we have studied the cubic GST systems by comparing them to β-GeTe.

Our energetics calculations showed that the Ge vacancies and Sb substitution facilitate

the presence of each other in β-GeTe system, which explains the often reported extreme

stoichiometries of cubic GST compounds. By investigating the deformation of the crystal

structure and the band structure, we showed that the Ge vacancies and Sb substitutions

barely perturb the cubic GST systems from β-GeTe characteristics. This indicates that the

function of them is merely tunning the Fermi level. Based on these facts, we proposed a

rigid band model of using the β-GeTe band structure to estimate the transport properties

of cubic GST systems. By directly comparing with the experiment results of the GST thin

films reported by Wong et al. [45], we demonstrated the accuracy and usefulness of the

rigid band model. Additionally, we speculate that the substrate play an decisive role in the

transport properties of cubic GST thin films.

GST is a very promising type of thermoelectric material because of its superior and

tunable thermoelectric properties. We believe that our work will serve as a guideline that

expedites the understanding, design, and engineering processes of GST for thermoelectric

applications.
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Appendix A

A.1 High symmetry points

The k-points is defined as

k = x1b1 + x2b2 + x3b3,

where bi are reciprocal lattice vectors of the rocksalt primitive cell. The xi values of each

high symmetry point used are listed below.

Points x1 x2 x3

Γ 0 0 0

L 0.5 0.5 0.5

X 0.5 0 0.5

W 0.5 0.25 0.75

K 0.375 0.375 0.75

U 0.625 0.25 0.625
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A.2 Valence electrons used in DFT calculation

The table below lists the valence electrons used for each type of atom in the DFT calcula-

tion as implemented in VASP [19,20] code.

Atom Period Group Valence
electrons

Ge 4 III s2p2

Sb 5 IV s2p3

Te 5 V s2p4

A.3 Supercells used in Sec. 3.5.2

The supercells (SCs) used in Sec. 3.5.2 and their corresponding normalized chemical for-

mula and defect concentrations on the Ge-sublattice are listed in the following table.

SC VGe SSb
Defect

cocentration
3×3×3 Ge0.9630Te Ge0.9630Sb0.0370Te 3.70 at.%

2×3×3 Ge0.9444Te Ge0.9444Sb0.0556Te 5.56 at.%

2×2×3 Ge0.9167Te Ge0.9167Sb0.0833Te 8.33 at.%

2×2×2 Ge0.8750Te Ge0.8750Sb0.1250Te 12.5 at.%
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A.4 Fermi level scanning

The levels in GeTe band structure for Fermi level scanning.
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